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ON THE DIMENSION OF THE ADlOINT LINEAR SYSTEM
FOR THREEFOLDS

by

M.C. Beltrametti and A.J. 50mmese

Introduction. Let LII. be a very ample line bundle on a smooth, n-dimensional,
projective manifold, XII., i.e. assurne that LA :::::: j·OrN(l) for same embedding j :
XII. _ JFN. In [54) it is shown that for such pairs, (XII., LA), the Kodaira dimension

of Kxll. 0 LlI.n-2 is non-negative, i.e. there exists same positive integer, t such that
hO «Kxll. @LlI.n-1)1) ~ 1, except for a short list of degenerate examples. It is moreover
shown that except for this short list there is a morphism r : XII - X expressing XII.
as the blowup of a projective manifold X at a finite set B, and such that:

a) Kxll. 0 LlI.n-1 == r·(Kx 0 Ln-I) where L := (r.LlI.t· is an ample line bundle,
and Kx 0 Ln

-
1 is ample;

b) [(x 0 Ln-1 is nef, Le. (/<x + (n - 2)L) . C ~ °for every effective curve Ce x.
The hope that except for a few examples, K x 0Ln-1 is not just nef, but spanned

at all points by global seetions is supported by a number of results:
1. the analogous result is true for K XII. 0 LII. n-1 (see [5V] for the history in this

case);
2. in [55] the pairs, (XII., LII.), with the Kodaira dimension of Kx" 0LII. n-2 negative

are characterized by hO(Kxll. 0 L lln - 1) = 0, and in particular if Kx 0 Ln- 2 is
nef it has a non-trivial global section;

3. if K x 0 Ln
-

1 is nef then (Kx 0 Ln
-

1 )2 is spanned by global sections at all points
[55];

4. in [B5S] it is shown t.hat if XII. has no rational curves (e.g. if XII. is hyperbolic in
the sense of Kobayashi, or if the cotangent bundle Txll. is nef) and if the clegree,
Cl (LII.)n ~ 850, then K x " 0 Llln - 2 is spanned by global sections at all points.
There is one known counterexample (see (LPS]) of aDel Pezzo threefold of de-

gree 27 with Kx 0 L ample but not everywhere spanned. A search for other coun­
terexamples led us to the following surprisingly strang result, which would in fact
not be implied by spannedness of fixll. 0 L lln - 1. (Note that hO(Kx" 0 LlI.n-2) =
hO(Kx 0 Ln

- 2 ).)

TheoreIn. Let LII. be a \'ery ample line bundle on an n-dimensional projective man­
ifold, XII. I witb 71 ~ 3. If tllere exist n - 3 elements {Al, ... , An- 3 } elLIl.I meeting
transversely in a 3-fold of non-negati\'e Kodaira dimension, e.g. if tbe Kodaira di­
mension of Kxll. 0 Llln - 3 is non-negative, then hO([(xll. 0 LlI.n-2) 2: 5 with equality
onIy if n = 3, and (XII, L11.) is a degree 5 hypersurface of JP1.

We also show that if the Kodaira dimension of Kxll. 0 LlI.n-2 is at least 3, then
hO(Kx" ® LlI.n-2) ~ 2.

The method of proof is to use the doublepoint inequality for J..folds in projective
space, Tsuji's inequality, Miyaoka's bound for the number of -2 curves on a surface
of general type, and the major results on the adjunction theory of 3-folds.

\Ve refer to [BBeS] for a study of the dimension of the adjoint linear system in
the case of quadric fibrations over surfaces.



l\.fAURO C. ßELTRAMET'l'1 AND ANDREW J. SOMMESE

80th authors wOllld like to thank t.he Sonderforschungsbereich 170 at the Math­
ematical Institute of the Universit.y of Göttingen for their support during the summer
of HlU2, where this work was conceived and a large part of the research was carried
out. The Mathematical Inst.itute's exccllent computer laboratory made it a pleasure
to carry out the calclliations from which this work grew. 80th authors would also like
to t.hank the Max-Planck-Instit.ut.e in ßonn for its support dnring the final stages of
writ.ing up this pap~r. Th~ :-;ec:ond allthor also t.hanks the National 5cience Foundation
for t.heir support.

~o. Bnckground ulflterial.

\Ve work ov€r "he complex IllilIlhers C. Through the paper w€ deal wit.h smoot.h,
projective variet.ies, V. 'Ve denok hy O\' the structure sheaf of V ami by I{V the
canonical bundle. For allY coherelll, sheaf :F on V, hi (T) uenot.es the complex dimen­
sion of Hi(V, :F).

Let. L be a line hundle on V. L is said to he numerically effecti\'e (Hef, for short)
if L . C 2: 0 for all dfective curves C on V. L is said to be big if K( L) =dirn V, where
f,~ (L) denot.es the Koda ira dimensioll of L. If L is nef then this is eq11 ivalen t to he
cdL)tl > 0, where cdL) is t.he tlrst ehern dass of Land Tl = dim 1./.

(0.1) The notation lIsed in t.his paper are st.andard from algebraic geometry. Let 1IS

only fix the following.

:::::: (respectively ..... ). 1.111: lilwar (respect.i vP.iy numerical) equivalence of line hllndles;
X(L) = Li(-l)i},i(L), t.he EIII~r charact.erist.ic of a line bllndle L;
1LI, the complet,e linear system associat.cd with a line bumlle L on a variety V,
r (L ), the span: of t.he glohal secl. ions of L. \Ve say t.hat L is spanned if i t is
spanned at. all points of V hy f( L);
r-(I./) = cn(V). tlle topologic:al F:uler rharact.eristic of V, for V smoot.h, where
c" (V) is the ll-lh ehern dass of t.llf~ tangent. hundle of V. Ir V is a snrface,
f;( V) =12.\'(01') - 1\·" . I{1';
n:( V) := f,"(l{,,), the Kod ai ra dimension, for V smoot.h.

