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§0 Introduction

Recently it has been recégnized that the conformal field
theory (CFT) on Riemann surfaces of arbitrary genus plays
an essential role to understand the profound mechanism of the
string theory [F.S.][Fr.). Among others very important insights have
been brought by a formulation of bosonization rule [D.J.K.M.]
[A-G.B.M.N.V.1[E.O.]1 and an observation that the Virasoro
fenergy—momentum tensor) operator deforms the moduli of Riemann
surfaces (E.O0.11[B.M.S.]1].

One approach to the CFT on Riemann surfaces is based on the

path-integral method initiated by Polyakov [P.]. This approach

can be regarded as a geometric one which is recently developed
into the algebro-geometric level [B.K.]1.

Another approach to the CFT is an algebraic one based
on the representation theory of the_Virasoro algebra, and was
initiated by Belavin Polyakov and Zamolodchikov [B.P.Z.1. Thi;
approach has an essential connection with solvable models of
gtatistical mechanics and Kac-Moody Lie algebras.

One of the aims of this paper is to unify-these two approaches
by constructing a CFT on a family of Riemann surfaces in an operator
formalism. Another aim is to establish a solid mathematical basis
for a class of CFT on Riemann surfaces.

The main ingredient of our theory is M. Sato's theory of KP
equations [Sa.lI[S.S.]. Originally his theory was developed to solve
a problem of soliton equations, but here we show that his theory
actually covers the CFT on Riemann surfaces. Here two notions,

the universal Grasmann manifold (UGM) and the ¢-function, play



the most essential role.

Theory of KP equations was reconstructed by Date, Jimbo,
Kashiwara and Miwa in an operator formalism [D.J.K.M.]1. Our theory is
deeply interrelated with their formulation and is in a sense an
extended version to a completed Fock space; in order toc treat theta
functions we need completion. It should be compared with the
treatment of Segal and Wilson {S.W.] which tfeats the same content in
the Hilbert space formalism.

The relation between the theory of‘KP equations and
Riemann surfaces was formulated by Krichever as the theory of the
Baker-Akhiezer function [Kr.][Mum.2], which plays an important
role in this paper. This relation to Riemann surfaces was studied
further by Mulase and Shiota in connection with the Schottky problem
{Mul.]1[Sh.].

Fundamental operators in our theory are the free fermions ¥(z),
v(z), the current J(z) and the energy-momentum tensor T(z), acting on
the Fock space %. They are provided, a priori, without reference to
Riemann surfaces. Informations of Riemann surfaces are carried by
vacuum states [X] € P(¥) (the projective Fock space). In this respect
our theory is based on the interaction picture in physicist’'s
terminology. The space £ (resp. £ which we call Weierstrass system (§
2)) of all geometric data sets is a dressed moduli space of Riemann
surfaces (resp. Riemann surfaces and line bundles) The physical
vacuum [X] € P(F) moves with a parametrizaiion of data X € ## (or %).
An important fact is that these spaces are infinitesimally
homogeneous spaces on which infinite dimensional Lie algebras § =

c((z-l))%E and © = 6 o C((z“l)) act respectively.



Our main view point is to interprete the map #(resp. §) —P(%),
X ——[X]) as a period map of the moduli space #(resp. &) and is to
investigate the deformation of moduli generated by operators ! €
G(resp. ¥). An important fact is that the view as a period map
matches very well with the method of field theory. For example the
fundamental operators T(z) and J(z) are just the deformation
generators mentioned above. From physical point of view this
deformation equation can be considered as an equation of motion of
the vacua. On the other hand it can be regarded as the Gauss-Manin-
connection from an algebro-geometric point of view.

We have tried to make this article sélf-contained as much as
possible, since no detailed reference .on Sato's theory is available
in western language. This paper is organized as follows:

§1 and §2 are devoted to geometrical setup for a description
of the period map. In §1 we give a description of UGM (universal
Grassmann manifold) and its Pliicker embedding into projective
Fock apace P{(%), essentially following M.Sato. In §2 we construct the
dressed moduli space of curves a (following [B.M.S.1) and its
generalization € including the Picard variety, which are infinite
dimensional complex manifolds.

Using the theory of the abelian functions, we can define a
period map from e(resp. 4£) to UCM and derive Torelli-type theorems
(2.28),(2.29) as a main result of §2. The action of the modular group
on ﬂ(resp. #) is also important.

§3 is devoted to a preparation of algebraic setup.

In terms of fermion operator ¥(z), ¥(z) acting on the Fock space %,

we construct a Fock space representation of a central extension of G



{or §), where the Virasoro algebra and the current algebra appear.
In §4 we provide the bosonization B:¥ — # (bosonized Fock
space) and show that the image of UGM in # can be characterized by a

conjugate pair of wave functions and the Hirota eqﬁations for
t-functions. We essentially follow (D.J.K.M.] but reformulate the

theory in an appropriate form for field theory.

The contents of §1-8§4 can be summarized in the following

diagram:
¥ — YT —F) UtH SOy T
l ! l | | |
by/90 8 — (T —P &) UGM P(F)——P (2).

The space # (¥) is, briefly to say, the deformation of Q in the
direction to the Jacobian varieties with a gauge fixing (see §2,F)).
The symbols with " ¥ " (¥ etc.) stand for the induced c*-bundles.

tx

= |

P(x)

€ (%)
a
1/2
In §5 we construct a well-behaved lifting which we call the

t-function of the period map Ay/2 with a method based on the
Krichever’s theory concerning Baker-Akhiezer function (i.e. a wave
function associated to the curve). This t-function can be explicitly

written down in terms of classical Riemann’s theta function and the

Jacobian embedding of Riemann surfaces:

1
t(t,X,) = eZUPg(1(t)+cia).
This explicit form of the r-function has been already given by

SeVeral authOPS [IoMoOu][A‘G.G.RO] [V.].



In §6 the explicit forms of actions of fundamental operators on
the c¢-function and N-point functions are obtained by using the
concrete expression of the t-function. It is interesting to note that
we can obtain the addition formulae of 8-functions associated with
the Jacobian of a curve systematically, which are closely related
with the Schottky problem iéElgebraic geometry ([Fay],[Mum.3],[v.G.]
y {(Mul.],[Sh.]).

In §7 the fundamental differential equations satisfied by
the r-function will be derived. This provides the Gauss-Manin
connection of this period map. The main result of this
paper can be étated as follows: The r-function is characterized by
the differential linear equations with infinite degrees of freedom:

[0(2) + a(z,X_)]e(t,X,) = op(t)c(n,x), Vi e 6

g
9 v
dw = (8, X)) = egle)c(t,X ), "¢(z) € T(X)
121 2nJ T I act * B'®T

and together with the automorphy:
T(,X,qasp) = exp(-2n/ T (3tana + a(I(t)+e)))<(t,X ).

Here Xc lies in the moduli space #(¥F) of Riemann surfaces (§2, F))
and t = (tl,tz,...) is the parameter of the bosonic Fock space #
{§4, A)). For ¢ € 6, 0(¢!) stands for its action on Xc as a vector
field on (%) (§2, D)) and ¢g(¢) acts on t as a quantized operator on
#£ ((3.20),(4.4)). For the notations in the second type of equations
{concerning gauge tranéformations) see Appendix. It is a remarkable
fact that the x-function chracterized by the above :inear equations
satisfies Hirota’s noniinear equations.

In Appendix we collect the notations and the formulae in the

theory of abelian functions on Riemann surfaces which we have used



for explicit descriptions of our resuits in this article.

One of the main c@aracteristics of our theory is that we have
constructed the whole theory to keep the complex analyticity
throughout the formulafion. Another characteristic is that any
infinite dimensional manifold like # and & is treated as a projective
limit of a finite dimensional manifold. The latter treatment is
compatible with the completion of the Fock space.

Moreover the structure of our theory has an intimate similarity
with recent theory af arithmetic surfaces due to Arakelov and
Faltings [Ar.]([(Fal.1l.

Some of the results in §5 and §6 have already been given by
Ishibahsgi, Matsuo and Ooguri [IJM.O.]:and Alvarez-Gaume, Gomez and
Reina [A-G.G.R.]. These sections are, however, reformulated with the
help of the preparations of §l1- §4 within the framework of the theory
of infinite dimensional complex analytic manifolds. Our main
contribution in this paper is to clear up the geometric setting of
the whole theory and to provide a system of differential equations
which characterizes tﬁe t-function- uniquely.

After this work has been completed a very interesting paper by

Krichever and Novikov [K.N.] came to our attention, which seems to

have a close relation with our paper.



§1. UGM and its Plicker embedding.
A)Universal Grassmann manifold (UGM)

(1.0) The theory of UGM was created and developed by M. Sato and
plays an essential role in his theory of KP équations ([Sato],
[S.51). Thanks to the additional structure of filtration one
can obtain an almost complete analogy to the theory of usual Grassmaﬁn
manifolds for finite dimensional spaces [S.N.]. We recall here in
81 the most elementary part of the theory (or the part which is the
same as usual finite dimensional cases}. The deeper pgrt where we
need an essential modification including the theory of xr-functions
will be treated in §3 and §4.

{1.1) Let ¥ be a linear space (over ) equipped with a filtration

{Fmif}mEZ satisfying the following conditions:

1){lef}mez is decreasing, --- o FmV o) Fm+1V D ey
2) v Fly = ¥, and n Fly = {0}
meZ meZ

m+1"r

-3) dim F¥/F = 1;

4) the topology induced from the filtration (i.e. {Fmv} form

m&Z
a system of neighbourhoods of 0) is complete.

Such ¥ is actually unique up to isomorphisms.

(1.2) For concrete calculation we choose a (topological) basis
of ¥ as follows. For later use we employ Zh = Z+(1/2) = {n+(1/2);nel}
as an index set and choose e* in pu—{1/2)y _ put{1/2)y ¢0r each u €
Zh. Then every element v in ¥ can be expressed as

v = S v eM, v €C

~ol{p<e H H
u € Zh

and



F% = (v = S v eMy,
m<y H

Ezample(1.3). v = R/AT (K = C((t)) is the field of formal Laurent
gseries). The filtration comes from the non-archimedian valuation v:¥

» T =2 U (»} with v(t®/dE) = n. We use a basis {em+(1/2) = ¢"/dg

}mel'
relation z¢ = 1. Namely z is a coordinate whose value tends to «

For'later use we introduce another indeterminate z with the

at the reference point. When we use this coordinate in ¢ = C((z-l))JHE
the valuation is given by v(z®A@Z ) = v(¢ ™ }/@F) = -m-1.

(1.4) Let ¥ = Homc(V, L) be the topological dual space
(namely the space of ¢ontinuous C-linear functions on ¥ with discrete
topology on €). Then ¥ has a canonical dual structure of a filtered
space as
Ker(Hom(V, C) - Hom(F™y, C)).
F_.7, and F_v¥

F. ¥

If we set FO¥ F Py, then (¥, (F®¥}) satisfies the

same properties as in (1.1) and ¥ and ¥ are dual to each other . In
particular

(I):VXV—_D C

) W
(V, V) —————— (V]|V) = V(V)
is a complete dual pairing of topological vector spaces.
For a basis (e“}ueZh of v the dual basis [Eu}uelh of ¥ can be

defined by the relations:’

(8%eV) = gutvi0,
Then €m+(;/2) ¢ FO¥ - Fm+17. Every element V € F®F < ¥ can be

expressed as



(1.5) For later use we introduce another notation:

e, = e H, E“ = e ™, u e Zh.

Then the pairing on ¥ x ¥ becomes the natural one:
a V) = « V. (TH - <M
(8, le") = 8,7 (ele,) = 8% .

Definition (1.8}). A sqbset M of Zh is called a Maya-diagram if
both M n 2h>0 and M®n Zh<0 are finite sets where Zh>0 = {u € Zh;
g > 0} etc. and M® is the complement of M in Zh. The integer x{M) =
#F(M N Zh>0) - #(M° n Zh<0) ig called the charge or the
Euler-characteristic of M.
We denote by ¥ (resp. Hp) the set of all Maya-diagrams {(resp.
Maya-diagrams of charge p);
Definition (1.7). For M € Hp we express it with an increasing
function y : Zh(p = {u € Zh;u < p} = Zh as
M= { «--, u(p-(3/2})), ulp-(1/2)}.
This uniquely defined g is called the characteristic function of M,
Note that a(v) = v for v < =»., Therefore the set
(ulv) - viv € Zh, al(v) - v > 0}

ig finite and defines a Young diagram Y{(M). We say that Y(M) is

asgociated with M. The number of boxes
d(M) = 3 (ulv) - v)
v

is called the degree of M.
' - Y (M)

SEERE

Denote by & (resp. ﬁd} the set of all Young diagrams (resp.



Young diagrams of degree d). Note that #wd = p(d), the number of

partitions of d.

Lemma (1.8). We have a canonical bijection
Yy — I x 9
W
M (x(M), Y(M)).

Definition {(1.9). We fix p € Z. The universail Grassmann manifold
(of charge p) UGMp is the set of closed subspaces U of ¥ s.t. i) the

kernel and cokernel of the natural map f : U -~ V/FOV is of finite

dimension; ii) dim Ker(f) - dim Coker{(f) = p. These U’s in uGMP are
called semi-infinite subspaces {(of charge p). Set UGM = [ uGMP,
pel

Note that, by definition, the topology on U, which is induced by
¥, 1s discrete.

(1.10) By considering the image of F ¥ A U in v/F®v, m € N, one
can introduce on UGMP a canonical structure of a scheme as a
projective limip of schemes of finite type {(Grassmann manifolds for
finite dimension), but we will not make it precise here in érder to
avoid unnecessary complication. Specialists on abstract algebraic
geometry could easily fill up logical gaps. For non-specialists it is
enough to know that UGMP admits a 'good’ structure.of an infinite
dimensional complex manifold as a 'limit’ of finite dimensional
manifolds.

(1.11) Let U be a closed subspace in ¥. If we consider the

mtly 1. 1If

induced filtration {F™U = F™¥ n U} on U, then dim FTU/F
we set

M(U) = (m+(1/2) e zh;dim FRU/F®" 1y = 13,



then U € UGMP if and only if M(U) is a Maya-diagram of charge p.
We can then define the Young diagram Y(U) = Y(M(U)) associated
with U, and the degree of U, d(U) = d(M(U)).
B) Tangent space of UGM.
Proposition (1.12)(IS.N.1}. For U € UGM we have a
canonical isomorphism .
TyUGM = Homc(U. Y/U)

(here T,UGM denotes the ’'holomorphic’ tangent space of UGM at U).

