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Abstract

Givcn a set X wc const.ruct a Inctric p on thc set S(X) of scmi-llietrics on X. We
prove that p is complete anel that a variety of intercsting subsets of S(X) are closed,
giving rise to cOlnplete metric spaces of scnli-mctrics. In thc second part we gcneralize
this to a result about finite scparating families of sClui-metrics. In the third part of
the paper we apply the results from the first part by constructing canonical metrics on
spaces of riemannian metrics on an open manifold, which metricize some of the uni­
form structures defillcd in [3]. Finally we construct SOlue spaces of rienullluiall metrics,
which are related to t.he remaining uniform structures fraIlI [3].

AMS subject classification: 58D17
Keywords: Metric spaces of lIlCtrics, COlllpletcness.

1 Same General Semi-Metric Space Theary.

By a selni-Iuetric on a set 4\ we will in the following mcan a sylnlnetric Inap d : )( x )( H

[0,00), which vanishcs on the diagonal and satisfies the triangle incquality. A senÜ-luetric d
induces a uniform structure Ud with a neigbourhood basis givcn by the sets

u& = {(x, .'r ' ) E X x X I d(x, x') < J}

The unifonn strllcture Ud again incluces a topology Td on X, with Cl ba."is gjvcn by the balls

Bc,d(XO) = {x E )( Id(x, xo) < c}

for c > 0 and Xo E 4\. Thc topological space (4\' Td) is a Hausdorff space if H,nel only if d is
a metric. See [8] für details abüut unifonn strllctures.

Let in the following X be nuy set, anel let 8(X) denote thc set of senli-metrics Oll X and
M aU (4\) the set of Inetrics on 4\. Since at least the cliscrete Inetric (given by d(x, y) = 1 for
x f:. y anel d(X,.'E) = 0 for all ~r:, Y E X) is a lllctric on ~\. and the trivial semi-lnetric (giVCIl
by d(x, y) = 0 for all x, y) is a selni-nletric, M all (4\.) is a nOllClnpty subset of 8(4\): which
is proper if X has at lca..,;t two elelnellts.
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(1)

In the following we will use the convention, that thc suprellltun taken over the enlpty set
is O. This causes no problem with respect to the properties of the suprenltUll as lüng as wc
only take supremUlllS üver sets of non-negative real nUInbers.

Using the ineqllality [7, Lel1l1na 1]

la ~ bl la - elle - bl
~~< +--
a+b - a+c c+b

für a > 0, b > 0 and c > 0, it is not elifficult to sec, that für p : S(..'\) X S(..'\) f----1 IR given by

(2)

that (S(X), p) is a Inetric space.
Froln the definition it ilnlnecliately follüws, that p respects the cüne structure of S(..'\) in

the \Vay, that for d1 , d2 , d3 E S(..'\),

anel

Lemma 1.1 The 1netric space (S()(), p) i.s cornplete. Funher, for each serni-1netric do, the
set

{d E S(X) I d(x, y) = °{::} do(x, y) = o}

is closed. In particular) the space (Mau(X), p) is a complete rnetric space.

Proof: First noticc, that iffor somc :E,Y E ..X, d1(x,y) = °but d2 (x,y) -# 0, thcn

(3)

Thus evcry Cauchy sequcllce is froln sOInc point containecl in a set of the fonn (3) ancl cannot
convergc towarcls any point in any other such set. This prüves the second statclnent of the
leuuna. The third fo11ows frOl11 the first ancl the sccond in cOlllbination. It renlains tü prove
the first.

Let {dn};:O;;L be a Cauchy sequcnce in (S(..'\) , p). ThcIl for cach E > 0 thcre exists IV E N,
such that für n, m > lV, we havc for all x, y E ..'\ with dN(x, y) > 0, that

(4)

If \Ve for a I1l011lent fix 0 < E < 1 anel n anel lct 1n vary, \VC see, that dm(x, y) rnust bc
boundcd fronl abovc in order not to get a contradictiün against (4). Thus thcre exists a
constant C such that

Id ( . ) - d (. )I C Idu (x, y) - dm(x, y) I
n x, Y m X, Y < () ()rln x, y + dm x, y
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It fo11ows, that the sequence {dn (x, y) }~=l is Cl Cauchy sequellcc, allel by thc cOInplctencss
of IR, we may deRne

SynlI11etry and the trianglc inequality are trivia11y fu11filled. Thus d is a sClni-Inetric on )(.
Using thc full stateIllellt of (4) it is easy to check: that p(dn, d) -+ O. This proves the lelnlna.
D

Lemma 1.2 Let T be CL topology on -,Y. Then the sct ST(X) ~ S(X) 01 serni-metrics on ~Y J

which induce the topology T on )( is closed.

Prüaf: ASSUIIlC that dl and d2 are scrni-Inetrics on -,Y, which inducc different. topologies
on -,Y. After swapping dl and d2 , if necessary, there exists a subset U C )(, which is open
with respect to dl , hut not with respect to d2 . That 111eans, that there exists a point Xo E U
and co > 0 such that Beo ,dl (xo) ~ U, but for no E > 0, Be ,d2(XO) ~ U. Thus there exists a
sequence {xn}~=l of points in -,Y with

anel
d2 (xn , xo) 7~ 0

It folIows, that p(dl , r12 ) = 1. Thus any Cauchy sequence of senli-Illetrics induce the topology
of its linlit point frol11 SOllle point. This proves the lel110H1. D

Let eil bc a serni-lllCtric on ~Y. Thc set of SCllli-ruetrics quasi isor11etric to dl is givcn by

SQI,dt (-,Y) =

{d2ES(X)13kl1k2'](}'](2ElR,-: Vx,Y E)(: d2(x,y)::; kldl(x,Y)+](I::; k2d2 (x,Y)+](2} (5)

Lemma 1.3 The subset 5 Q /,d 1 (-,Y) 01 (5, p) is closed.