Line hUlldles ami divisors ,He lls~d wi t.h li ttle (or 110) distinctioll. Hence we shall
freely switch from t.he Illlllt,iplical.in~ t.o "he additive notation ami vice versa.

(0.2) For a lilie hllndle L Oll a \'ari~t.y V of dimension 11 the sect.iOIlal genus, y(L) =
y(V, L), of (V L) is defilled hy '2y( L) - '2 = (K\' + (Tl - I )L) . Ln-I. Note t.hat if
1LI c.ontaills Cl redured irredllci hlt~ cu rve, C, thell y( L) = y(C) = 1 - x(Oe), t.he
öritllmet.ic genus of C.

(0.3) Reduction (s~f' e.g. [S'l], (U.:», [RFSL (0.2) aud [85], (:3.2), (4.:l)). Let.
(X", L") be a smool.h lI-dimensioll<lI projer.t.ive variet.y polarized wit.h a very ample
line h1llldie L". 11 2 '2. A Sllloot.h pola rized variet.y (.Y. L) is called a (first) recluctiolJ

of (X", L") if t.here i:" ö Illorphislll ,. ; .'\." - .'\. exprp.ssing .'\." as the blowing Hp of X
at. a finit.e set of poi uts. B. such f,hat. L := (r. L")** is ample and L" :::::: ,." L - [,.-1 (B)]
or, equivalent.ly, l\·x" + (11 - I)L" :::::; ,··(h"x + (n - I)L).

Note that tohere is a olle t.o OllP. rar rt->SPOIl den ce hetween sl1looth divisors of 1L 1

w hich ron t.ai Il t.he :"P.t. Balld 5111001,h d iv i~ors of 1L" I.
Exc:ept. for an f'xplic.it, li~t. 01' weil 1lIlder~t.ood pairs (X ......, L") we call assllll1e (see

[54], [SV], [8S]):
a) l\"x" + (11 - l)L" i~ ~pallllt~d and hig and I\·x + (11 - I)L is very ample. Not.e t.hat.
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in this case such a reduction, (X, L), is unique up to iBomorphism. We will refer to
this reduction, (X, L), as the reduetion of (X", L").
b) Kx + (n - 2)L ia nef and big, for n 2: 3.
Then from tbe Kawamata-Shokurov base point free theorem (see (KMM], §3) we know
that \m(Kx + (n - 2)L)I, for m » 0, gives rise to amorphism, l' : X - X', with
connected fibers and normal image. Thus there is an ample line bundle Je/ on X' such
that K x + (n - 2)L :=::; 1'.1(.1. The pair (X', 1(./) is known as the second reduction of
(X", L"). The morphism <p is very weil behaved (see e,g. [BFS], (0.2) for a summary
of the results). Furthermore X has terminal, 2-Gorenstein (i.e. 2Kx is a line bundle)
isolated singularities and K/ ;:::::: Kx ' + (n - 2)L' where L' := (<p.L)·· is a 2-Cartier
divisor such that 2L :::::: <p. (2L') - V for some effective Cartier divisor V on X which
is <p-exceptional (see (BFS), (0.2.4), {BSL (4.2), (4.4), (4.5)). For definition aod prop­
erties of terminal singularities and for a few facts from Mari theory we use in the
sequel, as the Mari Cone Theorem and definitions of extremal ray aod contractioo of
an extremal ray we also refer to [KMM].
(0.3.1) «(S5], (0.3.1). \Ve will use the fact that f(aKx .... + bL") ~ f(aKx + bL) for
integers, a, b with b::5 a(n - 1).

(0.4) Pluridegrees. Let (X" l L"), (X, L) be a.s in (0.3) with n = 3. Define the
pluridegrees, for j = 0,1,2,3,

d; := (Kx .... + L")j . L,,3-j , dj := (Kx + LY .L3-j.

If 'Y denotes the number of points blown up under r : X" - X, the invariants d;, dj

are related by

d~ = da - "Y ; d~ =d! + "Y ; d~ = d~ - "Y ; d~ = d3 + r·

\Ve put d" := d~, d := do. If Kx + L is nef, by the generalized Hodge index theorem
(see e.g. [BBS], (O.15)l (FL (1.2)) one has

(0.4.1) dr ~ dd~ ; d~ ~ d l d3

and the parity Lemma (1.4) of [BBS] says that

(0.4.2) d == d l mod(2) ; d~ == d3 mod(2).

Moreover if Kx + L is oef and big the numbers dj are positive.
If the second reduction , (X'l KI),}CI ;::::: /{x' + L' l of (X" l L") exists we ean also

define
1, .- y'j L,3- j '- 0 1 2 3 d'·- d'(j ,- f\.-' l J - l , " .- o·

\Ve will use the fact that

(0.4.3)

To see this, let l' : X - X' be the second reduetion morphism. reeall that 2L ::::::
'P. (2L') - V for same etfeetive Cartier divisor V whieh is <p-exceptional (see (0.3»)
and compute

d3 = (J(x + L)3 =(1'- K,')3 =1(.13 = d~;

2d~ = 2(J(X + L) 2 , L = 1'. K' , l'- KI . (<p. (2L') - 'D) = 2K, I ,K' . L' = 2d; .

(0.5) Double point forillula. \Ve need the following result (see also [BBSL (2.11.4»).
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(0.5.1) Theorem. Let (X", L") be 8smooth projective 3-fold, polarized with a very
ample line bundle L". Let N := hO(LI\) - 1. Let d;, j = 0, 1,2,3, be the pluridegrees
of(X", LI\) aB in (0.4). Let 51\ be a smooth element of ILI\I. Then

e(X") - 48X(Ox"') + 84X(Os"') -lld~ -17d~ - d~ + d"(dl\ - 20) ~ 0,

with equality if N :5 6.
Proof. We can assurne that XI\ C J?N with N ~ 6 by using the natural indusion
JP'G C ~ of a linear JPlI when a :5 5. The formula is simply a particular case of tbe
general formula (I, 37), Section D, p. 313 of [Kl. It should be noted that the virtual
normal bundle, V, in that formula is defined in our situation by the exact sequence

where p : XI\ - [F6 is the restrietion to XI\ of the projection from a general pN-7 if
N > 6 and V = Nr", the usual normal bundle, if N =6. Q.E.D.

