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Abstract

We consider families of generalized Dirac operators Dt with con­
stant principal symbol and constant essential spectrum such that the
endpoints are gauge equivalent, Le. D1 =W* DoW. The spectral flow
in any gap in the essential spectrum we express as the Fredholm index
of 1 + (W - l)P where P is the spectral projection on the interval
(d, 00) with respect to Da and d is in the gap. We reduce the com­
putation of this index to the Atiyah-Singer index theorem for elliptic
pseudodifferential operators. We find an invariant of the lüemannian
geometry for odd dimensional spin manifolds estimating the length of
gaps in the spectrum of the Dira.c operator.
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1 Introduction

If Dt , t E [0,1], is a family of selfadjoint operators, d E res Do n res D1 and
d rt ue35(Dt ), Vt E [0,1], then the spectral flow sl(Dt ) at d is defined as the
number of families of eigenvalues A(t) of Dt crossing d from above minus the
number of families of eigenvalues crossing d from below.

In the famous paper [1] the spectral flow of a closed loop of Dirac operators
Dt on a compact manifold M at any d has been expressed as the index of
a certain Dirac operator over M X SI. The '7-invariant and K-theoretic
arguments have been employed there. These techniques are weH suited to
compact manifolds. .

In the present paper we propose a new more functional analytie approach
to the spectral flow. It has the advantage that it allows to compute the
spectral flow in the presence of essential spectrum, Le. for families oI Dirac
operators on noncompact manifolds. The price we have to pay is the restric­
tioo to rat};1er special families which we are going to describe now.

Let D be a generalized Dirac operator 00 a complete Riemannian manifold
M associated to a Clifford bundle E ~ M and W E r(M, U(E)) be a gauge
transformation satisfying

Assumption 1 1. W -1 E C~(M,End(E))

fl. R:= W· DW - D is 01 zero order.

Let us consider the family Dt := D + tR. Then ue",,(Dt ) = ue",,(D), Vt E R,
aod if d E res(D) then the spectral flow of {Dtl:=o at d is expressed as the
Fredholm index of 1 + (W - 1)P where P := ED[d, 00) and ED(.) denotes
the family of spectral projections of D. The operator 1 + (W - 1)P ean
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be localized near the diagonal without changing tbe index. Then it will be
approximated by an elliptic pseudodifferential operator with constant symbol
at infinity [6]. The index computation of such operators can be reduced to
an index problem on a compact manifold and hence to tbe Atiyah-Singer
index theorem along tbe lines of [6], §4.1. If D is the twist of the usual Dirac
operator on a Riemannian spin manifold M with some Hermitian vector
bundle V aod W comes from a gauge transformation of V then we end up
with the formula

ind(l +(W - l)P) = (-l)kCS(W)A(M)[M] (1)

where dimM = n = 2k+l is odd, CS(W) E H:!d(M, Q) is the Chern-Simons
dass repesented by the compactly supported form

CS(W) .- 2~Tr W·\7W l exp C(t ;11" t
2
)W.\7WW.\7W) dt (2)

r I

CS(W)2T-I = 2(2~)r (;;)! Tr([W·\7Wj2r-I), (3)

A(M) is the A-genus and [M] is the fundamental cycle of M. If the dimension
of M is even then

ind(1 + (W - l)P) = 0.

Because of (1) the spectral flow

s/{Dt } = ind(l + (W - l)P)

(4)

(5)

does not depend on tbe gap containing d.
There are many odd-dimensional examples where (1) does not vanish.

In this case one has in fact proven the completeness of (D, R, [0, 1]) in the
notation of (8). Namely for every A E R there exists a t E [0,1] such that
A E a(D + tR).

Another application is very similar to the ideas of [17]. Let WM E

H~(M, Q) be the dual of the fundamental cycle. We define the Rieman·
nian invariant for odd-dimensional spin manifolds M

G(M)2:= inf sup tr(W*DvW - Dv?
M

(6)

where the infimum is taken over all trivial Hermitian vector bundles with the
Hat connection V and gauge transformations W of V satisfying Assumption
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1 and CS(W) = a.JM with some c t= O. Here D is the Dirac operator
associated to the spinor bundle S(M) and Dv is associated to the tensor
produet S(M) ~ V. We find out that G(M) estimates the length of gaps in
the speetrum of D from above.

