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Introduction 

Let G(k,n) be the Grassmann manifold of all k-dimensional 

subspaces ~k in complex space ~n or, what is the same, 

all the (k-1) dimensional projective spaces ~pk-1 in 

n-1 projective space ~p • G(kin) has a canonical Kahler metric. 

We will study the harmonic maps of a Riemann surface Minto 

G(k,n) . In particular we will describe all the harmonic 

maps of the two-sphere S2 into G(k,n) in terms of 

holomorphic data and all the harmonic maps of the torus T2 

into G(k,n) in terms of holomorphic data and degree zero 

harmonic maps. This work completes (and extends) the 

program for studying harmonic maps of S2 into G(k,n), 

first stated by the author and S.S. Chern in [4] and 

partially completed in [5]. The harmonic maps of 

52 ~ G(1,n) = ~pn-1 were first determined by Din and 

Zakrezwski ([6], also see [7] and [11]). The harmonic maps 

S2 -+ G(2,4) were determined by Ramanathan [9] and the 

harmonic maps 52 ~ G(2,n) were determined by the author 

and Chern [5]. Using techniques completely different from 

those of the papers cited above Uhlenbeck studied the 

harmonic maps of S2 into the unitary group U(n) [10] • 

In the course of the study she gave a description of the 

harmoniC? maps of S2 into G(k,n) by embedding G(k,n) 

totally geodesically in U(n). The description given in this 

paper is quite different from Uhlenbeck's and works 

intrinsically with G(k,n). 

The fund~ntAl obj$ct of stUQY in this paper is the 

transforms of a harmonic map of a surface Minto G(k,n). 

To define the a-transform (or I-transform) consider a map 
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f:M ~ G(k,n), when M is an oriented Riemannian 

surface. We write the Riemannian metric of M as 

where ~ is a complex-valued one-form, defined up to a 

factor of absolute value 1. This form ~ defines a complex 

structure on M. For x E M the space f (x) has an orthogonal 

space f(x)i of dimension n - k. We denote by [f(x)] and 

[f(x)i] their corresponding projective spaces, of dimensions 

k - 1 and n - k - 1 , respectively. For a vector Z (x) € f (x) 

the orthogonal projection of az in f(x)i is multiple of 

~ , and hence, by cancelling out ~, defines a point of 

f(x)i. This defines a projective collineation 3:[f(x) 1 ~ [f(x)i], 

to be called a fundamental collineation. The mapping defined 

by sending x € M to the image of [£ (x) 1 under a is called 

the a-transform. Similarly, we define the a-transform. 

If the map f:M ~ G(k,n) is harmonic then its a-
transform and a-transform are also harmonic. Note that a 

fundamental collineation a (resp. a} may degenerate or may 

be zero. If it is zero than the map is antiholomorphic 

(resp. holomorphic). If it degenerates then the a-transform 

(resp. a-transform) is a harmonic map M ~ G(1,n) where 

~ < k. 

By successive applications of the a-transform 

(or a-transform) we can construct a sequence of harmonic maps 
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a a 
[£(x)1 ~ a[f(x)] ---. 

calleq a harmonic sequence. If any of the fundamental 

collineations of the sequence degenerates then the sequence 

associates to f a harmonic map g:M ~ G(1,n), 1 < k. 

In § 4 we will show that when M has genus zero the harmonic 

map'f can be recovered from g by iterating a construction 

called returning. Each returning is essentially a choice of a 

holomorphic subbundle of a holomorphic bundle over M. In § 5 

we describe a construction different then returning, called 

extendin2' which effects the re~onstruction of f from 

g for a surface M of any genus. Each extending, like each 

returning, is a choice of a holomorphic subbundle. 

In § 3 we will derive an inequality relating the energy 

of f to the degree of f, the genus of M and the 

sinqularities of the fundamental collineationsof the harmonic 

sequence generated by f. When the genus of M is zero or 

when the genus of M is one and the degree of f is nonzero 

this inequality implies that one of the fundamental collineations 

must be degenerate. 

Combining the results of § 3 and § 4 and using induction 

we can prove. 

Theorem 1 Let £:s2 -. G(k,n) be a haromic map. Then f can 

be constructed from holomorphic or antiholomorphic curves 

S2 -. G(l,n), where 1 ~ 1 ~ k, using the a and a trans-

forms and returnings. 
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Combining the results of § 3 and § 5 and using 

induction we have 

Theorem 2 Let f:M ~ G(k,n) be a harmonic map, 

where M is a surface of genus one. Then f can be 

constructed using the a and a transforms and 

extendings from either: 

( 1 ) A holomorphic or antiholomorphic curve 2 T -... G(l,n) , 

or 

(2) A degree zero harmonic map 2 T ~ G (t, n), 1 ~ t ~ k. 

