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Introduction.

In the physics of string theory, one consider the string propagation on a manifold M
quotient by a finite group of symmetries G. When the group action is non-free, the quotient
space M/G is in general not a smooth manifold, but one with  singularitics, a so called
developable orbifold. In the discussion of string vacua  lor M/G, one has to consider the
configuration of the closed (parametrized) loops of M together  with all the loops twisted by
elements of G. By consideration of modular invariance of the theory, Dixon, Harvey, Vafa
and Witten [D.H.V.W] introduced the following ‘orbifold Euler charucteristic ' ol the
quotientof M by G as the appropriate Euler number for the purpose of string theory -

0.1) x(M,G) = 1IG! %, y(M<&h>)

where the summation runs over all commuting pair in GxG, and M<&D> denote the common fixed

point set of g and h. For a free action it is the well known fuct : ¢(M,G) = %( M/G). The
connection of this expression with the representation theory of the group G leads 1o the

identification of (M,G) with the Euler characteristic of equivariant K-theory Ke;(M) which was

noted by {A.S]. However, the string calculation of Euler number is expected 1o agree with the
Euler number of a "correct” resolution M/G® of rhe singular spuce M/G, at lcast for mantfolds with

SU(n)-holonomy. For dimcM =2, [H-H] showed that the equality
0.2) xM.G) = x(M/G®) .

holds for M/G® the minimal resolution of M/G. When dimeM =3 and G abelian, x(M,G) is also

identified with x(M/G®) for M/G® being the "minimal” wroidal resolution of M/G constructed by the
methods in toric geomtry by [R-Y], [R}, and also by [M,0,Pe]. It scems that this phenomenon
should hold for a general reasonable class. Even though the formula of orbifold Euler
characteristic was obtained by stringists using the physicist's ideas which is quite natursl, it is in
some sense unsatisfactory because a clearer mathematical nature of "strings” still rely on a rigorous
mathematical description of the intuition behind it. Here we propose a mathematical treatment using
probabilistic method based on Malliavin calculus, which can justify some intuitive and heuristic
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method of the physical arguments. The formulation might shed some light of the "string” nature of
toric geometry which has been a useful device in the study of string compactification.

In order to give an interpretation to these ideas, we need to consider an element of volume over
the twisted loop space, and unfortunately we meet the problem that there is no riemannian measure
over the loop space of an orbifold. The idea is to use the twisted Bismut measure, which extends in
the case of twisted loop space the measure which was introduced in [Bis] in order to explain the

relation between the cohomology of the loop space and the index theory ( Sce [H.K] in the flat

case). This measure in the case of non twisted loop is used in {J.L{} in order 1o do a LP theory of

Chen forms. But no differential operation is given in (J.L{].

Such differential operations are known since a long time in the Malliavin Calculus for the Wiener
measure : these are the Malliavin derivatives (|Gry]) and the Ornsiein-Uhlenbeck operator ({M]).
(Sh] and [Ar-M] study differential forms over the Wiener spuce and the exterior derivative,
[Arq1.[Ar,] do an extensive study of the index of the the Dirnc operator over the flat loop space in
the case of the free field or with interacting terms : they give a path integral representation of the
index of such operators over the loop over the loop, strongly inspired by the work in the scalar
case of Hoegh-Krohn ([H.K]) (See [J.L..W] and [J.LW>] for physicist references).

For the analysis in infinite dimensional curved spaces, there exist different types of theory (We
can refer to [Ma] for a survey).

-The analysis over infinite dimensional manifold, which was used by the Russian shool. The

manifold'’s structure is very important in such cases ([B.S],|D.I])

-The quasi-sure analysis ([Ge],[A.M;]) which works over finite codimensional manifold of the
Wiener space ( See [K] for forms).

-The analysis over loop groups ([A-M»},[Gr,],[Gr3]) which is closcr 1o the purpose of this
paper, but with a different 1angent space, which uses deeply the stucture of the group. There is for
the moment no manifold streture in this theory as well in the next theory.

The present paper is more related to [Leg} and [Les), where the case of the free loop space of the
Riemannian manifold is considered. Some connections are introduced over the free loop space,

integration by parts are done, which allows us to define Malliavin's derivatives of every order and
to define an Ornstein-Uhlenbeck operator invariant by rotation. Moreover it is proved that the
Bosonic part of the Witten current in [Leg) is a smooth measure ( See {Ge-J-P] for the ulgebraic
definition of the Witten current). A relation between the exterior stochastic derivative und the
Hochschild homology of forms of the manifold is given, which extends this well known fact in the
case of smooth loop to the case of stochastic loop. Morcover, the circle action is diagonalised in

preparation of [J.L,].
[J.L,] defined a non equivanant regularised exterior derivative over the full space of forms of

the loop space. Its adjoint is computed. A rigorous conjecture for the index of the regularised de

Rham operator is given. By localisation, it is the Euler-Poincaré number ol the manifold. The

situation becomes more complicated for the case of the equivariant Dirac operator over the loop

space with the relationwith the Witten genus and for the case of the equivariant signature operator
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over the loop space with the relation with the elliptic genus : some topological obstructions are met
([Be),{Se),[Wi] ) and in fact in [J.L] there is an extension of the Taubes construction of the Dirac
operator over infinitisimaly loop ([T]) only over a small neighborhood, by using the stochastic
calculus. In order to define the "restriction" to these non scalar operators to infinitisimaly small
loop (that means over the family of Brownian bridges over the set of tangent spaces), the Bismut
mesure in small time is introduced and some limit theorem are perfomed, which correspond to the
high temperature limit in the stochastic context and which are of the domain of the computations
done in [Bi3],[1.W] ,[Hs] and [Le5].

The purpose of this paper is to do analoguous computations for the regulurised exterior
derivative for twisted loop spaces : the loop space of a develop uble orbifold appears namely as an

orbifold of twisted loops. A scalar calculus over each secior of twisted loop is done. A diffusion
process is constructed, and some rough loculisation is perfomed for the diffusion process (See

[A.L.R] for non twisted loops). The big difference with [J.L>} is that the limit model is related 10
the computation of {Biy] instead of the mode! of [Big}, because the twisted loop concentrate over

the loop of the fixed point of an element of G in small time.
The introducing reference for stochastic geometry can be | El},[Em],|Les] and [R.W].

Both of the authors like to thank Prof.Dr.F.Hirzebruch for his warm hospitality in the
Max-Planck-Institut where this work was done. The first author also thanks the Von Humboldt
Foundation for financial support.

I SCALAR CALCULUS OVER TWISTED LOOP SPACLS.
I 1) Integration by parts for distinguished vector [liclds.

Let M be a compact Riemannian manifold and let G be a finite group acting over M. By
averaging, we can suppose that G is a group of isometries. Let L be the Laplace-Belirumni operator

over M and py(x,y) the associated heat kernel. Py o is the law of the Brownian bridge sturting

from x and going to y in time 1. Let Hg be the space of twisted toop going from any x and arriving

in gxintime 1. Let Ke the measure over l-lg

(L.1) dpy = pyx.gx) P x oy dx/lpgpy(x,gx) dx

., Let X

g , the vector field ¢

We denote the space of L2 function associated by H g

(1.2) t[(xu(y(O)) + le.I] h(s) ds - t X(y(1(0)) +1 tl‘l dg Xy(v(0)) = T, FI(1)
3



h(s) is equals to 3. h;(s) X;(y(0)) where each h; is deterministic such that J[O,l ]hi(s) ds = 0. These
vector fields play the role of the distinguished vector fields given in [Leg) and in [Les] . But the

boundary conditions are now X(1) = dgX(0) because we look ut twisted loops. Let F be a smooth

cylindrical functional F(y(t(1)),..,y(t(r))). We have :
THEOREM 1.1:

(1.3) pg[<dF,Xg>] = pg[ F div Xg]

where

(1.4) <dF.Xg> =¥ < dT([(i))F(Y(l(1)),.--.Y(l(r))).Xg(l(i))>
and where

div Xg = div X3-(Y(0)) + JIUJ] <t JI1'(s),8y(s)> - 1/2 '[I 0,1] < S){j(s),'dy(sp B}
(1.5)
(-1 14y
1[0,1] Trs 1" R(d¥(s), t4) 1Ty byg X‘] (y(0))

where S is the Ricci tensor over M and R the curvature tensor.

