
Max-Planck-Institut für Mathematik

Bonn

On the Kontsevich geometry of the combinatorial
Teichmüller space

by

Jørgen Ellegaard Andersen
Gaëtan Borot

Séverin Charbonnier
Alessandro Giacchetto

Danilo Lewański
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ON THE KONTSEVICH GEOMETRY OF THE COMBINATORIAL

TEICHMÜLLER SPACE

Jørgen Ellegaard Andersen**, Gaëtan Borot *†, Séverin Charbonnier*,
Alessandro Giacchetto*, Danilo Lewański *‡§ , Campbell Wheeler*

Abstract

We study the combinatorial Teichmüller space and construct on it global coordinates, anal-
ogous to the Fenchel–Nielsen coordinates on the ordinary Teichmüller space. We prove that
these coordinates form an atlas with piecewise linear transition functions, and constitute global
Darboux coordinates for the Kontsevich symplectic structure on top-dimensional cells.

We then set up the geometric recursion in the sense of Andersen–Borot–Orantin adapted
to the combinatorial setting, which naturally produces mapping class group invariant func-
tions on the combinatorial Teichmüller spaces. We establish a combinatorial analogue of the
Mirzakhani–McShane identity fitting this framework.

As applications, we obtain geometric proofs of Witten conjecture/Kontsevich theorem (Vi-
rasoro constraints for ψ-classes intersections) and of Norbury’s topological recursion for the
lattice point count in the combinatorial moduli spaces. These proofs arise now as part of a uni-
fied theory and proceed in perfect parallel to Mirzakhani’s proof of topological recursion for the
Weil–Petersson volumes.

We move on to the study of the spine construction and the associated rescaling flow on the
Teichmüller space. We strengthen former results of Mondello and Do on the convergence of
this flow. In particular, we prove convergence of hyperbolic Fenchel–Nielsen coordinates to the
combinatorial ones with some uniformity. This allows us to effectively carry natural construc-
tions on the Teichmüller space to their analogues in the combinatorial spaces. For instance, we
obtain the piecewise linear structure on the combinatorial Teichmüller space as the limit of the
smooth structure on the Teichmüller space.

To conclude, we provide further applications to the enumerative geometry of multicurves,
Masur–Veech volumes and measured foliations in the combinatorial setting.
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1 Introduction

The Teichmüller space TΣ of a bordered surface Σ of genus gwith n boundary components can be described
in many ways. Although they all lead to the same topological space, they highlight different geometries.
Its description via hyperbolic structures leads to the Weil–Petersson geometry: there exists a natural map-
ping class group invariant symplectic form ωWP for which Fenchel–Nielsen coordinates turn out to be, by
a formula of Wolpert [44], global Darboux coordinates. The identification of the Teichmüller space with a
component of the PSL(2,R) character variety, on the other hand, gives access to the transformation of the
Fenchel–Nielsen coordinates under change of pants decompositions (cf. Okai’s formulae in [37]). Further-
more, Mirzakhani–McShane identities [32] give a partition of unity on TΣ that is recursive in the topology of
Σ as established in [2]. The integration of this recursive formula with respect to the Weil–Petersson volume
form recovers, again by Wolpert’s formula, the topological recursion in the sense of Eynard and Orantin
for the Weil–Petersson volumes of the moduli space Mg,n(L) of bordered surfaces of genus g with fixed
boundary lengths L ∈ Rn+. A certain class of such recursive formulae has been recently extended to handle
statistics of multicurves [2]. In particular, a recursion for Masur–Veech volumes of the top stratum of the
moduli space of quadratic differentials [1] has been derived.

The topological space Mg,n(L) (resp. its orbifold universal cover TΣ(L)) can also be described in a combi-
natorial way as a space of (resp. isotopy classes of embedded) metric ribbon graphs. Such a description
turned out to provide a very useful point of view in the study of the topology of the moduli spaces, see
e.g. [23, 24, 39]. An important result in this direction is provided by Kontsevich [28] as part of the proof of
Witten’s conjecture, in which he equips the combinatorial moduli space with a 2-formωK, symplectic away
from certain strata of positive codimension.

The purpose of this work is to develop the combinatorial geometry of TΣ associated with ωK in complete
parallel to its well-known Weil–Petersson geometry. In particular, by means of the measured foliation
description of the combinatorial Teichmüller spaces, we construct the combinatorial analogue of Fenchel–
Nielsen coordinates. We then establish the combinatorial analogue of Wolpert formula, of Okai’s formulae,
and of Mirzakhani–McShane identities. Finally, we strengthen previously known results of Mondello and
Do by comparing the combinatorial geometry with the hyperbolic geometry in the limit of large boundary
lengths, so that it becomes possible to show convergence of other interesting quantities under this flow.

Harvesting the fruits of these results and of the general formalism of geometric recursion of [2], we obtain
geometric proofs of Witten’s conjecture/Kontsevich theorem and of Norbury’s topological recursion for the
lattice point count. This approach – in which the combinatorial analogue of Fenchel–Nielsen coordinates
and of Wolpert formula are essential tools – revisits the proofs of these results given respectively in [5]
and [36] in a way that is now uniform and parallel to Mirzakhani’s proof of topological recursion for the
Weil–Petersson volume. We also get access to (asymptotic) statistics of multicurves with respect to their
combinatorial length, and establish a link between Masur–Veech volumes and combinatorial geometry.

In all these examples, we see in action the following principle: that topological recursion formulae for in-
tegrals on moduli spaces are more conveniently derived by geometric recursion formulae for the integrand
themselves, lifted to functions or forms on Teichmüller spaces.

Let us turn to a more detailed account of the main results and of the general organisation of the paper.

Combinatorial spaces and their geometry. We recall the definition of the moduli space of metric ribbon
graphs Mcomb

g,n (L) (Section 2.1) and of the associated combinatorial Teichmüller spaces Tcomb
Σ (L) (Section 2.2).

In a nutshell, for a connected bordered surface Σ of genus g with n boundaries,

Tcomb
Σ (L) =

{
embedded metric ribbon graphs of genus g with n faces

of lengths L = (L1, . . . ,Ln) that are retract of Σ

}/
isotopy .



•
•

•

•

•
•

•

Figure 1: Two examples of combinatorial structures on a sphere with four boundary components.

Elements of Tcomb
Σ (L) are called combinatorial structures and Mcomb

g,n (L) is the quotient of Tcomb
Σ (L) by the pure

mapping class group of Σ, which depends only on the genus and the number of boundary components of
the surface.

As a set, the space Tcomb
Σ is given by the union of Tcomb

Σ (L) over L ∈ Rn+. It is in fact nothing but the (geometric
realisation of the) metrised proper arc complex on Σ [35] and it is homeomorphic to the usual Teichmüller
space TΣ parametrising hyperbolic metrics on Σ making the boundaries geodesic. Furthermore, it can be
seen as a certain subset of MF?

Σ, the space of measured foliations on bordered surfaces introduced in [22].
Though the idea of describing Tcomb

Σ via measured foliations is not new, it turns out to be key for many of
our results.

Many aspects of the geometry of hyperbolic structures have an analogue for combinatorial structures. First
of all, we can define the length of simple closed curves with respect to a combinatorial structure, and this
gives an alternative description of the topology on Tcomb

Σ as follows. Let SΣ be the set of simple closed
curves – including boundary components – on Σ. Our first result is Theorem 2.20 in the text, restated here.

Theorem A.1. The combinatorial length map `∗ : Tcomb
Σ → RSΣ+ is a homeomorphism onto its image.

It is possible to cut combinatorial structures along simple closed curves, and it is possible to (self-)glue com-
binatorial structures along boundary components of the same lengths, once a choice of marked points on
the boundary components which are being glued has been made and the value of a generic twist τ ∈ R has
been chosen (Section 2.4). The main difference with the hyperbolic world is in the gluing: for some values
of the twist τ, it is not possible to glue the combinatorial structures; in the measured foliation description
this correspond to the creation of saddle connections that cannot be removed by Whitehead equivalences.
However, we show that the set of twists for which we cannot perform the gluing is a countable subset of R
with open dense complement. These notions are the necessary ingredients for the definition of the combi-
natorial analogue of Fenchel–Nielsen coordinates (Section 2.5). We give here a concise form of the stronger
Theorem 2.41.

Theorem A.2. Given a seamed pants decomposition for a connected bordered surface Σ of genus g with n boundary
components, we have an open map

Tcomb
Σ (L) −→ R3g−3+n

+ ×R3g−3+n

G 7−→
(
`(G), τ(G)

)
that is a homeomorphism onto its image, which has a complement of zero measure.

R. Kaufmann pointed out to us that certain aspects of gluing combinatorial structures in terms of the arc
complex are discussed in his work with Livernet and Penner [27]. However, to the best of our knowledge,
the construction of combinatorial Fenchel–Nielsen coordinates and Theorem A.2 are new.
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Like in the hyperbolic case, we show that the twist parameters can be recovered from the data of 9g−9+3n
lengths of simple closed curves, determined by a fixed seamed pants decomposition.

Theorem A.3. Given a seamed pants decomposition for a connected bordered surface Σ of genus g with n boundary
components, there exist simple closed curves (γ1, . . . ,γ3g−3+n), (δ1, . . . , δ3g−3+n), (η1, . . . ,η3g−3+n) such that

Tcomb
Σ (L) −→ R9g−9+3n

+

G 7−→
(
`G(γ), `G(δ), `G(η)

)
is continuous and injective.

Although [22] contains some partial computations going in this direction, it seems to us that Theorem A.3
cannot be directly extracted from there, as we work with a restricted set of measured foliations. We therefore
provide a proof (Section 2.6). This result is used in the derivation of Theorems C.1 and C.2.

In Section 3.1 we recall the definition of Kontsevich 2-form ωK [28] that gives a symplectic structure on the
top-dimensional stratum of Mcomb

g,n (L). The volume of Mcomb
g,n (L) with respect to the Liouville volume form

dµK = ω3g−3+n
K /(3g− 3 + n)!, denoted

VK
g,n(L) =

ˆ
Mcomb
g,n (L)

dµK,

is finite. As functions of L ∈ Rn+, they are polynomials whose coefficients compute ψ-classes intersec-
tions on the Deligne–Mumford compactification of the moduli space of curves, see [28] completed by [46].
After we lift ωK to a mapping class group invariant 2-form on Tcomb

Σ , the main result of Section 3 is a
combinatorial analogue of Wolpert’s formula [45], expressing Kontsevich’s form in terms of combinatorial
Fenchel–Nielsen coordinates (Theorem 3.9 in the text).

Theorem A.4. Let Σ be a connected bordered surface of genus g with n boundary components, and fix any combina-
torial Fenchel–Nielsen coordinates (`i, τi) for Tcomb

Σ (L). Then

ωK =

3g−3+n∑
i=1

d`i ∧ dτi.

We note that another, a priori different set of Darboux coordinates for ωK have been constructed by Bertola
and Korotkin [6] from periods of quadratic differentials. An advantage of our combinatorial Fenchel–
Nielsen coordinates is their compatibility with the cutting and gluing operations. This enables us to de-
duce from Theorem A.4 an integration result for mapping class group invariant functions with respect to
the measure µK (Section 3.3), which is the analogue of Mirzakhani’s integration lemma [32] known in the
hyperbolic context.

Geometric recursion (GR) and topological recursion (TR). The Weil–Petersson volumes of Mg,n(L), the
Kontsevich volumes, and the counting of lattice points in Mcomb

g,n (L) all satisfy topological recursion in the
sense of [20]. In particular, they can be computed recursively in 2g − 2 + n. We emphasize that this type
of recursive relations can be rather systematically obtained from recursions at the level of functions (hence,
before integration) on the Teichmüller space. More precisely, building on the framework of geometric re-
cursion in the sense of [2] (which in the original paper has been applied to TΣ), we set up in Section 4 the
geometric recursion to construct mapping class group invariant functions on Tcomb

Σ as well. Let us denote
by P a pair of pants and by T a torus with one boundary component. The following result is Theorem 4.4 in
the text.
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Theorem B.1 (Combinatorial GR is well-defined). Let A,B,C be measurable functions on R3
+ with A and C sym-

metric under exchange of their last two variables, DT be a measurable function on Tcomb
T which is mapping class

group invariant, and assume they all satisfy the bounds of Definition 4.3. The following definitions are well-posed,
and assign functorially to any bordered surface Σ a measurable function ΞΣ on Tcomb

Σ , called the GR amplitude.

• ΞP(G) = A(~̀G(∂P)), where ~̀G(∂P) is the triple of combinatorial boundary lengths of P.

• ΞT = DT .

• If Σ is a disjoint union of Σ1, . . . ,Σk, ΞΣ1t···tΣk(G1, . . . ,Gk) =
∏k
i=1 ΞΣi(Gi).

• If Σ is connected and has Euler characteristic χΣ 6 −2,

ΞΣ(G) =

n∑
m=2

∑
[P]∈PmΣ

B(~̀G(∂P))ΞΣ−P(G|Σ−P) +
1
2

∑
[P]∈P∅

Σ

C(~̀G(∂P))ΞΣ−P(G|Σ−P)

where PmΣ and P∅
Σ (cf. Definition 2.22) are certain sets of homotopy classes of embedded pairs of pants in Σ,

such that Σ − P is stable, and G|Σ−P is the result of cutting the combinatorial structure G and restricting it to
Σ− P.

Further, the function ΞΣ is invariant under mapping classes of Σ preserving ∂1Σ.

By means of Theorem A.4, we show that integrating GR amplitudes automatically yields functions of
boundary lengths that satisfy topological recursion. If Σ is a connected bordered surface of type (g,n),
let us denote by Ξg,n the function induced by ΞΣ on Mcomb

g,n . The following result is Theorem 4.7 in the text.

Theorem B.2 (TR from GR). If A,B,C are measurable functions on R3
+ and DT is a measurable function on Tcomb

T

satisfying the conditions of Definition 4.5, then the integrals

VΞg,n(L) =

ˆ
Mcomb
g,n (L)

Ξg,n dµK

exist, define measurable functions on L ∈ Rn+, and we have that

VΞg,n(L1, . . . ,Ln) =

=

n∑
m=2

ˆ
R+

d` ` B(L1,Lm, `)VΞg,n−1(`,L2, . . . , L̂m, . . . ,Ln)

+
1
2

ˆ
R2

+

d`d` ′ `` ′ C(L1, `, ` ′)
(
VΞg−1,n+1(`, ` ′,L2, . . . ,Ln) +

∑
h+h′=g

JtJ′={L2,...,Ln}

VΞh,1+#J(`, J)VΞh′,1+#J′(`
′, J ′)

)
.

where by convention VΞ0,1 = 0 and VΞ0,2 = 0.

A similar result holds if, instead of integrating against µK, we sum over the lattice Mcomb,Z
g,n (L) ⊂ Mcomb

g,n (L),
which consists of metric ribbon graphs with integral edge lengths. This has no counterpart in the hyperbolic
world. Due to the existence of pathological twists for the gluing – which, although they are rare in the whole
space, could, and in fact do, hit the lattice – this is only possible under extra conditions for the initial data
B and C.

Theorem B.3 (Discrete TR from GR). Let A,B,C be functions on R3
+ and DT be a function on Tcomb

T such that

L1 + L2 < ` ⇒ B(L1,L2, `) = 0, and L1 < `+ `
′ ⇒ C(L1, `, ` ′) = 0.
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For all 2g− 2 + n > 0, the lattice sum

NΞg,n(L) =
∑

G∈Mcomb,Z
g,n (L)

Ξg,n(G)

#Aut(G)

defines a function of L ∈ Zn+ which is zero whenever
∑n
i=1 Li is odd, and otherwise satisfies the recursion

NΞg,n(L1, . . . ,Ln) =

=

n∑
m=2

∑
`>0

` BZ(L1,Lm, `)NΞg,n−1(`,L2, . . . , L̂m, . . . ,Ln)

+
1
2

∑
`,`′>0

`` ′ CZ(L1, ` ′, ` ′)
(
NΞg−1,n+1(`, ` ′,L2, . . . ,Ln) +

∑
h+h′=g

JtJ′={L2,...,Ln}

NΞh,1+#J(`, J)NΞh′,1+#J′(`
′, J ′)

)
,

where XZ(L1,L2,L3) is equal to X(L1,L2,L3) if L1 + L2 + L3 is an even integer and 0 otherwise.

As applications of this more general theory we can re-prove known results in a completely geometric and
uniform way, as well as obtaining new results. A key role for applications is played by the combinatorial
analogue of the Mirzakhani–McShane identity, whose proof transposes the original strategy of Mirzakhani
[32] to the combinatorial world (where it is much simpler).

Theorem B.4. Denote [x]+ = max { x, 0 } and define the Kontsevich initial data

AK(L1,L2,L3) = 1,

BK(L1,L2, `) =
1

2L1

(
[L1 − L2 − `]+ − [−L1 + L2 − `]+ + [L1 + L2 − `]+

)
,

CK(L1, `, ` ′) =
1
L1

[L1 − `− `
′]+,

DK
T (G) =

∑
γ∈S◦T

CK(`G(∂T), `G(γ), `G(γ)),
where S◦T is the set of isotopy classes of simple closed curves which are not boundary parallel on T . The corresponding
GR amplitudes are ΞK

Σ(G) = 1 for any G ∈ Tcomb
Σ and any bordered surface Σ.

Combining this result with Theorem B.2 gives a new proof of the topological recursion for Kontsevich
volumes, whereas Theorem B.3 gives a new proof of the topological recursion for the lattice point count. The
former is equivalent to a proof of Witten’s conjecture, which originally followed from Kontsevich theorem
[28] supplemented by [18]. The latter is a result known since Norbury [36]. The enumeration of the numbers
#Mcomb,Z

g,n (L) has been connected to matrix integrals in the early works of Chekhov and Makeenko [12, 14, 13]
and further related to enumeration of chord diagrams in [3, 4]. At that point, Schwinger–Dyson equations
for such models give rise to equations that are eventually but non-obviously equivalent to [36]. The scheme
of proofs we put forward transcends the algebraic manipulation – whose geometric meaning is unclear –
pertaining to the realm of matrix integrals and which was necessary in both Kontsevich’s original proof
and in Chekhov–Makeenko’s works.

A geometric proof of Witten’s conjecture that is in a way similar to ours was proposed by Bennett, Cochran,
Safnuk and Woskoff in [5]. In this regard, the novel element of our work is firstly to make evident the con-
nection of the partition of unity of [5, Section 4] with a Mirzakhani–McShane identity. Then the mechanism
of integration in [5] – that relies on a local torus action and was valid only for functions of restricted support
such as the Kontsevich initial data – gets realised as a special case of the more general Theorem B.2, by
means of the global Fenchel–Nielsen coordinates and of Theorem A.4.
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Flowing from hyperbolic to combinatorial spaces. The hyperbolic and combinatorial Teichmüller spaces
can be identified via the spine homeomorphism sp : TΣ → Tcomb

Σ originating from the work of Penner [38]
and Bowditch–Epstein [9] and Luo [29]. One can in fact interpolate between their respective geometries
with the rescaling flow, defined for β > 1 by

σ ∈ TΣ(L), σβ = sp−1(β sp(σ)
)
∈ TΣ(βL),

where the operation β· consists in multiplying all edge lengths in sp(σ) by β.

It is known from the works of Mondello [35] and Do [19] that, for each σ ∈ TΣ as β→∞, the metric β−1σβ

converges in the Gromov–Hausdorff sense to sp(σ), β−1`σβ(γ) converges to `sp(σ)(γ) for each simple closed
curve γ, and that the Poisson structure β2R∗βπWP converges to πK on the open cells. For the comparison we
have used the map Rβ : Tcomb

Σ (L) → TΣ(βL) which is obtained by composing sp−1 with β·. In Section 5.1,
we complete this description by giving uniform bounds for the convergence of lengths and twists. Note
that to access twists, we rely on the (9g− 9 + 3n)-theorem A.3.

Theorem C.1. Let Σ be a connected bordered surfaces of type (g,n). For any γ simple closed curve in Σ and σ ∈ TΣ,
we have that

lim
β→∞

`σβ(γ)

β
= `sp(σ)(γ),

and the convergence is uniform on the thick parts of TΣ. Moreover, consider a seamed pants decomposition, that
defines 3g− 3 + n hyperbolic and combinatorial twist parameter functions τi. Then for any σ ∈ TΣ, we have that

lim
β→∞

τi(σ
β)

β
= τi

(
sp(σ)

)
,

and the convergence is uniform on every compact of TΣ.

As a consequence, we can flow quite systematically results in hyperbolic geometry to results in combina-
torial geometry, and natural functions on TΣ to natural functions on Tcomb

Σ . In this regard, Tcomb
Σ behaves

like a tropicalisation of TΣ. We use this method in Section 5.2 to describe the action of the generators of
the mapping class group on the combinatorial Fenchel–Nielsen coordinates, from which we conclude the
following statement.

Theorem C.2. The combinatorial Fenchel–Nielsen coordinates equip Tcomb
Σ with a piecewise linear structure.

As a second application, we show in Sections 5.3–5.4 that the flow in the β→∞ limit takes the hyperbolic
GR to the combinatorial GR, and does the same for TR after integration.

Theorem C.3. Let (Aβ,Bβ,Cβ)β>1 be a 1-parameter family of initial data, satisfying the conditions of Theorem 5.16
and converging uniformly on any compact to a limit (Â, B̂, Ĉ) as β → ∞. Denote by ΩΣ;β the GR amplitudes on
TΣ, which results from the initial data (Aβ,Bβ,Cβ), and by Ξ̂Σ the GR amplitudes on Tcomb

Σ , which results from the
initial data (Â, B̂, Ĉ). We have for any bordered surface Σ and σ ∈ TΣ

lim
β→∞ΩΣ;β(σ

β) = Ξ̂Σ
(
sp(σ)

)
,

and the convergence is uniform on any compact of TΣ.

Theorem C.4. Let (Aβ,Bβ,Cβ)β>1 be a 1-parameter family of initial data, satisfying the conditions of Theorem 5.18
and converging uniformly on any compact to a limit (Â, B̂, Ĉ) as β → ∞. Denote by ΩΣ;β the GR amplitudes on
TΣ, which results from the initial data (Aβ,Bβ,Cβ), and by Ξ̂Σ the GR amplitudes on Tcomb

Σ , which results form the
initial data (Â, B̂, Ĉ). For 2g− 2 + n > 0 and any L ∈ Rn+, we have

lim
β→∞

VΩΣ;β(βL)

β6g−6+2n = VΞ̂Σ(L),

and the convergence is uniform for L in any set of the form (0,M]n withM > 0.
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This gives a second proof of the combinatorial Mirzakhani–McShane identity of Theorem B.4, as a result of
applying the flow to the original hyperbolic Mirzakhani–McShane identity of [32].

Application to statistics of measured foliations with respect to combinatorial structures. Along the lines
of [2], we prove in Section 4.5 a generalisation of Theorem B.4 that gives access to statistics of combinatorial
lengths of multicurves. Denote by M ′Σ the set of primitive multicurves on Σ – which include the empty
multicurve and exclude the boundary components.

Theorem D.1. Let f : R+ → R be a measurable function such that |f(`)| decays faster than `−s, for any s > 0. Let
(A,B,C,D) be initial data satisfying the conditions of Theorem B.1. Denote by ΞΣ the corresponding GR amplitudes,
and assume they are invariant under braidings of all boundary components. Then, the GR amplitudes ΞΣ[f] associated
with the initial data

A[f](L1,L2,L3) = A(L1,L2,L3),

B[f](L1,L2, `) = B(L1,L2, `) + f(`)A(L1,L2, `),

C[f](L1, `, ` ′) = C(L1, `, ` ′) + f(`)B(L1, `, ` ′) + f(` ′)B(L1, ` ′, `) + f(`)f(` ′)A(L1, `, ` ′),

DT [f](G) = DT (G) +
∑
γ∈S◦T

f(`G(γ))A
(
`G(∂T), `G(γ), `G(γ)

)
,

yield
ΞΣ[f](G) =

∑
c∈M′Σ

ΞΣ−c(G|Σ−c)
∏

γ∈π0(c)

f(`G(γ)).

On this basis, we analyse in Section 6 various questions related to the asymptotic growth of the number
of multicurves of length smaller than or equal to t when t → ∞, obtaining an application to the enumera-
tive geometry of flat surfaces. In [1], the authors and Delecroix have described the Masur–Veech volumes
of the moduli space of quadratic differential as the constant term MVg,n(0) of a family of polynomials
MVg,n(L1, . . . ,Ln) satisfying the topological recursion. An immediate consequence of Theorem D.1 is that
the Masur–Veech polynomials are also integrals over Mcomb

g,n (L) against µK of statistics of combinatorial
lengths of multicurves.

Theorem D.2. For 2g− 2 + n > 0, we have

MVg,n(L) =
24g−2+n(4g− 4 + n)!

(6g− 7 + 2n)!
VΞMV

g,n(L),

where
ΞMV
Σ (G) =

∑
c∈MΣ

e−`G(c)

are the combinatorial GR amplitudes obtained by twisting the Kontsevich initial data by f(`) = 1
e`−1 , and MΣ is the

set of multicurves on Σ – which include the empty multicurve and exclude the boundary components.

Since the work of Mirzakhani [34], we know that Masur–Veech volumesMVg,n(0) can be accessed through
the enumerative geometry of measured foliations with respect to hyperbolic length functions. We show
that the role of hyperbolic geometry is not essential. Namely, a similar relation holds with respect to combi-
natorial length functions. Let MFΣ be the set of measured foliations specified in Section 6.2, equipped with
its Thurston measure µTh coming from integer point counting.

Theorem D.3. For any bordered surface Σ of type (g,n), there exists a continuous function Bcomb
Σ : Tcomb

Σ → R+

such that

∀G ∈ Tcomb
Σ , Bcomb

Σ (G) = lim
t→∞ # { c ∈MΣ | `G(c) 6 t }

t6g−6+2n = µTh
(
{ λ ∈MFΣ | `G(λ) 6 1 }

)
.
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Further, for any L ∈ Rn+, Bcomb
Σ is integrable on Mcomb

g,n (L) with respect to µK, and

MVg,n(0) = 24g−2+n(4g− 4 + n)! · (6g− 6 + 2n) ·
ˆ
Mcomb
g,n (L)

Bcomb
Σ dµK.

We conclude in Section 6.5 by giving nine equivalent ways to compute MVg,n(0) and discuss the logical
relations between them, adding to the contributions of earlier works the perspectives offered by combina-
torial geometry.

Appendices. The paper is supplemented with three appendices and an index of notations. In Appendix A
we recall the original definition of the topological space Tcomb

Σ from the arc complex, which is shown in
Corollary 2.21 to be equivalent to the one induced by combinatorial length functions. In Appendix B we
give detailed examples of cutting, gluing and Fenchel–Nielsen coordinates. In Appendix C we present self-
contained proofs of facts – known as folklore but for which we could not identify a clear reference – related
to the appearance of factors of 2 in the study of the integral structure of Mcomb

g,n (L).

Notation for statements and proofs. The symbol is used at the end of a proof as usual. The symbol
� is used at the end of those statements that do not come with a formal proof in the text: they are either
proved in other sources in the literature or the argument before their statement already constitutes a proof
for them. Those statements that are not followed immediately by a proof or a � are proved later in the text.
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S.C., A.G., D.L. and C.W. are supported by the Max-Planck-Gesellschaft. D.L. is supported by the Institut
de Physique Théorique (IPhT), CEA, CNRS, and by the Institut des Hautes Études Scientifiques (IHES).
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2 Topology of combinatorial Teichmüller spaces

We begin this section with a basic introduction to the combinatorial moduli space Mcomb
g,n , then we study the

topology of the combinatorial Teichmüller space Tcomb
Σ , which is the orbifold universal cover of Mcomb

g,n . We
review its relation with the ordinary Teichmüller space of hyperbolic structures, we propose a description in
terms of measured foliations, and then we introduce the associated length functions. We discuss cutting and
gluing after a twist, and finally introduce the combinatorial analogue of Fenchel–Nielsen coordinates, that
are shown in Section 5.2 to endow Tcomb

Σ with an atlas having piecewise linear coordinate transformations.

2.1 Combinatorial moduli spaces

Definition 2.1. A graph is a triple (~E, i, ∼), where ~E is a finite set (oriented edges), i : ~E→ ~E is a fixed-point-
free involution and ∼ is an equivalence relation on ~E. The set of i-orbits is denoted by E and describes the
unoriented edges; the equivalence class of an oriented edge ~e is simply denoted by e. The set V = ~E/ ∼

describes the vertices. For a fixed v ∈ V , # {~e ∈ ~E | [~e] = v } is called the valency of v. Connectedness of
graphs is defined in the natural way.

Definition 2.2. A ribbon graph is a triple G = (~E, i, s) where ~E is a finite set (oriented edges), i : ~E → ~E is
a fixed-point-free involution and s : ~E → ~E is a permutation. The set of i-orbits is denoted by E=EG and
describes the unoriented edges; the equivalence class of an oriented edge ~e is simply denoted by e. The set
of s-orbits is denoted by V = VG and describes the vertices. Let φ = i ◦ s−1; the set of φ-orbits is denoted
by F = FG and describes the faces (or boundaries) of G. Given a ribbon graph (~E, i, s), the underlying graph
is (~E, i, ∼), where we declare that ~e ∼ ~e ′ if they are in the same s-orbit. A ribbon graph is connected if the
underlying graph is.

The genus of a connected ribbon graph G, denoted by gG, is defined by

2 − 2gG = #VG − #EG + #FG. (2.1)

If furthermore it has n = #FG boundaries, it is said to be of type (g,n). We call G

• reduced if all its vertices have valency > 3,

• labelled if its boundaries are labelled ∂1G, . . . ,∂nG.

We define Rg,n to be the set of connected, reduced, labelled ribbon graphs of type (g,n).

Remark 2.3. One can think of a ribbon graph as a graph with a cyclic order on the half-edges incident to
each vertex. Using this, one can thicken the edges into a ribbons, which at each vertex glues together to
form a smooth surface with boundary (see Figure 3), hence the name ribbon graph.

A metric ribbon graph G consists of a ribbon graph G = (~E, i, s), together with the assignment of `G : EG →
R+. The perimeter of a boundary component ∂mG consisting of the cyclic sequence of edges (e1, . . . , ek) is
defined by

`G(∂mG) =

k∑
i=1

`G(ei). (2.2)

Definition 2.4. An automorphism of a ribbon graph G = (~E, i, s) is a permutation ϕ : ~E→ ~E that commutes
with i and s and acts trivially on the set of faces F. We denote by Aut(G) the automorphism group of G. An
automorphism of a metric ribbon graph G is an automorphism of the underlying ribbon graph preserving
`G. We denote by Aut(G) the automorphism group ofG; it is a subgroup of Aut(G).
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For any ribbon graph G, its automorphism group Aut(G) acts on the space of metrics on G, by edge per-
mutation. Given a point in REG+ , namely a metric ribbon graph G, its stabiliser under the action of Aut(G)
is precisely Aut(G). It is then natural to make the following definition.

Definition 2.5. For 2g−2+n > 0, the combinatorial moduli space Mcomb
g,n is the orbicell-complex parametrising

metric ribbon graphs of type (g,n), i.e.

Mcomb
g,n =

⋃
G∈Rg,n

REG+
Aut(G)

, (2.3)

where the cells naturally glue together via edge degeneration: when an edge length goes to zero, the edge
contracts to give a metric ribbon graph with fewer edges as discussed in [28]. Define the perimeter map
p : Mcomb

g,n → Rn+ by setting
p(G) =

(
`G(∂1G), . . . , `G(∂nG)

)
. (2.4)

We also denote Mcomb
g,n (L) = p−1(L) for L ∈ Rn+.

From the above definition, it follows that the combinatorial moduli space Mcomb
g,n has a natural real orbifold

structure of dimension 6g − 6 + 3n. As we remarked before, for a point G in the moduli space its orbifold
stabiliser is Aut(G). Further, we have an orbicell decomposition given by the sets REG+ /Aut(G) consisting
of those metric ribbon graphs whose underlying ribbon graph isG. Notice that the dimension of such a cell
is #EG, and in particular the top-dimensional cells are the ones associated to trivalent metric ribbon graphs,
for which #EG = 6g− 6 + 3n.

Example 2.6. The moduli space Mcomb
0,3 is homeomorphic through the perimeter map to the open cone R3

+,
obtained as the union of seven cells corresponding to the seven ribbon graphs of type (0, 3) (see Figure 2a).
In this case there are no orbifold points and Mcomb

0,3 (L1,L2,L3) is just a point.

A more complicated example is that of Mcomb
1,1 . The space is obtained by gluing two orbicells, as depicted in

Figure 2b.

• The first orbicell is R3
+ quotiented by Z/6Z, that is the automorphism group of the unique ribbon

graph of type (1, 1) with three edges:

••G1 =

All metric ribbon graphs G1 whose underlying graph is G1 have Aut(G1) = Z/2Z except for the
metric ribbon graph where all three edges have the same length which has Aut(G1) = Z/6Z instead.

• The second orbicell is R2
+ quotiented by Z/4Z, the automorphism group of the unique ribbon graph

of type (1, 1) with two edges:

•G2 =

All metric ribbon graphs G2 whose underlying graph is G2 have Aut(G2) = Z/2Z, except for the
metric ribbon graph where both edges have the same length which rather has Aut(G1) = Z/4Z.
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L1

L2 L3

(a) The 7 cells composing Mcomb
0,3 . The pictu-

re represents the cone R3
+ together with a slice

{ L1 + L2 + L3 = const }. The dotted lines are not
part of the space.

Z/6Z

Z/4Z

•

••

◦

◦◦

∼=

•

•

◦

◦

•
•

R+×

(b) The two orbicells composing Mcomb
1,1 . On the right, the red point

has stabiliser Z/6Z, the orange point has stabiliser Z/4Z, and all
other points have stabiliser Z/2Z. The white points are not part of
the space.

Figure 2: The combinatorial moduli spaces of type (0, 3) and (1, 1).

The main reason for considering Mcomb
g,n (L) is the following result.

Theorem 2.7. The moduli spaces Mg,n and Mcomb
g,n (L) are orbifold-homeomorphic. �

There are at least two different ways to define the above homeomorphism. The first, originating from
Jenkins and Strebel [26, 41], relies on the geometry of meromorphic quadratic differentials. The second one
uses hyperbolic geometry and is due to Penner and Bowditch–Epstein [38, 9]. In the next section we discuss
the latter and its generalisation to combinatorial Teichmüller spaces, due to Luo and Mondello [29, 35].

2.2 Combinatorial Teichmüller spaces

One can think of points in the combinatorial Teichmüller space as points in the combinatorial moduli space
together with a marking, the advantage being that there is now a well-defined notion of length of curves.
We review its known relation with hyperbolic surfaces via the spine construction. Although the topological
properties of such spaces have already been studied in the literature, the main focus has been on the proper
arc complex description. Here we put forward an equivalent description via measured foliations which
later facilitates our constructions.

2.2.1 Primary definitions

Definition 2.8. A bordered surface Σ is a non-empty topological, compact, oriented surface with labelled
boundary components ∂1Σ, . . . ,∂nΣ. We assume that each connected component has non-empty boundary
and is stable, i.e. its Euler characteristic is negative. If furthermore Σ is connected of genus g, we call (g,n)
the type of Σ. We use P (resp. T ) to refer to bordered surfaces with the topology of a pair of pants (resp. of
a torus with one boundary component).
Denote by ModΣ the mapping class group of Σ:

ModΣ = Diff+(Σ)/Diff+0 (Σ), (2.5)

where Diff+(Σ) is the group of orientation-preserving diffeomorphisms of the surface Σ and Diff+0 (Σ) de-
notes its subgroup consisting of those diffeomorphisms isotopic to the identity. The pure mapping class group
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•• •• •

Figure 3: The geometric realisation of a graph Γ (left), of a metric ribbon graph G (center), and the local
picture around a vertex of |G| (right). In red we draw G embedded into |G| and the segments along which
the stripes are glued are depicted in blue.