U

Definition (1.13). An endomorphism ¢ on ¥ is a continuous linear
map from ¥ to ¥ such that there exists an integer n € Z with w(FmV) c
Fm+n(V) for all m € Z. Denote by FnEnd(V) the set of such
endomorphisms and put End(¥) = v FnEnQ(V). |

End (V) is thus a filtered t-algebra (i.e. if ¢ € Fm, ¥y € Fn,
then ¢1°9g € Fm+n) whose filtration topology is complete.

For each ¢ € End(v) define 9;(¢) € T UGM by U iy ey —ysvu.

Proposttioh {1.14). The linear map 6: End{(Vy) —— HO(UGM,B) =
{global holomorphic vector fields on UGM} is an anti-homomorphism of
Lie algebras, i.e. [8(9y),08(0y)] = 6([eg,0]).

C) Frame bundle on UGM -

Definition (1.15). Let U € UGMP, A frame & of U is a basis of

P*(3/2)' p-(l/z)}

B = (eove, B E
such that for 3u0 € Zh and Yu < Boo gH € pr(1/2)y _ pu+(1/2)y 444
g4 = eM mod FPY(1/2)y, (Since the topology of U is discrete, all
vectors in U can be expressed as a linear combination of a finize
number of vectors in #.) If we express & with {e®)}, then we have

gr = evgvr {with Einstein’s notation) ve Zh, reZh<p



or in a form of matrices

1y H
1.
x
r * :
- JVR S D S p-1/2
» x® p+1/2
oo oo oo p_3/2 p_l/z

We denote by FUGMP the set of all frames of elements in UGMP. The
natural map m : FUGM — UGM is holomorphic.
Definition (1.16). Let GL(Zh<p) be a group of semi-finite

matrices of the form

) 0 i
1 :
1
- s
A = (ar 1r,seZh<p = :

* x p-3/2
-1/2

Qb+ o a0 a4 a2 s a0 .. p_1/2

det = 0
For an element A € GL(Zh<p) as above we define det(A) = det(ZX),
which is easily seen to be well-defined. We define

SL(Zh ) = {A € GL(Zh det A = 1}.

<p):
The group GL(Zh<p) operates on FUGMP from the right as follows;

(ga)" = g% " A = (a;7) e GL(Zh ), & = (5r’rezh< e FUGMP,
P

Proposition (1.17)
1) n: FUGMp — UcMP is a principal GL(Zh<p)—bundle,
2) UTHP = FUGMP/SL(Zh<p) —UGMP is a principal C"-bundle.
Definition (1.18). Let GLf(Zh) be the group of invertible linear

transformations g: g(et) = e“gv“ of ¥ such that gv“ = 5U“ except for a



finite number of u, v's:

11. 0

| = |

1

0 1

-

Also P_ = (l+¢;¢ € FlEnd(V)} is a group since any element l+¢ € P_ is

invertible:(1+¢)-1 = 20(-1)n¢n. An element g € P_ is represented in
n=

the following matrix form;
111

(g %) = 1.

v . ..

-

0

We denote by GLf(Zh) the linear transformation group on ¥
generated by GLf(Zh) and P_. An# elemént g in GLf(Zh) can be

expressed as

1
7 -
(gv ) = L * l

Proposition (1.19).
1) The group GLf(Zh) acts on FUGMP from the left transitively.
2) The action of GLf(Zh) is commutative with the action of GL(Zh<p):
(82)A = g(2A), for "g € GLp(Zh), YA e GL(Zh ), Vg e FugMP.
3)GLf(Zh) acts on UCHMP and UGMP. .
Proposition (1.20) (Bruhat decomposition}) ([{S.N.]}.

Y

1) For Vp € Z and VY €9, uaMP 1= {U € UGMp; Y{(U}) = Y} is a locally

closed subspace of UGMP, and P_ acts on each UGMp'Y transitively.



2) ueMP = u UGMp'Y ;disjoint union (Bruhat decomposition).
Yey

3)UGMP’d is an open dense subset of UGMP whose complement is
of codimension 1 in UGMP. We call this subspace UGMP ' ® the big
ceit (in UGMP). We denote UGMO’* simply by uGM®.

We denote FlEnd(V) by 8_ which is the Lie algebra of P_. Note
that in #_ the Lie antihomomorphism 6 in (1.14) lifts to

¥v:p, —— #U@H, 8) , ¢ — Tlo)

In general it is necessary to "subtract an infinity" when we
lift the action of ¢ € End(¥)-8_ to that on UCM. This procedure will
be treated in §3.

D)Fock space (Semi-infinite form)

(1.22) For each Maya-diagram M = { -+« u(p-(3/2)) ulp-(1/2))}) we

denote by eM or |M> the symbol | |

eh(p=(1/2)) = ul(p=-(3/2))
We consider also finite permutations of u(v)’'s, under which eM is
multiplied by %1 as usual.

Definition (1.23). The Fock space (of charge p) is a direct

product

and the whole Fock space is

-9 3 .
p P .

We define two fundamental operators on %, the charge operator

and the mass operator as

jolo if ¢ € ?pl

da if @ = e with d(M) = d.

Jo(a)
M(e)

They commute each other ([Jo, Ml = 0). If we set



?p(d) = {a € ?;Jota) = pa, M(a) = da},
we obtain
g =00 7 _(4).
pd P
Note that
3 (d) = @ ce'l
P x(M)=p,d(M)=d

and it is of dimension p(d)} (cf.(1.7)}.

We define moreover the energy operator as

1.2
LO = TJO + M,
1.2

On 9p(d), LO is a scalar operator; LO = (Zp + d)id.
We introduce a complete Hausdorff linear topology on ?p by the
. . d d d+1
F - ? ; Py
filtration (?p) dU>d ?p(d ) o> F (?p) 2 F (?p)

(1.24) For a Maya-diagram M as above we define the {(dual) symbol

ey by

M T T AN Cu(p-(3/72))" Cu(p-(1/2))
which is also denoted by <M|.

Then we define the dua? Fock space as a direct sum with discrete
topology:

7 = o Ce,.
M
M
exy,

We can call it 'dual’ since we have a continuous bi-linear map
C > Fx F— C
W )

Sy
by which ¥ and ¥ are topologically dual to each other (with discrete

(EM, eN) — <(M|N> =

topology on C).

Any element ¢ in % can be written as



(1.25) We set

lp> = eP~(1/2)  op=(372) [

]

Pl = ---n By _(3/2)A Cpo(1/2)
. ... 5p+(3/2)  —p+(1/2)

Then ?p(O) = Clp>.

Proposition (1.26). The group GLf{Zh) acts (topologically) on ¥

by
G = Glg]: 7 — ¥
v W
eu(p-(1/72)) = u(p-(3/2)) .
g P(1/2)) ) o n(p=(3/2)),, .
for g € GLg(Zh) where g(e*)A--- is understood according to the rules

of usual exterior algebra.

Proof. For each M e M

b
G(eM) = 2 Gﬁ eN
y N;Mp (8)
- - n
where Gy = <ey|G(e™)> = det((av(a) )a<p,B<P)

with M = {---u{p-(3/2)) au(p-(1/2))}, N = {---v(p-(3/2)) v(p-(l/é))}-
Since g belongs GLf(Zh), the determinant of the infinite matrix.is
well defined. ¥

Corollary (1.27). The group GLf(Zh) acts also on ¥ as & = QO(g] €
End(¥) with the condition that

T(a) |Gl )> = ala'>

for Va € ¥, a' € ¥%.

Remark (1.28). One can write O(a) explicitly as above by using

the matrix representation of g-l.



E) Pliicker embedding

p-(S/Z),Ep-(I/Z)}

{1.29) We consider & = {---,8 ¢ FUGMP. Then we

see that

(1/2), 4p-(3/2)

Az = gP~ e 7

x
P p
Hence we obtain a holomorphic map

FUGMP —— 7y

Proposition (1.30). For & € FUGMP and A € GL(Zh<p) we have

A{8A) = detA-(AE).

Corollary (1.31). We have a commutative diagram of holomorphic
maps
gewp T, gpx
pi ]
e —E P(7,)

with which the action of GLf(Zh) is compatible, where P(ﬁp) is the
projective space ?px/C* associated with ?p.
Definition (1.32). The map P:UGM® — P(3) is called the
Fliicker embedding of UGMP in the Fock space. .
Theorem (1.33) (f(S.S.] [S.N.1). 1) P is injective and de:
Ty UGMP ——Tp )P(%)) is also injective for YU e uceMP.
2) The image of P is a closed submanifold in P(?p) defined by

the Pliicker relations.



§2. Moduli of Riemann Surfaces and Line Bundles

{2.0) In this section we prepare geometric framework of our
theory. The key idea, due to [B.M.S.1, is to introduce an apparently
redundant parameter, a (formal) local coordinate, which leads us to
work on infinite dimensiﬁnal manifolds such as the moduli space of
locally framed Riemann aurfaces. Generalizing [B.M.S1, we constfﬁct
moduli spaces to include Picard varieties, in order to realize
current operators in our geometric settings. The theory then becomes
more natural by this generalization. This gigantic moduli space,
which we call the Weierstrass system, can be embedded into UGM, and
is later identified with the space of physical vacus.
A) Field of formal Laurent series

{2.1) Here we fix a number of notations concerning universal

coordinates.
R =¢C((e))y =13 'at" ; a_ e C}:the field of formal
.n>>-mn n
Laurent series,
& = crrg11 = § 3 an;n} :the ring of formal power series,
n=¢td =133 an;n} : the unique maximal ideal of &.
n=1

{2.2) In R we define a decreasing filtration satisfying

the properties in (1.1) by

FPR = § 2. akgk}.
k=n

This filtration is the one induced from the unique (non-archimedian)
valuation v: R » T = Z U (=} with u(t™®) = n as

FR = v-l([n. =l).

* We have moreover



%k -0, FIR =&, F'R = & (n > 0).
{2.3) Le@ G0 = Autc(@) be the group of automorphisms of ¢ as

L-algebra, which we call coordinate tranarormations. We have a

natural bijection:

e d 2
GO—--.a—ﬁ

W w
¢ —— o(&) = byg + bzgz + ---y by = 0.
Let Gn (n>1) be the subgroup of G0 consgisting of ¢’'s with
o(8) = & +7py,, & 4
(2.4) Consider 8 = 8 - & = (o = ag + ajt + ---i ag = 0} which
“acts on 8 by multiplication. We call the clements of a* gauge
transformations. Denote by @: the subgroup of elements ¢ with
o= 1 + an§n+ cen, ' A
We define a semidirect product group Ub = GO X @* by
commuting relations ¢-0 = ¢{og)-¢ for ¢ e'Go, o € @*.
Then Gb acts on § as C-linear endomorphisms by (¢, o)(f) = @(o-f)
Note that (¢, o) is uniquely determined by its values at 1 and ¢. We
set moreaver_ﬁh = G, x @z. Then G& is a normal subgroup of Ub.
(2.5) Let & = Der(K) = R gf be the Lie-algebra of derivations on

f. Define its filtration by

+ +1 d
F' = 6, = {L € 6: FR —F "R }=02¢" T
..... 2 Gn26n+1 2..-..
Proposition(2.6)
1) [Gn’ Gm] =3 Gn+m’
2) dim Gn/5n+1 1,
3) $n (n > -1) is a subalgebra of §.

Note that 6, = Lie G for n>0 but §_; does not correspond to any



holomorphic Lie group. We denote 50 = B, Gl = B_ in the following.

(2.7) Let ¥ = 91(K) = R %E + & be the Lie algebra of differential

operators of order < 1 on R. Then it satisfies the following

, . d - .
comnutation relation for Li&f +t s; € ® (1 = 1,2)

4

, d ‘ d
[ulaz"'sly 02&'*32]
_ (z’ d.llz - dll)d N (1 dsz o dsl)
- 1 dg 2 dg /dzt “1 dg ‘2 dg )
Define its filtration by
F'% = & = {D e ¥: F"® — ™" R} = 8 M g? o 8§ "

o28% oF + 2 "

.._n-n 2

Proposition (2.8).

1) (%, 8,1 ¢ 8 in
2) %fn (n > 0) 1is a subalgebra of (4

Note that EL = Lie Gh (n > 0). In the following, we denote GB =9 e
and G& =%_=38_ @ 1_ where % = Lie %" = # and U_ = Lie @: = fi.
Remark (2.9) The algebra ), acts on & as
(1 gp + ) (£) =1 §F + sf. |
Proposition (2.10). The exponential map exp:Eb - Gb sending
D € Gb to eD EIGB ig well-defined and surjective, and it induces a

bijection exp:G& -t Gi.
-1

Remark (2.11). Later we use mainly a coordinate z = 4 (i.e. K
1
= C((z'l))) to adapt our neotations to the convention in physics.
Since Z%E = -;gf, the feature of & does not change much:
- -1 -n+l d
6, = Ctiz 1]z Iz
- -1 -n+l d _ -1 -n
€, = Cliz 11z Iz @ Cllz "11 z

B)Riemann surfaces and their Picard varieties
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{2.12) We recall some elementary notions on Riemann surfaces.
For details we refer the reader to [Si.], (F.K.].

{(2.13) Let R be a Riemann surface of genus g 2 0 and K = K(R)
the field of meromorphic functions on R. Note that K determines R
uniquely up to isomorphisms.

Let @ be a point on R. Denote by GQ the ring of meromorphic
functions on R which are holomorphic at Q. L is the unique maximal
ideal of GQ consisting of meromorphic fuctions vanishing at Q.

There is a valuation va at Q in K s.t. vQ(f) = the order of zero
at @ = - the order of pole at Q , which defines a filtration {FgK}
in K. This YQ determines a point Q with the relation

0q = (f € K;ug(f) = 0}. We further define Ry = Lin K/mg+1oQ (the

completion of K with respect to mQ-adic topology).

Definition (2.14).‘We denote by A(Q) = A(R, Q) the space HO(R,
6(%Q)) = (f € K;holomorphic except at Q}.

This is a subriné in K s.t. A(Q) n OQ = €l1. It has a filtration
(F’A(Q)) induced from (FgK} in K. |

(2.15) More generally let ¢ be (a sheaf of germs of holomorphic
sections of) a line bundle on R, ZQ the vector space of meromorphic
sections of ¢ which are holomorphic at @. Note that 2Q is an GQ-modqle
,free of rank 1.

We denote by Ho(z(*Q)) the space of meromorphic sections of ¢ on
R which are holomorphic except at Q. It has a filtration: |

FmHo(Z(*Q)) = {f € Ho(z(*Q)): order of zero at @ > m}, meZ.