On one hand if G(M) = 0 then we have u(D) = R. By geometrie
arguments we ean show that G( M) = 0 if M is simply connected and has
nonpositive seetional eurvature. Hence in this case there is no gap in the
spectrum of the Dirac operator.

On the other hand, if there is a gap of length 1 in u(D) then G(M) ~ 1.
In particular, if M has nonnegative scalar curvature s then

G(M? ~ nso
n-l

(7)

where n := dim M is odd and So = infrnEM s(m). Here we employ a lower
bound of the spectrum of D'J obtained by the method of [13]. On compact
manifolds there holds G(M) > 0 since the spectrum of D is pure point and
has, of course, gaps. It seems interesting to study the invariant G(M) in
more detail.

For completeness we will discuss the even-dimensional case simultane­
ously.

The author wishes to thank T. Hirschmann for his interest in this work
and useful hints. A major part of this paper was written while the author
was'Forschungsstudent' at the Ernst-Moritz-Arndt-Universi tät Greifswald.

2 Generalized Dirac operators

Let (M, g) be a complete Riemannian manifold and E -+ M be a Clifford
bundle, i.e. E is a Hermitian vector bundle together with a compatible
connection \lE and a Clifford multiplieation T M ~ E -+ E such that

1. XX cP = -IX1 2
</> Vm E M, X E TmM, </> E Ern

2. < X<jJ,1/J >= - < 4>, X1j; > \/m E M, X E TmM, 1/J, <jJ E Ern

3. V'~(Y7P) = (V'xY)1/J + Y\7~1/J \IX, Y E r(M,TM),1jJ E r(M, E)



3 PERTURBATION THEORY 5

(11)

where V is the Levi-Civita conneetion. The Dirae operator D : f(M, E) ~
f(M, E) is the first order elliptie differential operator given by the eomposi­
tion

f(M, E) ~ f(M, T*M @ E) ~ f(M, TM ® E) ~ f(M, E) (8)

where 9 is the identifieation T M ~ T* M by the Riemanniao metrie aod the
last map is indueed by the Clifford multiplieatioo. Standard examples are
d +6 associated to E := A*T*M aod the Dirac operator associated to the
spinor bundle on a Riemannian spin manifold. If E is a Clifford bundle and
V ~ M a Hermitian veetor bundle with compatible eonneetion V7v then we
ean build a new Clifford bundle E@ V equiped with the produet eonneetion.
The Clifford multiplieation is extended trivially to the seeond factor.

Let us eonsider the Hilbert space L'J(M, E). The Dirac operator D is
essentially selfadjoint on the domain dom D = C~(M, E), Le. D = D* is
the unique selfadjoint extension. By Hl(M, E) we denote the Sobolev space
dom jj with the norm 111/;ll~1 = 111/;11 2 + IID1'11 2

•

3 Perturbation theory

Let R E C~(M, End(E)) be a selfadjoint bundle endomorphism of E. We
eonsider the family D t = D + tR, t E R. Then Dt is essentially selfadjoint
on dom Dt = C~(M, E). By the decomposition principle [11], [9] we have
O'eu(Dd = O'eu(D), Vt E R.

Let us fix d E res( D t ) and let P(t) := E D t [d, 00) be the spectral projection
of D t on the interval [d, 00).

Lemma 3.1 For 4J E dom Dt there holds

P(t)4J - -24> + lim -2
1 18

(Dt - d + 7,)..)-l4>d).. (9)
5-00 11" -8

_ t + ~ foo (Dt _ d)[(Dt - d)2 + )..2]-14>dA. (10)
2 7r Ja

The integrals are strongly convergent.

Proof: The assertion is a consequence of the ideotity

O(x) = ~ + lim ~18
(x + tA)-ldA ifx ~ 0

2 8-co 27r -8
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and of the spectral theorem. 0

6

Lemma 3.2 1. Let d E res(Dt)nres(D,,). Then P(t) - P(s) is compact.

. 2. Ij d E ntE[a,bjres(Dt ) then the junction t E [a, b] --+ P(t) is operntor
norm continuous.