Mod∂Σ is the subgroup of ModΣ consisting of mapping classes which preserve the labellings of boundary
component of Σ.

To describe the combinatorial Teichmüller space it is convenient to introduce some explicit geometric struc-
tures associated with a metric ribbon graph.

Definition 2.9. The geometric realisation of a graph Γ is the 1-dimensional CW-complex

|Γ | =
⊔
e∈E

[0, 1]
/

∼

obtained by identifying endpoints corresponding to the same vertex in Γ .

Definition 2.10. The geometric realisation of a metric ribbon graph G of type (g,n) is the oriented, compact,
genus g surface with n boundary components

|G| =
{
(u, t,~e) ∈ [−1, 1]×R × ~E

∣∣∣ t ∈ [0, `G(e)]
}/

∼

where the equivalence relation ∼ is given by

(u, t,~e) ∼ (u, `G(e) − t, i(~e)) for u ∈ [−1, 1], ~e ∈ ~E, t ∈ [0, `G(e)]

and
(u, `G(e),~e) ∼ (−u, 0, s(~e)) for u ∈ [0, 1], ~e ∈ ~E.

The geometric realisation of the underlying graph can be seen as a subset of |G|, and the inclusion is a
deformation retract; see Figure 3 for an example.

Definition 2.11. A combinatorial marking of a bordered surface Σ is an ordered pair (G, f) whereG is a metric
ribbon graph and f : Σ→ |G| is a homeomorphism respecting the labellings of boundaries of G and Σ. The
combinatorial Teichmüller space is defined as

Tcomb
Σ =

{
(G, f)

∣∣∣ (G, f) is a combinatorial marking on Σ
}/

∼ . (2.6)

Here, (G, f) ∼ (G ′, f ′) if and only if there exists a metric ribbon graph isomorphism ϕ : G → G ′ such that
ϕ ◦ f is isotopic to f ′. We call such equivalence classes combinatorial structures and denote by G = [G, f] the
points in Tcomb

Σ .

Notice that, for a fixed G ∈ Tcomb
Σ each boundary component ∂mΣ corresponds to a unique face of the

embedded graph. Thus, we can talk about the length (with respect to G) of the boundary ∂mΣ, denoted by
`G(∂mΣ). In particular, we can define the perimeter map p : Tcomb

Σ → Rn+ by setting

p(G) =
(
`G(∂1Σ), . . . , `G(∂nΣ)

)
. (2.7)
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We also set Tcomb
Σ (L) = p−1(L).

We remark that, for a fixed representative (G, f) of G ∈ Tcomb
Σ , we have a retraction from the surface to the

geometric realisation of the graph underlying G. Thus, we can picture elements of Tcomb
Σ as metric ribbon

graphs embedded into Σ up to isotopy, such that the embedded graph is a retract of the surface.

•• f−1

•
•

Figure 4: An example of combinatorial marking on a torus with one boundary component.

We recall in Appendix A that the combinatorial Teichmüller space can be endowed with a natural topology
via the so-called proper arc complex that makes it into a cell complex. The cells, denoted ZΣ,G, are indexed
by isotopy classes of embedding of G into Σ, onto which Σ retracts, and they parametrise the metrics of G.
The practical consequence of this topological discussion is that the edge lengths form a coordinate system
in each cell. In particular, this makes it easier to check whether a function defined on Tcomb

Σ is piecewise
continuous, once it is expressed in terms of edge lengths.

The mapping class group of Σ naturally acts on Tcomb
Σ by setting

[φ].[G, f] = [G, f ◦ φ],

for [φ] ∈ ModΣ and [G, f] ∈ Tcomb
Σ . When Σ has type (g,n), by forgetting the marking we have the isomor-

phism
Mcomb
g,n (L) ∼= Tcomb

Σ (L)/Mod∂Σ .

We denote the quotient Tcomb
Σ (L)/Mod∂Σ by Mcomb

Σ (L) when we want to refer to the actual surface Σ.

Example 2.12. For a pair of pants P, the perimeter map gives the isomorphism Tcomb
P

∼= R3
+. The pure

mapping class group is trivial, so that Mcomb
0,3

∼= R3
+, see Figure 5a.

For a torus T with one boundary component, Tcomb
T is the union of infinitely many cells homeomorphic to

R3
+, glued together through infinitely many cells homeomorphic to R2

+. In Figure 5b we presented some
adjacent cells of Tcomb

T . In the quotient by Mod∂T , all the 3- and 2-cells are identified, and we are left with a
further action of Z/6Z for the top-dimensional cell and an action of Z/4Z for the codimension 1 cell. The
result is the combinatorial moduli space Mcomb

1,1 described in Example 2.6.

2.2.2 Relation with ordinary Teichmüller spaces

For a fixed connected bordered surface Σ of type (g,n), we can consider the ordinary Teichmüller space.
Recall that a hyperbolic marking on Σ is a pair (X, f) where X is a hyperbolic surface with labelled geodesic
boundaries and f : Σ → X is an orientation-preserving diffeomorphism respecting the labelling. Define the
Teichmüller space as

TΣ =
{
(X, f)

∣∣∣ (X, f) is a hyperbolic marking on Σ
}/

∼, (2.8)

where (X, f) ∼ (X ′, f ′) if and only if there exists an isometry ϕ : X → X ′ respecting the labelling of the
boundaries and such that ϕ ◦ f is isotopic to f ′. We denote points in TΣ by σ = [X, f], and we call them
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L1

L2 L3

(a) The seven cells in Tcomb
P .

a

b c

··
·

· · ·

a

c

•

•

◦

◦
c

da ··
·

· · ·

(b) Some cells in Tcomb
T .

Figure 5: The combinatorial Teichmüller spaces of type (0, 3) and (1, 1).

hyperbolic structures on Σ. By considering hyperbolic length of the boundaries, we have a perimeter map
p : TΣ → Rn+ and we set TΣ(L) = p−1(L) for L ∈ Rn+.

It is well-known that the quotient of TΣ(L) by the pure mapping class group Mod∂Σ is orbifold-homeomor-
phic to

Mg,n(L) =

{
X

∣∣∣∣ X is a hyperbolic surface of type (g,n)
with labelled boundary of lengths L

}/
∼ , (2.9)

where X ∼ X ′ if and only if there exists an isometry from X to X ′ preserving the labelling of the bound-
ary components. Further, for each L ∈ Rn+, Mg,n(L) is orbifold-homeomorphic to the moduli space of
complex curves Mg,n. For later use, we review the description of a mapping class group equivariant home-
omorphism between the combinatorial Teichmüller space and the ordinary one, due to Luo and Mondello
[29, 35]. It lifts to the level of Teichmüller spaces the construction of Penner and Bowditch–Epstein [38, 9].

Let σ ∈ TΣ(L) and fix a representative (X, f). Define the valency νσ(q) of a point q in the interior of Σ as
the number of shortest geodesics joining q to ∂Σ that realise the distance distσ(q,∂Σ). Clearly νσ(q) > 1.
Define the loci Aσ = {q ∈ Σ | νσ(q) = 2 } and Vσ = {q ∈ Σ | νσ(q) > 3 }. We have that Aσ is the disjoint
union of simple, open geodesic arcs αe indexed by E = π0(Aσ), the set of edges, and Vσ is a finite collection
of points, the vertices. We define the spine sp(σ) of σ as the 1-dimensional CW-complex embedded in Σ
given by Vσ ∪Aσ.

We can naturally assign to sp(σ) a metric `sp(σ) : E → R+ in the following way. For each vertex q of sp(σ),
consider the νσ(q) shortest geodesics from q to the boundary – which are called ribs. Cutting Σ along
its ribs yields a union of hexagons; the diagonal of each hexagon whose endpoints are the vertices of the
spine corresponds to the edges of the spine (see Figure 6). We assign to it the length of the side of the
hexagon which lies along the boundary of Σ; there are two such sides, but they have the same length since
the reflection with respect to the edge is a hyperbolic isometry of the hexagon. In this way, sp(σ) induces
a combinatorial marking on Σ and the perimeters of sp(σ) correspond precisely to the hyperbolic lengths
of the boundaries of Σ. Further, isotopy classes of hyperbolic markings correspond to isotopy classes of
combinatorial markings. Thus, we are led to the following definition.

Definition 2.13. There exists a well-defined map

sp : TΣ(L) −→ Tcomb
Σ (L), (2.10)
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• •

Figure 6: Example of the spine construction. In red, the spine sp(σ). In blue, the ribs emanating from two
vertices.

called the spine map.

It is possible (although more difficult) to construct the inverse map and actually show that it is a homeo-
morphism, equivariant with respect to the action of Mod∂Σ.

Theorem 2.14. [29, 35] The spine map sp : TΣ(L)→ Tcomb
Σ (L) is a homeomorphism, equivariant under the action of

the pure mapping class group. �

In [29, 35] the theorem is stated in terms of the proper arc complex, rather than the combinatorial Te-
ichmüller space, but their relation is recalled in Appendix A. As a direct consequence, we find that for each
fixed L ∈ Rn+, there is an orbifold homeomorphism Mg,n(L) ∼= Mcomb

g,n (L) and thus with Mg,n (Theorem 2.7).

2.2.3 Relation with measured foliations

For a given metric ribbon graph, its geometric realisation is naturally endowed with a measured foliation,
as we now explain. We refer to [22, Section 5.1] for a complete discussion about measured foliations, but to
be self-contained we recall here the basic definitions.

Definition 2.15. Let Σ be a bordered surface, and F a foliation on Σ with isolated singularities. A transverse
invariant measure on F is a measure µ defined on each arc transverse to the foliation, invariant under iso-
topy of arcs through transverse arcs whose endpoints remain in the same leaf. If the arc passes through a
singularity, the transversality pertains to all points of the arc belonging to a regular leaf.

In what follows, we also suppose that:

• the measure is regular with respect to the Lebesgue one: every regular point of Σ admits a smooth
chartU 3 (x,y) where the foliation is defined by dy and the measure on each transverse arc is induced
by |dy|;

• each point of Σ has a neighbourhood that is the domain of a chart isomorphically foliated as one of
the models of Figure 7.

Definition 2.16. We say that two measured foliations on Σ are Whitehead equivalent if they differ by isotopy
or a Whitehead move, (see Figure 8). We denote by MF?

Σ the set of Whitehead equivalence classes of
measured foliations on Σ.

We can now discuss the relation between foliations and metric ribbon graphs.

Definition 2.17. Given a metric ribbon graph G of type (g,n), the geometric realisation |G| has a unique
measured foliation (FG,µG) such that:

• the singularities of (FG,µG) are the vertices of the embedded graph,
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• the measured foliation is transverse to the embedded graph,

• (FG,µG) on the hexagon around each edge e ∈ E agrees with |dt|, where t is the natural coordinate
on [0, `G(e)] as in Definition 2.10.

The singular leaves of the measured foliation cut |G| into hexagons, each with two opposite edges consisting
of arcs along the boundary of |G|, and the remaining four edges consisting of singular leaves (see Figure 9).
The diagonals parallel to the boundary arcs are nothing but the edges of the embedded graph. In the
description of § 2.2.2, the singular leaves correspond to the ribs, and the singular points to the vertices of
the spine. Notice that such a hexagon decomposition of |G|, together with the assignment of a positive
length to each diagonal, is sufficient to reconstruct the metric ribbon graph G. For an element G = [G, f]
in Tcomb

Σ , we get a natural isotopy class of measured foliations (FG,µG) on Σ by pushing (FG,µG) forward
along f. In the following, we omit the transverse measure µG when there is no ambiguity.

The above construction defines a map
F∗ : T

comb
Σ −→MF?

Σ, (2.11)

whose image is the set of classes of measured foliations admitting a representative, with respect to White-
head equivalence, whose leaves are all transverse to the boundary of Σ (cf. Figure 7b and 7e), and there is
no singular leaf connecting two singular points – such singular leaf is called a saddle connection. Moreover,
the measured foliation can be used to give a hexagonal decomposition of the surface, and reconstruct the
embedded metric ribbon graph. To summarise, we have the following lemma.

Lemma 2.18. The map F∗ is injective. Its image consists of measured foliations admitting a representative with
respect to Whitehead equivalence whose leaves are all transverse to the boundary of the surface and with no saddle
connections. �

2.3 Length functions and topology

We introduce now combinatorial length functions for simple closed curves, and show that combinatorial
structures are (locally in Tcomb

Σ ) completely determined by the knowledge of finitely many of these lengths.
This gives an alternative description of the topology on Tcomb

Σ .

2.3.1 Notations for curves

We denote by

• SΣ the set of homotopy classes of simple closed curves on Σ, and its subset S◦Σ consisting of non
boundary parallel (also called essential) curves,

• MΣ the set of multicurves, i.e. homotopy classes of finite unions of pairwise disjoint essential simple
closed curves on Σ,

• M ′Σ the set of primitive multicurves, i.e. those multicurves whose components are pairwise non-
homotopic.

From now on, curves are always considered up to homotopy. By conventionMΣ andM ′Σ contain the empty
multicurve, whereas SΣ and S◦Σ do not.

If Σ is a bordered surface and γ ∈ S◦Σ (or more generally in M ′Σ), we can consider the closed surface Σγ
defined as the result of cutting Σ along a chosen representative of γ. The assumptions on γ imply that
every connected component of Σγ is stable. Among such connected components, there is one containing
∂1Σ. We label the boundaries of such surface by putting the components of ∂Σ first (in the order they appear
in Σ), followed by those of γ (in some order). For the connected components of Σγ that do not contain ∂1Σ,
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we label the boundaries by putting the components of γ first (in some order), followed by those of ∂Σ (in
the order they appear in Σ). In the following we specify the choice of order only in case it has an actual
relevance in the argument.

2.3.2 Combinatorial length functions

Consider a combinatorial structure G ∈ Tcomb
Σ and a simple closed curve γ ∈ SΣ. As discussed in the

previous section, G induces an isotopy class of measured foliations (FG,µG) on Σ, so we have a well-defined
length function `G defined on SΣ (cf. [22, Section 5.3])1

`G(γ) = inf
γ0

sup
αi

(
k∑
i=1

µG(αi)

)
, (2.12)

where the infimum is taken over all representatives γ0 in the homotopy class γ, and the supremum is taken
over all the possible ways of writting γ0 as a sum of arcs α1, . . . ,αk, mutually disjoint and transverse to FG.

It can be shown [22, Proposition 5.7] that the infimum is reached by quasitransverse representatives of γ.

Definition 2.19. We say that a curve γ0 is quasitransverse to a foliation F if each connected component of γ0

minus the singularities of F is either a leaf or is transverse to F. Further, in a neighbourhood of a singularity,
we require that no transverse arc lies in a sector adjacent to an arc contained in a leaf, and that consecutive
transverse arcs lie in distinct sectors.

In terms of the embedded metric ribbon graph, we have the following effective way to compute the length
`G(γ): consider the (unique) representative γ0 of γ that has been homotoped to the embedded graph and
is non-backtracking. The length of the curve can now be computed as the sum of the lengths of the edges
visited by the curve, since such γ0 is a quasitransverse representative, perhaps after performing a sequence
of Whitehead moves in a small disc neighbourhood of the vertices of G, making a measured foliation F ′G
Whitehead equivalent to FG and thus representing the same point in MF?

Σ. One can also conclude from [22,
Proposition 5.9] that the length is always positive.

Notice that the assignment G 7→ `G(γ) is continuous on Tcomb
Σ , as it is a sum of edge lengths on the closure of

each open cell. If the curve is homotopic to one of the boundary components, the notion of boundary length
described before (Equation (2.7)) agrees with this more general definition. The notion of length naturally
extends to MΣ and M ′Σ by adding the length of components. Using Equation (2.12), we can also define
the length of homotopy classes (relative to ∂Σ) of arcs between boundaries. This is again a continuous
assignment, but it can now take zero values.

In § 2.3.3-2.3.4 we prove the following result regarding the combinatorial length spectrum, which is the
combinatorial analogue of [22, Theorem 1.4].

Theorem 2.20. Let us equip RSΣ+ with the product topology. The combinatorial length of simple closed curves gives
a map `∗ : Tcomb

Σ → RSΣ+ which is a homeomorphism onto its image.

Corollary 2.21. The topology on Tcomb
Σ defined via the arc-complex (Appendix A) and the initial topology induced

by the combinatorial length map `∗ : Tcomb
Σ → RSΣ+ coincide. �

When Σ is a closed surface, [22, Proposition 6.12] shows that the length map `∗ : MF?
Σ → RSΣ+ is a bijection

onto its image, and equips MF?
Σ with the initial topology induced by this map, making it a homeomorphism

onto its image. Such a result – and a topology for MF?
Σ – has however not been spelled out in the case of

bordered surfaces, which would be necessary if one wished to prove Theorem 2.20 by injecting Tcomb
Σ into

MF?
Σ with the map F∗ of Equation (2.11). Here we prove the theorem by a direct construction of the inverse

1In [22] this quantity is denoted by I(F,µ;γ).
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map from the image of `∗, via the study of lengths of curves and their relation with embedded pairs of
pants. These computations are used again in Section 4.

In Theorem 2.42 we moreover justify the fact that, as in the hyperbolic case, the data of 9g − 9 + 3n simple
closed curves is enough for the reconstruction.

2.3.3 Embedded pairs of pants

We are interested in embedded pairs of pants and the way the lengths of their boundary components (with
respect to a combinatorial structure) determine the combinatorial structure itself.

Definition 2.22. When Σ is a bordered surface of type (g,n) such that 2g − 2 + n > 1, and m0 ∈ {1, . . . ,n},
we let PΣ,m0 be the set of homotopy classes of embeddings ϕ : P ↪→ Σ of pairs of pants P such that

• ϕ(∂1P) = ∂m0Σ,

• Σ \ϕ(P) (where the closure is taken in Σ) is stable,

• if ϕ(∂iP) = ∂mΣ for somem 6= m0, then i = 2.

We denote by P∅
Σ,m0

the set of homotopy classes of pair of pants [P]’s for which ∂iP ⊂ Σ◦ for i = 2, 3, and
by PmΣ,m0

the set of such [P]’s for which ∂2P = ∂mΣ for somem 6= m0. We have a partition

PΣ,m0 =

( ⊔
m 6=m0

PmΣ,m0

)
t P∅

Σ,m0
.

These pairs of pants can be described alternatively in terms of arcs between boundaries [2], which we recall
here for the convenience of the reader.

Definition 2.23. Denote by AΣ,m0 the set of non-trivial homotopy classes of proper embeddings2 a : [0, 1] ↪→
Σ with a(0) ∈ ∂m0Σ. We denote the class of a proper embedding awith the letter α. There is a partition

AΣ,m0 =

( ⊔
m 6=m0

AmΣ,m0

)
tA∅

Σ,m0
,

where the elements of AmΣ,m0
are those with a representative a such that a(1) ∈ ∂mΣ, and the elements of

A∅
Σ,m0

are those with a representative a such that a(1) ∈ ∂m0Σ.

We obtain a surjective map
Qm0 : AΣ,m0 −→ PΣ,m0 (2.13)

by assigning to an arc α = [a] the homotopy class of pairs of pants [P] whose boundaries are formed by
the boundary of a closed tubular neighbourhood of a and curves homotopic to the boundaries joined by a
(Figure 11). The boundaries of P are labelled as follows. We always set ∂1P = ∂m0Σ. Then if ϕ(∂iP) = ∂mΣ
for somem 6= m0, then i = 2 and ∂3P is determined; otherwise, we define ∂2P (resp. ∂3P) to be the boundary
component on the left-hand side (resp. right-hand side) of the curve α oriented from 0 to 1.

Remark 2.24. The restriction of Qm0 to AΣ,m0 is not injective. More precisely, Q−1
m0

([P]) contains a single
element when [P] ∈ P∅

Σ,m0
, while it contains three elements when [P] ∈ PmΣ,m0

for any m 6= m0. Indeed any
given [P] ∈ PmΣ,m0

can be obtained by an arc α from ∂m0Σ to ∂mΣ, but also by an arc α ′ from ∂m0Σ to itself
and its inverse −α ′ (Figure 11). Notice that in this case α is the only arc in AmΣ,m0

, while α ′,−α ′ ∈ A∅
Σ,m0

.

We introduce the notion of small pairs of pants, which play a role in the rest of the paper.

2If X and Y are topological manifolds with boundaries, a continuous map f : X→ Y is called a proper embedding if f−1(∂Y) =
∂X, and we use here the natural notion of homotopies among such.
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Definition 2.25. Let G ∈ Tcomb
Σ . We say that [P] ∈ PΣ,m0 is G-small if

`G(ϕ(∂P) ∩ ∂Σ) > `G(ϕ(∂P) ∩ Σ◦). (2.14)

The definition does not depend on the representative chosen for [P]. If the inequalities are strict, then we
say the pair of pants is strictly G-small.

In other words, dropping the embedding from the notation:

• when [P] ∈ PmΣ,m0
, we have `G(∂3P) 6 `G(∂1P) + `G(∂2P),

• when [P] ∈ P∅
Σ,m0

, we have `G(∂2P) + `G(∂3P) 6 `G(∂1P).

We can characterise small pairs of pants in terms of the corresponding arcs as follows.

Lemma 2.26. Let [P] ∈ PΣ,m0 .

• [P] ∈ PmΣ,m0
is G-small if and only if for the unique α ∈ Q−1

m0
([P]) ∩AmΣ,m0

we have `G(α) = 0,

• [P] ∈ P∅
Σ,m0

is G-small if and only if for the unique α ∈ Q−1
m0

([P]) we have `G(α) = 0.

Proof. Let α ∈ AmΣ,m0
for m 6= m0 and assume that `G(α) > 0. It is then uniquely represented by some non

backtracking edgepath α in G with initial and final vertices adjacent to ∂m0Σ and ∂mΣ. Then, ∂3Qm0(α) can
be homotoped to a non backtracking edgepath consisting in travelling along α, then going around ∂mΣ,
then travelling backwards along α, and going around ∂m0Σ. This implies that

`G(∂m0Σ) + `G(∂mΣ) < `G
(
∂3Qm0(α)

)
,

hence Qm0(α) is not G-small, and we conclude by the contrapositive. A similar argument works when
α ∈ A∅

Σ,m0
.

Remark 2.27. Notice that α can only have length zero with respect to G if it has a quasitransverse repre-
sentative given by an oriented non-singular leaf in the foliation associated to G. There are finitely many
homotopy classes of oriented leaves relative to the boundary, and they are in bijection with the oriented
edges of the metric ribbon graph. Since AΣ,m0 surjects onto PΣ,m0 for Σ of type (g,n) and G ∈ Tcomb

Σ , there
are at most 2(6g− 6 + 3n) G-small pairs of pants in PΣ,m0 .

Small pairs of pants can be characterised in terms of the support of two functions that play an important
role in Section 4.4. Let [x]+ = max { x, 0 } and consider the functions on Tcomb

P
∼= R3

+ defined by

BK(L1,L2, `) =
1

2L1

(
[L1 − L2 − `]+ − [−L1 + L2 − `]+ + [L1 + L2 − `]+

)
,

CK(L1, `, ` ′) =
1
L1

[L1 − `− `
′]+.

(2.15)

It is easy to check that these functions only take non-negative values. They encode aspects of the geometry
of combinatorial pairs of pants, as described in the following lemma, and are the combinatorial analogs of
the functions D and R introduced by Mirzakhani in [32] in the hyperbolic context.

Lemma 2.28. The function BK associates to (`G(∂1P), `G(∂2P), `G(∂3P)) ∈ R3
+

∼= Tcomb
P the fraction of the ∂1P that

is not common with ∂3P (once retracted to the graph). Similarly, CK associates to a point ~̀G(∂P) ∈ R3
+

∼= Tcomb
P the

fraction of ∂1P that is not common with ∂2P ∪ ∂3P.
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Proof. The result follows from direct computations in the closure of each of the four open cells of Tcomb
P . The

various inequalities that define the cells are used to simplify BK and CK. Consider for example Figure 12a:
we have `G(∂3P) > `G(∂1P) + `G(∂2P) so that BK(L1,L2, `) = 0, and the portion of ∂1P that is not common
with ∂3P is zero (all of ∂1P intersects with ∂3P). Similarly, in the case of Figure 12b we find `G(∂2P) >
`G(∂1P) + `G(∂3P), so that

BK(L1,L2, `) =
1

2`G(∂1P)

(
`G(∂1P) + `G(∂2P) − `G(∂3P) −

(
−`G(∂1P) + `G(∂2P) − `G(∂3P)

))
= 1,

and indeed all of ∂1P intersects with ∂2P. Finally, in Figure 12c we find `G(∂iP) 6 `G(∂jP) + `G(∂kP) for all
i, j,k ∈ { 1, 2, 3 }, which is the condition to be in this cell. We also see that the length of the edge adjacent
to ∂1P and ∂2P is given by 1

2 (`G(∂1P) + `G(∂2P) − `G(∂3P)) and therefore its fraction of the first boundary is
given by exactly

BK(L1,L2, `) =
1

2`G(∂1P)

(
`G(∂1P) + `G(∂2P) − `G(∂3P)

)
.

The computation in other cells is similar, and analogously for CK.

Notice that if BK or CK are non-zero, then there is at least an edge with a corresponding arc, that defines the
pair of pants passing through the edge transversely, and therefore of zero length. As an immediate conse-
quence this or simply by considering the support of BK and CK, we deduce the following characterisation
of small pairs of pants.

Corollary 2.29. Let G ∈ Tcomb
Σ :

• [P] ∈ PmΣ,m0
is G-small if and only if BK(~̀G(∂P)) > 0,

• [P] ∈ P∅
Σ,m0

is G-small if and only if CK(~̀G(∂P)) > 0.

Here ~̀G(∂P) is the ordered triple of combinatorial lengths of the boundary components of P. �

2.3.4 A partial inverse of the combinatorial length spectrum map

In this paragraph we exhibit an inverse on the image of the combinatorial length map of Theorem 2.20. We
first observe that, given G = [G, f] ∈ Tcomb

Σ and an oriented edge ~e of the embedded graph, we can take the
dual arc α~e: its starting point (resp. ending point) lies on the component of ∂Σ adjacent to f(~e) on the right
(resp. left) and intersects the embedded graph exactly once through this edge. Note that the two boundary
components adjacent to ~emay coincide. We thus obtain a map ~EG → Aall

Σ :=
⊔n
m0=1 AΣ,m0 . Composing with

Qm0 , we can associate to each oriented edge of G a class of embedded pair of pants in Pall
Σ =

⊔n
m0=1 PΣ,m0 .

Lemma 2.30. Let e be an edge in G ∈ Tcomb
Σ and fix an arbitrary orientation ~e.

• If e is adjacent to ∂m1Σ 6= ∂m2Σ, let [P1] ∈ Pm2
Σ,m1

and [P2] ∈ Pm1
Σ,m2

be the pairs of pants corresponding to ~e
and i(~e) respectively. Then

`G(e) = `G(∂m1Σ)
(
BK(~̀G(∂P1)) − C

K(~̀G(∂P1))
)

= `G(∂m2Σ)
(
BK(~̀G(∂P2)) − C

K(~̀G(∂P2))
)

.

• If e is adjacent to ∂m0Σ on both sides, let [P] ∈ PΣ,m0 be the pair of pants corresponding to ~e or i(~e) (the two
pairs of pants coincide). Then

`G(e) =
1
2
`G(∂m0Σ)C

K(~̀G(∂P)).
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Proof. Given a boundary component, we can represent the edges around it by a polygon where some edges
and vertices are identified. The sequence of edges around the boundary is non-backtracking.

If e is adjacent to ∂m1Σ 6= ∂m2Σ, we have two polygons around ∂m1Σ and ∂m2Σ. When neither of these are
1-gons, then we can represent γ = ∂3P1 = ∂3P2 as in Figure 13a. Due to the absence of bivalent vertices, this
is again non backtracking. We therefore have `G(γ) = `G(∂m1Σ) + `G(∂m2Σ) − 2`G(e). Notice that we also
have |`G(∂m1Σ) − `G(∂m2Σ)| < `G(γ). Therefore, comparing the expression for `G(e) with the expression in
the statement, we see they agree.

Now suppose without loss of generality that m2 is a 1-gon. This implies that m1 is not a 1-gon, as gluing
two 1-gons together would produce a cylinder. It is also clear that `G(e) = `G(∂m2Σ). We can represent
γ = ∂3P1 = ∂3P2 by Figure 13b. This implies that `G(∂m1Σ) > `G(∂m2Σ) + `G(γ) and therefore, using this to
calculate the expression in the statement, we see that they agree.

If e is adjacent to ∂m0Σ on both sides, we have one polygon around ∂m0Σ. We can then represent ∂2P and
∂3P as in Figure 13c. In absence of bivalent vertices, backtracking cannot occur around either side of e.
Therefore we have `G(∂m0Σ) = `G(∂2P) + `G(∂3P) + 2`G(e). Comparing the expression for `G(e) with the
expression in the statement, we see they agree.

This lemma shows that we can reconstruct edge lengths from lengths of simple closed curves, which in
turn proves that Theorem 2.20 holds when restricted to the closure of a cell. To fully reconstruct the rib-
bon graph (i.e. determine in which cell we are) from just the lengths of simple closed curves, we use the
characterisations of small pairs of pants and their relation to edges in the embedded graph.

Proof of Theorem 2.20. We can now exhibit a global inverse on the image of the combinatorial length spec-
trum map `∗ : Tcomb

Σ → RSΣ+ . We first consider the following composition:

RSΣ+ (R3
+)

Pall
Σ R

Aall
Σ

>0

λ lλ.

The first arrow associates to a length functional λ ∈ RSΣ+ the functional on Pall
Σ defined by [P] 7→ ~λ(∂P),

where ~λ(∂P) is the ordered triples of boundary lengths. The second arrow associates to a functional ~λ on
Pall
Σ a functional on Aall

Σ given by

α 7−→

λ1(Pα)
(
BK(~λ(Pα)) − C

K(~λ(Pα))
)

if α ∈ AmΣ,m0

1
2λ1(Pα)C

K(~λ(Pα)) if α ∈ A∅
Σ,m0

where [Pα] = Qm0(α) and λ1 is the first component of the triple~λ. Note that these are exactly the expressions
appearing in Lemma 2.30.

Consider now the restriction to Im(`∗). If λ = `∗(G) for some G ∈ Tcomb
Σ , we know from Lemma 2.26

and Remark 2.27 that lλ, as a functional on Aall
Σ , is supported on the complement of those oriented arcs α

homotopic to non-singular oriented leaves in the foliation associated to G. These are in bijection with the
oriented edges of G. Forgetting about the orientation, consider the finite collection (α1, . . . ,αk) of all such
arcs, choosing representatives that are pairwise non-intersecting in Σ. This defines a proper simplex in the
arc complex AΣ (see Appendix A), and taking the dual we obtain a ribbon graph G with an embedding into
Σ. We can equip it with a metric, assigning the length lλ(αi) to the edge dual to αi. This represents a point
in Tcomb

Σ , so that we have a map
l∗ : Im(`∗) −→ Tcomb

Σ .

By construction, l∗ ◦ `∗ = id. Thus, `∗ is injective.
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The map `∗ is clearly continuous, since the lengths of simple closed curves are linear combinations of
lengths of edges. The inverse map l∗ is also continuous on the `∗-image of each cell, since we realised
the edge lengths as piecewise linear (and thus continuous) functions of the length of locally finitely many
simple closed curves. This completes the proof.

2.4 Cutting and gluing

Before describing a combinatorial version of Fenchel–Nielsen coordinates, we need the notion of cutting a
combinatorial structure along an essential simple closed curve, and the reciprocal notion of gluing combi-
natorial structures along boundary components of the same length.

2.4.1 Basic definitions

CUTTING. Consider a bordered surface Σ, fix G ∈ Tcomb
Σ and γ an essential simple closed curve. We want

to define a combinatorial structure on the surface Σγ obtained by cutting Σ along a chosen representative
of γ. To this end, choose a representative (G, f), so that we have an induced structure of measured foliation
on Σ. If necessary, perform a minimal sequence of local Whitehead moves in small disc neighbourhoods
of the vertices, in such a way that γ is transversal to the resulting foliation. We then restrict the measured
foliation to Σγ, which is induced from a unique metric ribbon graph Gγ with an embedding which up to
isotopy does not depend on the choices made. This defines a combinatorial structure Gγ ∈ Tcomb

Σγ
.

Cutting also makes sense when γ is a primitive multicurve, and it is equivalent to cutting along each com-
ponent of γ in an arbitrary order. Note that the lengths of edges after cutting are again linear combinations
of the edge lengths which agree on the closure of the open cells. This shows that the cutting, viewed as a
map Tcomb

Σ → Tcomb
Σγ

, is continuous. See Figure 14 and Figure 15 for a local illustration of the cutting, and
Appendix B for some global examples.

GLUING. Consider a bordered surface Σ, possibly disconnected, with a choice of two boundary components
γ− and γ+. Let G ∈ Tcomb

Σ be such that `G(γ−) = `G(γ+). We want to define a combinatorial structure on the
surface obtained by topologically gluing γ− and γ+. Fix a representative (G, f), so that we have an induced
structure of a measured foliation F on Σ. First, we observe that once we pick a point p− on γ−, there is a
unique action of R on γ− which preserves the induced measure and orientation on γ−. We let pτ− be the
image of p− under the action of τ ∈ R. Pick now a point p+ on γ+, and identify γ− with γ+ in a measure
preserving way, such that pτ− is identified with p+ in an orientation reversing way. This means that we have
a unique measured foliation Fτ induced on the glued surface, which we denote Στ.

2.4.2 Admissible gluings

What is not clear from the above construction is whether the measured foliation Fτ is associated to a combi-
natorial structure on Στ. If this is true, we call such τ an admissible twist. We refer to Figure 14 and Figure 15
– read from right to left – for a local illustration of the gluing, Appendix B for some global examples, and
Figure 16 for an example of Fτ that is not associated to a combinatorial structure.

Proposition 2.31. There exists a unique metric ribbon graphGτ and a unique marking f : Στ → |Gτ| up to isotopy,
such that the measured foliation induced on Στ agrees with Fτ if and only if Fτ has a representative without saddle
connections, i.e. no leaf between two singularities.

Proof. Perform a maximal sequence of Whitehead moves, i.e. that reduces the connected components of the
the compact singular leaves to a graph with one vertex. Let Λ(Fτ) be the set of leaves of Fτ, and define
Σ̂τ = { λ ∈ Λ(Fτ) | λ ∩ ∂Στ 6= ∅ } (cf. Figure 16). Then from Poincaré recurrence [22, Theorem 5.2] this is
nothing but the union of all leaves which go from boundary to boundary together with the finitely many
leaves which connect the boundary to a singular point of Fτ (i.e. no leaves starting from the boundary
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spiral in the surface). If Σ̂τ = Στ, then Fτ has no closed singular leaves and we see that the singular leaves
of Fτ split the surface into hexagons, which in turn determinesGτ uniquely and its marking up to isotopy.
If not, choose a good atlas for Fτ as defined in [22, Section 5.2], and observe that the complement of the
singular leaves in Σ̂τ is a finite disjoint union of squares Si, each with a non-singular foliation transverse to
two open arcs of the boundary of Στ, running between endpoints of the singular leaves in Σ̂τ, and such that
S̄i − Si ⊂ Στ are made up of a finite number of compact singular leaves of Fτ. But since we are assuming
Σ̂τ 6= Στ, there must be at least one of these which connects two singular points in the interior of Στ. As we
took a representative of Fτ with one singular point for each connected component of the compact singular
leaves, we see that this implies there must be a cycle of singular leaves which cannot define a combinatorial
structure.

We observe that, even though the foliation associated to G has no saddle connections, they may occur for
Fτ as a result of the gluing process. However, Proposition 2.31 together with the next result imply that this
is generically not the case, and that it is never the case for G-strictly small pairs of pants.