In particular we set:

B(R, Q) = HO(R, 8(*¥Q)) = (meromorphic vector fields,
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holomorphic outside Q},
B(R,Q) = (v € B(R,Q); v has a pole at Q},
where 8 is the sheaf of germs of holomorphic vector fields on
R. Note that B(R,Q) = B{(R,Q) in case the genus of R > 1.
{(2.16) Thé gset P = Pic{(R) of holomorphic line bundles on R has a
natural structure of An abelian Lie group. Its connected components
are parametrized by the degree d (i.e. the first Chern class} or the

Euler-characteristic x:
p= pyp'd
deZ

upPX, x=4d+1 - g.
x€Z

The connected component P(O) of 0 {(i.e. the trivial line bundle) is an

abelian variety J = J(R) called the Jdcobian variety of R. If we
choose a line bundle £, € P(lj, we have an isomorphism of groups
J(R) «x 2 = P sending (¢, d) to zezled (with the convension:
z?(-l)z 2{ where 2¥ denotes the dual of £).

P has a canonical involution (charge conjugation) ¥:pX o p7X
sending ¢ to N@¢¥ where Q (= ev) is the cotangent bundle.

C) Formal uniformization
(2.17) Let R be a Riemann surface. Denote by R the set of
isomorphisms (as C-algebras) u:@Q =, 8 = Cfregll (2.1) with @ € R

. . n+1l
where @Q dénotes the completion lim GQ/mQ

of GQ. A specification
n

of u is equivalent to give a valuation-preserving C-algebra
homomorphism Oq - #. If moreover the image of u: OQ — # is contained
in the subring of convergent power series ® c #, then the
gpecification of u is nothing but to choose a holomorphic coordinate

at Q. Since K is the quotient field of GQ' u: GQ——»@ induces an
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injective C-algebra homomorphism u: K —K which preserves the
valuations and further induces an isomorphism u: RQ——aﬁ. Such u is
called a formal uniformization at Q.

There is a natural surjective map o f - R sending u to Q.
This B has a canonical structure of an infinite dimensional
complex manifold as a projective limit of finite dimensional
ones : R'™): [un:GQ/mQn+1 - @/ﬁn+1]-

On R the group G0 = Autc(@) acts (from the left) as u -+ ¢@-u for ¢
€ GO’ u € R, With this action R becomes a (holomorphic) principal

R.(n)

fibre space over R with GO as fibres. For n > 1, —— R becomes

{n)

a principal fibre space over R wiﬁh G = GO/Gn as fibres, and

f = lim R(n), GO = lim G(n).
T n

{2.18) Let (R, {(ax,8)) be a (homologically) marked Riemann

surface with a cancnical basis {al, Tt Ogs Bis s Bg} of HI(R’ Z)
{i.e. (ai! BJ) = 6ij’ (Gia GJ) = (8i’3j) = 0). (R,{,8)) and
(R’,{a’,8"')) are isomorphic if there exist an isomorphism f: R —R’
s.t. f;(ai) = ai , f*(Bi) = Bi (f*: Hl(R) ——qu(Rﬂ)). Denote the set

of isomorphism classes of (R, (a,8)) by 7 It admits a canonical

g'
structre of a complex manifold of dimension 0 (g=0), 1 (g=1), 3g - 3

(g>2). We call this 7_ ,the Torelli space.

g

On ,E the modular group M (=Sp(2g,Z)) acts properly
discontinuocusly (as base changes in Hl(R,Z) ) and the quotient space
JS/M is isomorphic to the coarse moduli space ﬂg of Riemann surfaces
of genus g (i.e. the gset of isomorphism classes). Over 53 there is a
universal family of Riemann surfaces n:ﬁg - fg where

gg = U R . See Fig.l.
([R},(xB))e Tg
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What we need here essentially is that the tangent space T[led

of jg at [R] is canonically isomorphic to Hl(R. 8p) via the

Kodaira-Spencer map {Ko.]. Then for any Q € R the tangent space of gg
at @ is canonically isomorphic to
~ 1 S -
where TQ(ﬂglfg) is the tangent space at Q of the fibre of n: ﬂg —_— 5g‘
For the universal family of Riemann surfaces n:ﬂg - rg
the union of R; 8, = U ® (resp. R(™); gé“’: v g™
([R]I(UB))Ejg ([R}:(Q.B))efg
constructed above admits a natural structure of a holomorphic family
—~ —~t (n)
@ Qg — 8, (resp. @ : 8y - Gg)
which are again fibre bundles with structure group GO (resp. G(n)).
For convenience we set 8;0)= ﬁg. Then we have
{n) 0 ~ 1
T(quy) (g /AUt (R)) —= HU(R, 8p((-n-1)Q))  (n 2 0).

For each data X = (R,(a,B),Q,u:@Q—aﬁ) € Qg, we define a C-subalgebra
of B, A(X), by uA(R,Q) and Lie subalgebras B(X) and B(X) of Der(RK) =
Kg— by uB(R,Q), uB(R,Q) respectively {(cf.(2.14),{(2.15)).

4
Proposition (2.19) [B.M.S.]. 1) We have canonical

isomorphisms:
1 ~ d
H' (R, 8p) <= Der(®)/(0gz + B(X))
HL(R, 8p((-n-1)@)) <= Der(f)/(8 £"*1gp + B(X))
at X = (R, (aB),Q,u) € 8, (n 2 0).

2) In the limit {(n -+ =) we have

Ty8y —— Der(£)/B(X)
which induces a commutative diagram of short exact sequences:

= 0
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1 4 0

d Der(R) Der(ﬁ)
0 —G,=0t7s — ) 0
0 dg ‘ @;%E + B(X)

where Tﬂg/ﬂg ig the set of tangent vectors along the fibre of %.

3) The above isomorphism defines a Lie anti-homomorphism
g : & = Der(R) — HO(Qg, CPY )
g

whose restriction to GO coincides with the one induced from the

action of GO

3

4) For VX € Qg the following diagram is commutative:

8 : By = 0 gy — uO(8,, o)

8y : G_y Ty (Bg/7g)

J J

0y & — Ty (8,/8,)

Remark (2.20) For Va € §, 68{2) is a holomorphic vector field on
#, and for VX € Qg, Txﬁg is spanned by {GX(L), i € 6 }. In this sense
we say that the triple (ﬁg! %, 8) is an infinitesimally homogeneous
space ([B.R.1).
D) Formal trivialization

(2.21) We still consider the family of Riemann surfaces in
(2.18). The union of Picard varieties of fibres forms a holomorphic

family of abelian Lie groups:

P : ?, = U P(R) — 7_.
& (Rles, &

It decomposes into connected components as

9 = u 2 = paX  (cf. (2.16)),
The fibre product ag = Gg ¥ ?g is the set of triples {(R,(x,8),Q, £)

with Q e R, £ € P(R)} and by projection we have a commutative diagram
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K

ﬁg g
l In
2 P 4
£ g
Definition (2.22). 1) For each ¢ € Pic(R) with @ € R we define

g n+1
2" Lin 2o/ mg

ZQ’ which is left @Q-module free of rank 1.
2) The space Qg is a set of quintuples {((X, L) = (R,(a,8),Q,2,u,t);
Q eR, £ e PRy, ustly 2 &, t:2y =& where u is a formal
uniformization (2.18) and t is a u-linear isomorphism of modules
(i.e. for f € 8, and s € 2y, t(fs) = u(f)t(s)) called a formal
triviatization or formal gauge Ffizing of # at Q. This t is determined
by the (formal) section g = t-l(l) which is a.(formal) generator of ¢
at Q.

For a given data (R,Q,¢) with a Riemann surface R, Q@ € R and ¢ €
P(R) we denote by K2 the L-vector space of mercmorphic sections'
of ¢ which is a free K = K(R)-module of rank 17 We further define
wé(Kz) = {92; K,—K,, C-linear map s.t. I ¢ Der(K), for Vf ¢ K, Vw €
Pr D(fe) = D(f)y + fD(¢)}. We then obtain the following exact
sequence:

0 K i éll{(xz)_“.- Der(K)——0.

For g € K, i{(g) G'Qé(Kz) is defined by i(g8){¢) = g¢ for v

© € Kz,
and for D € 94(K,), n(D) = D.

We next define the Lie subalgebras of Qé(KZ) by
B(R,Q,%)

B(R,Q,¢)

ID e 24(K,)ID: HO(R,2(*Q))——H (R, 2(xQ)) 1,
n(B(R,Q)).

Proposition (2.23). With the notations above we obtain the

following commutative diagram of the short exact sequence:
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0 0 .0

l l !

0 ——A(R,Q)~—— B(R,Q,¢) ——B(R,Q) ——0

1

0 — K —m QK(Kz)—-——-—o Der(K)}——0
. 1 . n+l, . .
We further define KZ,Q = l;m [&Z/mQ AQ, which 18 a free
R -module of rank 1. The following relations hold naturally:
Q
ﬁz,Q =Ke 2 = RQ o £q.
GQ o
We have natural projections p:ﬂ“g —— ig, ﬁg —_— Qg which form a

commutative diagram of heclomorphic maps

8, — &

g gg'
| [
g'_g__* Ty

Like aé this ig also is a projective limit of finite

dimensional complex manifolds. # is a disjoint union of connected

g
components ﬁé.each of which lies over 9§ respectively.

On Qﬁ the group Gb (2;8) acts (from the left) as (u, t) =+ (¢-u,
@w{o-t)) for ¢ € GO, g € @*. With this action ﬁg becomes a (holomorphic
principal homogeneous space over Ig with ﬁb as fibres.

Definition (2.24). Denote by P{Qg) the projective space
associated with Qg on which C° acts by c® ¢ 8*. This is equivalent to
consider the formal trivialization up to constants. We can take the
quotient since C* is contained in the centre of ﬂb. This space is what

we are mainly concerned with.

For each data (X,L) = (R, (c,8),Q,Z,u,t) € ﬁg, u-linear (u:‘&Q—muﬁ



isomorphism t: QQ w—a@Q induces u-linear (u: RQ =% igsomorphism t:
RZ’Q-—aR. Then each element D € Qé(Kz) defines t(D) € gl(K).
We then define a Lie subalgebra of Ql(K) by B(X,L) = {t(D}); D €
B{(R,Q,%)}. From Proposition (2.23) we obtain the following exact
sequence:
0 —— A(X) —— B(X,L) ——— B(X) ——0
For (X,L) € ﬁg we denote the corresponding element in P(ﬁg) by
((X,L)).
Then in the same way as (2.19) we have the following.
Proposition (2.25). 1) There is an isomorphism
T (x.1))P(%g) = 9 (R)/B(X,L)
which induces a commutative diagram of short exact sequences
0 — T P(£_)/a_ — T Py — ofT 1, — 0
((X,L))"""g’ g ((X,L))" g (Q,2)7g
i 4 4

1 .
2 (R) p'(R)
0 — 388U - Bl B(X,L)+73+ﬂ_—'0

2) The above isomorphism defines a Lie anti-homomorphism

e 4l 0
o : & =29(R) — H(PAY, 99(&3)’

whose restriction to Gb = B + U coincides with that induced from the
action of T, on ﬁg:
¢ : & — (P, % >
(Again (P(ﬁg),ﬁb,e) is an infinitesimal homogeneous space in the sense
of Remark (2.20)).
E) Embedding of Weierstrass system into UGM.
(2.26) Recall that M = Sp(2g,2) acts on the Torelli space fg

(2.18). It is easy to see from the construction that the action of M

lifts to that on ﬁg etc. and is compatible with the diagram in (2.23).
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We can take the quotient Rg = P(ﬁg)/M. This moduli space ﬁg of framed
and gauged Riemann surfaces is called the Weiersitrass system {of
genus g).
(2.27) We define a map
F i P(2) —— UGM(K)
sending (X,L) = (R,{e,8),Q,2,u,t) to t(HO(R,z(*Q))) c ﬁ} which is
seen to be well-defined and holomorphic. In other words the image is
the set of Laurent series expansions of meromorphic sections of ¢
holomorphic outside Q by means of the chosen (fprmal) coordinates and
gauge. ' can be regarded as the period map of P(&g). Note that the
period domain UGM does not depend on the genus g.
We have the main theorem in thisAsection, which corresponds
to Torelli’s theorem for the Weierstrass system.
Theorem (2.28).
1) r maps P(%X) intd UGMX,
2) The value of I' does not change under the action of M, heﬁce
we have a holomorphic map |
F: R, = P2 )/M — uaM(k).
3) F is injective for g > 1 (for g < 1, replace M by M x Aut(R)).
Namely U = t(HO(R, Z(*¥Q))) < R determines the data (X}L) up to
isomorphisms. and scalar.
Proof. Only the last statement 3) is non-trivial.-  We have
however
K = E(R) = (f/g € K;f, g € U}
and
A(R,Q) = {h € K;hU < U}.

Hence R is determined by K and Q@ by A(R,Q) since we have
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- f . ; ) L

OQ - lf/g: flg € A(R’Q)l \)Q(f) l VQ(S)J

(vQ(f) = max in; f € Fn})
On the other hand, as R - {Q} is affine, sections in Ho(z(tQ))
generates EQ,, Q' = Q and ZQ is characterized as

1f e HO(2(*Q)) 8 K 5 ugl
A(R,Q)

(considered as ¢ c ﬁz (constant sheaf)). Since A and U are already

£) > 0}

contained in R, the formal uniformization and the local
trivialization are also uniquely determined (up to scalar). 1
Theorem (2.29). For each pair (X,L) € ﬁg and ((X,L)) € P(ﬁg).

1) the following diagram is commutative;

[ ' End(R&)

o - o

P
T((X,L))P( g) TU(X,L)UGM ;

2) for each % 3 D, the holomorphic vector field @(D) on ﬁg is
modular invariant,
Y8 (x, 1) (D) = 8, x,1y(D) for v € M;
3) (the local Torelli theorem} the map
Fes T((x,L))PE) — Ty(x,1)UoM
is injective if g > 1 (in general Ker r, = B (X,L)/B(X,L)).
Proof. 1) and 2) are trivial from the definition of 6. We prove

3). From Proposition (2.25) we have a natural

w

identification: T((X,L))P(g) QI(K)/B(X,L). For a given

D € 91(3) the element

u

Fe{D). € Ty g )UGM = Homg (U(X, Ly, R/U(X,L))

is represented by the map

re(D): U(X,L) —f 28 —R/u(x,L).
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If we assume r*(D) = 0, then we recognize that D: HO(R,z(tQ)) —

HO(R,2(¥Q)) gince U{X,L) = tHO{R,z(*Q)) where we have omitted the

symbol t. On the other hand K = K(R) is generated by {y/¢; ¥,¢ €

0

H ' (R,2(*Q)),¢ = 0} as a C-algebra. Considering D = n(D) € Der(K), we

obtain:

D(y/e) = {2¥)e o ¥blo) for ¢, ¥ € HO(R,2(+Q)).
@
Since D(¢),D{(y) € HO(R,Z(*Q)), D belongs to Der(K). On the other hand

D preserves HO(R,Z(*Q)) and K, = K 8 HO(R,Z(*Q)), hence we have
£ A(R,Q)

D: KZ —_— Kz , in other words D € Qé(Kz). From the condition

p: HO(R,2(#Q)) — HO(R,2(*Q)) we reach the result D e B(X). I
F) Sections of spin j. .
(2.30) For j € 2 we have a section ojzrg —_ ?g sending [R] to
{[R], QROJ),'where QR is the canonical sheaf (or the sheaf of
holomorphic forms on R). Note that the degree of QRQJ is equal‘to

2{g-1)j, hence the Euler-characteristic is (2j-1)(g-1).