Praaf: ASSllffiC d2 eloes not satisfy the first incquality of (5) for any pair k l1 ](\. Fix
J(l ;::: O. Then there exists a sequence {(x,tl Yn) }~=l ~ ~Y X -,Y such that

cl2(xn, Yn) > nd l (xn1 Yn) + J(l

Since the functiOll a ~ ~~~ is increasing for a. > 0, b > 0, we I11ay cstilllate

Since

Id2 (xn,Yn) - d1(xn,Yn)1
d2 (.'En, Yn) + d l (xn, Yn)

d2 (xn,Yn) - cl l (:1: 0 , Yn) (n - 1)d} (x n1 YrJ + !\}

d2(xn1 Yn) + dl (1;n, Yn) > (n + l)dl (x n : Yn) + ]{1

(n - 1)d l (xn, Yn) + J{l I 2d1(x n1 Yn) 2
1- (n+1)d 1(xn,Yn) +]<1 = (n+1)dl (:c rll Yn) +](1 ::; n+1

it fo11ows, that p(d l , (h) = 1. In a sirnilar way wc provc, that p(d l , d2 ) = 1 if thc second
ineqllality of (5) is not satisfied for any k2 , J(2' Frolll that the lern111a casily follows. D

\Ne say, that two sClni-rnetrics cl} and d2 are Inetrica11y equivalcnt if therc cxist constants
0< c ~ C< 00 such that cr12(x,y)::; d1(:,;,y)::; Cd2 (x,y) for a11 X,Y E )(.
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Corollary 1.4 The subset Smet,dt (X) ~ S(..t\) 01 serni-rnetrics rnetrically equivalent to rl 1 is
closed.

Proof: Like the prüof of Lenllna 1.3 with 1(1 = 1<2 = 0, k1 = ~ anel k2 = ~. 0

Another closcdncss rcsult conccrning quasi iS0l11ctries can be obtaincd as follows: Lct
SQJ,dt,kl,k2,Kl,K2(-IY) bc thc sct of rnetrics d2 quasi isolnetric to dl with constants k1, k2 , 1(1

anel 1(2. Thcn SQI,dl,k1,k'l,K1,K'l(X) is a closcel subset of (S(X), p). Thc proof follows sincc
convergencc with respect to p irnplics pointwise convergencc.

Lemma 1.5 The subset Scplt,(X) ~ S(-I\) making X into a complete unifom~ space is closed.

Proof: It sllffices to prove, that if d 1 anel d2 arc scnli-nlctrics on J\ such that (JY, rld is
conlplete hut (JY, d2 ) is not, then p(d1, d2 ) = 1. If d} anel d2 do not incltlce the SaIne topology
on X, we allreaely have, that p(d}, d2 ) = 1. Thus it suffices to consiclcr thc ca.'5e, where
d1 anel d2 inducc the salne topülogy. In this case, there exists a non-convergenr. Cauchy
sequence {X71}~::::l with respect to d2 . Since d1 is complete anel ineluces the sarne topology as
d2 , {xn}~::::} is not a Cauchy sequcllce with rcspect to fi l . lt follows, that there exists some
E > 0 anel a sequcllce

nl < 1111 < n2 < m2 < ...

d l (xnkJ xm,J > E anel d2 (:I: nk , x tnk ) k-tCf O. Thus p(d1, d2 ) = 1. This
o

all the conlpletcness results above still

such that for all k E N,
proves the lcnuna.

Notice, that sincc Mau(/Y) ~ S(X) is closecl,
holel, if we restriet attention tü Inetrics on -IY.

2 Separating Families of Semi-metrics.

Often a. rnetric cl on a rnetric space )( is constructed from a farnily of selni-metrics. \~'e will
restriet attention to rnetrics, which occur as a SUlll of finitely Inany semi-rnetrics

m

cl(x 1 y) = L di(x, y)
i::::l

Exarnplcs of such metrics are the Sobolev space nonns on spaces of functions on ]RH anel
thc em-Bonn on the spacc of em-fullctions on a c10sed riernannian rnanifolcl. SOlne other
exalnplcs are given in Seetion 3.

Our point of view in this section will be, that we want to Inetricize the space of separating
fanülies of sClni-Inetrics giving a certain Hauselorff topology on a set JY. In the abstract sctup,
this gives nlore infonnation than if wc jllst 111ctricizeel the spacc of llletrics giving the SaIne
topology on -IY.

Let in thc following S:11 (X) be the space

S:11(-IY) = {(d 1, ••• ,drn ) ~ S(..ty)tn I d] + ... + dm is Cl, Inetric on X}

Thcn we Inay construct a Inetric pm on S:'l (-IY) given by

,n

ptn((dll , .. . , dltn), (d21 , ... J d2m )) = L p(d li , d2i )

i::::l
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Lemma 2.1 The space (s:n(X) , pm) is a complete rnetric space.

Proof: A finite product of cOlllplete lnetric spaces is cOlnplete. Thus it suffices to show, that
the set of rn-tu bles of semi-rrletrics (rl l , ... , dm ), for which d1 + ... + dm is a lnetric is doseel.
But this follows by continuity of the map L:: : S(..-\)tn t-t S(...Y), given by L::(d1 , ... , drn ) =
d1 + ... + dm , anel closeelness of Mall. 0

Remark: In the applications in Section 3, the results are very sensitive to the \Vay of
decotnposing ametrie in a Stltll of semi-tnetrics. Slightly different choices than thc olles
prescnted in Seetion 3 give rise to cOlllpletely absurd topologies. See Exalnple 3.3.

3 Canonical Metries on Spaces of Riemannian Metries.

In this section X will be a srnooth paracoInpact Inanifold of diInension n > O. In [3] a
sequence of unifonn structures is defined on the space M = M(...Y) of cOInplete sl1100th
rielnannian rnetrics on X. Like in [7] we will not repeat the construction [roIn [3], hut only
recall, that for each rn E N a basis for the ullifonn structure is givell by the sets

\<t = {(g, g') E M x M 1 sup 19-9'I[I',:I: < 00 and
xEX

m-I

b,m 19 - g'I9 = sup 19 - g'19,x + L sup I(\79 )j (\79 - \79') I < o}
xEX j=O xEX 9,x

for 0 > O. Let in thc following ~nM cleuote thc topological space (M, Tm), where Tm is thc
topology incillcecl on M by thc rn'th uniform structllre, anel let b,rnM clenote the cOInple­
tion of ~TlM. In [7] it is proved, that b,m M consists of rl1 tinles continuollsly c1iffcrclltiable
rieInannian Inetrics on X. In particular, b,rn 1h - llg is weil elcfinecl (in If4 U {oo}) for any
9, h,l E b,71lM.