Lemma 2.32. Let G be such that every vertex around γ− has exactly one singular leaf reaching γ− and no singular
leaf reaching γ+. Then all twists τ ∈ R are admissible. The same statement holds if we exchange γ− and γ+.

Proof. Under such hypothesis, all smooth leaves starting from γ− end at a boundary component of Σ that
is neither γ− nor γ+. Therefore for every twist τ, we glue the singular leaves to leaves of γ+ which im-
mediately reach a boundary component of ∂Στ. Gluing the singular leaves of γ− can result in the creation
of a leaf which returns back to γ+ again. This however corresponds two gluing to leaves of γ+ which
immediately reach a boundary component of ∂Στ.

Corollary 2.33. Let Σ be a bordered surface of Euler characteristic6 −2, take [P] ∈ PΣ,m0 for somem0 ∈ {1, . . . ,n},
G ∈ Tcomb

Σ , and consider the operation of cutting along ∂P ∩ Σ◦, twisting and gluing back. If P is G-strictly small,
then any twist τ ∈ Rπ0(∂P∩Σ◦) is admissible. The same is true if Σ = T and we self-glue after twisting the pair of
pants obtained from T by cutting along γ ∈ S◦T . �

Proposition 2.34. For G ∈ Tcomb
Σ with l = `G(γ−) = `G(γ+) the set of admissible twists is an open dense subset of

R with countable complement.

We need the result of the following lemma before proving the proposition. Let S− = { `−1 , . . . , `−M } and S+ =

{ `+1 , . . . , `+N } be the finite sets of lengths of edges in G into which γ− and γ+ decompose into respectively.
Without loss of generality, assume that p− and p+ are contained in singular leaves of G.

Lemma 2.35. If we choose the points p± such that τ = 0 identifies two singular leaves, then for τ /∈ spanQ(S
−∪S+),

Fτ has a Whitehead representative with no singular leaf between two singularities.

Proof. Denote by γ the curve in Στ which is the image of γ±, and identify γ ∼ R/lZ where l = `G(γ−) =

`G(γ+) and 0 corresponds to a singular leaf on the γ+ side. Consider a point p ∈ γ. If we follow along the
leaf passing through p (in either the γ+ side or the γ− side of the glued surface) until it gets back to γ at a
point p ′, we find that there exists some R ∈ spanZ(S

− ∪ S+) for each of the following cases, such that

• p ′ = −p+ R, for a leaf going from γ+ to γ+;

• p ′ = −p+ 2τ+ R, for a leaf going from γ− to γ−;

• p ′ = p+ τ+ R, for a leaf going from γ+ to γ−;

• p ′ = p− τ+ R, for a leaf going from γ− to γ+.
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Indeed, we firstly notice that all singular leaves on the γ+ side are identified as some points in spanZ(S
+),

while on the γ− side they are identified as some points in τ+ spanZ(S
−).

Suppose first that p ′ is obtained from p by following a leaf going from γ+ to γ+ (see Figure 17a). We notice
that p is given by p = R0 + a, where R0 ∈ spanZ(S

+) is the distance from the chosen singular leaf at 0 to the
singular leaf just before p on the γ+ side, and a > 0. Then, following the leaf, we find that the singular leaf
just before p becomes the singular leaf just after p ′, and p ′ = R1 −a = −p+(R0 +R1) where R1 ∈ spanZ(S

+)

is the distance from the chosen singular leaf at 0 to the leaf just after p ′ (following the orientation of γ+). In
particular, we obtain the claim with R = R0 + R1 ∈ spanZ(S

+).

Similarly, suppose now that p ′ is obtained from p by following a leaf going from γ− to γ+ (see Figure 17b).
Now we have p = R0 + τ + a, where R0 ∈ spanZ(S

−) and a > 0 (here the singular leaf just before p on the
γ− side is at distance R0 + τ from the chosen singular leaf at 0). Then, following the leaf, we find that the
singular leaf at R0 + τ is identified with a singular leaf at distance R1 ∈ spanZ(S

+) from the chosen singular
leaf at 0. Therefore p ′ = R1 + a = p− τ+ (R0 − R1). Thus, the claim with R = R0 − R1 ∈ spanZ(S

− ∪ S+).
The other cases follow similarly. Now, if p is a point at a singular leaf on the γ± side, we see by induction
that, after gluing, the singular leaf passes through γ at some other points of the form±(p∓nτ)+R for some
n ∈ Z+ and R ∈ spanZ(S

− ∪ S+). This implies that, if Gτ has two singular points connected by a leaf, then
a non-zero integral multiple of τ is contained in spanZ(S

− ∪ S+), or equivalently τ ∈ spanQ(S
− ∪ S+).

Proof of Proposition 2.34. We first show that the set of admissible twists is an open subset of R. Consider
τ ∈ R an admissible twist, and denote by Gτ the associated combinatorial structure. For each edge e of Gτ,
let nγ(e) be the number of times which γ travels through the edge e. If we take τ ′ such that |τ ′ − τ| < ε,
then we see that the distance between the two singularities of the foliation changes by at most εnγ(e) (cf.
Figure 18). This also holds at the boundary of the cells, when we have vertices of higher valency whose
original distance would be zero. Therefore, if we choose ε > 0 smaller than

min
e

`G(e)

nγ(e)

where e runs over the edges of Gτ visited by γ, then all singularities stay at the same or at a positive
distance from each other. These lengths are realised by curves homotopic to the original length realising
curve. As a consequence, Fτ

′
cannot admit a cycle of singular leaves connecting singularities, and thus τ ′

is an admissible twist. The countable complement property follows from Lemma 2.35.

We remark that the set of non admissible twists can have accumulation points, and its set of accumulation
points can be non isolated. However what is crucial for the next section is that the non-admissible twists
form a measure-zero set in R.

2.5 Combinatorial Fenchel–Nielsen coordinates

With the notions of cutting and gluing in the combinatorial spaces defined, we have available the key tools
to attempt a definition of Fenchel–Nielsen coordinates analogously to the hyperbolic case. In fact Fenchel–
Nielsen coordinates can be defined, the main difference with the hyperbolic case being that the image of
such a coordinate system does not cover the whole codomain. This is due to the fact that combinatorially
not all twists are allowed.

2.5.1 Seams and pants decompositions

We can now define global coordinates on the combinatorial Teichmüller space, analogous to the hyperbolic
Fenchel–Nielsen coordinates. Firstly, we need a technical ingredient, the pants seams, that allows us to
define a canonical way of gluing pairs of pants.
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Definition 2.36. Consider a combinatorial marking (G, f) on a pair of pants P, with associated foliation
F. Define the combinatorial seam connecting two distinct boundary components γ and γ ′ of P to be the
quasitransverse arc connecting γ and γ ′, as indicated in Figure 19. In the cases 19c–19g, the seams are
smooth leaves, located at exactly the same distance from the adjacent singular leaves.

A notion of pants seams connecting a boundary component of P to itself can be found in [22, Section 6.3]. We
remark that the combinatorial seam realises the minimum among lengths of all essential arcs connecting
one boundary component to another (the length can be zero). For a point (L1,L2,L3) ∈ R3

+
∼= Tcomb

P , the
length of the seam connecting ∂1P and ∂2P is given by the formula

`comb(L1,L2,L3) =

[
L3 − L1 − L2

2

]
+

, (2.16)

while the length of a seam connecting ∂1P to itself is given by

`comb(L1,L2,L3) =

[
L2 + L3 − L1

2

]
+

+

[
L2 − L1 − L3

2

]
+

+

[
L3 − L1 − L2

2

]
+

= max
{
L2 + L3 − L1

2
,L2 − L1,L3 − L1, 0

} (2.17)

Notice that for a hyperbolic marking (X,ϕ) on P, there exist a notion of hyperbolic seam connecting γ and
γ ′, that is the shortest geodesic arc connecting the boundary components γ and γ ′. On the other hand, we
can consider the combinatorial marking (G, f) on P associated to (X,ϕ) defined through the spine map of
Definition 2.13. The next elementary lemma, of which we omit the proof, shows that the hyperbolic and
combinatorial seams are the same arcs.

Lemma 2.37. Consider a hyperbolic marking (X,ϕ) on P, and the associated combinatorial marking (G, f). Through
their aforementioned identification, the hyperbolic and combinatorial seams connecting two boundary components of
P coincide. �

Remark 2.38. In the hyperbolic case, for a point (L1,L2,L3) ∈ R3
+

∼= TP, the hyperbolic length of the seam
connecting ∂1P and ∂2P is given by the formula

cosh
(
`hyp(L1,L2,L3)

)
=

cosh
(
L3
2

)
sinh

(
L1
2

)
sinh

(
L2
2

) + cotanh
(
L1
2

)
cotanh

(
L2
2

)
, (2.18)

while the hyperbolic length of a seam connecting ∂1P to itself is given by

cosh2
(
`hyp(L1,L2,L3)

2

)
=

cosh2 (L1
2

)
+ cosh2 (L2

2

)
+ cosh2 (L3

2

)
+ 2 cosh

(
L1
2

)
cosh

(
L2
2

)
cosh

(
L3
2

)
− 1

sinh2 (L1
2

) .

(2.19)
Formulae (2.16)–(2.17) and can be recovered from equations (2.18)–(2.19) by taking the following limit:

lim
β→∞

`hyp(βL1,βL2,βL3)

β
= `comb(L1,L2,L3). (2.20)

This fact is revisited and generalised in Section 5 where such a limit is shown to hold for many other
expressions.

We can now define the seamed pants decomposition associated to a bordered surface Σ, consisting of a
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pants decomposition of Σ together with a collection of curves and arcs.

Definition 2.39. Given a bordered surface Σ of type (g,n), a seamed pant decomposition consists of

• a pants decomposition P = (γ1, . . . ,γ3g−3+n), that is a maximal collection of pairwise non-homotopic,
essential, simple closed curves, labelled by 1, . . . , 3g− 3 + n,

• a collection S of non-homotopic, essential simple closed curves or simple arcs connecting boundary
components of Σ, pairwise non-homotopic relative to the boundary, such that the intersection of S
with any of the pair of pants P in the decomposition specified by P is a union of three disjoint arcs
connecting the boundary components of P pairwise.

Notice that, given P, we can construct an S by first choosing three disjoint arcs on each pair of pants and
then matching up endpoints in any fashion.

2.5.2 Existence of combinatorial Fenchel–Nielsen coordinates

Fix once and for all a seamed pants decomposition (P,S) on Σ. We define the length parameters of a point
G ∈ Tcomb

Σ to be the tuple of positive real numbers

`(G) =
(
`1(G), . . . , `3g−3+n(G)

)
, (2.21)

where `i(G) = `G(γi).

As a first step towards the definition of twist parameters, consider a combinatorial marking (G, f) of a
pair of pants P and an arc α connecting two distinct boundary components γ and γ ′ of P. Let δ be the
combinatorial seam connecting γ and γ ′ – which depends only on (G, f). Let P̃ be a universal cover of P. It
contains lifts γ̃ and γ̃ ′ of γ and γ ′ respectively. Notice that they acquire orientation from P̃. Let d = δ ∩ γ
and a = α∩γ. We choose a lift d̃ of d and call ã the first lift of amet by travelling from d̃ along γ̃ following
its orientation. This determines lifts δ̃ (resp. α̃) of δ (resp. α) starting from d̃ (resp. ã). Now let d̃ ′ = δ̃ ∩ γ̃ ′
and ã ′ = α̃ ∩ γ̃ ′. Consider the path cd̃′ã′ along γ̃ ′ starting at d̃ ′ and ending at ã ′. The measured foliation
associated to (G, f) lifts to a measured foliation F̃ on the universal cover, and we can measure the length of
cd̃′ã′ . We then set sgn(cd̃′ã′) = ±1 depending on whether the orientation of cd̃′ã′ agrees with the one of
γ̃ ′. We define the twisting number of α along γ ′ in P to be

tPα,γ′(G, f) = sgn(cd̃′ã′) `F̃(cd̃′ã′). (2.22)

The definition does not depend on the choice of d̃, since all different choices are related by deck transfor-
mations which leave tPα,γ′(G, f) fixed.

Given G ∈ Tcomb
Σ , we define the i-th twist parameter τi(G) as follows. Fix a marking (G, f) such that γi

is quasitransverse to the measured foliation induced by the marking. Let αi be one of the two arcs in
S crossing γi. There are two pairs of pants Q ′i and Q ′′i (possibly the same) on each side of γi, and αi
determines two arcs α ′i = αi ∩Q ′i and α ′′i = αi ∩Q ′′i . The i-th twist parameter of G is defined to be

τi(G) = t
Q′i
α′i,γi

(G|Q′i , f|Q′i) + t
Q′′i
α′′i ,γi

(G|Q′′i , f|Q′′i ). (2.23)

This twist parameter is invariant under isotopies, i.e. does not depend on the representative of G. Besides,
it does not depend on the choice of the arc in S crossing γi. This can be seen by passing to the universal
cover of a neighbourhood of γi – cf. [21, Section 10.6.1] for the analogue in the hyperbolic case. Finally, it
only depends on the homotopy class of αi, since a different choice of representative would modify both t ′

and t ′′ by the same quantity, but with different signs. Thus, we have well-defined twist parameters

τ(G) =
(
τ1(G), . . . , τ3g−3+n(G)

)
. (2.24)
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Notice that we may homotope the representative of αi such that it is intersecting γi at a vertex of the
combinatorial structure, showing that t ′ and t ′′ in (2.23) can be expressed as a sum of edge lengths in G

with half-integer coefficients. The half is coming from the definition of combinatorial seams, which were
required to be equidistant from the adjacent singular leaves in the cells depicted in Figure 19c–19g.

Definition 2.40. Let Σ be a bordered surface of type (g,n) equipped with a seamed pants decomposition
(P,S). Combinatorial Fenchel–Nielsen coordinates relative to (P,S) is by definition the map ΦL : Tcomb

Σ (L) →
R3g−3+n

+ ×R3g−3+n defined by
ΦL(G) =

(
`(G), τ(G)

)
. (2.25)

Using the gluing we can establish the following result.

Theorem 2.41. For any L ∈ Rn+, the map

ΦL : T
comb
Σ (L)→ (R+ ×R)3g−3+n (2.26)

is a homeomorphism onto its image, which is an open dense subset whose complement has zero measure. Moreover, if
ΦL(G) = (`, τ), then the image of the map τi restricted to{

G ∈ Tcomb
Σ (L)

∣∣ `j(G) = `j ∀j, τk(G) = τk for k 6= i
}

(2.27)

has a complement of zero measure in R.

Proof. To prove the theorem, we use the gluing to construct a partial inverse map. More precisely, define
the partial map ΨL : (R+ ×R)3g−3+n → Tcomb

Σ (L) by setting

ΨL
(
`, τ
)
= G,

where G is defined as follows.

• For each pair of pants bounded by curves in P, we assign boundary lengths defined by the Ls and `s.
This determines a unique combinatorial structure on each pair of pants.

• We glue the pairs of pants along each γi after twisting by τi. The twist zero corresponds to gluing the
combinatorial seams of the pairs of pants together.

By partial map we mean that ΨL is not defined on the whole of (R+ × R)3g−3+n, as the gluing does not
always define an embedded metric ribbon graph. Notice also that ΨL does not depend on the order on
which we glue the pairs of pants together.

We proceed now with the proof. Firstly notice that the definition of the twist parameters implies that
gluing with twist zero amounts to gluing all pairs of pants with matching seams. Also, since gluing back
a cut combinatorial structure gives back the original one, we can see that ΨL is defined on the image of ΦL
and that ΨL ◦ΦL is the identity on Tcomb

Σ (L). Hence, ΦL is a bijection onto its image.

On the closure of each open cell, the length and twists are linear functions of the edge lengths. Therefore,
we have bijective linear functions that agree on boundaries of the open cells, and therefore, the inverse has
the same properties and is therefore continuous which shows thatΦL is a homeomorphism onto it’s image.

Now to prove openess we note that given any point G ∈ Tcomb
Σ (L) there exists a neighbourhood intersecting

finitely many cells as there are finitely many ways to expand a singularity using Whitehead equivalence.
We can therefore construct a finite simplicial complex containing G as a vertex such that the intersection of
a k-cell of Tcomb

Σ (L) is a union of k-dimensonal simplices. Then, as ΦL is linear on each cell and a homeo-
morphism onto it’s image,ΦL maps the simplicial complex to a simplicial complex in (R+ ×R)3g−3+n.

A point on a finite simplicial complex in an Euclidean space of the same dimension is on the boundary if
and only if it is contained in a codimension one simplex that is on the boundary of only one top-dimensional

29



simplex. Every codimension one simplex containing G is contained in two top-dimensional simplices and
therefore ΦL(G) is in the interior of the image of the simplex. Thus,ΦL is open.

Finally, notice that by gluing one curve at a time and using Proposition 2.31 and Lemma 2.35 for each L and
`, we can see that the image is dense and its complement has zero measure.

2.6 A combinatorial (9g− 9 + 3n)-theorem

In this paragraph we establish a combinatorial analogue of the hyperbolic (9g−9+3n)-theorem (see e.g. [21,
Theorem 10.7]), that is, any combinatorial structure can be reconstructed from the data of the combinatorial
lengths of (9g − 9 + 3n) simple closed curves. Partial computations in this direction were done in [22,
Exposé 6]). These results are used in Section 5.1.2 to compare the hyperbolic and combinatorial twists, and
in Section 5.2 to prove that combinatorial Fenchel–Nielsen coordinates transform in a piecewise linear way
under a change of pants decompositions.

Let Σ be of type (g,n) and fix a seamed pants decomposition (P,S), with P = (γ1, . . . ,γ3g−3+n). The union
of the pair of pants in the decomposition that are adjacent to γi is a surface of type (0, 4) or (1, 1), and we
choose αi ∈ S crossing γi in Σi. We choose some order on the boundaries such that αi connects ∂1X to ∂2X

and ∂4X is in the same pair of pants as ∂1X. We now define two other homotopy classes of curves in Σi (see
Figure 20).

• If Σi has type (0, 4), we let δi be the curve determined by a tubular neighbourhood of αi union the
boundary component it connects. If Σi has type (1, 1), we let δi be the curve αi.

• Let ηi be the image of δi after a positive Dehn twist along γi.

In the (0, 4) case there are two possible choices of αi as above but both choices give the same (δi,ηi).

Theorem 2.42. Let Σ be a bordered surface of type (g,n) and (P,S) a seamed pants decomposition. The following
map is continuous and injective:

Tcomb
Σ (L) −→ R9g−9+3n

+

G 7−→
(
`G(γ), `G(δ), `G(η)

)
.

(2.28)

As a preparation to the proof, we present in Lemmata 2.43 and 2.45 closed formulae for `G(δi) and `G(ηi)
in the (0, 4) and (1, 1) cases respectively. For this purpose we can work locally on G|Σi with a fixed seamed
pants decomposition, which we denote by `i = `G(γi), ` ′i = `G(δi) and ` ′′i = `G(ηi).

2.6.1 Four-holed sphere

Let Σi = X be a four-holed sphere. We remove the index i from the notation of γi, αi, δi and ηi, as
well as `i, ` ′i, `

′′
i and τi. Label by ∂1X, . . . ,∂4X the boundary components of X, so that γ is separating the

components ∂1X and ∂4X from ∂2X and ∂3X, and α is connecting the components ∂1X and ∂2X. Finally,
denote Li = `G(∂iX).

Lemma 2.43. In the above setting, we have

` ′(`, τ) = max
{
L1 + L3 − `,L2 + L4 − `, 2|τ|+M1,4(`) +M2,3(`)

}
, (2.29)

whereMi,j(`) = max
{

0,Li − `,Lj − `,
Li+Lj−`

2

}
. Further, ` ′′(`, τ) = ` ′(`, τ+ `).

Proof. Let us assume that the ribbon graph underlying G is trivalent, and fix a marking of it. Let us cut
G along the curve γ. There are sixteen possibilities for the cut combinatorial structure: the marked ribbon
graph on each pair of pants can belong to each of the four top-dimensional cells of the Teichmüller space of
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a pair of pants. Therefore, in order to check that Equation (2.29) holds for any G, it is sufficient to check that
it is satisfied in each of the sixteen cases. By symmetry considerations, the number of cases can actually be
reduced to seven. We show the detailed argument for three particularly representative cases out of those
seven, and argue that the other cases can be proven following the same strategy.

Firstly, suppose that L4 > L1 + ` and L3 > L2 + ` (see Figure 21a). Then

max
{

0,L1 − `,L4 − `,
L1 + L4 − `

2

}
= L4 − `, max

{
0,L2 − `,L3 − `,

L2 + L3 − `

2

}
= L3 − `,

so the right-hand side of Equation (2.29) reduces to

max
{
L1 + L3 − `,L2 + L4 − `, 2|τ|+ L3 + L4 − 2`

}
= 2|τ|+ L3 + L4 − 2`.

In Figure 21b, a quasitransverse representative of δ is shown. Its orange part has length L4 − `, its blue part
has length L3 − `, and its green part has length 2|τ|. In the end, we have

` ′ = 2|τ|+ L3 + L4 − 2`,

which is consistent with Equation (2.29).

Secondly, suppose that L4 > L1 + ` and |L2 − L3| < ` < L2 + L3 (see Figure 21c). Then

max
{

0,L1 − `,L4 − `,
L1 + L4 − `

2

}
= L4 − `, max

{
0,L2 − `,L3 − `,

L2 + L3 − `

2

}
=
L2 + L3 − `

2
.

In this case, we also have L1 + L3 < L2 + L4, so the right-hand side of Equation (2.29) reduces to

max
{
L1 + L3 − `,L2 + L4 − `, 2|τ|+ L4 − `+

L2 + L3 − `

2

}
= L2 + L4 − `+

[
2|τ|−

L2 + `− L3

2

]
+

.

Suppose first that 2|τ| < L2+`−L3
2 , which is depicted in Figure 21d together with a quasitransverse represen-

tative of δ. The orange part of δ has length L4 − `, while the blue part of δ has length L2. Therefore

` ′ = L2 + L4 − ` = L2 + L4 − `+

[
2|τ|−

L2 + `− L3

2

]
+

.

Suppose now that 2|τ| > L2+`−L3
2 , see Figure 21e. The orange part of δ has length L4 − `, the blue part of δ

has length L2+L3−`
2 , and the green part of δ has length 2|τ|. Thus:

` ′ = 2|τ|+ L4 − `+
L2 + L3 − `

2
= L2 + L4 − `+

[
2|τ|−

L2 + `− L3

2

]
+

.

Again, in both cases Equation (2.29) is satisfied.
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× ×

(a) Internal regular point.

× ∂Σ ×

(b) Regular point at the boundary of
transverse type.

× ∂Σ ×

(c) Regular point at the boundary of
parallel type.

•× •×

(d) Internal singular point.

•× ∂Σ •×

(e) Singular point at the boundary
of transverse type.

•× ∂Σ •×

(f) Singular point at the boundary
of parallel type.

Figure 7: Possible models for points in a foliation. The singular leaves are depicted in blue, while smooth
leaves in grey. Only singular points of low valency are depicted, but any higher valency is allowed.

•

•

~w�

•

•

~w�

•

•
•

~w�

•

Figure 8: Whitehead moves.

• • • •

Figure 9: The geometric realisation of a metric ribbon graph (left) and the associated measured foliation.
The edges of the embedded graph are depicted in red, the singular leaves of the associated foliation in blue.
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•

• a

b

c
γ •

•
a

b

c

Figure 10: The length of a simple closed curve γ with respect to a combinatorial structure G on a pair of
pants. We have `G(γ) = a+ c+ b+ c = a+ b+ 2c.

∂mΣ

∂m0Σ

α

α ′

P

Figure 11: Arcs and pairs of pants: Qm0(α) = Qm0(α
′) = Qm0(−α

′) = [P].

• •∂1P ∂2P

∂3P

(a)

•

•

∂1P ∂2P

∂3P

(b)

••◦

∂1P ∂2P

∂3P

(c)

Figure 12: Three different cells in Tcomb
P .

33



e

•

•

•

•

•

•
m1 e m2

•

•

e

•

•

•

•

•

•
m1 m2

γ

(a)

e

•

•

•

•

•

•
m1

e

m2•

e

•

•

•

•

•

m1 m2

γ

(b)

e

e

•
•

•

•

•

•

•
•

m0

e
• •

•

•

•

•

m0
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Figure 13: The three cases examined in Lemma 2.30.

•

•

•

•

•

•

Figure 14: Cutting/gluing algorithm: the combinatorial structure G (in red) pictured with the singular
leaves (in blue), and the curve γ (in green).
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•
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•

•

Figure 15: Cutting/gluing algorithm for vertices of higher valency. Two Whitehead moves are performed.
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•

•

•

•

• •
pτ−

p+

γ− γ+

Σ

•

•

•

•

Στ

Σ̂τ

Figure 16: A glued measured foliation that is not dual to a combinatorial structure. Notice in grey Σ̂τ, that
is properly contained in Στ, and the presence of saddle connections on the boundary of Σ̂τ that cannot be
removed by Whitehead moves.

γ+

γ−

••0

τ

R0 p p ′ R1

a

(a)

γ+

γ−
•

•0

τ R0+τ p

p ′R1

a

(b)

Figure 17: Examples of leaf dynamics, induced on γ by the foliation F. The singular leaves before gluing
are depicted in blue, the leaf connecting p and p ′ in grey (here it is depicted as a smooth leaf, i.e. a > 0). In
between the two fully depicted singular leaves there is a strip of smooth leaves all homotopic to each other.
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γ−

γ+

γ−

γ+

γ+

γ−

•
•

γ−

γ+

γ−

γ+

γ+

γ−

Figure 18: A combinatorial structure G glued to Gτ and Gτ
′

for |τ − τ ′| small. The singular leaves of G are
shown in blue. After gluing, they are prolonged with the purple leaves in Gτ, and with the light blue leaves
in Gτ

′
. The dotted lines indicate the identification of γ− and γ+ for τ and τ ′.
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(b)
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(c)

•

(d)

•
•

(e)

•

(f)

•
•◦

(g)

Figure 19: Combinatorial seams (in orange) on each cell of Tcomb
P . The singular leaves are depicted in blue.
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α

δ

η

∂1X

∂4X ∂3X

∂2X

γ

δ = α

η∂T

Figure 20: The curves δ and η (we omit the subscript).
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Thirdly, suppose that ` > L1 + L4 and |L2 − L3| < ` < L2 + L3 (see Figure 21f). Then

max
{

0,L1 − `,L4 − `,
L1 + L4 − `

2

}
= 0, max

{
0,L2 − `,L3 − `,

L2 + L3 − `

2

}
=
L2 + L3 − `

2
.

Without loss of generality, we can assume that L1+L3 > L2+L4. Then, the right-hand side of Equation (2.29)
reduces to

max
{
L1 + L3 − `,L2 + L4 − `, 2|τ|+

L2 + L3 − `

2

}
= max

{
L1 + L3 − `, 2|τ|+

L2 + L3 − `

2

}
.

The case where 2|τ| < L1 +
L3−L2−`

2 is depicted in Figure 21g. The length of δ is then

` ′ = L1 + L3 − ` = max
{
L1 + L3 − `, 2|τ|+

L2 + L3 − `

2

}
.

In the case where 2|τ| > L1 +
L3−L2−`

2 , depicted in Figure 21h, the orange part of δ has length L2+L3−`
2 , and

the green part of δ has length 2|τ|, therefore

` ′ = 2|τ|+
L2 + L3 − `

2
= max

{
L1 + L3 − `, 2|τ|+

L2 + L3 − `

2

}
In both cases, Equation (2.29) is satisfied.

The case of G with higher valencies can be obtained from the trivalent case by continuity of the combinato-
rial lengths and twists. Lastly, since η is obtained from δ by performing a positive Dehn twist along γ, its
length is given by ` ′′ = ` ′(`, τ+ `).

The above lemma expresses the lengths ` ′ and ` ′′ as functions of the Fenchel–Nielsen coordinates (`, τ). We
can invert the perspective, expressing τ as a function of `, ` ′ and ` ′′.

Corollary 2.44. In the previous situation, we have

τ =



1
2
(` ′′ −M1,4 −M2,3) − ` if ` ′ = max { L1 + L3 − `,L2 + L4 − ` } ,

−
1
2
(` ′ −M1,4 −M2,3) if ` ′′ = max { L1 + L3 − `,L2 + L4 − ` } ,

1
2`

(
` ′′ −M1,4 −M2,3

2

)2

−
1
2`

(
` ′ −M1,4 −M2,3

2

)2

−
`

2
otherwise.

(2.30)

Proof. Let us denote p = 2|τ| +M1,4 +M2,3 and q = max { L1 + L3 − `,L2 + L4 − ` }, so that ` ′ = max { p,q }.
We claim that ` ′ = q implies 2|τ| 6 `. If L2+L4 > L1+L3, this comes from the observation that q = L2+L4−`

and ` ′ = q+ [λ]+ with

λ = p− L2 − L4 + `

= 2|τ|− `+ max
{
`− L4,L1 − L4, 0,

L1 − L4 + `

2

}
+ max

{
`− L2, 0,L3 − L2,

L3 − L2 + `

2

}
> 2|τ|− `.

If L1 + L3 > L2 + L4, we rather have q = L1 + L3 − ` and the claim follows by writing ` ′ = q+ [µ]+ with

µ = p− L1 − L3 + `

= 2|τ|− `+ max
{
`− L1, 0,L4 − L1,

L4 − L1 + `

2

}
+ max

{
`− L3,L2 − L3, 0,

L2 − L3 + `

2

}
> 2|τ|− `.
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Figure 22: The case examined in the proof of Lemma 2.45.

Therefore, if ` ′ = max {L1 + L3 − `,L2 + L4 − ` }, we must have |τ| 6 `/2, hence |τ + `| = τ + `. From
Equation (2.29) we then find

` ′′ = 2|τ+ `|+M1,4 +M2,3,

and solving for τ we get the first case of Equation (2.30). The case ` ′′ = max { L1 + L4 − `,L2 + L3 − ` } is
similar. Finally, if none of those conditions are satisfied, then

` ′ = 2|τ|+M1,4 +M2,3, ` ′′ = 2|τ+ `|+M1,4 +M2,3.

This covers the last case in Equation (2.30).

2.6.2 One-holed torus

Let Σi = T be a one-holed torus. We remove the index i from the notation of γi, αi, δi and ηi, as well as `i,
` ′i, `

′′
i and τi, and denote L = `G(∂T).

Lemma 2.45. In the above setting, we have

` ′(`, τ) = |τ|+

[
L− 2`

2

]
+

. (2.31)

Further, ` ′′(`, τ) = ` ′(`, τ+ `).

Proof. As before, we assume G to be trivalent and we fix a marking. There are 4 cases, corresponding to the
4 open cells of the Teichmüller space of the pair of pants we obtain after cutting along γ.

We detail the case of Figure 22a, where L > 2`. In Figure 22b, a quasitransverse representative of δ is shown.
Its orange part has length L/2 − `, its green part has length |τ|. Thus, we find

` ′ = |τ|+
L

2
− `,

which is consistent with Equation (2.31) under the assumption L > 2`.

The other cases are analogous. Again, the formula extends to higher valency by continuity, and since the
curve η is obtained from the curve δ by performing a positive Dehn twist along γ, its length is given by
` ′′ = ` ′(`, τ+ `).

Again, we can recover from the above Lemma an expression for the twist parameter τ as a function of the
lengths `, ` ′ and ` ′′. The proof is similar to the (1, 1) case.
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Corollary 2.46. In a one-holed torus T with the above setting, the twist parameter is given as a function of (`, ` ′, ` ′′)
by

τ =
1
2`

(
` ′′ −

[
L− 2`

2

]
+

)2

−
1
2`

(
` ′ −

[
L− 2`

2

]
+

)2

−
`

2
. (2.32)

�

2.6.3 Proof of the combinatorial (9g− 9 + 3n)-theorem

Proof of Theorem 2.42. The map is clearly continuous. Further, if G,G ′ ∈ Tcomb
Σ (L) are mapped to the same

vector of lengths, then Corollaries 2.44 and 2.46 would give the same length and twist parameters. As the
combinatorial Fenchel–Nielsen map is a homeomorphism into the image, we deduce that G = G ′. This
justifies the injectivity.
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3 The symplectic structure

The Kontsevich symplectic form was originally introduced by Kontsevich in [28] as an ingredient in the
proof of Witten’s conjecture. Its main feature is the connection with intersection theory of Mg,n. In this
section, we prove a combinatorial analogue of Wolpert’s formula (Theorem 3.9) for the Kontsevich sym-
plectic form, saying that Fenchel–Nielsen coordinates are Darboux. As a direct consequence, we achieve an
explicit integration formula for a certain class of measurable functions on the combinatorial moduli space
with respect to Kontsevich’s volume form (Proposition 3.13). This integration is the key operation that con-
nects topological and geometric recursion, and is the combinatorial analogue of Mirzakhani’s integration
lemma on the moduli space of bordered Riemann surfaces [32, Theorem 7.1].

3.1 Kontsevich’s form

Consider a ribbon graph G of type (g,n). For each index i ∈ {1, . . . ,n}, we make the choice of a first edge
e
[i]
1 on the i-th face of G. We label the edges around the i-th face by e[i]1 , . . . , e[i]Ni following the orientation of

the face, which is opposite to the orientation of the boundary. Notice that every edge has a double label, as
it bounds two faces or it appears twice in the cycle of a single face.

Let now Σ be a connected bordered surface of type (g,n) and fix a combinatorial marking (G, f). On each
cell of Tcomb

Σ , we have functions `[i]j : ZΣ,G(L)→ R+, which associates to each G ∈ ZΣ,G(L) the length `G(e
[i]
j ).

Definition 3.1. For each i ∈ {1, . . . ,n}, consider the differential 2-form Ψi on the cell complex Tcomb
Σ (L),

defined on each cell ZΣ,G(L) by

Ψi =
∑

16k<m6Ni

d`[i]k
Li

∧
d`[i]m
Li

. (3.1)

The form is Mod∂Σ-invariant (it depends only on the ribbon graph underlying the marking) and we denote
the induced form on the quotient Mcomb

g,n (L) with the same symbol3.

It can be shown that the definition of Ψi does not depend on the choice of the first edge: the difference
between two possible choices is of the form L−2

i dLi ∧ ϑi for some differential 1-forms ϑi, and thus is zero
along the fibres Mcomb

g,n (L) of the perimeter map.

In his original work [28], Kontsevich related the above differential forms to the geometry of a certain circle
bundle over Mcomb

g,n (L).

Definition 3.2. For each i ∈ {1, . . . ,n}, define Scomb
i as the space of ordered pairs (G,q) whereG ∈Mcomb

g,n (L)

and q is a point belonging to an edge that borders the i-th face of |G|. Its topology is the one induced by the
natural cell structure. This defines a topological circle bundle Scomb

i →Mcomb
g,n (L).

Theorem 3.3. [28, 46] The class [Ψi] ∈ H2(Mcomb
g,n (L)) equals −c1(S

comb
i ). Further, under the identification Mg,n ∼=

Mcomb
g,n (L), the pullback ofΨi extends continuously to the Deligne–Mumford compactification Mg,n and the associated

cohomology class equalsψi = c1(Li) ∈ H2(Mg,n), where Li is the relative cotangent bundle at the i-th marked point.
�

Definition 3.4. Define the Kontsevich 2-form on Tcomb
Σ (L) as

ωK =
1
2

n∑
i=1

L2
i Ψi. (3.2)

3See [46, Section 5.2] for a discussion on the differential geometry of cell complexes. What we need here is that the combinatorial
Teichmüller spaces and the combinatorial moduli spaces have a well-defined notion of polytopal differential forms, and that the
associated polytopal de Rham cohomology groups coincide with the usual cohomology groups over R. In particular, we can consider
the cohomology class [Ψi] ∈H2(Mcomb

g,n (L)).
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Theorem 3.5. [28] The differential form ωK is non-degenerate when restricted to strata corresponding to graphs
with no vertices of even valency. �

A fortiori, ωK descends to a symplectic form on the top-dimensional stratum of Mcomb
g,n (L), that is denoted

with the same symbol.