This section lifts to ajzﬂé - Qg (called of gpin 4) since u:@Q -
? induces (du)j:ﬁﬁeg - & sending f£(du~l(£))d to u(f).
H : .
(2.31) Now we want to define such section for j € éZ.

Using the theory of Riemann constant for each (R, (a,8)) € Jg. we can
2
A

canonically associate a line bundle zA(R,(a,B)) = ZA s.t. ¢, = QR

{(B.M.]J[IA-G.N.V.]. Here we define aj; Tg — ?é2j-1)(g-1)' as

oj(R,(a,B)) s (R.(a,B).Zia). We define the following formal

.. . . . H —~ : 2.. . 2— e
triviarization /du ; QA,Q__*aQ with (/du)“ = du: (2A,Q) = QQ =8,
which is determined up to constants = 1.

2J

A we define a mapping

For j € %Z with an identification Qé = Z

8.; 8, — P(£é2j-1)(g-l)), by

J g
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| 8, (R, (a,8),@,u)) 5 (R, (a,8),Q,u,227, (dw)?)

2J. #2) e (o 82) ~
whete (Jdu)“=v; 2, (EA,Q} ...
. Then we have a commutative diagram

5, ¢ 8y — pgl23TL(E"D),

J g
i d
. (2j-1)(g-1)
OJ- . 33 _— ?gs
We define the following composite holomorphic map

r.aj : Qg et UGM(ZJ—I)(K—I)
which we call the mocdular embedding of spin j.
Proposition (2.32). For j € %Z and a section
85 ¢ Der(R) —— 91(3)
W v
£e)ge — £(5)Tp + JTE(E),

we have a commutative diagram

Der(R) —8 Tuﬁ

sjl l(&j>t

-

‘where horizontal arrows are defined in (2.19), (2.25).
We are mainly interested in the case j = é. For simplicity
0
we denote 81/2 ; ﬁé-—ﬂP(g ) by &.
(2.33) By using the periocd matrix {, the jacobian variety J

of R can be expressed as the quotient of Cg by a lattice L =

(13,9)123 of rank 2g through the identification of ¥ =
Hom(HO{R,QR),C) with Cg.vFor an element ¢ = t(cl,..,cg) € Cg, the
corresponding element ¢ € J satisfies c(wi) = cy- Choosing a point Q
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€ R, we have an embedding IQ : R —m — J, P h————a(fg mi) mod L.

(2.34) For c € J (= Cg) denote by 2, the line bundle of degree 0
on R corresponding to ¢ mod L in J. The section of £, can be
identified with the space of multiplicative functions on R

(x) (£:%¥ - C;f(ﬁ#tma+tns) = exp(2nJ:Ttnc)f($3, m,n e 28}
where ¥ is the maximal abelian covering of R. Moreover a
multiplicative function on ¥ can be considered as a multivalued
meromorphic function on R. This implies that for @ € R and ¢ € Y we
have chosen a local trivialization So ¢ (20)Q L @Q via this
identification.

Denote by ?g (= (H*ngy)v) the family of universal coverings of
J(R)’s, which is a vector bundle on Ig of rank g. The dual basis of

{mi} gives the trivialization of vector bundle n: ?; _—

. X £
?} — 72 x C

NPz

g

g;

We set

Qg(?) = ﬁg x ¥ = a set of data (R,(a,ﬂ),Q,u,zc)
T

and define a map ?1/2: ﬂg(?) — P(ﬁ(o)) by
o = 3"1/2: (Rs(atﬂ)ldyulzc) _— (RpQ,ZABZC,u,iﬂﬁe(uosc))

with s, defined above.

Proposition (2.35). 1) The following diagram is commutative

8 0
&g »P(L7)

zero \\\\\\ ‘////??
section
8,(%)

2) The following action of vector fields are compatible:
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' 0
ag (7 —— P2
9 T /9 ) 9]
¢ 1/2 '91(3)
where 9(%) acts on Qgiy) = Qg x ¥ to its first component only.
7

(2.36) Define the actions of 223 and the modular group M on 8(J¥)
as.follows:
1) ZZg 3 (m,n) acts on Qg(?ﬁ —_— Qé as a fibrewise transformation
by ¢ =—— c + Qm + n.’
2) The modular group M acts on ﬁg(3ﬁ as

v(Xie) = (v(X),%(carD)te) for v = (5 5) e m.
Proposition (2.37). With the above notations, the map 31/2:

ﬁg(?ﬁ —_ P(ﬁg) is invariant under the action of NA =M, K Zzg, where

MA (= Mnr(2,4)) ¢ M is the subgroup of transformations which

preserv the Riemann constant A (cf.§5,C)).
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§3 Fermion Fock Space and the Second Quantization
(3.0) The main object of this section is to extend and lift the
infinitesimal action of End(¥) on UGM (as holomorphic vector fields on

it } to the whole diagram

UGM , g%
! i
UGM P PF)

where P is the Pliicker embedding (1.31}.

Here we encounter the difficulties of divergences coming
essentially from the infinity of the dimension of UGM. We use
a procedure of regularization (a technique of normal ordering,
cf.C)). In fact what acts on % is not End(y¥) itself but its
non~-trivial extension by a l1-dimensional center. This phenomenon 1is
what physicists call anomaly. The Virasoro algebra
and the current algebra appear as fundamental sqbalgebras of this
extension {cf. D)}).
A) Fermion Operators

Definition (3.1}). i) The associative algebra with 1 generated by

u¢u, Iu. u € Zh, with the relations:

["u!‘*‘)].'.: [*“l’*vlq,: ODI[*“!’*U].’.: 6u+\)10
for vu,u € Zh, where [A,B] = AB + BA;
{i.e. the Clifford algebra) is called the fermion cperator algebra,
which we denote by d.

We define actions of wu, ¢ (= ¢ ™) on # and 7 as follows:

u
w = 3 , P = ePa (left action on %),
H eeu

- 5 . | _
wu = A eu @5 = aeu {right action on %).



Then the above anti-commutation relations hold, i.e. 4 acts on % and
7.

We denote by W (resp W) the vector space generated by {W“}
{resp. {Wu}) {u € Zh) and set Y=we W

Proposition(3.2). These operators satisfy the feollowing

relations:

1) for v<u|E 3, |v>e %, ue Zh,

11

Cuflw,iv>)

(ul(ﬁu1v>)

(<ulwu>IV>

(Culw ) Iv>;
2) for Vpe Z,

v,lp> = 0 (wp), <pl¥, =0 (u<p)
¥,1p> = 0 (w-p), <pl¥, = 0 (u<-p)

where |p>, <p| are charged vacua defined in (1.25)}.

Definition (3.3). We set

W=W,_@W, W = Cy , W =oCy
+ - M u>0 H T u<o w'
W=W oW W, =29 C¢ , W = Cy,
+ =T u>0 H Tou<o M
¥, = dv eV vl0> =0} =W, e W,
V_ =iy e V; <ofy = 01 = W_e W_.

Elements of v+ (resp. V;) are called annihilation operators
(resp. creation operators).
{(3.4) In §1 the Fock space was defined as a semi-infinite

exterior product (geometric interpretation). There is, however,
another algebraic presentation of the Fock space by means of the

operator algebra 4. This form is more convenient for concrete

calculations.

Theorem (3.5). 1) The following homomorphism of left d-modules
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is injective and its image 1is dense:

A/dV, ——7
w w
a —— al0>

2) The following homomrphism of right 4-modules is isomorphic:
TV ad — 7
w
a ————<0]a.

{(3.6) The notion of "normal ordering”,familiar to physicists
but not to mathematicians, is one of the most important techniques
in operator calculus. It can be formulated mathematically as follows:

We define a linear map (called normail ordering)

s AV —— A(V) 8 AlY,) = 4
such that i) it is an isomorphism as left A (V_), right A(V;)
-bimodule, and ii) ; 1 ; = 1. Sﬁch a linear map exists uniquely.

Definition (3.7). We define the following fermion field operators

wiz) = 3 ¢z #"1/2
: ueZh H

Flz) = 3 gz ul/2
ueZh H

which are operator-valued infinite formal Laurent series.
Proposition (3.8).

‘In the region |z|>|w]| the vacuum expectation value of two operators

are well defined;

w(zZ)F(w) = <0|w(z)F(w)|0> = ziw
F(z)w(w) = <O|§(2)y(w)[0> = z%w

w(z)y(w) = tﬁ(ZJE(W) = 0.

We extend the defining domain of ¥(z)y{(w) from |z| > |w]| to

X
(C*)2~ 8 = {(z,w) € € x C*; z » w} by analytic continuation. The
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vacuum expectation value of general field operators <0}...|0> can
be defined in a similar way [T.K.].

Physicists know the following very-convenient formula for
calculations of fermion operator algebra.

Theorem {(3.9) (Wick’s theorem).

(29)..0(zy) = 32 *8(z ). 8z, )..0(z.)..8(2)..8(2,)..8(zy)"
¢Z ..ﬁZ = ‘“Z e Z - . zZ . .. Z ..ﬁZ ..¢Z A4
1 N cemb. 1 i J k L N
l l * *
= 2 () T @#(z;)8(z;) « M @(zy ).
comb. pairs J rest
where ¢(z) = ¢(z) or y¥(z). The summation X ig taken over all
comb. _

pairs in {zl,zz,..,zN} and the sign + comes from the anticommuting

relation of fermion cperators (i.e. the signature of a permutation of
indices).

Definition {(3.10). 1) Define the filtration on W and‘W as

F'™ = S cy* = S Cy
wu>m u<-m H

F?W = I Cg* = 3 ¥, .,
u>m ul-m H

.and introduce a topology on W by this filtration.
2) Denote by f (resp. ¥) the completion of W (resp. W) with resﬁect

to this topology. Then we have

r=o @ n_ = (&c¥ o (e v
_ >0 a0

F=F, er_=(8C¥") @ (& Cy*)
u>0 u<0

Proposition (3.11). 1) There are filtration-preserving linear
isomorphism:

¥ ——— r e, — ¥,
¥ —=— F ; e —— FH.

2) The bilinear maps
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Fx F —— F; (b W) —— yjuw
FxF —— F; (§,|wW) — §|w
are continuous on each variable.

(3.12) For a point U € UGM, we define U c ¥ to be Ut = if e
Hom({v,C) ; fIU = 0}, and we use the symbol [{U] for the image of U in
P(#). The isomorphisms in (3.11) 1) define subspaces F.(U) ¢ ¥ and
f+(U) c ¥ corresponding to U ¢ ¥ and U c ¥ respectively. The

following theorem is very important. (4,1g)

Theorem (3.13). We obtain the following equalities.

1) r (U) = {v e r; vlw =0, |we [U]},
¥,.(U) = {¥ e W ¥luw =0, |uwe [U]}.
2) (U] = {lu> € %; wlu> = Flu> = 0 for "y € r (U),

and ¥ e ¥, (U)}.

We call W+(U) ] W+(U) as a space of annihilation operators associated
with U € UGM.
B) A Differential Operator algebra 92

(3.14) Among endomorphisms of K = C((z_l)), we consider such
differential operators which form a subalgebra 92 of End(K)}, big
enough and easy to treat. This restriction is only in order to make
concrete calculation easier, and all the results in what follows can
be generalized to the whole End{(K) in fact. The reader who knows the
theory of KP eqfuations could remark that this Qz is nothing but the
"Fourier transform” of the algebra of microlocal differential
operators & = @[[t]]((a'l)).

Definition (3.15). We consider the following differential

operators:
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d d d d
2, = Plz,gz) = n§<mz a lgg) 3 a,lgz) € Cligzlls.
We then define a valuation ! ord :2, - Zu{=} in the following way;
. n d
-m if P = n%mz an(HE)’ ap = 0
ord P = -
z - if P = 0
(i.e. ordzz = -1, ordz %E = 0). Define a (decreasing) filtration on
93 by

G"g, = {P(z,%il € 9,; ord,P >m}.
If we introduce a topology on 2, with this filtration, then 2,
is complete Hausdorff and the product 2, x 2, — 92 is continuous
{(i.e. 92 is a complete topological C-algebra} with respect to this
topology.
Proposition (3.16). 1) In case ordzP = m for P € 92, we have
P : FIR —— FI*M g,
'2} The natural map {(defined from 1)) 92 — End{(K) is injective
(and G"2, ¢ F'End(K) from 1)).
(3.17) One can rewrite P(z,%z) as follows:

k
P(z,gg) = 2 z“an<§5) = kgm z gk(zgz)

‘where ) is a polynomial of.order at most m-k with respect to z%;.
‘With this represeptation ordz(P) is given by
ord,(P) = -mini{m: deg g, < m-k for Yk € 2}.
Now we consider another valuation defined as
v(P) = - max{ k ; & = 0}
(i.e. v(z) = -1, u(zgf) = 0). Clearly we have
ord, (P) < v(P).
Proposition (3.18). The filtration on 2, defined from v,
n

F 2, = ip €2, ; v(P) > m}, is nothing but the one induced from
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the inclusion map 2, < End(K).

Proposition (3.16) implies that if a series in 9, converges
w.r.t. ordz, then it converges w.r.t. v, but the converse need not
hold.

C) Second quantization and anomaly

Definition (3.19). For P € 9, we define the adjoint P €2, as

follows;
1) 2t =z, ()T = - 5
2) (PQ)T = Q*tPT for VP,Q € 2, (anti-homomorphism).