In fact the statement of Theorem 2 can be made even 

stronger; see Theorem 5.2. Theorem 2 , with (2) deleted, 

holds when M is a surface of genus zero: see Theorem 5.1. 

The inequality in § 3 should with more careful analysis 

yield much interesting information about harmonic maps and 

harmonic sequences in G(k,n). 

§ 1 and § 2 are, with some modifications, the same as § 1 

and S 2 in [5]. The reader familiar with this work can 

probably go right to Section 3. We have included these 

sections to make this paper self-contained. 

It is a pleasure to thank R. Bryant and D. Burghelea for 

some interesting conversations. 
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1. Geometry of G(k,n) 

We equip en with the standard Hermitian inner 

product, so that, for n z.w€£ , 
I 

( 1 • 1 ) 

we have 

( 1 .2) 

Throughout this paper we will agree on the following 

ranges·of indices 

(1 .3) l.SA,B,C, ••• S n, 1 :;; a,8,y, .•. :;;k, k+ 1 :;;i,j,h, •• .:s;n. 

We shall use the summation convention, and the convention 

( 1 .4) 

A frame consists of an ordered set of n linearly independent 

vectors ZA' so that 

( 1 .5) z 1 A ••• A Zn 4= 0 

It is called unitary, if 

(1 .6) 

The space of unitary frames can be identified with the unitary 

group U(n). Writing 
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the wAS are the Maurer-Cartan forms 0 f U (n). They 

are skew-Hermitian, i.e., we have 

(1 " 8) WAii + WSA = O. 

Taking the exterior derivative of (1.7), we get the 

Maurer-Cartan equations of U(n): 

( 1 " 9) 

An element ~k of G(k,n) can be defined by the 

multivector Z, 1\ • " • 1\ Zk * 0 , defined up to a factor" 

The vectors Za and their orthogonal vectors Zi are 

defined up to a transformation of U(k) and U(n-k), 

respectively, so that G(k,n) has a G-structure, with 

G = U (k) x U (n-k). In particular, the form 

(1.10) ds 2 = w ,.. w-
al. a1 

is a positive Hermitian form on G(k,n), and defines an 

Hermitian metric. Its Kahler form is 

(1.11) W ..,../\ w-
i <Xl. a. 

By using (1.9) it can be immediately verified that n is 

closed, so that the metric ds2 is K!hlerian. 
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2. Harmonic maps of surfaces 

Let M be an oriented surface and let f:M -> G(k/n) 

be a non-constant harmonic map. Denote the Riemannian metric 

on M by dS~ = ~ I where ~ is a complex valued one-form: 

~ is defined up to a complex factor of absolute value 1. 

For x € M the image f (x) E G (k,n) has an orthogonal space 

f (x).L E G (n-k/n). If Z € f (x) I we can write 

(2. , ) dZ • X· '4>+ y.q; , mod f(x), 

where X,YEf{x)J... If ZE\trl - {OJ ,we denote by [Z] the 

point in 

Then 

(2.2) 

p 
n-1 with z as the homogeneous coordinate vector. 

Cl: [Z] I---+- [X] , ]':{Z] ~ [y] , 

if not zero, are well-defined projective collineations of 

the projectivized space [f(x)] into [f(x)J..] • We shall 

call these the fundamental collineations. Dually there are 

adjoint fundamental collineations from [f{x).L] to [f(x)]. 

Clearly the fundamental collineation a (resp. a) is zero, if 

and only if f is holomorphic (resp. anti-holomorphic). 

To express the situation analytically we choose, locally, 

a field of unitary frames ZA I so that Za span f(x). Then 

we have 

(2.3) 

By (1.7) the fundamental collineat1ons a and l' send [Za] 
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[y] respectively, where 
a 

The energy of the map f is by definition 

E(f) = JM tr(f*ds 2)dvol 

where ds 2 is the metric on G(k,n) and trace is taken 

with respect to the metric on M. By (2.3) and (1.10) 

this becomes 

(2.4) L 
a,i 

A map, which is a critical point of the energy functional, 

is called harmonic. 

The pullback of the Kahler form n by the map f defines 

an integral. cohomology class [f*O] € H2 (M,Z). Evaluating this 

class on the fundamental homology class of M yields an 

integer [f*n]([M]) called the degree of f. The degree of f 

can be computed from (1.11) and (2.3) as follows: 

deg f = JM f*O 

(2.5) r-f L =2n' JM a,i (aa-rs> + bar<P) A (aCiiq) + baiCC ) 

= f L, (Ia -:-1 2 - Ib -:-1 2) v'=f q>" \p 
M a,1 Q1 Q1-zrr 

The metric dS~ has a connection from p, which is a real 

real one-form satisfying the equation 

(2.6) dq> = -ip 1\ q> • 
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Its exterior derivative gives the Gaussian curvature K as follows: 

dp = -i/2 K~ A ~ • 

Taking the exterior derivative (2.3) and using (1.9), 

( 2 • 6) I we ge t 

(2. 7) Daa.I' A q> + DbaT A q> = 0, 

where 

(2.8) 

From (2.7) it follows that 

(2.9) 

The quadratic differential form 

(2.10) 

is the "second fundamental form" of the map f. It is well-

known that the vanishing of its trace is the condition that 

f be harmonic, which is therefore qaI = 0 (see [2]). 