Remark : Let us remark that the last term in the divergence can be computed by meins of the Ricei
tensor and is equals to zero when the manifold is Ricci flat

Proof : The proof is:‘\'/ery similar 1o the proof of [Leg). We begin to work over the path space, that
means the space of applications from {0,1] into M endowed with the path space measure dx Pp*
where P1X is the law of the Brownian motion starting from x and arriving at time 1 in x. Let ¢ a
smooth function over MxM with a small support over the diagonal equals to 1 over a small
* neighborhood of the diagonal such that g ¥(0) and y(1) ar¢ joined by a unique geodesic if
$(gy(0),y(1)) is not equal to 0. Let us denote by T(y(1),gy(0)) the parratlel transport from g((0)) to
(1) along this geodesic. We begin by enlarging the vector lield Xg over the twisted loop space into

a vector field xl,g over the path space by putting :

X150 = GCEHOI(E, X(HO) + Jjg,h(s) ds - X 4(0)

(1.6)

+ 1t 7l 1(y(1),g100)) dg Xv(0))



Let N be a subdivision of [0;1], and let Xl,gN be the associated vector field and let consider the

polygonal approximation of v : this polygonal approximation of y works only if ¥(t(1)) and Y(1(i+1))

are élosc, but the contribution of the path where ¥(t(i)) and y(t(i+1)) are far goes to 0 when N goes
to the infinity, as it is explained in [Ley],[Leg). We know by integrating by parts in finite

dimension that

(17) VI<dEX) N>] = V[ F divX) ]

Moreover, by using the Malliavin Calculus, we know that for all x, y that

(1.8) By x [ <dF.x1’gN>] = By gyl <dFXj > |
and that

: N .
(1.9) Ejx yIFdivX) NI 5 By ¢ [ FdivX) ]

where the divergence is computed from (1.5) by taking the derivative more of ¢(t(y(1),£(0))
because we are integrating by parts over the path space. By using the fact that g is an isometry, and
the relation Xl'gN(l) =dg XI,gN(O), we arrive at the same cancellation at the end when N goes to

infinity as the cancellations enregistred for non twisted loop. The only difference is that we don't

need to take derivative of T(y(1),gy(0)) in the approximation lirnit procedure, so therelore the
theorem, by considering the matrix from TT(O) into@ T'y(O) 1:1'1 dg instead of T 1'1 in the case of
non twisted lodp,.But dg (Y0)) has a derivative equals to 0 over a vector field T, t X« this explains

the fact that no derivative of dg appears in the last counterterm.

- L2. Dirichlet form and Ornstein-Uhlenbeck operator..

The tangent space is the space of vectors X(s) = tsl-l(s) with H(s) with finite variations such

that X; = dg X(. As Hilbert structure, it should be possible 10 choose the Hilbert structure
IIX(O)II2 + f[0'1]<DX(s),DX(s)> ds where DX(s) = T H'(s) is the covariant derivative over the

loop. But we will split our tangent space Ty into 37 'I‘Y“ in un orthogonal sum with u different
metric in order to simplify the computations,

Ifn>0,T," = {1,212 [ ) cos(ns) ds ¢ = X(n,e)) ).
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Ifn<0, Ty" = { 7,212 jg ) singok) ds e = X(n,e)(0) ) .
in=0,T, = (7 (e-te+1r; " dge)=X(0e)0) |
The Hilbert strucure over each piece TY" of Ty is given by IIeIlY(O)2 .

There is a connection which preserves the metric. This arises from the Levi-Civita connection T

over the manifold :
(1.10) X(n,Ie)(t) = I'(X(n,e)(t))

This connection preserves by definition the splitting of T into 'I‘Y“.

Let us introduce positive numbers A(n) such A(n) < Cinf> 2p< L. Let B' the following

Dirichlet form ;

(LIDEER =%, pg[Az(n) <dF,X(n,e(i))>2)

where X(n,e(i)) is a basis of T.Y".

LEMMA 1.2: E' is closed, defined over a dense set which separaies the iwisted loop and tight..
Proof : E' is densely defined. We choose as core A the sct of cylindrical functions

F(y(t(1)),...,y(t(r))). Over Tyn n=20, we choose as orthonormal basis the natural orthonormal basis

which comes from Ty(O)' We have :

(1.12) I<dF,X(n.¢()>l < C/(nl + 1)
Therefore :
(1.13) £ An)2 <dF,X(n,e(i))>2 < T AM/(Ini+1)2 <C

with C deteministic. Therefore, E' is densely defined over a set of functions which separate the

loop.

-)E'is closed. Let us suppose that Fp — 0 for Fp belonging 10 the core and that :

(L14) [ T A(n)2 (<dFp X (n,e(i))> - G2 = 0

when p— eo. Then G, = 0.



Namely for all cylindrical functional F,

(1.15) gl <dFpX(ne(@)> F] = py[Fp div Xy F) - [Py <dFX(n,e(0)>]

which tends to 0. Therefore <de,X(n,e(i))> tends to 0 in Lz(p.g) and therefore G, = o (We used

local sections of smooth orthonormal basis of Ty(O)M)-

-E' is tighted for the uniform convergence. Let F(x,y) a smooth 2 0 function over MxM such

F(x,y) = d2(x,y) if x and y are closed. Let G(y) the random variable :

(1.16) G = (0,17 /[0,1] FYS)HOIP o Xds di

which is finite if p > . Let us compute <dG(y), X(n,c(i))>. It is ¢nough to take n« 0.

l<dG(y).X(n,e())> < I[O,I] I[O,l] FOy(8).Y))P~ 1-s1% | < dy(s)FO8) (0. X (n,e(D))(8)>
(1.17)

+ < dyy F)Y0), X (0,()@) > Ids di < C/nl i 14fj0,1) FOs) )P sl ds dt

Thercfore if p -1 > &, Jjg 1) fj0,17 FOYS)H)P1 g ds duis finite. Morcover, if we put .= 1

+ 2Bp, G < C is compact if B < 1/2 for the uniform norm (See [A.V] for the case of Wiener

submanifold).The following theorem can be deduced classically from the previous lemma.
THEOREM 1.4 :To the Dirichlet form is associated outside a set of capacity O a process w(y) for
Hg:

Let us consider the operator L 4 associated to the Dirichlet form. [t has the definition

(1.18) LAF = -T A(n)? <d<dF,X(n.e())>X(neM)> + X A(n)? <dF.X(n,e(i))> divX(n,e(i))

THEOREM 1.5 : L, is defined over the core Aifap< 1.

Proof: Only the case n #0 is important.
(1.19) l<d<dF,X(n,e(i))>,X(n,e(i))>l < C(n) /(n2+1)

and the sequence of random variable C(n) is bounded in L2, this from the relation :



(1.20) Tk, =1, Jj0, 1% TRAY($),X () 7,

for the Levi-Civita connection T, So only the second part in the definition of Lo F put a problem.
Let us consider only the n > 0 part :

divX(n,c(i)) = I[O,l] < TSCOS(nS)C(i),BY(S) >+ 172 II_O,1]<SX(n,c(i))(S),'8Y(s)>

(1.21)
+counterterms

The counterterms have a behaviour in C(n)/n with C(n) uniformly bounded in L?'(u g) and do not
put any problem.