The following is a consequence of the double point formula above.

(0.5.2) Proposition. Let (XI\, LI\) be a smooth projective 3-fold, polarized with a
very ample line bundle, LI\. Let (X, L) and r : XI\ - X be the first reduction and
first reduction map respectively. As in (DA), let d;, dj , 0 :5 j :5 3 be the pluridegrees
of (X", LI\) and (X, L) respectively. Let 1 be the number of points blown up by T.

Let 51\ be a smooth element in ILI\ I. Then

44hO(Kx'" + L") + 58X(Os"') + 2ho(Kx"') +4 ~ 12d2 + 17d1 + d3 + (20 - dl\)d" +51.
Proof. Let SE ILI be the smooth image of 5". Since hO(Kx'" +L") =hO(Kx + L),
x(Os) = x(Os"'), hO(J(x) = hO (Kx .... ), it suffices to prove the formula with hO(Kx '" +
L"), x(Os .... ), hO(Kx.... ) replaced with hO(Kx + L), x(Os), hO(Kx) respectively.

Since x(Ox) =x{Os) - hO{J(x + L), the double point formula (0.5.1) gives

(0.5.2.1) e(X")+48ho(Kx+L)+36X(Os) ~ lld~+17d~+d~+(20-d")dl\:= j{dj).

Let q := h1(Ox) = h1(Os), 6 := h2(Ox), and Pg := Pg(X) = hO(Kx). The hP,9 :=
hP,9(XI\) = h9{n~,,) cohomology table for X" looks like (recall that hP,9 = h9,P and
the Serre duality hP,9 =h3 - p ,3- 9 )

Pq 6 q 1

Ö b a q

q hI,1 := a h1,2:= b 6

1 q 6 Pg

Note also that h3,2 ::; h2 ,1 (see [ShSJ, (2.73), p.47), so we can assurne b = q+! for seme
non negative integer L Let bj := bj(XI\) = Lj;P+f hP ,9 be the j-th Betti number of
X". Then

(0.5.2.2) e{XI\):= 1 - b1 + b2 - b3 + b4 - bs + 1 = 2 - 6q + 46 + 2a - 2t - 2pg.

Note that the exact sequence

0- J(x - K x <9 L - K s - 0

4
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gives fJ = p,(S) - hO(Kx + L) + pg. Therefore (0.5.2.2) becomes

(O.5.2.3)e(X") =2 - 4q + 4pg(S) - 4ho(Kx + L) + 2a - 2q - 2f + 2pg

= 2(2 - 4q + 2pg(S) + 0) - 2 + 2q - 4hO(Kx + L) - 2( + 2pg

:5 2(2 - 4q + 2pg(S) + 0) - 2 + 2q - ~ho(Kx + L) +2pg.

The hP,' eohomology table for a smooth S" in IL" I is

pg(S) q 1

q h q

1 q Pg(S)

(0.5.2.4)

By the Lefsehetz theorem on hyperplane seetions (see [GH], p. 157) Olle has that
h l ,I(X") = 0 :s h. Thus by (0.5.2.3), (0.5.2.4),

(0.5.2.5)

Therefore, by combining (0.5.2.1), (0.5.2.5), we find

f(dj):5 e(X") + 4ho(Kx + L) + 44hO(J(x + L) + 36x(05)

:5 2e(S") + 2q - 2 + 44ho(Kx + L) + 36X(Os) + 2pg.

Now, e(S") = 12X(Os) - KSI\ . [(SA = 12X(Os) - d2 + "'I. Then the last inequality
gives

(0.5.2.6) f(dj) :S 60X(Os) - 2d2 + 2, + 44ho(Kx + L) + 2q - 2 + 2pg.

Sinee f(dj) = lld2 + 17d l + d3 + (20 - d")d" + 7" (0.5.2.6) gives

By using the Noether inequality d2 = [\·5 . J(s ~ 2pg(S) - 4, we find

(0.5.2.8) 2q - 2 = 2pg(S) - 2.\(0 5 ) :s d2 + 4 - 2X(Os).

By combining (0.5.2.7) and (0.5.2.8) we get the result.
The following is another special case of the double point formula.

Q.E.D.

(0.5.3) Lemilla ([Hr], p. 434, [8BS], (0.11)). Let (X" J L") be as in (0.3) witb n = 3
and let 5" be a smooth element of IL" I. Assume that f(L") embeds X" in JFN with
N ~ 5. TlJen

d"2 - 5d" - 10(9(L") - 1) + 12X(Osl\) 2:: 2KsA . KSA

5
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with equality if N = 5.

(0.6) Tsuji inequality (see [S5], §1, [TL §5). Let (X", L"L (X~ L) be as in (0.3)
wi th Tl =3 and let S' he a smoot h element of IL I. Then we have

or

hO(l( . + L) > d3 +~ + X(Os) .
X - 64 24 2

(0.7) Castelnuovo's hound. Let (X", L") he as in (0.3) with n =:3. Let S" be a
smooth element. of IL" land C" t.he smooth curve obtained as the transversal inter­
section of two general memhers of 1L" I· Assume that IL" 1 embeds X" in a projective
space [fDN, N ~ 4) and let. d" := L"3. Then fl(L") = g(e") and Castelnuovo's Lemma
(see e.g. [H], Theorem :t7) reads

" [d" -1" [d" - 2 N- :3
y(C ):5 N _ :i] (d - N + 2- ( N _ :l] - 1)-1-)

where N = h{l (L" ) - 1 and [x] means the greatest integer :5 x.