We get therefore the following criterion for the harmonicity 

of f, which we will apply repeatedly: 

Theorem 2.1: The property th~t f is a harmonic map is expressed 

by one of the following conditions, which are equivalent: 
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(a) DaaI. 0, mod (p, 

(b) Dba!. 0, mod ~. 

Theorem 2.1 allows us to study the global behavior of 

the maps a,a when f is harmonic. 

The map f:M ~ G(k,n) induces over M the un'iversal 

k-dimensional complex vector bundle V, with fibres f (x) , x ~ M. 

In terms of our frames ZA a vector Z E f (x) can be written 

(2.11) 

and we have the natural connection defined by 

(2.12) 

On V ,which is of real dimension 2k + 2 , there is an almost 

complex structure defined by the forms 

(2.13) 

By (1.9) and (2.6) it can be immediately verified that these 

satisfy the Frobenius condition. Hence, by the Newlander

Nirenberg theorem there is a complex structure on V and V 

is a holomorphic bundle over M. Similarly, its orthogonal 

bundle U , with fibers f(x).l , x € M , is also a holomorphic 

bundle In fact, if i .1 the forms defining over M. Z = n Zi E f (x) , 

the complex structure on W are 

(2.14) 
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Let T(1,O) be the cotangent bundle on M of type 

(1,0) , so that its sections can be written as f~ I f 

a function. A section of the tensor product W. T(1,O) 

being 

can 

be written niZj.~' and its covariant differential is given 

by 

(2.15) 

On there is a complex structure defined by 

the forms 

(2.16) 

We define the mapping 

(2.17) 

by 

(2.18) 

keeping M pointwise fixed. Both sides of (2.17) being 

holomorphic bundles, we will prove that ~ is a holomorphic 

bundle map if f is harmonic. In fact, substituting 

nj :: E;Cta -
aj 

into ,j in (2.16), we find 

The holomorphicityof A has a number of important consequences. 

In particular, it follows that except at isolated points the 

map A and so the matrix (aaI) have constant rank. The 
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holomorphicity of a also implies that the image of a, 
a[f(x)] I extends continuously and smoothly over the 

isolated s~ngularities of n. Thus the image a[f(x)] 

is a well-defined bundle and the fundamental collineation 

a is a projective bundle map. Denoting dim a£f(x)] = k 1-1, 

we define the a-transform of f: 

(2.19) af:M ~ G(k"n) 

by (af)(x) = a [f (x) ] I x E M. Similarly a[ f (x) ] is a bundle 

and the fundamental collineation a is a projective bundle 

map. Also we have the a-transform 

(2.20) 

defined by (af) (x) = 3[ f (x) ] ,x € M, where dim a[ f (x) ] = k2 - 1. 

The image of 

we denote V, 0 

a is itself a holomorphic bundle which 

T (1 , 0 ) • Thus 

(2.21) ~:v ~ V, 0 T(1 ,0) • 

Returning to (2.1) it is easy to see that 

n:Z J-+ X· tp 

and so the a fundamental collineation is a projective 

bundle map 

Similarly if we define 
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(2.22 ) l:v -. w. T(O,1) 

by 

then ~ is an antiholomorphic map and 

i:z -+ Y-<J). 

Consider the vectors Z E f (x), such that Y = 0 in (2.1). 

They form a subspace ker a c f(x). If f is harmonic, the 

above argument shows that ker a is of constant dimension. 

We define 

(2.23) 

which sends x€: M to the orthogonal complement of ker a 
in f(x). Similarly, we define °2£, using the operator d. 

Theorem 2.2. ~t f:M ~ G(k,n) be a harmonic maE- Then 

(a) The map 
l. 

£ :M ~ G(n - k,n) , defined by 

.1 l. f (x) = f (x) , x E H, 

is harmonic. 

(b) The maps 

(e) If k1 = k,a} f is f itself. 