Let us consider the j‘h part of the derivative of F(y(t(1)),..,y(t(r))). Let us consider the element of
L2[0,l] whose Fourier series is 0 if n <0 and (A(n)zln) (sin(nt()) - 1). Denote it by ht(j)(s)' (The

convergence is performed because 4p < 1). In the first contribution of the divergence in the

operator, we recognise :
(1.22) 1[0.1] < Ts<d‘y(t(j)) F(y(1(1)),...,y(t(r))), Tl(i)hl(i)(s) e(i)>,8y(s)>

which belongs in L2(p.g) because we recognise a non-anticipative Itd integral.
a
LEMMA L7 : Let F be/\cylindricai Sunctional.

(1.23) pexp[ CILAFI] } <o

JorallCifdp < 1.
Proof : The part in L AF which comes from (1.22) satisfies clearly (1.23). The part in L F which

comes from the first sum in (1.18) satisfies easily (1.22). Namely only the derivative of the
parrallel transport put any difficulties, but it is overcomed by (1.19) and by recognising after a non
anticipative 116 integral as in (1.22). It remains to treat the contribution of the counterterms in

(1.21). Let us study for instance the contribution of:

(1.24) Z'I>O'iA(n)2 <dF,X(n,e(i))> J[O,l] <Sx(n’c(i))(s),8‘\(‘(s)> = XJJIU.1|<S YG)(S),SY(S)> _

where Y(j) is a process of the same type of (1.22). This non anticipative integral is in particular
exponentialy integrable. The sume holds for the last countertenn,
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1.3.Localisation.
We can handle now with the following theorem which could justify that the ¢quivariant Euler
number under the geometrical action of h should be localised over the twisted loop in g of the fixed

point of h.
THEOREMI 8:

(1.25) pgld(wi(y),7) > 8] < expl -CA] -

when t is tending to 0.
Proof: d is the uniform distance. Let us cut the time interval in 1! time interval [s(1),s(i+1)] of the

same length. The event d(w,(),y) > 8 is included in the union of the events { d(w, (M((s(1)),¥(s(i)

>0} = O; and of the events ( S“P[s(i),s(i+l)[ d(w(Y)(8),w(V)(s(D)) > 6" } = O'}. By 1he

stationarity of the process :
(1.26) exp[-C/t] 2 ],lg { S“p[s(i),s(i+l)[ d(y(s),y(s(i))) > 3") 2 l-lg{oli}

Since the number of O} is controlled by i1, the second term is controlled by exp[-C/t| when t —
0. Let us estimate ug{Oi}. By rescovering M by a set of small balls, O; can be included in a fini

set of Oi,j such that :
(127) Oy = (1 gjw () - gi(s@ON 1> ")

The 8j are independent of the s; and 8" too. Since gj('y(s(i)) belongs in the domain of Ly,

quasi-surely, we have :

(1.28)  gjw,(Y(s()) - gj(y(s(@D) = M+ Jjg ) (Lag(wy(y) ds

M, is a martingale whose the derivative of the right bracket is smaller than € because we take a

coordinate function, Therefore °
(1.29) ug[ M) > C] <expl-C/]

Moreover by Jensen-inequality,



(130)  pylexpllig 1 Igitws) ds ] < C [ o yexpll Lggl(wy(y)] dsh]
for the stationarity of wg(y). We deduce from this that

(1.31) ug[I[O,[]u. Aj(Ws(M)| ds>C] <expl -Ch]

Therefore the result.

Il REGULARISED DIXON-HARVEY-VAFA-WITTEN EULER'S NUMBER
FROM THE LOOP SPACE OF A DEVELOPABLE ORBIFOLD.

II 1) Regularised de Rham operator over the twisted loop space.

Let y a twisted loop in Hg, and let T'Y its tangent space with the Hilbentian structure ot the part 1

N

Ty =X T.,", the sum being taken over the relative integers.Let A’lY the exterior algebra associated

Y
to T.Ywilh the structure coming from each 'l‘.Y". The connection I7 pass 10 ATy, Let

Ag the set of sections of the shape ¢ = £ Fj(y(1(0),Y(1(0)),....y(1(r))) X(1)(y) for a finite sum where
Fy is a cylindrical functional and where X[ = X(ny)(epA.....a X(n)(ep). Let us remark tha

A(Ty) is canonically isomorphic to A(Yo) A A(Yo-“) where A(“{O,H) is the Fennionic Fock spice

associated to the L2 Hilbert structure endowed with the flat Brownian bridge in the tangent space of
the starting point. Modulo this isomorphism, we tuke random section which have only o linite

number of components which are not equals to zero in this bundle over M in order 10 define A g and
the coordinates are cylindrical functionals. For ¢ belonging to Ag, we define if e(i) s a local

section of orthonormal basis of T'y(O)M' d; 2 by

dp g0 = Z 1 Z (1AM <dFI(YQO),.... AU, X(e(DW> Xlne)ip o X)) +
2.1)

Zj AQ) FHO),- Y4 X(O00) A Ty iy XD}

The first sum is taken over the finite number | of component Fj of ¢ in the distinguished basis
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X(I)(y) of the exterior algebra AT‘Y and the second is involved with the derivatives along the

distinguished vector fields of the form. Since the connection I' is 4 connection which preserves the

metric over AT'Y' we can write (2.1) more concisely :

(2.2) dr’gO' = 21 A(n) X(n,C(i)) A rx(n'e(i))c‘

The operator does not depend from the choice of the local smooth section of orthonormal basis e(i)
we choose. In a particular case, it can be useful 10 choose a normal system of coordinate in order to

determine the operator. We can compute d*r,g over Ag. Namely,

2.3) pg[ <d <0,6'>,X>] = ug[ <g,0'> div X| = pg[ <l X 0,0> + <a,l x0'>1
Therefore
(24) Iyo = -Tyo + adivX.

This allows to show that :
(25) d*r,g = - A(n) I‘x(n,e(i)) ix(n'c(i))o‘ + X iX(n,e(i))c div X(n,e(1))

Let us recall (See [J.L5]) that the sum in (2.1) is infinite but converges becaus 2p< 1 und that n

and is a symmetric operator therefore closable and d- gire
L}

* g *
d"p gO the sumis finite. dp , +d o

closable too. .
Let us show that (d,.’g + d"'r g)2 is defined over Ag. For this we have to suppose 4p< 1. We

. have :

d-r'g d*]‘,g g = E(n,i) A(n) X(n,C(l)) A rx(n,c(l))[ -z (m,j)A(m) rx([n'c(j))ix(“]'c(j))c +
(2.6)

h (mJ)A(m) iX(m.c(j)) odiv X(m,e(j))]

The sum in {} is in fact finite. We have only to show that if we take <dFy,X(n,c(i))>, we can

reach this from the core of cylindrical functionals because the parrallel transport appeirs in such
expressions. This comes from the Bismut's formula :

11



@7 Tyt = 10,17 ! Ry Xg) T,

([Biy], [Leg4l.[Leg]) and from the fact that 2p < 1.

