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ON THE DIMENSION OF THE ADJOINT LINEAR SYSTEM
FOR THREEFOLDS

by

M.C. Beltrametti and A.}. Sommese

Introduction. Let L* be a very ample line bundle on a smooth, n-dimensional,
projective manifold, X*, i.e. assume that L* = i*Opn (1) for some embedding i :
X* — PV In [S4) it is shown that for such pairs, (X*, L"), the Kodaira dimension
of Kxa ® L™ % is non-negative, i.e. there exists some positive integer, ¢ such that
RO((Kxa®L ")) > 1, except for a short list of degenerate examples. It is moreover
shown that except for this short list there is a morphism r : X* — X expressing X*
a8 the blowup of a projective manifold X at a finite set B, and such that:

a) Kya ® LA"™! 2 p*(Kx @ L"!) where L := (r.L*)** is an ample line bundle,
and Kx © L™~ is ample;

by Kx ®@ L™? is nef, i.e. (Kx + (n~2)L)-C > 0 for every effective curve C C X.
The hope that except for a few examples, Kx ® L™~? is not just nef, but spanned

at all points by global sections is supported by a number of results:

1. the analogous result is true for Kxa ® LA™ (see [SV] for the history in this
case);

2. in [S5] the pairs, (X*, L*), with the Kodaira dimension of Kx» ® LA™~ % negative
are characterized by h°(Kxa ® LA""%) = 0, and in particular if Kx ® L*~? is
nef it has a non-trivial global section;

3. if Kx®L""?is nef then (K x ® L"~2)? is spanned by global sections at all points
[S5);

4. in [BSS] it is shown that if X* has no rational curves {e.g. if X* is hyperbolic in
the sense of Kobayashi, or if the cotangent bundle T3 is nef) and if the degree,
¢y (LA)" > 850, then Kxa ® LA"~? is spanned by global sections at all points.
There is one known counterexample (see [LPS]) of a Del Pezzo threefold of de-

gree 27 with Kx ® L ample but not everywhere spanned. A search for other coun-
terexamples led us to the following surprisingly strong result, which would in fact
not be implied by spannedness of Kxs ® LA"~%. (Note that h%(Kxa ® LA"7%) =
W(Kx ® L"7?%).)

Theorem. Let L* be a very ample line bundle on an n-dimensional projective man-
ifold, X", with n > 3. If there exist n — 3 elements {A,,..., An-a} C |L"| meeting
transversely in a 3-fold of non-negative Kodaira dimension, e.g. if the Kodaira di-
mension of Kx» ® LA™~ is non-negative, then W(Kxr® LA""*) > 5 with equality
only if n = 3, and (X*, L") is a degree 5 hypersurface of P*.

We also show that if the Kodaira dimension of Kxa ® L*""? is at least 3, then
ho(I{xA @ L,\n—I) > 2.

The method of proof is to use the doublepoint inequality for 3-folds in projective
space, Tsuji’s inequality, Miyaoka’s bound for the number of —2 curves on a surface
of general type, and the major results on the adjunction theory of 3-folds.

We refer to [BBeS] for a study of the dimension of the adjoint linear system in
the case of quadric fibrations over surfaces.
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§0. Background material.

We work over the complex numbers C. Through the paper we deal with smooth,
projective varieties, . \We denote hy Oy the structure sheaf of V' and by Ky the
canonical bundle. For any coherent sheaf F on V|, h¥(F) denotes the complex dimen-
sion of H'(V, F).

Let L be a line bundle on V. L is said to be numerically effective (nef , for short)
if L-C > 0 for all effective curves C on V. L is said to be big if (L) = dim V', where
w(L) denotes the Kodaira dimension of L. If L is nef then this is equivalent to be
¢y (LY > 0, where ¢(L) is the first Chern class of L and n = dim V.

(0.1) The notation used in this paper are standard from algebraic geometry. Let us
only fix the following.
= (respectively ~). the linear {respectively numerical) equivalence of line bundles;
X(L) = ¥ .(=1)'h*(L), the Euler characteristic of a line bundle L;
|L|, the complete linear system associated with a line bundle L on a variety V,
(L), the space of the global sections of L. We say that L is spanned if it is
spanned at all points of ¥V hy (L),
e(V) = ¢,(V), the topological Euler characteristic of V, for V smooth, where
¢y (V) is the n-th Chern class of the tangent bundle of V. If V is a surface,
(V) = 12¢(Ov ) = Kv - Ky
k(V) := x(Kv), the Kodaira dimension, for V smooth.
Line bundles and divisors are used with little (or no) distinction. Hence we shall
freely switch from the multiplicative to the additive notation and vice versa.

{0.2) For a line bundle L on a variety I of dimension n thie sectional genus, ¢(L) =
g(V, L), of (V. L) ts defined hy 2¢(L) =2 = (Kyv + (n — 1)L) - L"~1. Note that if
|Li contains a reduced irreducible curve, €, then ¢(L) = ¢(C) = I — x(O¢), the
arithmetic genus of .

(0.3) Reduction (see ey [S4], (0.5). [BFS], (0.2) and {BS], (3.2), (4.3)). Let
(X", L*) be a smooth n-dimensional projective variety polarized with a very ample
line bundle L. n > 2. A simooth polarized variety (X, L) is called a (first) reduction
of (X, L*) if there is a morphism r : X* — X expressing X* as the blowing up of X
at a finite set of points. B. such that L := (#.L*)*" is ample and L* =~ " L—[r~1(B)]
or, equivalently, Kxa +(n — 1)L* = r"(Kx + (n — 1)L).

Note that there is a one to one correspondence between smooth divisors of |L|
which contain the set. B aud smooth divisors of |L*].

Except for an explicit list of well understood pairs (X4 L) we can assumne (see
[$4], [SV], [BS]:
a} Kxa + (0= 1)L" is spanned and big and KNy + (n — 1)L is very ample. Note that
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in this case such a reduction, (X, L), is unique up to isomorphism. We will refer to
this reduction, (X, L), as the reduction of (X", L*).

8) Kx + (n — 2)L is nef and big, for n > 3.