(0.8) LewuIR (Lefschet.z t.IH~orem in the singular case). Let V be an irreducible)
llormal variety ami D all ample effecf,ive Cartier divisor on V sucb that Sing(V) C D
and dirn V ;::: :3. Then t.he restrictioll mal' Pic(V) ~ Pic(D) is injective.
Proof. From the exponent.ial exac.t. sequences for D, X we obtain the following com-
mutative diagram wit.h exacl. rows

HIP/.2)
nJ

H 1(D. Z)

H1(O\, )

/31
H1(CJn)

Hl(CJ~; )
f 1

H1(OiJ)

H~(V 2)
b I

H'2(D,!Z)

Not.e t.hat under the ilssumpt.ion Sing( V) C D, the lIs11al Lefschetz t.heorem holds true
to say timt n is an isolllorphism flnd b is inject.ive. Note also that ß is an injeetion
since fll( -D) =0 hy I\oti<lira vilnishing. Tlius a standard diagram chase shows that
~I is injective. So we are done. Q.E.D.

\Ve also !leed t.he following t.l~r.hnical fflct.

(0.9) Proposition. Let. X Ile all irredllci1Jle, llormal variety wirh at most rational
singularities, and with dim X ~ :~ and codSing(X) 2: :~. Let L /Je an ample line bundJe
Oll X. Let L he a 1ine Il/llHJle Oll X such tIJat t.llere are. arhitrarily 1arge integers N
",itlJ LA '" CJ A for a general A iIJ jN LI· Tllen [, '" 0x.
Proof. Let :r. be a general point. of X anel let. Ir he t.he ideal sheaf of :r. in X.
Let J he the iden I !"heil f of Sing( X) i1I .\.. \ Ve c.all t.ake N arbi t.rari iy large such that
hl(N L@J 0I~l~) =O. Thi~ shows t.hat.IN L«():11 gives a map which is an embedding
in a neighborhood of r.. Tlwrdore N L 0:1 is big ami spanned off Sing(X). Then it
is a general fact. (see e.g. [IIr], Chap. II. 7.17.:1) t.hat there exists a desingularization
l' : ..Y - X with a SJHl.ll lied lilie 11111ldle L Oll .Y sl1ch t.hat L ~ ]1" (S L) - Z for some
effect.ive divisor Z Oll ;\' and wit.h !) .. (L) =N L (9 :J. Since N L 0 ..7 is big, L is also
hig.

Sillce X has rat.ional singularit.ies. the Kawamata- Viehweg vanishing theorem
and the Serre dllalit.y apply to give h I (-A) = h'2( -.4.) = O. Therefore
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Similarly, since L is spanned and big, H1(Ox) =H 1(O Ä)' Since X has rational ­
singulari tieoi we also have H I (0X ) ~ H 1(0x) and therefore

1l1(OA) ~ H1(OA).

H2(Ä, fl)

p. T

H 2 (A, fl)
j. T

H 2 (X, fl)
J

Pie(Ä)

p~ T

Pie(A)

j. T

Pie(X)

H 1(OÄ)

p~ 1I
H1(OA)

j·11
H 1(Ox)

qonsider the exaet eommutative diagram l given by the exponential sequenees for A,
A,.J\l

where i denotes the indusion i : A r- X. Since CA - CJA one has p* LA. - CJÄ on Ä.
This implies_ th_at ep(.mp· CA) =0 in H 2(Ä, fl) fOf_some positive integer m. Therefore
mp· LA = tb*(b) for some b E H 1(O Ä). Since b = p·b for some b E Hl(OA.), we
conelude that

p~(mCA - t/J(b)) = 0 in Pic(Ä).

Sinee X is Cohen-Macaulay and codSing(X) 2:: 3, A is also Cohen-Macaulay and
codSing( A) ~ 2. Then A is normal. Since Ä is smooth and p is bi rational it thus
follows that

mC A - t/J(b) = 0 in Pic(A),

or, since CA = j- (., b = i- b' for some bl E H 1 (0x),

i-(mC - a(b' )) = 0 in Pic(A).

Since i* is an injection by Lemma (0.8), we eonelude that mC - a(b') = 0 in Pic(X)
and hence ß(mC) = 0 in H 2 (X, fl). This implies that rn.c, and hence .c, is numerieally
equivalent to 0 x. Q.E.D.

(0.10) Threefolds of log-general type. Let (X/\, L/\), (Xl L) be as in (0.3) with
n = 3 and let dj, dj , j = 0, 1,2,3, the pluridegrees a.s in (0.4). \Ve say that (X/\, L/\) is
of log-general t.ype if l\x + L is nef and big. Hence in partieular the second reduction
(X',K')l r.p : X - XI, of(X", L/\) exist.s and the numbers dj are positive in this case.

Let 5/\ be a smooth element of IL" land S the corresponding smooth surface in
ILI. Then by the adjunction formula ](5 is nef. Furthermore ](5 is also big since
same multiple of ](5 is the pullback of same ample divisor under the restrietion of rp
to S. Then S is a minimal surface of general type. Hence we have

(0.10.1) d2 =](5' K 5 < 9X(05).

The i\.'1iyaoka inequality yields d2 :s 9X(05)' Note that the equality cannat happen.
Otherwise S is a ball quotient and hence a K(7f"l I), which wauld contradiet [51], (1.3).

Assurne that h:( X} 2:: O. Then from {S2], (1.5) and (3.1) we know that

(0.10.2) d3 2:: d2 2:: d1 2:: d

and

(0.10.3) 8X(Ox)~d2-d.