Let us now study the behaviour of d*r,g d; ;0. It equulsto

E A(n) div X(n,c(i)) iX(n,c(i) )[ Z A(m) X(m,e(j)) A l“x(m’c(j)) 0'} -3 A(n) I‘X(n,c(i))
(2.8)

IX(D,C(i))[ E A(m) X(m,c(j)) Ar’x(m'c(j))c}

The sum is finite, except for the most embarassing tenm which is
2 . . 2 - -
(2.9) Z A(n) div X(ﬂ.e(l) )rx(n'c(l))c - z A(I]) 1 X(n,c(i)) X([],U(i)) (0]

But if we work in a local chart, we can compare the problem of the convergence of this serics 10

the problem of the convergence of L 4 and show it is converging in Lz(p g) as in the first part since
4p < 1.

The sumin d*. ,d

* 1 H . . = v W Ie .
rgd rgdis finite and does not put any problem of convergence.

The sumin d; gdT go is infinite but its convergence comes from the fact that
’ ¥

(2.10) ug[‘! <d<dFpX(n,e(i))>X(me()>12] < C/n*+1)(m3+1)
using (2.7).

Remark : Let @ be the form over the twisted loop space which to a vector associates

<w(¥(s)),X¢>. It is the reciproque image of the one form @ in M by the evaluation map which

associates to a twist loop its value in time s. It belongs to the domain of d, gund da"r.,g For this,
we expdnd X in the basis given by T.Yn and we sce that this form is the serics 2
<w(y(s)),X(n,e(i))(s)> X(n,e(i)). There is the parrallel transport which appears in

<w(Y(s)),X(n,e(1))(s)> but can be handled by the formula (2.7) which allows to show that this

12



form belongs to the domain of dy ; and of d*r,g because 2p < 1.

The Laplacian (dr,g"' d*r,g)2 = Ar,g is densely defined and symmetric, therefore closable.

Let us introduce the geometrical action h : to a twisted loop ¥(s) it associates the twisted loop
hy(s). It is an isometry from Hy into Hy,p,-1 which preserves the splitting of Tyinto X T Y". This
comes from the fact that h is an isometry, and if 7y is the Brownian bridge between x and gx, hy s
the bridge between hx and hgx = (hgh'l)hx. Morcover the parrallel transport between hy(0) and

hy(t) is nothing else than dh ‘!:i(dh)‘1 since h is an isometry. Therefore the isometry between TYn
and Th‘Yn is given by e — dhe. The most difficult part to sce this is for a vector ficld of the type

T(e-te+t 11'1 dg e). It is trunsformed in a vector of the type

t,(hy)(dhe - tdhe + tdh 7, dge) = T, (hy)(dhe - tdhe + wh ;" (dh)~Ldh dg (@h) ! dh e)
2.11)
= t(y)(dhe-tdhe+t(dht dhl)yTamghlyane)

The conclusion follows from dh 1, dh™! =, (hy).
Moreover, h lifts to an application from A 10 Ay, -1 which is an isometry for the natral L2

structure over these two spaces. Since h preserves the splitting of T’Y into the sum of 'l‘.},", since the

A(n) are independent of the choosed starting point, and since h preserves the Levi-Civita
connection over TM, we deduce the following equalities of operators with their donniin :

hdpg= dppgp-1h

* *
h d g =d r,hgh'l .h
(2.12)
. * *
h(drg+d'rg) = Wrpghl +d ppgh-l)h

haA -l1h

nLg Ar,hgh
The Hilbert space of loop space of a developable orbifold can be identified with the guotient of
g Iherefore,
formaly, the Euler-Poincaré characteristic of this orbifold of wisted loop space is formally given

the union of the sectors Hg by the geometrical action of G over the union of Il

by 1/IG! X Tr( exp[-tA]h), the sum being taken over the elements of the group and the expression
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Trg being the difference of the trace over positive forms and of the over odd forms ([H.Z]). This
quantity is formaly equals too to 1/IGl ¥ Indh(dr+dr*) .

But A preserves each femionic sector, and so only the contribution of the sectors which are kept
by the geometrical action of h need to be taken in the equivariant index ( It is the diagonal
contribution of h ). A sector is kept by h if gh = hg. So only sum over commuting pairs (g,h) have
to be taken in the Hirzebruch's formula.

We can handle now with the following conjecture:

Conjecture: 1f A(n) >{nf
-) dr.g + d"].,g has a self-adjoint extension.

*

-)If g and h commute, x(ME N Mh) = lndh(dr,g +d )

tr exp(-t Ar,g]h is finite and I"(lh(dr,g"’ d*r.g) = ’[‘rscxpl—lﬂr'glh

This conjecture could show that the regularised Euler number of the loop space of a
developpable compact orbifold is given by the Dixon-Harvey-Valu-Witten (0.1 ormula given in
the introduction.

112) An heuristic proofl of the conjecture.

Over Hg, instead of putting the measure (l/IM p10gx) dx ). ppix,gx) Pl.x,gx dx = By g We
choose the measure in small. time (l/IMp£2(x,gx) dx) pe2(x,gx) PE2_x'gx dx:”e.g' This measure

. : . _ 0.2
concentrates when € is small over the fixed point M5 of g because pp2(x,gx) < cxp |-Cle™} when

x# gx (See [Big)). As in [J.L,}, we divide the metric in '1;,,“, n#0, by &2 such that an original

orthonormal busis' is multiplied by €, although itis kept as a form (Sce | Big] and [Les]). The

contribution of TYO is more complicated to handle, because there ts two parts in 'l'.l,0 s the part

which is transversed to the fixed point set and the part which is tangent 1o the fixed point set. Of
course this distinction works only if y(0) is closed to the fixed point set. If ¥(0) is close to the fixed
point set, we can define the projection I'ly{0) over the fixed point sct and the parralle! iransport
T(Y0),IT¥(0)) from I'Ty(0) to ¥(0). Over M8, we have the tangent bundle ‘I'ME und its urllhugunul
bundle ('I‘Mg)H, which are parrallel because M8 is totally geodesic. We use the parrallel tronspornt

M over o smull twbular neighborhood of the

T(x,I1x) in order to get a bundle TgM and a bundle T!:

fixed point set M8, Moreover, TgM and 'I‘EM“ are orthogonal. I 4(0) is in the small neighborhood

of the fixed point set, we can split T.),0 in 'I‘YU(’I‘BM) and 'I'Y()('l‘gMl 1y, ‘his decomposition s
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n
orthogonal. We keep the Hilbert structure in TYO(TgM) and, I;I‘YO(TgMH), we take the Hilbert

strucure as ( ((1-82) f((‘y(O))/.e2 ) + 1) = fe(¥(0)) multiple of the Hilbert structure from the previous

part : moreover f(y(0)) is smooth 2 0, depends only from the distance between the starting point
and the fixed point set M8, and is equals to 0 outside a small tubular neighborhood U of the fixed
point set and is equals to 1 inside a smaller tubular neighborhood U, of the fixed point set. For the

limit theorem we will do later, only the contribution of a small neighborhood of the fixed point will

be significent : an orthonormal basis of T.YO('I‘gM) isthe same and an orthonormal basis of

T.YO(T gMH) is rescaled by €. We won't write later all the details which comes from the fact that

this rescaling is only true in fact over a small tubular neighborhood of ME, by doing a suitable
partition of unity associated to a neighborhood of the fixed point set invariant under the geometrical
action of h.