Then from the Kawamata-Shokurov base point free theorem (see [KMM], §3) we know
that |m(Kx + (n — 2)L)|, for m >> 0, gives rise to a morphism, ¢ : X — X', with
connected fibers and normal image. Thus there is an ample line bundle £ on X’ such
that Kx + (n — 2)L = ¢"K’. The pair (X’,K’) is known as the second reduction of
(X*,L*). The morphism ¢ is very well behaved (see e.g. [BFS], (0.2) for a summary
of the results). Furthermore X has terminal, 2-Gorenstein (i.e. 2K x is a line bundle)
isolated singularities and K/ = Kx+ + (n — 2)L’ where L' := (p.L)"" is a 2-Cartier
divisor such that 2L = ¢*(2L') — D for some effective Cartier divisor P on X which
1s p-exceptional (see [BFS], (0.2.4), {BS), (4.2), (4.4), (4.5)). For definition and prop-
erties of terminal singularities and for a few facts from Mori theory we use in the
sequel, as the Mori Cone Theorem and definitions of extremal ray and contraction of
an extremal ray we also refer to [KMM].

(0.3.1) ([S5], (0.3.1)). We will use the fact that ['(aKxa + L") = I'(aKx + bL) for
integers, a,b with b < a(n — 1).

(0.4) Pluridegrees. Let (X*,L*),(X,L) be as in (0.3) with n = 3. Define the
pluridegrees, for j = 0,1,2,3,
df = (Kxa + LA)j N ol ,dj=(Kx + L)j L3

If ¥ denotes the number of points blown up under r : X* — X, the invariants d}, d;
are related by

dy =do~7v;dl =di+7y;dy =d3—7;d3 =ds+7.

We put d* := df,d ;= dp. If Kx + L is nef, by the generalized Hodge index theorem
(see e.g. [BBS], (0.15), [F], (1.2)) one has

(0.4.1) d? > ddy ; di > dyds
and the parity Lemma (1.4) of [BBS] says that
(042) d=d, mod(?) ; do = da mod(?)

Moreover if Kx + L is nef and big the numbers d; are positive.
If the second reduction, (X', K'), K’ ~ Kx+ + L', of (X", L") exists we can also
define _ .
d; = K7 L%, j=0,1,2,3,d :=d.

Ve will use the fact that
(0.4.3) dy = dYy ; d3 = dj.

To see this, let ¢ : X' — X' be the second reduction morphism, recall that 2L =
©* (2L} - D for some effective Cartier divisor D which is p-exceptional (see {0.3))
and compute

dy=(Kx +LP = (p’K'P = K? = dy;

2y = 2Kx + L) L=¢"K' oK' - (p"(2L) = D) = 2K’ - K'- L' = 2d3.
(0.5) Double point formula. We need the following result (see also [BBS], (2.11.4)).
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(0.5.1) Theorem. Let (X*, L") be a smooth projective 3-fold, polarized with a very
ample line bundle L*. Let N := h°(L*)—1. Let d}, j = 0,1,2,3, be the pluridegrees
of (X*,L*) as in (0.4). Let S* be a smooth element of |L*|. Then

e(X") — 48x(Oxna) + 84x(Osa) — 11d5 — 17d} — df + d*(d" - 20) > 0,

with equality if N < 6.

Proof. We can assume that X* C PV with N > 6 by using the natural inclusion
P* C P® of a linear P* when a < 5. The formula is simply a particular case of the
general formula (I, 37), Section D, p. 313 of {K]. It should be noted that the virtual
normal bundle, V, in that formula is defined in our situation by the exact sequence

0—=Txr —=p"Tpe —V —0

where p: X* — P is the restriction to X* of the projection from a general PV¥=7 if
N>6andV = N;A, the usual normal bundle, if N = 6. Q.E.D.

The following is a consequence of the double point formula above.

(0.5.2) Proposition. Let (X*, L") be a smooth projective 3-fold, polarized with a
very ample line bundle, L*. Let (X,L) and 5 : X» — X be the first reduction and
first reduction map respectively. Asin (0.4), let d}, d;, 0 < j < 3 be the pluridegrees
of (X", L") and (X, L) respectively. Let vy be the number of points blown up by r.
Let S* be a smooth element in |L*|. Then

44h°(Kxn 4+ L") 4+ 58x(Osn) + 2h°(Kxa) +4 > 12d2 + 17d; + d3 + (20 — d*)d* + 5.
Proof. Let S € |L| be the smooth image of $*. Since A°(Kxa + L*) = h°(Kx + L),
x(0s) = x(Osr), R°(Kx) = hP(K x~), it suffices to prove the formula with h®(K x +
L*), x(Osa), h%(Kxa) replaced with h°(Kx + L}, x(Os), h%(K x) respectively.
Since x(Ox) = x(Os) — h%( K x + L), the double point formula (0.5.1) gives

(0.5.2.1) e(X*)+48hO(K x +L)+36x(Os) > 11d5+17d} +d§+(20—d*)d* = f(db).
Let ¢ := h'(Ox) = h1(Os), 6 := h*(Ox), and p, := pyo(X) = h%(Kx). The h?? :=

AP 9 (X") = h?(Q5A) cohomology table for X* looks like (recall that A?*¢ = h?? and
the Serre duality h?'9 = h3-P3-1)

Pq 6 q 1
é b a q
q Kbl =g hb2 =} )

1 q ) Pg

Note also that h%? < h?! (see [ShS], (2.73), p.47), so we can assume b = g+ ¢ for some
non negative integer ¢. Let b; := b;(X*) =3 hP? be the j-th Betti number of
X*. Then

i=p+y

(05.2.2) e(X*):=1l—=by+by—b3+by—bs+1=2—6g+46+ 2a— 2¢— 2p,.
Note that the exact sequence
0= Ky —Kx®L—-Ksg—20
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gives 6 = py(S) — h°(Kx + L) + p,. Therefore (0.5.2.2) becomes

(0.5.2.3)e(X") = 2 — 4q + 4py(S) — 4h°(Kx + L) + 2a — 29 — 2¢ + 2p,
=2(2-49+2py(S) +0) =2+ 29 —4h%(Kx + L) — 2¢ + 2p,
< 2(2-4g+2p,(S) +a) -2+ 29— 4h°(Kx + L) + 2p,.

The hP? cohomology table for a smooth §* in [L?| is

pe(S) | ¢ 1
q h q
1 q Pg(S)

where h := hY}(5§*). Then
(0.5.2.4) e(S™) = 1= b)(S") + 2(S?) — b3(S*) + 1 = 2 — 4¢ + 2p4(S) + h.