Definition 3.6. Define the Kontsevich measure

dµK =
ω
dg,n
K

dg,n!
, dg,n = 3g− 3 + n. (3.3)

Strictly speaking, dµK is not a volume form on the whole Mcomb
g,n (L), although it is a volume form on the

top-dimensional stratum. In any case, we have a notion of volume

VK
g,n(L) =

ˆ
Mcomb
g,n (L)

dµK (3.4)

where the integral is taken over the top-dimensional stratum. Equivalently, if G is a trivalent ribbon graph
of type (g,n) and PG(L) ⊆ REG+ is the polytope corresponding to those metrics on G with fixed perimeter
L ∈ Rn+, then we set

VK
g,n(L) =

∑
G∈Rg,n
trivalent

1
#Aut(G)

ˆ
PG(L)

dµK. (3.5)

We remark that, by abuse of notation, we are using the same symbol to denote the measure on PG(L) and
its quotient PG(L)/Aut(G).

Notice that the volumes are finite, because the pullback ofωK extends continuously to Mg,n. We moreover
remark that, from Definition 3.4 and Theorem 3.3, the volumes are polynomials in the variables Li, with
coefficients given by ψ-classes intersections.

Corollary 3.7. [28] The volume VK
g,n(L) is a polynomial in L2

1, . . . ,L2
n and satisfies

VK
g,n(L) =

∑
d1,...,dn>0

d1+···+dn=dg,n

(ˆ
Mg,n

n∏
i=1

ψdii

) n∏
i=1

L2di
i

2didi!
. (3.6)

�

It is useful to record the expression of the Kontsevich measure in terms of edge lengths.

Lemma 3.8. If G is a trivalent ribbon graph of type (g,n), let (le)e∈EG be the edge lengths. We have the equality of
measures in REG+

dµK ·
n∏
i=1

dLi = 22g−2+n
∏
e∈EG

dle. (3.7)

Proof. From [28, Appendix C] or [11], we get

1
dg,n!

(
n∑
i=1

L2
i Ψi

)dg,n n∏
i=1

dLi = 25g−5+2n
∏
e∈EG

dle.

Dividing on both sides by 2dg,n yields the result.
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3.2 A combinatorial analogue of Wolpert’s formula

The purpose of this section is to show that combinatorial Fenchel–Nielsen coordinates are Darboux forωK.

Theorem 3.9. Let Σ be a bordered surface of type (g,n) and fix any combinatorial Fenchel–Nielsen coordinates
(`i, τi) for Tcomb

Σ (L). Denote by ιL : ZΣ,G(L) ↪→ Tcomb
Σ (L) the inclusion of a cell ZΣ,G(L). We have

ωK = ι∗L

(3g−3+n∑
i=1

d`i ∧ dτi

)
. (3.8)

The advantage of this formula is that, while the left-hand side is clearly pure mapping class group invariant
and it does not depend on the pants decomposition, the right-hand side has a simple expression in terms
of the global coordinates and does not rely on the cells decomposition.

3.2.1 Symplectic properties of the twist

The main technical ingredient for the proof is Proposition 3.11: the vector field associated to the twist along
a simple closed curve is the Hamiltonian vector field of the length function of the curve. To prove such a
result, we need to understand how small changes in the twist parameter affect the metric on the embedded
ribbon graph.

More precisely, fix G ∈ Tcomb
Σ in an open cell, and γ an essential, simple closed curve. Notice that, from

Proposition 2.34, we can cut G along γ and glue it back after twisting by a small amount τ ∈ R. In particular,
since we are in an open cell, it makes sense to talk about the vector field ∂τ generated by infinitesimal
changes in the twist.

To get an expression for ∂τ, we observe that each time γ passes along an edge, a twist by small τ has the
effect of either adding τ to the edge length, subtracting τ to the edge length, or leaving the edge length
invariant (see the proof of Proposition 2.34 and Figure 18). This depends on the direction taken by γ at
two consecutive vertices. Then one simply sums the changes in the length of the edges visited by γ. In the
notation of Figure 23 (edges may appear twice along γ), the vector field describing the twisting along γ is
given by

∂τ =

F∑
i=1

(
∂

∂`
[bi]
pi

−
∂

∂`
[bi]
qi

)
=

F∑
i=1

(
∂

∂`
[ci]
ri

−
∂

∂`
[ci]
si

)
, (3.9)

or in a more symmetric expression,

∂τ =
1
2

F∑
i=1

(
∂

∂`
[bi]
pi

−
∂

∂`
[bi]
qi

+
∂

∂`
[ci]
ri

−
∂

∂`
[ci]
si

)
. (3.10)

To compute the contraction ι∂τωK, we need the following technical lemma. Note that an edge e[i]p is either
adjacent to two different faces i.e. e[i]p = e

[j]
r for i 6= j, or adjacent to the same face on both sides i.e. e[i]p = e

[i]
r

for p 6= r.

Lemma 3.10. In the interior of a top-dimensional cell, we have with the above notations

ι
∂
[i]
p +∂

[j]
r
ωK =

Ni∑
k=p+1

d`[i]k −

p−1∑
k=1

d`[i]k +

Nj∑
u=r+1

d`[j]u −

r−1∑
u=1

d`[j]u . (3.11)
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Figure 23: A schematic picture of γ used to calculate the vector field associated to the twist. The labels can
be redundant if γ visits an edge multiple times.

Proof. We recall that ωK = 1
2

∑n
i=1 L

2
iΨi and Ψi defined in (3.1) only involves edges around the i-th face.

Consider first the case e[i]p = e
[j]
r for i 6= j. The interior product only receives contributions from Ψi and Ψj.

The interior product with Ψi gives

2
L2
i

 Ni∑
k=p+1

d`[i]k −

p−1∑
k=1

d`[i]k

 ,

whereas the insertion into Ψj gives

2
L2
j

 Nj∑
u=r+1

d`[i]u −

r−1∑
u=1

d`[j]u

 .

Therefore we obtain Equation (3.11). In the second case, we have e[i]p = e
[i]
r for p 6= r, and the interior

product only receives a contribution from Ψi. Assuming p < r, the interior product with Ψi is

2
L2
i

 r−1∑
k=p+1

d`[i]k + 2
Ni∑

k=r+1

d`[i]k − 2
p−1∑
k=1

d`[i]k −

r−1∑
k=p+1

d`[i]k


=

2
L2
i

 Ni∑
k=p+1

d`[i]k −

p−1∑
k=1

d`[i]k +

Ni∑
u=r+1

d`[i]u −

r−1∑
u=1

d`[i]u

 .

Therefore, once again, we obtain Equation (3.11). The case p > r is similar.
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We are ready now to state the main property of the twist vector field: it is the Hamiltonian vector field
associated to the combinatorial length function ` : G 7→ `G(γ). This is analogous to the situation in the
hyperbolic case explored by Wolpert [44, Theorem 1.3] and generalises a result previously proved locally
in [5, Lemma 3.2] and only for very special curves cutting out small pairs of pants.

Proposition 3.11. On the top-dimensional cells of Tcomb
Σ (L), we have

d` = ι∂τωK. (3.12)

Proof. Fix a top-dimensional cell and suppose that γ is given by the schematic of Figure 23. Then we have

d` =
F∑
i=1

(
1
2

d`[bi]pi
+

1
2

d`[bi]qi
+

∑
pi≺k≺qi

d`[bi]k +
1
2

d`[ci]ri
+

1
2

d`[ci]si
+
∑

ri≺u≺si

d`[ci]u

)
,

where the symbol
∑
µ≺λ≺ν indicates the sum over all edges of a certain face indexed by λ, that are between

the edges indexed by µ and ν, following the orientation of the face and excluding the extremes µ and ν.
Notice that the orientation of the face is opposite to the orientation of the corresponding boundary. On
the other hand, we can reduce the computation of ι∂τωK to the insertion of the coordinate vector fields
appearing in Equation (3.10).

Let us explain why this calculation leads to a well defined answer. Notice first that Definition 3.2 of Ψi
makes perfect sense on the whole Tcomb

Σ , where the perimeter is not fixed, but the definition depends on
the choice of a first edge in the i-th face. However, its pullback to Tcomb

Σ (L) is independent of such a choice.
Secondly, observe that the vector fields ∂e are defined on Tcomb

Σ but do not have a meaning on Tcomb
Σ (L), as

they do not preserve the boundary lengths L. However, particular linear combinations of them, such as ∂τ,
do. Therefore, it is legitimate to compute each contribution ι∂eΨ separately on Tcomb

Σ (i.e. we can safely use
Lemma 3.10), then sum them up to obtain ι∂τωK, and eventually take the pullback to Tcomb

Σ (L).

This said, a repeated use of Lemma 3.10 results in the following computation.

ι∂τωK =
1
2

F∑
i=1

[(
ι
∂
[bi]
pi

+∂
[ci]
ri

)
ωK −

(
ι
∂
[bi]
qi

+∂
[ci]
si

)
ωK

]

=
1
2

F∑
i=1

[( Nbi∑
k=pi+1

d`[bi]k −

pi−1∑
k=1

d`[bi]k +

Nci∑
u=ri+1

d`[ci]u −

ri−1∑
u=1

d`[ci]u

)

−

( Nbi∑
m=qi+1

d`[bi]m −

qi−1∑
m=1

d`[bi]m +

Nci∑
v=si+1

d`[ci]v −

si−1∑
v=1

d`[ci]v

)]

=

F∑
i=1

(
1
2

d`[bi]pi
+

1
2

d`[bi]qi
+

∑
pi≺k≺qi

d`[bi]k +
1
2

d`[ci]ri
+

1
2

d`[ci]si
+
∑

ri≺u≺si

d`[ci]u

)
.

This indeed coincides with d`.

3.2.2 Proof of the combinatorial Wolpert formula

For a fixed oriented surface Σ, denote by Σ̄ the surface with opposite orientation. The following lemma is
based on the work of Wolpert [45, Lemma 1.1].

Lemma 3.12. Let Σ be a bordered surface, ρ : Σ→ Σ̄ be an isotopy class of orientation-reversing diffeomorphism that
restricts to the identity on the boundary. Fix γ ∈ S◦Σ. Then ρ induces a homeomorphism Tcomb

Σ → Tcomb
Σ̄

and

• ρ∗d`(γ) = d`(ρ ◦ γ),
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• ρ∗ωK = −ωK,

• if ρ fixes γ, then ρ∗dτ(γ) = −dτ(γ) + n
2 d`(γ) for n ∈ Z.

Here dτ is the differential form dual with respect toωK to the vector field ∂τ of Equation(3.10).

Proof. The aforementioned induced map Tcomb
Σ → Tcomb

Σ̄
is the composition of ρwith the marking. It inverts

the orientations of all curves, but it fixes the length functions, hence the first point. Further, theΨ-classes are
going to be calculated using the opposite orientation, which yields the sign for the second point. The last
point follows from the fact that the elements of Stab(γ) are generated by (half-) Dehn twists along curves
that do not intersect γ. Then, as ρ reverses the orientation of the surface, dτ(γ) acquires a sign from the
orientation reversal and an ambiguity of 1

2Zd`(γ) from a potential (half-) Dehn twists along γ.

We are now ready to give a proof of the combinatorial Wolpert formula.

Proof of Theorem 3.9. Fix a seamed pants decomposition. We know that (`i, τi) give global coordinates on
Tcomb
Σ (L). Therefore, on the top-dimensional cells

ωK =
∑
i<j

aij d`i ∧ d`j +
∑
i<j

bij dτi ∧ dτj +
∑
i,j

cij d`i ∧ dτj

for some functions aij, bij and cij. Notice that from Proposition 3.11 we have

ι∂τiωK =
∑
i<j

bij dτj −
∑
j<i

bji dτj +
∑
j

cji d`j = d`i,

and hence bij = 0, cij = δij. Finally, if ρ is the isotopy class of an orientation-reversing diffeomorphism
fixing γi, we have

ρ∗

( ∂
∂`i

)
=

∂

∂`i
+
ni

2
∂

∂τi
.

Therefore from Lemma 3.12, for i < j, we find

aij =ωK

(
∂

∂`i
,
∂

∂`j

)
= ωK

(
∂

∂`i
+
ni

2
∂

∂τi
,
∂

∂`j
+
nj

2
∂

∂τj

)
= ωK

(
ρ∗

∂

∂`i
, ρ∗

∂

∂`j

)
= ρ∗ωK

(
∂

∂`i
,
∂

∂`j

)
=−ωK

(
∂

∂`i
,
∂

∂`j

)
.

and thus aij = 0. This proves the result on the top-dimensional cells.

To extend it to cells ιL : ZΣ,G(L) ↪→ Tcomb
Σ (L) of positive codimension, we can consider it at the boundary of a

top-dimensional cell. Then ι∗L simply sets d`e = 0 for each edge e of zero length on the boundary of the top-
dimensional cell. This has exactly the same affect as excluding such edges from the sum in Equation (3.1)
of Ψi, which coincides with the definition of Ψi on cells of positive codimension.

3.3 Integration over the combinatorial moduli space

In this section we establish an integration result, analogous to [32, Theorem 7.1] for (Mg,n(L),ωWP), exploit-
ing the symplectic structure of (Mcomb

g,n (L),ωK). What allows us to establish such a result is the combinatorial
Wolpert formula (3.8). This improves the results of [5, Theorem 1.1], which in fact can be extended from
their original use to the integration of functions with support restricted4 to “small pairs of pants”.

Let us introduce some notation. Consider a bordered surface Σ of type (g,n) and let γ be a primitive multi-
curve with ordered components (γj)kj=1. We denote by Γ the orbit Mod∂Σ .γ (although it is not important for

4This restriction on the support is related to the one appearing, e.g., in (4.14).
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what follows, such an object can be seen as a stable graph with ordered edges, see Section 4.5). Furthermore,
consider an assignment

Σ ′ 7−→ ΞΣ′ ∈Mes(Tcomb
Σ′ ,µK)

of a measurable function on the combinatorial Teichmüller space to each bordered surface Σ ′ diffeomorphic
to the cut surface Σγ. We assume that for any diffeomorphism φ : Σ ′ → Σ ′′ which preserves the labelling of
the boundary components, we have φ∗ΞΣ′ = ΞΣ′′ where φ∗ is the map induced between the combinatorial
Teichmüller spaces. In particular, ΞΣ′ is invariant under the action of Mod∂Σ′ and descends to a function ΞΓ
on the moduli space

Mcomb
Γ =

∏
v∈π0(Σγ)

Mcomb
g(v),n(v),

which depends on Γ only. We have π0(∂Σ
′) = π0(γ) t π0(γ) t π0(∂Σ), so it makes sense to consider5

Mcomb
Γ (`, `,L). We further assume that ΞΓ is integrable with respect to the Kontsevich measure on Mcomb

Γ (`, `,L)
for almost every (L, `) ∈ Rn+ ×Rk+, and we denote

VΞΓ (`, `,L) =
ˆ
Mcomb
Γ (`,`,L)

ΞΓ dµK.

Finally, consider a measurable function f : Rn+×Rk+ → R and define a new function Ξf,ΓΣ on Tcomb
Σ by setting

Ξf,ΓΣ (G) =
∑
α∈Γ

f
(
~̀
G(∂Σ),~̀G(α)

)
ΞΣα(G|Σα), (3.13)

where ~̀G(∂Σ) = (`G(∂iΣ))
n
i=1 and ~̀

G(α) = (`G(αj))
k
j=1. When the series (3.13) is absolutely convergent, it

defines a Mod∂Σ-invariant function, which descends to a function Ξf,Γg,n on the moduli space Mcomb
g,n .

Proposition 3.13. Assume that the series (3.13) is absolutely convergent, and that for almost every L ∈ Rn+ its limit
is integrable with respect to µK on Mcomb

Σ (L). Assume as well that for almost every (L, `) ∈ Rn+ × Rk+ the function
ΞΓ is integrable on Mcomb

Γ (`, `,L) with respect to the Kontsevich measure. Then

ˆ
Mcomb
g,n (L)

Ξf,Γg,n dµK =

ˆ
Rk+

f(L, `)VΞΓ (`, `,L)
k∏
j=1

`j d`j. (3.14)

Proof. We adapt Mirzakhani’s proof of [32, Theorem 7.1], which concerned the hyperbolic setting with
ΞΣ′ = 1, functions f(L, `) = F(`1 + · · · + `k) and γ a primitive multicurve with unordered components.
Because the components are ordered, our formula does not contain automorphism factors. The main dif-
ference is instead that, in the combinatorial setting, we have to remove the zero measure set of ill-defined
twists.
Consider the space

Mcomb,Γ
g,n (L) = Tcomb

Σ (L)
/ k⋂
j=1

Stab(γj),

where Stab(γj) is the stabiliser of γj in Mod∂Σ. We denoteΠΓ : Mcomb,Γ
g,n (L)→Mcomb

g,n (L) the natural projection.
Notice that

Mcomb,Γ
g,n (L) ∼=

{
(G,α)

∣∣ G ∈Mcomb
g,n (L), α ∈ Γ

}
.

Since the symplectic structure on Tcomb
Σ is invariant under the action of the pure mapping class group, it

induces a symplectic structure on Mcomb,Γ
g,n (L), which is the same as the pullback

(
ΠΓ
)∗
ωK. We denote the

associated measure by µΓK.
5As explained in § 2.3.1, the boundary components of the cut surface are labeled in a specific way. Thus, with the symbol

Mcomb
Γ (`, `,L), we mean the product of moduli spaces with fixed boundary lengths from `1, . . . , `k,L1, . . . ,Ln ordered in such a

way that they match the labeled boundary components of the cut surface.
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Consider now the map Tcomb
Σ (L) → Rk+ given by the tuple of combinatorial lengths of the components of

γ. It descends to a map LΓ : Mcomb,Γ
g,n (L) → Rk+. We denote by Mcomb,Γ

g,n (L)[`] = (LΓ )−1(`) the level sets for
` ∈ Rk+. We have a map

Π : Mcomb,Γ
g,n (L)[`] −→Mcomb

Γ (`, `,L) (3.15)

defined in the natural way: given an element (G,α) ∈ Mcomb,Γ
g,n (L)[`], we take a lift G ∈ Tcomb

Σ (L) of G, we
restrict G to the cut surface Σα as explained in Section 2.4 and we project the restriction to the moduli space
Mcomb
Σα

(`, `,L) ∼= Mcomb
Γ (`, `,L). The result does not depend on the choice of the lift G since we are projecting

to the combinatorial moduli space of Σα after restriction.

Notice that the spaces on both sides of (3.15) have a natural measure: Mcomb,Γ
g,n (L)[`] is equipped with the

disintegration of µΓK along LΓ , and Mcomb
Γ (`, `,L) with its Kontsevich measure. By construction of (3.13) and

the property of disintegration,
ˆ
Mcomb
g,n (L)

Ξf,Γg,ndµK =

ˆ
Mcomb,Γ
g,n (L)

(f ◦ LΓ ) · (ΞΓ ◦ Π)dµΓK

=

ˆ
Rk+

f(L, `)

(ˆ
Mcomb,Γ
g,n (L)[`]

(ΞΓ ◦ Π)dµΓK

)
k∏
j=1

d`j.
(3.16)

We can complete γ into a seamed pants decomposition and use the Fenchel–Nielsen coordinates to describe
the space Mcomb,Γ

g,n (L)[`]. The combinatorial Wolpert formula (3.8) implies that the measure µΓK has a product
structure with respect to the fibration Π. Besides, the fibre of G ′ ∈ Mcomb

Γ (`, `,L) is identified with an open
subset of full measure in

∏k
j=1 R/2−tj`jZ, where

tj =

{
1 if γj separates off a torus with one boundary,
0 otherwise.

This follows from the description of the image of the Fenchel–Nielsen coordinates in Theorem 2.41. The
factor of 2−tj in the case when γj separates off a torus with one boundary is due to the fact that any el-
ement in Mcomb

1,1 (L) comes with an elliptic involution, so Stab(γi) contains the half-twist along γj and the
fundamental region of the twist coordinate in the combinatorial moduli space becomes [0, `j/2] minus a
measure-zero set. So, for any open set U ⊆Mcomb

Γ (`, `,L), we have

k∏
j=1

2−tj

ˆ
Π−1(U)

(ΞΓ ◦ Π)dµΓK =

k∏
j=1

2−tj`j

ˆ
U

ΞΓ dµK

whenever the functions we wish to integrate are integrable. We noticed that the integrals over Mcomb
1,1 have

an extra factor of 1
2 due to the presence of the elliptic involution, while such a factor is not present on

Mcomb,Γ
g,n (L)[`]. We must therefore include an extra factor 2−tj in the right-hand side, and this cancels the

factor of 2−tj coming from the half-twist. By a partition of unity argument, we obtain

ˆ
Mcomb,Γ
g,n (L)[`]

(ΞΓ ◦ Π)dµΓK = VΞΓ (`, `,L)
k∏
j=1

`j,

which we insert in (3.16) to complete the proof.

Remark 3.14. In Mirzakhani’s work [32] there is an unnatural convention for the integral over M1,1(L)

which does not include the factor of 1
2 coming from the elliptic involution. For this reason, she finds an

extra factor
∏k
j=1 2−tj .
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Remark 3.15. As briefly mentioned before, an equivalent way to state Proposition 3.13, which used in
Section 6.3, relies on the notion of stable graphs (introduced in Section 4.5). In this language, the set of
connected components of Σγ is the set VΓ of vertices of the stable graph with ordered edges Γ = Mod∂Σ .γ,
the set of components of γ descends to the set EΓ of edges of Γ , and the set of boundary component of Σ is
the set ΛΓ of leaves of Γ . With this notation, Equation (3.14) becomes
ˆ
Mcomb
g,n (L)

Ξf,Γg,ndµK =

ˆ
R
EΓ
+

f
(
(Lλ)λ∈ΛΓ , (`e)e∈EΓ

) ∏
v∈VΓ

VΞg(v),n(v)
(
(`e)e∈Ev , (Lλ)λ∈Λv

) ∏
e∈EΓ

`e d`e. (3.17)

If in the above arguments we do not suppose that the components of the primitive multicurve are ordered,
then we have to include the automorphism factor 1

#Aut(Γ) multiplying the right-hand side of Equation (3.17).

Moreover, if the multicurve is not primitive but comes with a weight a ∈ ZEΓ+ , we have to consider the
automorphism factor 1

#Aut(Γ ,a) of the weighted multicurve.

Remark 3.16. We can get rid of the integrability assumption for Ξf,Γg,n, if we suppose that each term in the
series (3.13) is non-negative. In this case, the disintegration property still holds in (3.16), and the result of
Proposition 3.13 becomes an equality between (possibly infinite) integrals.
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4 Functions from geometric recursion

In this section, we review the construction of mapping class group invariant functions on the combinatorial
and hyperbolic Teichmüller spaces via the general framework of geometric recursion (GR) proposed in [2].
We moreover show that the integral on the moduli space of these functions against the Kontsevich measure
satisfy topological recursion (TR). We shall establish the combinatorial version of the Mirzakhani–McShane
identity: the constant function 1 on the combinatorial Teichmüller space is an output of the geometric
recursion for some particular input data. As a corollary, we can present purely geometric proofs of Witten
conjecture/Kontsevich theorem [43, 28] and of Norbury’s lattice point count by topological recursion [36],
which are completely parallel to Mirzakhani’s proof of the topological recursion for the Weil–Petersson
volumes in [32].

In Section 5 we study a particular flow related to the boundary lengths in the classical sense, which interpo-
lates between the hyperbolic and the combinatorial geometries, allowing us to transfer several of the results
discussed from TΣ to Tcomb

Σ directly.

4.1 Definition of the geometric recursion

We begin by reviewing in a simplified form the framework of geometric recursion introduced in [2].

Let us introduce the category B1 whose objects are bordered surfaces (see Definition 2.8) and morphisms
are isotopy classes of diffeomorphisms relatively to the boundary which preserve ∂1Σ but are allowed to
permute the labelling of the other boundary components.

Let us discuss the excision of pairs of pants. We have introduced in Definition 2.22 various sets of homotopy
classes of embeddings ϕ : P ↪→ Σ. From now on, we only consider the ones corresponding to m0 = 1, i.e.
ϕ(∂1P) = ∂1Σ, and drop the indexm0 from the notations. We therefore have a set partition

PΣ =

( n⊔
m=2

PmΣ

)
t P∅

Σ .

If [P] ∈ PΣ, we denote by Σ−P the bordered surface Σ \ϕ(P) obtained from some representative ϕ : P ↪→ Σ

of [P]. To define the labelling of the boundary components of Σ − P, we say that the (labelled) boundary
components of P that appear in Σ − P are put first, followed by the (labelled) boundary components of Σ
that appear in Σ− P. Choosing another representative of [P] gives a canonically isomorphic object.

The geometric recursion (abbreviated GR) starts with a functor E from B1 to a category of topological vector
spaces and aims at constructing E-valued functorial assignments Σ 7→ ΩΣ ∈ E(Σ). For this purpose, Emust
come with extra functorial data that satisfy a number of axioms, subsumed in the notion of target theory.
Instead of repeating the fully general definition of target theories and associated geometric recursion [2],
we shall describe in concrete terms the geometric recursion for the two examples of E used in the present
work, namely the spaces of measurable functions on the Teichmüller space of Σ, either seen as a space
of hyperbolic or combinatorial structures on Σ. The first one was developed in [2, Sections 7–10] while
the second one is new. In general, if X is a topological space, we denote by Mes(X) the space of real-
valued measurable functions on X. Most results of this section still hold true after replacing everywhere
“measurable” by “continuous”.

4.1.1 The hyperbolic case

For any bordered surface, we let E(Σ) = Mes(TΣ). GR initial data consists of a quadruple (A,B,C,D) where
A,B,C are measurable functions on TP ∼= R3

+ such that X(L1,L2,L3) = X(L1,L3,L2) for X ∈ {A,C} and DT is
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a measurable function on TT . We require T 7→ DT to be functorial. We let

Ω∅ = 1, ΩP(σ) = A(~̀σ(∂P)), ΩT = DT ,

where ~̀σ(∂P) is the ordered triple of hyperbolic lengths of the boundary components of P. For disconnected
surfaces we set

ΩΣ1t···tΣk(σ1, . . . ,σk) =
k∏
i=1

ΩΣi(σi).

It remains to define ΩΣ for connected surfaces with Euler characteristic χΣ 6 −2. This is done inductively
χΣ by geometric recursion:

ΩΣ(σ) =

n∑
m=2

∑
[P]∈PmΣ

B(~̀σ(∂P))ΩΣ−P(σ|Σ−P) +
1
2

∑
[P]∈P∅

Σ

C(~̀σ(∂P))ΩΣ−P(σ|Σ−P). (4.1)

Here, we choose as representative of [P] the embedding as a pair of pants with geodesic boundaries. In this
case, the restriction of σ to Σ−P makes it a hyperbolic surface with geodesic boundaries. The sum (4.1) has
countably many terms and therefore its convergence should be discussed.

Definition 4.1. Let T(ε)
Σ ⊂ TΣ be the ε-thick part of the Teichmüller space, i.e. the set of σ ∈ TΣ such that

`σ(γ) > ε for any γ ∈ SΣ. We say that initial data (A,B,C,D) are admissible if for any ε > 0 there exists t > 0
such that, for all s > 0, there existsMε,s > 0 for which

sup
L1,L2,L3>ε

|A(L1,L2,L3)|(
(1 + L1)(1 + L2)(1 + L3)

)t 6Mε,0 sup
σ∈T(ε)

T

|DT (σ)|(
1 + `σ(∂T)

)t 6Mε,0

sup
L1,L2,`>ε

|B(L1,L2, `)| (1 + [`− L1 − L2]+)
s(

(1 + L1)(1 + L2)
)t 6Mε,s sup

L1,`,`′>ε

|C(L1, `, ` ′)| (1 + [`+ ` ′ − L1]+)
s

(1 + L1)t
6Mε,s

(4.2)

Theorem 4.2. [2, Corollary 8.3] If (A,B,C,D) are admissible initial data, then for any bordered surface Σ

• the series (4.1) converges absolutely and uniformly on any compact of TΣ,

• Σ 7→ ΩΣ ∈Mes(TΣ) is a well-defined functorial assignment (in particular,ΩΣ is Mod∂Σ-invariant),

• there exists u > 0 depending only on the topological type of Σ, such that for any ε > 0 we have

sup
σ∈T(ε)

Σ

|ΩΣ(σ)| 6 Kε
∏

b∈π0(∂Σ)

(
1 + `σ(b)

)u (4.3)

for some constant Kε depending only on ε and the topological type of Σ.

�

4.1.2 The combinatorial case

For any bordered surface, we let E(Σ) = Mes(Tcomb
Σ ). GR initial data consist of a quadruple (A,B,C,D) such

that A,B,C are measurable functions on Tcomb
P

∼= R3
+ such that X(L1,L2,L3) = X(L1,L3,L2) for X ∈ {A,C}

and D is a measurable function on Tcomb
T . We require T 7→ DT to be functorial. We let

Ξ∅ = 1, ΞP(G) = A(~̀G(∂P)), ΞT = DT ,
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For disconnected surfaces we set

ΞΣ1t···tΣk(G1, . . . ,Gk) =
k∏
i=1

ΞΣi(Gi).

For connected surfaces Σ with χΣ 6 −2, we define inductively

ΞΣ(G) =

n∑
m=2

∑
[P]∈PmΣ

B(~̀G(∂P))ΞΣ−P(G|Σ−P) +
1
2

∑
[P]∈P∅

Σ

C(~̀G(∂P))ΞΣ−P(G|Σ−P), (4.4)

where G|Σ−P have been defined by the cutting procedure in Section 2.4. We remark that, given a homotopy
class of embedded pair of pants, we can restrict the combinatorial structure G to a representative of P, so
that the triple of lengths ~̀G(∂P) makes sense.

Definition 4.3. Let Tcomb,(ε)
Σ ⊂ Tcomb

Σ be the ε-thick part of the combinatorial Teichmüller space, i.e. the set
of G ∈ Tcomb

Σ such that `G(γ) > ε for any γ ∈ SΣ. We say that initial data (A,B,C,D) are admissible if they
satisfy the same conditions appearing in Definition 4.1, except we use T

comb,(ε)
T in the condition for DT .

Theorem 4.4. If (A,B,C,D) are admissible initial data, then for any bordered surface Σ

• the series (4.4) converges absolutely and uniformly on any compact of Tcomb
Σ ,

• Σ 7→ ΞΣ ∈Mes(Tcomb
Σ ) is a well-defined functorial assignment (in particular, ΞΣ is Mod∂Σ-invariant),

• there exists u > 0 depending only on the topological type of Σ, such that for any ε > 0 we have

sup
G∈Tcomb,(ε)

Σ

|ΞΣ(G)| 6 Kε
∏

b∈π0(∂Σ)

(
1 + `G(b)

)u (4.5)

for some constant Kε depending only on ε and the topological type of Σ.

Although the spaces Mes(TΣ) and Mes(Tcomb
Σ ) can be identified via the spine homeomorphism of Theo-

rem 2.14, the way we measure lengths and we restrict to P and Σ − P is different and as a result the hy-
perbolic/combinatorial structure in (4.1) and (4.4) are completely different. So, for identical initial data, the
hyperbolic and the combinatorial GR do not produce the same functions (even after identification of their
domains). The relation between the hyperbolic and combinatorial GR is elucidated in Section 5.

Proof. The result follows from the general theory of [2] after proving that Mes(Tcomb
Σ ) is a target theory. We

present a self-contained proof which does not rely on these general notions, by specialising the strategy of
[2] to this simpler setting.

It is enough to prove the result for connected surfaces. By definition of the initial data, the result holds for
connected surfaces of Euler characteristic −1. Let us assume it holds for all surfaces of Euler characteristic
strictly greater than χ. Let Σ be a bordered surface of type (g,n) with 2 − 2g − n = χ, take ε > 0 and fix
G ∈ T

comb,(ε)
Σ . For any [P] ∈ PΣ, we have as well G|Σ−P ∈ T

comb,(ε)
Σ−P . Therefore, by induction hypothesis,

there exist u > 0 and Kε > 0 which we can choose to depend only on ε and the topological type of Σ, such
that ∣∣ΞΣ−P(GΣ−P)∣∣ 6 Kε ∏

b∈π0(∂(Σ−P))

(
1 + `G(b)

)u.

We now study the absolute convergence of the GR series (4.4). We use the notation XP for the function B
when [P] ∈ PmΣ and for the function 1

2Cwhen [P] ∈ P∅
Σ . We first isolate the sum over G-small pairs of pants.

Using the fact that there are at most 2(6g− 6 + 3n) G-small pairs of pants (Remark 2.27), together with the
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admissibility conditions on XP (Definition 4.3) and the inequality (1+ L1 + L2)
t 6 (1+ L1)

t(1+ L2)
t for any

L1,L2 > 0, we get

∑
[P]∈PΣ
G-small

∣∣XP(~̀G(∂P))ΞΣ−P(G|Σ−P)∣∣ 6 2(6g− 6 + 3n)Mε,0Kε

n∏
i=1

(
1 + `G(∂iΣ)

)max{u,t }. (4.6)

We now turn to the contributions of the G-big pairs of pants in PmΣ . We have for any s > 0∑
[P]∈PmΣ
G-big

∣∣B(~̀G(∂P))ΞΣ−P(G|Σ−P)∣∣

6Mε,sKε

(∏
i 6=1,m

(
1 + `G(∂iΣ)

)u)( ∑
L∈`G(∂1Σ)+`G(∂mΣ)+N

(2 + L)t # {γ ∈ S◦Σ | L 6 `G(γ) < L+ 1 }(
1 + L− `G(∂1Σ) − `G(∂mΣ)

)s
)

6Mε,sKεmε

(∏
i 6=1,m

(1 + `G(∂iΣ))
u

)(∑
L>1

(
1 + L+ `G(∂1Σ) + `G(∂mΣ)

)t+6g−6+2n
L−s

)
.

In the last line, we invoked the polynomial growth of the number of multicurves with respect to combina-
torial length, justified later in Proposition 6.3. Specialising to s = (6g − 6 + 2n + t) + 2 makes the sum in
brackets converging to a polynomial of degree t ′ = t+ 6g− 6 + 2n in the variable `G(∂1Σ) + `G(∂mΣ) and,
together with (4.6), it implies the existence of a constant K ′ε > 0 such that

∑
[P]∈PmΣ

∣∣B(~̀G(∂P))ΞΣ−P(G|Σ−P)∣∣ 6 K ′ε n∏
i=1

(
1 + `G(∂iΣ)

)max{u,t′ }.

A similar argument shows that

∑
[P]∈P∅

Σ

∣∣C(~̀G(∂P))ΞΣ−P(G|Σ−P)∣∣ 6 K ′ε n∏
i=1

(
1 + `G(∂iΣ)

)max{u,t′ }

for a perhaps larger constant K ′ε. Consequently, the series∑
[P]∈PΣ

XP(~̀G(∂P))ΞΣ−P(G|Σ−P)

converges absolutely and uniformly on any compact of Tcomb,(ε)
Σ , to a limit that we denote ΞΣ. Further, the

bounds that we just proved imply that this limit satisfies

∀G ∈ T
comb,(ε)
Σ , |ΞΣ(G)| 6 K

′′
ε

n∏
i=1

(
1 + `G(∂iΣ)

)u′
for some constant K ′′ε > 0 and u ′ = max {u, t ′ }. The proof is then completed by induction.