Usinq the criteria in Theorem 2.1, the proof of (a) is 

immediate. 
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To prove the first statement in (b) choose frames 

so that Za span f(x) and Zu span af(x), when the 

indices have the ranges 

Then aaX = 0, and the matrix (aau) has rank k 1• Since 

f is harmonic, it follows from Theorem 2.1 and (2.8) that 

( 2 . 24) a au ttx • 0, mod q) , 

which implies wuX. 0, mod q> • 

We now apply to the map af the criterion of harmonicity 

in Theorem 2.1. The space (af) (x) is spanned by Zu and its 

orthogonal space by Za,ZA. We have 

(2.25) w - = -w- = - b- <.p - a- q> ua au au au 

wuI ii! 0 , mod <p. 

By condition (b) of Theorem 2.1 we see readily that af is 

harmonic. 

In the same way we prove the other statements in (b). 

The most interesting case is when kl = k. From (2.25) 

we see immediately that the a-transform of af(x) is f(x) 

itself. In fact (2.25) shows that the matrix of the a·fundamental 

collineation of af is -a- ,minus the conjugate transpose au 

of the a fundamental collineation of f. This completes the 

proof of Theorem 2.2. 
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Repeating the constructions of Theorem 2.2 we get 

two sequences of harmonic mapa 

(2.26) 

~f Lf -1 -2 

whose image spaces are connected by fundamental collineations. 

Such sequences will be called harmonic sequences. 

The most intersting case is when the 

Then we can combine the sequences into one: 

k 's i 

(2. 27) f -.Lf ~f .-L f •.• -2 ~ -1 ~ 0 ~ 1 ••. 
~ a a 

are equal. 

By construction two consecutive spaces [fi(x)] and 

[f i +1 (x) ], x e: M, of a harmonic sequence are othogonal. 

Example: Let f:M ~ G(1,n + 1) = ~pn be a holomorphic 

map. Classically there is associated to f a unitary 

framing {Zo, ••• ,Zn} of ~n such that Zo ••• Zk span 

the kth osc~lating space of f. This framing is called 

the Frenet frame of the curve. Analytically each element 

of the Frenet frame satisfies 

(2.28) 

Moreover each Za defines a line bundle over N, or, what 

is the same, a map M -. ~pn. These line bundles (or maps) 

tbr,m a harmonic sequence. The a fundamental collineations 
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are given by the scalars aa' the a fundamental collineations 

by the scalars ao -1 • This sequence has length at most n + ., 

and ends in an antiholomorphic curve M ~ ~pn, the ·polar 

curve of f. 

In the remainder of this paper we will abuse the notation 

and use d' and a to denote both the fundamental collineations 

and the maps ~. and 0" of (2. 21) and (2.22). This should 

cause no confusion. We will also adopt the convention that 

capital Roman letters (eg. L,V,W,etc.) we will denote rank ~ 

complex subbundles of the trivial bundle ~~n and their 

associated maps M ~ G(i,n) . We will freely identify 

these two corresponding objects. 
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§ 3 Harmonic Sequences 

In this section we discuss some of the geomitry of 

harmonic sequences over a Riemann surface and, in particular, 

over the two-sphere and the torus. We begin with the simplest 

case, the harmonic sequences of maps M ~ G{1,n) = ~pn-1 • 

Let 

(3.1) 

be a harmonic sequence where each L is a map t·1 ~ G (1 , n) or, p 

what is the same,a rank one vector bundle (a line burdle) over 

M. \;e have seen that the map d
p 

is a holomorphic bundle map; 

(3.2) L 
P 

where T(1,O) is the holomorphic cotangent bundle of M. 

dp has only isolated zeroes. The number of zeroes of dp ' 

counted according to multiplicity,is called the ramification 

index of dp and will be denoted 

is well-known [8] 

(3.3.a) 

or 

(3.3.b) 

r(d.). The following formula 
~ 

where'c is the Chern number of the line bundle and 9 is . 1 

the genus of M .. 

On the other hand the Che+.n class of the line bundle 

Lp can be computed as follows: Choose a unitary framing 
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{z 1 ' • · • , Zn} of (C adapted so that span {Zp_1} := Lp_ 1 ' 

span {Zp} = Lp and span {Zp+1} = Lp+1 (To choose 

such a frame requires the additional assumption that the 

map LO is conformal. However, the result to follow does 

not depend on this assumption. When we discuss the general 

case we will not make this assumption). 