By the Lefschetz theorem on hyperplane sections (see [GH], p. 157) one has that
AL} (X*) = a < h. Thus by (0.5.2.3), (0.5.2.4),

(0.5.2.5) e(X") < 2e(S") - 2+ 2¢ — 4h%(K x + L) + 2p,.
Therefore, by combining (0.5.2.1), (0.5.2.5), we find

f(d}) € e(X™) +4h%(Kx + L) + 44h°(Kx + L) + 36x(0s)
< 2(S") + 29 — 2+ 44h°(Kx + L) + 36x(Os) + 2p,.

Now, e(S") = 12x(Os) — Ksa - Ksa = 12x(Os) — d2 + v. Then the last inequality
gives

(0.5.2.6) f(d}) < 60x(Os) — 2dy + 2y + 44h°(Kx + L) + 29 — 2 + 2p,.

Sim.:e f(d}) = 1ldy + 17dy + d3 + (20 — d*)d" + T+, (0.5.2.6) gives

(0.5.2.7) 44R°(K x +L)+60x(0s)+2¢=2+2p, > 13dy+17dy +d3+(20—d")d" +57.
By using the Noether inequality dy = KNs - Ks > 2py(S) — 4, we find

{0.5.2.8) 2¢ — 2= 2py(S) — 2x{0Os) < dy + 4 — 2x(0s).

By combining (0.5.2.7) and (0.5.2.8) we get the result. Q.E.D.
The following is another special case of the double point formula.

(0.5.3) Lemma ([{Hr], p. 434, {BBS], (0.11)). Let (X*, L") be as in (0.3) withn =3
and let S* be a smooth element of |L*|. Assume that T(L") embeds X* in PN with
N > 5. Then

d*? — 5d™ = 10(g(L") — 1) 4 12x(Osa) > 2Ksn - Ksa

5
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with equality if N = 5.

(0.6) Tsuji inequality (see (S5}, §1, [T], §5). Let (X*, L"), (X.L) be as in (0.3)
with n = 3 and let S be a smooth element of |L|. Then we have

(Kx + L) + 3 Ks - Ls < 32(20(Kx + L) = X(O5))

or

O g dy di | x(Os)

MKy +L)> a"}'z'f'——é—
(0.7) Castelnuovo’s hound. Let (X*, [*) be as in (0.3) with n = 3. Let S" be a
smooth element. of |L*| and C* the smooth curve obtained as the transversal inter-
section of two general members of |L”*|. Assume that |L*| embeds X* in a projective
space PY N >4, and let d® := L3 Then ¢(L*) = g(C*) and Castelnuovo’s Lemma

{see e.g. [H], Theorem 3.7) reads

v e (e v (2 Y

where N = AY(L*) — | and [z] means the greatest integer < r.

{0.8) Lemma (Lefschietz theorem in the singular case). Let V be an irreducible,
normal variety and D an ample effective Clartier divisor on V such that Sing(V) C D

and dimV > 3. Then the restriction map Pic(V) «— Pic(D) is injective.
Proof. From the exponential exact sequences for D, X' we obtain the following com-

mutative diagram with exact rows

HYV,Z) — HYOv) — HYO,) — HYV.Z)
o Al 7| Ky
HYD.Z) — HYWOp) — HYOp) — HYD.Z)

Note that under the assumption Sing(V) C D, the usnal Lefschetz theorem holds true

to say that « is an jsomorphism and 4 is injective. Note also that 3 is an injection

since h!(—D) = 0 by Kodaira vanishing. Thus a standard diagram chase shows that

v is injective. So we are done. Q.E.D.
We also need the following technical fact.

{0.9) Proposition. Let X he an irreducible, normal variety with at most rational
singularities, and with dim X > 3 and codSing(X) > 3. Let L be an ample line bundle
on X. Let £ be a line bundle on X such that there are arbitrarily large integers N
with £4 ~ Oy for a general A in [NL|. Then £ ~ Ox.
Proof. Let x be a general point of X' and let Z, be the ideal sheaf of x in X.
Let. 7 be the ideal sheaf of Sing(L\) in X', We can take N arbitranly large such that
WM (NLeJ®IS*) = 1. This shows that |N L& 7| gives a map which is an embedding
in a neighborhood of x. Therefore V1 © 7 is big and spanned off Sing(.X). Then it
is a general fact (see e.g. [Hr}, Chap. II, 7.17.3) that there exists a desingularization
p: X — X with a spanned line bundle L on X such that L =~ P (VL) — Z for some
effective divisor Z on X and with p.(L) 2 NL® J. Since NL & J is big, L is also
big.

Since X has rational singularities. the Kawamata-Viehweg vanishing theorem
and the Serre duality apply to give h!'(=4) = h*(—A) = 0. Therefore

HYOx) = HYO,).

6
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Similarly, since L is spanned and big, H'(Oz) = H'(O;). Since X has rational
singularities we also have H!(O3) = H'(Ox) and therefore
HYO;) = H'(O4).
Consider the exact commutative diagram, given by the exponential sequences for A,
A, X, P - 3 -
HY(0;) -~ Pic(d) = H¥AZ)

r ‘ P 1
HYOA) - Picd) -2~ HYA,Z)
i || i i1

HYOx) = Pic(X) —— H¥X,Z)

where i denotes the inclusion i : A — X. Since L4 ~ O, one has p"L4 ~ O; on A.
This implies that ¢(mp*L,4) =0 in H*(A, Z) for some positive integer m. Therefore
mp*La = ¢°(b) for some b € H'(O;). Since b = p*b for some b € H'(O,4), we
conclude that )

p {(mL4 = ¥(b)) =0 in Pic(4).
Since X is Cohen-Macaulay and codSing(X) > 3, A is also Cohen-Macaulay and
codSing(A) > 2. Then A is normal. Since A is smooth and p is birational it thus
follows that

mL 4 — P(b) = 0 in Pic(A4),

or, since L4 =i"L, b= iV for some b' € H'(Ox),

i"(mL — a(b')) = 0in Pic(A).

Since i* is an injection by Lemma (0.8), we conclude that mL — a(d’) = 0 in Pic(X)
and hence #(mL) = 0in H%(X,Z). This implies that mL, and hence £, is numerically
equivalent to Ox. Q.E.D.