.o ' . * .
These definition being given, we define the operator dg ., the operator d ¢ [, the symmetric

& 3

g as before. Morcover since

operator dg . o + d*e,r,g and the operator (dg r o + d*e,r,g)z =4,
we choose f(x) depending only from the distance from x 10 MB&, and since that distance is invariant

under the action of h, because h and g commute, all these operators can be chosen invariant under
the action of h : the main difficulty is to show that the splitting into 'I‘gM and 'I‘HMI'l is invariant

under the action of h. But since h and g commute, h keeps MB and therefore dh keeps the

decomposition over M8 of TM in TM8 and (TM8)H. Morcover IThy(0) = hITy(0), always because

h and g commute. Moreover, let e be a section of TME. 1(y(0),11¥(0)) e((JT(0)) is a section of
TgM.
We have :

dh 7, ((1-0) TY(0),TTY(0)) ep(TTY(0) + 1 7)™ dgr(y(0).TIV(O)) eo(TTY(V) ) = T,(hy) { (1-0)
“dh

(2.13) T(Y0),1T1Y(0)) e(ITy(©)) + 1dh ;"L (dh) d(hgh™!)dh 1(¥(0),11v(0)) (ah)! dh e(I1Y(0))}

T(hy) ( (1-0) T(hy(0),TThy(0)) dh eg(MY(0)) + ¢ (1, (hy))~ Ldg(hy(0).TThY(0)) dh e((MT(0))

| 6



and dh eq(ITY(0)) is a vector in [1hy(o) tangent to ME. This shows thut our splitting is kept near

ME,
We follow the line of {J.L] in order to define the Bismut's dilatation. We have our basis of

distinguished vector fields X(n,e(i)) for a local smooth section e(i) of orthonormal basis.
Moreover, over our little neighborhood of the fixed point set, we choose that local section with

respect to the splitting of TM in TgM and TgMH. We deduce from this an orthonormal basis X(1)

of the fiber of differential forms. Moreover this choice is invariant under the action of h, because h

keeps the splitting. Let us choose the coordinate of X(I). If d(y(0),M8) is small, we take any finite

sum of products of the type f(ITy(0)) H](n) (f;(y((D)) - £;(T1¥(0)) = F. I(n) is a finite part of cardinal

n of [0,1]. Moreover all the I(n) with the same cardinal are distincts, Moreover if I{(n) = 1(1) <
t(2)...<t(n), we suppose that the union of all the I(n) for n fixed is dense in the simplex t(1) <

t(2)..<t(n) of {0,1]M. If F is such a functional, F(hy) is still such a functional because h(I1y(0)) =
I'T(h(0)), which shows us that the choice of such test functionals is invariant under the action of h,

if d(y(0),M8) is small. If d(y(0), M8) is big, we take any cylindrical functional ( We don't write

completely the detatls about this, but we stick together the two componenisby using as test

functionals h((0)) F(y) + (1-h(y(0)) G(y) where h is a smooth function with compact support in a
small neighborhood invariant under the action of h and equals to 1 in a smalier neighborhood
invariant under the action of h. We perform the Bismut's dilatation only over the first

component.).Let us suppose that Z; fo’l(l'ly(o)) I, (f; 10rtp) - fi,I(ﬂy(O))) is equals to 0. Since
all the I are distincts, we deduce that each f(y ((TT(0)) I (fi,l(Y([i)) - l‘i.l(l-ly(U)) is equal 10 0. We

can now define the Bismut's dilatation over a functional F=X fo,l Il (fiJ('r(li)) -fu(l'ly(U)) )

by putting :

(2.14) BgF = I fo ((T1Y(0) IT (£ 1(y(ty)) - £ 1 (T1Y(O))/e
If d(y(0), M8) is big, we don't change the functional. We have that key propenty, since IThy(0) =

hITy(0) :

(2.15) Bg(F(hy)) = (BgR)(hy)

Let us show that the space of scalar functionals where the Bismut's dilatation is defined is dense,

This follows from this :

FCT0)) Ty (i C(tp)- GiTIY(0)) = FCTWODC Ty 1y (KD -FTIOI) £, (1,)
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(2.16)
-F(TEY(0)) £ (IO Ty GGG - HATYON)

By induction over n, we suppose that each functional f(ITy(0),y(t(1),..,¥(t(n-1)) is limit of sum
of finite products with the cardinal of I(k) smaller of n-1. If we use this induction hypothesis, it

results from (2.16) that we can get any functional of the type f(ITy(0),y(t(1),..,y(t(n-1)) £, (¥(t(n)))
in L2(p.g). and therefore all the functionals which are in Lz(pg) by the Stone-Weierstass theorem.
Let us define the Bismut's dilatation for forms : we choose an orthonormal basis ¢;(I'1v7(0)) of

TgM and an orthonormal basis €;(I1y(0)) of TgMH. We deduce a basis X(I) of our fiber of

differential forms. 1f we change of orthonormal basis ¢;(I'1¥(0)), the change of basis X(1) is seen

only by terms which depend only on I'TY(0). If ¢ =X F| X, let us define
(2.17) Bgo = Z (BFp X(I)

This definition is coherent from the remark before. If d(y(0), M8) is big, there is no operation,
and we stick in a smooth way these two operations, but it does not give difficultics, because when

€ tends to 0, only the contribution of the small tubular neighborhood of M& appears.
We have still the basical property :

(2.18) Bg(dho) = dh (B0)

Let us now deﬁpé the limit model, conformally to [J.Ly] and [T},

The probability space is defined as follow:
-)Over M& we take the bundle of bridge in TM which gocs from ¢ to dg ¢, ¢ being in ('l‘MI:’»)I L
Over ME, we put the Riemannian measure and over the set of path which go from ¢ to dgc in time

1, we put the measure exp(- il(I-dg)cIIz) de® Py dgc is the law of the Brownian bridge in T, M (
and not in (Tng)H) which go to ¢ to dgc. Let us recall that the Brownian bridge which go 1o ¢ 10
dgc has the same law as the process (1-s)c + s dg ¢ + Y 1, is a flat Brownian bridge starting
from 0 and coming back to 0 in T,M in time 1. The introduction of this model is motivated by
[Big).

As tangent space of the flat Brownian bridge 'yg flap We take the space H of finite encrgy
element h of T, M such that h(0)=h(1)=0 with the Hilbert norm I[O l]IlI1'(s)II2x ds. Over the set of

¢, we take the Hilbert norm I|c||2. The fact we use the Hilbert norm llcl12 instead ol the norm
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vector fickd X(O,0(i)). Over an clement of that probubility limit space, we get as fiber A a
AAAfermionie: 1The last exterior algebra is the fermionic Fock space associated to the flat

Brownian bridge starting from O in T M.

As Limit operator, we choose @

dx.g + (I(.‘g-l- (Iw‘g = d.\',g + 112'||g = dl.g =Y A(U)e(i) A I"le(i) + 2 A eli)a re(i) +
(2.19)

2 Am)(costns de(Ha rcox(ns) e(j) + 2 A(n) (sin(ns) e(j)) A rsin(ns) ¢()

In the first sum, we take derivative over an orthonormal basis e(i) of 'I'XMB ( x betongs to MB),
In the second sum, we take derivative over an orthonormal basis ¢(i) of ('I"\.ME'-JI'l in the limit

Gausstan space. Inthe third sum, we take the classical Arar-Shigekawa complex corresponding to

the A(n) and o the Brownian bridge in the full tingent spuce ol M in x starting from 0 and coming
back in (Hin time 1. d.dede, anticonumute as it can be seen in normal coordinaes. 1 we work in

. L. . * . .
normial coordinates, we can compute the adjoint ol dy. d -y g 18 given

HY sk g S LNt . - ' -~
iy tder diee= = AW0) Ligg) Fagiy~ A2 i)l ey -2 A icostns) e) M eostns) e(j)

(2.20)

5 A(")isin(ns)u(j)rsin(ns)e(j)'A(()’E ic(i)“’" (I-dgyc,(I-dg)e(i)> -2 IIUJI <cos{ns) c(j),Syﬂm,s>

- 2 A(n) <sin(ns) C(-i)'67f1;|1,s>

It is the same type of formulas as in (.15 ], but the normal tha Brownian bridge is more
complicuted here, hecause we choose 100 ¢ inrandom. Hwe put e and yp, together, we have an

can be undersiood in the formalism of Aral [Ar ], [Ara],
H

. N TaiTe) A/ T L
absiract Wiener spuce, and (Ic'g + t'«..g

[Ar M We can choose namely the ¢i) such that icis.an onthonormal basis for (FME)™ for the

norm el Lerus recall naunety that over MB, i1 we write dg as a collection ol matrices of
rotation ol angle 8, we get i collection of orthogonal subbundles which wre parratlel over each
component of MS, Maodulo this (.I;"'C + (l:i;m appuers as an Arat operator with an auxiliary operator
in ¢ for the Gaussiun space is spanned by ¢ and the Tt Brownian bridge v. As Fermionic Fock
spuce, we choose A LA AY with the norm e 12 and as Bosonic Fock space, the space .8
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associated to the limir Gaussian probability meisure exp(-lI(1-dg)ell= )® dP] x+ Vhe auxiliary

operator in ¢ is the operator which allows us 1o pass from the both Hilbert streture in c.