4.2 (Discrete) integration and topological recursion

Since the functions produced by the hyperbolic or combinatorial GR (generically called GR amplitudes) are
pure mapping class group invariant, they descend to functions on the corresponding moduli spaces. For a
connected surface Σ of type (g,n) and hyperbolic (resp. combinatorial) GR amplitudes ΩΣ (resp. ΞΣ), we
denote by Ωg,n (resp. Ξg,n) the functions induced on the associated moduli spaces. For the initial datum
T 7→ DT , we denote by D the induced function on M1,1 or Mcomb

1,1 .
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In the first part of this section we discuss how to integrate hyperbolic and combinatorial GR amplitudes
respectively against the Weil–Petersson measure and the Kontsevich measure. In the second part, which
belongs exclusively to the combinatorial setting, we discuss how to define discrete integration on the com-
binatorial moduli space via sums over integral metric ribbon graphs.

4.2.1 Integration and topological recursion

For L ∈ Rn+, Mg,n(L) is naturally endowed with the Weil–Petersson measure µWP, while Mcomb
g,n (L) is

equipped with the Kontsevich measure µK. It is important to note that these measures are compatible
with cutting, as expressed in the hyperbolic setting by [32, Theorem 7.1] and in the combinatorial setting
by Proposition 3.13. Thus, integration of functions obtained by GR against these measures over the moduli
space with fixed boundary lengths produce functions on Rn+ that also satisfy a recursion on the Euler char-
acteristic, called topological recursion (TR). In order to guarantee integrability we are going to introduce
stronger assumptions on the initial data.

Definition 4.5. In the hyperbolic setting, the initial data (A,B,C,D) are called strongly admissible if there
exists η ∈ [0, 2) and t > 0 such that, for any s > 0, there existsMs > 0 such that for any L1,L2,L3, `, ` ′ > 0

|A(L1,L2,L3)| 6M0
(
(1 + L1)(1 + L2)(1 + L3)

)t,
|B(L1,L2, `)| 6

Ms

(
(1 + L1)(1 + L2)

)t
`η
(
1 + [`− (L1 + L2)]+

)s ,

|C(L1, `, ` ′)| 6
Ms (1 + L1)

t

(`` ′)η
(
1 + [`+ ` ′ − L1]+

)s ,

(4.7)

and D is integrable on M1,1(L1) and satisfies∣∣∣∣ˆ
M1,1(L1)

DdµWP

∣∣∣∣ 6M0 (1 + L1)
t. (4.8)

We define strong admissibility of the initial data (A,B,C,D) in the combinatorial setting by the same con-
ditions, except for (4.8) which gets substituted by∣∣∣∣ˆ

Mcomb
1,1 (L1)

DdµK

∣∣∣∣ 6M0 (1 + L1)
t. (4.9)

Whenever these integrals are defined, we use the generic notations

VΩg,n(L) =

ˆ
Mg,n(L)

Ωg,n dµWP, VΞg,n(L) =

ˆ
Mcomb
g,n (L)

Ξg,n dµK. (4.10)

Theorem 4.6. [2, Theorem 8.8] Let (A,B,C,D) be strongly admissible initial data for the hyperbolic GR, andΩΣ be
the resulting functions. Then, ΩΣ is integrable against µWP on MΣ(L) for any L ∈ Rn+, and the integrals satisfy the
following recursion on 2g− 2 + n > 1.

VΩg,n(L1, . . . ,Ln)

=

n∑
m=2

ˆ
R+

B(L1,Lm, `)VΩg,n−1(`,L2, . . . , L̂m, . . . ,Ln) `d`

+
1
2

ˆ
R2

+

C(L1, `, ` ′)
(
VΩg−1,n+1(`, ` ′,L2, . . . ,Ln) +

∑
h+h′=g

JtJ′={L2,...,Ln}

VΩh,1+#J(`, J)VΩh′,1+#J′(`
′, J ′)

)
`` ′d`d` ′

(4.11)
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with the conventions VΩ0,1 = 0 and VΩ0,2 = 0, and the base cases

VΩ0,3(L1,L2,L3) = A(L1,L2,L3) and VΩ1,1(L1) =

ˆ
M1,1(L1)

DdµWP.

�

Theorem 4.7. Let (A,B,C,D) be strongly admissible initial data for the combinatorial GR, and ΞΣ be the resulting
functions. Then, ΞΣ is integrable against µK on Mcomb

Σ (L) for any L ∈ Rn+, and the integrals VΞg,n(L) satisfy the
same recursion as in (4.11), i.e.

VΞg,n(L1, . . . ,Ln)

=

n∑
m=2

ˆ
R+

B(L1,Lm, `)VΞg,n−1(`,L2, . . . , L̂m, . . . ,Ln)`d`

+
1
2

ˆ
R2

+

C(L1, `, ` ′)
(
VΞg−1,n+1(`, ` ′,L2, . . . ,Ln) +

∑
h+h′=g

JtJ′={L2,...,Ln}

VΞh,1+#J(`, J)VΞh′,1+#J′(`
′, J ′)

)
`` ′d`d` ′

(4.12)

with the conventions VΞ0,1 = 0 and VΞ0,2 = 0, and the base cases

VΞ0,3(L1,L2,L3) = A(L1,L2,L3) and VΞ1,1(L1) =

ˆ
Mcomb

1,1 (L1)

DdµK.

Proof. We first note that the initial data VΞ0,3 is well-defined asA is, and that VΞ1,1 is well-defined by strong
admissibility.
Now, for a connected surface Σ of type (g,n) with 2g − 2 + n > 1, apply the integration over Mcomb

g,n (L)

with respect to µK to both sides of the combinatorial GR (4.4). We analyse the integration of the sum over
[P] ∈ PmΣ . Let Γ be the Mod∂Σ-orbit of a simple closed curve bounding a pair of pants together with ∂1Σ and
∂mΣ. We have ∑

[P]∈PmΣ

B(~̀G(∂P))ΞΣ−P(G|Σ−P) =
∑
α∈Γ

B(L1,Lm, `G(α))ΞΣ−Pα(G|Σ−Pα),

where Pα is the pair of pants bounded by ∂1Σ, ∂mΣ and α. Now applying Proposition 3.13 to f(L, `) =

B(L1,Lm, x) and the assignment Σα 7→ ΞΣ−Pα , we find
ˆ
Mcomb
g,n (L)

∑
α∈Γ

B(L1,Lm, `∗(α))Ξg,n−1 dµK

=

ˆ
R+

B(L1,Lm, `)

(ˆ
Mcomb
g,n−1(`,L2,...,L̂m,...,Ln)

Ξg,n−1 dµK

)
`d`

=

ˆ
R+

B(L1,Lm, `)VΞg,n−1(`,L2, . . . , L̂m, . . . ,Ln)`d`.

The treatment of the C summands is similar, the main difference being that the excised pair of pants has
two simple closed curves in Σ◦, whose lengths are part of the combinatorial Fenchel–Nielsen coordinates
over which we need to integrate.

4.2.2 Discrete integration and topological recursion

As the combinatorial moduli spaces have an integral structure, we can also study discrete integration of GR
amplitudes. Again, the geometric recursion here is the key property that guarantees a topological recursion
for the discrete integrals, i.e. the sum over lattice points.
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Definition 4.8. For 2g− 2 + n > 0, let Mcomb,Z
g,n ⊂Mcomb

g,n be the set of classes of metric ribbon graphs whose
edge lengths are positive integers, and Mcomb,Z

g,n (L) the one with fixed perimeter L ∈ Zn+. We denote likewise
Tcomb,Z
Σ and Tcomb

Σ (L) their preimages in the combinatorial Teichmüller space of a bordered surface Σ of type
(g,n).

Since for any G ∈ Mcomb,Z
g,n (L), we have

∑n
i=1 Li =

∑
e∈EG 2`e, the set Mcomb,Z

g,n (L) is finite for any fixed L,
and it is empty if

∑n
i=1 Li is odd. For instance,

Tcomb,Z
P

∼= Mcomb,Z
0,3

∼=
{
(L1,L2,L3) ∈ Z3

+

∣∣ L1 + L2 + L3 is even
}

.

To handle this situation, for X : Rn+ → R we introduce the notation

XZ(L) =

{
X(L) if L ∈ Zn+ and

∑n
i=1 Li is even,

0 otherwise.

Further, for any function Ξg,n on Mcomb
g,n , set

NΞg,n(L) =
∑

G∈Mcomb,Z
g,n (L)

Ξg,n(G)

#Aut(G)
=
∑

G∈Rg,n

1
#Aut(G)

∑
x∈PG(L)∩Zn+

Ξg,n(x), (4.13)

where we recall that PG(L) is the set of metrics on Gwith perimeter L.

Theorem 4.9. Let A,B,C be three functions on R3
+ such that A and C are symmetric under exchange of their last

two variables, and satisfying

` > L1 + L2 =⇒ B(L1,L2, `) = 0, and `+ ` ′ > L1 =⇒ C(L1, `, ` ′) = 0. (4.14)

Let D be ModT -invariant function on Tcomb
T . Denote by ΞΣ the corresponding combinatorial GR amplitudes. We

have the following recursion on 2g− 2 + n > 1.

NΞg,n(L1, . . . ,Ln)

=

n∑
m=2

∑
`>1

` BZ(L1,Lm, `)NΞg,n−1(`,L2, . . . , L̂m, . . . ,Ln)

+
1
2

∑
`,`′>1

`` ′ CZ(L1, `, ` ′)
(
NΞg−1,n+1(`, ` ′,L2, . . . ,Ln) +

∑
h+h′=g

JtJ′={L2,...,Ln}

NΞh,1+#J(`, J)NΞh′,1+#J′(`
′, J ′)

) (4.15)

with conventions NΞ0,1 = 0 and NΞ0,2 = 0, and base cases

NΞ0,3(L1,L2,L3) = AZ(L1,L2,L3) and NΞ1,1(L1) =
∑

G∈Mcomb,Z
1,1 (L1)

D(G)

#Aut(G)
.

Since cutting combinatorial structures preserve their integrability, in order to obtain the GR amplitudes
in Theorem 4.9, it is sufficient to have (A,B,C) defined on Tcomb,Z

P and D defined on Tcomb,Z
T . When the

vanishing condition (4.14) hold, the GR sums have only finitely many non-zero terms: they are always
well-defined, without the need of admissibility conditions for (A,B,C,D).

We can recover the continuous integration of Theorem 4.7 as a limit where we rescale the mesh of the lattice
down to 0. If k > 0, we let Mcomb,Z/k

g,n be the set of metric ribbon graphs in Mcomb
g,n whose edge lengths all

become integral after dilation by k.
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Proposition 4.10. Assume that (A,B,C,D) are continuous functions on their respective combinatorial Teichmüller
spaces, satisfying the vanishing conditions (4.14), and such that for any fixed L1,L2 > 0, the functions ` 7→
B(L1,L2, `) and (`, ` ′) 7→ C(L1,L2, ` ′) are bounded, and the functionDT is bounded on Tcomb

T (L1). Then (A,B,C,D)

is strongly admissible. If d be a positive integer and L ∈ (Z+/d)
n, we have for 2g− 2 + n > 0

lim
k→∞
k∈dZ+

(
1

k6g−6+2n

∑
G∈Mcomb,Z/k

g,n (L)

Ξg,n(G)

#Aut(G)

)
=

{
2−2g+3−n VΞg,n(L) if

∑n
i=1 d · Li is even,

0 otherwise.
(4.16)

The continuous integration also appears in the asymptotics of the lattice count for large boundary lengths.

Corollary 4.11. Assume that (A,B,C,D) are continuous functions on their respective combinatorial Teichmüller
spaces and satisfy the vanishing conditions (4.14). We further assume the existence of b, c ∈ R for which, for any
M > 0 and L1,L2, `, ` ′ ∈ (0,M]

• k−2b−cA(kL1,kL2,kL3) converges uniformly to Â(L1,L2,L3) as k→∞,

• k−b B(kL1,kL2,k`) converges uniformly to B̂(L1,L2, `) as k→∞,

• k−c C(kL1,k`,k` ′) converges uniformly to Ĉ(L1, `, ` ′) as k→∞,

• k−bDT (kG) converges uniformly to D̂T (G) as k → ∞, for G ∈
⋃
`∈(0,M] T

comb
T (`), where kG is obtained

from G by dilation of the metric by a factor k,

• (Â, B̂, Ĉ, D̂) satisfy the assumptions of Proposition 4.10.

Denoting by Ξ̂Σ the GR amplitudes associated to the initial data (Â, B̂, Ĉ, D̂), we have for any d ∈ Z+, L ∈ (Z+/d)
n

and 2g− 2 + n > 0

lim
k→∞
k∈dZ+

NΞg,n(kL)

k(g−1)(b+c)+nb · k6g−6+2n =

{
2−2g+3−n VΞ̂g,n(L) if

∑n
i=1 d · Li even,

0 otherwise.
(4.17)

Proof of Theorem 4.9. When
∑n
i=1 Li is odd, both sides vanish, so we only need to prove the result when∑n

i=1 Li is even, which we now assume. The vanishing conditions for B and C imply that for each L ∈ Zn+,
the sums in the right-hand side have finitely many terms.
Let us substitute the GR sum for ΞΣ in (4.13). For m ∈ {2, . . . ,n}, we examine in detail how to handle the
term

ΞB,m
Σ (G) =

∑
[P]∈PmΣ

B(~̀G(∂P))Ξg,n−1(G|Σ−P).

Let Γ be the Mod∂Σ-orbit of a simple closed curve that bounds some [P] ∈ PmΣ . Adapting the notation of
Section 3.3, we denote by Mcomb,Γ ,Z

g,n (L) the integral points in Mcomb,Γ
g,n (L). Then

NΞB,m
g,n (L) =

∑
G∈Mcomb,Z

g,n (L)

ΞB,m
g,n (G)

#Aut(G)

=
∑

(G,α)∈Mcomb,Γ ,Z
g,n (L)

1
#Aut(G)

B(L1,Lm,LΓ (G,α))Ξg,n−1(Π(G))

=
∑
`>1

∑
(G,α)∈Mcomb,Γ ,Z

g,n (L)[`]

1
#Aut(G)

B(L1,Lm, `)Ξg,n−1(Π(G)),

where we recall from Section 3.3 the map

LΓ : Mcomb,Γ ,Z
g,n (L) −→ Z+
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assigning to (G,α) the combinatorial length with respect toG of α. It has fibers (LΓ )−1(`) = Mcomb,Γ ,Z
g,n (L)[`].

Moreover, we have the projection map

Π : Mcomb,Γ ,Z
g,n (L)[`] −→Mcomb,Z

g,n−1 (`,L2, . . . , L̂m, . . . ,Ln).

We want to cluster this sum according to the fibres of the map Π. We first notice that, as Mcomb,Γ ,Z
g,n (L)[`] is

empty when ` and L1 + Lm have different parity, we can replace B by BZ, and now only consider ` that has
same parity as L1 + Lm. In this case, for any G ′ ∈ Mcomb,Z

g,n−1 (`,L2, . . . , L̂m, . . . ,Ln) and any G ∈ Π−1(G ′), we
remark that #Aut(G′) = #Aut(G). Thus

1
#Aut(G)

BZ(L1,Lm, `)Ξg,n−1(Π(G))

is constant on the fibres of Π. Due to the vanishing conditions (4.14), the points (G,α) with non-trivial
contribution have associated pair of pants [Pα] that is small. Therefore from Corollary 2.33, Π−1(G ′) is in
bijection with the set of [τ] ∈ R/`Z such that the gluing of G ′ to the combinatorial structure of the pair
of pants with boundary lengths (L1,Lm, `) after a twist τ produces a combinatorial structure with integral
edge lengths. In order to satisfy the latter condition, the twists must belong to the set (τγ(G) +Z) /`Z '
Z/`Z ' Π−1(G ′), whose cardinality is `. Therefore, our sum becomes

ΞBg,n(L) =
∑
`>1

∑
G′∈Mg,n−1(`,L2,...,L̂m,...,Ln)

1
#Aut(G ′)

BZ(L1,Lm, `)Ξg,n−1(G
′)

=
∑
`>1

` BZ(L1,Lm, `)NΞg,n−1(`,L2, . . . , L̂m, . . . ,Ln).
(4.18)

The treatment of the C summand is similar, except that we should be cautious about automorphism factors.
For each of the finitely many Mod∂Σ-orbit Γ of a simple closed curve that bounds some [P] ∈ P∅

Σ , and we
observe that

#Aut(Γ) =

{
2 if Σ− P is connected,
1 otherwise.

Since in the analogue of (4.18) we have for anyG ∈ Π−1(G ′)

#Aut(Γ) · #Aut(G) = #Aut(G ′),

the automorphism factors are again naturally included in NΞΓ , and we get the C-terms in (4.15) without
extra automorphism factors (as the 1

2 is already present in C).

Remark 4.12. The vanishing assumptions (4.14) are essential to allow the use of Corollary 2.33. If they
did not hold, the fibres Π−1(G ′) of the gluing fibration could, and do, meet integral non-admissible twists,
hence their cardinality could be smaller than ` or `` ′ and depend on G ′. It would then not be possible to
derive a recursion for the weighted sum over lattice points. This problem did not arise for the integration
against µK as the set of non-admissible twists has zero measure with respect to µK.

Before turning to the proof of Proposition 4.10, we need two preliminary results.

Proof of Proposition 4.10. The case (g,n) = (0, 3) is obvious, as there is equality before taking the limit. This
initial case is special with respect to the other topologies since the moduli space is reduced to a point: in the
rest of the proof, we suppose (g,n) 6= (0, 3). In general, when

∑n
i=1 d · Li is not even, the set Mcomb,Z/k

g,n (L)

with k ∈ dZ+ is empty, so the left-hand side of Equation (4.16) vanishes, which proves half of the result.
Hereafter we assume that k ∈ dZ+, and fix L ∈ (Z+/d)

n such that
∑n
i=1 d · Li is even.
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The thesis follows now from a general discussion. Consider a bounded function f defined on Mcomb
g,n (L).

The sum over rescaled lattice points is, by definition,∑
G∈Mcomb,Z/k

g,n (L)

f(G)

#Aut(G)
=
∑

G∈Rg,n

1
#Aut(G)

∑
x∈PG(L)∩Zn+/k

f(x),

where we recall that PG(L) ⊂ REG+ is the set of metrics on G with perimeters L. We first estimate the sum
over non-trivalent graphs by∣∣∣∣∣ ∑

G∈Rg,n
non-trivalent

1
#Aut(G)

∑
x∈PG(L)∩Zn+/k

f(x)

∣∣∣∣∣ 6 ( sup
Mcomb
g,n (L)

|f|
) ∑

G∈Rg,n
non-trivalent

#
(
PG(L) ∩Zn+/k

)
#Aut(G)

.

By dimensional reasons, the right-hand side is O(k6g−7+2n) as k→ +∞. Hence

lim
k→∞
k∈dZ+

(
1

k6g−6+2n

∑
G∈Mcomb,Z/k

g,n (L)

f(G)

#Aut(G)

)
= lim

k→∞
k∈dZ+

(
1

k6g−6+2n

∑
G∈Rg,n
trivalent

1
#Aut(G)

∑
x∈PG(L)∩Zn+/k

f(x)

)
.

By Lemma C.2 and by definition of the Riemann integral, we have

lim
k→∞
k∈dZ+

(
1

k6g−6+2n

∑
x∈PG(L)∩Zn+/k

f(x)

)
=

ˆ
PG(L)

fd`n+1 . . . d`6g−6+3n

provided f is continuous. Let G be a trivalent ribbon graph, and let ιL : PG(L) ↪→ REG+ be the inclusion
map. The cell PG(L) is naturally equipped with the measure µLeb defined as ι∗L(

∏
e∈EG d`e). Using Lemma

C.1, we see that
∏6g−6+3n
j=n+1 d`j = 2µLeb. Besides, we know from Lemma 3.8 that µLeb = 22−2g−nµK. As a

consequence, we find

23−2g−n
ˆ
Mcomb
g,n (L)

fdµK = lim
k→∞
k∈dZ+

(
1

k6g−6+2n

∑
G∈Rg,n
trivalent

1
#Aut(G)

∑
x∈PG(L)∩Zn+/k

f(x)

)
.

Proof of Corollary 4.11. Let Ξ(k)Σ be the GR amplitudes for the initial data

A(k)(L1,L2,L3) = k
−2b−cA(kL1,kL2,kL3),

B(k)(L1,L2,L3) = k
−b B(kL1,kL2,k`),

C(k)(L1,L2,L3) = k
−c C(kL1, k`,k` ′),

D
(k)
T (G) = k−bDT (kG).

Tracking the powers of k−1 in the GR sum (4.4), one can show by induction that

ΞΣ(kG) = k
(g−1)(b+c)+bn Ξ

(k)
Σ (G)

and thus
NΞg,n(kL1, . . . ,kLn)

k6g−6+2n · k(g−1)(b+c)+bn =
1

k6g−6+2n

( ∑
G∈Mcomb,Z/k

g,n (L)

Ξ
(k)
Σ (G)

#Aut(G)

)
. (4.19)

The vanishing conditions (4.14) have two consequences for us.
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(i) The amplitude Ξ(k)Σ (G) is given by a finite sum of products with 2g − 2 + n factors that can be either
A(k),B(k),C(k),D(k).

(ii) If we fix L ∈ Rn+, for any G ∈ Tcomb
Σ (L), the factors ofA(k),B(k),C(k) are evaluated on triples of lengths

that are smaller thanM =
∑n
i=1 Li, and D is evaluated on elements of

⋃
`∈(0,M] T

comb
T (`).

Hence Ξ(k)Σ converges uniformly to Ξ̂Σ on Tcomb
Σ (L). We can then replace Ξ(k)Σ with Ξ̂Σ in (4.19) up to an error

that tends to 0 when k→∞, and we conclude by using Proposition 4.10 for Ξ̂Σ.

4.3 Remark: inducing D from C

There is a natural way to complete (A,B,C) into an initial data (A,B,C,D), satisfying all the assumptions
that we may desire to impose.

Lemma 4.13. If we are only given (A,B,C) satisfying the conditions in Definition 4.1, the series

DT (σ) =
∑
γ∈S◦T

C
(
`σ(∂T), `σ(γ), `σ(γ)

)
(4.20)

converges absolutely on any compact of TT to a ModT -invariant function, and (A,B,C,D) are admissible initial data.
Furthermore, if (A,B,C) satisfy the conditions in Definition 4.5, where in the bound for C one assumes 0 6 η < 1,
then (A,B,C,D) are strongly admissible and

ˆ
M1,1(L)

DdµWP =

ˆ
R+

C(L, `, `)`d`. (4.21)

�

The same lemma holds in the combinatorial setting – replacing hyperbolic with combinatorial lengths and
µWP with µK. In the last statement, the stronger condition η < 1 for C (instead of η < 2) guarantees that
` 7→ ` C(L, `, `) is integrable near 0. We omit the proof of Lemma 4.13 and its combinatorial analog, as it is
very similar to arguments already used in Theorems 4.2, 4.4, 4.6 and 4.7.

When we say that (A,B,C) are admissible initial data, we implicitly assume that they should be completed
by the choice (4.20) of DT . With this convention, notice that (strong) admissibility of (A,B,C) is the same
condition in the hyperbolic and in the combinatorial setting.

Remark 4.14. When C(L1, `, ` ′) vanishes for L1 < ` + ` ′, the sum (4.20) is finite. It is thus well-defined
without admissibility conditions and satisfies

∑
G∈Mcomb,Z

1,1 (L)

D(G)

#Aut(G)
=

bL/2c∑
`=1

` C(L, `, `)

This is in particular relevant for the discrete setting, e.g. for Theorem 4.9.

4.4 Mirzakhani–McShane identities

4.4.1 In the hyperbolic case

Mirzakhani proved in [32, Theorem 1.3] a generalisation for all bordered surfaces of the identity discovered
by McShane [31] for the punctured torus, and used it to prove a topological recursion in the form of (4.11) for
the Weil–Petersson volumes. It can be reformulated by saying that the constant function 1 can be obtained
from geometric recursion. We state it below and we are going to use it later on.
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Theorem 4.15. [32] Let F(x) = 2 ln(1 + ex/2). The following initial data

AM(L1,L2,L3) = 1,

BM(L1,L2, `) =
1

2L1

(
F(L1 + L2 − `) + F(L1 − L2 − `) − F(−L1 + L2 − `) − F(−L1 − L2 − `)

)
,

CM(L1, `, ` ′) =
1
L1

(
F(L1 − `− `

′) − F(−L1 − `− `
′)
)
,

(4.22)

are admissible, and lead by geometric recursion to ΩM
Σ (σ) = 1 for any Σ and σ ∈ TΣ. In other words, for any

connected bordered surface Σ with χΣ < −1 and any σ ∈ TΣ, we have

1 =

n∑
m=2

∑
[P]∈PmΣ

BM(~̀σ(∂P)) +
1
2

∑
[P]∈P∅

Σ

CM(~̀σ(∂P)), (4.23)

and for a torus T with one boundary component and any σ ∈ TT , we have

1 =
∑
γ∈S◦T

CM(`σ(∂T), `σ(γ), `σ(γ)). (4.24)

�

4.4.2 In the combinatorial setting

We are now going to prove a recursion for the constant function 1 on the combinatorial Teichmüller space.
The initial data are the functions (AK,BK,CK)

AK(L1,L2, `) = 1,

BK(L1,L2, `) =
1

2L1

(
[L1 − L2 − `]+ − [−L1 + L2 − `]+ + [L1 + L2 − `]+

)
,

CK(L1, `, ` ′) =
1
L1

[L1 − `− `
′]+.

(4.25)

i.e. the same as in the Theorem 4.15 above, but for F(x) = [x]+ = max { x, 0 }. Notice that BK and CK were
already introduced in (2.15) while discussing homotopy classes of embedded pairs of pants. The proof
adapts to the combinatorial setting the strategy used by Mirzakhani to obtain Theorem 4.15.

Theorem 4.16. For any connected bordered surface Σ such that χΣ < −1 and any G ∈ Tcomb
Σ , we have

1 =

n∑
m=2

∑
[P]∈PmΣ

BK(~̀G(∂P)) +
1
2

∑
[P]∈P∅

Σ

CK(~̀G(∂P)), (4.26)

and for a torus T with one boundary component and any G ∈ Tcomb
T , we have

1 =
∑
γ∈S◦T

CK(`G(∂T), `G(γ), `G(γ)). (4.27)

Proof. Consider the case of connected Σwith χΣ < −1. For simplicity, set XK
P equal to BK or 1

2C
K depending

on the type of [P] ∈ PΣ. The basic idea to prove such an identity is to write `G(∂1Σ) as a sum of lengths of
the edges around ∂1Σ. Recall that in the proof of Theorem 2.20, we introduced a map6 Tcomb

Σ → RAΣ
>0 that

6In the proof of Theorem 2.20, the map was assigning to a point in Tcomb
Σ a functional on Aall

Σ . Here we are restricting the functionals
to AΣ ⊂Aall

Σ , i.e. to arcs with initial point in ∂1Σ, where we recall the convention AΣ = AΣ,1 adopted at the beginning of this section.
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assigns to a combinatorial structure G the functional on AΣ given by

α 7−→

`G(∂1Σ)
(
BK(~̀G(∂Pα)) − C

K(~̀G(∂Pα))
)

if α ∈ AmΣ

1
2 `G(∂1Σ)C

K(~̀G(∂Pα)) if α ∈ A∅
Σ

where [Pα] = Q(α) is the homotopy class of pair of pants determined by the arc α. Fix once and for all
G ∈ Tcomb

Σ , and denote by lG : AΣ → R>0 the value of above map at G. This function has finite support,
and the arcs with non-zero contribution are in bijection with the edges of G around ∂1Σ. Furthermore, for
α dual to an edge e around ∂1Σ, the value lG(α) is the combinatorial length of e (cf. Lemma 2.30). As a
consequence,

`G(∂1Σ) =
∑
α∈AΣ

lG(α).

Now from Remark 2.24, we know that the map Q : AΣ → PΣ is not injective, but has finite fibers. More
precisely, we have the following situation.

• If [P] ∈ P∅
Σ , then Q−1([P]) consists of a single arc α0 ∈ A∅

Σ . Then∑
α∈Q−1([P])

lG(α) = lG(α0) =
1
2
`G(∂1Σ)C

K(~̀G(∂P)).

• If [P] ∈ PmΣ , then Q−1([P]) consists of three arcs: α0 ∈ AmΣ , α ′ and its inverse −α ′ in A∅
Σ . Then∑

α∈Q−1([P])

lG(α) = lG(α0) + lG(α
′) + lG(−α

′)

= `G(∂1Σ)
(
BK(~̀G(∂P)) − C

K(~̀G(∂P)) +
1
2C

K(~̀G(∂P)) +
1
2C

K(~̀G(∂P))
)

= `G(∂1Σ)B
K(~̀G(∂P)).

Finally, as Q is surjective

`G(∂1Σ) =
∑

[P]∈PΣ

∑
α∈Q−1([P])

lG(α) = `G(∂1Σ)
∑

[P]∈PΣ

XK
P(~̀G(P)).

Dividing by `G(∂1Σ) concludes the proof of the identity (4.26). The case of the torus with one boundary
component can be handled in a similar way and leads to (4.27).

A notable difference with the original Mirzakhani–McShane identity is that in (4.26) there is a finite number
of non-zero terms; this reflects the much simpler dynamics of geodesics in combinatorial surfaces compared
to the hyperbolic ones. As in the hyperbolic case, the identity can be reformulated in terms of geometric
recursion.

Corollary 4.17. The initial data (4.25) are admissible, and lead by geometric recursion to ΞK
Σ(G) = 1 for any Σ and

G ∈ Tcomb
Σ .

Proof. The only thing left to check is the admissibility condition for (AK,BK,CK,DK), which follows from
the fact that the functions BK and CK are supported on small pairs of pants.

We can now apply the integration results of Section 4.2 to the combinatorial Mirzakhani–McShane identity.
The continuous integration computes the Kontsevich volumes and Theorem 4.6 establishes again Witten’s
conjecture [43] first proved by the combination of [28] and [18]: the generating function of ψ-class inter-
section numbers satisfies Virasoro constraints/topological recursion. The discrete integration calculates the
number of integral points in Mcomb

g,n and Theorem 4.9 together with Corollary 4.11 with b = c = 0, estab-
lishes again Norbury’s result [36], i.e. the discrete topological recursion for these counts and its connection
with Kontsevich volumes.

62



Corollary 4.18 (Witten’s conjecture/Kontsevich theorem). The Kontsevich volumes VK
g,n(L) equal VΞK

g,n(L) and
satisfy the topological recursion of Theorem (4.7) with initial data (4.25).

Corollary 4.19 (Norbury’s theorem). The lattice point counting functions

Ng,n(L) =
∑

G∈Mcomb,Z
g,n (L)

1
#Aut(G)

(4.28)

equal NΞK
g,n(L) and satisfy the discrete topological recursion (4.15) with initial data (4.25). Further,

lim
k→∞
k∈dZ+

Ng,n(kL)

k6g−6+2n =

{
23−2g−n VK

g,n(L) if
∑n
i=1 d · Li is even,

0 otherwise.
(4.29)

�

The recursive formula for Kontsevich volumes in this integral form firstly appeared in [5], where it is de-
rived by constructing a partition of unity similar to the combinatorial Mirzakhani–McShane identity and
exploiting the local torus symmetries on the combinatorial moduli space, whose symplectic quotients are
also combinatorial moduli space of higher Euler characteristics. Compared to [5], the new element of the
proof that we propose is to make it a complete analogue to Mirzakhani’s proof of the recursion for Weil–
Petersson volumes, by means of Theorem 4.16. Our perspective stresses that, at a general level, recursions
between volumes (or more generally, between integrals over the moduli spaces) arise from finer recursions
that hold at the geometric level (here between functions on Teichmüller spaces).

4.5 Combinatorial length statistics of multicurves

Following [2, Theorem 10.1] in the hyperbolic world, we can generalise the combinatorial Mirzakhani–
McShane identity (4.26) to obtain statistics of combinatorial lengths of primitive multicurves via GR.

Theorem 4.20. Let (A,B,C,D) be admissible initial data and denote by ΞΣ the associated GR amplitudes. Let
f : R+ → R be a measurable function such that for any ε > 0 and s > 0, there existsMs,ε such that

sup
`>ε

|f(`)| `s 6Ms,ε.

Then, the following initial data are admissible:

A[f](L1,L2,L3) = A(L1,L2,L3),

B[f](L1,L2, `) = B(L1,L2, `) +A(L1,L2, `) f(`),

C[f](L1, `, ` ′) = C(L1, `, ` ′) + B(L1, `, ` ′) f(`) + B(L1, ` ′, `) f(` ′) +A(L1, `, ` ′) f(`) f(` ′),

DT [f](G) = DT (G) +
∑
γ∈S◦T

A
(
`G(∂T), `G(γ), `G(γ)

)
f(`G(γ)).

(4.30)

Denote by ΞΣ[f] the corresponding GR amplitudes. If for all Σ, ΞΣ is invariant under all braidings of boundary
components of Σ, we have

ΞΣ[f](G) =
∑
c∈M′Σ

ΞΣc(G|Σc)
∏

γ∈π0(c)

f(`G(γ)), (4.31)

where Σc is the bordered surface obtained by cutting Σ along c (the choice of the first boundary component is irrelevant
due to the assumed invariance).
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Remark 4.21. A useful version of the above result can be stated for combinatorial length statistics of multi-
curves (not only primitive ones). Consider F : R>0 → (−1, 1) a measurable function such that

f(x) =
∑
k>1

F(x)k =
F(x)

1 − F(x)

satisfies the conditions of Theorem 4.20. Then the GR amplitudes ΞΣ[f] associated to the initial data (4.30)
are given by the combinatorial length statistic of multicurves weighted by F:

ΞΣ[f](G) =
∑
c∈MΣ

ΞΣc(G|Σc)
∏

γ∈π0(c)

F(`G(γ)).

Sketch of the proof of Theorem 4.20. The proof repeats the one of [2, Theorem 10.1], with combinatorial lengths
instead of hyperbolic ones. We only sketch the induction step here. Notice that, as all series are absolutely
convergent, we can apply Fubini’s theorem and interchange the summations:∑

c∈M′Σ

ΞΣc(G|Σc)
∏

γ∈π0(c)

f(`G(γ)) =
∑
c∈M′Σ

∑
[P]∈PΣc

XP(G)ΞΣc−P(G|Σc−P)
∏

γ∈π0(c)

f(`G(γ))

=
∑

[P]∈PΣ

XP[f](G)

( ∑
γ∈M′Σ−P

Ξ(Σ−P)γ(G|(Σ−P)γ)
∏

c∈π0(γ)

f(`G(γc))

)

=
∑

[P]∈PΣ

XP[f](G)ΞΣ−P[f](G|Σ−P),

where XP is either B or 1
2C depending on the type of [P]. The second to last equality follows from a case

discussion: to interchange the summands we must also sum over the possible ways in which ∂P and c can
have homotopic components, weighted by their contributions. For example, for [P] ∈ P∅

Σ with ∂P and c
sharing one component, say ∂2P = γ0, then [P] ∈ P

γ0
Σc

. This means that we get a contribution of

B
(
L1, `G(γ0), `G(∂3P)

)
f
(
`G(γ0)

)
Ξ(Σ−P)c

(
G|(Σ−P)c

) ∏
γ∈π0(c−γ0)

f
(
`G(γ)

)
,

which matches one of the terms in the expression for C[f]. We refer to [2] for the complete proof.

We can then integrate this identity over the combinatorial moduli space with respect to µK, and the result
can be calculated in two ways: by the topological recursion, and by direct integration. To express the later,
we introduce the set of stable graphs

Gg,n =M ′Σ/Mod∂Σ, (4.32)

where Σ is a bordered surface of type (g,n). We refer to [1] for a full definition and for the notation, but
let us say that a stable graph Γ encodes the class of a primitive multicurve c in the following way: vertices
v ∈ VΓ correspond to connected components of Σc and the genera of the components is recorded in a
function h : VΓ → N which is part of the data of Γ ; edges e ∈ EΓ correspond to the components of c, and the
set of edges incident to v is denoted by E(v); leaves λ ∈ Λ(v) correspond to boundary components of the
surface attached to v ∈ VΓ ; the valency of the vertex v is denoted by k(v). The automorphism group of Γ is
identified with that of the multicurve c.