(0.10) Threefolds of log-general type. Let (X*, L*), (X, L) be as in (0.3) with
n=3andlet df,d;,j = 0,1,2,3, the pluridegrees as in (0.4). We say that (X*, L") is
of log-general type if K’y + L is nef and big. Hence in particular the second reduction
(X',K"), ¢: X — X' of (X", L") exists and the numbers d; are positive in this case.

Let S be a smooth element of |L*| and S the corresponding smooth surface in
|L}. Then by the adjunction formula K5 is nef. Furthermore K5 is also big since
some multiple of K5 is the pullback of some ample divisor under the restriction of ¢
to S. Then S is a minimal surface of general type. Hence we have

(0101) dy = Kg KNg < 9\(05)

The Miyaoka inequality yields da < 9x(0s). Note that the equality cannot happen.
Otherwise S is a ball quotient and hence a K'(, 1), which would contradict [S1], (1.3).
Assume that £(.\') > 0. Then from {S2], (1.5) and (3.1) we know that

(0102) (13 2 d'z 2 d1 2 d
and
(0.10.3) 8x(Ox) < da — d.

Note that if k(X') > 0, then (X*, L?) is of log-general type. Indeed, if R°(tKx) > 0

for some positive integer t, then {(Xx + L) gives a birational embedding, given on a

Zariski open set by sections of I'(L), and thus #(Nx + L) = 3. ]
" We finally need the following general fact.

7



MAURO C. BELTRAMETTI AND ANDREW J. SOMMESE

(0.11) Lemma. Let V be a smooth connected variety, L an ample and spanned
line bundle and L any line bundle on V. Let A be a general member of |L|. Then
RP(LA) > 2ifRO(L) > 2.

Proof. Since h°(L) > 2 we can take two independent sections s,t € H°(L). Let D,,
D; be the divisors defined by s, t. Note that AN D, # @ and AN D; # @, since
otherwise all A € |L]| would contain either D, or D;, contradicting the spannedness
assumption. Note also that AN D, # AN D; since otherwise we would have equality
for all A € |L| and hence D, = Dy since A is spanned. This shows that the restrictions
s, ta are independent, so we are done. Q.E.D.

For any further background material we refer to [S5] and [BS].

§1. The log-general type case.

Let (X*, L") be a smooth threefold polarized with a very ample line bundle L*.
Assume that (X*, L") is of log-general type. In this section we want to show that
hO(Kxa + L*) > 2. Let us fix the following.

(1.0) Assumption. Let (X*, L*) be as above and let (X, L) be the first reduction of
(X*,L"). Let S* be a smooth element in |Z*| and let S be the corresponding smooth
surface in |L|. Note that from Tsuji inequality (0.6) it follows that h°(Kx + L) > 1.
Thus we may assume that h°(Kx + L) = 1 as well as

(1.0.1) x(Os)(= x(Osa)) =1, dy < 11,
We can also assume
(1.0.2) K(Kx)=0.

Indeed, if not, h%(Kx + L) > h®(Kx)+ h%(L) -1 2> 4.
The exact sequence

0—-Ky = AKx®L—-Ks—0

gives h(Kx + L} = x(Kx) + x(Ks) = x(Os) — x(Ox), whence, by(1.0.1) and since
we are assuming h%(Kx + L) = 1,

(1.0.3) x(Ox) = x(Oxr)=0
and
(1.0.4) q(S) = pe(S) > 0.

Therefore g(.\') > 0, so we can also assume by the Barth-Lefschetz theoremn that
T'(L*) embeds X* in PV with
(1.0.5) N > 6.

Let df,d;,j = 0,1,2.3, be the pluridegrees of (X", L"), (X, L) respectively as in
{0.4). We also have

(1.0.6) d">10;d;>6; dy > 3.

8
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To see this, first note that we can clearly assume d* > 9, since S* is a surface of
general type (see (0.10)), and X* is embedded in PV with N > 6, we have from {LS],
(0.6) that d* = deg(S*) > 2(N — 3) +2 > 8. Hence d > 9. Furthermore d,,d;,d3
are positive. Use the Hodge index relations (0.4.1). From d? > d»d we get d; > 2
and therefore d3d; < d} yields d; > 2. If d3 = 2,d? > dd, gives dy > 3 and by parity
d3 > 2. Hence d2 > d,d3 > 18 gives d > 5.

Hence d > 9 and therefore d? > dd; yields d; > 5. If d* = 9, Castelnuovo’s bound
(0.7) gives g(L*) < 7 and the genus formula leads to the contradiction 14 < d +d; <
12. Thus d > d* > 10 and hence d; > 6 from d? > dd; > 30.

From (0.5) we derive the following useful numerical bound.

(1.1) Proposition. Let (X*, L") be a smooth threefold polarized with a very ample
line bundle L*. Assume that (X*, L") is of log-general type and let (X, L), r : X* —
X, be the first reduction of (X, L). Let v be the number of points blown up under r.
Let d* := L*® be the degree of (X", L") and let d*, dy,d3,d3 be as in (0.4). Let S
be a smooth element in |L*|. Assume that x(Osa) = 1, x(Oxa) = h°(Kxa) =0 (see
(1.0)). Then
106 > (20 — d*)d” + ds + 12d; + 17d; + 57.

Proof. Since x(Ox) = x(Os) — h°(Kx + L), we get h°(Kx + L) = 1. Moreover
h°(Kx) = 0. Then the inequality in (0.5.2) gives the result. Q.ED.

We can prove now the main result of this section. As above let (X, L),r: X* —
X denote the first reduction of (X, L*). Recall that A®(Kxa + L") = h°(Kx + L)
(see (0.3.1)).

(1.2) Theorem. Let (X", L") be a smooth threefold polarized with a very ample

line bundle L*. Assume that (X*, L") is of log-general type. Then h°(K xr+ L") > 2.
Proof. We may assume that all the assumptions as in (1.0), (1.1), and (1.0.6) hold

true. Then, since d3 > 0, d2 > 3, dy > 6, from the inequality of (1.1) we find
106 > (20 — d™)d* + 1 + 36 + 102 = (20 — d*)}d" + 139.

Hence d* < 20 is clearly not possible. Let d* = 21. Then 106 > —21 + 139, again a
contradiction. Thus d > d* > 22, so that d? > dd, gives d? > 66 or

dl 2 9

Let d* = 22. Then (1.1) yields the contradiction 106 > —44 + 37 + 153 = 146.
Thus d* > 23 and (1.1} gives again the contradiction 106 > —69 + 37 4 153 = 121.
Therefore we can assume d* > 24.
Case d3 = 3. One has d} = d3d) = 9 withdz = 1,d; = 9. Let (X' K"}, K' = Ky + L,
be the second reduction of (X*, L*) (see (0.3)). Hence on X' we have, for a positive
integer m,

((m’\:t)Q . Li)'..’ - (mAC')a(rm\C’ . Lf')).

