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Abstract

Given a set X we construct a metric p on the set S(X) of semi-metrics on X. We
prove that p is complete and that a variety of interesting subsets of S(X) are closed,
giving rise to complete metric spaces of semi-metrics. In the second part we generalize
this to a result about finite separating families of semi-metrics. In the third part of
the paper we apply the results from the first part by constructing canounical metrics on
spaces of riemannian metrics on an open manifold, which metricize some of the uni-
form structures defined in [3]. Finally we construct some spaces of riemannian metrics,
which are related to the remaining uniform structures from [3].
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1 Some General Semi-Metric Space Theory.

By a semi-metric on a sett X we will in the following mean a symmetric map d: X' x X —
[0, 00), which vanishes on the diagonal and satisfies the triangle inequality. A semi-metric d
induces a uniform structure U, with a neighourhood basis given by the sets

Us={(z,z') € X x X | d(z,z") < 6}
The uniform structure Uy again induces a topology 74 on X, with a basis given by the halls
Bea(mo) = {x € X | d(z,z0) < £}

for € > 0 and zp € X. The topological space (X, 74) is a Hausdorlf space if and only if d is
a metric. See [8] for details about uniform structures.

Let in the following X be any set, and let S{(X') denote the set of semi-metrics on X and
Mu(X) the set of metrics on X'. Since at least the discrete metric (given by d(z,y) =1 for
z #yand d(z,z) =0 for all x,y € X) is a metric on X and the trivial semi-metric (given
by d(z,y) = 0 for all z,y) is a semi-metric, My, (X') is a nonempty subset of S{X'), which
is proper if X has at least two clements.



In the following we will use the convention, that the supremum taken over the empty set
is 0. This causes no problem with respect to the properties of the supremum as long as we
only take supremums over sets of non-negative real numbers.

Using the inequality [7, Lemma 1]

la=b la—¢| |c—b
< +
a+b T a+c c+b

(1)
for a >0, 5> 0 and ¢ > 0, it is not difficult to see, that for p: S(X) x S(X) — R given by

ldi(z,y) — da(z, )|
pldy,dy) = sup , 2
(di, ) sye X di(@y)+da(zy)£o (@, ) + do(z, y) @

that (S(X), p) is a metric space.
From the definition it immediately follows, that p respects the cone structure of S(X) in
the way, that for dy, ds, d; € S(X),

plady, ady) = p(di, d3) ;o> 0

and
pldy + ds, dg + d3) < p(d,, d2)

Lemma 1.1 The metric space (S(X), p) is complete. Further, for each semi-metric dy, the
set
{d e S(X) | d(z,y) = 0 do(z,y) =0} (3)

is closed. In particular, the space (M (X), p) s a complete metric space.
Proof: First notice, that if for some z,y € X, di(z,y) = 0 but dy(x,y) # 0, then

|d1 (:I;: y) - d2("51 y)l

=1
dl (T:y) + dg(:ﬂ,y)

Thus every Cauchy sequence is from some point contained in a set of the form (3) and cannot
converge towards any point in any other such set. This proves the second statement of the
lemma. The third follows from the first and the second in combination. It remains to prove
the first.

Let {d,}52, be a Cauchy sequence in (§(X'), p). Then for cach € > 0 there exists N € N,
such that for n,m > N, we have for all z,y € X with dy(z,y) > 0, that

|dp (2, y) = din(z, y)|
dn(7,y) + du(,)

<e (4)

If we for a moment fix 0 < € < 1 and n and let m vary, we see, that d,,(2,y) must be
bounded from above in order not to get a contradiction against (4). Thus there exists a
constant C such that

ldu(i‘a y) - dﬂl(:c? y)l

dn » - dm T,
|dn(z,v) (z,9)l <C du(z,y) + dn(2, y)




It follows, that the sequence {d,(z,y)}22, is a Cauchy sequence, and by the completeness
of R, we may define

_ 1i]nn—voo dn(x,y) ;dN(:Er y) >0
d(.’l’:,y)—{ 0 ;dN(way):O

Symmetry and the triangle inequality are trivially fullfilled. Thus d is a semi-metric on X.
Using the full statement of (4) it is easy to check, that p(d,,d) — 0. This proves the lemma.
O

Lemma 1.2 Let 7 be a topology on X. Then the set S.(X) C S(X) of semi-metrics on X,
which induce the topology 7 on X 1s closed.

Proof: Assume that d; and dy are semi-metrics on X, which induce different topologies
on X. After swapping d; and d,, if necessary, there exists a subset U C X, which is open
with respect to dj, but not with respect to d;. That means, that there exists a point zg € U
and €9 > 0 such that B4, (zo) C U, but for no € > 0, Be 4,(z0) C U. Thus there exists a
sequence {z,}22, of points in X with

d1(Zn, To) > €o

and
d2 (.’L‘,], IEo) 'w 0

It follows, that p(d,, ds) = 1. Thus any Cauchy sequence of semi-metrics induce the topology

of its limit point from some point. This proves the lemma. O
Let d; be a semi-metric on X. The set of semi-metrics quasi isometric to d, is given by
Sqr,a (X) =

{da € S(X)|3ky, ko, K1, K2 €R, YV, € X 1 do(m,y) < kidi(z, yHKy < kady(z, y K, } (5)
Lemma 1.3 The subset Sgrq,(X) of (S, p) is closed.