Noticc, that thc neigbourhood basis has a countable sllbbasis. Thus any convcrgent nct
has a convergent subseqllence, and any Cauchy net has a Cauchy subscquence. Consequently
we will be able to work with sequenccs rather than ncts. The Cauchy sequenccs of ~lM cau
be described by

{gV}VEN is a Cauchy sequence Hf

Vo > 0 : :Jvo > 0 : {xv}v>vo x {xv}v>1/0 ~ Vi1l

Thc conncctcd compouents of b,TnM are describecl in [3]. For any go E b,nlM, thc conuectecl
component cOlltaining go is givcn by

cOInpb,tIl(gO) = {g' E b,tIlM 1 snp Igo - g'lyI,x < 00 anel b,ml go - g'190,x < oo}
xEX

Therc is anothcr sinülar approach, whieh givcs thc same uniform structures. For E bc a
buncllc in the tensor algebra gellcrated by TX and T* X anel cP a snlooth sectiOll in E, let

ITl

b,m114>119 := L sup 1(\79)i4>19'x
i=O xEX
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anel let
lVJ := {(g, h) E M I snp Ig - hlhz < 00 anel b,mllg- hl1 9 < 6}

xEX

Then also {lIVJ}J>O is a basis far a unifonl1 structllre Oll b,mM. vVe postponc thc proaf of this
until we have proved. SOl118 relations between the systems {\fJ } anel {H1J }. By [3, RClllark
2.11], the tüpolügy ineluceel by {ltVJ } is thc sanle as thc OIlC inclllccd by {VJ }. In fact, lnon~

is trlle:

Lemma 3.1 For each m there exists polyn01nia1.9 Rm and R'm with non-negative coefficients
and vanishing constant tenns such that fol' aU 9, h with b,TH119 - !LII < 00 01' b,ml.9 - hl < 00)

we have

and

Prüüf: Für n~ = 0, this is übviüus since b,ol . Ig = b,oll . Ii g . In the following all estiInatcs
will be pointwise, but thc variable x E ..:'{ will be left out. Für r11, = 1 we gct

This gives
1\79(g - h)[ ::; 1\79 - \7h lglhlg ::; l\7g - \7h lg (lg - hl g + 1)

Thus R~ (:1:) = 2~[: + x'2 satisfies thc hypothcsis. For rn > 1,

1(\79)m(g - h)19 = 1(\79 )m-l(\79 - \7h)hI 9

= '~( m j 1 ) {(\79)j(\79 _ \7h)} {(\79)m-l- j h}

9

~ 1(\79)m-l(\79 - \7h)1 (Ig - 1119 + 1) + 'I: (111 ~ 1 ) 1(\79)j(\79 - \7h)1 IC\79rrL-l-jhl
9 j=O J 9 9

By indllction, R~'L cxists für all rn. Thc existence of R is müre tricky. First recall thc idcntity

g( (\7~c \7~ny, Z) = ~ ((\7~ (g- 11) )(Y, Z) + (\7~,(g-h))(X, Z) - (\7~(g-h))(X, Y)) (6)

holding für )\., )'T, Z E COO (TA1). The vectür-fielcl free version of (6) is the iclentity

where, für any vector-bunclle E supplicd with a connection \7 E , we clefine the section T E
COO(End(End(T!t10 T At! ~ TAl, E))) by

(rA)(X, Y, Z) = ~ {A(X, Y,Z) + A(Y,X,Z) - A(Z,X, Y)}
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Then \JT = 0 for any cOlluection \J inducecl from a Levi-Civita connection on Tl'1 anel \JE
in thc nornlal way. By illcluction we thcn get the ielentity

9 0 ((\J 9 )Jn (\J!J - \Jh) 0 1) = T( (\Jy)m\Jh (g - h))

= T((\J9)m+l(g _ h)) - T((yr9)rrl(yr9 - yrh)(g - h))

The existcnce of ~H follows from this, incluction anel thc idcntity

l(yr9)m(yrg - yrh)l g = Igo ((\79)m(\Jh - \Ja) 0 1))g

This provcs thc lenuna. 0

V'/e are now in a position, where it is easy to prove, that {l'Vo} constitutes a basis for
a unifonl1 structure. It will then follow frOln Lernma 3.1, that this unifonn structure is
equivalent to the onc induced by {\Io}. By [8], what we have to prove is

Ul Every l'Vo contains the diagonal.

U2 For each Hl0' Hl0" there cxists 8", such that Hl0" ~ l'Von vVo/'

U3 For each 6 there exists 6' such that Hl~ ~ 1'110,

U4 For each 6 there cxists 6' such that Hlo~1 ~ lVo'

Ul anel U2 are trivial. \~Te prove U3. Given 6, choosc c such that \Ic ~ Hl0' Since {\Io} is
the basis of a unifonn structurc, there exists c', such that V~7 ~ v~. Now cho08e 6' such that
Hl0' ~ ~/. Then 8' satisfies U3. Thc proof of U4 is similar.

Let j, l E cornpb,m(go). Fron1 thc inequality

it follows, that b,mll . - . II!I is a lnetrie on eOIl1pb,m(go) for any 9 E COlllpb,m(go). Thus wc gct
aillap

<pm : eOlnpb,mc(}o) H Mall(corllpb,m(go)),

which to 9 E eorllpb,m(go) assigns b,rnll . - . 119 E Mall (cOInpb,m Cgo)). \,Vrite for 9, h E
compb,rrl (go)

m

pm(g, h) := LP(<I>i(g), <I>i(h))
i=O

Then dearly pm is a selni-Inetric on eornpb,m(go). The Inain result, whieh wc will go for, is
thc following:

Theorem 3.2 pm i.<; a rnetric on compb,m(go), which gives the SrLlne uniforrn StT1tCtU7"(~ on
compb,m(go) as the one inherited froln b,m M. 0
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Example 3.3 Let ~m : compb,m(go) f-t M all ( c01npb,m(go)) be the 171.ap, which to 9 (LBS1.gns
the serni-nonn b,O 11 (\79)11l (. - .) 119' Anotlter 8cmi-rnetric pm is thcn given by

m

f1'~(g, h) := L p(~i(g), <i>i(h))
i=O

It is not difficult to sec, that a necessary condition for 9 and h to be in thc saute connectcd
cornponent with rcspeet to p i8, that h is parallel with respect to \79 and 9 is parallel with
respect to \7h. In particulaT p does not give the same topology as the unifoTm stTuctuTe on
b,rn M. A doser look shows, that p induces a strictly stTonger topology than p and the unifDrrn
str71cture.

If we replace pm by the se1ni-melTic p(<I>0(g), <I>°(h)) + p(<I>m(g), ([lm(h)) we gel an equiva­
lenl uniform 8tructuTe. This will follow, since the pToof 01 TheaTern 3.2 goes through for lhis
semi-metric also. D

The proof of Theorern 3.2 will be separated in aseries of lenllnas.