Note that if ~(X) 2: O. then (X", L") is of log-general type. Indeed, if hO(tI(x) > 0
for same positive integer t, then t(I{x + L) gives abirational embedding, given on a
Zarisk i open set by seet ions of r (L), and th t1S K(f":x + L) = 3. •

\Ve finally need ..he following general fact.
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(0.11) Lemma. Let V be a smooth connected variety, L an ample and spanned
Une bundle and C any line bundle on V. Let A be a general member oE ILI. Then
h°(.CA ) ;:: 2 jE hO(C) ;:: 2.
Prooe. Since hO(.!) ~ 2 we can take two independent seetioos s, t E HO(.!). Let D"
D, be tbe divisors defined by s, t. Note that An D, i- 0 and An D t i- 0, since
otberwise all A E ILI would contain either D, or D t , contradicting the spannedness
assumption. Note also that An D, #; An D t since otherwise we would have equality
for all A E ILI and hence D J =D t since A is spanned. This shows that the restrictions
SA I tA are independent, so we are done. Q.E.D.

For any further background material we refer ta [55] and [B5].

§1. The logegeneral type eRse.

Let (X", L") be a smaath threefald palarized with a very ample line bundle L".
Assume that (X", L/\) is of log-general type. In this section we want to show that
hO(Kx/\ + L") ~ 2. Let us fix the following.

(1.0) Assumption. Let (X", L/\) be a.s above and let (X, L) be the first reduction of
(X", L"). Let S" be a smooth element in IL"I and let S be the corresponding smooth
surface in ILI. Note that from Tsuji inequality (0.6) it follows that hO([(x + L) ~ 1.
Thus we may assurne that hO(Kx + L) = 1 a.s weil as

(1.0.1)

\Ve can also assurne

(1.0.2)

x(Os)(=X(Os")) = 1, d1 :511.

Indeed. if not, h°(I(x + L) ~ hO(Kx )+ hO(L) - 1 ~ 4.
The exact sequence

0- K x - K x 0 L - K s - 0

gives hO(Kx + L) =X(J(x) + X([(s) =X(CJs) - X(Ox). whence, by(1.0.1) and since
we are assuming hO(J(x + L) =1,

(1.0.3)

and

(1.0.4)

x(Ox) = X(Ox") = 0

q(S) =Pg(S) > O.

Therefore q(X) > 0, so we can also assurne by the Barth-Lefschetz theorem that
r(L/\) embeds );/\ in pN with

(1.0.5) N ~ 6.

Let dj,dj,i = 0,1,2.3, be the pluriJegrees of (.iY/\,L/\),(X,L) respectively as III

(0.4). \Ve also have

(1.0.6) d/\ :2: 10 ; d1 ~ 6 ; d2 ~ 3.
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To see this, first note that we can clearly assurne d" 2:: 9, since S" is a surface of
general type (see (0.10)), and X" is embedded in pN with N 2:: 6, we have from (LSL
(0.6) that d" =deg(S") > 2(N - 3) + 2 2:: 8. Hence d 2:: 9. Furtbermore d}, d'J, da
are positive. Use the Hodge index relations (0.4.1). From d? 2:: d'Jd we get d1 2:: 2
and therefore dad1 :5 d~ yields d'J 2: 2. If d'J =2, d? 2: dd2 gives d1 2: 3 and by parity
da 2: 2. Hence d~ 2:: d1da 2:: 18 gives d'l 2:: 5.
Hence d ?: 9 and therefore dr ~ dd2 yields d1 2: 5. If d" = 9, Castelnuovo's bound
(0.7) gives g(L") ::; 7 and the genus formula leads to the contradiction 14 :5 d + d1 :5
12. Thus d ~ d" 2: 10 and hence d1 ~ 6 from dr 2: dd'l 2: 30.

From (0.5) we derive the following useful numerical bound.

(1.1) Proposition. Le t (X" , L") be a smooth threefold polarized with a very ample
line bundle L". Assume that (X", L") is of log-general type and let (X, L), r : X" ­
X, be the first reduetion of(X, L). Let"'( be the number of points blown up under r.
Let d":= L,,3 be the degree o[(X",L") and let d", d1,d'l,da be asin (0.4). Let S"
be asmooth element in IL"I. Assume that X(Os .... ) = I,X(Ox .... ) =hO(Kx .... ) =0 (see
(1.0)). Then

106 2: (20 - d")d" + d3 + 12d'l + 17d1 + 5"'(.
Proof. Since x(Ox) = x(Os) - hO(Kx + L), we get hO(Kx + L) = 1. Moreover
hO(K~) =O. Then the inequality in (0.5.2) gives the result. Q.E.D.

\Ve can prove now the main result of this section. As above let (X, L), r : X" ­
X denote the first reduction of (X", L"). Recall that hO(Kx .... + L") = hO(Kx + L)
(see (0.3.1)).

(1.2) Theorem. Let (X", L") be a smooth threefold polarized with a very ample
line bundle L". Assume that (X", L") is oflog-general tYp'e. Then hO(Kxl\ +L") > 2.
Praoe. We may assurne that all the assumptions as in (i.OL (1.1), and (1.0.6) hold
true. Then, since da > 0, d2 ~ 3, d1 2: 6, from the inequality of (1.1) we find

106 2: (20 - d")d" + 1 + 36 + 102 =(20 - d")d" + 139.

Hence d" :5 20 is clearly not possible. Let d" =21. Then 106?: -21 + 139, again a
contradiction. Thus d 2: d" ~ 22, so that dr ~ dd'l gives dr 2: 66 or

d l ~ 9.

Let d" = 22. Then (1.1) yields the contradiction 106 > -44 + 37 + 153 = 146.
Thus d" ?: 23 and (1.1) gives again the contradiction 106 2: -69 + 37 + 153 = 121.
Therefore we can assume d" 2: 24.
Gase d'l =3. One has d~ =d3d1 =9 with da =1, d1 =9. Let (X', K' ), K/ ::::: [(x' + L' I

be the second reduction of (X", L") (see (0.3). Hence on X' we have, for a positive
integer m,

((mKI)'l . LI )2 = (mA:l)a(mA:' . L'2).

