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Introduction

This paper is a continuation of Rossell6-Xamb6 [1987-]. Our interest in the computation
of Chow groups sterns mainly frorn Enumerative Geometry. This branch of Geometry is
concerned with the formulation of principles and development of methods that suffice to
solve questions that ask how many geometrie figures of some kind satisfy some suitable
number of conditions, the construction of the figures not being required (see Schubert
[1879]). Usually Chow groups enter the scene, in the process of solving an enumerative
problem, in steps 4 and 5 of the "program" below.

Step 1: Parametrization. First we need to parametrize the figures we are interested
in by the points of some variety, say S. So, for example, irreducible conies in p3 may be
parametrized by an open set U of P(S:lI (E+)), where E is the rank 3 tautologieal bundle
Qver P3.

Step 2: Interpretation of conditions as cycles. Next we interpret conditions im­
posed on the figures as cycles, or families of cycles, on S. Often conditions are deter­
mined by same geometrie relation of our figures to some other kind of geometrie entity
(räumliche Bedingungen, in Schubert' s terminology). Such relations give rise to alge­
braie (often rational) families of cycles. For example, the eonies in p3 meeting a line
form an irreducible hypersurfaee of the open set U described in Step 1, and when the
line moves we get a rational family of hypersurfaees of U. A eondition that expresses
a geometrie restrietion, or special configuration, on the internal strueture of our figures
(absolute eondit ions) gives rise to a dist inguished eycle on S. For exarnpIe, if we take
tetrads of distinet eolinear points, we may consider the eondition that the points form
an harmonie tetrad.

Step 3: Interpretation of the enumerative problem as the eomputation of the degree of
a ~cycle obtained interseeting the eycles eorresponding to the eonditions given in the
problem. Here sometimes the difficulty lies in proving that the loeus of solutions has



indeed dimension 0, a.s for instance in the problem of finding the number of (n - 2)­
dimensional linear spaces in pn that are (2n - 2)-secant of a given curve C, provided
this number is finite.

Step 4: Algebraization via compactification. Take the c10sure of the intersecting
cycles in some suitable complete variety S' containing Sand in such a way that the
degree N 01 the product 01 the rational classes 01 the closed conditions is the number we
are looking lor.

Step 5: Computation. To compute N effectively usually involves writing one of the

eonditions as linear eombinations of degeneration c1asses, that is, c1asses of eomponents of
S' - S (boundary eomponents), which has the efeet of redudng the problem to eomputa­

tions on the degeneration varieties. For this reduction one fiuSt know how the conditions
involved in the definition of N restriet to the boundary eomponents. Sometimes we ean
eompute the numbers using a variety S' whieh is a 'partial compactifieation' of S, that
is, obtained adding only a few boundary eomponents to 8.

Steps 1 and 2 are usually solved by eurrent general techniques, while Step 3 is often
aehieved using transversality results (for iIistanee Kleiman's transverslity of generie trans­
lates, or, more generally, Casas [1987] and Speiser {1988]) that guarantee that relational
eonditions meet properly under rather general eireumstanees.

Step 4 is often difficult. Here the points in 8' - 8 may be interpreted as some sort

of figures obtained degenerating the figures in S, so that usually the problem is to

understand what possible degenerations our figures of type S may undergo. In general,
the more complieated the problem we want to solve, the deeper the knowledge of the
degenerations we need.

Let us remark in passing that a simple way of producing degenerations is by means
of the homolography process, that is, a family of homologies in projeetive space whose
modulus goes to 0 (or to 00). In this way one ean obtain, for example, all possible
degenerations of the euspidal eubics (Miret-Xamb6 [1987]).

In step 5 it is needed to know:

(a) How the Chow groups behave under the diverse opperations that we perform to
arrive at S' starting from 8 (for instanee under c10sure or blow up (or down));

(b) What information ean we get from the knowledge of struetural properties of a
given variety (for instanee from the existenee of distinguished elosed filtrations,
or from the existence of distinguished fibrations over other varieties), and
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(c) In which ways the Chow groups of a given variety are interrelated (existence of
some form of duality and so on).

In what follows we will foeus on some general statements that-solve a number of ques­
tions in the directions pointed at by (a), (b) and (c), which improve, to some extend,
existing results, aod also on sorne new applications of them. We refer to Miret-Xamb6
[1987,88] for the applieation of the program above to plane euspidal cubics, and also for
details about the program itself, particularly coneerning the use of partial compactifica­
tions.

Contents.

1. Borel-Moore schemes.
2. Filtrations and fibrations.
3. Chow groups of blow ups aod other modifications.-4. Copkpn revisited and Chow groups of Copkpn.

5. Chow groups of Le Barz's "complete 3-tuples" in pn.
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the final version has been prepared, for its excellent work facilities.

1. Borel-Moore schemes

1.1. Notations. Let k be an algebraically closed field of characteristic p 2: O. Here
the term Bcheme will mean an algebraic k-scheme of finite type which admits a closed
imbedding into a regular k-scheme of finite type and variety will mean an irreducible,
reduced scheme. H X is ascheme, A k (X) will denote the k-dimensional Chow group
of X. R will always denote a noetherian domain wich is Hat over Z, the ring of integers.
The field of fractions of R will be denoted K(R). Finally we shall often write Ak (X, R)
instead of A k (X) ® R.

1.2. Homology. We shall let H. ( ,R) denote a homology theory for schemes, that
is, a family of functors from schemes to R-modules, covariant for proper maps and
contravariant for open embeddings, satisfying properties (a)- (e) below.

(a) U X is a scheme of dimension d, then HdX, R) = 0 for i < 0 and i > 2d.
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(b) Let X be ascheme, Y a closed subscheme and U = x - Y. Let i: Y C-...+ X and
tL: U C-...+ X be the inclusion maps. Then there exists a functorial long exact sequence

{J i. u·
... -+ Hk+ 1 (U,R) ~ Hk (Y,R) ~ Hk(X,R) ~ Hk (U,R) -+ ...