3 ¥ 2 2
Morcover r.lm_11 d km_g+ d*m' ) clm_g = Am'g = NB(A') + NF(A') and dc,gd* e, d* d ¢ L=

l Al

Ac'g = NB(cz) + NF(CQ). The number operitor for boson NB(A?-) is associated to the operator

, : . 9 . o) .
which sends sin(ns) associntes A(n)= sin(ns Jand cos(ns } to A=(n) cos(ns Jas well as the fermion

nwnber operator NF(Az). The bosonic number operatore NB(cz) and the fermionic number

. - C e
operators Ng(c=) are related to the change of Hilbert structure in (1 me)H,

Therclore, oy ot d” g has o symmetric extension. Namely A . E can be diagonalised,

because it is i sum of bosonic number operators and of fermionic operators ( See [Ara]). Since the

A(n) don't depend on x and since the dingonalisation of dg is parrallel over ME, we deduce that the

set of eigenveciors associited o different cigenvalues of Ac’jund ol Aw‘]constituc a countable set of
T 4 .t ] » o ) shyiee e RSSTGYILS ' #
finite dimenstonal bunclle over ME, which are preserved by d‘\.‘g + X, dc,g d. and d,

* *
4 o, un this because these operators are anticonunuting (¢ 1] and Lo ). d\ ¢ +d g Appears

exactly over cach bundle as the de Rham operators tensorised by this bundle. We know that the

spectrum ul‘(l)\ u +d7y p 18 discrete over cach ol this Tinite dimensional bundle, as well as d,. gt

* . . i . A .
d e and o, (Iw‘g. Maorcover the action ol dc‘sofd .y and of d,,g+d .8 overcach of

these bundles is the syuare root of the uction modulo the sign ol A 2 and o!'{.\wg over ciach of
this bundie. This allows us by resiricting these bundles 1o dingonalise d, b 1 u and o show it

has o sell-adjomt exwension,
We can look at-the action of h over the limit model. b keeps ME because g and h commulte.

Moreover dh lifts over ME 1o o natural action over I'™M, which preserves TMB and ('I‘Mg)H. Letus

renxuk that
2.21) ILdh(I-dg)ct® = 1l (I-dg)dhe)li?

such that the action of dh preserves the aaxiliry opermor which appears in A, and 8 g(sincc
. Yo 3

the action ol dh preserves the metric of the tingent space of Y This shows us that dheconmute
1
with all the Timit operators given before,
THEOREM I 1 if A()> In|P

gh =hyg

11



(2.22) Trexpt th) h) <ee
o

(223) Ind (d) , +d* )0 = x(MEAMD)

Prool : The prool of the existence of the trace lollows direedly the line of [J.Lo}, because h keeps
the Wick procduct and the fermionic Fock space.let = be i such o subbundle for A, gand Ag
endowed with a given combination of Wick product in sin(ns,) cos(ns,) and of exterior algebra in

cos(ns) and sin(ns). K denotes the combination ol singsjcoshsywhich appear in Zp ©it is possible

there is more one than one of cach sin(ns) which appears there. 1Kl is the cardinal of K. The

dimension ol such subbundle is bounded by C'KI+ l,un(i the action of exp(-ths | g) over ciach
. b

subbundle is diagona] and bounded by Cexp(-t‘ZKA(n)z). The action of A, over A n Zy s given

\ - 3 . : :
by the Lichnerowicz formula AI\:=-I/’_’:§M + Cp+ Ci. € is the action of the Lichnerowicz
formula for the non-tensorised de Rham operator, and Cyg comes from the action of the

Lichnerowicz farmula over the auxiliary bundle, which appears as a combination of at most K]

products ol 3 types together: exterior products, syminetric tensor products and tensors products.

We huve a probabilistic répresentation of the trace of the heat seimi-group associated 10 Ay, since
over ¢iach product we take the connection product. Let T o be the parrallel ransport over .,
which preserves the product, and le

(2.24) dUg = =12 Ug g g 7! (C+ Cp)

We get the Tollowing represeniation ol [Big[[LWI, [Lea Ll les] and more precisely [Big] of the

trace ol the heal semi-group
(2.25) Tresp-tay)h = JMg p (x.hx) El.x.hx( Uy 1y K"l dh) )dx

where py(x.y) is the heat-kernel associated w the Brownian motion over Mb and Epx h(x) the
expectation for the Brownian bridge which goes Irom h(x) 1o x in time L In particular, we have a

bound of the trace under the expectation in € CUFDIRI My exp(-iAm? < ¥ cKI+Y

expltnl) = C Mg CHD exp n2P) < oo,

‘This shows that the First part o thetheorem is true,
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Let us shows now that the sceond part of the theorem is wue, The operators do, 4,0 d g dy g
] ’ 1

. . . . * .
anticommute or commute with h. If a section belongs 10 the kernel of d) gt O g 1S therefore by

using Arai's computation [Ar ], [Arg] o form in x which does not depend from Yilat and ¢, almost

surely. This shows us that

(2.26) Indyy (d) 4 + 07} ) = %, (M)

We apply the clussical Lci‘hctz theorem and we find
(2.27) %, (ME) = x(M& AM™)

since h is un isomerry of M3 because ¢ und h commure,
Let us now mativate the introduction of these operators by the following limit theorem which is

analoguous to the limit theorem ol [J.L» |. But before this, we need to understund what we need by

a limitin law, because our sitwation is a linde bit more camplicated than the sitwation ¢ncoutered in

[1.La] . Letus recall that the Tiber is isomorphic 1o AT M) A A (H) Butif xis close 1o the tixed
point set, A(T ) A A (F) Is isomorphic by means of the parrallel trunsport: between x and [Ix 10
- el T .t TR . ; . ty m a1 " i ;g
A(Tﬂx } A /\] Ix(H)‘ We identify the tiber closely to ME with A( Ix) A~ AX(H) and tar o Mb 1o
the original fiber. We put as Tlithert space siructure the space of L= section over A(T4) A

) . . C . 2
Aﬂx“ [) and the space of L= section over A(T ) A A () far from our neighborhood. An L=

section of Torm over the twisted loop space appears theretfore as @ L= random variable from the
twisted loop space imo this fixed Hilbert space. It has sense in particular to speak ol the limit in law

of such random variable into this fixed Fhlbert space which justilies our conjecture.