(3.1) and harmonicity give: 

(3.4) 

P":~ 
dZ - \' ( ) /fY7 + OJ Z + a ItO. 

p-l - a:1 ~a p-1,p-l p-l p-l-+-p 

dZ = - ap-1 0Zp-1 ;. w _z 
ppp + 

n 

( )(j)Zp-1 - iipiiiZp +wp+1,p+1 Zp+1 + 1=~2 ( )<PZ t 

where ap_
1 

" and a
p 

are functions representing the a and 

a fundamental collineation of L • w - is the connection p pp 

1-form of the bundle Lp. The curvature of Lp can then be 

computed from the Maurer-Cartan equations of U(n): 

(3.5) 

Thus 

(3.6) 

2 = (lap _ 1 ' 
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Note that from (3.4) it is immediate that the only (0,1) 

- -f'orm among the coframing of Zp+1 is 

Applying the above reasoning to Lp+1 

W p+ 1 ,Ii' == . - ap q> .. 

we get 

(3.7) 

for some function ap +1 representing the a fundamental collineation 

of Lp+1 • sIt follows that 
t i 2 2 

(3.8) L c, \Lp) = 21l' fM(la_,1 las ')([) 1\ q> 
p=O 

By (3.3) 

(3 .. 9) 
s 
L c, (Lp) == 

p=O 

s p-1 r {c 1 (La) + l r(dq ) - p{2g - 2)} 
p=O q==O 

s p-1 s(8+1) = (s + 1)C1 (La) + 2 L r(dq ) - (2g-2) ~2~~ 
p=O q==O 

Theorem 3.1 

Let 

( 3. 1 ) 
d s-1 

) ) 

be a harmonic sequence for the map Lo:M ~ G(1,n) where 

M has genus 9 and the ramification index of 

reap). Then for any s 

(3 is 
P 
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i 22-Proof: The energy of LO is '1 JM{ la_,l + laO I )tp A tp. 

Moreover laOI = 0 if and only if La is antiholomorphic. 

(equivalently a O = a if and only if dO = 0). 

Corollary 3.2 

When 9 = 0 the harmonic sequence (3.1) must terminate. 

Suppose 9 = 0 and that L t is the last element of the 

harmonic sequence (3.1). Then Lt:M ~ G(l,n) is an antiholomorphic 

map. The construction of the harmonic sequence of a holomorphic 

or antiholomorphic curve in ~pn-1 is precisely the classical 

construction of the curve's Frenet frame. Hence LO is an 

element of the Frenet frame of Lt and we have proved the 

result of Din-Zakrzewski [6] (For this version of this theorem 

see [11]). 

Now consider the harmonic sequence 

(3.1.a) 

The maps 

L -p 

a 
L ...:.---s 

and 

L L 
-1 

a-p+1 
L <+--p 

are adjoints so r(d_p ) = r(3_p +
1
). Thus (3.3) becomes 

(3.11) 

So 

(3.12) 
s p-l ( ) = ( 1 ) () \" \ (a) ( 2 g-2 ) s 2 s + 1 s+ c, . LO - L. L r _q + 

p=O q=O 
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(3.14) 1 
1T 

i f 2 energy (LO) < - 2n MlaOI ~ A ~ 

s p-1 
~ (s+1)c,(LO) - L Y. r(a_q)+(29-2)S(~+1) 

p::.O q=O 

Proposition 3.3 

When 9 = 1 and deg LO < 0 then the harmonic sequence 

(3. 1 ) must terminate. When 9 = 1 and deg L1 > 0 or when 

9 = 0 then the harmonic sequence (3.1a) must terminate. 

n-1 Proof: deg LO is the de~ree of the map LO:M ~ ~P 

As deg LO :: -c, (La) the first statement follows from (3.10) 

and the second statement follows from (3.14). 

Thus when g::. 1 and deg L * 0 there is a terminal 

element to the left or the right of the harmonic sequence 

(3.15) 

Suppose,without loss of generality/that L_t' t > 0, is the terminal 

element. Then L_t:M ~ ~pn-1 is a holomorphic curve and 

the harmonic map La occurs as an element of the Frenet frame 
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of L_ t • This result was first proved by Eells and Wood 17]. 

We remark that if a harmonic sequence (3.15) terminates 

in one direction then it must terminate in the other direction 

and it contains at most n elements. This is an immediate 

consequence of the construction of the Frenet frame of a holomorphic 

or antiholomorphic curve in ~pn-1. 

We now'turn to the general case of a harmonic sequence 

ao c, a 5-1 as 
(3.16) Vo i)' V1 JII • Vs JIll 

a ]"_1 io 
(3.16a) . . . .. -s V_s . . . 1( V_ 1 

... Vo 

where each V is a map M ~ G(k,n) or a rank k vector 
p 

bundle over M. We would like to find conditions under which 

one of the a or a fundamental collineations degenerates, 

that is, has rank less than k. 

We can change the sequence (3.16) into a sequence of 

line bundles by taking the kth exterior power of each 

bundle: 

(3.17) 
deta o • 

deta, 
)0 

In (3.17) the map det ap is a holomorphic bundle map 

(3.18) 
deta k 
--p+~ A VP+1 (It (T(1,O» k 

Formula (3.3) can be written 
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(3.19) 

We remark that (3.19) is a "Plucker formula" for harmonic 

maps M ~ G(k,n). 