(c) For any finite disjoint union of schemes UXi and for all k

Hk (UXi,R) = EBHk(Xi,R).
i i

(d) For all schemes X and all integers k there exists a map

cl~ : Ak (X) ~ H'Jk (X, R)

which commutes with push-forward by proper morphisms and with restrictions to open
subschemes. After tensoring with R, it induces a map from A k (X, R) to H2k (X, R) I

which we shall denote cl~ ,R' or simply cl~ if there is no danger of confusion.

A Borel-Moore scheme with respect to R, or simply an R-Borel-Moore scheme (R ­
BM for short), will be a scheme X for which clx is an isomorphism, by which we mean
that for all k (i) cl~ IR is an isomorphism and (ii) H'Jk+ 1 (X, R) = 0 (cf. Fulton (1984],
Ex. 19.1.11, and Rossell6-Xamb6 [1987], Sect. 2).

Ce) If X is an R-Borel-Moore scheme, then any projective bundle over X is an
R-Borel-Moore scheme.

If p = 0 the Borel-Moore homology satisfies (a)-(e) with respect to R = Z (see
Iversen [1986], Ch. IX, X; see also Fulton [1984], Ch. 19, and Verdier [1976]). If p > 0
there exists a homology theory that satisfies (a)-(e) with respect to R = Zl' l any prime
number different from p (see Laumon [1976]). Henceforth a Borel-Moore scheme will be
a Borel-Moore scheme with respect to Z if p = 0 and a Borel-Moore scheme with respect

to Zl' for all l i- p, if p > O.

1.3. Lemma. Let i: Y C-...+ X a closed embedding and assume that Y is an R-BM
scheme. Let U = X - Y and u: U C-...? X. Then the following two conditions are
equivalent:

i) U is an R-Borel-Moore scheme.
ii) X is an R-Borel-Moore scheme and i. : A* (Y, R) -+ A. (X, R) is injective.

Proof: This Lemma follows from the definitions and a little chasing over the diagram

{J i. u·

0-+H'Jk+ 1 (X, R) -+ H2k + 1 (U, R) --7 H'Jk (Y, R)~ H'Jk (X, R)~ H'Jk (U, R) -+ 0

rcf~ rc1~ rcl~
. .
'. u

0-+ Ker (i.) -+ Ak (Y, R) ~ Ak (X, R) ----+ Ak (U, R) -+ 0
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where the top row is exact by 1.2 (b) and the hypothesis, and the bottom row is exact
by Fulton [1984], Prop. 1.8.1. 0

1.4. Corollary. With the same notations as in 1.3, the following two conditions are
equivalent:

i) U is a Borel-Moore scheme.
ii) X is a Borel-Moore scheme and i. : A. (Y) ~ A. (X) is injective.

Proof: Apply 1.3 to R = Z, when p = 0, and to R = Zt when p > 0: In the latter case
notice that if U is a Borel-Moore scheme then (Ker i.) ® Zt = 0, for all l =I p, which
implies that Ker i. = O. 0

1.5. As a corollary of 1.3, it is also easy to prove that any vector bundle over
an R-Borel-Moore scheme is an R-Borel-Moore scheme (see Rossell6-Xamb6 [1987),
Lemma in section 2).

1.6. Remark. The conditions (i) and (ii) in the definition of Borel-Moore schemes
are independent. Indeed, on one hand An - {O}, n > 0, is a scheme such that cl k is an
isomorphism for all k but with H I = Z, as it can be easily seen arguing as in the proof
of 1.3. On the other hand, K3 surfaces have vanishing odd homology and for them cF
is not an isomorphism (see Barth et al. [1984], VIII, 3).

2. Filtrations and fibrations

In this Section some statements for BM schemes in Rossell6-Xamb6 [1987] and Rosse1l6
[1988) are recast to include R-BM schemes. Since the proofs are similar they are mostly
omited.

2.1. An R-Borel-Moore filtration of a scheme X is a sequence of closed subschemes Xi
of X,

(*) o= X_ 1 C Xo C Xl C ... C Xn - I C Xn = X,

such that aH schemes Zi = Xi - X i - 1 are R-Borel-Moore schemes. When all differences
Zi are Borel-Moore schemes (i. e., Z-Borel-Moore schemes in the characteristic 0 case,
and Zt-Borel-Moore schemes in the characteristic p =I 0 case, for all l =I p) we will
caH (*) a Bord-Moore filtration. An R-Borel-Moore filtration will be called R-free if
A. (Zi' R) is a free R-module, for all i. Instead of Z-free and Zcfree, as the case may
be, we will say free for ahort.
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2.2. Proposition (cf. Rossell6-Xamb6 [1987], Th. 1)
a) JE a scheme X admits an R-Borel-Moore filtration then X is an R-Borel-Moore

scheme.

b) IE the R-Borel-Moore filtration of X is R-free, then A k (X, R) is a free R-module,
for a11 k. Moreover, the classes of the closures in X of representative cycles of R-free
bases for Ak (Zi' R), 0 :::; i :::; n, form an R-free basis for Ak (X, R).

c) In particular, if X admits a free Borel-Moore filtration, then X is a Borel-Moore
scheme, A k (X) is a free group for all k, and the union of the classes of the closures in X
of representative cycles of free bases for Ak (Z..), 0 :::; i :::; n, Eorm a Eree basis for A k (X).