Proof: We have

1 100

P(t) - P(s) = 21r -00 [(Dt - d +1.\)-1 - (D. - d + t.\)-I] dA (12)

where the integral converges in the operator norm. In fact by the resolvent
identity

(Dt - d+1A)-I- (D,,- d+t.\)-l = (Dt -d+1..\)-I(S-t)R(D" - d+I.\)-I. (13)

Hence the norm of the integrand is bounded by CIs - t111RII(1 + 1..\1)-2.
Moreover, by Rellich's theorem the cornposition

(14)

is compact. This proves the first assertion. The second follows from the
estimate

o
IIP(t) - P(s)1I ~ Gis - tl· (15)

Let d E res(D) and P := P(O). If M is compact then P is a pseudodif­
ferential operator of zero order. Hence it can be localized near the diagonal
rnodulo compact operators. The next proposition shows that this remains
true in sorne sense also for complete M. Let K 1 c K c M be compact
subsets such that K contains a neighbourhood of K 1 and x, Xl E COO(M),
supp(xd C K 1 , supp(X) C M \ K.

Lemma 3.3 The composition XIPX is compact.

Proof: Using XIX = 0, the second representation of P in Lemma 3.1 and
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we find

7

XtPX = ~ (J 1, +J1,) Xt(D - d)e-t[(D-d)'+~')XdtdA (17)

where

11 := {(t,.\)E[l,oo)x[O,oo)} (18)

1'J := {(t,.\)E [O,l]x [O,oo)}. (19)

There are constants Cl, C3 < 00, C2, Ci > 0 such that

Ilx1(D - d)e-t[(D-d):l+-\:llXII ~ C1 e-C:lt[I+-\:l1 V(t,.\) E 11 (20)

Ilx1(D - d)e-t[(D-d):l+-\:l]xlI ~ C3e-t-\e-c.a/t V(t, A) E 12 • (21)

The last esimate is an off-diagonal estimate obtained by the finite propagation
speed method of [7]. Thus (17) converges with respect to the operator norm.
Since the heat operator is smoothing and Xl restricts to a compact set, the
integrand is compact by Rellich's theorem. This proves the Lemma. D.

Let X2 E C~ (M) such that SUPPX'J C K. Then using a parametrix
construction one can find a pseudodifferential operator (in the loeal sense) A
approximating X2PX modulo compact operators. For the principal symbol
of A we get O"A(X,e) = X2(X)p(X,e)X(x) where p(x,e) is the projection onto
the positive spectral subspace of the Clifford multiplieation with 1e. Note
that it does not depend on d.

4 Relative index of projections

Lemma 3.2 indicates when the difference P(t) - P(s) of projections is com­
pact. This is exaetly the situation where one cau define the relative index
[2],[16].

Let P, Q be projections on a Hilbert space H such that P - Q is compact.
We define the relative index of P and Q by

I(P, Q) := indlmQ_ImPPQ. (22)

In order to verify that PQ is Fredholm (from Im Q to Im P) we give
parametrices. Modulo compact operators

PQQP = PQP "" PPP = P

QPPQ = QPQ "" QQQ = Q.
(23)

(24)



4 RELATNE INDEX OF PROJECTIONS 8

Lemma 4.1 Let Q(t) be a norm continuous path 0/ projections such that
P - Q(t) is compact for t E [0,1]. Then I(P, Q(O» = I(P, Q(1».

Proof: Note that the domain of PQ(t) depends on t. Thus the argument is
not standard.

By [4], 4.3.3, there is a norm continuous family U( t) of unitaries such
that

Then

U·(t)Q(t)U(t) = Q(O). (25)

I(P, Q(t» = indlmU(t)Q(O)_ImPPU(t)Q(O)U(ty = indlmQ(O)_ImPPU(t)Q(O).
(26)

But now t ~ PU(t)Q(O) is a norm continuous family of Fredholm operators
between fixed subspaces of H. Hence I(P, Q(t» does not depend on t. This
proves the Lemma. 0

Let R be a finite projection, dirn R = n, QR = O.