Proof: Assume d; does not satisfy the first incquality of (5) for any pair ki, K. Fix
K; > 0. Then there exists a sequence {(z,,y,)}52, € X x X such that

do(Tn, Yn) > nd) (:l?n, yn) + K4
Since the function a — ﬁ—;—g is increasing for a > 0, b > 0, we may estimate

|d2(zn, Yn) — d1(Zn, yn)l _ Ay (Zny Yn) — Ay (@n,un) - (0 — Ddi (20, yn) + K
do(Ty, Yn) + d1(Tn, Yn) do(Tn, yn) + di{@n,yn) ~ (4 1)d1(Ta, ya) + K4

Since ]
(n = 1)dr(Tn, yn) + K1 | _ 2d, (%, yn) 2
(n 4+ D)dy(zp, yn) + K7 (n+ Ddi(zn,yn) + K1 ~ n+1

it follows, that p(d;,dz) = 1. In a similar way we prove, that p(d;,dy) = 1 if the second
inequality of (5) is not satisfied for any ko, K5. From that the lemma easily follows. a

We say, that two semi-metrics d; and d, are metrically equivalent if there exist constants
0 < ¢ < C < oo such that cdy(z,y) < di(z,y) < Cdy(z,y) forall z,y € X,
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Corollary 1.4 The subset Spera, (X) C S(X) of semi-metrics metrically equivalent to dy s
closed.

Proof: Like the proof of Lemma 1.3 with K} = K, =0, k; = % and k; = &, O

Another closedness result concerning quasi isometries can be obtained as follows: Let
SOl .dy k1 ka K1 K2 (X ) be the set of metrics dy quasi isometric to di with constants ky, kp, K
and Ky. Then Sord, k) k.1 ,k2(X) is a closed subset of (S(X), p). The proof follows since
convergence with respect to p implies pointwise convergence.

Lemma 1.5 The subset Sepe(X) C S(X') making X into a complete uniform space is closed.

Proof: 1t suffices to prove, that if d; and dy are semi-metrics on X such that (X,d,) is
complete but (X, ds) is not, then p(dy,ds) = 1. If d; and d3 do not induce the same topology
on X, we allready have, that p(d;,d;) = 1. Thus it suffices to consider the case, where
d; and dy induce the same topology. In this case, there exists a non-convergent Cauchy
sequence {z,}32, with respect to dy. Since d; is complete and induces the same topology as
dy, {,}2.; is not a Cauchy sequence with respect to d;. It follows, that there exists some
¢ > 0 and a sequence
ny <mp <frgp < Mo < ...

such that for all k € N, d,(z,,,Zm,) > € and da(@n,, Tm,) A2% 0, Thus p(dy,dy) = 1. This
proves the lemma. 0O

Notice, that since M u(X) C S(X) is closed, all the completeness results above still
hold, if we restrict attention to metrics on X.

2 Separating Families of Semi-metrics.

Often a metric d on a metric space X is constructed from a family of semi-metrics. We will
restrict attention to metrics, which occur as a sum of finitely many semi-metrics

d(o,) = 3 di(z,v)
i=1

Examples of such metrics are the Sobolev space norms on spaces of functions on R" and
the C™-norm on the space of C™-functions on a closed riemannian manifold. Some other
examples are given in Section 3.

Our point of view in this section will be, that we want to metricize the space of separating
families of semi-metrics giving a certain Hausdorft topology on a set X'. In the abstract setup,
this gives more information than if we just metricized the space of metrics giving the same
topology on X.

Let in the following S!

T

(X) be the space
SI(X)y={(dy,...,dn) CS(X)™ | dy + ... +d, is a metric on X}

Then we may construct a metric p™ on 5!

m

(X) given by

pm.((dllj Tt dlm)y (d“?lv AL d?ﬂ'l)) = Z P(dli: dZi)
i=1



Lemma 2.1 The space (S;,(X), p™) ts a complete metric space.

Proof: A finite product of complete metric spaces is complete. Thus it suffices to show, that
the set of m-tubles of semi-metrics (dy, ..., d,), for which d; + ... +d,, is a metric is closed.
But this follows by continuity of the map ¥ : S(X)™ — S(X), given by Y (d,...,dn) =
dy + ...+ d,,, and closedness of M. 0O
Remark: In the applications in Section 3, the results are very sensitive to the way of
decomposing a metric in a sum of semi-metrics. Slightly different choices than the ones
presented in Section 3 give rise to completely absurd topologies. See Example 3.3.

3 Canonical Metrics on Spaces of Riemannian Metrics.

In this section X will be a smooth paracompact manifold of dimension n > 0. In [3] a
sequence of uniform structures is defined on the space M = M{X) of complete smooth
riemannian metrics on X. Like in [7] we will not repeat the construction from [3], but only
recall, that for each m € N a basis for the uniform structure is given by the sets

Vit ={{g,9") € M x M |suplg_¢'lys < co and
TEN

m-1
Mg~y = Sup g I loa+ D sup (Vo) (Ve - v7)
T j=0 %

< 6}
for § > 0. Let in the following 2 M denote the topological space (M, 7,,), where 7,, is the
topology induced on M by the m’th uniform structure, and let »™ M denote the comple-
tion of 2, M. In [7] it is proved, that *™M consists of m times continuously differentiable
riemnannian metrics on X. In particular, ®™|h — {|, is well defined (in Ry U {oo}) for any
g, h,le M.