Since K’ is ample we can choose m >> 0 and an irreducible divisor 4 € |mK’| which
contains all singularities of .\ (recall that X has isolated singularities). Therefore

(Aa- L) = (A% L) = ()4 - L) = (AR)(LY).

Then there exist rational numbers A, i such that AL, ~ uA4. Note that we may take
A even so that AL’ is a line bundle (see (0.3)). Hence (AL' — pA)4 ~ Q4. Therefore,
by (0.9), AL' ~ uA on X' and hence

AL ~ umK' ~ ymKy+ + pmL’.

9
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Since pm — A > 0 for m >> 0, this implies that —Kx+ is ample, so that ¢(X) =
q(X’) = 0. This contradicts the assumption (1.0.4).

Case d3 > 4. Let dy = 4. Then by the parity condition (0.4.2) we have d3 > 2 and
therefore we find the contradiction 16 = d3 > dyd; > 18.

Thus dy > 5. Note that we can assume Kyx: + 3K’ =2 4K’ — L' to be nef and not
numerically trivial on X’. Indeed otherwise (see [M], (2.1) and also [BS], (2.1), (1.3))
(X', K') = (P®, Ops(1)). This contradicts our present assumption ¢(X) = ¢(X’) > 0.
Therefore

(4K = L'y - K'-K'=4d; —dy =4d3 —d2 > 0

or 4d3 > d3(> 5). Thus d3 > 2. Since d3 > 5 and d > d* > 24, d? > dd3 > 120 yields
dy > 11. If dg = 5 then d3 > 3 by the parity condition, so that we have the contra-
diction 25 = d} > dyd, > 33. Therefore d; > 6 and d? > ddy > 144 gives d, > 12. By
using the Tsuji inequality (0.6) (see also (1.0.1)), this implies h°(Kx + L) > 2, so we
are done. Q.ED.

§2. The case of non-negative Kodaira dimension, L

(2.0) Let (X*, L") be a smooth threefold polarized with a very ample line bundle L*.
Let (X, L) be the first reduction of (X*, L*}. From now on we further assume that
k(X*) = k(X) > 0. Hence in particular (X*, L") is of log-general type (see (0.10)).
]
The aim of this section is to prove that A°(Kxa + L*) > 4. To this purpose let

us fix the {ollowing.

(2.1) Assumptions. Let (X*, L") be as in (2.0). Let S* be a smooth element of
[LA| and let S be the corresponding smooth surface in |L|. Let d;,dj,j =0,12,3,
be the pluridegrees of (X*, L"), (X, L) respectively as in (0.4). We can assume

(2.1.1) ds>dy > dy >d>8.

Indeed, let X* «— PV, N > 4, be the embedding given by ['(L*). Let N = 4. Then
the assumption x{X*) > 0 implies d* > 5, so that A°(Kxa + L") > 5. Therefore we
can assume N > 5 and hence from [LS], (0.6) we have d* := LA > 3(N - H+2>8.
Thus (2.1.1) follows from (0.10.2). We can also assume

(2.1.2) A (Kx)=0.

Indeed, otherwise, I'(K x + L) would define a birational map, given on a Zariski open
set by sections of T'(L), and hence h®(Kx + L) > 4.
Moreover from [S5], (2.2), (2.2") we know that

(2.1.3) WO (Kx + L) 23, x(0s)(= x{Osa)) 2 3.

]
First let us show some numerical results we need.

(2.2) Lemma. Let (X* L"), (X, L) be as in (2.0) with the assumptions as in (2.1).
Then either h®(Kx + L) > h°(L*) > 5 or

d3 > da+2;dy>d+2;,dy >d+2.

10
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Proof. Let S be a smooth element in |L| and let Ls be the restriction of L to S.
Since x(X) > 0, one has h°(mKx) > 0 for some positive integer m. Then either
Kx L-L>00r Kx ~QOx. In the first case we have d) —d = (Ks —~ Ls) - Ls =
Kx-L-L>0o0rd; > d+1. By the parity condition (0.4.2) we conclude d; > d + 2.
In the second case L — Kx is ample so that x(L) = h°(L). Since Kx ~ Ox we also
have x(L) = x(Kx + L} = h°Kx + L). Thus h°(Kx + L)(= h%(Kxa + L") =
AO(L) > A(LA) > 5,
From (0.10.2) we know that d3 > d3. Assume d3 = d;. Recalling that d; =
2. ds = df, we have on the second reduction (X', K'},K' = Kx+ + L' (see (0.3)),
K' K'-(K'= L") = 0 and therefore, since X/ is ample, K’ ~ L' that is Kx+ ~ Oy and
L' is ample. Then as above we have h°(Kx + L) = h°(L'). Since h°(L') > h°(L) >
RP(L*) > 5 we get h®(Kx + L) > h®(L*) > 5 in this case. To see that h°(L') > A%(L)
note that L == "L’ — D as Q-Cartier divisor on X', where ¢ : X — X' is the second
reduction map and D is an effective -Cartier divisor (see [BS], (4.5)). Thus we
conclude that either A°(Kx + L) > h°(L*) > 5 or d3 > dz + 1. In the latter case
d3 > dg + 2 by parity condition (0.4.2).

It remains to show that d; > d; + 2. From (0.10.2) we know that d, > d;.
Assume dy = dy. Then d? = di > dad, implies d; > d;. Hence, by using again
(0.10.2), we conclude d3 = do(= d)). Therefore, exactly the same argument above
shows that A®(Kx + L) > h%(L*) > 5. Thus we can assume d > d;+1. Ifdy = d; +1
we find

dy = (dy +1)* > dids > di(d3 +2) = di(d1 + 3).

Then d% + 2d) + 1 > df + 3d;, whence dy < 1. This contradicts (2.1.1). Therefore
dy > d) + 2 and we are done. Q.E.D.