Lemma 3.4 Let 0., b > 0 anti assume, that for S01ne 0 < 0 < 1,

10. - bl < 8
a+b

Then
Ja - bl 20

a < 1- 0"

Praaf: By assurnptioll
a-b

-0< -- < 0
a+b

so
-6(0. + b) < a - b < o(a + b)

anel thus
b b

(1 - 0)- - 0 < 1 < (1 + 8)- + O.
a a

This gives the inequality
1-6 b 1+6
--<-<--
1 + 0 0. 1 - J'

frolll which it follows

la - bl = (1 + 1 + J) la - bl < (1 + 1 + J) la - bl = _2_la - bl <~
a 1 - 0" a + ~a 1 - J a + b 1 - 0" a + b 1 - J

D

Recall, that for cach 171. E N, a basis for the lluifonn structure associatcd to the senü­
Inetric pm is given by thc sets

u:t = {(9, g/) E b,OM x b,OM 1 pm(g, .'1/) < J}

8



(7)

Lemma 3.5 Theorern 3.2 is true for 1n = O.

Praaf: Let in the following Tx
x)( = Tx~\ \ {O}. \~le estiInate

I
s 1(j;l:-l;l:)(Y,Z)I - s l(jz -l.d(Y,Z)1 I

uPxEx jY',ZET;l:x x 9;l:(Y,Y)!9;l:(Z,Z)' uPzEx jY,ZE'l'; x hz(Y,Y)! hz(Z,Z)!
PO{9, h) = sup

b o( ) sU) IUr-l;,,)(l',Z)1 + Sup IU:-[z)(1',Z)\
j#lECOmp, 90 I xEX ;1',ZET;.,x X 9r(Y,1')' 9"'(Z,Z)' zEX jY,ZETt x hz(Y,1')' hz(Z,Z)!

S11 I IU;.,-l;.,)(Y,Z)1 - IU",-I",)(Y,Z)1 I
:::; sup PxEX jY,ZE'J~xX 9;., (1',Y) , 9",(Z,2)' h",(Y,}')! h;:(Z,Z)'

j#IECOmpb,O(90) sup ., "x' ( IU;.,-I;.,)(Y,Z)l + IU;.,-I",)(}',Z)1 )
xE~\ j},ZE1;l: X 9;.,(Y'y)'9"'(Z,Z)' h;.,(y,Y)'h;.,(Z,Z)'

I
IUz-lz)(Y,Z)] - IU;.,-l;.,)P',Z)1 I

< 9",(1',1')' 9",(Z,2)' h;.,(Y,}') ' hz(Z,Z)'
_ sup sup ( )

j;ilECOmpb,O(go) xEX ;Y,ZET/ X;(j-l)", (Y,Z);iO I(j;., -l;.,)(Y,Z) I + )(j",-I;l:)(1',Z)1
9z (y,y)! 9z (Z,Z) , h", p',}')! hz (Z,Z)!

(hx{Y·, Y)! hx{Z, Z)! - Yx (Y, y') t9x (Z, Z)!)
= sup sup 1 1 I 1

j#lECmnpb,O(go) xEX ;l',ZE]~xX (hxP", Y) 2" hx(Z, Z) 2" + 9x (Y, )/) 2" 9x{Z, Z) 2")

hxP", V)! - 9xP", Y)t hx{Z, Z)t - 9x{Z, Z)t
< sup 1 1 + sup 1 1

xE); i1'ET; x hx{Y, Y) 2" + 9x{Y, Y)"2 xEX jZETz
X X hx{Z, Z)2" + 9x{Z, Z)"2

Now, for (J, > 0, b > 0, thc estilnatc

ja.!-b!1 l(aJ-b!)(a!+b!)1 la-bi
1 1 = 1 1 :::; ~-----:.

a"2+b"2 (a2+b"2)2 a+b

gives, that we Illay cstinlate further

This provcs, that Vj ~ ug for a11 8 > O. Thc ICIIllna HO\\' folIows, if wc can provc, that if

g, h E C0I11pb,0{go) with pO{g, h) < 8 then for euch Xo E )( anel )"0, Zo E Tx~J\

19xo (Yo, Zo) - hxo P"o, Zo) I 28
1 1 <--

9xo (})'"o, Yo)"2 !7xo (Zo, Zo) 2 1 - 0

First we show, that it is enollgh to consicler the case Yo = Zoo By homogeneity it is enough
to consider thc case, where g{Yo, Vo) = g{20 , Zo) = 1. Let in thc followillg Sr)( c TxX
clenote the unit sphere of TxX with respect to 9. Then we havc to cstiInate

Slip I(gxo - hxo ) p/o, Zo) I
(Yo,Zo)ES~XxSix

Sincc gxo - hxo is a sYl1lInetric biliIlCar ronn, we know froIn spectral theory, that the Inaxinl1l111
is taken for ))'"0 = Zo an eigenvcctor of thc g-synlIllctric operator Axo givcn by
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Thus thc SUprCll1UII1 of thc left siele of (7) in 170' Zo is allways taken for Y"o = Zo,
That pO(y, h) < b in1plies, that für cvery j,l E cÜlnpb,O(go) we have

I l(j-lh(V,)')1 - IU-i),,(Y,Y)11
SUPJ:EX jVETz

X x gz()',)') SUPJ:EX jYETr
X X hr(\',Y)

IU-l)xP',Y)1 1{j-t)zP',Yll < eS
SUPJ:EX ;)'ETx

X X gz(Y,Y) + SUPJ:EX jYETz
X X hz (Y,Y)

\\'e will oceasiünally consider YJ: anel hx as lnaps frOll1 TxX to T; ..:'( givcn by

Then h((h- 1g)x(..'\)' Y) = g(X, Y') anel

g((h-1g)(..-\),17) = h((h-1g)(..-\), (h- 1g)(Y)) = g(..-\, (h- 1g)(Y"))

Thus 17,-1 9 is sylumetric anel positive with respeet to both 9 allel h, It folIows, that its septare
root is well defined, independent of the 111etrie anel SYl1l111ctric with respeet to both mctrics,

Let U be a neigbourhood of :co eliffeomorphic to a ball in }RH, anel let 'l/J E Cü(X) bc a
fllnetion with 0 :S 'lj; ~ I, whieh is identical to 1 on a neigbollrhood of Xo and has support
in U. Extend Yü tü Cl, non-vanishing eüntinuous sectiou Y in TU. Set for x E U

allel extend cp to ..-\ b.1' 0, Let l E cornpb,O(go) be arbitrary aud let j bc given by

Bince j is a COInpact pertllbatioll of l, it is easy to see, that j E compb,O(go). Furthcr