Lemma 4.2 I(P, Q +R) = I(P, Q) + n

Proof: If RP = 0 then the assertion is obvious. For the general case we use
the double HEB H and extend R, Q, P by 0 on the second factor. Let

R(t) - (COS(t) Sin(t)) (R 0) (COS(t) -Sin(t») (27)
- -sin(t) cos(t) 0 0 sin(t) cos(t) .

Then QR(t) = 0, PR(1r/2) = 0 and I(P, Q + R(O) = I(P, Q + R(1r/2» =
I(P, Q) +n by Lemma 4.1. 0

Lemma 4.3 Let P, Q be related by an unitary W,i.e P = W·QW. Then
I(P, Q) = ind(1 + (W - 1)Q).

Proof: Note that [Q, W] = W(P - Q) is compact. Hence

I(P, Q) - indlmQ_ImPPQ (28)

- indlmQ_ImW-QW·QWQ

- indlmQ_ImQQWQ

- ind(1 - Q + QWQ)

= ind(1 + (W - 1)Q + [Q, W]Q)

= ind(1 + (W - 1)Q)

0
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5 Spectral flow

9

Let us return to families of Dirac operators. Let W be a gauge transformation
satisfying Assumption 1, R := W'" DW - D and D t := D + tR. Then D t

satisfies the assumptions made in section 3. We are going to introduce the
spectral flow of {Dtl }=o'

First note that Dt is a holomorphic family of type (A) in the sense of
{15], Le. dom Dt = dom D, Vt E R, and t -+ Dt,p is holomorphic for a11
1/J E dom fJ. Let [a, b] C R \ O"elJlJ(D) be a gap in the essential spectrum and
choose d E {a, b] n res D and e > 0 such that [d - e, d + e] C res D. Then
the eigenvalues Ao(t) E [d - e, d+ e], Cl' E J (J beeing sorne index set), form
holomorphic families wi th Lipschitz constant bounded by 11 RI!. It is easy to
see that J must be finite. Every familiy is defined on a maximal interval
[so, tal. The spectral f1.ow of {Dtl:=o is defined by

sf(Dd = ~{Cl' E JIAa(so) > d, Aa(ta) < d} - ~{Cl' E JIAcA so) < d, Aa(ta) > d}
(29)

where the families are counted according to their multiplicities. The main
result of this section is

Proposition 5.1 sf{Dt } = ind(l + (W - 1)P)

Proof: Choose a finite partition of [0,1]:

o= So < to = SI < t1 ••• = SN < tN = 1 (30)

and di, i = 0, ... , N, such that di E res Dt, Vt E [Si, ti], do = dN = d. Let
P(t) = EDt[di, 00) for t E [Si, ti)' Then by Lemma 3.2 P(t) is continuous on
every interval [Si, ti) and

(31)

where ~+1 is the finite projection onto the eigenspaces according to the
eigenvalues of DlJi+1 between di and di+l' Hence ~+lP(Si+l) = O. Moreover
P(t) - P(1) is compact since there is no essential spectrum in [a, b]. Hence
by Lemma 4.2

l(P(1), P(Si)) = 1(P(1), P(Si+l)) + sign(di+l - dddim ~+1' (32)

Summing up it follows 1(P(1), P(O)) = sf{Dtl. Finally apply Lemma 4.3.
o
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6 Computation of the spectral flow
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Let Dt be as in the last section. We have shown that the spectral flow at d
is given by

sf{Dtl = ind(l + (W - l)P) (33)

where P = ED[d, 00). We want to compute this index along the lines of [6].
Let K l = supp(Wd and K C M be compact containing a neigbourhood of
K l • Choose X E C~(M) such that XIK = 1.

Lemma 6.1 Let A := (W -l)PX +1. Then A- (1 +(W -l)P) is compact
and s/{Dt } = ind A.

Proof: We have

(1 + (W - l)P) - Ä = (W - l)P(l - X). (34)

Since (W - 1)(1 - X) = 0 we can apply Lemma 3.3. 0

A has a pseudodifferential approximation A modulo compa.ct operators
as described at the end of section 3. A is an elliptic operator with constant
symbol at infinity. In [6] the index of such operators was computed.