2.3. Folklore theorem. As a corollary of Proposition 2.2 (c) and 1.5, we get that if
a scheme X admits a cellular decomposition in the sense of Fulton [1984], Ex. 1.9.1 (i. e.,
a closed filtration such that each Zi is isomorphie to finite disjoint union of affine spaces
(the cells of the deeomposition), then X is a Borel-Moore scheme and Ak (X) is freely
generated by the classes of the closures of the k-dimensional cells (cf. Rossell6-Xamb6
[1987], Corollary in Seet. 1; see also Fulton [1984], Ex. 19.1.11 (b)).

2.4. Theorem (cf. Rossell6-Xamb6 [1987], Th. 2)
a) Let X be a scheme which admits a ce11ular decomposition and let f: X' --.. X a

morphism which is trivialover any ce11 in the cellular decomposition of X, with fiber a
fixed scheme F. Then for a11 k there exists an epimorphism

g: EB Ar (X) ® A, (F) --.. Ak (X').
r+,=k

a') If the fiber F in (a) is an R-Bore1-Moore scheme, then X' is also a R-Borel-Moore
scheme and g ® K(R) is an isomorphism.

a") Ifthe fiber F in (a) is an R-Borel-Moore scheme and A k (F, R) is a free R-module,
then X' is also an R-Borel-Moore scheme and g ® R is an isomorphism.

b) With the notations and assumptions of (a), ifX admits an R-Bore1-Moore filtration
and F admits a ce11u1ar decomposition, then X' is an R-Borel-Moore scheme and there
exists an epimorphism g a.s in (a) such that g ® K(R) is an isomorphism.

b') JE the R-Bore1-Moore filtration of X is R-free, then g ® R is an isomorphism.

Statements (a), (a') and (a") are proved in Rossell6-Xamb6 [1987], Seet. 4, for the
Borel-Moore case. The extension here, as well as the proof of (b) and (b'), can be done
in a similar way.

To end this Section, we recall an applieation of Theorem 2.4 which will be used
repeatedly in Section 4. It is worked out in Rosse1l6 [1988], Th. 2.2, but for convenience
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of the reader we include a sketch of its proof. The notations for Schubert cycles on
Gr (k, n) (the Grassmann variety of k-planes in pn) appearing in its statement and
proof are those of Fulton [1984], §14.7.

2.5. Theorem.Given a non-singular variety W and a morphism

p: W -----+ Gr(k,n),

(k < n), assume that p is trivialover a11 open Schubert ce11s (with respect to a fixed
complete Hag) oE Gr(k,n), with fiber a fixed scheme W, and that moreover the Eo11owing
properties are satisfied:

i) W is a non-singular complete Borel-Moore variety.

ii) A. (W) is a finitely generated Eree graupe

iii) For a11 m, the intersection product induces an isomorphism between Am (W) and
Am (W)· (the dual of Am (W)).

Then:

a) W is a Borel-Moore scheme of dimension (k + 1) (n - k) + dirn (W);

b) All Chow groups Am (W) are finitely generated Eree groups oE ranks

m

bm(W) = Lb.(W)bm_.(Gr(k,n))i
.=0

c) The intersection product induces an isomorphism Am (W) ~ Am (W)- ;

d) Suppose given a general linear space Lk L.....t pn of dimension k and a subset

Z, = {Zr,;};

oE A, (W), for a111, such that its restriction to the E. ber p- 1 ({Lk }) ::: W is a Eree basis oE

A r- (k+ 1)( n - k) (W). Then the set

(ao,al"" ,a.t),;

O~aO<al... <a.t~n

in' Am (W) is a [ree basis oE this group, for a11 m.

Proof: Statements (a) and (b) are direct consequences of Theorem 2.4. We shall
prove now (c) and (d) simultaneously.

First notice that (b) implies bm (W) = bd1m"NI -m (W) and card Bm = bm (W).
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Applying the properties of the intersection product of Schubert cycles (Fulton [1984],
§14.7, Griffiths-Harris [1978], pp. 197-198), the commutativity of the intersection product
and its compatibility with Bat pull-backs and Gysin-homomorphisms (Fulton [1984], Th.
6.2.(b) and Th. 6.4), for any two cycles Zl and Z~ on W we have the following:

1) Given two partitions (ao, a l , ... ,a,J, (bo , bl , ... ,b,J E Zk+ I (with 0 ::; 11o < ... <
al; ::; n and 0 ::; bo < ... < bk ::; n) Buch that there exists sorne i with bk - i + ai < n, then

2) Given any partition (11o, al," . ,ak) E Zk+ I (with 0 ::; ao < ... < ak ::; n), then

where i is the regular embedding i: W -- f- I ( {Hk}) C-+ W.

From (1) and (2) we infer that the interseetion products of elements of Bm and
Bdim W - m , in a Buitable order, give a square "triangular" matrix

MI * * *
o M~ * *
o 0 M 3 *

o o o

where the boxes on the diagonal ate matrices whose entries are the intersection products
of pairs of cycles belonging to bases for two Chow group8 of W of complementary dimen­
sions, so that (by (iii)) each Mi is unimodular. We conclude that the whole matrix is
unimodular, which implies (c) and (d) (cf. Lemma in Elencwajg-Le Barz [1983]). 0

3. Chow groups of blow ups and other modifications

3.1. Notations. Let X be a scheme and let Y be a closed subscheme of X such that
the embedding i: Y C-+ X is regular of codimension T = e + 1 ~ 2. Let

j ,.."

y ) X

Ql 11

Y ) X.

/
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denote the fibre square corresponding to the blow-up of X along Y. If N denotes the
normal bundle to Y in X, recall that Y = P(N). We will write h = Cl (Oy(l)) and
E = g·N/Oy (-l).

In next theorem, the case when X is a sffiooth variety and Y a smooth subvariety
of codimension 2 is contained in Samuel [1958], §3, and with the same hypothesis but
arbitrary codimension in Jouanolou [1977], 9.10.2 and Beauville [1977], Prop. 0.1.3. The
arguments in our proof, although simpler, are rooted in those older proofs and use the
level of generality afforded by today intersection theory.