Notice, that the neigbourhood basis has a countable subbasis. Thus any convergent net
has a convergent subsequence, and any Cauchy net has a Cauchy subsequence. Consequently
we will be able to work with sequences rather than nets. The Cauchy sequences of ® A can
be described by

{9, }ven is a Cauchy sequence iff
Vé >0 E]VU >0: {g;u}u}uo X {xu}u>v0 c ng
The connected components of %™ M are described in [3]. For any go € ®™ M, the connected

component containing gg is given by

comp®™(go) = {¢' € "M | Su}\) lgo — ¢4z < 00 and b’m|gg — §']go,x < 00}
TEXN

There is another similar approach, which gives the same uniform structures. For F be a
bundle in the tensor algebra generated by 77X and 7* X and ¢ a smooth section in F, let

b,m||¢||g = Z Sup l(vy)id)b,z

i=0 zeN



and let
Ws = {(g,h) € M | sup|g — ks, < oo and *™||g — ||, < 6}
z€X

Then also {Wjs}ss0 is a basis for a uniform structure on *™ M. We postpone the proof of this
until we have proved some relations between the systems {V;} and {W;}. By [3, Remark
2.11], the topology induced by {Wjs} is the same as the one induced by {Vs}. In fact, more
1s true:

Lemma 3.1 For each m there exists polynomials R, and R!, with non-negative coefficients
and vanishing constant terms such that for all g, h with ®™||g — h|| < 0o or ¥™|g — h| < o0,
we have

g = hlg < Ra("™flg — hllg)

and
b g — hily < RL("™|g — hlg)

Proof: For m = 0, this is obvious since *%} . |, = »%|| . ||,. In the following all estimates
will be pointwise, but the variable z € X will be left out. For m = 1 we get

V(g —h) =—-VIh = (V" -V

This gives
V(g - h)| < V9 — vh|g|”’*|g <V - Vh|g(|9 —hlg+1)

Thus R (z) = 2z + z* satisfies the hypothesis. For m > 1,

(V)™ (g =~ W]y = (V)" "H(V = VM)A,

G

=0\ J

m—2

< [(V”)m‘l(vﬂ _ V")|g (lg = hlg+ 1)+ ;} ( mj_ 1 ) |(vﬂ)j(vﬂ -

(Vg)m—l—th

.|

By induction, R, exists for all m. The existence of R is more tricky. First recall the identity

1 - Y
9(VE=V5)Y. 2) = 5 (Vi lg=h)(Y, 2) + (V9= )(X, 2) — (V- R)(X,Y)) (6)
holding for X, Y, Z € C®(TM). The vector-field free version of (6) is the identity
go (V= V" @1) =7(V"(g - h)

where, for any vector-bundle F supplied with a connection VZ, we define the section 7 €
C®(End(End(TM @ TM ® TM, E))) by

1
(rA)(X,Y,Z) = 5 {AX,Y, Z)+ A(Y, X, Z)— A(Z,X,Y)}



Then V7 = 0 for any connection V induced from a Levi-Civita connection on TM and V#
in the normal way. By induction we then get the identity

go ((VI)y™(V¥ = VM @ 1) = (V)" V*(g — h))

= 7((V)™* (g = 1)) = 7((VO)™ (V! = V*)(g — h))

The existence of R,, follows from this, induction and the identity
|(V9)"‘(V9 _ vh)|g - |g o ((Vg)m(vh — V) ® 1)’9

This proves the lemma. a

We are now in a position, where it is easy to prove, that {Wj} constitutes a basis for
a uniform structure. It will then follow from Lemma 3.1, that this uniform structure is
equivalent to the one induced by {V;}. By (8], what we have to prove is

Ul Every Wj; contains the diagonal.

U2 For each Wj, Wy, there exists ¢”, such that W C W N Wy
U3 For each 6 there exists & such that W3 C Wj.

U4 For each 6 there exists &' such that Wg' C Wj.

Ul and U2 are trivial. We prove U3. Given 6, choose € such that V, C Wy. Since {Vs} is
the basis of a uniform structure, there exists €', such that V2 C V.. Now choose &' such that
Ws C V. Then ¢ satisfies U3. The proof of U4 is similar.

Let 7,1 € comp®™(gy). From the inequality

P05 = Ulgo < ™15 = golle + "™ Mlgo ~ Ulge < 00

it follows, that ®™||- — - ||, is a metric on comp®™(gy) for any g € comp®™(go). Thus we get
a map
@™ : comp”™(go) = Mau(comp®™(go)),

which to g € comp®™(go) assigns *™| - — - ||, € Mau(comp®™(go)). Write for g,h €
comp®™(go)

m

p" (g, h) =) p(®(g), P*(h))
=0

Then clearly p™ is a semi-metric on comp®™(gg). The main result, which we will go for, is
I 9o 3 g )
the following:

Theorem 3.2 p™ is a metric on comp®™(qgy), which gives the same uniform structure on
comp®™(go) as the one inherited from *™ M. ]



Example 3.3 Let ®™ : comp®™(go) = Mau(comp®™(go)) be the map, which to g assigns
the semi-norm »®||(V9)"(- — }||,- Another semi-metric g™ is then given by

m

79, h) = 3 (P (g), ¥(R))

i=0

It is not difficult to see, that a necessary condition for g and h to be in the same connected
cornponent with respect to p is, that h is parallel with respect to V¥ and g is parallel with
respect to V", In particular p does not give the same topology as the uniform structure on
YmA. A closer look shows, that p induces a strictly stronger topology than p and the uniform
structure.

If we replace p™ by the semi-metric p(P°(g), D°(h)) + p(P™(g), D™ (h)) we get an equiva-
lent uniform structure. This will follow, since the proof of Theorem 3.2 goes through for this
semi-metric also. O

The proof of Theorem 3.2 will be separated in a series of lemmas.

Lemma 3.4 Let a,b > 0 and assume, that for some 0 < 6§ < 1,

|a — b]
4
a+b <
Then
Ja — b} < 26
a 1—6
Proof: By assumption
a—2b
-5 < <4
a+b

SO
—dla+b)<a—-b<dla+b)
and thus b ;
(1-0)--d<1<(146)—+0.

a a
This gives the inequality

1-4 < b < 1+4

1+6 a 1-6’
from which it follows

la — b 1+6, |a—1] 144 |a—b 2 la-—0b )
= 1 =
(1+1-5)a+}—f—§a<( T8 axh T 1-Sa+b 1%

a
Recall, that for each m € N, a basis for the uniform structure associated to the semi-
metric p” is given by the sets

Um — (g7g') = b'DM X b’OM | Pm(g,.(ll) < 6}



Lemma 3.5 Theorem 3.2 is true for m = 0.