Since K,' is ample we can choose m » 0 and an irreducible divisor A E ]mA.:'] which
contains all singularities of XI (recall that X' has isolated singularities). Therefore

(.4 A . L~)2 =(A2 . LI
)2 =(.4 3 )(A . L '2 ) =(A~)(L1).

Then there exist rational numbers >., p such that >'L~ ..... IlAA' Note that we may take
>. even so that >'[1 is a line bundle (see (0.3». Hence (>,[1 - pA)A ..... CJA' Therefore,
by (0.9), )..L I

..... IlA on X' and hence

>.L' ..... IHnK,' ..... IlmKX' + J-lmL' .
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Sioce JJm - ,\ > 0 for m » 0, this implies that -Kx' is ample, so that q(X) =
q(X') = O. This contradicts the assumption (1.0.4).
Gase d'l ;:: 4. Let d2 = 4. Then by the parity condltion (0.4.2) we have ds ;:: 2 aod
therefore we find the eontradiction 16 =d5 ;:: d1ds 2:: 18.

Thus d2 ;:: 5. Note that we ean assume Kx, + 3K' ~ 4K' - L' to be nef a~d not
numerically trivial on X'. Indeed otherwise (see [M], (2.1) and also [BS], (2.1), (1.3))
(X', K') ~ ([?3, Orl( 1)). This eontradicts our present assumption q(X) =q(X') > O.
Therefore

(4}c' - L') .}C' . K/ =4d~ - d; =4d3 - d'l > 0

or 4ds > d'l(;:: 5). Thus d3 ;:: 2. Sinee d'l ~ 5 and d 2:: dA ~ 24, dr 2:: dd'J 2:: 120 yields
d l 2:: 11. If d'l = 5 then d3 2: 3 by the parity condition, so that we have the contra·
diction 25 = d~ ~ d3 d l 2: 33. Therefore d2 2: 6 and di ;:: dd'l ;:: 144 gives d l ;:: 12. Hy
using the Tsuji inequality (0.6) (see also (1.0.1)), this implies hO(Kx + L) ;:: 2, so we
are done. Q.E.D.

§2. The case of non-negative Kodaira dimension, I.

(2.0) Let (XA
, LA) be a smooth threefold polarized with a very ample line bundle LA.

Let (X, L) be the first red uction of (X A , L11 ). From now on we furt her assurne that
K(X II ) =K(X) ~ O. Henee in partieular (XII, LA) is of log-general type (see (0.10)) .

•
The aim of this section is to prove that hO(Kx '" + LA) 2: 4. To this purpose let

us fix the following.

(2.1) Assumptions. Let (XII, LA) be as in (2.0). Let SA be a smooth element of
IL ll l and let S be the corresponding smooth surface in ILI. Let dj, dj , j = 0,1,2,3,
be the pluridegrees of (XII, LlIlt (X, L) respectively a.s in (0.4). We can assume

(2.1.1)

Indeed, let XII '"- pN, N ~ 4, be the embedding given by f(LII). Let N = 4. Then
the assumption I'i:(XII) 2: 0 implies dll 2: 5, so that hO(Kx'" + LA) ~ 5. Therefore we
ean assume N 2: 5 and hellce from [LS], (0.6) we have dA := LAl 2: 3(N - 3) + 2 2: 8.
Thus (2.1.1) follows from (0.10.2). \Ve ean also assume

(2.1.2)

Indeed, otherwise , f(f{x +L) would define abirational map, given on a Zariski open
set by sections of f(L), and hence hO(Kx + L) ~ 4.

~loreover from [S5], (2.2lt (2.2/) we know that

(2.1.3)

•
First let HS show same numerical results we need.

(2.2) Lemnla. Let (XII, LA), (X, L) be as in (2.0) with the assumptions as in (2.1).
Then either hO(Kx + L) ~ hO(LA

) ~ 5 or

10



ON THE DIMENSION OF THE ADJOINT LINEAR SYSTEM FOR THREEFOLDS

Proof. Let S be a smooth element in ILI and let Ls be the restrietion of L to S.
Since K(X) ;::: 0, one has hO(mKx ) > 0 for some positive integer m. Then either
Kx . L . L > 0 or Kx -- 0 x. In the first case we have d 1 - d = (Ks - Ls) . Ls =
Kx . L· L > 0 or d} ;::: d + 1. By the parity condition (0.4.2) we conclude d} ;::: d + 2.
In the second case L - Kx is ample so that X(L) = hO(L). Since Kx -- Ox we also
have X(L) = X(J(x + L) = h°(I(x + L). Thus hO(Kx + L)(= hO(KxA + LA)) =
hO(L) ;::: hO(LA

) ;::: 5.
From (0.10.2) we know that d3 2: d'l' Assume d3 = d2 • Recalling that d2 =

d;, d3 = da, we have on the second reduction (X', K')I K' ~ KX I + L' (see (0.3)),
J(' . K'· (K.' - 1') =0 and therefore, since K,' is ample, K,' -- L' that is Kx' ..... 0 x' and
L' is ample. Then a.s above we have hO(Kx + L) =hO(L'). Since hO(L') 2: hO(L) 2:
hO(LA) 2: 5 we get hO(Kx +L) 2: hO(LA) ;::: 5 in this case. To see that hO(1') 2: hO(L)
note that L ~ 'P. L' - 'D as Q-Cartier divisor on X', where 'P : X - X' is the second
reduction map and 'D is an effective Q-Cartier divisor (see [BSL (4.5». Thus we
conclude that either hO( Kx + L) ;::: hO(LA) 2: 5 or d3 2: d'l + 1. In the latter CMe

d3 2: d'l + 2 by parity condition (0.4.2).
It remains to show that d'l ;::: d} + 2. From (0.10.2) we know that d2 2: d}.