3.2. Theorem.
a) For a11 k, there exists a split exact sequence

e ~ _ f.

o~ EB Ak - i (Y) -t Ak (X) ----+ Ak (X) ~ 0
i= I

where
e

CP(YI"" ,Ye) = i. L he-ig~ (Yi)
i= I

for all Yi E Ak - i (Y), i = 1, ... ,e. Moreover, a splitting of the sequence is given by the
map I~ : A k (X) --. A k (X).

b) In particular, for all k there exists an isomorphism

given by the formula

c) The inverse of Cb is the map W given by the relation

W(x) = (I. (x), -g. i· (x), -g. Cl (E)i· (x), ... ,-g. ce - I (E)j· (X».

Proof: Consider the sequence

- a - ~o -+ Ak (Y) --. Ak (Y) EB Ak (X) --. Ak (X) -+ 0,

where
a(Y) = (g. (Y), - i. (Y), ß(y, X) = i. (y) + I. (x).

Then, except for the 0 on the left, it is exact (Fulton [1984], Ex. 1.8.1). But a is also
injective, by Fulton [1984], Prop. 6.7 (c). Moreover, if we let
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be the map defined by
,(x) = (0, [+ (x)),

then
ß, = [.[* = id,

by Fulton [1984], Prop. 6.7 (b). So our sequence is split. By the snake lemma applied to
the commutative diagram

o a I Ak (Y) EI) Ak (X)

lvrl
----+1 0

o ----+1 Ak (Y)

we obtain that

id o ----tl 0

is exact and split, hence
Ak (X) EI) Ker g. ~ Ak (X),

via the map (x, Y) I-t [. (x) + i. (Y).
Now

Ak CY) ~ Ak (Y) EB Ak - 1 (Y) E9 ... ES Ak - e (Y),

by the map (Yo, Yl,"· ,Ye) I-t h"g+ (Yo) + ... + g+ (y,,) and under this isomorphism,
g+ (Yo ,Yl , ... ,y,,) = Yo· Hence Ker g+ !:::: Ak - 1 (Y) ffi ... ES A" (Y). From this it follows
that ~ is indeed an isomorphism. Checking that \11 is the inverse of cI> follows easily from
the relation

g. (Ck (E)h;g+ (y)) = Y if k + i = e, Ootherwise

(which in turn is equivalent to the relation c(N)s(N) = 1, c and s the total Chern and
Segre classes of N) and the self-intersection formula for J', i+ J'+ = -ho D

3.3. Corollary. For all k, g+ induces an isomorphism between (Ker J.)k and (Ker i.)k.
The inverse homomorphism is given by the map

"
6(y) = L he

-;g. (Ci (N)y).
;=0

Proof: From the definition of E and the key formula (Fulton [1984], Prop. 6.7 (a)) we
easily obtain that, for all y E Ak (Y),

e

J'+ (h" g+ (y)) = [+ i. (y) - J'+ L he-;g+ (c; (N)y).
;=1
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Aplying this formula, we get
e e

j.(I: he-ig. (Yi)) = f*i.(yo) + j. I:he-ig* (Yi - Ci (N)yo)
i=o i=1

for all Yj E A k _ j (Y), j = 0, ... ,e. Since ~ is an isomorphism, we deduce

j. (t h,-jg' (Yj)) = 0 if and only if { i. (Yo) ( 0)
Yi = Ci N Yo i = 1, . .. ,e.

j=O

Finally, since g. (L::;= 0 he
- i g. (Yj )) = Yo, we get the desired isomorphism. 0

3.4. Proposition. Suppose that Y" ...Js an R-Borel-Moore scheme. Then X 1S an
R-Borel-Moore scheme iE and only iE X is an R-Borel-Moore scheme.

-Proof: We shall prove that if X is an R-Borel-Moore scheme then X is also an
R-Borel-Moore scheme. The proof of the inverse implication is very similar, so we
leave it to the reader.

Let U = X - Y and let tL: U e.......t X be the inclusion. Reasoning over the commutative
diagram

8. io. uo.

o~ H 2k + 1 (U, R) ---+ H'2k (Y, R)~ H'2k (X, R) ---+ H2k (U, R) ---+ 0

rcl~ rCI~ rcl~
. .
'o. U

0---+ (Keri. h~ ---+ Ak (Y, R) ~ Ak (X, R) ---+ A k (U, R) -t 0

leads easily to the following conclusions:

(i) ak is injective;

(ii) cl~ induces an isomorphism between (Ker i. hand 8k H'Jk+ 1 (U, R).

(iii) cl~ is an isomorphism;

Now set u: ff = X - Y~ X and let p: fJ ---+ U be the restriction of f to ff. Since p
is an isomorphism, from (~'ü") we get that clJ;.,.. is also an isomorphism. Finally, recall that,

u
since Y is an R-Borel-Moore scheme and Y is a projective bundle over Y, then Y is
also an R-Borel-Moore scheme (1.2 (e)). Let's consider now the following commutative
diagram:

_ _ 8 ~ _ jo. _ ;o. _

O---+H'2k+l (X,R) ---+ H'Jk+l (U,R) ---+ H'2k (Y,R)~ H'2k (X, R) ---+ H'2k (U,R) ---+ 0

(*) rcl; Icl~ Icl;
-""", i. ;.",; u· ".."

-t Ak(Y,R) ~ Ak(X,R) -+ Ak(U,R) -t0

11



From the functoriality of the long exact sequence in 1.2 (b), the injectivity of 8k and
the fact that p. is an isomorphism, we easily get that

(iv) H 2k + I (X, R) = O.