Proof: Let in the following T X = T, X \ {0}. We estimate

i(F=—l:) (3, 2Z)] |(F==t:)(¥.Z)| ‘
su X yr — su C A X g
Prex v, zerXx g:()’,‘l’);gx(Z,Z)é Piex v,zerxx h,(}',}')]ih,(Z.Z)

0 _
p g, h)= sup [G=—1=)(V:2)]

; (7 =12 ) (¥, 2)]
j#tecompbO(go) SUP .y .y x v
P $€X,;V,ZeTX X gz(}’.v)ﬁgz(z,Z)

he (YY) 2 h,(2,2)2

1 +8UD e x v zer* X

sup - Ar 7o X [Ge—le (Y, 2Z)]  _ et (V7)) }
< sup 2NV ZE N | vtz hevin ezt
S oo N ”x,( [Ge—12)(V,2)] 1Ge—12)(V,2)] )

SUP e x v, zeTX X gz(‘:’,‘r’)ig:(z,z)‘k + ha (YY) 2 ho(2,2)%

Ge=ta)(MZ)  _ |Ge=ta)(V12)|
'Yzt )izt
17z —12)(¥,2)] + 1(j=—1=)(¥.Z)| )
vV Ve (22)F | havy ) ha(2,2)

< sup sup
JAlECOmMpPEO(go) o N ;V,ZETF X;(5 D= (Y, 2)5£0 (

(he(Y,Y)2he(2, Z)7 = (Y, Y)29a(Z, 2)7)
(haY,Y)2ho(2, Z2)% + g5 (Y, Y )2 go(Z, Z)7)
he(Z,2)2 — g.(Z,7)
he(Z,2)% + g4(Z, Z)

= sup sup
j#lecompbO(ge) ce X ;V,ZeT ¥ X

ha(Y, Y7 — g, (Y, Y)
he(Y,Y)? + go(Y,Y)
Now, for ¢ > 0, b > 0, the estimate

lat —bz| _ |(aZ — b3)(ad + b3)] o o=y
a? + b3 - (a%+b%)2 ~— a+b

+ sup
TEN ZETF X

< sup
TEX YETXX

Wi i
(ST I T

p=| o

gives, that we may estimate further

] )/}/ _ /’}/
cr sy V) eV

< 2%%g — A
TEX YETEX he(Y,Y) + 0:(Y,Y) ’

This proves, that V? C UJ for all § > 0. The lemma now follows, if we can prove, that if

g, h € Coml)b’o(!}(}) with p%(g, h) < & then for each zy € X and Yy, Zp € TXX
1920 (Y0, Z0) = heo(Y0 Z0)| 26
20 (Yo, Yo) 3050 (Z0, Z)3 16

First we show, that it is enough to consider the case Yy, = Zy. By homogeneity it is enough
to consider the case, where g(Yo, ¥o) = ¢(Zo, Zo) = 1. Let in the following SIX C T, X
denote the unit sphere of T, X with respect to g. Then we have to estimate

sup (90 — Pco) (Yo, Zo))|
(Yo,Z0)ESE X x SN

(7)

Since g, — s, 1s a symmetric bilinear form, we know from spectral theory, that the maximum
is taken for Yy = Z;3 an eigenvector of the g-symmetric operator A,, given by

Yo (A:coya Z) = (ng - h‘mo)(ya Z)

9



Thus the supremumn of the left side of (7) in Yp, Zp is allways taken for Yy = Zj.
That p°(g, h) < & implies, that for every 7,1 € comp®®(gy) we have

(G=0z(Y V) _ 1G=0=(" V)|
isll[)rex ',),ET:X X g:(y’y) SUDIE,\' ',YET: X h;(Y,Y) é‘
G077 ] FEDACASII

SUPgex very X — g ovv) T SUPrex yerXx  m(viy)
We will occasionally consider ¢, and h, as maps from T, X to T X given by
go(X)(Y) = gal(X,Y) 3 ha(X)(Y) = ha(X, V)
Then A({(h1g).(X),Y) = g(X,Y) and

g((h™'g)(X),Y) = R{(R™'9)(X), (A" g)(Y)) = g(X, (h™'g)(Y))

Thus h~'g is symmetric and positive with respect to both ¢ and h. It follows, that its square
root is well defined, independent of the metric and symmetric with respect to both metrics.

Let U be a neighourhood of x4 diffecomorphic to a ball in R*, and let ) € C§°(X) be a
function with 0 < < 1, which is identical to 1 on a neigbourhood of zg and has support
in U. Extend Y{ to a non-vanishing continuous section Y in TU. Set for z € U

gmn()/o} YD) gzn((h’_lg):ﬂo()’b)) }/0) }

9:(Y,Y) 7 g2((h719)2(Y),Y)

and extend ¢ to X by 0. Let I € comp®®(go) be arbitrary and let 7 be given by

w(x) := ¥(z) min {

J(Z WY = 1L(Z, W) + o(2)9:(Y, Z)g. (Y, W)
Since j is a compact pertubation of I, it is easy to sce, that j € comp®®(go). Further

Jr = le = () g (Y, ) g=(Y, -)

Thus , . .
U= = 1)(Z, Z)] _ 0(2)9:(Y, Z)g.(Y, Z) (8)
QI(ZHZ) QI(Z: Z)
Clearly, for each , the supremumn of (8) in Z is taken for Z = Y. Thus
P(2)g2(Y, Z)gz(Y, Z)
sup = sup |p(x)g:(Y, V)| = 920 (Y0, ¥
T€EXN ;ZETS XN gm(zv Z) zE,\’I ( ) ( )l 0( 0 U)