Thus
lUx - lx)(Z, Z)1

9x(Z, Z)
r.p(x)yx(Y, Z).rJx(Y, Z)

gx(Z, Z)
(8)

Clcarly, for each x, thc suprcrnUl1l of (8) in Z is takeu for Z = }".-, Thus

cp(x)gx(Y, Z)gJ:(Y, Z) I () (7)1 ( 7)
Sup (Z Z) = sup r.p x 9x Y,) = 9xü Yo, J o

xEX ;ZE1'zx X gx, xEX

Thc suprml1url1 with respect to Z of

1r.p(x)yx(Y, Z)gx(Y, Z) I
hx(Z, Z)

(9)

is slightly rnorc cornplicated to cOInpute. Let A : TxX I---t Tx); be the syrl1mct.ric linear
operator given by

10



1110re explici tly
AZ = gx(Y, Z) (h- 1g)x(17)

Then the nurnerically biggest eigenvalue of Ais givcn by 9x(17, (h-1g)x(}')) (to thc eigenvcctor
(h- 1g)xP'), the only othcr eigcIlvaluc is 0). It folIows, that thc suprcrnUIll of (9) is givcn by

By construction of '-P, this suprmnum is givcn by

Plltting everything togethcr, wc get the ineqllality

119xo (Yo, Yo)1- 19xo (Yo, (h -19)xo (Yo)) 11 J
19xo (170 , Yo)I+ Igxo (Yo, (h- 19 )xo (170 )) 1 <

Using that Yo was arbitrary, we Inay replace )70 by (g -1 h) ! (1/0) in (1,0). This rcn clers

Ihxo (Yo, )/0) - 9xo(Yo, Yo)I J
hxo (1'0, )'0) + 9xo (Yo, Yo) <

By Lelluna 3.4 this ilnplics

(10)

This again irnplies (7), anel the proof is cOinplete. D

Before wc procccel with llighcr 'm, wc will again havc to prove sonle lenuuas.

Lemma 3.6 Let g, /t, j, l E b,mM. FOT all p > 0 the ten.sor

is a polynornial without constant tenn in the tensors (extended to the Juli tens07' algebra in
the usual way) (\79)i(\79 - \7h) and (\7Y)k(j -l), i, k = 1, ... , p - 1. It is linear in the vector
((j - l), ... , (\79)P-l (j - l)), and Jor fixed j, l, the constant tenn vanishes.

Proof: By Leibnitz rule it suffices to prove, that thc operator (\7h)p can be written as
a finite SUlll of proclllcts with ]J factors of thc operators \79 and \79 - \7!t, anel that thc
cocfficient to (\79)P is equal to one. For p = 1 this is trivial. 'Vc proceed by induction.
Assurne the hypothesis holels for p - 1. ThcIl

is casily seen to satisfy thc hypothesis.

11
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Corollary 3.7 For each p > 0 the7'e exists a polynomial Pp with non-negative coefficients
anti vanishing constant coefficient 0/ degrce at most ]J 'in the variables I(\79)i (\79 - \7h) 19,X
and I(\79)k (j - l) 19,x such that

I((\79)P - (\7h )lJ)(j - l) 19,:1: ::; Pp ( {I (\79)i (\79 - \7h) 19,:1: }f::l1, {I (\79)k(j - l) 19,X}t:U
Pp is linear in the vector (I (j - l) 1!J,x, ... , I(\79)P-l (j - l) 19,x) and jor fixed j, I, the constaut
tenn vanishes. 0

Lemma 3.8 For s 2:: 0 and a > -~, b > -~ and c > -~) the inequality

ja - bl < la - cl + _I_c_-_b_1
s+a+b-s+a+c s+c+b

holds.

Proof: By substitution of (a, b, c) by (a + ~,b + ~,c + ~) in (1). o

Lemma 3.9 For m > 0) al J ••• , am > 0 and b1 , ... ,bm > 0) there exists a polynomial Sm 01
the variables lai;bil with vanishing constant coefJicient such that

I

1

1 - al ... am 1 < s (I (L] - 01 I IUm - bm I)
o ···b - 111 b , ... , 0

I m I 111

Proof: For m, = 1 this is trivial. For m, > 1 wc procecd by illduction

1

1 - (LI Um I

01 bm

<

<

This proves the lmnlna..
'vVe are ready far thc next scrious step:

o

Lemma 3.10 For m 2:: 0 the identity rnap compb,71l(go) H ( compb,1Il(gO), pm) is unijonnly
continU011.S.

Proof: VVe provc this by inductioll. For rn = 0 this is proved in LClIllna 3.5. By iIlductioll
it suffices to estilnate

< ·sup
j,lECOmpb,1I\ (!JO)

ILi~Öl {1(\79)i(j - 1)19 - 1(\7h)i(j -l)lh }!
Li~o {1(\79)i(j - 1)19 + 1(\7h)i(j -l)lh}

12



J{I(\79)7n(j -l)19 -1(\7h)m(j -l)!h}1

+ j,lECO~1~1~,m(90)L~0 {1(\79)i(j -l)lg + 1(\7h)i(j - l)I'l}

The first tenn can bc estiInated llIlifonnly by indllction. Thc seconcl one cau be estirnated
froln above by the suprClnum over j,l E cornpb,7n(go), x E X anel Y~ll" . , Ym +2 E Tx

x X such
that

of

By Lenuna 3.8 followed by the relllOval of SOl11e tenns in the elenOlninators anel a rcdllctioll,
this can be estiInated by

11(\79)m(j -l)x(Y1,"" }'~n+2)1-1(\7h)m(j-l)x(}71, ... , }7m+2)ll lTI~n;r2 \Yklh - TI~=~2IYklgl

L~~o 1(\79)i(j -l)x(}71 , ... , }~+2)1 (nk~~~31}'kI9) + nk~/ IYklg

The second tenn can bc estirnatecl by' Lellllna 3.9 allel the incquality la-bi < la
2
-;b21 . Thc first

(L - (L

term can be estilnated by
1((V'9)m - (V'h)m)(J' -l)xlg

b,mllj - ll19

< Pm({I(V'9)i(\79 - \7h )xlg}, {1(\79)k(j -l)I})
- b,mllj - liig

::; Pm({1(\79)i(\79 - \7h )xlg}, (1, 1, ... 1 1))

By Corollary 3.7 this is a llnifonn estiInate in tenns of b,m 19 - h1 9 . This provcs the ICllllua.
D

Thc last step in thc prüof of Thcürerll 3.2 is sllrprisingly easy, when one has first seen
thc trick. First lloticc, that if 9 E COlllpb,nl(go) = cornpb,m(g), thcn Ci9 E cOInpb,m(9o) for
o< Ci < 00. This follows since 1919 = 1 anel (V'9)ig = 0 for all i > O.