(2.3) Lemma. Let (X* L"), (X,L) be as in (2.0) with the assumptions as in (2.1).
Let S* be a smooth element of |[L*| and let S be the corresponding smooth surface
in|L|. Let d := L3. Then

d(d— 17) + 12x(Os) > 18.
Proof. Let d* = L*’. Let v be the number of points blown up under the first
reduction map r: X* — X. Then d* = d -7, Kgar -Kgr = d5 = d; -y and Lemma
(0.5.3) yields

(d=7)(d - 5= ) = 10(g(L) = 1) + 12x(Os) > 2d; - 2
or
(2.3.1) d(d=5)—=10(g(L) = 1) = 12x(Os) + v(y + 7 — 2d) > 2ds.

We claim that y(y +7—2d) < 0. Indeed otherwise y+7 > 2d, or 2d—y = d+d” < 6.
This contradicts (2.1.1). Therefore (2.3.1) reads

d(d - 5) — 10(g(L) — 1) + 12x(Os) > 2d>.
Since 2g(L) = 2 = d + d; this is equivalent to
(2.3.2) d(d — 10) + 12x(Os) > 2dz + 5d,.

By Lemma (2.2) we get 2d2+5d; > 2d +8+5d+ 10 = Td 4 18. Thus (2.3.2) gives the
result. Q.E.D.
We can now prove the main result of this section.

11
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(2.4) Theorem Let (X*, L") be a smooth threefold polarized with a very ample line
bundle L*. Assume that x(X*) > 0. Let (X, L) be the first reduction of (X", L").
Then ho(KxA + L")(: ho(Kx + L)) > 4.

Proof. We can suppose the assumptions in (2.1) are satisfied. Let S be a smooth
element in |L|. From (2.1.3) we know that x(Og) > 3. Use Tsuji inequality 50.6). If
x(Os) > 6 we have the resuit. If x(Os) = 5, we have 2h°(Kx + L) > 5+ S+ g%.
Recall that (X*, L") is of log-general type since x(X") > 0. Then the same argument
as in the proof of Theorem (1.2) implies dy > 12. Therefore % + g% > 1 and hence
2h% Kx + L) > 6, that is h% Kx + L) > 4. Thus it remains to consider the cases
x(Os) = 3,4. Recall that d3 = K5 - K5 < 9x(Os) by (0.10.1). Let ¥ be the number
of points blown up under the first reduction map r : X* — X. By combining Lemma
(2.2) and Proposition (0.5.2), with A°(Kx) = 0 in view of (2.1.2), we find

(2.4.1) 44h%(Kx + L) + 58x(0s) > (50 —~ d)d + 84 := f(d).

Clearly the function f(d) reaches the maximum for d = 25 and it is symmetric with
respect to the d = 25 axis.

Let x(Os) = 3. Then, by Lemma (2.2), 9x(Os} = 27 > d2 > d+ 4, so
that d < 22. Moreover Lemma (2.3) yields d(d — 17} + 18 > 0 or d > 16. For
16 < d <22, f(d) > f(16) = 632. Thus (2.4.1) gives 44h°(Kx + L) + 178 > 632, or
RO (Kx + L) > 11

Let x(Os) = 4. Lemma (2.2) yields 36 > d2 > d + 4, whence d < 31 and Lemma
(2.3) gives d(d —17)+ 30> 0,0or d > 15. For 15 < d < 31, f(d} > f(15) = 613. Thus
(2.4.1) reads 44h°(K x + L) + 236 > 613, or A%(Kx + L) > 9. Q.E.D.

(2.5) Remark (the stable case). Notation and assumptions as in (2.4). We have the
following explicit lower bound for A°(Kx + L) in terms of d := L3,

d< 9h°(Kx + L).

To see this, use Tsuji inequality {0.6) and inequalities (0.10.2). One has

! d d d 11d
BYAR v + L) — R W LA
WKy + L) =xXO0)2 o+ 2 5+ 5 = 5%
Therefore
(25.1) 11d +96x(0s) < 192h°(Kx + L).

Note that since dz > d and d» < 9x(Os) we find 9x(Os) > d. Hence (2.5.1) yields
32 O cr
11d + —3~d < 192R%(Kx + L).
This gives the result. . Q.E.D.

§3. The case of non negative Kodaira dimension, II.

Let (X*, L") be a smooth threefold polarized with a very ample line bundle L*.
Assume that x(X*) > 0. Let (X, L) be the first reduction of (X", L*). The aim of
this section is to prove that h%(Kxa + LM)(= h°(Kx + L)) > 5 with equality only if
(X7, L*) is a smooth quintic hypersurface in P*.

First, let us show an easy consequence of [Mi}, (1.1) that we need.
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(3.1) Proposition. Let V he a smooth threefold and let S be a smooth surface
which is an ample divisor on V. Let H be the line bundle associated to S. Let
dj :=(Kv + HY - H377,7=0,1,2, dy = d. Assume that Ky is nef. Then

dy +d

dz + 1

< 9x(0s)

and, if Ky ~ Oy, dg < 6x(0s).

Proof. Let Hg be the restriction of H to S. From [Mi], (1.1) we have Ky - Ky - H <
3c2(V) - H. Therefore, since Ky - Kv - H = (Ks — Hs)- (Ks — Hs) by the adjunction
formula and ¢2(V) - H = ¢(5) — Ks - Hg by the Chern relation c(S)e(Hg) = ¢(V),
where ¢(-) stands for the total Chern class 1 + ¢;(-) + ¢2(-) + ..., we find

d2 - 2d1 + d S 3C(S) - 3d]
or, since d; = Ks - Kg,
(311) de +d, +d< 38(5) = 36X(05)—3d2.

Therefore 1“# < 9x(Os) — da.
If Ky ~ Oy, we have d) = d3 = d and hence (3.1.1) gives d» < 6x(0s). Q.E.D.
The following further numerical condition is the main technical tool we need to
improve the results of §2.

(3.2) Proposition (Key-Lemma). Let (X", L") be a smooth threefold polarized
with a very ample line bundle L*. Assume that x(X*) > 0. Let (X, L), r: X* — X,
be the first reduction of (X*,L"). Let S be a general smooth element in |L|. Further

assume that do = 9x(Os)— 1. Thend, > 4+d.
Proof. First, note that the assumption on d; implies that

o) S does not contain {~—2)-rational curves.