From 3.3 and (ii) it is not difficult to deduce that

(v) clt induces an isomorphism between (Ker i. hand CYk H'Jk + I (fi, R) .
y

Finally it is easy to see that (v) implies

(vi) cl";.,., is an isomorphism.
x

Now (iv) and (v i), and the fact that k is an arbitrary integer, tell us that X is an
R-Borel-Moore scheme. 0

3.5. Let's suppose now that Y is a closed subscheme of X (no longer regularly embedded
into X), and let

y' • X'

Y IX.

be a proper modification of X along Y (i. e., a fiber square where f is a proper map such
that it induces an isomorphism between U' = X' - y' and U = X - Y). Assume that 9
is a projective bundle of rank e.

3.6. Theorem. In the conditions of 3.5, assume that Y and U are R-Borel-Moore
schemes. Then

a) X and X' are R-Borel-Moore schemes and the maps i. : A. (Y, R) -t A. (X, R),
i. : A. (Y' ,R) -t A. (X', R) are monomorphisms.

b) For all k, there exists an exact sequence

e 'P f.
o --t E9 A k - i (Y, R) -t Ak (X', R) -----+ A k (X, R) --t 0

i= I

where

i:::z I

for all Yi E Ak - i (Y, R), i = 1, ... ,e (with h = Cl (.cl, .c the tautologicalline bundle on
Y').

Proof: Part (a) is straighforward from the hypothesis and 1.3.
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As far as part (b) goes, when we apply Fulton [1984], Ex. 1.8.1, to the fibre square in
3.5 we get the exact sequence:

where a(y') = (g. (y'), i. (y')) and ß(V, x') = i. (y) - f. (x') for an v' E Ak (Y'), V E Ak (Y)
and x' E Ak (X').

Tensoring this exact sequence by Rand noticing that, by (a), i.: A. (Y' ,R) -t

A. (X', R) is injective, we obtain that the sequence

a ß
o -t Ak (Y', R) --t Ak (Y, R) E9 Ak (X', R) --t Ak (X, R) -4 0

is exact for an k.

From this exact sequence one easily deduces that the sequence

(*)

is also exact, for an k.

Finally, the exact sequence in the statement comes from (*) and the isomorphism

e

q>: EB Aj: - i (Y) --t (Ker g. h
i= 1

given by
e

~(Yl"" ,Ve) = L he-iq'. (Yd
i= 1

(Fulton (1984), Prop. 3.1 (a) and Th. 3.3 (b)).

In particular, taking R = Z or ZtJ as the case may be, we have:

D

3.7. Corollary. In the conditions oE 3.5, assume that Y and U are Borel-Moore
schemes. Then

a) The schemes X and X' are Borel-Moore schemes and the maps i. : A. (Y) -t A. (X),
i. : A. (Y') -t A. (X') are monomorphisms.

b) For all k, there exists an exact sequence

e ~ I.
o --t EB Ak - i (Y) --t Ak (X') ---+ Ak (X) --4 0

i= 1

13



where
e

rp(Yl"" ,Ye) = i. L he
-

i
g. (ud,

i= I

for all Yi E A k - i (Y), i = 1, ... ,e (with h = Cl (.c), .c the tautologicalline bundle on Y').

3.8. Remark. We don't know whether this exact sequence is, in general, split.

4. Copkpn revisited and the Chow groups of Copkpn

4.1. Let Alkpn (n :?= 2, k :?= 3) denote the closed subscheme of Hilbkpn whose points

are the collinear k-tuples (i. e., k-tuples contained in lines) , and let

Axis: Alkpn -----+ Gr (1,n)

denote the map sending any collinear k-tuple to the unique line containing it. It is known
that Axis is a projective bundle of rank k (Le Barz [1987], Prop. 1 and Rem. 2). Then,
applying 1.2 (e), we get that Alkpn is a Borel-Moore variety, and we can compute its
Chow groups using 2.5.

4.2. Now let Copkpn (n :?= 2, k :?= 3) denote the closed subscheme of Hilbkpn parametriz­

ing the coplanary k-tuples (i. e., k-tuples contained in planes). Notice that there does
not exist a regular map from Copkpn to Gr(2, n) analogous to Axis in 4.1, for collinear
k-tuples are contained in infinitely many planes.

When n = 2, COpkp2 = HilbkP2 is known to be a non-singular Borel-Moore variety of
dimension 2k, for all k (Fogarty [1968], Ellingsrud-StrSC'mme [1987]), and its Chow groups
have been proved to be free and their ranks have been computed in Ellingsrud-Str~mme

[1987], Th. 1.1, applying the results in Bialynicki-Birula [1973], [1976] on cellular decom­
positions defined by a torus action.

When k = 3, Cop3pn = Hilb3 pn is also known to be a non-singular Borel-Moore
variety of dimension 3n, for a11 n, and its Chow groups have been computed in Rosse116
(1986], Th. 2, using 2.5 and 3.2, and in Rossell6-Xamb6 [1987] §5, using Theorem 2.4
(b) and Bialynicki-Birula's theorems.

On the other hand, it is not difficult to check that, when n ~ 3 and k ~ 4, Copkpn

is a singular variety (for instance, along the collinear k-tuples supported by a single

point). In Rosse1l6 [1986] the Chow groups of Copkpn, a natural desingularization of

Copkpn (see below), were studied. Here we will show that both Copkpn and Copkpn
are Borel-Moore schemes and will determine the Chow groups of the latter (see 4.7).

14



4.3. To do this, let's introduce the following auxiliar incidence variety (see Elencwajg-Le
Barz [1983], Rosse1l6 [1987]):

C~kpn = {(8, TI) E Hilbkpn X Gr (2, n) I 8 c TI} .

...-
Let p and q the restrictions to Copkpn of the natural projections from Hilbkpn X

Gr (2, n),
p(8, TI) = TI and q(8, TI) = 8.