Assume d2 = d 1. Then di = d5 2: d3 d} implies d 1 2: d3 • Hence, by using again
(0.10.2), we conclude d3 = d2(= dd. Therefore, exactly the same argument above
shows that h°(J(x +L) 2: hO(LA

) 2: 5. Thus we can assume d2 2: d 1+ 1. If d2 = d} +1
we find

d~ = (d1 + 1)2 ;::: d}d3 2: ddd2 + 2) = d 1(d} + 3).

Then dr + 2d1 + 1 2: dr + 3dh whence d1 ::s 1. This contradicts (2.1.1). Therefore
d2 2: d} + 2 and we are done. Q.E.D.

(2.3) Lemma. Let (X", L"), (X, L) be CIS in (2.0) with the assumptions as in (2.1).
Let S" be a smooth element of IL"I and let S be the corresponding smooth surface
in ILI. Let d := L3

. Then

d(d - 17) + 12X(Os) 2: 18.

P roof. Let d" = L" J . Let, be the number of points blown up under the first
reduction map T : X" - X. Then d" =d - 1', J(SA . J(SA =d~ =d2 -, and Lemma
(0.5.3) yields

(d -,)(d - 5 - i) - 10(g(L) - 1) + 12X(Os) ~ 2d2 - 2,

or

(2.3.1) d(d - 5) - lO(g(L) - 1) - 12X(Os) + ,h· + 7 - 2d) ~ 2d2 •

\Ve claim that ,(, +i - 2d) :5 O. Indeed otherwise ,+ 7 > 2d, or 2d - f = d+d" .'5 6.
This contradicts (2.1.1). Therefore (2.3.1) reads

d(d - 5) - 10(g(L) - 1) + 12X(Os) 2: 2d2 .

Since 2g(L) - 2 = d + d1 this is equivalent to

(2.3.2) d(d - 10) + 12.\'(Os) 2: 2d2 + 5d}.

By Lemma (2.2) we get 2d2 + 5d l ;::: 2d + 8 +5d + 10 =7d + 18. Thus (2.3.2) gi ....es the
result. Q.E.D.

\Ve can now pro....e the main result of this seetion.
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(2.4) Theorem Let (X", L") be a smooth threefold polarized witb a very ample Une
bUDdle L". Assurne that K(X") 2: O. Let (XI L) be tbe first reduction of (X", L").
Then hO(KxA + L")(= hO(Kx + L» ~ 4.
Prüof. We can suppose the aBSumptions in (2.1) are satisfied. Let S be a smooth
element in IL\. From (2.1.3) we know that X(Os) 2: 3. Use Tsuji inequality ~O.6). If
X(Os) 2: 6 we have the result. Ir X(Os) =5, we have 2hO(Kx + L) 2:. 5 + Tt·+~.
Recall that (X", LI.) is of log-general type since K(X") 2:. O. Then the same argument
as in the proof of Theorem (1.2) implies d 1 2: 12. Therefore ~ + ~ > 1 and hence
2hO(Kx + L) > 6, that is h°(I(x + L) 2:. 4. Thus it remains to consider the cases
X(Os) =3,4. Recall that d2 = Ks ' f(s < 9X(Os) by (0.10.1). Let -r be the number
of points blown up under the first reduction map r : X" - X. Sy combining Lemma
(2.2) and Proposition (0.5.2), with h°(l(x) = 0 in view of (2.1.2), we find

(2.4.1) 44hO(Kx + L) + 58X(Os) 2:. (50 - d)d + 84 := f(d).

Clearly the function f(d) reaches the maximum for d = 25 and it is symmetrie with
respect to tbe d = 25 axis.

Let X(Os) = 3. Then, by Lemma (2.2L 9X(Os) = 27 > d2 2: d + 4, so
that d :5 22. Moreover Lemma (2.3) yields d(d - 17) + 18 2: 0 or d 2: 16. For
16:5 d:5 22, f(d) 2: f(16) = 632. Thus (2.4.1) gives 44hO(Kx + L) + 178;::: 632, or
hO (/(X + L) 2: 11.

Let X(Os) = 4. Lemma (2.2) yields 36 > d';? ~ d+ 4, whence d:5 31 and Lemma
(2.3) gives d(d - 17) + 30;::: 0, or d;::: 15. For 15 ~ d :5 31, f(d) ;::: f( 15) =613. Thus
(2.4.1) reads 44hO(Kx + L) + 236 2: 613, or hO(Kx + L) ;::: 9. Q.E.D.

(2.5) Remark (the stable case). Notation and assumptions as in (2.4). \Ve have the
following explicit lower bound for h°(I(x + L) in terms of d := L3 ,

To see this, use Tsuji inequality (0.6) and inequalities (0.10.2). One has

2ho(f(~. + L) _ v(Os) > ~ + d3 > ..!!.- + ..!!.- = ~.
/\ A - 12 32 - 12 32 96

Therefore

(2.5.1) 11d + 96X(Os) :5 192hO(Kx + L).

Note that since d2 ~ d and d2 < 9X(Os) we find 9.\'(Os) > d. Hence (2.5.1) yields

32
11d + 3d< 192ho(Kx + L).

This gives the result. Q.E.D.

§3. The ease of non negative Kodaira dimension, 11.

Let (X", U') be a smooth threefold polarized with a very ample line bundle LI..
Assurne that ~(X"') ~ O. Let (X, L) be the first reduction of (X'" 1 L"). The aim of
this section is to prove t.hat hO(J(x'" + L")(= hO(l\"x + L) 2: 5 with equality only if
(X"', LA) is a smooth qllintic hypersurface in p4.