Since e(S) = 12x(Og) — dz we find 3e(S) — dy = 4. Let k& be the number of (—2)-
rational curves on S. Then the Miyaoka inequality & < 2(3e(S) — Ks - Kg) (see
[BPV], p. 215) gives k < % that is £ = 0.
Note also that by the parity condition (0.4.2), d, # 3+ d. Therefore it is enough
to show that d; > 2+ d. Then let us assume d; — d < 2. In view of Proposition (3.1)
we can assume /Ky not nef. Indeed otherwise we would have d; + d < 4 and hence
2d* < 2d < 4, which is clearly not possible. Since Kx is not nef, the Mori Cone
theorem says that there exists an extremal ray R. Let ¢ = contg : X — Y be the
contraction of R and let E be the locus of R, that is the locus of curves of X whose
numerical classes are in R. According to Mori [Mo] we know that either
i) E=P? NE = Op(-a),a=1,2
11) E= lp] X Pl,,f\fx = Or:xrl(—l, —l),
iii) £ = Q,Q quadric cone in B3, A¥ = 0g(-1), or
iv) E is isomorphic to a P! bundle over p(E), p(E) nonsingular curve and Ngl! >
QOp:(—1) for any fiber f of £ — p(E).

Furthermore p(E) is a point in the first three cases and p is the blowing up along
p(E) in each case.
Case i). Assume a = 1. One has Ky =~ p"Ky + 2E. Then

di-d=Kx-L- L=p"Ky -L-L+2E-L-L.

13
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Since dy =d < 2, p*Ky - L- L > 0 by the assumption x(X} > 0,and E-L-L>1
we conclude that p*Ky - L-L =0, E-L-L = 1. Thus Lg = Opa(l). Since
Kx|g = Kg — det N¥ = Opa(-2) we get (Kx + L)g = Opa(—1). Since (X*,L*) is
of log-general type, Kx + L is nef, so we find a contradiction.

Assume @ = 2. In this case 2Ky = p"2Ky +E and Y has a 2-factonal singularity.
As above, p" Ky - L - L > 0 and therefore

(3.2.1) 4> 2(dy—-d)=2Kx - L-L=p"2Ky - L - L+FE-L-L

implies - L-L = Lg-Lg €4 and hence Lg = Opa(m),m = 1,2. Since Kx|g =
Kg —det N¥ = Opa(—1) we get (Kx + L)g = Opa(m —1).

Let m = 1 and let C'be alinein |[Lg| = |Opa(1)]. Then Kgc = (Kx+L)c = Oc,
that is K5 - C = 0. Then C? = —2. This contradicts ) above.

Let m = 2. Then £ - L-L = 4 so that (3.2.1) gives p*Ky - L - L = 0. Since
x(X) > 0, h°(NKx) > 0 and hence h°(2NKy) > 0 for some N > 0. Therefore
2Ky ~ Oy and hence 2Ky ~ E. Thus we find the contradiction

2Kx (Kx+ L) (Kx+LY=(Kx+L)g - (Kx +L)g = Op(1) - Opa(l) = L.

Cases ii), iii). In these cases, Y is factorial and Kx =~ p* Ky + E. Let E = P! x P!.
One has again p" Ky - L- L > 0 and hence

2>d—d=Kx L - L=p"Ky-L-L+E-L-L

implies p°Ky - L - L =0, E-L-L=1Lg-Lg =2 Then Lg = Opyp:1(1,1). Since
Kxijg = Opigpr(—1,-1) we find (Kx + L)g = Opixpr. Let C be a smooth curve in
|Lg)] = |Opixps (1, 1)]. Therefore Ksi¢c = (Kx + L)c = O¢, that is K5 - C = 0. Then
C? = —2. This contradicts again ) above.
The same argument rules out the case when E is a quadric cone.
Case 1v). In this case Y is smooth and Kx = p" Ky + E. Note that since L is very
ample outside of a finite set of point and £ is a P* bundle one has £ - L - L > 2.
Thus the usual argument, by using d; — d < 2, p*Ky - L-L > 0, implies that
E-L-L =2 Hence E =P x P and Lg = Opixr:(1,1). Let f be a fiber of
E — p(E). Since Nf = Ops and NV}, = Opi(—1) we get det V¥ = Opi(—1) and
therefore Ky, = Op:(—1), so that (Kx + L); = Op:. By a consequence of Bertini's
theorem (see [S3], (0.6.2)) we can assume that the general element S of |L] contains
f and S, E intersect transversely along f. Then Kg; = (Kx + L); = Op:, that is
Ks - f = 0. Therefore (f - f)s = —2, so we contradict again ) and we are done.
Q.E.D.

We can prove now the main result of the paper.

(3.3) Theorem. Let (X", L") be a smooth threefold polarized with a very ample
line bundle L®. Let S* be a smooth surface in |L*| Assume that x(X*} > 0. Then
RY(Kxa + L") > 5 with equality only if (X", L") is a smooth quintic hypersurface
in P*. Furthermore either p,(S*) > 6 or S is a degree d* = 5 surface in P? with
Pg(Sh) =4.

Proof. Let (X, L), r : X* — X be the reduction of (X*,L*). Let § be a smooth
element in |L| corresponding to S* and y the number of points blown up under r.
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Let d,d;,j = 0,1,2,3, be the pluridegrees of (X*, L*), (X, L). From (2.4) we know
that h%(Kxa + L*) > 4. Thus we can assume h°(Kx + L) < 5. From

RO (Kx + L) > h%(Kx) +h°(L) — 1> h%(Kx) + h°(L*) -1

we see that h°(Kx) > 1 implies h°(L*) < 5. Since x(X*) > 0 one has h®(LA) = 5
and (X*, L") is a hypersurface in P*. Since h°(Kxa + L") = h®%(Kx + L) < 5 we
have d* = 5. Therefore in what follows we can assume h%(Kxs) = A% Kx) = 0
(compare with (2.1.2)). We can also assume that the numerical inequalities of (2.2)
hold true. Indeed, if not, we would have A°(Kxa + L*) > h°(L*) > 5 and hence
either h®(Kxa 4+ L*) > 6, in which case we are done, or h°(L*) = 5, and we would
fall again in the special case above. By using this and all numerical conditions stated
in previous sections, namely (note that not all the following conditions are the best
possible):

1) 1< x(Os) < 2h%(Kx + L) (from S being of general type and Tsuji inequality
(0.6));

2) 5 <d<dy €£9x(0s) (from (2.1.1) and Miyaoka inequality);

3) 2g9(L) — 2 =d{ + d (the genus formula (0.2));