The supremum with respect to Z of

|(p(m)gz(Y, Z)gm(Y, Z) l
h(Z, 2) )

is slightly more complicated to compute. Let A : T, X — T, X be the symmetric linear
operator given by
9:(Y, Z)g.(Y, W) = h (AZ, W)

10



more explicitly
AZ = go(Y, Z) (™" g)a(Y)

Then the numerically biggest eigenvalue of A is given by g, (Y, (h~1g)-(Y)) (to the eigenvector
(h=1g)-(Y), the only other eigenvalue is 0). It follows, that the supremum of (9) is given by

ilel.lk) lo(Z)g:(Y, (h™'g)(Y))]

By construction of ¢, this supremum is given by

|g:co (Yﬂr (h—lg)zn(yf}))l

Putting everything together, we get the inequality

1920 (Yo, Yo)l = 192 (Yo, (") o (Yo))l
1920 (Y0, Yo)l + [0 (Yo, (71 9) 0 (Y0))

<4é (10)

Using that Y, was arbitrary, we may replace ¥ by (¢~ 'h 1(Yy) in 10). This renders
g

|hzu(Y0, Yo) - QID(YO, Yo)|
h:ng (}’b: }fﬂ) + gzg()lﬂa YO)

By Lemma 3.4 this implies

oo (Y0, Y9) = 920 (10, Y0)] _ 20
Gz (Yo, Y0) 1-46

This again implies (7}, and the proof is complete. O
Before we proceed with higher m, we will again have to prove some lemmas.

Lemma 3.6 Let g, h, 5,1 € ™ M. For all p > 0 the tensor
{(vyr = (v") (i - 1)}

is @ polynomial without constant term in the tensors (estended to the full tensor algebra in
the usual way) (VIV(VI — V") and (V*(5—1), i,k =1,...,p—1. It is linear in the vector
(5= 0),..., (V92§ = 1)), and for fized 7,1, the constant term vanishes.

Proof: By Leibnitz rule it suffices to prove, that the operator {V*)? can be written as
a finite sum of products with p factors of the operators VY and VY — V* and that the
coefficient to (V9)? is equal to one. For p = 1 this is trivial. We proceed by induction.
Assume the hypothesis holds for p — 1. Then

(V7 = (VHP1(99) — (7197 — 7

is easily seen to satisfy the hypothesis. 0

11



Corollary 3.7 For each p > 0 there ezists a polynomial P, with non-negative coefficients
and vanishing constant coefficient of degree at most p in the variables |(V9) (VI — VM|, .
and |(V9)*(j — )|, such that

(V9 = (V)G = Dl < Po (((VF (V9 = V) Fool, (VA6 = Dl tint)

P, is linear in the vector (|(7 — Dge - -, |[(VOP™UI — D)lge) and for fized 3,1, the constant
term vanishes. O

8

Lemma 3.8 For s >0 and a > —3,b> —5 and ¢ > —§, the inequality

la — b la — ¢ lc — 8]
< +
s+a+b " st+at+c s+c+b

holds.
Proof: By substitution of (a,b,c) by (¢ -+ 3,0+ 3, ¢+ 5) in (1). O

Lemma 3.9 Form >0, ay,...,0, > 0 and by, ..., b, > 0, there exists a polynomaal S,, of
the variables lﬁ%"l with vanishing constant coefficient such that
ay -Gy

lar =il lom = buly
bl"'bm )

< ..
- Sm( bl ’ ’ bm

-

Proof: For m =1 this is trivial. For m > 1 we proceed by induction

!1 ay ... 0 y .. b — @y ...y
b1~--brn bl-”bm
< h1...0m — by .. by 10| 4 b1 .. b1 — @) ... Ay
- by ... bm bi...bp,
|am - bm' |bm - am| Ibl - CL1| |bm—1 - ”m—1|
< + + 1) 85, ey
- b‘m bm " 1( b] bm—l )
This proves the lemma. 0

We are ready for the next serious step:

Lemma 3.10 For m > 0 the identity map comp®™(go) > (comp®™(go), p™) is uniformly
continuous.

Proof: We prove this by induction. For m = 0 this is proved in Lemma 3.5. By induction
it suffices to estimate

() B [0 {1V G = Dy = (V)G = DI}
P TIDZ bt S (OO =T, TP = D)

oo [ZEITG - Ol — VG - Dl
= jtccomprnse) o UV G = Dl + (V)07 — Dn}

12



. o H|(V9)m( )]J _ I(vh)m( )Ih}|
stecomprn(go) Lo UV — Dlg + (V)G — Dln}

The first term can be estimated uniformly by induction. The second one can be estimaied
from above by the supremum over 7,1 € comp®™(gy), z € X and Y, ..., Y40 € T X such

that
m (V9 = a0, Vi) (TG = DalVhy -, Vi)
‘L+2 + 1+2 > 0
i=0 _ 1Ykl 1Ykl
of
||(vg)'"(j—t)r(vl,....vm+=)| LTG0 (Ve Vinao)]
ITicy Yils [ ¥ _
m [(V9)"(j—l.|)_;()’1, Yipa)| 4 [(VR) G- l)z(hy SYigo)| T
= [Tl el T2 Vel
10999 =032 01 Yo g [Tt 2 1Yl = 1(O R (1) (Ylv---erag+2)|HEZU’Ug'
T o 109986027 Y (T3 el ) ([Thmin s Vel )+ 1P Y G-z (Vo) (TT oy 1Vile ) (T s Vil )

By Lemma 3.8 followed by the removal of some terms in the denominators and a reduction,
this can be estimated by

(V9™ = Da(Vh, - Yonaa) | = (V2™ = Da(Vh, o Yo)l| T2 (Ve = T2 Vil
:’,‘_0|(V9)'(g—l)z()1,,,,, i+‘2)‘( it |)k|) o Ykl

- . . —_— 2— 2 .
The second term can be estimated by Lemma 3.9 and the inequality ]“(—Lbi < I"Tb—l The first

term can be estimated by
(V)™ = (V)™ = Dalg

ol =1,
< Pal{I(V*)(V? = V)l (19946 = DI
: el — 1,

Po({I(VHV* = V")alg}, (1,1,...,1))

By Corollary 3.7 this is a uniform estimate in terms of »™|g — h|,. This proves the lemma.
O

The last step in the proof of Theorem 3.2 is surprisingly easy, when one has first seen
the trick. First notice, that if ¢ € comp®™(go) = comp®™(g), then ag € comp®™(go) for
0 < o < 00. This follows since |g|, = 1 and (V9)'g =0 for all 7 > 0.