A differential operator R=P(z,%;)e 92 acts naturally on the formal
parameter z of the fields operators y(z),¢(z).
For P € 92, , P and PTare related as follows
efiz © (Pwz)F(2) : = [ dz @ w(z)(P1(2)) =,
where J%adenotes the (clockwise) contour integral around Q.
Definition (3.20). Given P € 2, We define .an operator ®(P)
acting on ¥ and ¥ as follows: |
®(P) = pir [z :(Pu(z))¥(2): = g2y [efiz 1w (2) (PTF(2)):.
This procedure is called the second quantization and this @(P) is
called the second-quantized operator corresponding to P. The naming
is justified from the next theorem.
.Theorem (3.21). 1) For P € 2,
[o(P), ¥(z)] = P w(z),

[o(P), ¥(z)] -PT ¥(z).
2) For P, Q € o,

H

[#(P), 9(Q)] ®([Q, P]) + c(P, Q)id

where
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c(P, Q) = [21&?1')2 J’@dz dew) (P $pas) (02 T a2s)
Z

called the Schwinger term.
Proo7. 1) From the convergence of the operator product we see that

the contour should be chosen as follows;

1 -
P(Ply(z) = dw Py (widg(w):y(z)
2n/=1 I@ - Z )
w(z)a(P) = —

2n/=T I.dﬁ wi{z):Py(w)g(w):

Then we can obtain the following relation ,

. B
[6(P), w(z)] = dw :{(Py(w))F(w): w(z)
2n/-T L@
= 1 dw Py (w)F(w)w(z) = Py(z)
T 0

We can proceed in a similar way for ;(z).
2) The commutator of ®(P) and #(Q) can be expressed similarly as:

1 2 -
(0(P), 0(Q)] = ( ) dz [ dw :(Py(w))¥(w): :(Quiz))¥(z):
2n/~T J;Q 6

Using Wick’s theorem for the integrand and taking the singular parts

into account, we obtain

(integrand) = :wakw)W(w): :sz(z)i(z): +

(P (W) P(W)1:Q ¥ (Z)¥(z): + :wakw)w<w): :sz(sztz):-
Then the first two terms correspond to ¢([é{P]) and the third term
provides the Schwinger term c(P,Q).
Proposition (3.22)'([S.S.]).
The bilinear map c: 2, X 2, €C enjoys the following properties:
1) c(P,Q) = -c(Q,P);
2)  o(P,[Q,R]) + c(Q,[R,P]) + c(R,[P,Q]) = O ;

3)for the basis unk = zk+n E% (g‘E-)LF € 92 y k>0, nelZ,
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k AN k 1 ;
ety thug”) 2 D Ty [T (%) Sen 00
From 1) and 2) the map c; 92 % Qz‘__ﬂ  determines a cohomology class

[c] e HZ(QZ,C), which turns out to be nonzero cohomology class.
D) Lifting of the action of 2,

(3.23) Using ¢o(P) defined in C}), we can lift the infinitesimal
action 8(P) on UGM to ¥(P) on UUM, by defining it on 2% and by
éhecking that it preserves the image of UGM by the Pliicker embedding.

Definition (3.24). For each P € 2, we define a vector field;
g(P) on #* in the following way;

Ulu>(P) = o(P)|u> € T

where |u> e F%.

b4 )
JF—=— 3

(3.25) Let L be a one-dimensional subspace of # and [L]
the corresponding point in P(%). Similarly as (1.12) we have a
canonical isomorphism

T[L]P(?) -=}~ Homc(L,ﬂ/L)-

Then in the same way as (1.14) we define a holomorphic vector

field a(P) e HO(P(%),8) for P € 2, as

o(p)(P): L e—z 2Bl g F/L.
For d and 6 we infer readily the following propositions.
Definition (3.26). Let F ——B be a C -bundle. Then the action of
C* defines a holomorphic vector field E on F along the fibre,
called the Euter operatofl For 3% —— P(%), E is nothing but the
vector field corresponding to id: § —% with the above description.
Proposition (3.27). Every ®(P), P € 2,, preserves the ideal s
of G? generated by the Pliicker relation:
B(P)$ c 5 .
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Therefore P(P) (resp. 9(P)) defines a holomorphic vector field on
UGM (resp. UGM). This 8(P) coincides with the one defined in (1.14¢).
Summing up, we have obtained the following main theorem in

this section.

‘Theorem (3.28). For P € 9, there are holomorphic vector fields
g(P), 6(P) whose action is compatible with respect to the following
diagram:

¥: 0OCM —g%

| |

g : UGM ——P (%),
where 8 on UGM is defined in (1.14).

Corollary (3.29). For P,Q € Qz we have
[F(p), T(Q)] = F(lQ, P]) + c(P, Q)E.
.E} Current and Virasoro algebra
{3.30) We obgerve that § = alﬁK) ,(2.7), is a Lie éubalgebra of

2,- The operators ®(P), P € B, play the most essential role in our

theory.

Definition (3.31). 1) The following operators corresponding to

scalar multiplications are called current operators:

J = -¢(z™) = - 1 dz zB sy{z)g(z): .
n 2n/~T J%Q
Then we call
J(z) = :W(2)w(z): = 3 J 27771
nez

the current operator.

2) The following operators corresponding to derivations are
called Virageoro operators (for spin j):

L 9 = o(sj(z"”%; 1) = e(z"(zgz + J(n + 1))
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_ 1 n+l ‘ . d {z) . dy(z)
= dz z ci(1-3) ¥lz) - (z) :
2n/-T ‘&9 'gi“‘ Z J¥ z h

for j € %Z y, n € 2 (for s; see (2.32)). Then we call

T(z) = :(1-5)HEEL Fa) - ju(z)2Elz)
= (J)_ -n-2
) ngl S

the energy momentum tensor (for spin j-fields).
3) The Lie subalgebra generated by id and {Jn} (resp. Ln(j)) is
called the current algebra (resp. the Virasoro algebra). For j= 1/2
we omit the superindex j in the notation of L and T hereafter.
Formuiae (3.32). From (3.21) we obtain the following fundamental
relations of these operators:
[Jn, Jm] = n3$

n+m,0 '

[Ln(j)! Lm(j)] - (n -m)L {J) - é,(s‘jz—s_] + 1)(“3— n)s

n+m n+m,0 ’
(w9, 0y = ma - g (25 - 1)(n2“‘)5n+m,0 ’

(I, w¥(z)] = -2"¢(z),

(3., ¥lz)] = 2" (z),

(L,"9, wiz)] = 2™z + 3(n + 1))w(z),

[Ln(-j),. ¥(z)] = z"(z%; + (1 - j)(n + 1))¥(z).
Moreover between T{(z) and J(z) there is an important relation.
Proposition (3.33)(Sugawara form of energy-momentum tensor).

T(z) = £ 33(2)J(z)}

1 o s _=-n-2
2 oJ J o 2
z n,heZ n“n-m

where 2 % is the ordering which transforms J, (n > 0) to the right

H

and Jn(n < 0) to the left (see §4,A)).

Proposition (3.34). There exist unique maps:

T 6 — HO(HS(?),G) and ¥ : G’—vHO(P'(Qéo)),B)
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(holomorphic vector fields) s.t.

1) [(F(i),E] =0, Y. e 6 or ¥

2) Their actions are compatible, as indicated in the following

diagram:
TP — 20, P vt
l l L
8, | — p(2'®) |—— uen®
yo Yo J)
® T/ —— 2/

——ly

$1/2
Proposition (3.35). By the above compatibility and definition
{3.24), it follows that

for VX; € ?; ($ and VZ € 6.

This equation plays an essential role in §7.
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84 t-function and Wave Function

(4.0) In this section we réformulate the Sato theory of KP
equations into a convenient form for our later use. We give skechy
but selfcontained proof here. More details about KP equations and the
related topics, see for example [Sa.l{D.J.K.M.].
A) Bosonization

(4.1) We first explain one of the most fundamental principles of
tﬁo-dimensional field theory: fermion-boson correspondence. The

fermion Fock space % is isomorphic to a corresponding boson Fock
space ¥ defined below and the operators acting on these spaces have

also a well-defined correspondence.

The boson Fock space is defined as the following vector space;

Clft 11 Cl ‘o -tol 2 ClI il "
1 = )t g oea e 2] ] = t ,t P e
1’z © € mel 1’2 ©

o

:z ”®
mez °

where ti’s are infinite number of indeterminates. An element of # is
called a boson state vector. We define the degree and the charge as

follows:
to
deg ti =i, deg e =0 ,

nt
charge ti = 0 (i = 0), charge e © - n.

then f# decomposes into charged sector R, (neZ), each of which is

a complete Hausdorff vector space by the filtration: Fdxn =

ST tnld) s ag(d) = {200 € 2,3 degree £(1) = d}.
ta
Definition (4.2). We define a linear map B: ¥ - # as follows:
nto ®
Bi¥> = £ e <n|expcm§ Jmtm)lw>
nel =1

Theorem (4.3)(Bosonization) [D.J.K.M.].



1) The linear map B: ¥ —# gives a teopological isomorphism.
B: F —= g,
2) B preserves the charge and the degree
i =l
(4.4) We define the following fundamental operators on #
a_ = %f (n = 0), a = ntn {n > 0), q=+t

n n ~-n o]

The following relations can be easily confirmed:
[am R anj =m S

[ag » 7]

"
o

which are standard bosonic commutation relations.

k]

n
» of these operators, a and e"9, are

CR

The normal ordering
defined as follows:
1)Inside the symbol - ’ : we put polynomials of an(nEZ) and eq, and’

a commute each other.

all the operators a, and e
2) In case the operators inside the symbol - o are in normal
order (i.e. all the creation operators (an {(n<0}, eq) are

located to the left of all the annihilation operators{a_ (n20)).) the

symbol can be taken away and the remaining operators are considered

o

. o 9 "
. b e = 28 =
as those acting on #A For e‘cample °Bn3_m _man° a_man,

for n,m > 0.
Each operator & on the fermion Fock space has the corresponding
one Op = B6B lon the boson Fock space.

Introducing the following field operator which is familiar in string

theory;

o k

Q(z) = q + a_logz - 3 — z7°
° n=0 0

and set for keZ
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v (z) = ef@(z) g

@ kt @
n 0 2 zZ

= exp(k St .z Je exp klogzgf -k 3 =
n=1 " ( o] n=1"

which we call a vertez coperator of charge k.
Then we have the following:

Theorem (4.5){Fermion-boson correspondence).

wplz) = V_q(z),
vglz) = V_ (2),

dQ(z) -n-1
Jo{z) = A(z) = I =3 a_z ,
B z nez ™
Talz) = 5 3A(2)A(2)3

where JB(z) and TB(z) are the bosonized version of current operator
and the energy-momentum tensor operator.
B) ¢-functions and Wave Functions
(4.6) We first take an element U (e UDM®) (cf.(1.20)) of the

charge zero sector of the universal Grassmann manifold and its image
in the Fock space-|ﬁ3e ?g. We then define the following quantity:

Definitions (4.7). '

x(t,0) = <o| (8|,

<=1 eH(t)q(z)|ﬁ3

vz, .0 = c(t,U) '
T H(t)= ~
$(z,t,U) = 1l et(t’ggz);u>,

where

H(D) = 3 €T
We call ©(t,U) a t-function and ¥(z,t,U),¥(z,t,U) (conjugate-) wave
Functiong associated with W e UGM®. Note that 9,9 depend only on U =
n(T) e ucM®

Remark. We can define «(t,0) for ¥ € ugM® as above. Then t(0,53=0
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if and only if U € UGM¢.

We provide several important properties of the (conjugate-)wave
functions.

Proposition (4.8) [D.J.K.M.]J.

1) The wave functions have the following expansions:

Y{z,t,U) = e-g(t,z) {1 + z Wk(ﬁ)z-k):
k=1 :
Bz, 1.0y = 202 (1w 5 G (2T
k=1
where wk(t),ﬁk(t)e Cl[I{t]] and &(t,2) = 3 tnzn.
n=1-
2}y If we write
P(z,t.U) = 3 Pyqi(z:U) tM
M
(resp. ¥(z,t,U) = g '@M(Z,U) tM) ,

then we have ?M(z,U) € U {resp. @M(Z,U) € U) where tM = t?l tgz tg3..
Proof. 1) The expansion 1) can be obtained easily with the

bosonization rule -mentioned in (4.5);

Pz t,0) = o"8(12) TE 2 [2]U)
T ]
- B(t,z2) {8 - [z],U)
Mzt - of e
where [z] = (=, —y —greeee) ’
z 2z 3z

2) Take a base {eu}uel of ¥ with
gt e U (u ¢ 0), gH=e!t (a0,

and satisfying the following relation:
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1 :
1 ~1/2
(oo, g®,edth oy 2 (Ll eV, eV L) * oL 172
* x 0 :
a 4 & -—1 1. - ) .
2 2

Identifying the matrix in the right hand side of the above equality
with an element g of P_ and the corresponding operator on the Fock

space (see (1.26)) G[g] (i.e. |0> = G[g]|0>) we obtain the following

relation;
¢l 3 wetic = 3 (GTlyaret = 5 wgV et = 3 oy eV,
uezh H u€Zh H u,veZh H veZh
We then obtain
w(z)|0> = (S ¢ eH)G|0> = G( 5 v g |0> = (Gy J0>)eH.
u€zZh H u€Zh u<o K

Bosonizing these relations, we obtain.the result:
Py(z,U) € U.
The argument is the same for the conjugate sector. |
Since U and U (= U¢) are orthogonal to each other with respect to
Resz=w, the following relations are a natural consequence of 2):
Corollary'(4.9) (Bilinear Relation).
Res,__ ¥(z,t,U) ¥(z,t",U) = 0

Corollary (4.10) (Hirota's Bilinear Equation for t-function)([H.].

.20 Pj(-Zy) PJ+1(D3) exp Elleta) t{t>-c(t) =0
J= :

L=
where
- < j 1 1 :
exp( St z") = 3 P.(t) zJ, D, = (D, , 5D, , #D, ,..)
ngl n jSo J t ty z t, 3 ty
and
P(Dy) f(t)-g(8) = [P(B )if(8 + y) 2(t - y)}] _q4-

This equation is obtained as a direct consequence of the bilinear
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relation. It characterizes the that t-function is asscciated with an
element of UGM (Theorem 4.16). (See [D.J.K.M.] for more details about
(4.9) and (4.10).)

Remark (4.11). The bilinear relation'(4.9) is nothing but the
bosonized version of the Plicker relation, and its férmionic form is
represented as

Res __w(z)|U> 8 ¥(z)lu> = 3 y |U> @ §_ [U> = 0.
u€zh # H
C) x-function

(4.12) Putting aside the definitions of ©, ¥ and ¥ given in B)
for a while, we investigate how the properties given in
Proposition (4.8) of B) characterize ¥ and ¥.

Definition (4.13) (Generic.Wave Function). We call
¥(z,8) = 3 v (z) 8V, ¥z, ) = 3 Byt e ciiz™h)) e cli1]]

a conjuéate pair of gensric wave functions when they satisfy
the following two conditions:

1) asymptotic behavior

"P(Zyﬁ) k

et (1 3w 2T, w1 e clIt]],

1

@(Zvﬁ) k

it

k
R-C TS 3 P 3 ) 27, W) e Cllt]];

2)'bilinear relation

N Res,__ wy(z) Fy(z) = 0 .