Corollary 4.22. Assume that (A,B,C,D) are strongly admissible and f is a measurable function for which there
exists η ′ ∈ [0, 2) such that

sup
`>0

|f(`)| `η
′
< +∞.
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Then (A[f],B[f],C[f],D[f]) are strongly admissible and VΞg,n[f](L) =
´
Mcomb
g,n (L) Ξg,n[f]dµK satisfy the topological

recursion (4.12) with this initial data. Besides, we have

VΞg,n[f](L1, . . . ,Ln) =
∑
Γ∈Gg,n

1
#Aut(Γ)

ˆ
R
EΓ
+

∏
v∈VΓ

VΞh(v),k(v)
(
(`e)e∈E(v), (Lλ)λ∈Λ(v)

) ∏
e∈EΓ

`e f(`e)d`e. (4.33)

Proof. The topological recursion follows from Theorem 4.7 and from the second part from the integration
formula of Proposition 3.13.

We can also obtain an analogous result for the discrete integration, substituting VΞh(v),k(v) withNΞh(v),k(v)

and the integral over REΓ+ with the sum over edge decorations of the form ` : EΓ → Z+. However, we cannot
directly apply Theorem 4.9, as the twisted initial data are in general not supported on small pairs of pants.
Instead, we introduce an (a priori) different lattice count, for L ∈ Zn+

NΞg,n[f](L) :=
∑
Γ∈Gg,n

1
#Aut(Γ)

∑
`:EΓ→Z+

∏
v∈VΓ

NΞh(v),k(v)
(
(`e)e∈E(v), (Lλ)λ∈Λ(v)

) ∏
e∈EΓ

`e f(`e). (4.34)

We omit the proof of the next proposition: it follows the same scheme as the proof of Theorem 4.20, in the
simpler situation where multicurves are replaced by their mapping class group orbits (stable graphs), and
with integrals replaced by discrete sums. The key principle is that topological recursion is preserved under
the twisting operation.

Proposition 4.23. Let (A,B,C,D) and NΞg,n as in Theorem 4.9. Let f : Z+ → R be a continuous function such
that for any s > 0,

sup
`∈Z+

|f(`)| `s < +∞.

Then NΞg,n[f](L) is finite and, for 2g− 2 + n > 2, it is calculated by the discrete topological recursion formula

NΞg,n[f](L1, . . . ,Ln) =
n∑
m=2

∑
`>1

` BZ[f](L1,Lm, `)NΞg,n−1[f](`,L2, . . . , L̂m, . . . ,Ln)

+
1
2

∑
`,`′>1

`` ′ CZ[f](L1, `, ` ′)

(
NΞg−1,n+1[f](`, ` ′,L2, . . . ,Ln)

+
∑

h+h′=g
JtJ′={L2...,Ln}

NΞh,1+#J[f](`, J)NΞh′,1+#J′ [f](`
′, J ′)

)
,

(4.35)

with conventions NΞ0,1[f] = 0 and NΞ0,2[f] = 0 and base cases

NΞ0,3[f](L1,L2,L3) = NΞ0,3(L1,L2,L3) = AZ(L1,L2,L3),

NΞ1,1[f](L1) = NΞ1,1(L1) +
1
2

∑
`>1

`AZ(L1, `, `) f(`) . (4.36)

�

4.6 Kontsevich amplitudes for hyperbolic GR

On the one hand, Corollary 4.17 says that the combinatorial GR amplitudes ΞK
Σ for the initial data (AK,BK,CK)

coincide with the constant function 1 on Tcomb
Σ . On the other hand, we can consider the hyperbolic GR am-

plitudes ΩK
Σ associated to the same initial data. They are rather non-trivial functions of σ ∈ TΣ, but since
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the topological recursion formulae are the same in the combinatorial and hyperbolic setting, we have

VK
g,n(L) =

ˆ
Mcomb
g,n (L)

ΞK
g,n dµK =

ˆ
Mg,n(L)

ΩK
g,n dµWP =

ˆ
Mg,n

exp
( n∑
i=1

L2
i

2
ψi

)
(4.37)

for any L = (L1, . . . ,Ln). Here we propose a geometric interpretation of ΩK
Σ and give some of its basic

properties.

4.6.1 A geometric interpretation

In the following we discuss the combinatorial analogue of the geometric reasoning at the core of Mirza-
khani’s proof of the Mirzakhani–McShane identities. Consider a connected bordered surface Σ. Recall from
§ 2.2.2 the construction of the spine as a subset spσ(Σ) ⊂ Σ that depends on a hyperbolic marking (X, f)
representing σ ∈ TΣ. We also denote by sp ′σ(Σ) ⊂ spσ(Σ) the complement of the set of vertices of the spine.

For a given σ ∈ TΣ, we equip ∂1Σ with the curvilinear measure induced by σ.

Lemma 4.24. For all but finitely many x ∈ ∂1Σ, the geodesic shot from x orthogonally to ∂1Σ intersects the spine for
the first time at a point sΣ(x) ∈ sp ′σ(Σ).

Proof. Cutting out the spine, we have a cylinder around each boundary component of the surface. Con-
sider the one around ∂1Σ and take a geodesic that realises the distance between the two boundaries of the
cylinder. Cutting along this, we obtain a hyperbolic polygon. As there are no hyperbolic triangles with two
right angles, every geodesic shot orthogonally from x ∈ ∂1Σmust reach the boundary corresponding to the
spine at a certain point sΣ(x), that is not a vertex for all but finitely many x that are rib-ends on ∂1Σ.

Let x ∈ ∂1Σ be such that sΣ(x) exists and is not a vertex of the spine. By definition of the spine and the
vertices, there exists a unique second geodesic joining sΣ(x) to ∂iΣ for some i ∈ {1, . . . ,n}. The union of
these two geodesics form a piecewise geodesic arc, denoted by γx. This arc determines a unique homotopy
class of embedded pair of pants, and we denote by Px its representative that has geodesic boundaries in Σ.
This pair of pants has a spine spσ(Px) of its own, and we can ask whether sΣ(x) is still part of spσ(Px). With
these notations, we define the following process.

Definition 4.25. Choose a random point x ∈ ∂1Σ uniformly on ∂1Σ – for the measure coming from the
curvilinear abscissa induced by σ. If the geodesic shot from x orthogonally to ∂1Σ hits for the first time
spσ(Σ) at a vertex, or if sΣ(x) /∈ spσ(Px), quit the process. Otherwise, consider the bordered hyperbolic
surface Σ − Px. If it is empty, we have finished the process successfully; if not, we repeat it with Σ − Px

7,
each connected component of Σ−Px being treated independently. Denote by ΠΣ(σ) the probability that the
process ends successfully, i.e. by giving a pants decomposition. It is clear that ΠΣ(σ) only depends on the
projection [σ] ∈MΣ and the process makes no reference to a marking.

Proposition 4.26. We have ΠΣ(σ) = ΩK
Σ(σ). In particular,ΩK

Σ(σ) ∈ [0, 1], and if we consider the above process for
a random hyperbolic surface of type (g,n) with fixed boundary lengths L ∈ Rn+ (with respect to the Weil–Petersson
measure on MΣ(L)), we have

E
[
ΠΣ(σ)

∣∣ `σ(∂Σ) = L] = VK
g,n(L)

VWP
g,n(L)

, (4.38)

where VWP
g,n(L) are the Weil–Petersson volumes of Mg,n(L).

7The arcs give an order to the boundary components of Px, and by a similar process used in [2, Section 2.3] we can define the first
boundary on Σ− Px.
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Σ

(a) The piecewise geodesic γx (in blue) and spσ(Σ)
(in red).

•

•

• •x
s

γx

Px

(b) The piecewise geodesic γx (in blue) and spσ(Px)
(in orange).

Figure 24: Example of a successful first step of the process.

Proof. We prove the result by induction on 2g − 2 + n > 0. The base case (g,n) = (0, 3) is trivial: for any
pair of pants P, we have ΠP ≡ 1. Furthermore, the following argument can be adjusted to prove that for a
one-holed torus T ,

ΠT (σ) =
∑
γ∈S◦T

CK(`σ(∂T), `σ(γ), `σ(γ)) = DT (σ).
Consider Σ of type (g,n) and suppose now by induction that the proposition holds for surfaces of Euler
characteristic χ > −(2g − 2 + n). By definition of the process, we can write ΠΣ(σ) as a sum over ∪x∈∂1ΣPx
(where Px = ∅ if x does not define a pair of pants):

ΠΣ(σ) =
∑

[P]∈∪x∈∂1ΣPx

YP(σ)ΠΣ−P
(
σ|Σ−P

)
.

Here, we identify [P] with its representative P ⊆ Σ having geodesic boundaries, and we set

YP(σ) =
`σ(YP(σ))

`σ(∂1Σ)
, YP(σ) =

{
x ∈ ∂1Σ

∣∣ sΣ(x) ∈ spσ(P)
}

. (4.39)

By induction hypothesis, we have ΠΣ−P(σ|Σ−P) = ΩK
Σ−P(σ|Σ−P). So, we only need to show that YP(σ) =

XK
P(
~̀
σ(∂P)) and that the [P]’s outside ∪x∈∂1ΣPx do not contribute to the GR sum definingΩK

Σ.
For the latter, we observe that if [P] /∈ ∪x∈∂1ΣPx, then all points of spσ(P) incident to ∂1Σ are equidistant
to an internal boundary of P. Therefore we see that the spine of σ|P has the whole of the first boundary
adjacent to an internal boundary, and therefore from Lemma 2.28 we see that XK

P(
~̀
σ(∂P)) = 0. So, we can

indeed restrict the range of the GR sum definingΩK
Σ to [P] ∈ ∪x∈∂1ΣPx.

For the former, we first give a description of XK
P similar to (4.39). Let sP(x) be the first intersection point (if

it exists) between the geodesic shot from x orthogonally to ∂1Σ and the spine of P – considered as a subset
of Σ. We introduce the sets

spσ(P) =

{{
s ∈ sp ′σ(P)

∣∣ s is incident to ∂mΣ and ∂1Σ or only to ∂1Σ
}

if [P] ∈ PmΣ{
s ∈ sp ′σ(P)

∣∣ s is incident to ∂1Σ on both sides
}

if [P] ∈ P∅
Σ

XP(σ) = { x ∈ ∂1Σ | sP(x) ∈ spσ(P) }

where it is understood that if sP(x) does not exist, x is not in XP(σ). The properties of BK and CK stressed
in Lemma 2.28 show that

XK
P(~̀σ(∂P)) =

`σ(XP(σ))

`σ(∂1Σ)
.

It remains to justify that XP(σ) = YP(σ).
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(⊆) Consider x ∈ XP(σ). From the definition of spσ(P), it is clear that spσ(P) ⊆ sp ′σ(Σ) and sP(x) is
equidistant to ∂Σ in exactly two ways. In particular,

distσ
(
sP(x),∂1Σ

)
= distσ

(
sP(x),∂iΣ

)
< distσ

(
sP(x),∂Σ− (∂1Σ ∪ ∂iΣ)

)
for some i ∈ {1, . . . ,n}. Thus, sΣ(x) = sP(x) and clearly sP(x) ∈ spσ(P).

(⊇) Consider x ∈ YP(σ). Then we have sP(x) ∈ spσ(Σ), so that sP(x) = sΣ(x) and clearly sP(x) ∈ spσ(P).

4.6.2 Properties of the Kontsevich amplitudes

The geometric interpretation of ΩK
Σ already shows the non-trivial fact that such functions take values in

[0, 1] ⊂ R. In the remaining part of this section we are going to show two other properties ofΩK
Σ.

Non-invariance under all braidings. From their definition, the GR amplitudes are a priori only invariant
under mapping classes that preserve the first boundary; the invariance under braidings of ∂1Σ with some
∂mΣ for m 6= 1 is not guaranteed. This full invariance turns out to hold for the hyperbolic GR amplitudes
ΩM
Σ and the combinatorial GR amplitudes ΞK

Σ, for the obvious reason that they are identically 1. One could
wonder if the full invariance also holds for ΩK

Σ, but we show this is already not the case for four-holed
spheres.

Proposition 4.27. Let X be a four-holed sphere, and take γ ∈ S◦X separating ∂1X and ∂2X from ∂3X and ∂4X.
Consider ρ = [φ : X → X] ∈ ModX the involution that fixes γ and such that φ(∂1X) = ∂3X and φ(∂2X) = ∂4X.
Then ρ.ΩK

X 6= ΩK
X.

Proof. The curve γ together with an arc from ∂1X to ∂3X, determine a seamed pants decomposition of X,
and we denote by (L, `, τ) ∈ R4

+ × R+ × R the corresponding combinatorial Fenchel–Nielsen coordinates.
If we choose σ ∈ TX such that `σ(γ) is small enough, then by the collar lemma we can make the length of
any simple closed geodesic intersecting γ greater than max{L1 + L2,L3 + L4}. As BK(Li,Lj, `) vanishes for
` > Li + Lj, we have

ΩK
X(L1,L2,L3,L4, `, τ) = BK(L1,L2, `)

and
ρ.ΩK

X(L1,L2,L3,L4, `, τ) = ΩK
X(L3,L4,L1,L2, `, τ) = BK(L3,L4, `).

Choosing (L1, . . . ,L4) ∈ R4
+ such that BK(L1,L2, `) 6= BK(L3,L4, `), we obtain the thesis.

This is the first example where the non-invariance of some GR amplitudes can be established. Nevertheless,
we know that after integration over the moduli space against µWP, we obtain the symmetric polynomials
(4.37). This is clear by the definition of the Kontsevich volumes, but it can also be directly proved from
the theory of the topological recursion, as (AK,BK,CK) obey a set of quadratic relations that guarantee the
invariance of the corresponding TR amplitudes under permutations of L1, . . . ,Ln – see e.g. [8].

Support with non-empty complement. We prove that the Kontsevich amplitudes are actially zero on
some open subset. In order to achieve this, we use geometric recursion to construct an auxiliary function
which has the same support as the Kontsevich amplitude and takes integer values.

Consider the following geometric recursion initial data

A(L1,L2,L3) = 1,

B(L1,L2, `) = θ(L1 + L2 − `),

C(L1, `, ` ′) = θ(L1 − `− `
′),
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where θ(x) = 1R+
(x) is the Heaviside theta function. Let ΩθΣ ∈ Mes(TΣ) be the geometric recursion am-

plitude associated to Σ computed with respect to hyperbolic lengths. The value ΩθΣ(σ) ∈ N is counting the
number of σ-small pair of pants decompositions8 of Σ. In particular, these are piecewise constant functions
on TΣ with values in non-negative integers and, for Σ connected of type (g,n), we see that ΩθΣ is bounded
by
∏2g−2+n
k=1 6k. The following lemma easily follows by induction on 2g− 2 + n.

Lemma 4.28. The GR amplitudes ΩθΣ have the same support in Tcomb
Σ as ΩK

Σ, and the TR amplitudes VΩθg,n(L) =´
Mg,n(L)

ΩθΣ dµWP are homogeneous polynomials of degree 6g− 6 + 2n. �

Corollary 4.29. For Σ not of type (0, 3), the support ofΩK
Σ has non-empty complement.

Proof. The Weil–Petersson volumes VWP
g,n(L) are polynomials in L = (L1, . . . ,Ln) with non-zero constant term

while VΩθg,n(L) are homogeneous of positive degree for (g,n) 6= (0, 3). Hence

lim
L→0

VΩθg,n(L)

VWP
g,n(L)

= 0.

It shows that VΩθg,n(L) is strictly less than VWP
g,n(L) for small L and we deduce there exists an open set of

Tcomb
Σ (L) for small L on whichΩθΣ < 1 and therefore on whichΩθΣ = 0, henceΩK

Σ vanishes.

Remark 4.30. To conclude, we remark that the Laplace transform of the TR amplitudes VΩθg,n(L), namely

ωg,n(z1, . . . , zn) =

(ˆ
Rn+

n∏
i=1

dLi Li e−ziLi VΩθg,n(L1, . . . ,Ln)

)
dz1 ⊗ · · · ⊗ dzn

satisfy a topological recursion à la Eynard–Orantin [20]:

ωg,n(z1, . . . , zn) = Res
z→0

K(z1, z)
(
ωg−1,n+1(z,−z, z2, . . . , zn) +

no (0,1)∑
h+h′=g

JtJ′={z2,...,zn}

ωh,1+#J(z, J)⊗ωh′,1+#J′(−z, J ′)
)

,

where
K(z1, z) =

1
2z(z− z1)2

dz1

dz
and ω0,2(z1, z2) =

dz1 ⊗ dz2

(z1 − z2)2 .

However, in this case the recursion kernel K(z1, z) does not have the usual structure of [20] and the multidif-
ferentialsωg,n(z1, . . . , zn) are not symmetric under permutation of their n variables. It seems to be the first
known example where a non-symmetric topological recursion yields a geometrically meaningful quantity.

8Such pants decomposition are “rooted”, in the sense that they always bound the first boundary component of the surface at each
step (cf. [2, Section 3.6])
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5 Rescaling flow: from hyperbolic to combinatorial geometry

The hyperbolic and combinatorial Teichmüller spaces can be identified via the spine homeomorphism
sp : TΣ → Tcomb

Σ defined in § 2.2.2. We introduce a flow that interpolates between their respective ge-
ometries, coming from the work of Mondello and Do [35, 19].

Definition 5.1. Let G ∈ Tcomb
Σ (L) and β ∈ R+. Define βG ∈ Tcomb

Σ (βL) to be the combinatorial struc-
ture represented by the same marked ribbon graph, but with all lengths multiplied by β. This define a
flow, called the rescaling flow, on Tcomb

Σ which preserves the strata and is continuous. It can be lifted to
Φβ : TΣ(L)→ TΣ(βL) by the spine map: for σ ∈ TΣ(L), set

Φβ(σ) = σ
β = sp−1(β sp(σ)

)
∈ TΣ(βL). (5.1)

The maps Φβ and β· are ModΣ-equivariant, and thus descend to the moduli spaces Mg,n and Mcomb
g,n . We

also define the map Rβ : Tcomb
Σ (L)→ TΣ(βL) by postcomposing β·with sp−1.

TΣ(L) Tcomb
Σ (L)

TΣ(βL) Tcomb
Σ (βL)

sp

Φβ β·
Rβ

sp−1

The large β asymptotic of the rescaling flow has been previously studied pointwise on TΣ.

Theorem 5.2. [35, 19] For any bordered surface Σ, the metric space (Σ,β−1σβ) converges in the Gromov–Hausdorff
topology to the metric ribbon graph sp(σ) when β → ∞. Moreover, the Poisson structure β2R∗βπWP converges
pointwise to πK on the top-dimensional strata of Tcomb

Σ . �

Here we shall complete this description by giving effective bounds on the thick part of the Teichmüller
space for lengths, and on compacts for twist parameters, showing convergence of the Fenchel–Nielsen
coordinates. Under the flow, combinatorial geometry appears as a kind of tropicalisation of hyperbolic
geometry. We apply these results to prove that Fenchel–Nielsen coordinates equip Tcomb

Σ with a natural
piecewise linear structure, and that the flow carries the hyperbolic GR/TR to the combinatorial GR/TR.

5.1 Convergence of lengths and twists

5.1.1 Convergence of lengths

We first obtain an effective comparison between lengths of simple closed curves along the flow, by refining
the arguments of [19].

Definition 5.3. Let Σ be bordered surface. The hyperbolic (resp. combinatorial) systole with respect to
σ ∈ TΣ (resp. G ∈ Tcomb

Σ ) as
sysσ = inf

γ∈SΣ
`σ(γ), sysG = inf

γ∈SΣ
`G(γ). (5.2)

Proposition 5.4. Let Σ be a connected bordered surface of topology (g,n). For any G ∈ Tcomb
Σ , we denote σ =

sp−1(G) and σβ = sp−1(βG). Then for all β > 1, we have

∀γ ∈ SΣ, `G(γ) 6
`σβ(γ)

β
. (5.3)

Moreover, for any ε > 0 there exists βε > 1 and κε > 0 depending only on ε and the topological type of Σ, such that
for any β > βε and G ∈ Tcomb

Σ for which the systole in G is bounded from below by ε, we have

∀γ ∈ SΣ,
`σβ(γ)

β
6

(
1 +

κε

β

)
`G(γ). (5.4)

We can take κε and βε increasing with 2g− 2 + n.
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Corollary 5.5. For any γ ∈ SΣ and σ ∈ TΣ, we have

lim
β→∞

`σβ(γ)

β
= `sp(σ)(γ), (5.5)

and the limit is uniform when sp(σ) belongs to the thick part of Tcomb
Σ . �

Proof of Proposition 5.4. If γ is a boundary curve, there is nothing to prove since `σβ(γ) = β`σ(γ). We now
assume γ ∈ S◦Σ and start from the last inequality in the proof of [19, Lemma 11]:

∀γ ∈ S◦Σ `G(γ) 6
`σβ(γ)

β
6 `G(γ) +

2EG(γ) rβ
β

, (5.6)

where EG(γ) is the number (with multiplicity) of edges along which the non-backtracking representative of
γ in G travels, and rβ is the maximal of rib lengths with respect to σβ. This already gives the lower bound.

Recall that G contains at most 6g − 6 + 3n edges. We say that an edge is ε-big if its length in G is larger or
equal to ε/(6g− 6 + 3n), and that it is ε-short otherwise. Denote by E(ε)G (γ) the number (with multiplicity)
of ε-big edges along which γ travels. If we assume that sysG > ε, the union of the ε-short edges appearing
in γmust be a forest. As γ is a closed loop, it has to exit each tree it passes through via an ε-big edge. Hence
EG(γ) 6 (6g− 6 + 3n)E(ε)G (γ). Observing that ε

6g−6+3n E
(ε)
G (γ) 6 `G(γ), we obtain

EG(γ) 6
(6g− 6 + 3n)2

ε
`G(γ).

We must now bound uniformly the maximum of rib lengths for σβ. For this purpose, we bound the distance
between any point of the surface to the boundary for the metric σβ. Recall that the injectivity radius at a
point q ∈ Σ for the hyperbolic structure σ, here denoted rσ(q), is the supremum of all ρ > 0 such that
there is a locally isometric embedding of an open hyperbolic disk of radius ρ. Since the area of (Σ,σβ) is
2π(2g− 2 + n), which must be greater or equal to the area of such disks, we have

rσ(q) 6
√

2(2g− 2 + n). (5.7)

Besides, it is clear that
rσ(q) = min

{ 1
2 sysσ(q), distσ(q,∂Σ)

}
, (5.8)

where sysσ(q) is defined to be the infimum over the lengths of non-constant geodesic loops based at q. We
apply this to the hyperbolic structure σβ. Using the lower bound (5.6), we remark that

βε 6 sysβG 6 sysσβ 6 sysσβ(q).

If β > βε =
2
√

2(2g−2+n)
ε

, we deduce from (5.7) and (5.8) that

∀q ∈ Σ, distσβ(q,∂Σ) 6
√

2(2g− 2 + n).

In particular, choosing for q the vertices of G, we find rβ 6
√

2(2g− 2 + n). Together with (5.6), it shows
that

∀β > βε ∀γ ∈ S◦Σ, `G(γ) 6
`σβ(γ)

β
6

(
1 +

18
√

2(2g− 2 + n)5/2

βε

)
`G(γ),

which gives the thesis.
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5.1.2 Convergence of twists

Studying the convergence of twists along the flow by a direct geometric method requires bounds on the
distance between the hyperbolic and combinatorial seams. Instead of following this direction, we use the
hyperbolic (9g − 9 + 3n)-theorem to write the hyperbolic twists in terms of hyperbolic lengths of certain
curves, to show that these formulae converge with help of Proposition 5.4, and compare the limit to the
expressions for the combinatorial twists underlying the combinatorial (9g− 9+ 3n)-theorem established in
Section 2.6.

Proposition 5.6. Let Σ be a bordered surface of type (g,n), fix a seamed pants decomposition and let (τi)
3g−3+n
i=1 be

the associated combinatorial twist parameters. For any compact K ⊂ Tcomb
Σ and G ∈ K, we denote σ = sp−1(G) and

σβ = sp−1(βG). There exists constants βK > 1 and cK > 0 depending only on K such that, for any β > βK and
i ∈ {1, . . . , 3g− 3 + n}, we have ∣∣∣∣τi(σβ)β

− τi(G)

∣∣∣∣ 6 cKβ . (5.9)

Corollary 5.7. In any fixed seamed pants decomposition, for σ ∈ TΣ, we have

lim
β→∞

τi(σ
β)

β
= τi

(
sp(σ)

)
, (5.10)

and the limit is uniform when σ belongs to an arbitrary compact of TΣ. �

Before starting the proof of Proposition 5.6, we recall the formulae which allows us for four-holed spheres
and one-holed tori to express the change of Fenchel–Nielsen coordinates under a flip of the pair of pants
decomposition. They can be found in [37, Theorems 1.i and 2.i], or deduced from [10, Sections 3.3 and 3.4].

Let X be a four-holed sphere and σ ∈ TX(L1,L2,L3,L4). We place ourselves in the situation described in
§ 2.6.1. Namely, we fix a coordinate system, which in turn defines a simple closed curve γ separating X
into a pair of pants having boundary components (∂1X,∂4X,γ) and another pair of pants having boundary
components (∂2X,∂3X,γ); we have δ a simple closed curve intersecting γ exactly twice and separating X
into a pair of pants having boundary components (∂1X,∂2X, δ) and another pair of pants having boundary
components (∂3X,∂4X, δ); finally, let η be the curve obtained from γ by applying a Dehn twist along δ. Let
σ ∈ TX(L1,L2,L3,L4) and denote ` = `σ(γ), ` ′ = `σ(δ) and ` ′′ = `σ(η), and define τ to be the hyperbolic
twist determined by the seamed pants decomposition. If we define

Ci,j(`) = cosh2( `2 ) + cosh2(Li2 ) + cosh2(
Lj
2 ) + 2 cosh(Li2 ) cosh(Lj2 ) cosh( `2 ) − 1, (5.11)

the length of δ is then given in terms of Fenchel–Nielsen coordinates by

cosh
(
`′(`,τ)

2

)
sinh2 ( `

2

)
= cosh(L1

2 ) cosh(L2
2 ) + cosh(L3

2 ) cosh(L4
2 ) + cosh( `2 )

(
cosh(L1

2 ) cosh(L3
2 ) + cosh(L2

2 ) cosh(L4
2 )
)

+ cosh(τ)
√
C1,4(`)C2,3(`),

(5.12)

while the length of η is ` ′′(`, τ) = ` ′(`, τ+ `).

Likewise, if T is a one-holed torus, σ ∈ TT (L), and we are in the situation described in § 2.6.2, the length of
δ is given by

cosh
(
`′(`,τ)

2

)
=

cosh(τ2 )
sinh( `2 )

√
cosh(L2 ) + cosh(`)

2
, (5.13)

while the length of η is ` ′′(`, τ) = ` ′(`, τ+ `).
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Proof of Proposition 5.6. Fix σ in a compactK of TΣ, and denoteG = sp(σ). We use repeatedly Proposition 5.4,
which implies that for any simple closed curve ν chosen in a fixed finite subset of SΣ, we have

`G(ν) 6
`σβ(ν)

β
6 `G(ν) +

cK

β

for any β > βK and some constant cK > 0 depending only on the compact K and this finite set. In what
follows, cK, c ′K, . . . denote positive constants depending on K and whose value may change from line to
line. We denote lengths and twists with a superscript β to refer to the hyperbolic quantities measured with
respect to σβ, while lengths and twists without superscripts denote the combinatorial quantities measured
with respect to G.

As the twist parameters τβi and τi are computed locally in each piece Σi of type (0, 4) or (1, 1) defined by
the seamed pants decomposition as in Section 2.6, we can restrict our attention to each piece separately.
On Σi we have the curve δi defined by the seamed pants decomposition, and for every k ∈ Z we consider
the curve obtained as the image of δi after k Dehn twists along γi. Denote by `(k),β

i its hyperbolic length
with respect to σβ, and by `(k)i its combinatorial length with respect to G. Compared to the notation of
Section 2.6,

` ′βi = `
(0),β
i , ` ′′βi = `

(1),β
i , ` ′i = `

(0)
i , ` ′′i = `

(1)
i .

As we work with a single piece at a time, we in fact often omit the subscript i. Suppose Σi = X is a
four-holed sphere. With the labelling matching the one described in § 2.6.1, we denote Lβi = `σβ(∂iX) for
i ∈ {1, 2, 3, 4}. According to Lemma 2.43, we have

`(k) = max
{
L1 + L3 − `,L2 + L4 − `, 2|τ+ k`|+M1,4(`) +M2,3(`)

}
(5.14)

whereMi,j(`) = max
{

0,Li − `,Lj − `,
Li+Lj−`

2

}
. The open sets

U(k) =
{
G ∈ Tcomb

Σ

∣∣ 2` < τ+ k` < 4`
}

, k ∈ Z. (5.15)

cover the compact K, so we can select finitely many indices k1, . . . ,kN ∈ Z to cover K. If G ∈ U(k) ∩ K for
some k ∈ {k1, . . . ,kN }, the maximum in (5.14) is given by the last argument, that is

`(k) = 2(τ+ k`) +M1,4(`) +M2,3(`)

which we see as an expression of τ + k` in terms of other lengths. We would like to compare it, when β is
large, to the expression of τβ + k`β which we can access via Equation (5.12), namely

cosh
(
τβ + k`β

)
=

[
cosh

(
`(k),β

2

)
sinh2( `β

2

)
− cosh

(Lβ1
2

)
cosh

(Lβ2
2

)
− cosh

(Lβ3
2

)
cosh

(Lβ4
2

)
− cosh

(
`β

2

)(
cosh

(Lβ1
2

)
cosh

(Lβ3
2

)
+ cosh

(Lβ2
2

)
cosh

(Lβ4
2

))]
C

−1/2
1,4 (`β)C

−1/2
2,3 (`β).

(5.16)

To obtain an upper bound for the right-hand side of (5.16), we can ignore the negative terms and use as
upper bound for the numerator

cosh
(
`(k),β

2

)
sinh2( `β

2

)
6 1

4 e
`(k),β

2 +`β ,

and as lower bound for the factors in the denominator

Ci,j(`
β) > 1

4 e
max
{
`β,Lβi ,Lβj ,

L
β
i

+L
β
j

+`β

2

}
> 1

4 e
max
{
Lβi ,Lβj ,

L
β
i

+L
β
j

+`β

2

}
.
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Combined with arcosh(x) 6 ln(2x) for x > 1, this results in

|τβ + k`β|

β
6

1
β

(
ln 2 +

`(k),β

2
+ `β − 1

2 max
{
Lβ1 ,Lβ4 , L

β
1 +Lβ4 +`β

2

}
− 1

2 max
{
Lβ2 ,Lβ3 , L

β
2 +Lβ3 +`β

2

})
6
`(k)

2
+ `− 1

2 max
{
L1,L4, L1+L4+`

2

}
− 1

2 max
{
L2,L3, L2+L3+`

2

}
+
c ′K
β

6
`(k)

2
−

1
2
(
M1,4(`) +M2,3(`)

)
+
c ′K
β

and thus
|τβ + k`β|

β
6 τ+ k`+

c ′K
β

.

We now look for a bound from below for (5.16). We first observe that by Equation (5.3), we have `β > ` for
β > 1. Since on the compact K, ` is bounded from below by εK > 0, we deduce that

sinh2( `β
2

)
> mKe

`β with mK =
(1 − e−εK)2

4
> 0.

This leads to a (rather crude) lower bound for the numerator of the right-hand side of (5.16)

cosh
(
`(k),β

2

)
sinh2( `β

2

)
− cosh

(Lβ1
2

)
cosh

(Lβ2
2

)
− cosh

(Lβ3
2

)
cosh

(Lβ4
2

)
− cosh

(
`β

2

)(
cosh

(Lβ1
2

)
cosh

(Lβ3
2

)
+ cosh

(Lβ2
2

)
cosh

(Lβ4
2

))
> mK

2 e
`(k),β

2 +`β − e
Lβ1 +Lβ2

2 − e
Lβ3 +Lβ4

2 − e
`β+Lβ1 +Lβ3

2 − e
`β+Lβ2 +Lβ4

2

> mK
4 e

`(k),β

2 +`β +

(
mK

4 e
`(k),β

2 +`β − 4 e
1
2 max{Lβ1 +Lβ2 ,Lβ3 +Lβ4 ,Lβ1 +Lβ3 +`β,Lβ2 +Lβ4 +`β}

)
.

(5.17)

We split the first term in order to exhibit positivity of our lower bound – which is therefore not useless.
Indeed, using Proposition 5.4 and Equation (5.14) on U(k) ∩ K we get

`(k),β

2
+ `β > max

{
Lβ1 + Lβ2 ,Lβ3 + Lβ4 ,Lβ1 + Lβ3 + `β,Lβ2 + Lβ4 + `β

}
+ βc ′′K

for some constant c ′′K > 0. Consequently, there exists βK > 1 such that for any β > βK the expression inside
the bracket in (5.17) is positive, and can be ignored in the lower bound. To obtain an upper bound for the
denominator of (5.16), we write

Ci,j(`
β) 6 5 emax

{
`β,Lβi ,Lβj ,

Lβi +L
β
j +`

β

2

}
.

Combined with arccosh(x) > ln x, this implies for β > βK

|τβ + k`β|

β
>

1
β

(
ln
(
mK
20

)
+ 1

2 `
(k),β − 1

2 max
{
`β,Lβ1 ,Lβ4 , L

β
1 +Lβ4 +`β

2

}
− 1

2 max
{
`β,Lβ2 ,Lβ3 , L

β
2 +Lβ3 +`β

2

})
> τ+ k`−

c ′′′K
β

using the arguments we already used for the upper bound. We deduce that on U(k) ∩ K and for β > βK∣∣∣∣ |τβ + k`β|

β
− (τ+ k`)

∣∣∣∣ 6 cKβ . (5.18)
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A similar argument shows that on U(k) ∩ K and for β > βK, we have∣∣∣∣ |τβ + (k+ 1)`β|
β

−
(
τ+ (k+ 1)`

)∣∣∣∣ 6 cKβ , (5.19)

for perhaps larger constants βK, cK > 0. We can now conclude by using (5.18)–(5.19) to estimate

τβ

β
=

β

2`β

(∣∣∣∣τβ + (k+ 1)`β

β

∣∣∣∣2 − ∣∣∣∣τβ + k`β

β

∣∣∣∣2)−
(2k+ 1)`β

2β
.

Since `β > εK > 0 on the compact K, we arrive on U(k) ∩ K and for β > βK at the inequality∣∣∣∣τββ − τ

∣∣∣∣ 6 cKβ , (5.20)

for perhaps larger constants βK, cK > 0. These arguments were done for a fixed k ∈ {k1, . . . ,kN}, and as
(U(ki))Ni=1 cover K, we can find constants βK and cK such that the same estimate (5.20) holds uniformly
over K for β > βK.

A similar argument can be carried out for Σi being a one-holed torus, in the situation described in § 2.6.2.
Instead of (5.16) we should estimate τβ + k`β via the formula

cosh
(
τβ+k`β

2

)
= cosh

(
`(k),β

2

)
sinh

(
`β

2

)√ 2
cosh

(
Lβ

2

)
+ cosh(`β)

coming from (5.13), and compare it to the expression of τ+ k` deduced from Lemma 2.45. As the estimates
in this case are much easier and without surprise, we omit them.

We conclude that the desired estimate (5.9) is valid for any fixed i ∈ {1, . . . , 3g − 3 + n}, and since this set
is finite we can choose constants βK and cK independently of i: in the end, they only depend on the fixed
seamed pants decomposition and on the compact K.