The Chern number c, (AkVp) can be computed as follows: 

First, it is an elementary and basic fact of k-plane bundles 

that if the connection form of Vp is given by 

then the connection form of Akvp is given by 

Thus 

(3.20) 

T<» compute c 1 (Vp ) we 

of a:n to the map Vp 

span vp ' where 1 S a,e 

Z1 ! 
d = 

where "'p is a kxk 

adapt a unitary framing 

as in § 1 , that is 

S k. Then we have 

IT 
P 

the 

skew-hermitian matrix of 

{ Z1 ... Zn} 

vectors Z 
0. 

1-forms 

and Ap and Bp are k x (n - k) matrices of functions. 

In fact in the notation of § 2 
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n = (W "lr) P ap 

A 4> + B lP = (w -;-) p p cu. 

is the connection 1-form of Vp. By the Maurer-Cartan 

is equations) the curvature 0'£ Vp 

(3.21) 

dn - n I\·n = (-A tx + Bt'B )4>" <P 
P P P P P P P 

= i 
2· iT. J tr (diT - iT "1Tp) P p. 

Recall that the energy of the map M ~ G(k,n) deter-

mined by 

(3.23) 

v 
P 

is given by 

E(Vp ) = ~ fer laaj 12 + L Ibajl2)tp " <p 
a,j a,j 

i f t-= '2 (tr (A A ) + p p 

We define the holomorphic or energy of v 
p 

by 

(3.24) E(dp ) = ~ftr(AtA )'P " 'P. 
P P . 

Similarly the antiholomorphic or ! energy of Vp is 

by definition 

(3.25) 

Thus 
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(3.26) E(V ) = E (a ) + E(a ) , 
p p p 

and 

(3.27) c, (V ) = 1 
E rap) - * E(ap ). -p 11' 

Now consider the a-transform of Vp ' namely Vp + 1 . 

We have, by the above argument 

(3.28) 

where ap+ 1 and ap + 1 
are the a and a transforms, 

respectively, of Vp +1 • Recall Theorem 2.2(c). This result 

says that the ~P+1 transform and 0p transform are 

"inverse" operations. It is an immediate consequence of the 

proof of this result that 

(3.29) 

Thus 

(3.30) 01 (Vp + 1) = 1 E(a ) - 1 E(a ) 
11' P 11' p+1 

Hence we have 

(3.31) 

Combining (3.19) and (3.31) we have 
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Theorem 3.4 

Let 

(3.16) 
:3 1 

) 

be a harmonic sequence for the map VO:M ~ G(k,n) where 

M has genus 9 and suppose that none of the fundamental 

collineations degenerates. Then for any s 

(3.32) 
kv 5 p-1 S (5 + 1 ) 

(5+1 )c, (A 0) + I Y. r (det cq ) - k (29-2') --:::i-2 """--
p=O c;r=O 

Remarks: 

Note that by (2.5), (3.20) and (3.21) 

where deg ~O is the degree of the map M ~ G(k,n) 

induced by V 0 • Consequent ly the inequality (3. 32) meaSures the 

difference between the degree and energy of a harmonic map 

M--;...G(k,n). 

Corollary 3'.5 

If g = 0 ox: if g == 1 and then the 

harmonic sequence (3.16) must have a degenerate a fundamental 

collineation. 

Consider the harmonic sequence (3.16a). Followinq the 

above arguments it is a simple matter to prove the 
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following result. 

Theorem 3.6 

Let (3.16a) be a harmonic sequence for the map 

VO:M ~ G(k,n) where M has genus 9 and suppose that 

none of the fundamental collineations degenerates~ Then 

for any s 

( 3 • 33) - 7r B (V 0) < -* E ( a 0 ) 

s p-1 
1. L r(det a 0) + k(2g-2) S(~+l) 

p=O 0=0 -

Corollary 3.7 

If q = 0 or if 9 = 1 and then 

the harmonic sequence (3.16a) must have a degenerate a 

fundamental collineation. 

Since 

Theorem 3.8 

If 9 = 0 or if q = 1 and deg Va * 0 then the 

harmonic sequence generated by Va has a degenerate fundamental 

collineation. 

In fact we have proved more. If M has genus 1 and 

Va is a r.armonic map ~ ~ r.(k,n) then the harmonic sequence 

qenerat£d by Vo rr.ust have a degenerate fundamental collineation 

if any of the a and I transforms of Va have non-zero degree. 

This means that the only harmonic sequences 
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over the torus that we cannot prove have a degenerate 

fundamental collineation are those such that every map 

in the sequence has degree zero. Note that by (3.19) 

every fundamental collineation of such a sequence has 

ramification index zero. In ~pn every non superminimal 

minimal torus be longs to such a sequance.. In particular, the 

Clifford torus in ~p2 -generates a cyclic harmonic 

sequence conSisting of three maps all of degree zero. 