Lemma 3.11 The map (compb,Tn(yO), pm) Ho compb,tn(go) is unijonnly continuous JOT 1n .2::
O.

Proof: Since COlnpb,tn(go) is dense in cürllpb,m' (go) für 1n' < nl" wc Illay apply inductiüu.
Für m = 0 this has already been prüved. \,Vc prüceed for 1n .2:: 1. Asslllne pm(g, h) < J < 1.
By inscrting j = 29 anel l = 9 in the definition of p and usillg \799 = 0, we get

13



so, by LClnma 3.4, anel since b,Ollgl19 = 1, we get

This again iInplies

28
1(b,OllgI19 - b,Ollgllh) - (b,mllgll h - b,üllgll h ) 1 < 1 _ 8

Now, Ib,Ollgllg - b,ollgllhl :::; b,Ollg - hllh. Thus

By the case rn = 0, this is a unifonn estiInate. Thc lClnma follows by aeleling b,Ollg - hllh Oll
both sieles. 0

4 More Canonical Metries.

Constructions siInilar to thc ones abovc cau also bc carricel out for thc spaces MP,r clefincel
in [3, p. 268). Let M(I, Bk) be the space of SIl100th cOlnplcte metrics g on X, such that the
injcctivity raelins of ()( g) has a lower bounel, anel such that thc clerivatives, I(\79)j Hg I, of
the curvaturc tensor are boundecl for j ::; k. Let for g, g' E M(I, Bk), p E [1, (0) anel 'I' E N:

1

Ig - g'19,p,r = (I)lg - g'I~" +~ 1(\79)i(\7
g
' - \79)1~,x)dVolg(x)) ;;

For k 2: T > ~ + 1, a Iuetri:t-ablc unifonn structure Oll M (I, Bk) is given by the following
neigbourhooel basis:

Let M~(I, Bk) be the space M (I, Bk) sllpplied with the unifornl structllre given above, anel
let MP,r(l, Bk) be the cOinpletion of M~(I,Bk). By [7, Len1lna 2.4], MP,r := MP,T(I, Bd
consists of Cl riemannian Inetrics. By [3], the conllccted cOlnponent containing 9 E MP,r is
given by

\I~(g) = {g' E MP,r I9 and g' are quasi iSOInetric allel 19 - g'lg,P,T < oo}

As in thc beginning of Scction 3, we will like to dcfine an alternative neigbourhoocl basis
for the llnifonn structure on MP,r(I, Bk). Define for 1J a SlllOOth section in a bunclle E in
thc tensor algebra gcneratccl by T)( allel T* X:

I

IlcPllg,p,r := (L (~ 1(\7g)icPl~,x) dVOIg(X)) ;;

14



anel let np,r(E) be the c0l11pletion of thc space

supplieel with the Banach-space nOrl11 11 . Ily,p,r' It follows like in the text after LClllnla. 3.1,
that thc sets

Ua = {(g, 9') E MP,r 19 anel g' are quasi isornetric anel Iig - g'llg,p,r < ö}

give an alternative neigbourhoocl basis for the uniform structure on MP,r. Thc substitute
for Leullna 3.1 is thc [ollowing leulma:

Lemma 4.1 For k 2: l' > ~ thcre e3;ists polynornials Qr and Q~ with vanishing conslant
terms, such that for all g, h E MP,r

and

Proof: First we recall the rnoelule structure theorern for rnanifolels anel vector bunelles
with bounelecl geornctry. VVe will herc present it for tensor proclucts. Frorn that it will
irl1Inecliately follow for bounclecl parallel proclucts, i.e. products of the fonn

where EI, E2 , E3 are Hennitian vcctor-buncllcs supplied with Hermitian connections anel
* E C OO (End(E1 0 E 2 , E 3 )) is bounded allel parallel. All the products, which we lllake use
of here, are bouncled allel parallel with respcct to tbe connections applied. The rnocIule
structure theorern asserts:

Theorem 4.2 Let J\ be CL riernannian rnanifold with bounded geornetry of order kund
let Ei H 1'1, i = 1, 2, be Herrnitian vector- bundles with cornpatib le connections \7i with
bounded CUTVature of order' k. Assurne, that P, P1,]J2 E [1,(0), ]J 2: ~: 1'1,1'2, l' < k,
l' < mill{Tl T2}' Tl - .!!... > l' _!! 1'2 - .!!.. > l' - !! and Tl - .!!... + 1'2 - .!!... > (1' - !!).

" Pt - P , P'l - P Pt P2 p

Thcn the imbedding nl'l ,r1(E, \7 I) ® [lPZ ,rz (E2 , \72) M [lp,r (E1® E 2 , \7 I ® \72) exists anel is
bounded in the sense, that there exists (L constant C < 00 such that fOT 11 E [lpl,r 1(Ed anel
12 E r!P2,r2(E2 ),

D

\Ve will only be interestecl in the case, where PI = TJ2 = ]J, Tl + 1'2 > .rr anel l' = O. In this
P

case, we get is a contillllouS irnbcelcling [lp,r\ (E l \7 I) 0 [lp,r2 (E2 , \72) N Op,O (E10 E2 , \7 10\72).
Using the cOInputations [rOln the proof of LenllIHl 3.1, we now estiInate
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'~ ( m j 1 ) 11 (\79)i (\79 _ \7h) 119,p,r-ill (\79)m-l-i (g - h)1I9,p'i)

From that, thc Sobolev imbedding theorenl, which gives b,Olg - hl ::; Gllg - h1l 9 ,p,r, anel
inclllction in m it folIows, that there cxist polYllornials Qm,r such that

Thc first part of the lenllna DOW follows with Qr = Qr,r' Thc scconcl part is similar, using
the last estiInates in the proof of LemnHt 3.1. 0

Let in thc following <D i = <I>P,i : COD1Pp,r (go) f---7 Mall (compp,r (go)) be the Inap, which to Cl

Inetric 9 assigns 11 . - . IIg,p,i. Define

pr (g, h) = r1,r (9, h) := p(<])P,o (g ), q>P,o (h)) + p( <I>P,r (g ), <I>P,r (h) )

Thcn pr is a Semi-Jlletric on COlllPp,r (go).