4) d+1 < g(L) € 12(2h°%(Kx + L) — x(Os)) (genus formula and d; < d (see (2.1.1))
give the lower bound as well as ¢(L) < dy + 1. Then the Tsuji inequality (0.6)
gives the upper bound);

5) d+2 < dy < 9x(Us) (from d; < d, and the Miyaoka inequality};

6) d? > dd; (Hodge index relation (0.4.1));

7) d2 > 8(x(Os) — h%(Kx + L)} + d (from (0.10.3));

8) d2+ 2 < d3 < d%/d; (from (2.2) and (0.4.1));

9) dy = d3 mod(2) (parity condition (0.4.1));

10) 0<y<d-5(fromy=d—d" and d > d" > 5 (see proof of (2.1.1));

11) d* =d— v, d} = dy + ¥, d} = dy — 7 (from (0.4));

12) d*(d® —5) — 10(g(L) ~ 1) + 12x(Os) > d? (Lemma (0.5.3));

13) 2h%(Kx + L) — x(Os) > (84, + 3d3)/96 (from Tsuji inequality (0.6));

14) 44h%(Kx + L) + 58x(Os) +4 > 12d; + 17d; + da + (20 — d*)d* (Proposition

(0.5.2)),

We carried these computations out by using a simple Pascal program that we include
for completeness at the end of the proof. In the remaining case above one has dg =
9x(0s) — 1 and dy < d + 4. Therefore Proposition (3.2) applies to rule it out. Thus,
except for smooth quintic hypersurfaces in P4, h% K x + L) > 6. This proves the first
part of the statement.

To show that pga(S* (= pe(S)) 2 6, look at the exact sequence

(3.3.1) 0— Kxr — Kxr®@L" — Kga =0,

By what already proven we can assume h°(K xa®L”*) > 6. Indeed otherwise (S*, L")
is a smooth quintic surface in B3 with p,(S*) = 4. If A%(Kxa) = 0, then p,(S) >
R%(Kxa ® L") > 6, so we are done. Thus we may assume h%(Axa) > 1. We may
also assume that S* lies in P¥ with N > 4, so that

(3.3.2) RO(LAA) > 5.
Indeed, if |[L4a| embeds S* in P° as a surface of degree d* = L* - L* . L, we have

Pg(S) = h%(Ksa) = h%(Osa(d” — 4)) = h®(Ops(d* ~4)) > 6
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as soon as d* > 6. Since (X"} > 0, we have d* > 5 and either we are in the special
case where S” is a degree d* = 5 surface in P or h%(L4.) > 5. Note that

(333)  pe(S) = A2AKxaisn + Lin) 2 hO(Kxnjsn) + hO(L3A) — L.

Assume h®(K x») > 2. Then by Lemma (0.11) we get h®(K xa|sa) 2 2, so we are done
by combining (3.3.2) and {3.3.3). Thus, by the above, we can assume h°(Kxr) =
1, h%(L5A) = 5. Hence in particular X" lies in P® so that ¢(X") = ¢(S*) = 0.
Therefore from the exact cohomology sequence associated to (3.3.1) we conclude that
R (Kxa) =0, x(Oxa)(= x(Ox)) = 0, and x(Osa)(= x(Os)) = 6. Now, the same
Pascal program used above, running now with the invariants x(Ox) = 0, x(Os) = 6,
and the double point inequality (0.5.3) as an equality, shows that there are no possible
cases. Q.E.D.

Pascal Program listing invariants when h°(Kxa @ L") < 5.

var h0, hOKL, chiS, d, g, d1, d2, d3, gamma, dhat, d1hat, d2hat, d3hat: longint;

begin
w]‘i[ﬁln(' l' "hOKIJI' 1t !' lchisl’ t |, IdlI 1t " |gP' 1 '. lgE ” ]13" L} 1' 'dll' L} l' ld2l‘ ] l' td3l);
for hOKL :=1to 5 do
begin
for chiS := 1 to 2 * hOKL do

begin
ford =5 to 9 * chiS do

begin
forg:=d+ 1to12* (2 * hOKL - chiS) + 1 do
begin
dli=2%*g-2-d;
for d2:=dl +2t0o 9 * chiSdo
begin

if d2 <=dl * dl div d then

if 8 * (chiS - hOKL) <=d2 - d then

ford3:=d2+ 2tod2 *d2 divdl do

begin
if 0 = (d3 - d2) mod 2 then
for gamma :=0tod- 5 do
begin
dhat := d - gamma;
dlhat := d1 + gamma;
d2hat := d2 - gamma;
if dhat * (dbat - 5) - 10 * (g - 1) + 12 * chiS >= 2 * d2hat then
if2*hOKL - chiS>=(32*dl +12*d3+12*32- 1) div (12 * 32) then
if44* hOKL +58 *chiS +4>=12%d2 + 17 *dl + d3
+ (20 - dhat) * dhat + 5§ * gamma then
writeln(hOKL, chi$, d, g, gamma, d1, d2, d3):
end;
end:
end;
end;
end;
end;
end;
end.
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Let us point out the following standard consequence of the results above in the
higher dimensional case.
(3.4) Remark (the higher dimensional case). Let L* be a very ample line bundle
on an projective manifold, X*, of dimension n > 3. let V be the 3-fold obtained as
the transversal intersection of n — 3 general elements Ay, ..., A,_3 of |L*]. Let L be
the restriction of L* to V. Then we have:

1. If (V, L) is of log-general type, then h°(K xa + (n — 2)L*) > 2;

2. H (V) >0, eg. if the Kodaira dimension of Kxa ® L*"~% is non-negative, then
h(Kx» ® LA""%) > 5 with equality only if n = 3 and (X", L") is a degree 5
hypersurface of P*.

If n = 3 the result is proved in the Theorems (1.2) and (3.3). Therefore we can
assume n > 4. The Kodaira vanishing theorem yields

W (Kxa @ LA > 8Ky + L).

Then 1) follows from the corresponding n = 3 statement (1.2). By using again the
inequality above and (3.3) we have either A°(Kxa ® L*""%) > 6 or A% Ky + L) =5
and (V, £) is a quintic hypersurface of P%. In this case, since L is very ample, it is easy
to see that (X*, L*} is a degree 5 hypersurface in P**! and h%(Kxa +(n —2)L*) =
n+ 2 > 6. This shows 2).
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