5.2 Application: piecewise linear structure

The combinatorial Fenchel–Nielsen coordinates on Tcomb
Σ described in Theorem 2.41 depend on a seamed

pants decomposition (P,S). Notice that changing S amounts to changing τi(G) 7→ τi(G) + ki`i(G) by
some ki ∈ Z, while `i(G) remains unchanged. The most interesting case occurs when we change the pair
of pants decomposition P. From [25], these changes are generated by local changes in four-holed spheres
and one-holed tori, as presented by Okai in [37] for the hyperbolic case, where the corresponding change
of Fenchel–Nielsen coordinate can be found. We now report these hyperbolic formulae 9.

FOUR-HOLED SPHERE. For a four-holed sphere X , consider the hyperbolic Fenchel–Nielsen coordinates
(`, τ) ∈ TX(L1,L2,L3,L4) relative to the system of curves (P,S) of Figure 25. Then the change of seamed
pants decomposition to (P ′,S ′) is given by Equation (5.12) and

cosh
(
τ ′(`, τ)

)
=

[
sinh2( `′(`,τ)

2

)
cosh

(
`
2

)
− cosh

(
L1
2

)
cosh

(
L4
2

)
− cosh

(
L2
2

)
cosh

(
L3
2

)
− cosh

( `′(`,τ)
2

)(
cosh

(
L1
2

)
cosh

(
L3
2

)
+ cosh

(
L2
2

)
cosh

(
L4
2

))]
C1,2(`)

−1/2C3,4(`)
−1/2

(5.21)

with sgn(τ ′) = − sgn(τ) and Ci,j(`) has been defined in (??).

9In [37, Theorem 2.ii] there is a misprint in the denominator of the formula giving τ ′ for the one-holed torus. More precisely, the
first cosh(L2 ) should not be squared, and the second cosh(L2 ) should be replaced with cosh(L2 ) − 1. We report the correct formula
(5.22) here.

75



L1

L4 L3

L2

γ

β

L1

L4 L3

L2

γ ′

β ′

Figure 25: Change in the coordinate system of Σ.
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γ

L
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β ′

L

Figure 26: Change in the coordinate system of T .

ONE-HOLED TORUS. For a one-holed torus T , consider the global coordinates (`, τ) ∈ TT (L) relative to
(P,S) of Figure 26. Then the change of coordinate system to (P ′,S ′) is given by by Equation (5.13) and

cosh
(τ′(`,τ)

2

)
= cosh

(
`
2

)√√√√ cosh2(τ2 )
(
cosh(L2 ) + cosh(`)

)
− 2 sinh2( `2 )

cosh2(τ2 )
(
cosh(L2 ) + cosh(`)

)
+ sinh2( `2 )(cosh(L2 ) − 1)

(5.22)

with sgn(τ ′) = − sgn(τ).

Using the convergence under the rescaling flow of hyperbolic length and twist parameters to the combina-
torial analogues, we can calculate a “tropicalisation” of Okai’s formulae.

Proposition 5.8.

SPHERE WITH FOUR BOUNDARY COMPONENTS. For a four-holed sphere X, consider the global coordinates (`, τ) ∈
Tcomb
X (L1,L2,L3,L4) relative to the system of curves (P,S) of Figure 25. Then the change of coordinate system to

(P ′,S ′) is given by Equation (2.29) and

|τ ′(`, τ)| =
1
2

∣∣∣∣2|τ|+ `+M1,4(`) +M2,3(`) − `
′(`, τ) −M1,2(`

′) −M3,4(`
′)

∣∣∣∣ (5.23)

with sgn(τ ′) = − sgn(τ). We recall here thatMi,j(`) = max
{

0,Li − `,Lj − `,
Li+Lj−`

2

}
.

TORUS WITH ONE BOUNDARY COMPONENT. For a one-holed torus T , consider the global coordinates (`, τ) ∈
Tcomb
T (L) relative to the system of curves (P,S) of Figure 26. Then the change of coordinate system to (P ′,S ′) is

given by Equation (2.31) and
|τ ′(`, τ)| =

∣∣∣`− [L2 − ` ′(`, τ)
]
+

∣∣∣ (5.24)

with sgn(τ ′) = − sgn(τ).
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Figure 27: The graphs of ` ′(`, τ) and τ ′(`, τ), with L = 2.

Proof. The formulae follow from Equations (5.21)–(5.22) by direct computation, together with the conver-
gence of length and twist parameters and using relations of the form

∀a,b ∈ R+, lim
β→∞

1
β

ln
(
eβa + eβb

)
= max { a,b }.

The reader can check that the limit of Equations (5.12) and (5.13) coincide with Equations (2.29) and (2.31).

Corollary 5.9. Consider a bordered surface Σ of type (g,n) and fix two seamed pants decompositions (P,S) and
(P ′,S ′), defining combinatorial Fenchel–Nielsen coordinates Φ,Φ ′ : Tcomb

Σ → (R+ × R)3g−3+n. Then the change
of coordinateΦ ′ ◦Φ−1 between open subsets of (R+ ×R)3g−3+n is piecewise linear. In particular, the combinatorial
Teichmüller space Tcomb

Σ is endowed with a canonical piecewise linear structure. �

Remark 5.10. It should be possible to write a proof of Proposition 5.8, and thus Corollary 5.9, using purely
combinatorial-geometric arguments (without resorting to hyperbolic geometry). However, given the com-
plexity of Formulae (5.23)–(5.24) it may be challenging to do so in every cell. The proof of the hyperbolic
formulae by Okai rely on the description of the Teichmüller space via the SL(2,R) character variety. Having
a similar representation-theoretic approach to the combinatorial Teichmüller space could give a direct way
to prove Proposition 5.8 and would be of independent interest.

Remark 5.11. The above transformations are not continuous on the whole of R+ ×R. The locus of discon-
tinuity actually identifies a subset of the non-admissible twists, i.e. the creation of saddle connections in the
measured foliation perspective. For instance, the plot of ` ′ and τ ′ on R+ × R ∼= Tcomb

T (L) is illustrated in
Figure 27. Notice that along the line

l =
[
L
2 ,+∞)× { 0 } ,

the function ` ′ is identically zero, while τ ′ has a discontinuity. But l is not in the image of Tcomb
T (L) under

the map Φ of Theorem 2.41. Thus, having ` ′ = 0 and τ ′ discontinuous along l is not contradictory.

5.3 Geometric recursion in the flow

The geometric recursion in the hyperbolic and in the combinatorial setting produces functions respectively
on the moduli spaces MΣ and Mcomb

Σ . The main result of this section is that the flow in the β → ∞ limit
takes the hyperbolic GR to the combinatorial GR.
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5.3.1 Rescaling initial data

Before considering the behaviour of geometric recursion amplitudes in the flow, we discuss the rescaling of
initial data.

Definition 5.12. Let (Aβ,Bβ,Cβ)β>1 be a family of triples of measurable functions on R3
+. We say it is

uniformly (strongly) admissible if the constants in the (strong) admissibility can be chosen to be independent
of β > 1.

We remark that here, following the remark of Section 4.3, the triple (A,B,C) is completed by a natural
choice of D. We introduce the rescaling operator, acting on a function φ : Rk+ → R by

ρβ∗φ(L) = φ(βL). (5.25)

We notice two basic properties of this rescaling. Firstly, limits of uniformly admissible rescaled initial data
(if they exist) are automatically admissible.

Lemma 5.13. Let (Aβ,Bβ,Cβ)β>1 be initial data such that ρβ∗(Aβ,Bβ,Cβ) is uniformly admissible and converges
to a pointwise limit (Â, B̂, Ĉ). Then (Â, B̂, Ĉ) is admissible.

Proof. This is clear by taking the β→∞ limit in the inequalities specified by the uniform admissibility.

Secondly, if we rescale initial data that do not depend on β, the limit (if it exists) must be supported on
small pairs of pants.

Lemma 5.14. If (A,B,C) is admissible, then ρβ∗(A,B,C) is uniformly admissible, with same bounding constants.
Besides, if ρβ∗(B,C) has a pointwise limit (B̂, Ĉ) when β→∞, then

` > L1 + L2 =⇒ B̂(L1,L2, `) = 0, and `+ ` ′ > L1 =⇒ Ĉ(L1, `, ` ′) = 0. (5.26)

Proof. The bound on ρβ∗A is clear. For the bound on B, we write

sup
L1,L2,`>ε

∣∣B(βL1,βL2,β`)
∣∣ (1 + [`− L1 − L2]+

)s
6 sup
L1,L2,`>βε

∣∣B(L1,L2, `)
∣∣ (1 + [`− L1 − L2]+

)s(1 + [(`− L1 − L2)/β]+
1 + [`− L1 − L2]+

)s
.

Since β > 1, we can bound the last expression by the supremum over L1,L2, ` > ε. We also observe that
t 7→ 1+[t/β]+

1+[t]+
is equal to 1 for t 6 0 and is decreasing for t > 0, hence it is uniformly bounded by 1. Using

the initial bound for Bwe get the desired bound for ρβ∗B. The bound for ρβ∗C is proved similarly.

To establish the vanishing property for B̂, we fix (L1,L2, `) such that `−(L1+L2) > ε and min{L1,L2, `} > ε > 0
for some ε > 0. Specialising the admissibility condition for B at s = 1 and rescaled lengths, we have

∣∣B(βL1,βL2,β`)
∣∣ 6 Mε,1

1 + βε
.

Taking the limit β→∞ yields the claim. The vanishing property of Ĉ is proved similarly.

Remark 5.15. If (A,B,C) are continuous functions on R3
+, one easily checks that (ρβ∗A, ρβ∗B, ρβ∗C)β>1

forms an equicontinuous family. By Arzela–Ascoli theorem, for any fixed compact, it must admit uni-
formly converging subsequences, and the vanishing properties in Lemma 5.14 must hold for any limit
point. Therefore, the assumption that ρβ∗(A,B,C) converges is rather weak.
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5.3.2 Rescaling geometric recursion amplitudes

Theorem 5.16. Let (Aβ,Bβ,Cβ)β>1 be initial data such that ρβ∗(Aβ,Bβ,Cβ) is uniformly admissible and con-
verges uniformly on any compact to a limit (Â, B̂, Ĉ). Let us denote by ΩΣ;β the result of the Mes(TΣ)-valued GR
with initial data (Aβ,Bβ,Cβ), and by Ξ̂Σ the result of the Mes(Tcomb

Σ )-valued GR with initial data (Â, B̂, Ĉ). We
have for any bordered surface Σ and σ ∈ TΣ

lim
β→∞ΩΣ;β(σ

β) = Ξ̂Σ
(
sp(σ)

)
(5.27)

and the convergence is uniform for σ in any compact of TΣ. Besides, there exists t > 0 depending only on the topology
of Σ, such that, for any ε > 0 there exists Mε > 0 for which we have, for any β > 1, any σ ∈ TΣ such that
syssp(σ) > ε, ∣∣ΩΣ;β(σ

β)
∣∣ 6Mε

∏
b∈π0(∂Σ)

(
1 + `sp(σ)(b)

)t (5.28)

and the same inequality holds for the limit Ξ̂Σ(sp(σ)).

Remark 5.17. If we specialise (Aβ,Bβ,Cβ) to (AM,BM,CM) appearing in Theorem 4.15, this gives another
proof of the combinatorial Mirzakhani–McShane of Theorem 4.16 or its equivalent form Corollary 4.17.
Indeed, the hyperbolic Mirzakhani–McShane identities immediately show thatΩM

Σ (σ
β) = 1 for any σ ∈ TΣ

and β > 1, and the convergence

lim
β→∞

F(βx)

β
= lim
β→∞

2 ln(1 + eβx/2)

β
= [x]+,

which is uniform on any compact of {−∞} ∪R, implies that

lim
β→∞ ρβ∗(AM,BM,CM) = (AK,BK,CK)

uniformly on any compact of R3
+. Thus, the β→∞ limit ofΩM

Σ (σ
β) – which must be the constant function

1 – converges to the function ΞK
Σ(sp(σ)) satisfying the geometric recursion for the initial data (AK,BK,CK).

Proof of Theorem 5.16. It is enough to prove the result for connected surfaces, and we proceed by induction
on the Euler characteristic. Throughout the proof, we denote G = sp(σ). We recall that for any boundary
component b, we have `σβ(b) = β`G(b) = β`σ(b). For a pair of pants P, we have

ΩP;β(σ
β) = Aβ(~̀σβ(∂P)) = Aβ(β~̀σ(∂P)) = Aβ(β~̀G(∂P)),

which by assumption converges uniformly on any compact to Â(~̀G(∂P)) = Ξ̂P(G), and is bounded by a
constant independent of β on any ε-thick part of Tcomb

P .

For a torus with one boundary component T , we have by the convention in Section 4.3

ΩT ;β(σ
β) =

∑
γ∈S◦T

Cβ
(
β`G(∂T), `σβ(γ), `σβ(γ)

)
. (5.29)

Let K be a compact subset of Tcomb
Σ and ε a lower bound of the systole on K. Let γ ∈ S◦T and G ∈ K. Since

the function `G(γ) is bounded from below and from above on K, Proposition 5.5 implies that β−1`σβ(γ)

converges to `G(γ) uniformly for σ ∈ sp−1(K). By uniform convergence of ρβ∗Cβ on that compact, we
deduce that

lim
β→∞Cβ

(
β`G(∂T), `σβ(γ), `σβ(γ)

)
= Ĉ

(
`G(T), `G(γ), `G(γ)

)
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uniformly for σ ∈ K. Next, we would like to bound each term in (5.29) by a summable (over γ) quantity
depending only on K and not on β. If this holds, we can conclude by the (Banach-valued) dominated
convergence theorem thatΩT ;β(σ

β) converges to Ξ̂T (G) when β→∞, uniformly for σ ∈ K.

To prove the bound, we notice that by uniform admissibility we have for any s > 0∣∣Cβ(β`G(∂T), `σβ(γ), `σβ(γ))∣∣ 6 Mε,s(
1 + [2β−1`σβ(γ) − `G(∂T)]+

)s 6 Mε,s(
1 + [2`G(γ) − `G(∂T)]+

)s ,

where the second inequality used the lower bound β`G(γ) 6 `σβ(γ) of Proposition 5.4. Since the number
of small pairs of pants is bounded by the number of oriented edges, there are at most 6 curves γ ∈ S◦T for
which the denominator is equal to 1. Hence∑

γ∈S◦T

1(
1 + [2`G(γ) − `G(∂T)]+

)s 6 6 +
∑

L>`G(∂T)/2

# { γ ∈ S◦T | `G(γ) 6 L+ 1 }(
1 + 2L− `G(∂T)

)s .

Invoking Proposition 6.3, the numerator is bounded by mε(L + 1)2 for some constant mε depending on ε
only. Therefore ∣∣ΩT ;β(σ

β)
∣∣ 6Mε,s

(
6 +mε

∑
L>0

(1 + `G(∂T)/2 + L)2(
1 + 2L

)s )
.

By choosing s = 4 we find that |ΩT ;β(σ
β)| is bounded by a polynomial of degree 2 in `G(∂T), whose coeffi-

cients are independent of β but may depend on ε. This proves the theorem for Σ = T .

Now let Σ be a connected bordered surface with χΣ < −1, and assume the thesis for all Σ ′ such that
χΣ′ > χΣ. Let K be a compact subset of Tcomb

Σ and ε a lower bound on the systole on K. The geometric
recursion gives

ΩΣ;β(σ
β) =

∑
[P]∈PΣ

XP;β(~̀σβ(∂P))ΩΣ−P;β(σ
β|Σ−P).

For each [P] ∈ PΣ, we can repeat the previous arguments to show that XP(~̀σβ(∂P)) is converging to
X̂P;β(~̀G(∂P)) uniformly for G ∈ K. If the initial data were the one of Mirzakhani (4.22), the factor ΩΣ−P;β

would be the constant function 1. Then, we could finish the proof very similarly to the case of Σ = T , and
this would prove a second time the combinatorial Mirzakhani–McShane identities (Theorem 4.16). How-
ever, in the general case, we only know by induction hypothesis that ΩΣ−P;β(σ̃

β) converges to Ξ̂Σ−P(G̃)
uniformly for G̃ = sp(σ̃) in any compact of Tcomb

Σ−P . To employ this information, we shall compare the two
hyperbolic structures σβ|Σ−P and σ̃β := sp−1(βG|Σ−P), by means of their lengths functions. Since the com-
binatorial cutting does not decrease the systole, Proposition 5.4 on Σ and Σ−P respectively imply for β > βε
and γ ∈ S◦Σ−P

`G(γ) 6
`σβ(γ)

β
6 `G(γ)

(
1 +

κε

β

)
,

`G|Σ−P
(γ) 6

`σ̃β(γ)

β
6 `G|Σ−P

(γ)

(
1 +

κε

β

)
,

where we can use for κε,βε the constants provided by Proposition 5.4 for Σ. The combinatorial and hyper-
bolic cutting procedures are such that

∀γ ∈ S◦Σ−P `G|Σ−P
(γ) = `G(γ) and `σβ|Σ−P

(γ) = `σβ(γ).

Therefore

∀γ ∈ S◦Σ−P
(

1 +
κε

β

)−1

`σ̃β(γ) 6 `σβ|Σ−P
(γ) 6 `σ̃β(γ)

(
1 +

κε

β

)
.
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Further, for any component of ∂P ∩ Σ◦ and ∂Σ ∩ ∂(Σ− P), we have exactly `σβ|Σ−P
(γ) = `σ̃β(γ), so that the

above bounds extend to all γ ∈ SΣ−P. From our description of the topology of combinatorial Teichmüller
spaces (Theorem 2.20), we deduce that β−1sp(σβ|Σ−P) remains in a compact of Tcomb

Σ−P independent of β
when G ∈ K, and that it converges to G|Σ−P uniformly for G ∈ K. By the induction hypothesis, we have

lim
β→∞ΩΣ−P;β(σ

β|Σ−P) = Ξ̂Σ−P(G|Σ−P)

and the convergence is uniform for G ∈ K. Supplemented with a summable (over [P] ∈ PΣ) bound whose
derivation is similar to the case Σ = T and therefore omitted, this proves the theorem for Σ, and thus in full
generality by induction.

5.4 Topological recursion in the flow

By Theorem 5.2, we know that the Weil–Petersson measure flows in a pointwise sense, in the β → ∞ limit
,to the Kontsevich measure. This implies that the Weil–Petersson volumes flow (by rescaling the boundary
lengths by β) to the Kontsevich volumes. More generally, we are able to prove an analogue of Theorem 5.16
after integration over the moduli spaces.

Theorem 5.18. Let (Aβ,Bβ,Cβ)β>1 be initial data such that ρβ∗(Aβ,Bβ,Cβ) is uniformly strongly admissible
and converges uniformly on any subset of the form (0,M]3 ⊂ R3

+ to a limit (Â, B̂, Ĉ). Then, (Â, B̂, Ĉ) is strongly
admissible and

lim
β→∞

VΩg,n;β(βL)

β6g−6+2n = VΞ̂g,n(L), (5.30)

with uniform convergence for L in any subset of the form (0,M]n ⊂ Rn+.

Proof. We prove the result by induction on 2g−2+n > 0. For (g,n) = (0, 3), we have VΩ0,3;β(βL) = Aβ(βL),
which converges uniformly on any compact of R3 intersected with R3

+ to Â(L) = VΞ̂0,3(L). For (g,n) = (1, 1)
we have

VΩ1,1;β(βL1)

β2 =

ˆ
R+

Cβ(βL1, `, `)
`

β

d`
β

=

ˆ
R+

Cβ(βL1,β`,β`)`d`.

Note Cβ(βL1,β`,β`) converges uniformly on any (0,M]2 to Ĉ(L1, `, `). Strong uniform admissibility means
we can bound the integrand by an integrable function independent of β. Moreover, the uniformity of the
convergence around zero implies that we can exchange the integral and the limit, so that

lim
β→∞

VΩ1,1;β(βL1)

β2 = lim
β→∞

ˆ
R+

Cβ(βL1,β`,β`)`d` =
ˆ
R+

Ĉ(L1, `, `)`d` = VΞ̂1,1(L1),

and the convergence is uniform on any (0,M]. This proves the two base cases.

The general argument follows along the same lines as the (g,n) = (1, 1) case. Assume the result for (g ′,n ′)
such that 2g ′ − 2 + n ′ < 2g− 2 + n. The topological recursion for VΩg,n;β(βL) yields

VΩg,n;β(βL1, . . . ,βLn)
β6g−6+2n =

n∑
m=2

ˆ
R+

Bβ(βL1,βLm, `)
VΩg,n−1;β(`,βL2, . . . , β̂Lm, . . . ,βLn)

β6g−6+2(n−1)

`

β

d`
β

+
1
2

ˆ
R2

+

Cβ(βL1, `, ` ′)
(
VΩg−1,n+1;β(`, ` ′,βL2, . . . ,βLn)

β6(g−1)−6+2(n+1)

+
∑

JtJ′={L2,...,Lm}
h+h′=g

VΩh,1+#J;β(`,βJ)
β6h−6+2(1+#J)

VΩh′,1+#J′;β(`
′,βJ ′)

β6h′−6+2(1+#J′)

)
`` ′

β2

d`d` ′

β2 .

81



Now rescaling the integration variables, we get

VΩg,n;β(βL1, . . . ,βLn)
β6g−6+2n =

n∑
m=2

ˆ
R+

Bβ(βL1,βLm,β`)
VΩg,n−1;β(β`,βL2, . . . , β̂Lm, . . . ,βLn)

β6g−6+2(n−1) `d`

+
1
2

ˆ
R2

+

Cβ(βL1,β`,β` ′)
(
VΩg−1,n+1;β(β`,β` ′,βL2, . . . ,βLn)

β6(g−1)−6+2(n+1)

+
∑

JtJ′={L2,...,Lm}
h+h′=g

VΩh,1+#J;β(β`,βJ)
β6h−6+2(1+#J)

VΩh′,1+#J′;β(β`
′,βJ ′)

β6h′−6+2(1+#J′)

)
`` ′d`d` ′.

By our induction assumption, all of the β−(6g′−6+2n′)VΩg′,n′;β’s appearing on the right-hand side of the
equation converge uniformly on any (0,M]n. For Xβ ∈ {Bβ,Cβ }, we assumed that Xβ(βL) converges to
X̂(L) uniformly on any (0,M]3 and moreover that Xβ(βL) is uniformly admissible. Therefore using the
strong uniform admissibility we can bound the integrals around infinity by integrable functions indepen-
dently of β and that can be uniformly chosen on compact sets of L. The uniformity in compacts around zero
then implies that we can interchange the integral and the limit, which again by our induction assumption
reproduces the topological recursion for VΞ̂g,n(L) uniformly on any (0,M]n.

Corollary 5.19. If ρβ∗(A,B,C) is uniformly strongly admissible and converges uniformly on any compact of R3

intersected with R3
+ to a limit (Â, B̂, Ĉ), then (Â, B̂, Ĉ) is strongly admissible and

lim
β→∞

VΩg,n(βL)

β6g−6+2n = VΞ̂g,n(L). (5.31)

In particular, if VΩg,n(L) is a polynomial, then VΩg,n(L) is of degree at most 6g − 6 + 2n and VΞ̂g,n(L) is the
homogeneous component of degree 6g− 6 + 2n.
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6 Enumerative geometry of multicurves

In [33], Mirzakhani defines a function on the hyperbolic moduli space with cusps that counts the number
of multicurves with length bounded by some parameter t ∈ R+. Moreover, she calculates the integral of
this function over the moduli space as a sum over stable graphs. She then considers the behaviour of this
integral as the parameter tends to infinity, and in [34] she shows that the limiting value gives the Masur–
Veech volume of the moduli space of quadratic differentials.

In this section, after explaining how to parametrise multicurves via embedded ribbon graphs, we briefly
recall Mirzakhani’s work and then give the natural extension to the combinatorial setting. We then describe
twisted geometric recursion amplitudes, and by considering a special family of such functions we illustrate
how to recover additive statistics of multicurves by taking Laplace transform. This gives an interpretation
of the Masur–Veech polynomials in [1] as a Laplace transform of averages of additive statistics. Moreover,
this suggest a new family of polynomials, calculated by topological recursion, that calculate averages of
additive statistics of hyperbolic length.

6.1 Parametrising multicurves

Consider an open cell ZΣ,G on the combinatorial Teichmüller space Tcomb
Σ , that is a trivalent ribbon graph G

together with a marking f : Σ→ |G|. Assigning to each edge e ∈ EG the number of times a non-backtracking
representative on G of c ∈MΣ passes through it, we obtain a map

mZΣ,G : MΣ −→ NEG . (6.1)

We show that in fact this map gives a parametrisation of MΣ. Let us first introduce some notation to
describe its image.

Definition 6.1. Given a trivalent ribbon graph G, a corner is an ordered triple ∆ = (e, e ′, e ′′) where e, e ′, e ′′

are edges incident to a vertex in the cyclic order. Equivalently, a corner consists of a vertex v together with
the choice of an incident edge e. We say that a corner belongs to a face f ∈ FG if e ′ and e ′′ are edges around
that face. We denote by C(f) the set of corners belonging to f, and by CG the set of all corners. If we have an
assignment of real numbers (xe)e∈EG and ∆ = (e, e ′, e ′′) is a corner, we set x∆ = xe′′ + xe′ − xe.

Lemma 6.2. The map mZΣ,G is a bijection betweenMΣ and the set

ZG =

{
m ∈ NEG

∣∣∣∣ ∀∆ ∈ CG, m∆ ∈ 2N
∀f ∈ FG, ∃∆ ∈ C(f) s.t. m∆ = 0

}
. (6.2)

Proof. As mZΣ,G is additive under union, it is enough to prove that for any simple closed curve γ ∈ S◦Σ,
mZΣ,G(γ) ∈ ZG and there is a unique multicurve corresponding to eachm ∈ ZG.

For the first part, we decompose the geometric realisation |G| into strips Se for each edge e and small
triangular neighbourhoods Nv of each vertex the vertices as in Figure 28a, and pullback this structure to Σ
via f. If γ ∈ S◦Σ is a simple closed curve in Σ, we can isotope γ to a non-backtracking simple representative
γ that has me parallel paths in the strip corresponding to e ∈ EG. At each vertex v, it is possible to draw
pairwise non-intersecting arcs connecting inside Nv the endpoints of γ in ∂Nv in a non-backtracking way if
and only if m∆ ∈ 2N for each corner ∆. When these conditions hold, there is in fact a unique way (up to
isotopy relative to ∂Nv) to draw such arcs as in Figure 28b. Namely, we can label the points in ∂Nv ∩ γ∩Se
by pe,1, . . . ,pe,me following the cyclic order around v. Then, pe,i must be connected to

• pe′′,me′′+1−i for 1 6 i 6 1
2m∆′

• pe′, 1
2m∆′+1−i for 1

2m∆′ < i 6
1
2 (m∆′ +m∆′′) = me.
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• •v

Nv

e

Se

(a)

• e

e′

e′′

•
pe,me•

•

• •
pe,1•

•

•

(b)

Figure 28: Decomposition of Σ into strips Se around edges and triangular neighbourhoods Nv around
vertices.

This proves that mZΣ,G is injective on S◦Σ and its image is included in {m ∈ NEG | m∆ ∈ 2N }.

Let (ei)i∈Z/NZ be the sequence of edges around a face f, and ∆i be the corner containing both ei and ei+1.
Then, the 1

2m∆i arcs in γ ∩ Sei which are closest to f are connected to the 1
2m∆i arcs in γ ∩ Sei+1 which

are the closest to f. In particular, the 1
2 mini {m∆i } arcs which are (in each strip around f) the closest to f

are connected and form loops, which are homotopic to the boundary component of Σ that f represents. By
definition of S◦Σ, we must have mini {m∆i } = 0. This proves that mZΣ,G(S

◦
Σ) ⊂ ZG and the first part of the

claim.

Conversely, if we are givenm ∈ ZG, we drawme parallel arcs in Se, and connect them inside each Nv in the
unique non-intersecting and non-backtracking (as explained above) way. We obtain a collection of simple
closed curves, none of them being homotopic to a boundary component of Σ.

As a consequence, we obtain a polynomial growth of the number of essential simple closed curve of
bounded combinatorial length.

Proposition 6.3. Let Σ be a connected bordered surface of type (g,n) and ε > 0. For any G ∈ Tcomb
Σ such that

sysG > ε, and any t > 0, we have

#
{
γ ∈ S◦Σ

∣∣ `G(γ) 6 t } 6 mε t6g−6+2n, (6.3)

for some positive constantmε depending on ε and the topology (g,n) of the surface.

Proof. Let γ ∈ S◦Σ and denote by EG(γ) the number (with multiplicity) of edges γ passes through. We recall
from the proof of Proposition 5.4 that for sysG > εwe have

EG(γ) 6
(6g− 6 + 3n)2

ε
`G(γ).

If the underlying graph G is trivalent, from this bound and Lemma 6.2 we deduce

#
{
γ ∈ S◦Σ

∣∣ `G(γ) 6 t } 6 #

{
x ∈ ZG

∣∣∣∣∣ ∑
e∈EG

xe 6
(6g− 6 + 3n)2

ε
t

}

and the claim follows, as the latter is the set of integer points with bounded L1-norm in a polytope of
dimension 6g − 6 + 2n. If G is not trivalent, we resolve it in an arbitrary way into a trivalent ribbon graph
G ′ and the same argument works with G ′.

Remark 6.4. A second proof of Proposition 6.3 can be obtained by invoking that a similar result holds on
TΣ with respect to hyperbolic lengths – [40, 33] for punctured surfaces, extended to bordered surfaces in [2,
Section 7.2] – and flowing it to the combinatorial setting via Proposition 5.4.
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6.2 Unit balls in measured foliations: the hyperbolic case

Let Σ be a connected bordered surface of type (g,n). In Section 6.1, we considered the space MF?
Σ parame-

trising measured foliations on Σ up to Whitehead equivalence, allowing all types of boundary behaviours.
We consider now the subset MFΣ ⊂ MF?

Σ that contains only those measured foliations whose boundary is
made up of a union of singular leaves (that is, points at the boundary are of parallel type, cf. Figure 7c and
7f). In other words, on each boundary component there is at least one singularity, and the singularities on
the boundary are connected by singular leaves. For convenience, we include in MFΣ the empty foliation.
Notice that MFΣ is disjoint from the image of Tcomb

Σ in MF?
Σ.

The space MFΣ has dimension 6g−6+2n and admits a canonical piecewise linear structure. It also admits an
integral structure given byMΣ, the set of multicurves in which components are not allowed to be homotopic
to boundary components of Σ. We denote by µTh the Thurston measure on MFΣ associated to this piecewise
linear integral structure10. For an open set A ⊂MFΣ, we have

µTh(A) = lim
t→+∞ #(t ·A ∩MΣ)

t6g−6+2n .

The Thurston measure allows one to define a counting of multicurves associated to any length function on
MFΣ. In fact, MFΣ is a completion of the set of formal Q+-linear combinations of simple closed curves.

In the hyperbolic context, for σ ∈ TΣ the hyperbolic length function `σ : MΣ → R+ has a unique contin-
uous extension `σ : MFΣ → R>0 that is compatible with the piecewise linear structure. Mirzakhani [33]
introduces a function measuring the volume of the unit ball in MFΣ with respect to `σ.

Definition 6.5. The function BΣ : TΣ → [0,+∞] is defined by

BΣ(σ) = µTh
(
{ F ∈MFΣ | `σ(F) 6 1 }

)
. (6.4)

It is manifestly ModΣ-invariant, hence descends to a function Bg,n on Mg,n for Σ of type (g,n).

By definition of the Thurston measure, this function describes the asymptotic growth of the number of
multicurves of length 6 t, when t→∞, namely

BΣ(σ) = lim
t→+∞ # { c ∈MΣ | `σ(c) 6 t }

t6g−6+2n . (6.5)

The main properties of BΣ established by Mirzakhani for punctured surfaces – i.e. on Mg,n(0) – can easily
be generalised to the case of bordered surfaces.

Theorem 6.6. [33, Proposition 3.2, Theorem 3.3] The function BΣ takes values in R+, is continuous on TΣ, and
Bg,n is integrable on Mg,n(L) with respect to µWP. �

We remark that finiteness of BΣ comes from the hyperbolic analogue – known since [40] for punctured
surfaces and extended to bordered surfaces in [2, Theorem 7.2] – of Proposition 6.3.

More generally, the same properties hold for the counting function

NΣ(σ; t) = # { c ∈MΣ | `σ(c) 6 t } , (6.6)

and Mirzakhani computed in [33, Section 5] the integral of Ng,n(X; t) over Mg,n(L) as a sum over stable
graphs. Here we present an equivalent version of her statement, in a form that suits better our next purpose.

10On MFΣ, the normalisation by counting lattice points differs by a power of 2 from the normalisation obtained by taking the top
power of the Thurston symplectic form.
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Lemma 6.7. The integral of Ng,n(X; t) over Mg,n(L) is a polynomial in t2,L2
1, . . . ,L2

n. Furthermore, its Laplace
transform in the cutoff variable t is given by

ˆ
R+

(ˆ
Mg,n(L)

Ng,n(X; t)dµWP(X)

)
e−stdt

=
1
s

∑
Γ∈Gg,n

1
#Aut(Γ)

ˆ
R
EΓ
+

∏
v∈VΓ

VWP
g(v),n(v)

(
(`e)e∈Ev , (Lλ)λ∈Λv

) ∏
e∈EΓ

`e d`e
es`e − 1

(6.7)

and it is a polynomial of degree 6g− 5 + 2n in s−1. �

As a consequence, using the final value theorem for the Laplace transform, we have an expression of the
integral of Bg,n over Mg,n(L) as a sum over stable graphs (see also [1, 17]).

Theorem 6.8. [33, Theorem 5.3] The integral of Bg,n is computed as

(6g− 6 + 2n)!
ˆ
Mg,n(L)

Bg,n dµWP

=
∑
Γ∈Gg,n

1
#Aut(Γ)

ˆ
R
EΓ
+

∏
v∈VΓ

VK
g(v),n(v)

(
(`e)e∈Ev , (0λ)λ∈Λv

) ∏
e∈EΓ

`e d`e
e`e − 1

.
(6.8)

�

Notice the presence of Kontsevich volumes as vertices weights. This comes from the fact that the top
coefficient of s−1 in equation (6.7) is given by extraction of the largest possible power of the `e, and that the
top degree of VWP

g,n is equal to VK
g,n. We return in § 6.4.2 to the fact that the right-hand side of Equation (6.7)

can be calculated by the topological recursion.

6.3 Unit balls in measured foliations: the combinatorial case

Following the steps of the previous paragraph, we can also study the volume of the combinatorial unit balls
in MFΣ. For G ∈ Tcomb

Σ , we have a combinatorial length function `G : MFΣ → R>0, induced by the one on
the larger space of measured foliations MF?

Σ and already used in Section 2.3 to define the combinatorial
length of curves.

Definition 6.9. The function Bcomb
Σ : Tcomb

Σ → [0,+∞] is defined by

Bcomb
Σ (G) = µTh

(
{ F ∈MFΣ | `G(F) 6 1 }

)
. (6.9)

By construction, this function measures the asymptotic growth of the number of multicurves with respect
to combinatorial lengths

Bcomb
Σ (G) = lim

t→+∞ # { c ∈MΣ | `G(c) 6 t }
t6g−6+2n . (6.10)

In fact, it can be obtained as a limit of the hyperbolic setting via the rescaling flow.