Res .. ¥(z,0)¥(z,1') = 3 t"t’

We denote the whole set of pairs ¥, P satisfying 1) and 2) by WF®.
Definition (4.14) (Generic x-function).
t(t) € C[[t]] is called the ggneric t-Ffunction when it satisfies the

following conditions:

1) v(t) satisfies the Hirota’s bilinear equation (Cor.(4.10)),
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2) (o) = 0.

We denote the whole set of generic t-functions by TF? .

Proposition

(4.15).

1) For any pair (¥{(z,t),%(z,%t)) € WF¢, there exists a unique element

U € UGM® such that ¥y(z) € U, $y(z) € 0 (= u").

2) The map wF® —ucM?® given above is bijective.

Proof. 1)The terms w_(t> and Gn(t) in the asymptotic expansion

of ¥(z,t),¥(z,t) can be expanded with respect to t. as follows:

wn(ﬁ)

wo(t)
Define elements

@gf2)

5'0(2)

Gj(z)
where

N

0

N;

"

J
= ¢, +.§ cnjtj + o(tz),
Jj=1
= .5 = 2
Jj=1
in €((z"!)) as follows:
=¥, (z) =1+ 3¢ 2"
No nz1 °
=z P, (z2) = —zj(l + S e z™ + s c .z~ 1
Nj n=1 B n=1 ™Y
a P, (z) =1+ Sc .z "
N0 n=1 °
= §y (z) = z9(1 + 5S¢ z ™) +35¢c .27
Nj nz1 1 n=1 ™
(0,0,0,.0000.),

(0,0,0-’0’%10,00)’

and define the following vector subspaces:

U =
n

0 =3

n=0

8 umMs
o

C@n(z) c K,

Can(z) K.

in

(i = 1)

{(d = 1)

As a direct consequence of the bilinear relation (4.10) we obtain
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(1) T ¢ ut, u c U*". The concrete expression wn(z) and Gn(z) given
above naturally leads to (2) vt A FOV =0, U" n FOV = 0., Recalling
M(U)= M(T)= {- &,- %,...} (cf. (1.7),(1.11)), we can show that (3) ¥
= U@ FOV, 7=Ue FOV. (1), (2) and (3) imply U = u*, U = T". Then
by the bilinear relation we obtain the desired. result:

Pylz) € ot =vu, Pylz) € Ut = 0 for 'N.
It is obvious from (2) that U e UGM®.
2) We now show that two pairs of wave functions (¥(z,t),¥(z,t)),
(¢ (z,t),9 (z,t)) e WF® corresponding to the same U e UGM®

coincide with each other. For this purpose we expand the wave

functions as follows:

¥iz,1) = e 828 5 5y (z) oV
n=0 [N|=n
where wyl(z) € Cl'.'[[z-l]]z-1 = Oy for {N| > 0,
. - M
i.e. ¢.(z) = [e 8z, ) 2 walz)t ]y + wyl(z) (%)
N IMI<IN N N N
with |N| = .21 n, . By induction with respect to |N| we show
1=
wN(z) = wﬁ(z). Thé argument works similarly fof the conjugate sector.
i} For |N| = 0 {i.e. N = No) we obtain

@glz) € Fly

wy (z) =1 + 3 c z P
N0 n=1 1

1 + 3 crz

-1
w.' (z) = = ¢4 (Z2) € F "U
No n=1 ® 0
Since dim F U = 1, we obtain
W (2Z2) = wy' (z).
No No

ii) Assuming wM(z) = wﬁ(z) for |M| < n , we obtain

= 9y (2) - ¥(z) = wylz) - wylz) e % nu = (0},

¢
for |N|] = n. | Conversely the mapping UGM®P ——WF® is shown to be
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surjective because of the correspondence of eq.’s in (4.7) and

Proposition (4.8). 1

Define the map TF¢/C* —_— WF¢by
e-B(2, 1) (1 + [z])

$(t,z)

i)
V(1,z) = e/ 1) t(nt?ﬁ}zi) . (%)
Theorem (4.16). The following diagram is commutative and all
arrows are bijections.
TF*/ct
uaM® . wr®

Proof. Only injectivit} of the mapping TF®/c* —wF? is
nontrivial. From Proposition (4.15) ¥(z,t) and ¥(z,t) are
uniquely characterized by the condition ¥ (z) € U , @N(z) e 0 for VN.
If ¥(z,%) and ¥F(z,%) are expressed by a x-function (%) as (**) ,
then the above conditions for ¥(z,%) and ¥(z,t) are equivaleht to the
following conditions on <(t):
0 for "E(z) € U
0 for Vatz) e U

Reszzw(E(Z)¢B(Zﬂ)t(t)'
Resz:Q(E(Z)WB(Z))t(t)

"

These conditions determine t(t) uniquely up to a constant by using
the characterization of |U> by V+(U) o ?+(U) established in Theorem
(3.13). Thus the mapping TF®/C*—WF® is injective. }
Remark that the t-function t(ﬁs corresponding to U € UGM® is
characterized by the following infinite order differential equations:
Res,_ _(E(z)V_,(t))x(t> =0
Res _ (£(z)V,(t))c(t) = 0.
For simplicity we have restricted the discussions in the generic

case (UGM¢). We can generalize the discussions to the whole UGMO.

Theorem (4.17). The following two conditions are equivalent:



1y f(t> € ftg satisfies Hirota’'s bilinear equation (4.10)

S P.(-2y) P (D> exp( 3 ¥.D. ) t(d)-<(t) = 0 ;
L JrliTe IETRRY

2)there exists an element T e U‘E(MO such that f(t) = 1:(71,'[7).
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85 The t-Function as a Period Map
(3.0} In the preceding sections we have constructed a

sequence of C*-bundles in the followaing {(cartesian) diagram:

T, (7 —— P y——— T ——— 3% =

N I N

agm —a—.mtg)_l___. UGM —p—P (F)—g—P (1)
@;(3313 the pull-back bundle.

We now define a holomorphic mapping B1/2° @g(?$ —_— P(ﬁo) by
. 0
81797 8P —5 UGMT —p—P(F()———P (1)) .

oo
The Fundamental Problem (5.1). Construct.a section of Qg(3),

equivalently, a nonzero holomorphic function

T @ aé(?ﬁ —_— ﬂs which makes the following diagram commutative

P e

Pr,)

ek(?ﬁ

We actually construct a lifting v by using the theory of
KP equations. Geometrically ¢ is a period map of the moduli
space 33(33. For a given lifting v = x(t,X_) we can construct
‘another lifting of 812 by </ (t,X) = A(Xc)t(t,X) for any holomorphic
function A: Qg(?7 ~——~C*. In this sense the lifting © is not unique
(See §7,D)).
A) Baker-Akhiezer Function

(5.2) In this paragraph we reformulate the theory of the

Baker-Akhiezer function (BA-function) of KP equations. For the
original theory of the BA-function see [Kr.][D.].

Definition (5.3). For a given data XC= (R,(a,B),Q,u,zc) € Qg(?ﬂ,
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we define A(X_), A (X_) € €tz™)) 8 C[i1]] as follows:
AMXg) = { ¥zih) = 3 vlz) e |

y(z) € U(X,) =/@0 HO(R, 2,8 2,(%Q)),

Y(z,t) = e_g(z’ﬁ)<kgowk(ﬁ)zn~k)r wk(ﬂ) € ‘C[[ﬁ]]};

RX,) = 1 ¥lz,t) = 3 Fy(z)" |
N s

Ty(z) € U(x,) =/ HO(R, 2,8 2,71 (xq)),

F(z,1) = eﬁ‘z'“><kgosk(a>z‘k>, w(t) e Clit]]}.
We call an element of A(X)) (K{Xc)) as a (conjugate) Baker-Akhiezer
Function assoclated with the data Xc. We can then derive the following
theorem. We essentially follow the proof of Krichever and Dubrovin.

Theorem (5.4) [Kr.][D.]. ‘

'For a generic data X, = (B, (a,8),Q,u,2,), i.e. 8(ciQ) = 0,

1) A(Xc) is a free C[[t]]-module of rank 1 and generated by

_ .S (n) 8(I(t)+If{z]+c]Q)
@(Z,R,Xc) = f{z) exp{ nzltn¢ (z)) BTIT o1 R

2) K(XC} is a free C[[t]]-module of rank 1 and generated by

5 - s (n) 8(I(t)-I[z}+c]|Q)
3z, 1.%,) = £(z) exp( 3 t0f™ (2)) SR

where I(t) = (Il(ﬁ),...,Ig(ﬁ))-with Ij(ﬁ) = E Igfn , and
1

N3

n

I[z] = (Illz],...,Iglz]) with Ij[z] =3 1) . For notations of

J
n=1 °

8]

f{z), ¢‘n)(z) and Ig see Appendix A.
For simplicity o(z,u,xc) will simply be written as o{z,t)
hereafter. Note that I(%) is formal power series of &, we consider

8(I{(t)|Q) as the following formal Taylor series expansion

a(I(t)IQ) = g

. 8N e010) e el

0



a . a , ) . . .
where 37 - ( o SRR ) with 1 denoting the derivation w.r.t.

3y ay 8y
the i-th argument in 9.

IQ.)

Oroof. We can show ®(z,t) € A(Xc) by checking the periodicity as
multiplicative function associated with ¢, and the transformation
property as a half-form . Suppose there is another ¥(z,#%)(= 0) €
A(Xc), the ratio ¢/® possesses neither an essential singularity nor a
pole at Q@ any more. Furthermore, in the ratio ¥/®, the transformation
factor as a form and the multiplicative factor are canceled out.

Hence for the expansion of the ratio

ez 1) % TN(z)tN ’

z

2 = z 2 fy(z)t ,
M

fN(z) is a meromorphic function:-on R without poles at Q. We show that
fN(z) is constant by induction with respect to |N|{ = 0,1,2,..:

i) For I[N{ = 0, i.e. N = 0 = (0,0,..), the pole divisor of

fo(z) = ¥olz)/045(2) is at most D = (8(I[z]+c|Q)) the zero divisor of
8(I[z]+c|). From the assumppiﬁn 8(c|Q) = 0, D is nonspecial and deg
D = g. Thus f,(z) € #£(D) = Cl.

ii) Assuming fM(z) = const. for |[M]|] < |[N]|, we have

£y(2) = tV term of [¥(z) - 0(z) 3 Fylz) 8] /04 (2)

IM] <N
Since the pole divisor of fN(z) also divides D (non special), it

follows just like i) that f (z) = const.. We then conclude
v . Pl=z,t) _ N
¥(z,1) € A(X) : HZU - 3 oyt e clltll,

ynamely, A(X ) is a free C[[t]]-module of rank 1. It works similarly
for the conjugate sector. 1

Here it should be noted that #{(z,t) and ®(z,t) given above are
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normalized as wotn} = ﬁotﬁgﬁ} = 1. We can then identify ¢(z,t) and

®({z,t) as the wave functions associated with U(Xc) e UGM®.

B) t-function for ¢,
Definition (5.5) (x-function for eg(?ﬁ)[I.M.O.][A-G.G.R.][v.]

Define «: ﬁg(?ﬁ ———axg as
Law
t(t,Xc) ze 74 B(I(t)+c|Q)

where q(t) = 3 Um *ntm {cf. Appendix A-1}). We call this as
n,m>0

t-function associated with ﬁgf?ﬁ-

Theorem (5.6). For the x-function (5.5) the following diagram is

commutative:
X
. L)
T 0
g_(¥ PR, )
g 8172 0

Proof. By direct calculations we obtain the following:

_ -a(t,z) sterizl.Xo)
@(zptjxc) = e t(t'xcr '
— - g(t'z) t(t“[z])Xc)
F(z,8,X,) = e T

which then implies that <: 8,(F) ——n} is a lifting of &y ,,.
Remark (5.7)., 1) In this way the fundamental problem (5.1) is
solved affirmatively with the r-function given in (5.5). Define
Xy/p is the line bundle associated with ¢*-bundle ﬁ;(?ﬁ — Qg(?ﬁ, the
t(t.Xc) gives a nowhere vanishing section of SYrE
2) The vacuum amplitude t(O,Xc) = 8(c|Q) depends only on ¥ = ng Cg.
(5.8) So far we have no principle to eliminate the lifting

ambiguity. From the point of view of the two-dimentional conformal

field theory it is unimportant because the correlation functions
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depend only on the ratios of c¢-function (or its derivative). On the
other hand in string theory the lifting itself is a fundamental
quantity and provides the integrand of the string amplitude. It
should then possess a well-behaved automorphic propeerty w.r.t.
modular transformation and good boundary behavior towards the
boundary of Qg (stable curves [F.S.1[F.1(N.1). We thus discuss the
modular transformation property of the t-function in the next
paragraph.
C) Modular Transformation Property of the x-Function

(5.9) A modular transformation is induced by a change of

canonical homology basis (a,8), and is represented by a symplectic
matrix y :Cé g) € Sp(2g,2) as ycg) = (g g](g).

In particular MA = iy € M; diag CtD s diag AtB £ 0 (mod 2)} c M
is a subgroup of M and keeps the Riemann constant invariant. Our
t-function (5.5) has the following well-behaved automorphy under the
modular transformation MA'

Theorem (5.10). For the t-function (5.5) we have

t(t.?(Xc))
= g(r) det(ca + D)/2 exp(n/ Toe(ca+D) Ie(2T(t) +e) ) v (2, X,)
for v

Y € MA’
where g(y) is a constant with e(y)8 = 1 and depending only on y.
Proof. The modular transformation property of the following

quantities on a Riemann surface are given by

v(Q) = (AQ + B)(CcQ + D )~}
(I(1)) = Bca + py~ti(e)
v(a(t)) = -2n/~T I(8)(CQ + D)~ lc I(%)

vic) = Y(ca+) lc
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(See Appendix A for the notations). Together with the transformation
property of the @8-function [Mum.1l] [A-G.M.V.] for y € MA:,
_ —t -1
a(t(ca+D) " lziv(@)) = s(y)det(ca+p)/2em/=172(CAYD) "2 o 10,
we obtain the desired formula.

It should be noted that the x-function has simpler automorphic

factor than the g-function itself (when ¢ = 0) because of the

prefactor e%q(t’.

Similarly the t-function has the following well-behaved
automorphy with respect to ¢ € Cg

Theorem (5.11).

t(t’xc+9a+b) = exp(-ZnJ:T(%taQa+ta(I(t)+c)])t(t,xc):
for va,b € Zg.