Lemma 3.11 The map (comp®™(go), p™) = comp®™(gq) is uniformly continuous for m >
0.

Proof: Since comp®™(go) is dense in comp®™ (go) for m’ < m, we may apply induction.
For m = 0 this has already been proved. We proceed for m > 1. Assume p™(g,h) < § < 1.
By inserting 7 = 2g and { = g in the definition of p and using V9g = 0, we get

[*llglly = *™lglla]

)
L0l glly + >™{iglln

13



so, by Lemma 3.4, and since *°||g]], = 1, we get

26
15lglly = ™ lglal < ——

This again implies

20

(*llglls = “Nglle) = " llglla = *llglla)l < ==
16

Now, [*llglly = **Nlgllal < *°llg = Allx. Thus

m » , 26
> g = W)l = 1" Nlglln = *llgllal < 1T-57 llg = Al
i=1

By the case rn = 0, this is a uniform estimate. The lemma follows by adding ®°||g — ||, on
both sides. a

4 More Canonical Metrics.

Constructions similar to the ones above can also be carried out for the spaces MP7 defined
in [3, p. 268). Let M(I, By) be the space of smooth complete metrics g on X, such that the
injectivity radius of (X, g) has a lower bound, and such that the derivatives, (V)7 RY|, of
the curvature tensor are bounded for 7 < k. Let for g,¢' € M(I, By), p € [1,00) and » € N:

1

lg = §'lgpr = ([ (lg — gI + Z| vy — V)b )dvol, (:C))

Fork >r > %’ + 1, a metrizable uniform structure on M{/, By) is given by the following
neigbourhood basis:

Vi ={(g9,9")€ M(I, By) x M(I, Bi) | g and ¢ are quasi isometric and [g — ¢'|, < &}

Let M2(I, By) be the space M(1, By) supplied with the uniform structure given above, and
let MP7(], By) be the completion of M?(I, By). By [7, Lemma 2.4], MP" .= M (I, By,)
consists of C! riemannian metrics. By [3], the connected component containing g € MP" is
given by

Veolg) = {¢' € MP" | gand ¢’ are quasi isometric and |g — ¢'|; ., < 00}

As in the beginning of Section 3, we will like to define an alternative neighbourhood basis
for the uniform structure on MP7(I, B;). Define for ¢ a smooth section in a bundle £ in
the tensor algebra generated by TX and T X:

14



and let QP7(E) be the completion of the space

{6 € CZ(X, E) | ||@llgpr < 00}

supplied with the Banach-space norm || - ||; 5. It follows like in the text after Lemma 3.1,
that the sets

Us = {(g,9') € MP" | g and ¢’ are quasi isometric and ||g — ¢'||;,.» < &}

give an alternative neigbourhood basis for the uniform structure on M7, The substitute
for Lemma 3.1 is the following lemma:

Lemma 4.1 For k > r > 2 there exists polynomials Q, and Q. with vanishing constant
terms, such that for all g, h € MPT

|.(f - hlg,p,r < Qr(”g - h”Q-PJ‘)

and
lg = Pllgwr < @r(lg — Plgps)

Proof: First we recall the module structure theorem for manifolds and vector bundles
with bounded geometry. We will here present it for tensor products. From that it will
immediately follow for bounded parallel products, i.e. products of the form

E1XE2F—~—)E1®E2P—"—)E3

where F,, E5, F3 are Hermitian vector-bundles supplied with Hermitian connections and
* € C®(End(E, ® E,, E3)) is bounded and parallel. All the products, which we make use
of here, are bounded and parallel with respect to the connections applied. The module
structure theorem asserts:

Theorem 4.2 Let X be a riemannian manifold with bounded geometry of order k and
let B; — M, i = 1,2, be Hermitian vector-bundles with compatible connections V' with
bounded curvature of order k. Assume, that p,p1,ps € [1,00), p LB e < K,

= ptp2’
r < min{ry, oty T - - 2 >r=-2andr — 2 41— 2 > (r—2).

= P P1 P2 P
Then the imbedding Q"™ (B, V') @ QP22 (Ey, V?) = QPT(E, ® By, V! ® V) ezists and is
bounded in the sense, that there ezxists a constant C < oo such that for fi € QPY"(E)) and

f2 € (pr2 (E2):

v no, I
’.’“'5,)'2"—

”fl ® f2||.DJ‘ < C”fl”Pth ”f?”Pz,f‘z
O

We will only be interested in the casc, where p; = po = p, 7 + 73 > “and r = 0. In this
case, we get is a continuous imbedding QP (E, V) @QP2(Ey, V?) QP’ (E\®F,, V'®V?).
Using the computations from the proof of Lemma 3.1, we now estimate

172" = Dl < K 1= Byl = 1) +

15



=0 J

T ( m—1 ) 179 (V2 = Vg pr 51V (g — h)llm)

From that, the Sobolev imbedding theorem, which gives *0|g — h| < C||g — Ril, .-, and
induction in m it follows, that there exist polynomials (), » such that

lg — h'|g,p,m < Qm,r(Hg - h’”-‘T’Pﬂ")

The first part of the lemma now follows with @, = ¢, ,. The second part is similar, using
the last estimates in the proof of Lemma 3.1. QO

Let in the following @' = ®7* : comp,, . (g0) = Mau(comp, (go)) be the map, which to a
metric g assigns || - — - ||gp,i- Define

o (g, h) = p"" (g, h) = p(@P°(g), PP (h)) + p(@P"(g), PP (h))
Then p" is a semi-metric on comp, .(go).