...-
4.4. Lemma (Rosse1l6 [1986], Lems. 1, 2).The morphism p: Copkpn --+ Gr(2,n) is
trivial over any Schubert cell on Gr(2, n), with fiber Hilbkp:;l.

4.5. Theorem (cf. Rosse1l6 {1986], Th. 1).For all k ~ 2, n ~ 3
...-

a) COpk pn js a non-singular projec tive Borel-Moore variety oE dimension 3n+2(k - 3) .
...-

b) For all m, the Chow group Am (Copkpn) is free oE rank

m

bm(C~kpn) = L bi (Hilbkp~ )bm- i (Gr(2, n))
i=O

...-
c) Für all m, the intersection product induces an isomorphism between Am (Copkpn)

...-
and Am (Copkpn) •.

Proof: Just apply 2.5 to p.

4.6. Now let UB consider the following fiber square:

D

(*)

...- j ...-
Alkpn • Copkpn

q'1 lq
Alkpn ) Copkpn

It ia very easy to check that q induces an isomorphism between Copkpn ...,... Alkpn and
COpk pn - Alk~ and th~q is a projective bundle of rank n - 2. In particular, the
codimension of Alk pn in Copkpn is k - 2. ThuB, when k = 3 it is not difficult to see that
Cop3pn is the blow-up of Cop3pn = Hilb3pn along Al3 pn (Elencwajg-Le Barz [1983]).
This fact allowed us to apply 3.2 in order to compute the Chow groups of Hilb3 pn from

those of COp3~n (Rosse1l6 [1986], Th. 2). 0 n the other hand, when k > 3, (*) is no Ionger
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a blowing-up fiber square, because in this case Alkpn is not a divisor on Copkpn. Then,
in order to compute the Chow groups of Copkpn, 3.2 no longer applies, but fortunately

3.6 does.

4.7. Proposition. With the notations of 4.6, far all k ;::: 3, n ;::: 3:

a) The map i. : Am (Alk pn) ---+ Am (Copkpn) is injective, far all m.

b) Copkpn is a Borel-Moore variety of dimension 3n + 2(k - 3);

c) For a11 m, there is an exact sequence

n-~ 'P - q.o-. EB Am _dAlkpn) -t Am (Copkpn) -----t Am (Copkpn) --4 0
i= I

where cP is defined as
e

CP(YI' ... ,Ye) = j. L he
- iq'. (Yi),

i= I

for all Yi E Am _-(Alk pn), i = 1, ... ,e (with h = Cl (.c), .c the tautalagical line bundle-over Alk pn ).

Proo~Since Alkpn (which is a projective bundle over a projective bundle over Cr (1, n))
and COpk pn are Borel-Moore Bchemes, in order to apply 3.6 we only need to prove that

Copkpn - Alkpn is also a Borel-Moore scheme, or equivalently, that

is a monomorphism for all m. But, since both A. (Alk pn) and A. (Copkpn) are finitely
generated free modules, in fact we only need to prove that, for aU m,

ia a monomorphism.

To do this, we first prove the following

4.8. Claim. For all m, the Gysin morphism

is an epimorphism.

Proof: Fix a complete linear Hag L on pn,

o= L_ 1 C La C ... C Ln = pn ,

16



a cornplete linear Hag L'

o= L~ 1 C L~ c """c L~ = pn

in general position with respect to L (i. e", such that for all i and J, dirn Li nL~. = i +J- n)
and k general hyperplanes H 1 , " •• , Hk'

By 2.5, a basis for Ar (Alk P n), for all I, is given by the cyc1es

{ [{9 E Al'pa I Axis(9) n La, "" 0, Axis(9) C La"

9 n H, "" 0, for i = 1, . .. , r }] }
O~ao<al~n, O:Sr:Sk

l=aO+al+ k -,.-1

Given a set of 4 positive integers (~al' r, J), with 0 ~ aa < af ~ n, 0 ::; r ~ k and

o~ J ~ n - 2, we define the cycle on Alk pn

--
Zao,al,r,; = [{(O, JI) E Alhpn I Axis(O) n L ao # 0, Axis(O) C Lai

JI n L~ _:2 _; # 0, 0 n Hi # 0, for i = 1,. .. ,r}]

Applying 2.5 to q' we get that the cyc1es

aO+al +k- r+ n- 3-;=r.m

give a basis of Am (Alkpn), for all m.

Now let us define, for all (11o, al, r,j) as before, the cycle

Z~o,al,r,; = [{(O,IT) E Copkpn IOnHi # 0, for i = 1, ... ,r,
ocontains a 2-tuple collinear with Lao ,

On Lai # 0, JI n L~-~-i # 0}]

on COpk pn. It 's straighforward to check that

--
Z~o,al,r,; E Aao+al-1+n-r-i+2(k-2) (Copkpn)

and that j. (Z' .) is a multiple of Zao al r,'. We have then found inverse images by J"*aO,al,r" ' " __

of muItipies of the elements of a basis for Am (Alk pn ), thus J* ® Q is an epimorphism" I

17



In order to simplify the notations, from now on we will write j. (resp. j.) instead of
j. ® Q (resp. j. ® Q). We want to prove that

is injective for all m.

On one side, since Alk pn is a projective bundle over a projective bundle over
Cr(1, n), and the intersection product induces an isomorphism between Alt (Gr(l, n))
and Alt (Cr(1, n))· ~aU k (Fulton [1984) §14.6), it is not difficult to see that the same

assertion holds for Alkpn (apply, for example, Roberts [1987], Prop. 7.1, or even 2.5).