Lemma 6.10. For any connected bordered surface Σ of type (g,n), we have

lim
β→∞β6g−6+2n BΣ(σ

β) = Bcomb
Σ (sp(σ)) (6.11)

and the limit is uniform for sp(σ) in any thick part of Tcomb
Σ .
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Proof. Let ε > 0 and G ∈ Tcomb
Σ such that sysG > ε. We denote σ = sp−1(G) and σβ = sp−1(βG). Since the

length of a multicurve is the sum of lengths of its connected components, Proposition 5.4 implies that for
any c ∈MΣ, we have β`G(c) 6 `σβ(c) 6 (β+ κε)`G(c). Therefore{

c ∈MΣ

∣∣∣∣ `G(c) 6 t

β+ κε

}
⊆
{
c ∈MΣ

∣∣∣∣ `σβ(c) 6 t} ⊆ { c ∈MΣ

∣∣∣∣ `σβ(c) 6 t

β

}
and thus

Bcomb
Σ (G)

(β+ κε)6g−6+2n 6 BΣ(σ
β) 6

Bcomb
Σ (G)

β6g−6+2n .

Multiplying by β6g−6+2n and taking the limit β→∞ yields the result.

We shall now establish the combinatorial analogues of Theorem 6.6, Lemma 6.7 and Theorem 6.8.

We first notice that Bcomb
Σ takes values in R+, as a consequence of Proposition 6.3, and is continuous since

the length function `∗ : Tcomb
Σ → RSΣ+ is continuous. The same holds for the counting function

Ncomb
Σ (G; t) = # { c ∈MΣ | `G(c) 6 t } . (6.12)

The integrability result is more delicate. We derive it from the following two statements: the integration
formulae of Lemma 6.11 and Theorem 6.12.

Lemma 6.11. The integral of Ncomb
g,n (G; t) over Mcomb

g,n (L) is a polynomial in t2,L2
1, . . . ,L2

n. Furthermore, its Laplace
transform in the cut-off variable t is given by

ˆ
R+

(ˆ
Mcomb
g,n (L)

Ncomb
g,n (G; t)dµK(G)

)
e−stdt

=
1
s

∑
Γ∈Gg,n

1
#Aut(Γ)

ˆ
R
EΓ
+

∏
v∈VΓ

VK
g(v),n(v)

(
(`e)e∈Ev , (Lλ)λ∈Λv

) ∏
e∈EΓ

`e d`e
es`e − 1

.
(6.13)

Proof. The proof is a variation on the ideas of [33, Section 5], adapted to our notation and the combinatorial
setting. Consider the class of a multicurve on Σ under the action of the mapping class group. It is deter-
mined by the data (Γ ,a) of a stable graph Γ ∈ Gg,n, together with an integral tuple a ∈ ZEΓ+ giving the
multiplicity of each component. We then consider the frequency of the multicurve in the mapping class
orbit (Γ ,a) with combinatorial length bounded by t:

scomb
Σ (G; Γ ,a, t) = # { c ∈ (Γ ,a) | `G(c) 6 t } .

It is a nonnegative mapping class group invariant function of G. Thus, we can apply the integration formula
of Proposition 3.13 to the function scomb

g,n induced on the moduli space Mcomb
g,n (L) (see also Remarks 3.15 and

3.16). With the notation of Section 3.3, consider the function f : Rn+ ×REΓ+ → R given by ΞΓ ≡ 1 and

f(L, `) =

{
1 if

∑
e∈EΓ ae`e 6 t,

0 otherwise.

Then we get Ξf,ΓΣ (G) = Ncomb
Σ (G; t), and in particular

ˆ
Mcomb
g,n (L)

scomb
g,n (G; Γ ,a, t)dµK(G) =

1
#Aut(Γ ,a)

ˆ
〈a,l〉6t

∏
v∈VΓ

VK
g(v),n(v)

(
(`e)e∈Ev , (Lλ)λ∈Λv

) ∏
e∈EΓ

`e d`e,
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where 〈a, `〉 =
∑
e∈EΓ ae`e. It is easy to see that such integrals are polynomial in t2,L2

1, . . . ,L2
n. Furthermore,

notice that for any polynomial p(`) in the variables (`2e)e∈EΓ , we have

ˆ
R+

(ˆ
〈a,`〉6t

p(`)
∏
e∈EΓ

`e d`e

)
e−stdt =

1
s

ˆ
R
EΓ
+

p(`)
∏
e∈EΓ

e−sae`e`e d`e.

From this, together with the relation

Ncomb
g,n (G; t) =

∑
Γ∈Gg,n

∑
a∈ZEΓ+

#Aut(Γ ,a)
#Aut(Γ)

scomb
g,n (G; Γ ,a, t)

and Tonelli’s theorem, we find
ˆ
R+

(ˆ
Mcomb
g,n (L)

Ncomb
g,n (G; t)dµK(G)

)
e−stdt

=
∑
Γ∈Gg,n

1
#Aut(Γ)

∑
a∈ZEΓ+

ˆ
R+

(ˆ
〈a,l〉6t

∏
v∈VΓ

VK
g(v),n(v)

(
(`e)e∈Ev , (Lλ)λ∈Λv

) ∏
e∈EΓ

`e d`e

)
e−stdt

=
1
s

∑
Γ∈Gg,n

1
#Aut(Γ)

∑
a∈ZEΓ+

ˆ
R
EΓ
+

∏
v∈VΓ

VK
g(v),n(v)

(
(`e)e∈Ev , (Lλ)λ∈Λv

) ∏
e∈EΓ

e−sae`e`e d`e

=
1
s

∑
Γ∈Gg,n

1
#Aut(Γ)

ˆ
R
EΓ
+

∏
v∈VΓ

VK
g(v),n(v)

(
(`e)e∈Ev , (Lλ)λ∈Λv

) ∏
e∈EΓ

`e d`e
es`e − 1

.

Theorem 6.12. The integral of Bcomb
g,n is computed as

(6g− 6 + 2n)!
ˆ
Mcomb
g,n (L)

Bcomb
g,n dµK

=
∑
Γ∈Gg,n

1
#Aut(Γ)

ˆ
R
EΓ
+

∏
v∈VΓ

VK
g(v),n(v)

(
(`e)e∈Ev , (0λ)λ∈Λv

) ∏
e∈EΓ

`e d`e
e`e − 1

.
(6.14)

Proof. From Lemma 6.11, with the change of variable `e 7→ `e/s, we have

ˆ
R+

(ˆ
Mcomb
g,n (L)

Ncomb
g,n (G; t)dµK(G)

)
e−stdt

=
1

s6g−5+2n

 ∑
Γ∈Gg,n

1
#Aut(Γ)

ˆ
R
EΓ
+

∏
v∈VΓ

VK
g(v),n(v)

(
(`e)e∈Ev , (0λ)λ∈Λv

) ∏
e∈EΓ

`e d`e
e`e − 1

+O(s)

 .

Here we used the relation #EΓ +
∑
v∈VΓ (3g(v) − 3 + n(v)) = 3g − 3 + n. From properties of the Laplace

transform, we find
ˆ
R+

(ˆ
Mcomb
g,n (L)

Ncomb
g,n (G; t)
t6g−6+2n dµK(G)

)
e−stdt

=
1
s

 1
(6g− 6 + 2n)!

∑
Γ∈Gg,n

1
#Aut(Γ)

ˆ
R
EΓ
+

∏
v∈VΓ

VK
g(v),n(v)

(
(`e)e∈Ev , (0λ)λ∈Λv

) ∏
e∈EΓ

`e d`e
e`e − 1

+O(s)

 ,

and from the final value theorem for the Laplace transform, we have the thesis.
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Note that Lemma 6.11 and Theorem 6.12 are valid as equalities in [0,+∞] as we only used Tonelli’s theorem.
Since VK are polynomials, the right-hand sides are actually finite so we can deduce integrability.

Corollary 6.13. The functions Ncomb
g,n and Bcomb

g,n are integrable on Mg,n(L) with respect to µK. �

By comparing Equations (6.8) and (6.14), we also deduce that the integrals of the B-functions are the same
in the combinatorial and in the hyperbolic world and independently of boundary lengths.

Corollary 6.14. The following equality holds
ˆ
Mg,n(L)

Bg,n dµWP =

ˆ
Mcomb
g,n (L)

Bcomb
g,n dµK. (6.15)

Furthermore, both quantities are independent of L ∈ Rn+. �

6.4 Geometric recursion for combinatorial length statistics of multicurves

We can rephrase the results of the previous paragraph by saying that we were able to compute combinato-
rial length statistics of multicurves with respect to the Heaviside function θ(t−`). Indeed the combinatorial
Mirzakhani’s counting function Ncomb

Σ can be rewritten as

Ncomb
Σ (G; t) =

∑
c∈MΣ

θ
(
t− `G(c)

)
.

In this paragraph, we see the overlap between twisted geometric recursion amplitudes and additive statis-
tics of lengths of multicurves. In the last part of the paragraph, we connect this to the counting of Ncomb

Σ via
the Laplace transform.

6.4.1 Geometric recursion and statistics of multicurves

An immediate consequence of Section 4.5 is a GR formula for the combinatorial length statistic of mul-
ticurves with exponentially decaying weight: Take ΞΣ = ΞK

Σ ≡ 1 to be the Kontsevich amplitudes, and
F(`; s) = e−s` for multicurves, or equivalently f(`; s) = 1

es`−1 for primitive multicurves (cf. Remark 4.21).
This choice is of particular interest, because for every G ∈ Tcomb

Σ and every multicurve c ∈MΣ,∏
γ∈π0(c)

e−s`G(γ) = e−s`G(c).

Hence, the specialisation of Theorem 4.20 to such choices gives the following result.

Corollary 6.15. The family of combinatorial GR initial data

A(L1,L2,L3; s) = 1,

B(L1,L2, `; s) = BK(L1,L2, `) +
1

es` − 1
,

C(L1, `, ` ′; s) = CK(L1, `, ` ′) +
BK(L1, `, ` ′)
es` − 1

+
BK(L1, ` ′, `)
es`
′ − 1

+
1

(es` − 1)(es`′ − 1)
,

DT (G; s) =
∑
c∈MT

e−s`G(c),

(6.16)

are strongly admissible, and the associated GR amplitudes ΞΣ(G; s) satisfy

ΞΣ(G; s) =
∑
c∈MΣ

e−s`G(c). (6.17)
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Furthermore, the TR amplitudes VΞg,n(L; s) satisfy

VΞg,n(L; s) =
∑
Γ∈Gg,n

1
#Aut(Γ)

ˆ
R
EΓ
+

∏
v∈VΓ

VK
g(v),n(v)

(
(`e)e∈E(v), (Lλ)λ∈Λ(v)

) ∏
e∈EΓ

`ed`e
es`e − 1

. (6.18)

�

6.4.2 Connection with the combinatorial Mirzakhani’s counting function

Taking the Laplace transform in the cut-off parameter t of the counting function Ncomb
Σ (G; t) and its average´

Mcomb
g,n (L) N

comb
g,n (G; t)dµK(G), and comparing them with Equations (6.17) and (6.18), we get the following

corollary, which retrieves Lemma 6.11.

Theorem 6.16. The Laplace transform of the counting functions

ΞΣ(G; s) = s
ˆ
R+

Ncomb
Σ (G; t) e−stdt (6.19)

are computed by GR, with initial data (6.16). Further, their averages over the combinatorial moduli spaces

VΞg,n(L; s) = s
ˆ
R+

(ˆ
Mcomb
g,n (L)

Ncomb
g,n (G; t)dµK(G)

)
e−stdt (6.20)

are computed by TR, and by the sum over stable graphs (6.13).

In [1] the authors introduced some polynomials VMV
g,n(L), indexed by (g,n), and called them Masur–Veech

polynomials. They are computed by topological recursion, and their constant terms are the Masur–Veech
volumes of the principal strata of the moduli spaces of quadratic differentials (cf. next section). Here we
propose to upgrade the definition, and consider the 1-parameter family of polynomials

VMV
g,n(L; s) =

∑
Γ∈Gg,n

1
#Aut(Γ)

ˆ
R
EΓ
+

∏
v∈VΓ

VK
g(v),n(v)

(
(`e)e∈E(v), (Lλ)λ∈Λ(v)

) ∏
e∈EΓ

`ed`e
es`e − 1

, (6.21)

which satisfy VMV
g,n(L; s) = s−6g+6−2nVMV

g,n(sL). The above argument shows that such polynomials coincide
with (6.20), providing therefore a more direct geometric interpretation for them.

Remark 6.17. As mentioned previously, the hyperbolic quantities Ng,n(σ; t) and their averages can be cal-
culated by GR/TR. Namely, the family of hyperbolic GR initial data

A(L1,L2,L3; s) = 1,

B(L1,L2, `; s) = BM(L1,L2, `) +
1

es` − 1
,

C(L1, `, ` ′; s) = CM(L1, `, ` ′) +
BM(L1, `, ` ′)
es` − 1

+
BM(L1, ` ′, `)
es`
′ − 1

+
1

(es` − 1)(es`′ − 1)
,

DT (σ; s) =
∑
c∈MT

e−s`σ(c),

(6.22)

are strongly admissible, and the associated GR amplitudesΩΣ(σ; s) satisfy

ΩΣ(σ; s) =
∑
c∈MΣ

e−s`σ(c) = s

ˆ
R+

NΣ(σ; t) e−stdt. (6.23)
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Furthermore, the TR amplitudes VΩg,n(L; s) satisfy

VΩg,n(L; s) =
∑
Γ∈Gg,n

1
#Aut(Γ)

ˆ
R
EΓ
+

∏
v∈VΓ

VWP
g(v),n(v)

(
(`e)e∈E(v), (Lλ)λ∈Λ(v)

) ∏
e∈EΓ

`ed`e
es`e − 1

= s

ˆ
R+

(ˆ
Mg,n(L)

Ng,n(σ; t)dµWP(σ)

)
e−stdt.

(6.24)

The quantities VΩg,n(L; s) should be thought of as the hyperbolic analogue of the 1-parameter family of
Masur–Veech polynomials of (6.21). Notice that, as the Weil–Petersson volumes are not homogeneous, the
dependence on s is more complicated in this case.

6.5 Combinatorial formulae for Masur–Veech volumes

If Σ is a smooth surface of genus g with n > 0 labelled punctures, we denote TΣ (resp. Mg,n) the corre-
sponding Teichmüller space (resp. moduli space). On the bundle QTΣ → TΣ of meromorphic quadratic
differentials with simple poles at the punctures, Masur [30] and Veech [42] introduced a piecewise linear
structure via period coordinates, and an associated measure µMV which is ModΣ-invariant. This induces a
measure on the total space of the bundle Q1Mg,n →Mg,n of quadratic differentials of unit area, by taking
for a measurable set Y ⊆ Q1Mg,n

µ1
MV(Y) = (12g− 12 + 4n)µMV

({
tq
∣∣ t ∈ (0, 1

2 ) and q ∈ Y
} )

.

The total mass of this measure is finite, and is called Masur–Veech volume (for the open stratum of the moduli
space of quadratic differentials):

MVg,n = µ1
MV(Q

1Mg,n). (6.25)

Many works have been recently devoted to the understanding of MVg,n and closely related quantities,
motivated (and related to) dynamical questions on the space of measured foliations (and on the Teichmüller
space). It is sometimes convenient to change normalisations and divideMVg,n by the constants

ag,n = 24g−2+n(4g− 4 + n)! · (6g− 6 + 2n) or a ′g,n =
24g−2+n(4g− 4 + n)!

(6g− 7 + 2n)!
.

Our present work links the combinatorial geometry to MVg,n, adding on previously known approaches.
They can be summarised in the following way.

Proposition 6.18. The following quantities are all equal:

(i) MVg,n defined by (6.25).

(ii) a ′g,n times the sum over stable graphs in Theorem 6.8.

(iii0) ag,n
´
Mg,n

BΣdµWP.

(iii) ag,n
´
Mg,n(L)

BΣdµWP, for any L ∈ Rn+.

(iv) a ′g,n times the constant term of the hyperbolic TR amplitudes results by twisting the Kontsevich initial data by
f(`) = 1

e`−1 .

(iv+) a ′g,n lim
s→0

s6g−5+2nVΩg,n(L; s), where VΩg,n(L; s) are the 1-parameter family of hyperbolic TR amplitudes for

the initial data (6.22).

(v) ag,n
´
Mcomb
g,n (L) B

comb
Σ dµK for any L ∈ Rn+.
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(vi) a ′g,n times the constant term of the combinatorial TR amplitudes results by twisting the Kontsevich initial data
by f(`) = 1

e`−1 .

(vi+) a ′g,n lim
s→0

s6g−5+2nVΞg,n(L; s), where VΞg,n(L; s) are the 1-parameter family of combinatorial TR amplitudes

for the initial data (6.16).

In [15] one can find two more formulae for MVg,n, proved starting from (i): the first one involves inter-
section theory on Mg,n, and the second is another topological recursion distinct from (iv+) and (vi+). As
they require very different methods (involving algebraic geometry of moduli spaces of curves), we do not
discuss them.

There are many different paths and methods to establish all the equalities in Proposition 6.18. To clarify the
picture, we list what currently is known:
(i) = (iii0). Comes from the work of Bonahon [7] and Mirzakhani [34], see e.g. [17] or [1, Lemma 3.1].
(ii) = (iii0). Proved by Mirzakhani in [33, Theorem 5.3], studying the Laplace transform of the counting
function as reported here in Section 6.2. Proved differently in [17] by first relating (iii0) with the asymptotic
number of square-tiled surfaces, and combinatorial techniques to evaluate this number.
(iii0) = (iii). Proved in [1, Corollary 3.6].
(ii) = (iii) = (iv). Proved in [1] via the study of (asymptotics of integrals of) statistics of hyperbolic lengths of
multicurves and another Laplace transform method.
(iii) = (iv+). Follows from Mirzakhani’s work, together with the specialisation of [2, Theorem 10.1] to the
Mirzakhani GR initial data twisted by f(`; s) = 1

es`−1 and the Laplace transform method.
(ii) = (v) = (vi) = (vi+) are the results of the previous section. Notice that (vi) = (vi+) is just a consequence of
the polynomiality of the 1-parameter family of Masur–Veech polynomials.

One can also give an interpretation of the area Siegel–Veech constant via derivative statistics of combinato-
rial lengths by adapting [1, Section 4].

There are however some missing paths that would be desirable to complete in the future.

A first question consists in proving (iii) = (v) via the rescaling flow (Section 5). We can certainly write

ˆ
Mg,n(βL)

Bg,n dµWP =

ˆ
Mcomb
g,n (L)

β6g−6+2n(Bg,n ◦ Rβ) Jβ dµK, Jβ =
1

β6g−6+2n

R∗βdµWP

dµK

We know by Theorem 5.2 due to Mondello that Jβ converges pointwise to 1, and by Lemma 6.10 that
β6g−6+2n(Bg,n ◦ Rβ) converges to Bcomb

g,n uniformly on compacts. This is however not sufficient, as we
would need an effective and integrable enough bound independent of β to conclude that (iii) = (v) by
dominated convergence, and such a bound is not currently available. Note that one cannot hope for a
bound by constant, because Bcomb

Σ (G) can diverge when sysG → 0. Getting effective and uniform bounds
for the Jacobian Jβ over Tcomb

Σ is a question of broader interest: it would allow to study the behaviour for
large boundary lengths L of the integral on Mg,n(L) of a larger class of functions.

So far the combinatorial expressions (v), (vi) and (vi+) are only linked to (i) or (iii0) indirectly, via the sum
over stable graphs (ii). We believe it would be interested to find a direct geometric proof of the equality
(i) = (v) in a similar way that (i) = (iii0) was proved in [34], i.e. give a direct relation between the Masur–
Veech measure on the moduli space of quadratic differentials and the combinatorial enumerative geometry
of measured foliations. If such a link could be made precise, one may hope that the role of hyperbolic
geometry for the study of flat surfaces could be substituted by combinatorial geometry, which may bring
some useful simplifications.
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A Topology on the combinatorial Teichmüller spaces

The combinatorial Teichmüller spaces have been endowed with a natural topology associated to a dual
construction: the proper arc complex. The main references for this discussion are [29, 35].

Definition A.1. Fix a connected bordered surface Σ. Define the arc complex AΣ to be the simplicial complex
whose vertices are isotopy classes α of arcs in Σ with endpoints on the boundary ∂Σ which are homotopi-
cally non-trivial relatively to ∂Σ. A simplex in AΣ is a collection α = (α1, . . . ,αk) of distinct vertices such
that the arcs αi admit representatives which do not intersect. The non-proper subcomplex A∞Σ of AΣ con-
sists of those simplices α such that one connected component of Σ \

⋃k
i=1 αi is not simply connected. The

simplices in AΣ \A∞Σ are called proper.

Consider the geometric realisation spaces |AΣ| and |A∞Σ |. The geometric realisation of a simplicial complex
comes with two natural topologies: the coherent topology, namely the finest topology that makes the real-
isation of all simplicial maps continuous, and the metric topology, for which every k-simplex is isometric
to the standard simplex ∆k ⊂ Rk+1 and every attachment map is a local isometry. The metric topology on
|AΣ| is coarser than the coherent one, but they agree where the complex is locally finite, and this is the case
for |AΣ| \ |A∞Σ |.

Figure 29: The simplicial structure of |AP | and |A∞P | and the set |AP | \ |A∞P | associated to a pair of pants P.
The latter is in natural bijection with the slice {G ∈ Tcomb

P | `G(∂1P) + `G(∂2P) + `G(∂3P) = 1 }.

Consider then the topological space (|AΣ| \ |A
∞
Σ |)×R+, called metrised arc complex, whose points are of the

form x =
∑k
i=1 `i αi, where `i > 0 and (α1, . . . ,αk) is a proper simplex. There is a bijection between the
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• •
e

αe

Figure 30: Example of duality between a combinatorial structure (red) and an arc system (light blue).

spaces Tcomb
Σ and (|AΣ| \ |A∞Σ |) × R+. Given a combinatorial structure G, we define for each edge e the

dual arc αe connecting the two (possibly equal) boundary components on the two sides of e (see Figure 30).
Thus, we define the map Tcomb

Σ → (|AΣ| \ |A
∞
Σ |) × R+ by setting G 7→

∑
e∈EG

`G(e)αe. The map is clearly
invertible and we topologise the combinatorial Teichmüller space Tcomb

Σ by pulling back the topology of the
proper arc complex. Further, through the spine construction, it is possible to prove the following

Theorem A.2. [29, 35] There is an homeomorphism

sp : TΣ −→ (|AΣ| \ |A
∞
Σ |)×R+, (A.1)

equivariant under the action of the mapping class group. �

B Examples of cutting, gluing, and combinatorial Fenchel–Nielsen co-
ordinates

CUTTING & GLUING. In order to make the presentation of the cutting and gluing algorithms clearer, we
present some neat examples of these procedures. The first two (Figures 31 and 32) cover the case of a
sphere Σ with four boundary components, the last two (Figures 33 and 34) cover the case of a torus T with
one boundary component.

In all examples, the cutting algorithm is presented in lexicographic order, i.e. the images are labelled by (a),
(b), (c), et cetera, while the gluing algorithm is presented with the same images, but in reversed lexicographic
order. The combinatorial structure is depicted in red, the associated measured foliation in blue (only the
singular leaves are reported). The cutting curve γ is depicted in green, and it coincide with the curve obtain
in the gluing algorithm after identification of two boundary components γ− ∼ γ+. The component γ− is
always located on the left side of the figure, while γ+ is located on the right side. The identification points
p± ∈ γ± are depicted in grey, and no twist is performed (that is, p− is identified with p+). Further, the
letters a,b, c, . . . are referring to edge lengths of the cutting process, while the letters r, s, t, . . . are referring
to edge lengths of the gluing process.

COMBINATORIAL FENCHEL–NIELSEN COORDINATES. We present two computations of combinatorial Fen-
chel–Nielsen coordinates on a torus T with one boundary component, relative to two different cells (Fig-
ure 35 and Figure 36). Furthermore, an illustration of the combinatorial Okai formulae (Proposition 5.8) is
presented.

In all examples, the combinatorial structure is depicted in red, the associated measured foliation in blue
(only the singular leaves are reported), the pants decompositions P,P ′ in green and the collection S,S ′ in
yellow.
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CUTTING. Consider G ∈ Tcomb
Σ and γ a cutting

curve as in Figure 31a. We have

`G(γ) = a+ b+ e+ f.

After cutting, we obtain two pairs of pants P±
and two combinatorial structures G± ∈ Tcomb

P±
.

GLUING. Consider two combinatorial structures
G± ∈ Tcomb

P±
and two boundary components γ± of

P± of the same length as in Figure 31f. We have

`G−
(γ−) = r+ s, `G+

(γ+) = u+ v.

After gluing (with a choice of p±), we obtain a
sphere Σ with four boundary components and a
combinatorial structure G ∈ Tcomb

Σ .

•

•

◦

◦

•

•

a

d

b

c ef

(a)

•

•

◦

◦

•

•

(b)

•

•
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•

◦

◦

(c)

•

•
•
•
◦
◦

(d)

•

••
•

◦
◦

(e)

•

•
•

•

◦

◦

a+ f = r

b+ e = s b+ f = v

a+ e = u

d = wc = t • •
p−
p+

(f)

Figure 31
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CUTTING. Consider G ∈ Tcomb
Σ and γ a cutting

curve as in Figure 31a. We have

`G(γ) = a+ c.

After cutting, we obtain a pairs of pants P and a
combinatorial structure G ′ ∈ Tcomb

P .

GLUING. Consider a combinatorial structure
G ′ ∈ Tcomb

P and two boundary components γ±
of P of the same length as in Figure 31f. We have

`G′(γ−) = r, `G′(γ+) = s.

After gluing (with a choice of p±), we obtain
a torus T with one boundary component and a
combinatorial structure G ∈ Tcomb

T .

•
•

a

b

c

(a)

•
•

(b)

•
•

(c)

•
•

(d)

•
•

(e)

•
•

b = t

a+ c = r a+ c = s

• •p− p+

(f)

Figure 33
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CUTTING. Consider G ∈ Tcomb
Σ and γ a cutting

curve as in Figure 32a. We have

`G(γ) = 2a+ b+ c.

After cutting, we obtain a pairs of pants P and a
combinatorial structure G ′ ∈ Tcomb

P .

GLUING. Consider a combinatorial structure
G ′ ∈ Tcomb

P and two boundary components γ±
of P of the same length as in Figure 32f. We have

`G′(γ−) = r+ s, `G′(γ+) = r+ t.

After gluing (with a choice of p±), we obtain
a torus T with one boundary component and a
combinatorial structure G ∈ Tcomb

T .

•
•a

b

c

(a)

•
•

(b)

•
•

(c)

•
•

(d)

•
•

(e)

•
•a = r

a+ b+ c = s

a+ b+ c = t

• •
p−

p+

(f)

Figure 34
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COMBINATORIAL FENCHEL–NIELSEN COORDINATES. Consider the combinatorial structure G ∈ Tcomb
T on a

torus T with one boundary component as in Figure 35. We have

L = 2a+ 2b+ 2c.

Further, the combinatorial Fenchel–Nielsen coordinates with respect the seamed pants decomposition (P,S) =
(γ,β) of Figure 35a are computed with the help of Figure 35b and are given by

` = a+ c, τ = c,

while the combinatorial Fenchel–Nielsen coordinates with respect the seamed pants decomposition (P ′,S ′) =
(γ ′,β ′) of Figure 35c are computed with the help of Figure 35d and are given by

` ′ = b+ c, τ ′ = −c.

This is in accordance with the combinatorial Okai formulae, form which

` ′ = |τ|+
[
L−2`

2

]
+

= |c|+ b

= b+ c,

τ ′ = − sgn(τ)
∣∣∣`− [L−2`′(`,τ)

2

]
+

∣∣∣
= −

∣∣(a+ c) − a
∣∣

= −c.

•

•

β

γ

L

b

c

a

(a)

•

•

β

γ

L

(b)

•

•

γ ′

β

L

b

c

a

(c)

L

•

•

γ ′

β ′

(d)

Figure 35
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COMBINATORIAL FENCHEL–NIELSEN COORDINATES. Consider the combinatorial structure G ∈ Tcomb
T on a

torus T with one boundary component as in Figure 36. We have

L = 2a+ 2b+ 2c.

Further, the combinatorial Fenchel–Nielsen coordinates with respect the seamed pants decomposition (P,S) =
(γ,β) of Figure 36a are computed with the help of Figure 36b and are given by

` = 2a+ b+ c, τ = a+ b,

while the combinatorial Fenchel–Nielsen coordinates with respect the seamed pants decomposition (P ′,S ′) =
(γ ′,β ′) of Figure 36c are computed with the help of Figure 36d and are given by

` ′ = a+ b, τ ′ = −2a− b.

This is in accordance with the combinatorial Okai formulae, form which

` ′ = |τ|+
[
L−2`

2

]
+

= |a+ b|+ 0

= a+ b,

τ ′ = − sgn(τ)
∣∣∣`− [L−2`′(`,τ)

2

]
+

∣∣∣
= −

∣∣(2a+ b+ c) − c
∣∣

= −2a− b.

•
•

L

a

b

c β

γ

(a)

•
•

L

β

γ
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•
•

L

a

b

c γ ′

β ′

(c)

•
•

L

β ′

γ ′

(d)

Figure 36
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C Integral points in the moduli space and factors of 2

Let G be a ribbon graph of type (g,n), and S ⊂ EG such that #S = n and the dual graph G∗S of S (considered
as a subgraph of G) is connected and has a single cycle, of odd length. We label the edges so that S =

{e1, . . . , en} and EG = {e1, . . . , e6g−g+3n}. IfG is a metric structure onG, we call `i = `G(ei). The multiplicity
Ai,e ∈ {0, 1, 2} of an edge e ∈ EG around the i-th face define an adjacency matrix A of size n× (6g− 6 + 3n).
We recall the following well-known fact (see e.g. [16, Theorem 2.2]).

Lemma C.1. The restriction Â of the adjacency matrix R to the n first columns is invertible, and |det(Â)| = 2. �

It is useful for § 4.2.2 to characterise the integral points in Mcomb
g,n (L) in terms of integral points in Mcomb

g,n .

Lemma C.2. `n+1, . . . , `6g−6+3n ∈ Z and
n∑
i=1
Li is even if and only if `1, . . . , `6g−6+3n ∈ Z.

Proof. It is sufficient to prove the implication, since the converse is obvious. The result is elementary and
well-known, but as we did not identify a reference for it, we include a proof. Suppose that `n+1, . . . , `6g−6+3n

are integers and
∑n
i=1 Li = 0 (mod 2). By hypothesis, G∗S is the union of trees rooted at a cycle with 2p+ 3

edges for some p > 0, and its vertices are labelled from 1 to n. For e ∈ S and i ∈ {1, . . . ,n}, let de,i be the
graph distance in G∗S between e∗ (the dual of e) and the vertex i. If e is adjacent to the face i, then de,i = 0.
There is a natural notion of descendent vertices of an edge belonging to a tree of G∗S, given that the trees are
rooted at the cycles of G∗S. The inverse of Â can now be made explicit.

• If e∗ does not belong to the cycle of G∗S

Â−1
e,i =

{
(−1)de,i if i is a descendent of e∗

0 otherwise.

• If e∗ belongs to the cycle of G∗S,

Â−1
e,i =

(−1)de,i

2
.

If e∗ does not belong to the cycle of G∗S, for all i ∈ {1, . . . ,n} we have Â−1
e,i ∈ {−1, 0, 1}, so

`e =

n∑
i=1

Â−1
e,i

(
Li −

6g−6+3n∑
k=n+1

Ai,ek`k

)

belongs to Z. If e∗ belongs to the cycle of G∗S, for all i ∈ {1, . . . ,n} we have 2Â−1
e,i = 1 (mod 2). This implies

the following:

2`e =
n∑
i=1

2Â−1
e,i

(
Li −

6g−6+3n∑
k=n+1

Ai,ek`k

)

=

n∑
i=1

Li −

6g−6+3n∑
k=n+1

(
n∑
i=1

Ai,ek

)
`k (mod 2)

= 0 (mod 2),

where the second to last line comes from the hypothesis
∑n
i=1 Li = 0 (mod 2) and

∑n
i=1Ai,e = 2. The

result of this calculation is that `e ∈ Z.
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Index of notations

G,G Def. 2.2 Ribbon graph, metric ribbon graph

Aut(G) ⊃ Aut(G) Def. 2.4 Their automorphism groups

|G| Def. 2.10 Geometric realisation of a metric ribbon graph

(G, f), G Def. 2.11 Combinatorial marking, combinatorial structure

SΣ Sec. 2.3.1 Set of homotopy classes of simple closed curves on Σ

S◦Σ ⊂ SΣ Sec. 2.3.1 Subset of essential simple closed curves Σ

MΣ,M ′Σ Sec. 2.3.1 Set of multicurves of Σ, set of primitive multicurves on Σ

PΣ,m0 , P∅
Σ,m0

, PmΣ,m0
Def. 2.22 Sets of homotopy classes of embedded pairs of pants in Σ: withm0 as a

boundary, withm0 and an essential simple curve as boundaries, withm0

andm as boundaries

CΣ,m0 , C∅
Σ,m0

, CmΣ,m0
Def. 2.23 Set of non-trivial homotopy classes of proper embeddings of arcs: with

initial point onm0, with both endpoints onm0, with initial point onm0

and final point onm

Q : CΣ,m0 → PΣ,m0 Eqn. (2.13) Map associating to an arc the pair of pants obtained by going around the
paths and the boundaries at its endpoints

ModΣ, Mod∂Σ Def. 2.8 Mapping class group of Σ, pure mapping class group of Σ

Tcomb
Σ , Tcomb

Σ (L) Def. 2.11 Combinatorial Teichmüller space of Σ, with fixed boundary lengths L ∈ Rn+

Mcomb
g,n , Mcomb

g,n (L) Def. 2.5 Corresponding moduli spaces

Mcomb,Z
g,n , Mcomb,Z

g,n (L) Def. 4.8 Their subsets of integral points

TΣ, TΣ(L) Sec. 2.2.2 Teichmüller space of Σ, with fixed boundary lengths L ∈ Rn+

Mg,n, Mg,n(L) Sec. 2.2.2 Corresponding moduli spaces of bordered Riemann surfaces

Mg,n, Mg,n Sec. 2 Moduli space of genus g smooth complex curves with nmarked points,
Deligne–Mumford compactification

ZΣ,G, ZΣ,G(L) Sec. 2 Cell of TΣ coming from a marked ribbon graph (G, f), with fixed boundary
lengths L ∈ Rn+

sp : TΣ → Tcomb
Σ Eqn. (2.13) The spine homeomorphism

Φβ, Rβ Defn. 5.1 The rescaling flows

MF?
Σ Def. 2.15 Measured foliations on Σ with all types of behaviour at ∂Σ

MFΣ Sec. 6.2 Measured foliations on Σ with points at the boundary of parallel type

F∗ : T
comb
Σ →MF?

Σ Eqn. (2.11) Inclusion of the combinatorial Teichmüller space into the space of
measured foliations

`∗ : T
comb
Σ → R

SΣ
+ Thm. 2.20 Length spectrum map

ωK, µK Eqn. (3.2), (3.3) Kontsevich 2-form and the associated measure

ωWP, µWP Sec. 4.2.1 Weil–Petersson symplectic form and the associated measure

Ξg,n Sec. 4.1.2 Functions on Mcomb
g,n that are output of combinatorial GR

Ωg,n Sec. 4.1.1 Functions on Mg,n that are output of hyperbolic GR

VΞg,n(L) Eqn. (4.10) The integrals
´
Mcomb
g,n (L) Ξg,n dµK

NΞg,n(L) Eqn. (4.13) The sums
∑

G∈Mcomb,Z
g,n (L)

Ξg,n(G)

#Aut(G)

VΩg,n(L) Eqn. (4.10) The integrals
´
Mg,n(L)Ωg,n dµWP

BΣ, Bcomb
Σ Def. 6.5, 6.9 Mirzakhani function in the hyperbolic and combinatorial setting

µMV,MVg,n Sec. 6.5 The Masur–Veech measure, the Masur–Veech volumes
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