Lemma 4.3 Letk > r > %. For each @ < r, there emists a polynomial T; = Ty ;5 pi with
non-negative coefficients and vanishing constant coefficient in the variable ||g — h||y ., such

that for all 3,1,9,h € comp, .(go)

i

(L1 = (977G = Dl advoly(2)) " < Tilllg = bllag)l3 = U

Proof: By the proof of Lemma 3.6 we have, that ((V9)!'—(V"))(j—1) is a linear combination
of products of the formn

{(VN (V7 = I} {(V9)9(V9 = T HI(V9) (5 - D)}

Following the proof of Lemma 3.6, it is not difficult to see, that ¢, +... +t3+s <i—1. The
case d = 0 does not occur. For d > 0 we estimate by the module structure theorem

(V)" (V9 =V} {(V9)(V? - V'”)}_{(V“)‘”(j = O}Hlgpo <

(V) (V7 = V) g pr-e (V92T = V5)} - {(99) (V7 = TV (5 = Do

If d =1 this gives what we want. For d > 1, the result follows by the multinomial formula
and induction in d. O

Lemma 4.4 For each p there exists a continuous function v,, : [0,00)* — [0, 00), which
vanishes in 0, such that forr > %, and g,h € comp,, .(4o),

sup
TEN

dvoly,

1
dvol ?
1— ( : (-'L)) D < 'Un,p(“g - h’”g,p,ﬁ llg — h”"hpﬂ”)
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Proof: By using the formula dvol,(z) = dz in local coordinates, we conclude
h; g 9( ) 7(10t 42) ¢ )

dvol,
= t(g=11
oL @) = Vfder(g )
where here g : TAM — T*AM and h: TM — T*M. It follows from the inequality

(g~ k)™ ¥ < Jdet(gh) < [lg~"All}

that

1
2 dvol » 2
o1 < (Gta))” < i

This again gives

- (G’ )

The lemma follows from this and the Sobolev imbedding theorem. a

< max{ll — 14 20g = h|a| 7

1=+ 80 — al|

Lemma 4.5 Assume g,h,j,l € compp’r(go) and r > % + 1. Then, fori <r

([ 92 G = Bl = (72 = Dl ol ()

1

< Susal®lg = h) ([ 10920/ = D advoly())”

where Sio 18 the polynomial from Lemma 3.9.

Proof: By the pointwise estimate
1(V9) (G = Dlgie = (VG = Dl

(V' G = Da(¥1, -, Yiwa) (V) (5 — Da(V,-- ., Yino)

<

sup

Y1y Yida €T X |Y1|g e |Yi+2]y |Y1|h T |Yi+2|h N
l}.’llg . |}’;'.+2|g aNigs l 5,0 gVif .
sup -1 v (V9 (G = Dlgz < Sixa(""lg = M)V (G = Dlgye
Vi Yipo €T X [Yiln- - Yigaln
and Lemma 3.9. |

Lemma 4.6 For k > r > %-f— L, the map comp, .(90) — (comp, (g0),p") is uniformly
continuous.
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Proof: We estimate for 0 <i:<r

‘(ij(vg)f(j—z )7 _dvol, (
(

(V™5 = D5 pdvoln(x

IA

( X|(v9)“(j—z )P dvol,(
(

@) - (/,x )’

) (/IV" (G = DI dvol,( ) +
-t - ([0 -

)" - )’

‘ (VMG — D[} dvoly(s /wh (G = D dvoly(a
8

IA

(L TG = Dlawe = TG = Diga] dwoly(a )) +

d'uoig(m)) "+

(/,\ (|(vh) (;—z)|hr(j;’jfj(x))i)pdwzh ) — ([ - D ol <

Ti(llg = Mlgp)lli — Ulgpi + Siwa(*Clg = hlg, .., "lg = Rl )lj — 1
+Un,p(||£l - h”y,ﬂ,r: llg — h”h,p,r)“j - l”h,w’

For i = 0,...,7 the above estimate gives, that p(®*(g), ®*(h)) can be estimated uniforimly.
This proves the lemma. O

It is at the time being not known to the author, under which conditions the map
(comp, .(g0), p") — comp, .(go) is continuous - not to talk about uniformly continuous.
We will therefore have to satisfy ourselves with soine partial results and the proof, that it is
indeed continuous in the case, where X is a closed manifold.

A partial converse of Lemma 3.9 is, that if for some ¢ > 1 we have, that |1 - a? < e < 1.
Then |1 — a| < e.

(/ VG = Dloe = 1V (G = Dlng]

Lemma 4.7 Let 6 > 0 be such, that S, (8) < 1. Further, let g and h be measurable rieman-
nian metrics on X and let © € X. Assume that for ol Y € T)X and some 0 < a < 1,

that ( ) R
g(Y,Y) {dvoly
1- :
I (Y, Y) (dvolg (r))

dvol,, “
1-— T
’ (dvolg ('L))

<9 (11)

then

< Sa(0)

18



Proof: First recall, that %h( } = y/det(h~!g),. Next notice, that (11) can be rewritten

ha((h7'9)Y,Y) 1y ns
" ha(Y,Y) (det(n g)r.) <4

Let Yi,...,Y;, be a basis of eigenvectors for (h™'g),. Then by Lemma 3.9
e n Vi, Vi) a
1 —det((h™1g), ol [ S ( -‘fﬂi—l— det((h™1g), 2) < 8,6
|1~ det((h7"g)z) [ 5y (det((79):) (9)
The lemma now follows by the remark above it. a