Theorem 6.2 Let M be a complete Riemannian spin manifold, V be a Her­
mitian vector bundle with compatible connection and Dv be the twisted Dirac
operator on S(M) ® V. Moreover let W be a gauge transformation ofV with
supp(l- W) compact and Dt := (l-t)Dv +tW·Dv W. Choose d E res(Dv )
(i.e. d is in a gap 0/ ueu(Dv )). Then the spectral flow 0/ Dt at d is 0 if
dirn M is even and

s/{Dt } = (_l)kA(M)CS(W)[M] (35)

iJdimM = 2k+l where A(M) is the A-genus, [M] is thefundamental cycle
0/ M and CS(W) E H~d(M, Q) is represented by

CS(W) .- 2~Tr W'V'W l exp CU ;,/2) W'V'WW'V'W) d(36)

r I

CS(W)~-l - 2(2~)r (;;)?r([W·V'WV
r
- 1

). (37)

Proof: Use the formula for the index of A given in [6J. 0
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Let M be a eomplete Riemannian spin manifold with the spinor bundle
S(M) and V := M X C N be the Hat Hermitian veetor bundle. The twisted
Dirae operator Dv is isomorphie to the direet sum of Neopies of the Dirae
operator D associated to S(M). A gauge transformation W E C~(M, U(V))
represents an element [W] E K 1(Co(M)) ~ K~(M). Here K1(Co(M)) is the
K I -group of the algebra of eontinuous funetions vanishing at infinity and
K~(M) is the K-theory with eompaet support. Note that the Chern-Simons
dass gives an isomorphism of groups

(38)

Let dirn M = 2r - 1 be odd. Then there is a dass WM E H;r-I(M, Q) dual
to [M] and there is a dass [W] E K~(M) with CS([W]) = lWM for sorne
1 =j:. O. Moreover there is a N E N such that [W] is represented by a gauge
transformation of the bundle V. We introduee the following Riemannian
invariant: Let R(W) := W· DvW - Dv E r(M, End(S(M) ® V)). Then we
define

G(M? := inf 'sup trR(W)2 (39)
M

where the infimum is taken over all trivial Hermitian veetor bundles V
with the Hat eonneetion and gauge transformations satisfying Assurnption
1 with CS(W) = lWM for some 1 f; O. We have lIR(W)1l 2 = IIR2 (W)11 =
SUPM IR(W)21 ~ sUPM trR(W)2.

Theorem 7.1 Let dirn M be odd. G(M) is an upper bound 0/ the length 0/
gaps in the spectrum 01 D.

Proof: Note that the speetrum of Dv eoineides (as a set) with the speetrum
of D. For every f > 0 there is a family {Dt}:=o with Do = Dv , having
nonvanishing speetral flow and lIDI - Doll ~ G(M) + f. Assume that there is
an interval [a, b] E R with a(Dv) n [a, b] = 0 and b- a > G(M). Aecording
to the sign of the speetral How there is at least one family of eigenvalues
A(t) erossing a from below or b from above and not erossing back the same
boundary. But then for f small enough A(1) E [a, b] and, A(1) E a(Dv ). This
is a contradiction. D.
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Corollary 7.2 lf G(M) = 0 then O'en(D) = R.

12

(40)

Let us now discuss the even-dimensional analog of G(M). On even­
dimensional M one employs the relative index theorem [14],[10] aod certain
splittings of trivial bundles of compact support. Let V := M X C N be a
trivial Hermitian vector bundle. A splitting of compact support is a de­
composition V := U EB W where ~ U are Hermitian vector bundles with
compatible connections beeing trivial and with the Hat connection outside of
a compact subset of M. Then ch(W), ch(U) E H~(M, Q). In this case we
set R:= Dv - Du EB Dw E r(M, End(S(M) ~ V)) and define

G(M)2 := inf sup ~trR2
M 2

where the infimum is taken over aU V and splittings U EB W of compact
support such that ch(U) = IWM for some I i- O. Such splittings exist. Again
11 RII 2

::; 3trR 2 (see [3]).

Theorem 7.3 If dirn M is even then [-G(M), G(M)] n u(D) f=. 0.

Proof: Apply the relative index theorem. The argument ia similar to those
used in [17],[3],[5]. 0

In fact the relative index theorem for Dirac operators [14] has been in­
troduced for a similar application. The result in the even-dimensional case
is much weaker than that in the odd-dimensional case since only the gap at
zero cau be estimated.