This is a direct consequence of the quasi-periodicity:
8(z+Qa+b(Q) = exp(-Zm/-—l'G- tana+ta(2))) 8(ziqQ).
This automorphy turns out to be very important to characterise the
t-function, which will be discussed in §7,D).
D) Scattering operator S(Xc) [I.M.0.]1[A-G.G.R.1IV.]
{(5.12) Before closing this section, we construct an operator
S(Xc) which generates the state vector |Xc> of the Fock space
1X,> ='S(xc)|0><0|xc>, <0|S(X,) = <0|
where Xc = (R,(a,B),zc,u) € ﬂé(?ﬁ and we assume B8{(c|Q) = 0.
This S(Xci is very convenient in prﬁctical calculations (See § 6).
For example the Wick’s theorem in the calculation of various N-point
functions can be easily verified by means of of this operator.

We expand the Szegd kernel [Fayi[So.l of the line bundle 2,0 £,

around Q@ € R as follows:
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8(I[z}-I[w]l+c]Q) _ _1 + S ¢ —u—1/2w-v-1/2,

S (z,w) = =
c c Z,W Z=-W u,0>0 HY

s “ .
then a basis, (2 }uEZh of ¥, can be given by

gh = e“ (u > 0)
“u_ 1/2 - a"H v
g H= dw wH” S lzyw) = e+ 3 C e (u>0)
or equivalently in the matrix form
. ‘1i
.E“;€“+1,..) = (...,e“,e“+1,..) 1 T
c 1
uv .
It is easy to check that 2 " belongs to U(Xc) = Jdu HO(R,ZAG zc(*Q))
e ugM® for u > 0.
Define an operator Q(X ) as follows;
Q(X_) = [ ] dz- | dw {8_(z,w)- ———}W(z)w(W)
c ,trrJ“ [,

= 2 v_ ¥

uv>0 ”v TRV
Note that Q(Xc) is constructed from creation operators only and

thus belongs to P_ and its exponential,

-Q(X,) -1 (X))

S(XC) = e S(XC)

are well-defined operators on %.

Proposition (5.13),

= -1 " = u -
1) ¥(z,X) = S(X,) 1 #(z) S(X5) = 3 w8
¥(z,X,) s S(X,)7" ¥(z) S(X,) = 3 ¥ &
c [o] o] uEZh
where B*’s are the dual of g* : (g*|gY) = & utv, 0
2) 1X,> = S(X_)[0><0[X_>,

<0| = <0[S(X,).
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§6 Action of Operators on the t-function and Correlation Functions
{6.0) Using the concrete expression of the r-function for Qg(})
given in the previous section {(5.5), we study the action of various
{vertex, current, energy-momentum) operators. We can derive N-point
functions of Riemann surfaces of arbitrary genus (obtained recently
by several authors [I.M.0.}{A-G.G.R.}). Thanks to the fermion-boson
correspondence, we can derive N-point functions in two different ways
to obtain nontrivial identities [E.O.Z][Féy], which are closily
related to the Schottky problem [Mum.3},[v.G.],[Sh.].
A) Action of Vertex Operators
{6.1) The vertex operator Vk(z) {keZ) has been defined as
follows (4.4):

@ kt ka @
0 0 1 _-n
Vilz) = exp(k 2t zn) e z exp(-k S —z '8 ).
k n=1 1 n=1 0 n
Letting the vertex operators operate on the t-function, we obtain

the following result.

Theorem (6.2).

Vi (Z29)sea0aVy (2)e(t,X )
kl 1 kN N c

N k.K t,K o
=nf(z,) & e Qexp(s t, 2 k.g(n)(z.)J
=1 =1 i=

1 N .
o E(zg,zf55 e3P e(1(t)r 3 k;1lztlve(0)

X
1<i<jgN i=
N
where K = X ki (total charge of operators Vk (zl)...vk (zN)).
i=1 1 N

See Appendix A for the notations. In the derivation of this

formula we have used the following relations;
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Vilz) V(%) = (z-w)®E 3 v (2) v, ()

N 9 N
{ Zlklxl = - 1$§<J$Nklk‘](‘{ —*{ Yy + K Elklxl

2

In particular for N = 1 and ki= +x1, we obtain the following:
Corollary (6.3).

V_l(z)t(tyx) to

Y(z,t.X,) = GRS €

. - (n (I(t)+I{z]+c|Q)

= f(z)eXP( ngltn¢ lz)) ""§TTT?7&5hTTL__
_ Vilz)e(e,X) -t

Flz,t,X ) = —gx— @

= f(z)exp(‘nzltngp(nQZ)) g(éE%ZI _{_ } c|Q)

These are just the BA-functions ®(z,t> and ®(z,%t) given in Theorenm
(5.4).
B) Action of Current Operators

{6.4) The bosonized expression of the current operator has been

given by

JB(z) = E nt

n=1 o

zn-1 ¢S z-n-lan
n=1

in (4.5). When the current operator JB(z) passes through the bilinear

1
factor ezq(ﬁ) of the x-function, it receives the following change;

Jg {z) ezq(ﬁ) = eZQ(t)’ E t a(n)(z) + 2 z- 1an}

n=1 n=1

’ 1
3 ezq(t) QB(z)

Note that QB(z) = QB(Z,X) depends holomorphically on the data

- 65 -



n(XC) = X = (R,{x,8),Q,u) € gg-
Pfoposltion {6.5)
JB{zl)...JB(zN)t(ﬁ.Xc>

= 5 [ m z%0z)) [regts 8p(z,)) ©(t,X)

comb. pairs

where
—
ﬁlB(Z) ﬁB(w) s wlz,w)
@ £ .
A (z) T(t,X) = { St el®(z) +3 ot(z) 20} w(1,X)
B n=1 Q i=1 eyl e
with
3 la(t> 8
@~ c(t,X,) = e TV Z— g(I(t)+clQ)
3y .ay . '
.and b . is a summation over all the combinations of dividing
comb.
(1,2,..N) into pairs <iliz)’(i3i4)""(iZk—liZk? and the rest of

numbers ‘12k+1""’iN)'

Corollary (6.6).
. g .
- 5 (n) i )
Jglz) ©(%,X) = ‘nglt“ wg  (2) +i§1w (z) ——--acl} c(8,X)
In order to see the meaning of this equality, we make use

of the following definition.

Definition (6.7). For n € Z with n > 0 we define holomorphic

(n) on P(Q;Q)) by

vg'™ = oy (o' (2,0)) e T P(2{?) T e 20,
Note that ¢(n)(z,x) = fz wén)(X) depends holomorphically on the data
X = n(X) e Qg (cf. Appendix A).

vector field v

Theorem (6.8). Consider a diagram below
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{(n)

1) v is a holomorphic vector field on P(ﬁéo)) along the image

of ﬁé(?ﬁ and thus induces a vector field on Qg(?ﬁ.

2) The induced vector field u(n

) on Qg(?ﬁ is tangential to the
fibre of the fibering n: gg(?W ——»Qé and the action on this direction

is given by

g

(n)_ 1 (n) 2]
- (x) &, .
v X 151 2n/=T fein act

We can that JB(z) is an operator which generates infinitesimal
deformationé of line bundles.
C) Action of Energy Momentum Tensor

(6.9) Since the bosonized expression of the energy momentum

tensor is given by
1

Tglz) = % 205(2z)dg(z)3 = lim + (Jg(z)Ig(w) -

)
W az< (z-w)2
in (4.5), we can easily obtain the action of TB(z) by using

-Proposition {(6.5).
Theorem (6.10).
TB(Z)t(ﬁ:xc')

= [2- n§m=1tntm‘° Q (2) o Q (z) + nzligltan IZ)Q (z) gi
£ . ) 2

¥ 1(2) J(z) 9 - 1 S(ZrX) (\I,X )
i§j=lw _w aylayd 12 ]t c

where S(z,X) is a projective connection {Appendix AuS).
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We obtain the vacuum expectation value of the energy-momentum tensor
<0|T(z)[X.>

X TOTX >

<T(z)>

Proposition (6.11) ([A.W.],[Se.],[1]).

<T(z)> -1 1 § wi(zimj(z)_éi_—— 8(ciQ) - T%S(z X)
Xo ~ 7 8leTaT; 55 aylay?

Using the heat equation of the 8-function:

82

ay‘ay’
we can recognize that the energy momentum tensor induces

8(y1Q) = ingd~ 8(viq),
1)

infinitesimal defofmatiéns of moduli ([So.}[E.O0.11).
D} N-point Functions [Ku.J[E.0.21[A-G.G.R.]
In the following we fix the data set Xc =
(R,Q,(a,B),ZAG £.,u) such that <(0,X ) = Q(CIQ) = 0 and denote [X_ > =
B'lr(a.xc) € 7.

Definition (6.12). The N-point function of operators

Gl(zlj,..,GN(zN) on a state IXC> € 5 is defined as follows;
OB (Z,)y.0.,0,(2,) X >
_ 1'“17? N'“N c

(Gl(zl),....,GszN)>xc = <U’Xc>

Since we assume 8(c|Q) = 0, we can represent IXC> € % as
|XC> = S(XC)IQ> <0|Xc>,
hence the N-point function can be expressed as follows:

<@1(21)l---°v@N(zN)>x = <0“91(21’Xc)"'"GN(ZN'XC) |O>’
(o4

where

- -1
6(z,X,) = S(X,)

6(z) S(Xc) )
is a field operator corresponding to the Heisenberg picture.

On the other hand we can express the N-point function in the

bosonized form:
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GIB(Zl) ----- ONB(ZN)t(ﬁ’X)

<@1{Zl)j¢-'!ON(ZN))XC = ‘C(Q,Xc) ft=0

In the following we calculate the N-point functions of ¢, ¢’'s and J’s
in two different ways given above.

{6.13) Fermion 2N-point functiocn is obtained by putting

ki = 2 1 in the formula (6.2):

<¢(zl),..,‘*(ZN);(”N)".’;(HI)>X
C
N N

M E{z.,,z;) T E(w.,w,) 08( 3 I[z;] - 3 I{w.] + c|Q)
i< 1T304 gl U
- T E(zi,wj) alclq) !
i<j

while in the fermionic representation

0*(21) IR '\*(ZN)W(WN) y e !I(Wi)>xc= detN)(N <¢{zi)¢(w.}‘)>xc

and

Wl2)¥(whoyg = 3 g (2)E (W) = S(z,w)
c u :

where

8(I[z]-I{wl+c|Q

S(z,w) = c Z, W

igs the Szegd kernel.
Jdentifying these two expressions, we obtain the following
formula:

Proposition (6.14) (Fay's trisecant formula) [Fay)I[E.O0.1],

detNst(zi'wj)
N N
ME(z.,z:) T E(w.,w.) 8( 3 I[z;] - 3 I{w.]}+clQ)
_iqy P J'i TS R S-S R
i?jE(zi,wj) B(cT)

The bosonic representation of current N-point functions
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can be obtained from (6.5):

Proposition (6.15).
<J(zl)"’J(zN)>X
g .
1 1 3
= §reTaT. 2 T elz;,z;) ) o (z)) || 8(ciQ).
c comb[ pairsm 1 )(rests[izl k Syl))

On the other hand, using the fermionic representation of J(z,XC),

we obtain

I(z2,%e) = S(X)TH Lim (Fl2)wiw) - 5i5) 1S(X,)

. 1
= lim (2, X )¢ (w,X ) - ===
wlézi¢ Z1lg ¥iw c z-w}

and taking the vacuum expectation value <0|..|0>, we obtain the

following relations.

Proposition {(6.16).

T(zy)eoe dlzg)dy = detNxNSgeg(zi,zj)
.
where
’ . . £ .

Sreg.(z z) = lim {S_(z,w) - 1 = = 1 2 wl(z) 2 __ 8{ciqQ)
c ’ Wz  © Z-W g8({cq) ish ayl

sTe&- ) = S_( ) (im))

c zi]Zj - c zi|2j 1=J .

By equating these two expressions (6.15) and (6.16), we can derive
various identities obtained by Fay. In order to get explicit
expressions it is convenient to use the expression of the connected
part of N-point functions;

conn.

<J(zl)ru|J(ZN)>Xc = JB(ZI)....JB(ZN)lOE t{ﬁ,xc)|t=0.

Proposition (6.17).
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(1) Bosonic representation:

3 log 8(c|Q)
il,..,iN ayll....ele

<J(z1)...J{zN)>§°“n~ =
C

mil(zl)--wiN(ZN}

MR

+ 6N,2 w(zl’ZZ)'
(2} fermionic representation:

<T(Zg)eannn J(zN>>§°“n‘ = -3 (n 8,)

o] r ter *
where I is a connected oriented loop which passes through the points

Zy11295 .12y ONCe and for I = (zi,zj) € I: SE = Sc(zi,zj).

Proposition (6.18) (Addition Formula).

¢ o\ 10g B(c|Q)

igseesiy aytl....ay N

mll(Zl).-wlN(ZN) + 6N,2 w(Zl,Zz)

=-3(mns,)
r Ler

The following are special cases of this formula for N = 2 and N = 4.

Corollary {(6.19) ([Fay].

1) ol({z2,,2,) + g' mi(z )aj(z ) 32 log B8{(ciQ) = (S {z,,2 ))2
1'°2 i5=1 1 2 aylayJ c' 1“2
g : . 4
k ¢ )
2) S ol(zy)e’(2,)e (2)0 (2,) log 8(c|Q)
ijke=1 1 2 3 47 aylayJayFay?

! S(1234) + S(1342) + S(1423) + 8(1432) + S(1243) +

H
|
~

S(1324)}

where S{ijk¢) = Sc(zi,zj)sc(zj,zk)Sc(zk,zt)Sc(zt,zi). See Fig. 2.
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§7 Fundamental Equations

(7.0) In this section we derive differential equations

for the t-function t(t,Xc) = e éQ(t)B(I(ﬁ)+c|Q), defined on Qg(}).
Throughout this section we write OB(sl/zal) =B Q(sl/zo l) B"1 simply
as OB(L) for 1 € § (see (2.32),(4.4)).
A) The Fundamental Eduations

Theorem (7.1) (Fundamental equations).
The t-function satisfies the following three equations:

1) (Equation of motion)
v

[e(z) + a(l.Xc)]t(t.Xc) = oglt)e(t, X)) for "7 € G
where a(z,Xo) = - T% Resz=;L(Z)S(Z,X);
2){Gauge condition)
g
2 1 IB-d¢ Q_i w(t,X,) = egle)e(t,X ) for Yolz) € X(X);

i ac

i=1 2n/~1

3)(Hirota’'s bilinear equation)

on L]
jgopj(—zy)Pj+1(Dt)GXP(aglletl)t(ﬁ.Xc)'t(taxc) = 0.
(See Appendix A) for the definitions of A(X) and X(X}.)
Proof. The equatiqn 3) is already given in Theorem (4.16)} and
equation 2) is a rewriting of the following.
u‘“)r(u.xc) = OB(w(n)(z,X))t(ﬁ,XC) for n > 0,

which can be derived from Theorem (6.8).