Summarizing we record the following result about 

harmonic sequences. 

Theorem 3.9 

Let 

be a harmonic sequence and suppose that, for 

-t S P ~ s, V is a map M ~ G(k,n) where M is a surface 
p 

of genus g. Then 

(1) deg V-p,+1 = deg Vp - r(det dp ) + k(2g - 2) O~p:;;g - 1 

(2) deg V -(p+1) = deg V + -p r(det a_
p

) - k(2g - 2) O:ip:it-1 

s 1 (3) J. deg V > - iT energy (VO) 
p=O P 

t 1 (4) l. deg V < iT energy (Va) . 
p=O -p 
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§ 4 Turning and harmonic maps of the two-sphere 

In this section we study the degenerate harmonic 

maps, that is, the harmonic maps one of whose fundamental 

collineations is degenerate. For use later we order the 

Grassmann manifolds as follows. We say G(t,n) is "smaller" 

than G(k,n) if 1 < k. 

Let Va 
as a rank k 

be a harmonic map M ~ 

bundle. Suppose that the 

G (k, n) regarded 

a fundamental 

collineation is singular of rank t where 0 < t < k. 

Let Wo denote the harmonic map M ~ G(t,n) determined 

by the image of o. Then have 

(4. 1 ) 

The vector bundle Va decomposes as the orthogonal direct 

sum of the rank (k - 1) bundle ker a and the rank t 

bundle W_ 1 = (ker alL. By Theorem 2.2(b) W_ 1 describes 

a harmonic map M ~ G(t,n). In fact W_ 1 is the a-trans

form of Woe Let W_ 2 denote the a-transform of w_ 1• Define 

the bundle V 1 by 

Note that in general W_ 2 and ker a are not drthogonal. 

However we have 

Lemma 4.1 

V' is a vector bundle (i.e. V' has constant rank). 
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To prove the lemma we need the following proposition which 

will be used implicitly in § 5 

Proposition 4.2 

(1) The bundle ker a is a holomorphic subbundle of Va 

(2) The bundle W_ 1 is an antiholomorphic subbundle of Vo 

Proof: 

Because ker a e W~1 = Vo the two statements in the proposition 

are equivalent. We will prove thefirst statement. Choose a 

unitary framing {Z1, ••• ,Zn} of ~n adapted so that Zo 

span ker a and Z span W 1 ' where the indices have the 
r -

ranges 

1 ~ 0, T .~ k- f, , k - t + 1 :iir, s ~ k , k + 1 ~ i, j ~ n. 

Then a -;- = Q 
OJ. 

and the matrix has rank 

is harmonic, by Theorem 2.1 it follows that 

This implies that 

Hence 

w - • 0 mod ql or 

Proof of the lemma: 

1. Since Vo 

Let av denote the a fundamental collineation of Vo 
o 
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and av (W_ 1) denote the image of W_ 1 o 
under lv. Then 

o 

Since W_ 1 is an antiholomorphic subbundle, the map 

3v restricted to W_ 1 can be regarded as an antiholomorphic 
o 

map. Thus av (W_ 1) has constant rank. 
o 

Theorem 4.3. 

The bundle V' gives a harmonic map M ~ G(k 1 ,n) 

where k,!i k. If k1 = k then the a-transform of v' 
is W_ 1 and 

(4.2) 

is a harmonic sequence. If k, < k then the a-transform 

of V' lies inside w_ 1• 

Proof: Left to the reader 

The construction of (4.2) is called turning_ This 

construction generalizes the construction of the same name 

described in [5]. 

B&;ma:[ks; 

(1) . If k, ~ 1 then "generically" the a-transform of v1 

is W_1 and similarly if k, S R, the ! transform of \-1_1 

is "generically" V.' For this reason we call a turning regular 

if 
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(a) The a transform of v' is W_ 1 when k1 ~ 1 

(b) The a transform of W_ 1 is V when k, S R. 

Theorem 4. 1 says that if k1 = k then the turning 

is regular. 

(2) It is interesting (and important) to determine how to 

reverse the operation of turning, that is, now to rec9.ver 

the map Vo from the map V1 • V1 is a holomorphic rank k1 

bundle over M where by construction k1 ii: (k - t) • Choose an 

antiholomorphic rank (k - 1) subbundle B of V' . Then 

the bundle B e W_
1 has rank k and its a transform is Woe 

For appropriate choice of B this bundle will be VO. This 

operation is called returning. Note that when the turning is 

regular, the returning depends on V1 and the choice of B, 

alone (because in this case W_ 1 is determined by V1). 