THEOREM 1 2 :For any fived t.'h.‘ln.'(fm of AB' we have Gndaw if Ap< ]
(2.29) Be g = 0

(2.30) B, dho —» dh 0

(231) [+ g 0 I Beo = () + ")y b o,

2]



(232) 8¢, , dh Bes =4, dhoy

1,8

Proof: Let us begin to show first thmt Bgo — o) in law for any element of Ag. This anses from the
Bismut's computation ol |Biy] : any finite combination of (f(y(1)) - f(1y(0)))/e tends in law 10
<df(y(0)).yﬂm(l) +()-t)e +1dg e> for the given limit probability Gaussian measure. The second

affirmation comes from the fact that dho belongs to A gand that Be dh 6 = dh Beo. Let us remark
that we don't need the full Bismut procedure in order 1o see that, because we take only a finite
number ol terms in ({(y()-f{ 1y(0))/e. Computations similar to fLe2] can be used.

* . *
Let us show now that (d +d E.t‘.g) Beo tends in fuw to (dl,g +d ],g) o) ( We citn remove

18
the term in h, this from (2.30)). We work in normal coordinates in [1y(0). Let us begin by the

. . *& . “ern . . . B
divergence part ind ¢ | g IF we take an element of lny, n > 0, of the distnguished basts, it 1s

multiplicd by ¢, this from the rescaling of the metric. We get

diveX(n(i)) = L'/L"?'JI“‘] | < TSL'OS(IIH) C(I).BY(S) >4 /2 E2/£2 Il()vll < SEX(n'c(i))(s).a”{(S) >+
(2.3

counlterierms,

The counterterms disippear when € tends to zero, and in law it remains at the end J[() 1< cos(ns)

c(i).Syﬂul(s) > which iy exacily the divergent term which appears in d*w,g. In the limit
contribution, there.is no wrm in l].()-|] <cos(ns) e(i), (1-dgleds > = 0. The case n < () is similar,
For the moment, -wc don’t see the diference with the computation of {3.L5].

The ditterence appears namely when we want to treat the contribution in the divergent part of
TYO, because there is in this case two distinet behaviour,

Let us consider tirst the case of X(t(y(0)),[1v(0)) e(([1y(0)) where e(i) is orthogonal 1o TM5.

In this case, the metric is rescaled, and we have 10 multiply near M8 our vector by ¢ We get

edivX(0,e(i)) = edive(y(0),11y(0)) ¢ )(TTy(0)) + e/t‘2 IIU.II <t ( -T(y(0),y(0))e (i I'Ty(0)) +
(2.34)

*

’tl'l dg T(y(0) . IIy(0Ne(iXTTY0)) ).07(s) > + £2/e2 I[(J,I] <SEX(U,c(i))'57(0)> +eounterterm

In this case, the limit in law of a finite Tamily of divergence of this kind is
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<(-1+dg)e(iXy(0)).(-1+dg)e > which gives the divergence part of the term in d/'(_.,g in the limit
model.

If we work now over TMB, we have the same type of behaviour, but this goes in law to div e(i),

2

because T has a behaviour in I + € and because ¢(i)(I'y(0)) belongs to the kernel of -1+dg. This

. ' N . K .
shows us in local coordinates that the divergence partofd ' . g B0 converges to the divergence

partol'd™y ,a). and this without the Bismut's procedure, because in this case we have only finite

expression. (In lact, it is not so simple, because in limit theorem in law, we take test functionul
which ar¢ only continuous, and it is not easy 10 regularised continuous test functions in the non
compact case.[n order 1o be rigorous, we cunnot avoid to use¢ the Bismut's procedure. See later for
this).

Let us now study the behaviour of de (Beo. The dilficulty is now thut we have infinite
expressions. 1f n > (), we have to study the behaviour of < d(I'('y(t))-—‘f(dy(O)))/e, eX(n,e(1))> which
is equals 10 <dfiy(),X(ne(D))t)> because X(n,e(i))(0) = 0. This 1ends 10 <d1’(y(0)),f[(),[]cos(w)ds
e(i) >, which is exuactly the derivative of <dt'(y(0)),fl()'[|6Yﬂm(s) > in the direction cosns e(i) of the
Cameron-Murtin space H of the Brownian bridge. The case n<0 is similar. If we take a derivative
in the direction of (TM&), TTY(0) does not change asymptotically in € under the ;lCli;)n of such
vector field. The vector field is rescaled by € itsell, because we rescale the metric in this direction.
So we [ind that in law <d(f(y(1))) - T(ITy(0))).X(0,e(1))> tends 1o <dl(y(0)) 1(-1+dg)e(i)> which is

exictly the derivative of <dity(o),(- 1+dg)e> in the direction e(i). Let us now study the behaviour

in law of the derivatives in the direction of TME. We get if ¢(i) belongs 10 TME

<d(FCY() =~ YO e, X(OLe() > = < d(y() - H7(0)),X(0,e() >/e +
(2.35)

<d(f(y(0) - f(T1y(0)),X(0.e(i))>/e

. . . . 2
Since we work in normal coordinates, and since Tl(“{(O).I'Iy(U)) = |+ ¢~ when € tends to (3, the
derivative of the second term disappears almost completely when £ goces to (0, because

d(y(0),IMy(0)) = € when € goes 1o 0 ¢ it remains at the limit <7 )dl'(}'(o)). ¢ >. Letus treat the {irsi

e(
term. But it is in the Stratonovitch sense :

<dfjo 7 <dfty(5).dv(s)>, X e = [jg) <My g Y dfCreD s} e

(2.36)
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+Jj0.4)< AV 1T (YOLTTYO) (X0 + 7,7 digt (Y(O),ITY(O)) e((TTy(0))>7e

The second term tends to 0 because 11'1 dg=1+ e in law and at the end we see that

<d(f(y(1) - f([1y(0)), X(0ei)>/ € — j[(),ﬂ < Fe(i)df(ﬂY(O)).Syﬂm'S + (-1+dg)cds > +
(2.37)

< re(l)(lf(l_[y(())),c>

Let us remark that the lot of simplification which appears because we use local normal

. . 2 . .
coordinates over [1y(0) ( for instance T, = | + €7 ) appears in general not in each pant of the

1

operator but only globaly. For instance, the derivatives of the distinguished vector ficlds cancel

when € ends to 0 because we use that normal coordinate system in I'y(0) © without this the
computation should be more complicated. The difTicully we have 10 overcome is that we get in lact
an infinite sum. In order 1o solve that, we will use the Bismut's procedure as given in [Bis|,[Biy]
and not in [Lej |, because in this case some smoothness assumption is necessary  about the

auxiliary functional of the Brownian bridge which is considered. Let us consider the collection of

<dfi(y(t)).1[ Il(}.t] cos(ns) ds e()) >, <d|-i(y(1)),rT ]l 0.1 sin(ns) ds e(j)>. Itis a random clement (DE
of LZ(N). We have to show that for all bounded continuous functionals I from L2(N) into i, the

expectation ol F(d,) tends to the expectation of F(M). We use the Bismut's fact that :

(2.38) W, 'g ( Fk(})c(y))) = n( F(h(x.eyl.lm + €( (1-s)c + dgsc) + € vz(ey,c.x) )) - 0(82)
In order 10 pet \'2, we look the equation

(2.39) dug = ¥ Xjlug) (edy g1, +ldgle ds +ev2ds)

where the X are the canonical vector lields over the frame bundle over M. We suppose that ug
sturt from [Tu(o) = ¥(0) + e¢, ¥(0) belonging to ME und ¢ being in TME, this expression being

written in a wbular neighborheod. We choose v2 such thi y(1) = Fluy is cqual 10 ¥(0) + edge. We

start from ¥(0) + ec, because the heat kernel pe2(x,gx) does not tend to zero when x has a
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behaviour in y(0)+e¢ (See [Big| for more details). The key fact is the following : generally for a

2

given g, we cannot find a v such that y(1) = ¥(0) + edge, but it is asymptotically true, and this

uniquely (See [Ley| for a non-geometrical approach). This explains the error term in (2.38 )as well

it is explained by the contribution of the Jacobian which appears in the implicit tunction theorem

which tends to 1 when € goes to 0. The last difficulty it remains 10 explain is that there is T, which

is not a continuous functional of y which appears. But it is overcomed because T, in (2.39) appeurs
(It works too if we take a finite number of stochastic integrals with different integrands).