Given Q-bases {YI,'" , Yb m} and {Y~, ... , Y~m} ~m (Alk pn, Q) and Am (Alkpn, Q),

respectively, take elements {Xl"" ,Xb m } in Am (Copkpn, Q) such that j- (xd = y; for
all i = 1, ... , bm • Then we have

for aU 1 ~ i,j ~ bm • Since the intersection product on Alk pn is unimodular, it turns
out that

aod from this it is straighforward to deduce that j. is a monomorphism.

5. The Chow groups of Le Barz's "complete 3-tuples" of pn.

o

5.1. The goal of this Section is to compute the Chow groups of the variety parametrizing
ordered triangles in pn, which was introduced, for a general scheme, in Le Barz [1986).
The relation of this variety to W· , the triangle variety of SempIe [1954] (see also Roberts­
Speiser [1984], (1986) and [1987), aod Roberts [1987]) is very similar to the relation of
Hilb3pn to Hilb3P~, so that we shall argue, in order to compute the Chow groups of the
"complete 3-tuples" , much as we did in 4.6.

First we recall some facts on W·.

5.2. Definition.Let W· denote the closure in (P2)3 X((P2 t)3 X Gr(2,5) of the locally
closed subscheme

wo = {(X1J x2,x3,11,12,ls,E) I 'Vi #- j Xi =j: Xj' Xi E lj;

E is the pencil of all conics containing Xl' X2 and xs}
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5.3. Theorem
a) (SempIe [1954]) W· is a non-singular projective variety oE dimension 6.

. .b) (Collino-Fulton [1987]) W· admits a cellular descomposition, so it is a Borel-Moore
scheme.

c) (Roberts-Speiser [1987]) The Chow groups oE W· are free, with ranks given by the
following table:

t 0123456

~(W·) 1 7 17 22 17 7 1

d) (Roberts-Speiser [1987)) For a11 k, the intersection product induces an isomorphism
between Ale (W·) and (Ale (W·))· .

5.4. Definition (Le Barz [1986]) .For a11 n ~ 1 let

1P(pn) = {(Pl,p:l,Ps,dl,:l,dl,S,~,S,t) E (pn)3 X (Hilb:lpn)s X HilbSpn I
Vi =j;;" P.,P; E d.,; c t, d.,; - P. = P; and d.,; - P; = P.;

t - d.,; = Pk Vi,;", k different}

which will be ca11ed the variety 0/ complete 9-tuples ofpn.

5.5. Theorem (Le Barz, loc. cit.)
a) For a11 n, jj3 (pn) is a non-singular projective· variety of dimension 3n.

b) When n = 2, the map

defined as

fP(Pl, P'J, Ps, d1 ,'J' d1 ,s, ~,s, t) = (PI' P'J, P3, 11 , 1'J' 13, E t )

(where, for i,;", k different, I. = Axis (d;, k) and E t is the family of a11 conies containing t)
is an isamorphism.

Dur goal is to prove the following result:

5.6. Proposition. For a11 n ;::: 3:

a) fi3 (pn) is a Borel-Moore scheme.

b) For all k, the Chow group Ak (.H3 (pn)) is {ree oE rank

k n-:l k-'

bk (HS (pn)) = L b. (Gr(2, n))bk _. (W·) - L (L b; (Gr(l, n))bk ~._; ((Pl)3)) .
• =0
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c) For all k, the intersection product 'induces an isomorphism between All: (.l:P (pn))-and (All: (H3 (pn )))*

Proof:

5.7. Lemma. For all n 2:: 3, let's define the following auxiliar incidence variety:

.H3(pn) = {(Pl,P~,P3,di1~,di,3,~,3,t,rr) E (pn)3 X (Hilb~pn)3 x Hilb3pn X Gr(2,n) I

(Pi,P2,P3,di1~,d113,~,3,t) E iP(pn) and tc rr}

Then:

i) .H3 (pn) is a non-singular projective Borel-Moore variety oE dimension 3n.

ii) For all k, All: (W:) is free oE rank

I;

bl; (H3(pn)) = Lbi (Gr(2,n))bl;-i(W*),
i=O

iii) For all k, the intersection product induces an isomorphism between AI; (H3 (pn))
and (All: (H3 (pn )))*

Proof: lust notice that the natural projection p: jj3 (pn) ------+ Gr(2, n) is trivialover

any Schubert cell on Gr(2, n), with fiber .i:P (P~) ~ W* (this as~ion can be verified

arguing as it is done in Rosse1l6 [1986], Lern. 1, 2, for the map Copll:pn ------+ Gr(2, n)).
Then, by 5.3, we can apply 2.5.•

5.8. Remark. It is not difficult to prove that the isomorphism H3 (P~) ------+ W* can be
"globalizedn

, giving an isomorphisrn between jj3 (pn) and the variety W: introduced in
Rossell6-Xamb6 [1987], Rem. 5. Notice that (i) and (ii) were stated there for W:.
5.9. Lemma. For all n 2:: 2, let AR3 (pn) denote the closed subvariety of iP (pn)
parametrizing all complete collinear 3-tuples, i. e:

i) AR3 (pn) is a non-singular projective Borel-Moore variety oE dimension 2n + 1.

ii) For all k, the Chow group Ai; (AR3 (pn)) is Eree oE rank:

I;

bll: (AH3 (pn)) = L b.(Gr(l, n ))bll: _i ((pi )3).
i= 1
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iii) For alJ k, the interseetion product induces an isomorphism between A k (AHa (pn))
and A k (AHa (pn )) •.