Lastly we show 1). In the following diagram,

(t. X))
: (&2 i c . #*
t(ﬁrxc)l
8% P(R)
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t(ﬁ,xé) and ¢(%,X,) are related as
(8, X)) = AR e(t,X)
Qhere A:ﬁ;(?ﬁ——a Cz is a holomorphic function satisfying A(;X;)'z
AA(X;} (x € C‘). Letting %(¢),:. € &, operate on t(t,X;), we obtain
the following relation from Proposition (3.35):
Tire(e, X)) = og()c(2, X)),
Then we obtain the desired equation. The term
a(l,Xc) is given by
a(1,X,) = IT%:)U1L)A(3;)
and depends only on Xc. The explicit form will be given in the next
paragraph. |
The xt-function being considered as a period map on ﬂé(?ﬁ, the
differential equation 1) is regarded as a defining equation of the
Gauss-Manin connection, the equation of motion of the physical vacua
in the interaction picture.
B) Determination of the anomaly term a(z,xc).
In case 1 € Go the equation (7.1.1) can be viewed as the
so-called "Ward-Takahashi identity"”. The term a(l,Xc) corresponds to

the anomaly term. In this view the equation in the following
proposition can be identified as "Wess-Zumino consistncy condition”.
Those principles symbolized by these terminologies which are familiar
to the physicists come very naiurally into'the formulation.
Proposition (7.2) {(consistency condition). For tyr lg € 1]
we obtain the following relations:
8(1)aliy,X,) - 6(iy)ali,X ) + al([i{,15),X) = Cliy,1,)

where
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cllyriy) = g Res___t]''(z)i,(2)

<<

is the Schwinger term.
Proof. Consider the following equality:
(gl )s0glig)] = dpllig,iq]) + cligsiy),
From the action of this operator on t(ﬁ,Xc) written in two ways,
we obtain the desired result. |1
(7.3) We now determine the form of the anomaly term a(:¢,X)
corresponding to our t-function.
Theorem (7.4). For the t-function the corresponding anomaly term
is given by
a(1,X,) = - 1y Res,__1(2)S(z,X)
where S(z,X)(dz)2 is the projective connection (See Appendix A-5).

Proof. First we show the following:

1) a(L,XC) 0 for ¢ € Gl’

2) a(1,X,) = - o7 Res,__1(2z)S(z,X) for ¢ € B(X),

3) a(L,Xc) gatigfies the consistency condition.
3) is the propesition (7.2) itself, while 2) can be obtained from

0
Theorem (7.1-1) by taking ¢ € B(X) since !ﬁ(l) = 0. 1) can be shown
.from the following representation of ¢t with the bosonization operator

B ((4.2)),

t(8,X,) = 8lel@)B(e™ /2r g7/ 2,0,

-1/2 -3/2

where (& I3 y++) 18 a frame of U(Xc) {cf. §5,D)).

From this expression we obtain the following for i € G4

-1/2 -3/2

t(t,e8X ) = B(c|Q)B(eBl(g™  %)A eBl(57 %A1,

e(1)c(t,X) = a(cl@)B( 5 &7 2a-x a(1)(g*)a- )
u<0
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9(C|Q)¢B(t’.)B(E—1/2A 3_3/2/\. - .)

1

@B(L)t(tixc)'

Hence a(a,Xc) = 0 for ¢ € 61.

Due to 1) a(a,Xc) reduces to a linear function of [ on 6/61.

Fixing a sufficiently large N, we can take representatives

of bases, ?n €6 (n=20,1,2,..), of 6/6; in the following:
En = (zn+1 + lower order terms)gz € B(X), n > N
_ d YN-n d
b (e )0 0 Fesy 0 {n N,
For n > N a(En,Xc) is given in 2). For 0 ¢ n < N, one obtains the

following relations by induction on n and with the consistency

condition (7.2):

- a([d . _a(d
alty %) = al[Tpt,] %) = -8 (Fg)aty %)
= g Res__ % (z2) & S(z,X ) = - 13 R T -15(z,X)
= Tz Resp=atn(2) gz S(2:X5) = - pp Res, . thyS(z:%).

In the derivation from the first line to the second we used the
formula given in Appendix B). We thus obtain the desired result for
all n. i

Corollary (7.5).

_ 1 < (n) (m)
8(2)x(1,X,) = Res,__1(2) [z n§m:1tntmu g (z) o'g’(2)
» g . £ . . 2
{n) i 2] 1 i J 2]
+ t (Z2)o (2) =—.+ 2 (z)e’(z) (t,X.)
n§1i§1 nQ , ¢ ay* zi,J=1w N aytay’ ]t €

for | € &.
Proof.This equation is obtained from the result of Theorem

(6.10) and (7.4). 1



Proposition (7.6). The projective connection S(z,X)(dz)2 is
transformed under the modular transformation y = (é g) € I as follows
S(z,y(X))dz? = s(z,X)dz% + 4n/ Tl (2)(CQ+D) 1Cu(z).
Proof. This relation is obtained from the expression of

the projective connection:

S{z,X)dz" = -s[dzdw log 8(I(z)-I(w)|Q)], nz
and the transformation formula of 8-function.
C) Characterization of the r-function

Main Theorem (7.7).

For a holomorphic map f: Qé(?ﬁ —— 2™ the following equations

determine f uniquely-up to a constant: f(ﬁ,Xc) = Ct(t,XC) with C € C.
g [6(2) + a(z,X)]1f(2,X ) = eg(2)f(1,X,) for Vi e g
where

af{i,X) = --T% Res __1(2)8(z,X);

g .
1 3 v

2) 2 |g.de = £(1,X,) = ogle)f(t,X,) for Telz) € ¥X);

21'[\/:1- i=1 IBl 801 e B s
3). £(1,% ,0asn) = exp(-2n/"T(§tana+ta(1n)+e)))£(e,X)

for a,be Zg.-
Proof. In equation 2) the left hand side vanishes when ¢ € A(X),

which specifies the form of f(t,XC) as

7a(t)
£(8,X,) = eZV P Eq(T(1),X,)
with fO: g(ﬂ ‘C[[Cly02:~°rcg]]°.

(

Taking ¢ n)e X(X) (See Appendix A-2)) in equation 2), we obtain

equations

g
3 _ i3 - -
(5{; 1511“ 8c1) fo = 0 hE g
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which naturally lead to the following form for f(ﬁ,XC):

£01,X_) = eéQ(i)fo(I(n)+c,X).
From the automorphy relation 3) with respect to the Jacobian
parameter c € Cg, we obtain the proportionality of fO(I(ﬁ)+c,X) and
8(I(1)+clQ), i.e.
fit,X,) = C(X)e(2,X,).
The efquations 1) shows that the factor C(X) does not depend on X.
D) Principles to determine the lifting of A1/2
(7.8) We know already that our t-function has the following
properties:
1) Automorphy under MA x 22g
a) t(t,v(X.)) ‘ _
= e(y)det(Ca+D) ! Zexp (r/ The(casp) Tlo(2I (1) 4e) )< (h,X )

- for y € MA;

b) t(t'XC'i’QB'f'b)

= exp(-2n/7T(3%a0a + *a(I(1) + o)))<(t,X,), a,b e 28;

2) <(0,X,) depends only on T g% k.
Theorem (7.9).
Let f be a lifting of 51/2 gsatisfying 1) and 2) in (7.8):
. AN
/10

8% VT P(xy)

1) Then it can be written in the form:

f(ttxc) A(K(Xc))t(ﬁlxc)

X . . .
where A: § —— € 1is holomorphic and Ma-lnvarlant and
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n: 8(¥) ——7.
2) Furthermore A(m(X_,)) is constant if g > 3.

Proof. 1) If we write £(1,X ) = A(X_)=(1,X_ ), A(X_) does not
depend on ¢ from the automorphy 1)-b). From this , 1)-a) and 2} we
obtain the first half of the theofem.

2) If g > 3 moreover, we know that S’/MA has a compactification whose’
boundary is of codimension > 1. Hence there is no holomorphic

function on it (i.e. no MA-invarinat holomorphic function on 7)

besides constant. } A
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Appeﬁdix
Here we list the notations and formulas on the theory of abelian
functions which we use in this article. For details see for example

[Fayl[Mum.1l]. We fix a Riemann surface R, a canonical bases («,8) of
HI(R,Z), a point Q € R and a (formal) local coordinate z: z2(Q) = =,
The whole data are denoted by X = (R,(¢,8),Q,2). We set XC = (X,zc),

c € Cg (cf. §2).

A) Abelian differentials and the Green function on Riemann surfaces

1) Abelian differentials

(1st kind) mi = wi(z)dz, i=1l...g,
J . J - L
Jayo’ = 515, fsi“' LI
. . -Nn
0’ (z)dz = -d( R B
(2nd kind) mQ‘n’z aQ(n)(z)dz, n=12.. , Qe€R
(n}_ (n) _ — i
(n)( ydz = d( n _ s z-m)
@g z)dz = z m>0qnm = )

2) Green Functions
{Prime form): a holomorphic section (unique up to a constant)

of the line bundle

n; 231 ) n; z;l e 5'(8) over R x R, with a simple zero only at P = Q
where mys My, 3 are defined in the following diagram:
(P Q) s P-Q
RxR —=2— J(R)
SR
R R

-1

-1
E(P,Q) E(zlw)d dz v aw

- E(Q,P),
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E{z,w) -n-1 -m-1
ezaw log zZ - w n?m>0nm ’
E(P"'fiinQ) - E{P)Q)l
Q4 P i
E(P+8;,Q) = exp(2n/~T( —* + [§ o') E(P,Q).

(multiplicative meromorphic half-form with a simple pole at Q € R)

- JdT _ _
£(2)/@Z = gleegy (zg = 1, £(Q) = 0),
f(z+ai} = f(z)
Q.. .
f(z+8;) = exp(-2n/=1{( *%i + Ié ot ) f(2),
£(z)/AZ = (1 + o(z"Y))/AZ , £(e)/AE.= ( % + regular)/dE.

{multivalued meromorphic functions with pbles at Q@ € R)

0% (z) = 1

3]

@ -m
o(n)(z) = " -nglqnm i - Iz mQ(n) n=1,2,3...,

¢(n)(z + oay) o(n)(z),

o™z + 8,) = o™ (2) + 2r/T 1L .

If we set X(X) = Eoﬁg(n)(z) c KB (a losed subspace),
ns

then the following sequence is exact

0 WA(X) X(X) 8 .0

1
f sC . = daf .
1 2n/-1 Iai

{Fundamental normalized differential of the second kind)

w(P,Q) = wl(z,w)dzdw = dzdwlog E(z,w),
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w(z,w) é 1 + 3 q z—n-lw—w-l.

(z-w) nm.>

(Szego kernel)

S,(P,Q) = S_(z,w)/AZ/AW ,
o B(I(z)-I{w)+c|Q) . 1 -pu=-1/2 -p=-1/2
SC(Z,W) - Q(C|Q)E(Z,w) - Z—w +u§>ocu\)z W

where c € Cg with 8{(cijqQ) = 0.
3) The 8-function and the Abel-Jacobi map
(8-function) -

o[p](z12) = 3 . exp{ni®(n+a)a(n+a)+2ni®(n+a)(2+b)}” z e &,
nezZ

9[{")](z+ei|m - e2niay G(g) (z]|Q)
8[«2](Z+Qeiln) = exp{-éni(tiilz + zi+bi)}9(g)(zln).

(Abel-Jacobi Map)

I : R ———»-Cg'; R is the universal Abelian covering of R,
I{z] = (Ig o) = (3 I; R P
n

4) Modular transformation properties

For y = (é g) g Sp(2g,2) = M;
v(‘;) : [g 9 (‘;‘) , v(Q) = (AQ+B)(Ca+D) !,
vie!) = (Sca+p)7t), 5 o,

Y(Ud(n)) - (BQ(n)- ((CQ"’D)_I)]_JCJI( (IBIGQ(n))ka

(@) = CoD (@) - ¥ atas (D),
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1

olv (2)1(t(carn) Lz, vin))

= g det(CQ+D)1/2

expiniz(Ca+d)~'cz} 6[f](zin)
where & = gly) with g° = 1.

5) Projective connection

S(P) = S(z)dz® = -6 lim d_d, log iZt¥)
W =Z
wlz,w) = ——iﬁ—? + é S{z)}) + higher order terms
(z-w)
S(w)dw? = S(z)dz? + {w,z}dz?
where
fw,z} = 311’ - % G%%JZ {Schwarzian derivetive},

With ! = %E.

B) Transformation property and 6(i)-derivatives

For =1(z)%§ € GO' 8(2) is essentially a generator of coordinate
transformation which fixes z(Q) = o«
- oEl, - d - '
Z — = e z = (1 +81{Z)H'E )Z =z + gi(z).

We can thus calculate 8(i2)-derivatives of geometrical objects from

the data of their transformation properties.
1) Let f(P) be a j-form on R and define f(z,X): Qg -—»C((z-l)) by

f(P) = f(z,X)(dz)j for X = (R,Q,2). We have the following relation
£(z,eEX)(dz)d = £(w,X)(dw)J.

On the other hand the transformation property as a j-form implies

- 82 -



flw,X)dwd= f(z,X)(dz)" + 8{¢<z>gg v jif(z)1E(z,X) (dz)d.

It then follows that

0Lz, %) = Tz, e840 | L = i)y + 5/ (2 }E(2,X).
2} Let S(P) be a projective connection on R and define
S(z,X): &, —¢((z" 1)) by S(P) = S(z,%)(dz)?, then just like 1)
we have

S(z,esaX)(dz)2 = S(W.X)(dW)Z.

S(w,X)(dw)2 = S(z,X)(dz)% + fw(z),z} dz2,

which lead to the following:

8(2)S(2,%) = {1({z2)gz + 20 (2)1S(2,X) - /"' (2).

Notes added in proof

After submition of this paper we are informed that there appered
several new papers which treat similar subjects with our paper:
L.Alvarez~-Gaumé, C.Gomez and C.Reina: New methods in string theory,
‘CERN preprint, CERN-TH 6775/87. E.Arbarello, C.De Concini, V.Kac,
C.Procesgi: Moduli space of curves and representation theory,
handwritten manuscript. E.Witten: Quntum figld theory, grassmannians,

and algebraic curves, Princeton preprint, PUPT-1057.
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