8 The invariant G(M)
In this section we study the invariant G(M) in more detail. Let M be a
complete spin manifold.

Lemma 8.1 If Mn has nonnegative scalar curvature 8 then

G(M)2 ~ (~~~) if n is odd

G(M)2 > --...!D..!L- if n is even- 4(n-l)

where 80 := infmEM s(rn).

(41)

(42)
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Proof: Using the Weizenböck formula of [13] it is easy to show that u(D2
) C

L,(:o~1)' 00). The Lemma follows from Theorem 7.1 and 7.3. o.
Gf course for M compact G( M) > 0 in any case.
Now we want to find upper bounds for G(M) in geometrie terms. We say

that a Riemannian manifold (Mn, g) dominates another Riemannian mani­
fold (Mn, g) if there is a map / : M -+ M of nonvanishing degree such that
9 2:: /*g. If !VI is compact then / has to be constant outside of a compa.ct
subset of M. If M is noneompact then we require / to be proper.

Lemma 8.2 I/ Mn dominates Mn then G(M) ~ G(M).

Proof: / is used to pull back the gauge transforma/tions in the odd­
dimensional and the splittings in the even-dimensional case. We consider
first the odd-dimensiona.l ease. A local computation shows that

n

R(W) = Lei ® W*dW(ei)
i;:;1

where {ei} ;;:;1 is a local orthonormal repere of TM. Hence

n

trR2(W) = _2[n/2] L trW*dW(ei)W*dW(ei)
i;:;1

(43)

(44)

where we have used treiej = _2[n/2),sij. Let m E M and /(m) =: m. Then
at m

n

R(f*W) = Lei ® W*dW(d/(ed)
i=1

(45)

where {ei}?=1 is a loeal orthonormal repere of TM around m and ~ dW is
taken at m. Hence

n

trR'J(/*W) = _2[n/2] L trW*dW(d/(ei))W*dW(d/(ei)). (46)
i=1

Let d/(ed = Aijej and Bij := -trW*dW(ei)W*dW(ej)' The eondition
/*g ::; 9 translates to AA* ::; 1 and henee HAll::; 1. Moreover B 2:: 0 sinee
(W*dW(X)t = -W"dW(X) for all X E TM. It follows

trR2(f*W) = 2[n/2]trABA* (47)
::; 2[n/2]trB

= trR2(W).
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This proves the Lemma in the odd-dimensional case.
Now we consider the even-dimensional case. If V = U EI1 W is a splitting

and V U , V W are compatible connections we set Q := VV - V U EI1 V W E
f(M, T·M~ End(V)). Locally

n

R:= Dv - Du EI) Dw = Lei ~ Q(ei)'
i=l

(48)

(49)

To prove the Lemma we use the same argument as above replacing W·dW
by Q. Note that for the pulled back splitting one gets j.Q and that Q(X)* =
-Q(X) for all X E TM. 0

Lemma 8.3 G(sn) :::; 2n/2.jn for n odd and G(sn) :::; 2~vn for n even.

Proof: If n is even this follows from [3]. If n is odd we construct explicitely
a generator of 1rn(U(2(n+l)/~)). Let 6n+~ be the spinor representation of
Spin(n+2). The Clifford algebra Cliff(Rn+2) acts on 6 n+2 in the usual way.
Let ß+.+1 be the -t-eigenspace of the endomorphism N := (0, ... ,0,1) E
Rn+2. We consider the embedding sn C sn+l as the equator such that N is
the north pole of sn+l. Letel:= (1,0, ... lO). Then the gauge transformation
W is given by fJ E sn --+ W{fJ) := -tel'] E U{~++l). One can show that
Cs(w)[sn] = 1. For this gauge transformation we have tr(W·Dv W ­
Dv )2 = 2n n. 0

For the sphere of sectional curvature K we have

It was shown e.g. in [3] that every complete Riemannian manifold dominates
some sphere.