Proof: Let's consider the morphism

defined as

Arguing again aB in Rossell6 [1986] we see that 1 is trivialover any Schubert cell on
Gr(l, n), with fiber iP (PI). On the other hand, since any 3-tuple on pI is determined
by its support and its multiplicity on each point in its support, it is very easy to check
that the natural projection

W(Pl) -+

(PI ,P~, Ps, dl,~, d1 ,J ,~,J' t) -+

is an isomorphism. We can then apply 2.5. I

Now it is straighforward to check that the natural projection

sending (PI ,p~, P3' d1 ,2, d1 ,3, ~,3' t, JI) to (PI ,P~, P3' dl,~, d1 ,3, d..J,3' t) is isomorphie to the
blow-up of W(pn) along AH3 (pn). Then, from 3.4 we deduce that .if3 (pn) is a
Borel-Moore scheme; from 3.2 we get that all its Chow groups are free with ranks

n-2

bk (W (pn)) = bk (W:) - L bk _dAH3 (pn)) =
i= 1

k n-~ k-i

= L bdGr(2, n))bk _ i (W·) - L (L bi (Gr(!, n))bk - i - i ((Pl)3)).
i=O i= 1 ;= 0

And from Roberts [1987), Th. 7.5, it turns out that, for all k, the intersection product
induces an isomorphism between A k (fi3 (pn)) and A k (Ji3 (pn)). . 0

21



References

Ballico, E., Ciliberto, C. [1988], Algebraic curves and projective geometry, Trento

1988, to appear in LNiM.

Barth, W., Peters, C., van de Ven, A. [1984J, Compact complexsurEaces, Ergebnisse
4 (3. Folge) , Springer-Verlag, 1984.

Beauville, A. [1977], Variites de Prym et jacobiennes intermidiaires, Ann. Seient. Ec.
Norm. Sup. 10 (1977), 309-391.

Bialynicki-Birula, A. [1973], Some theorems on actions 0/ algebraic groups, Ann.
Math. 98 (1973), 480-493.

Bialynicki-Birula, A. [1976], Some properties 0/ the decomposition 0/ algebraic varieties
determined by actions 01 a torus, Bull. Acad. Pol. des Sei., Serie math. astr. et phys. 24
(1976), 667-674.

Casas, E. [1987], A transversality theorem and an enumerative calculus /or proper
solutions, Preprint Univ. Barcelona, 1987.

Collino, A., Fulton, W. [1987], Recent work on the enumerative geometry of plane
triangles.

Elencwajg, G., Le Barz, P. [1983], Une base de Pic(HilbkP~), C. R. A. S. P. Serie I
301 (1983), 175-178.

Ellingsrud, G., Str~mme, S. A. [1987], On the homology 0/ the Hilbert scheme 0/
points in the plane, Invent. Math. 87 (1987), 343-352.

Fogarty, J. [1968], Algebraic lamilies on an algebraic surlace, Amer. J. Math. 90 (1968),
511-521.

Fulton, W. [1984], Intersection Theory, Ergebnisse 2 (3. Folge), Springer-Verlag (1984).

Griffiths, Ph., Harris, J. [1978], Principles oE Algebraic Geometry, Wiley-Interscience
(1978).

Holme, A., Speiser, R. (eds.) [1988J, Algebraic Geometry, Sundance 1986, LNiM
1311, Springer-Verlag, 1988.

Iversen, B. [1986], Cohomology oE sheaves, Universitext, Springer-Verlag (1986).

Jouanolou, J. P. (1977J, Cohomologie de quelques schemas classiques et theorie coho·
mologique des classes de Chern, in: SGA 5,1965-67; LNiM 589, Springer-Verlag (1977),
282-350.

22



Kleiman, S. [1974], The transversality 01 a general translate, Compositio 38 (1974),

287-297.

Laumon, G. [1976}, Homologie ltale, in: Sem. Douady-Verdier, Asterisque 36-37, Ex­

pose VIII (1976), 163-188.

Le Barz, P. [1986}, La variltl des triplets complets, Preprint (1986).

Le Barz, P. [1987], Quelques calculs dans les variitls d'alignements, Adv. Math. 64

(1987),87-117.

Miret, J. M., Xamb6, S. [1987], On Schubert's degenerations 01 cuspidal cubics,

Preprint, Univ. Barcelona, 1987.

Miret, J. M., Xamb6, S. [1988], Geometry 01 complete cuspidal cubics, in: Ballico­
Ciliberto [1988].

Roberts, J. (1987), Recent and not-so-recent results about the triangle varieties, in:
Holme-Speiser [1988}, 197-219.

Roberts, J., Speiser, R. [1984}, Enumerative geometry 01 triangles I, Comm. in Aig.
12 (1984), 1213-1255.

Roberts, J., Speiser, R. [1986], Enumerative geometry 01 triangles 11, Comm. in Aig.
14 (1986), 155-191.

Roberts, J., Speiser, R. [1987], Enumerative geometry 01 triangles 111, Comm. in Aig.
15 (1987) 1929-1966.

Rosse1l6, F. [1986], Les groupes de Chow de quelques schemas qui parametrisent des
points coplanas'res, C. R. A. S. P. Serie r 303 (1986), 363-366.

Rosse1l6, F. [1988] The Chow ra'ng 01 Hilb3 p 3
, Preprint Univ. Barcelona (1988).

Rosse1l6, F., Xamb6, S. [1987}, Compuh'ng Chow groups, in: Holme-Speiser [1988].

Samuel, P. (1958), Relations d'equivalence en geometrie algebn'que, in: Proc. reM
Edinburgh 1958,470-487.

Schubert, H. H. [1879], Kalkül der abzählenden Geometrie, Teubner 1879; Reprinted
in 1979 by Springer-Verlag, with an introduction by S. Kleiman.

SempIe, J. G. [1954], The trs'angle as a geometn'c vars'able, Mathematika 1 (1954),
80-88.

Speiser, B. [1988], Transversality theorems lor lamils'es 01 maps, in: Holme-Speiser
[1988], 235-252.

Verdier, J.-L. [1976], Glasse d'homologs'e a8sociee d un cye/e, in: Sem. Douady-Verdier,
Asterisque 36-37, Expose VI (1976), 101-151.

23