Lemma 4.8 Lel p,k,r be given with k > r > 2 -+~ 1. There exists some &g > 0 such that if
g, h € comp, (go) satisfy, that for all j #1 € compp‘,.(go) and some 0 < § < dy, that

(5 b =t ol () = (fc 1 = 1, ol ()|

(U 17 = padvoly(2))? + (fy 17 — U} ,dvoln(x))

<6 (12)

o~

Then

2(6 + Su(1%5))
(6 + Sn(%5))

Proof: First notice, that g and h are continuous by the Sobolev embedding theorem.
Next notice, that (12) may be completed with respect to 7 — ! in such a way, that we may
work with bounded measurable test-sections of compact support in the bundle of synunetric
tensors in 7*X ® T*X. Given any j,1 € comp, (go), define

60”9— h ”y =1

L, .
Pmy = Xﬂ;h‘g(y)'UOlg(Bﬁ,g(y)) P(j—1)

Then, for every y such that (j — ), # 0

L 1
| 1omalgitvoly())” = (f [omlf cvola(a))
g nl»l—leolo 1 L
(f/\ |(r0m ylg‘,_dvol ); + (f,\ |(|0m ylh g—dv‘)l-‘z( ))F
,“ - llg,y — U, Y (%: )
= T
7 =ty + 17 = Uny (33‘35 y)) !

Like in the proof of Lemma 3.5, for each Y € T, X, we may choose j,1 such that

17 =ty = hy(V,Y) 517 = Uny = 9,(Y,Y)

This gives

° -

By (YY) = g, (Y, Y) (%22 (1))

1
hy(Y,Y) = g,(V,Y) (52(y)) "

<
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By Lemma 3.4 and a reduction

g,(V,Y) (dvoly \*| 26
11— <
h,(V,7) \dvol, V) | S 125

By Lemma 4.7 this implies

1
dvol,, » 26
- < =
1 (G2zo) ‘_sn 2 (13)

We may now estimate

15 = U dvoly(x))? — ([ |5 — 12 sdvoly(x))”
N DR
(17 = lp.cdvoly(z))* + (f Iy — l|’,’l’mdvolh )”
(15 = Ul cdvoly (@) = (15 = 1, advoly (2))
1 . I
([1d = Upadvoly(z))® + ([ 17 — U} zdvoly(z))”
. L _ L
’(f |7 — 1} zdvol, (7:))" - (f 7 — llﬁ,zdvolh(m))” )
- T 14
(515 = U pdwoly(a))7 -+ (F 15 = U cdvola ()
The last term inside the norm in (14) can be estimated
. L
‘(f i — U dvolg(:r)) = (J'l4 = 1} sdvoln(z))?
— <
(715 = 1, sctvoly (@) + (J1j = U, pdwola())”
, :
(1=t |1 = (22 (a))| ooty () o2 -
T T < Sali—=
(15 = U sdvoly ()7 + (J | = U sdvoln(z))? 179
Consequently, by (13) and (15),
(715~ tgavoly(2))* — (7l = 1 ol ()
i = U dvoly(z) ) — ([ 15 = I} gdvolg(z))”
R . 55+s,l(%) (16)
(15 = Updvoly(x))¥ + ([ |5 — U], sdvoly(z))?

Proceeding like in the start of this proof with (16) we obtain, that forally € X and Y € Tp X

[hy (Y, Y) — g, (Y, V)] 26
<64 Sp(—2
hy(YV, V) +g,(Y,Y) = 5

—5
The lemma follows by applying Lemma 3.4 once more.
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Corollary 4.9 The inclusion (comp, (g0), p") = "M 1is uniformly continuous. Further,
if X is closed, the map (comp, (g0), p") = comp, o(g0) is continuous. ad

Corollary 4.10 p" is a metric on comp, .(go)- m

Corollary 4.11 If X is closed, the inclusion (comp, (g0}, p") = comp, z(g0) is continuous.
ad

Corollary 4.12 The completion of (compp',(gg), p") consists of continuous riemannian met-
rics metrically equivalent to any riemannian metric in comppl,,(go). 0

Proposition 4.13 [f X is closed, the identity (comp, .(go), p") = comp, .(go) is continuous.
Further, the space (comp, .(g0), p") is complete.

Proof: By Corollary 4.11, the inclusion (comp, . (go), p") — (comp, 4(g0), °) is continuous.
Since X is closed, all multiples of any metric in comp, ,(go) are contained in comp, .(go). In
particular, setting j = 2¢, { = g, the condition p"(g,h) < & < 1 together with the equality
V9g = 0 implies
lgllg.p.0 = llgllnpol
<
l9llg.0.0 + l9llnp0

“l.‘}”y.p,ﬂ - “9”lt,w|
Hgny,p,O + ||.‘J||h,P,r

<4

By Lemma 3.4 this gives

1 26
o = lgllngol < voly(X)3 —=—
120
ligllg.p0 = [19llnpr| < volg(X)? 1-3
Proceeding like in Lemma 3.11 we get
T hni T A . 1 26
DIV (g = Wllnpo = 2NV gllpo < volg(X)# =+ [llgllywo = lgllnpol  (17)
i=1 i=1

This proves the continuity. Now, let {g;}32, be a Cauchy sequence in (comp, . (go), p”). By
Lemma 4.8, {¢:}2, is a Cauchy sequence in ®® M. This implies, that the volume vol,,(X)
is bounded. (17) now gives, that {g;}22, is a Cauchy sequence in comp,,(go), so that the
limit g = lim; o, g: exists in comp, .(go). That it also exists in (comp,, .(go), p7) follows from
Lemma 4.6. O
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