Lemma 8.4 Let K = infpEM K(p) with

7r
2

]«p) = sup K(m) 1\ -2--
mEB(p,rinj(P)) rinj(P)

where rinj(P) is the injeetivity radius 0/ M at pE M and K(m) is the maximal
sectional curvature at m E M. There is a fu netion 0'( €) with li~-o a(€) = 0
such that /or every small € > 0 the manifold (Mn, (1 + a( €) )g) dominates
sn(]( + €). Hence G(M) :::; G(sn(]()) :::; /Kc(sn).
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Praaf: The required maps Ir, : M ~ sn(K + f) are constructed in (3]. 0

Corollary 8.5 If Mn is a eomplete Riemannian spin manifold %dd dimen­
sion with nonpositive sectional eurvature then ;: 2n

/
2 ..;n is an upper bound

/or the length 0/ gaps in the speetrum 0/ the Dirae operator. Here r o :=

aUPmEM rinj(m). In Particular i/ M has a pole (i.e. M is simply eonnected)
then u(D) = R.

Corollary 8.6 I/ Mn is a eomplete Riemannian spin mani/old 0/ even di­
mension with nonpositive seetional eurvature then there is spectrum 0/ the
Dirae operator D in the interval {-~2~ r.n, ~2~ . Ifil. I/ M has a polero v 'l. ro V "J
then 0 is in the speetrum 0/ D.

In (14] manifolds which dominate spheres of arbitrary large radius are
called hyperspherical. In that paper the property 0 E u(D) was employed as
an obstruction against the existence of a metric of positive scalar curvature
on hyperspherical manifolds.

9 The number of eigenvalues

In this section we will refine the results of the last section taking into account
the actual value of the spectral flow or the index respectively. Let (Mn, g)
be a Riemannian spin manifold, U c M be some compact and K(U) :=
aUPmEU j«(m) V 0 where K(m) ia the maximal sectional curvature at m. We
set

and for r ~ ro(U)

ro(U) := inf rinj(P) 1\~
pEU K(U)

(50)

Nu(r) := {maximum number of disjoint balls of radius r in U}. (51)

By the results of [3] there exist maps

(52)

of degree N(r) with Idfl ~ 1 + a(f) where a(f) ~ 0 as f ~ O. Pulling
back gauge transformations and splittings respectively we obtain families



9 THE NUMBER OF EIGENVALUES 16

(53)if n is odd }
if n is even

of twisted Dirac operators the spectral flow of which is Nu(r) in the odd­
dimensional case and twisted Dirac operators with index Nu(r) in the even­
dimensional case. Setting

1rvn { 2
n

/
2

j.L(r) := -r- 2(n-3)/2

we have
(54)inf 11~1l ~ j.L(r)

t-O

where ~ := R(j;W) if n is odd. In the even·dimensional case Rt is given by
(48) where the splitting is the puIl-back by ft of the splitting of the spinoT
bundle of sn (see [3]).

Theorem 9.1 There are at least {Nu(r)/2{~}} eigenvalues 0/ D in the
interval [-j.L(r), j.L(r)] as long as r ~ ro(U) and j.L(r) < inf lueu(D)I. Bere
{x} denotes the smallest integer greater or equal x.

Proof: One applies essentially the same argument a.s for Theorem 7.1. Note
that the dimension of the twisting trivial bundle is dirn V == 2[!!.jl]+1. 0

Define

(55)

(57)

{ Nwi~) }
C( ) 1·· f 2{""'-}n .- ImIn

r-O Vol(U)Jln( r)

In {2n(1-n/2) if n is even }
= Vol(Bn)n ß / 21rn 2~ if n is odd (56)

where In is the optimal constant arising in the sphere-packing problem in
dimension n and Vol(Bn) is the volume of the unit ball in Rn.

Corollary 9.2 For every € > 0 there is a To such that for all T satisfying
inf lue",,(D)1 > T ;::: Ta holds

~{A E u(D) IIAI ~ T} ;::: Vol(U)(C(n) - €)T ß
•

A sirnilar result could have been obtained by the Dirichlet-comparison me­
thod. But we do not know a reference for explicite values of the constant.
This Corollary is interesting since there are examples of Dirac operators on
complete Riemannian spin manifolds without essential spectrum [12]. These
manifolds may have finite as weIl as infinite volume. If ueu(D) = 0 then

liTj~f Ü{>. E a(~nIIAI ::; T} ~ Vol(M)C(n). (58)
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