Lemma 4.3 Let k ;::: T > ~. FOT each 'i :S T, there exists a ]Jolynornial Ti = T k ,r,1l,p,i with

non-negative coefficients and vanishing constant coefficient in the variable 119 - hllg,p,rJ ,such
that for all j, l, g, h E C01TI,Pp ,r (go)

1

(L 1((\79 )' - (\7h)')(j - I) 1~,xdvol9(X)) P ::::: T;(lIg - hll9 ,p,r) IIj - lll9,p,;

Proof: Ey the proof of LClnma 3.6 we have, that ((V'9)i - (V'h )i) (j-l) is a linear cOInbinatioll
of products of thc fonn

{(\79)t1 (\79 - \7h)} ... {(\19)td (\79 _ \7h)}{(\79 )5 (j - l)}

Following the proof of Lellllna 3.6, it is not difficult to sec, that t 1 + ... + td + s ::; i - 1. Thc
case cl = 0 eloes not occur. For d > 0 wc estiDlatc by thc Illodule structure theorenl

11{(\79 )t l (\79 - \7h)} ... {(\79)td (\79 - \7h)}{(\79f(j -l)}119,p,O ::;

11 { (\79)tl (\79 - \7h)} 11 9,p,r-lt 11 {(\79 ) t2 (\79 - \7h)} ... { (\19 ) td (\1U- \7h)} { (\79r (j - l)} Ilg,p,h
Ir cl = 1 this gives what wc want. For cl > 1, the result follows by thc rnultinomial fonnula
anel ineluction in rl. 0

Lemma 4.4 For each ]J there ex'ists a continuous function v71 ,p : [0, (X))2 H [0, (X)), which
vanishes in OJ such that for r > ~, and 9, hE cornpp ,r(90),
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Proof: By using thc fonnula dvol9 (;1,;) = J tx in local coordinates, wc conc1ude
( ct(gz)

dvol /-d19 (x) = det(g-lh)
va h

where here 9 : TAIi-t T* AI and h : T AIi-t T* AI. It follows frOin the ineqllality

that

This again gives

I

1 - (~~:;: (x)r::; max {l I - 11+ b,Olg - hjh I ;;' 1,11 - 11 + b,Olg - hl9 1~ I}

The lerllrua follows [rorli this and thc Sobolcv itnbedding theoreIn.

Lemma 4.5 Assurne g, h, j, l E C01TLPp ,r(gO) and r > ~ + 1. Then, 101" i ::; r

1

(L 11(\79)i(j -l)ig,x - 1(\79)i(j - l)lh,xl
p

dvo1 9 (x)y
I

::; Sidb'Olg - h!h) (L I(\79)'(j -1)1~,xdvo19(x));;

where Si+2 is the ]Jolynolnial Irorn Le1nrna 3.9.

Proof: By the pointwise estitnate

11(\79)i(j -l)lg,x -1(\79 )i(j -l)lh,xj ::;

I
(\79)i(j -l)x(Y1l " ., 1~+2) (\79)i(j -l)x(Yi,· . . , 1'i+2) I

sup /' 7 - / /' :::;

)~l ,"',Yi+2E'I~)(X 1111 g ' • ·I} i+2l y 11 1 1h ... 11 i+2lh

I

IYd9. . . IYi+219 11(\79)i( . l) I S (b 0 1 h1 )1( g) i( . )1
~llP )( 1 - I}/'I ... 1)/, 1 J - 9,X::; i+2 ' 9 - h \7 J - l g,T.

Yl " .. ,) i+2ET:r X 1 h ~+2 h

and Lenllna 3.9.

o

o

Lemma 4.6 FoT' k > T > ~ + 1, the ma]J compp,r(YO) i-t (c01npp ,r(9o) , pr) is uniformly
continuous.
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Proof: vVc cstilnate für 0 :::; i :::; T

I(J) (\7
g
r (j - l) I~,xdvolg (~c) ) ~ - (.Ix I(\7h)i(j - l) 1~,xdvOlh(X)) ~I::;

I(J, 1(\79)i(j - l)I~,xdvOl9(X)) ~ - (.Ix I(\7h)i(j -l)I~,xdvOl9(X») ~I +

I(Jx I(\7h)i (j - l) 1~,xdvol9 (~r,)) ~ - (.Ix I(\7h)i(j - l) 1~,xdvOl9(3;») ~ 1+

I(.Ix 1(\7h)i(j -l)ILdvolg(x)) ~ - (.Ix I(\7h)i(j -l)I~,xdvolh(X») ~I ::;
1

(.Ix 11 (\7gr(j - l) Ig,x - 1(\7h)i(j - l)19,xl
p

dvolg(x)Y+
I

(.Ix 11(\7h)i(j - l) 19,x - 1(\7h)i(j - l)lh,xl
p

dvOlg(x»);; +
1

(.Ix (I (\7hhj - I) ih,x (~~:~: (X)) ~rdvolh(X)r-(J)(\7h)i(j -l)I~,xdVOlh(X»)~ <

Ti(llq - hllg,p,r)llj -lllg,p,i + Si+2(b,Olg - hI9 , ... , b,Olg - hly)11J -lI19,p,i

+vn,p(11y - h1l9,p,r, Iig - hllh,p,r)llj -ll!h,p,i

Für i = 0, ... , T the abüvc estililate gives, that p(<J>i(g), <I>i(h)) can bc estirnatecl llnifonnly.
This proves the lenlIna. 0

It is at the tinle being not known tü thc allthor, under which conclitions thc lllap
(conlpp,r(YO), pr) t--+ COIllPp,r(YO) is continuous - not tü talk about unifonnly contillllouS.
vVe will therefore have to satisfy oursclves with SOlne partial rcsults aud thc proof, that it is
illdeed continuous in the case, where ..:'( is a closccl Inanifold.

A partial convcrse of LCl1una 3.9 is , that if for SOlne q ~ 1 wc have, that 11- (lI I < c < 1.

Then 11 - al < c.