Whereas when the turning is not regular the returning depends 

on V' , the choice of B, and W_ 1 .• 

It is clear that the construction of turning can be 

iterated to construct the sequence 

(4.3) d > d > d --.,..> ... d > 

Suppose that Vs is a rank ks bundle where ks < k and 

that each Vs,o < s, constructed before Vs is a rank k 

bundle. If the final turning is· regular then Vo can be 

constructed from VS by a sequence of returnings. If the 

final turning is not regular then Vo can be constructed 
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from vB and W_ s through a sequence of returnings. 

In both cases note that the harmonic map VO:M ~ G(k,n) 

can be constructed, by returnings,from harmonic maps 

of M into smaller Grassmann manifolds. In the non-

generic (that is, the not regular) case more data 

(namely, W ) is required to reconstruct Va. -s 

Theorem 4.2 

Let Va be a harmonic map M ~ G(k,n). Let Wo 

denote the a transform of Va and suppose that wo 

is a bundle of rank t,1 < k. If M has genus zero 

or if M has genus one and the map Wo has positive 

degree then Vo can be constructed by returnings from 

maps of M into smaller Grassmann manifolds. 

Proof: The hypothesis on M insure that the a harmonic 

sequence of Wo must contain a singular a fundamental 

collineation. This in turn insures that some VS has rank 

strictly less than k. 

By combining Theorem 3.8 and Theorem 4.2 we have: 

Theorem 4.3 

If M has genus zero then any harmonic map M ~ G(k,n) 

can be constructed from either: 

(1) a holomorphic or antiholomorphic curve M ~ G(k,n) 

using the a or 1 transforms, or 

(2) one, or possibly two harmonic maps M ~ G(ki,n) i = 1,2, 
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where k i < ki 

using the a and a transforms and using returnings. 

Now by induction, we have 

Corollary 4.4 

If M has genus zero then any harmonic map .M ~ G{k,n) 

can be constructed from holomorphic or antiholomorphic curves 

M ~ G(t,n), 1 ~ ! ~ k, using the a and a transform~ and 

returnings. 

We remark that turning and returning can be formulated 

for the case of a harmonic map Va with degenerate a 
fundamental collineation. We leave this to the reader. 
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§ 5 Extending and harmonic maps of the two-sphere and 

the torus 

We begin by describing another technique which, 

like returning, reconstructs a harmonic map from its 

degenerate a-transform (or a-transform). 

Using the same notation as in Section 4 we let Va 
denote a harmonic map M ~ G(k,n) with degenerate a 

fundamental collineation and Wo denote the a transform 

of Vo ' so that Wo is a harmonic map 

o < t < k. By Theorem 2.2(a) the map ~ 

space orthogonal to Wo is also harmonic 

morphic vector bundle over M. Let W -1 

M ~ G(~,n), 

determined by the 

w~ is a holo-

denote the a-trans-

form of Wo. W_ 1 is a rank i antiholomorphic subbundle of 
..L Wo. Now choose an antiholomorphic rank k subbundle V of 

W~ satisfying the condition that W_ 1 is an antiholomorphic 

subbundle of V. A straightforward local computation shows 

that the map M ~ G(k,n) defined by V is harmonic. 

Moreover, for appropriate choice of V we have V = VO. 

This operation is called extending (The bundle V "extends" 

the bundle W_ 1). 

Suppose Vo has a degenerate a fundamental collineation 

and Uo denotes its a transform. Let U, denote the 

a transform of Uo• Then to "extend" U, we choose a rank 

k holomorphic subbundle V of U.l o satisfying the condition 

that U, is a holomorphic subbundle of V. Again V describes 

a harmonic map M........ G (k,n) and for approprla"te choice of V 
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we have V = vO. 

We have 

Theorem 5.1 

If M has genus zero then any harmonic map M ~ G(k,n) 

can be constructed from one holomorphic (or one antiholomorphic) 

curve M ~ G(~,n), 1 ~ i ~ k, using the d and ~ trans

forms and extendings. 

Proof: Apply Corollary 3.7(respectlvely, Corollary 3.5) repeatedly. 

We can also use extending to give the following descrip~ion of 

the space of harmonic maps of the torus into G(k,n). 

Theorem 5.2 A harmonic map of a surface M of genus one 

into G(k,n) can be constructed using the d and ~ trans-

forms and extendings from either 

(1) a holomorphic or antiholomorphic curve M ~ G(t,n) 

1 ~ ~ ~ k 

or 

(2) a degree zero harmonic map M ~ G(~,n), 1 ~ t ~ k. 

In fact in case (2) the degree zero map can be taken to be 

an element of a harmonic sequence consisting only of degree 

zero harmonic maps. 

Proof:- Apply Theorem 3.8 repeatedly 
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