This type of argument works too ( but in a simpler way, because there is in this case a finite

sum) for the non divergent part of d* BEO. In conclusion, we have shown that o law (dE r g+

N8
* il *
dgr,g) BeOtendsto (d) o +d7y ) o).

2

s chow . y 2 - anverges in L
Let us show now that (de,r,g +d . )7 BeO = Ag o O converges in law 10 4y, O).

R Y g )

d BEO‘. It is o finite sum

a)Let us begin by the simplest contribution, that means d Er,L

E!r)g
which appeirs. Moreover since two interior product anticommute and since there the derivatives in
the limit probability space over ¥(0) in ME commuie, the limit in law of this expression is nothing

* *

else than d” ,d" 4 O).
b)Let us look the contribution of de,r,g dE,r,g Bgo. Thereis a doubly infinite sum in this
expression. Since we look in normal coordinates, we see that the apparently most difficult part to
handle in this e¢xpression is zn;to.m;t{),i,j AM)A(n)<d<dBFeX(n,e(i})>eX(m,c()))>

X(m,e(j))A X(ne(i)) A X(I1).The contribution with n=m, e(i) = €(j) cancels. We have only 1o

consider the family of A(m)A(n) 82( <d<d B F,X(ne())>X(m,e(j))> —
<Cl<dBEFI,X(n1,e(j)>,X(!1.e(i))>) which belongs to L2(N). The only difliculty is when we derive

twice the same (f(y(t(i)))-f(T1y(0)))/e : in the other case, there is a amtomatical cancellation, We use
another time the Bismut's procedure, but we have to use the formula (2.7). An infinite number of
stochastics integrals with different integrands appears . We overcome this difficulty by writing X,
= T, Hg and by integrating by partin (2.7). The boring term are of the type TIJIU.IIKSH'S(}S where

a fixed K (independent of H,) appears. K is a Stratonovitch integral in the curvature tensor and

T, © we can apply the Bismut's procedure to K, which allows to conclude. Let us remark that the

fuct that the second derivative of FO( - F(T1Y(0))/e along eX(n,e(i)) and €X(m,e(j)) cancels at the

limit describes the fact that the derivative of <d(Y(0) vy, + (1-0) ¢ +tdg ¢> is deterministic al
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the limit in the direction of the tangent space of the Brownian bridge.

In this case, the computation was easier because we divide each ((y(1(1)))-f(I1y(0)) by € and we
multiply each X(n.e(i)) by €. This simplification does not appear when we hive 10 multiply only
one X(n,e(i)) by € We look the convergence in law of the seriesin L2(N) A(n)e{
<d<dBFX(0,e()p.X(n,e()))> - <d<dBgF.X(n.e(j))>X(0,e(i))>} where ¢(i) belongs to
TME nz 0, or ¢(j) belonging to (TMg)H,\%%iy the contribution of the second derivative of the
same (f(y(u(i))-f(ITy(0)))/e plays a role. We have forn =0

<d<d(f(y(1(i)) - £(y(0))),X(0,e(i))>X(n,e(§))> A(n) =
(2.40)

<d<df(y(1). X (0,e()0)>,X(n.e()))> An)

and

<d<d(F(y(1(i)) - FTy0)), X (n,e (N> X(O,e(i))> A(n) =
(241)

<<df(y(1(1)),. X (n,e()>. X (O ei))> A(n)

We have to take the derivative I"X(() c(i))X(n,e(j))(l) and rX(n t:(_i))X((J,c:(i))(l). These two

sequences tend separetely in law to (), because we work in the normal coordinate system. Let us
repeat that this simplification appears separitely because we use normal coordinates over each
contributor term of the operator appears globally over the operator, which is intrinsically defined. It

remains only to study the contribution of the sequence :

(2.42) A(n.) (<f"21‘('y(t)). X0,e())(),X(n,e())> - <{“2I'(y(l)),x(n,c(j))(1),X((),c(i))(l)>)

. . Y . . .
which tends in L=(l) in law 10 0 because we work in normal coordinates. We have shown that

{ Bro tends in law to d |

derg ey

x,zdx,20)

~C)We consider the case of de.r,gd e.r,gBuG- Su'u,u d r,r,g“ec is o fintte sunmy, tiit werm can be

treated as the conwribution of dg (Beo.The first difference is thiat we have 10 tike derivatve of the
parrallel transport, and therefore 1o use (2.7). We have too to tuke derivative of the divergence part.
The only difficulty in this case is (o take the derivative of 1/e I[() l|<‘[§['l'(ll)(s),5¥(s)>. Itis in fact

100 a Stritonoviteh integral, We have then if mz()
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<l/e II()J ,<ISH’(n)(s),dy(s)>,£X(m,c(i))> = Il 0'[l<'tsH'(n)(s).tsl'l‘(m)(s)> ds
(2.43)

o <t f0s) Tt RE@YX ()W) T,H (0)(5),01(s)>

which tends in law to I[O,l | <H'(n)(s),H'(m)(s)> ds, therefore the derivative of the divergence

I[O,l [<H'(n)().8Yp,(s) > into the other direction H(m)(s). The fact that the second term tends in

law to zero does not come from the fact we use normuil coordinates, but we have to use this for the

derivatives of the others parts of the divergence.

d)The most complicated term to treat is d e,r.gde.r,gBEC because the sum in de,r,g B.ois

infinite,umong which is the term :

Z0),i A2 g2 <d<dBgFr.X(ne(p. X(nelp - 2% A2 <dBGF; X(ne(i)b
(2.44)

divX{n,e(i))

. - Lo . 2
The first term does not put any problem, because cach term of the seriesis in L< bounded by

CA(n)2/n? and since 2p < 1. For the second, the most complicated temm is

(2.45) D(e) = l/Ezn#).c(i)}\(n)2<df(‘y(l)),T!H(n)(l) efi) > J[(),1]<TS|'I'(n)(s)c(i),f)"y(s)>

The deterministic serie A(n)2 H, (1) is in Lz(N) because 4p < 1, Let L])T(S) =3 A(n)2 H{n)(1)

H'(n)(s). ll’_is' ;u)s‘élcment deterministic of L?-l(},l], which does not depend on €. We recognise in
(2.45)

- (2.46) D)= /e X Cdf(Y([))'Ttl(_O.l] < rs¢‘l(s)c(i).5*{(s)>>

Ty
Since ¢',(s) is deterministic, this converges in law 100 by <dl'(y(0))J[0'll<ﬂ)\(s)c(i).5ﬂs)>>. Since

¢',(s) is deterministic, this converges in luw 100 X <df(y(0),fw,] |<¢‘[(s),6}'ﬂm(s)> which is the

divergent part of the operator associated to the auxiliary operator which to H'(n) associates A(n)?-
H'(n) over the flat Brownian bridge.

Remark : We separate in order 10 give a nice exposure of the convergence in law of different part of
the considered expression, although it is not completely correct. But the convergence in law for all
the expression together is ensured.

Remark: The theorem 11.2 justifies the name of limit model, although we omit to speak ahout the
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difficulties of this limit procedure: it is perhaps possible to define another sei of functionals such
that the Bismut dilatation gives another limit operator.
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