Lemma 4.7 Let 8 > 0 be such, that 5 11 (8) < 1. Further, let 9 and h be rneasurable ricrnan­
nian rnetrics on X and let x EX. Assurne that fOT all Y E Tx

x X und some 0 < a ::; 1,
that

(11 )

then

18



Prüof: First recall, that ~~~~: (x) = Vdet(h-1 g)x' Next natice, that (11) can be rcwrittcn

_ hx((h-lg)XY,1'~) (cl (I-I ) )~I 0
1 hX(Y,Y) et ~ 9 x <

Let Yi l' .. , Y"n be a basis of eigcnvectars for (11,-1 9)x' Then by Lenuna 3.9

The lemIlHl now follows by the rcnulrk above it. o

(12)

Lemma 4.8 Let P, k, r be given with k 2:: T > ~ + 1. Thcre exists sorne 00 > 0 such that if
g, h E c01npp,r(gO) satisfy, that for all j =1= l E cornpp,r(gO) and sorne 0 < 0 < 00, that

I(Ix Ij - 11~,xrlvoI9 (x)) ~ - (Ix IJ - ll~,xrlvolh (x)) ~ I
, 1 ::;8

(Ix Ij - ll~,xdvolg(x))ji + (Ix Ij - 11~,xr1volh(x)) p

Then

Proof: First noticc, that 9 anel h are continuolls by the Sobalev elnbeeleling thearern.
Next noticc , that (12) rnay be COIllplcted with respcct to j - l in such a way, that we nUl)'

work with bouneled Ineasurablc test-sections of campact support in thc blllldlc of syllllnetric
tensors in T* X 0 T· J'\. Given any j,l E C0I11Pp ,r(gO), clefinc

Theu , for cvery y such that (j - l)y =1= 0

. I(Ix l'Pm,yl~,xdvoI9(x))~ - (Ix l'Pm,yl~,xdvolh(x)) *I
o2:: IHn 1

m~oo (Ix ICfJm,ylt,xdvolg(x)) ~ + (Ix ICfJm,y I~,xdvolh (x)) p

Ij - 119,Y - Ij - lky (~(y))*I
,

Ij - !.Ig,y + Ij - llh,y (~~~~: (y)) p

Like in thc proof of LemIna 3.5 , for cach Y E Ty
X X, we Illay choose j, l such that

This gives

n)Y Y) - g// Y) (
..:......-----------..,........:.., ::; 0
hy (Y, 17

) - 9y (Y, Y) (~~~~: (y)) p
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By LClIllna 3.4 anel a rcclllctioll

1

gyP/J Y) (dVOlh ( )) p <~
1 - hy(Y, Y) rlvolg Y - 1 - J

By LenlIua 4.7 this iInplies

1

1 - (dVOlh (y)) P ~ Sn( 1~ r)
dvolg U

V·.,Te may 1l0W estirnate

I(J Ij - ll~/lvolg(cl:) ) ~ - (J Ij - IILdvolh (x) ) ~ I
J ~ 1 1 ~

(J Ij - ll~,xdvolg(x)) P + (J 11 - ll~,xdvolh(X)) p

I(J Ij - ll~,xdvolg (X) ) ~ - (flj - ll~,xdvolg (X) ) ~ I
1 1

(f IJ - ll~,xdvolg(x)) P + (J Ij - ll~,xdvol9(X)) p

I(J Ij - l[~,xdvolg (X) ) ~ - (J IJ - ll~,xdvolh (X)) ~ I
I 1

(J I) - ll~,xdvolg(x)) P + (J Ij - ll~,xc1volh(X)) P

The last term insiele thc norm in (14) can be estiInatecl

(13)

(14)

I(J Ij - 11~,Xdvolg(x) ) ~ - (J IJ - ll~,xdvolh (x) ) ~ I
1 1 :::;

(J Ij - ll~,xd'uol9(X)) P + (J I) - ll~,xd'uolh(X)) P

1

(flj - 1If xl 1 - (:2 (x)) 26
1 1 :::;Sn(1_0) (15)

(J Ij - ll~,xdvolg(x)) P + (J Ij - ll~,xdvolh(X)) p

Consequently, by (13) anel (15),

I(J Ij - ll~,xdvolg(x)) ~ - (J Ij - IILdvolg(x)) ~ 26
1 1. :::;O+Sn(l_J) (16)

(J Ij - ll~,xd'uolg(x)) P + (J 11 - ll~,xdvolg(x)) p

Proceccling like in thc start of this proof with (16) wc obtain, that for all y E X allel }/ E r.: ~Y,

The lenlIlla fo11ows by applying LCIIlIlla 3.4 ollee l11ore.
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Corollary 4.9 The inclusion (comPp,r(gO) ' pr) H b,O M is uni/ormly continuous. FurtheT)
i/ ..-\ is closed) the lnap (cornPp,r(gO), pr) H conlP1J,o(go) is continuo7J,s. 0

Corollary 4.10 pr is a lnetric on cOlnpp,r(YO)' o

Corollary 4.11 1/){ is closed, the inclusion (compp,r(gO), pr) H cornpp,O(Yo) is continuo7Ls.
o

Corollary 4.12 The cornpletion 0/ (compp,r (go), pr) consists 0/ eontin1J,01LS rie17~ann ian lne t­
ries rnetr'ieally equivalent to any rielnannian metrie in eontpp,r (go). 0

Proposition 4.13 1/ X is closed) the identity (eomPp,r(gO) , pr) H cornPp,rÜ}O) is eontiTtUOUS.
Funher) the space (eornpp,r (go), pr) is eomplete.

Proof: By Corollary 4.11, the indusion (compp,r(go), pr) H (coInpp,o(go) , pO) is continuous.
Sincc ..-\ is closcd, allinuitipies of any Inetric in compp,r(go) are contained in COIlIPp,r(.fJO). In
particular, setting j = 2g, l = g, thc condition pr(g, h) < 0 < 1 together with the equality
\1g9 = 0 iInplies

Illgllg,p,o -Ilgllh,p,ol < 0
IIYllg,p,o + Ilgllh,p,O

Illgllg,p,o - Ilgllh,p,rl < 0
Ijgllg,p,o + Ilgllh,p,r

By LCInrrHl 3.4 this gives

1 20
Illgllg,p,o -llgllh,p,rl ::; volg (..-\)1i 1 _ 0

Procceding like in LeInma 3.11 we get.

m m 215
L 11(\1h)i(g - h)llh,p,O = L 11(\7h)ig ll h ,p,o ::; volg(X)i 1 _ 15 + IllgIIY,p,o -llgllh,p,ol (17)
i=l i=l

This proves thc continuity. Now, let {gd~l be a Cauchy scqucncc in (COIllPp,r(.fJO), pr). By
LemIna 4.8, {gd~l is a Cauchy scqucnce in b,OM. This iInplies, that the vollIIne VOl!/i (X)
is bouncled. (17) now givcs, that {gi}~l is a Cauchy seqllcncc in cOInpp ,l.(gO), so that the
limit 9 = liIni--Hx, gi exists in COlllPp,r(gO)' That it also cxists in (coInpp ,r(90), pr) follows frollt
LemIna 4.6. 0
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