First, let us show an easy conseqllence of [M iJ, (1.1) that we need.
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(3.1) Proposition. Let V he a smooth threefold and let S be a smootb 8urface
which is an ample di visor on V. Let H be the line bundle associated to S. Let
dj := (Kv + HY .H3-j li = 0,1,2, da = d. Assume that Kv iB ner. Then

d} +d
dz + -4- ~ 9X(Os)

and, if I<v - Ov,d'J:5 6X(Os).
Proof. Let Hs be the restrietion of H to S. From [Mi], (1.1) we have K v . J(v . H ~

3C2(V), H. Therefore, since J(v . J(v . H = (Ks - Hs)' (Ks - Rs) by the adjunction
formula and C2( V) . H = e(S) - f{s . Hs by the Chern relation c( S)c( Hs) = c(V),
where c(.) stands for the total Chern dass 1 + cd') + Cz (.) + ..., we find

d2 - 2d 1 + d :S 3e(S) - 3d}

or, aince d2 = Ks . [{s,

(3.1.1)

Therefore d,t
d :5 9x(Os) - d2 .

If J{v - Ov, we have dl =d'l =d aod hence (3.1.1) gives d2 :S 6X(Os). Q.E.D.
The following further numerical condition is the main technical tool we need to

improve the results of §2.

(3.2) Proposition (Key-Lemma). Let (X"', L"') be a smooth threefold polarized
witb a very ample line bundle L"'. Assurne that K(X"') ~ O. Let (X, L), r : X'" - X,
be the first reduction of(X"', L"'). Let S be ageneral smooth element in IL1. Further
assume that d2 =9X(Os) - 1. Then d} ~ 4 + d.
Proof. First, note that the assumption on d2 implies that.) 5 does not contain (-2)-rational curves .

Since e(S) = 12x(Os) - d2 we find 3e(S) - dz = 4. Let k be the number of (-2)­
rational curves on S. Then the Miyaoka inequali ty k ::5 %(3e( S) - K s . K s ) (see
[BPVL p. 215) gives k ::5 t that is k = O.

Note also that by the parity condition (0.4.2), dl f:. 3 + d. Therefore it ia enougb
to sho~ that dl > 2 + d. Then let us assume dl - d :S 2. In view of Proposition (3.1)
we can assume J{x not nef. Indeed otherwise we would have dl + d ~ 4 and heuce
2d" ~ 2d :5 4, whicb is dearly not possible. Since K x ia not nef, the Mori Cone
theorem says that there exists an extremal ray R. Let I.p = contR : X - Y be the
contraction of R aod let E be the loeus of R, that is the locus of curves of X whose
numerical dasses are in R. According to l\-lori [Mo] we know that either

i) E == j?2,.VÄ =O~( -al, a = 1, 2;
ii) E == F1

X iPl ,lV: == Or1xr1(-I, -1);
iii) E ~ Q,Q quadric cone in rpJ,;V: =OQ(-I), or
iv) E is isomorphie to a Wl bundle over p(E), p(E) nonsingular curve and Nil! ==

Ort{ -1) for any fiber f of E - p(E).

Furthermore p(E) is a point in the first three cases and p is the blowing up along
p(E) in each case.
Gase i). Assurne a = 1. One has /(x :::::: p. /(y + 2E. Then

dl - d =J(x . L . L =p. Ky . L· L + 2E· L· L.

13
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Since d1 - d :::; 2, p. Ky . L . L ;::: °by the asaumption ,,(X) ;::: 0, and E . L . L ;::: 1
we conclude that p. Ky . L . L = 0, E· L . L = 1. ThuB L e ~ O~(l). Since
KXIE ~ KE - detNf ~ Or;)( -2) we get (Kx + L)e ::! O~( -1). Since (X", L") ia
of log-general type, Kx + L is nef, so we find a contradiction.

Assurne a = 2. In this case 2/(x :::::: p·2Ky+E and Y has a 2-factorial singularity.
As above, p. K y . L . L ~ 0 and therefore

(3.2.1 ) 4 ~ 2(d1 - d) =2I<x . L . L =p·2Ky . L . L + E· L . L

implies E . L . L = Le . Le :$ 4 and hence Le == Of:l(m), m = 1,2. Since KXIE ::::::
/(e - detNf :::::: 0l":l( -1) we get (Kx + L)E ~ Or;)(m - 1).

Let m = 1 aod let C be a line in ILEI = IOJ"'.1(l)I. Then K slc :::::: (Kx +L)e :::::: Oe,
that ia K s . C =O. Thcn C 2 =-2. This contradicls .) above.

Let m = 2. Then E . L . L = 4 so that (3.2.1) gives p. Ky . L . L = O. Since
",(X) ;::: 0, hO(NKx) > 0 and hence hO(2N Ky) > 0 for seme N > O. Therefore
2Ky .-..; Oy aod hence 2I<x - E. Thus we find the cootradiction

2Kx . (Kx + L) . (J{x + L) = (Kx + L)E . (/{x + L)E = OJ"'.1(l) . Or:'(I) = 1.

Gases ii), iii). In these cases, Y is factorial and K X :::::: p. K y + E. Let E ~ IP1 X IP1 .

One has again p. K y . L . L ~ 0 and hence

2 ~ d1 - d =Kx . L· L =p. K y . L· L + E· L· L

implies p. /(y . L· L = O! E· L . L = LE . LE = 2. Then LE ::! Ortxrl(l, 1). Since
KX1Q :::::: Ortxr1( -1, -1) we find (Kx + L)E =01"1 xrt. Let C be a smooth curve in
ILel = IOrlxfl(l, 1)1· Therefore [(slc:::::: (Kx +L)e:::::: Oc, that is Ks·e = O. Then
C 2 = -2. This contradicts again e) above.

The same argument mies out the case when E is a quadric cone.
Case iv). In th is case Y is smooth and J( X :::::: p. J(y + E. Note that since L is very
ample outside of a finite set of point and E is a IPl bundle one has E . L . L ;::: 2.
Thus the usual argument, by using d1 - d :5 2, p. /(y . L . L ~ 0, implies that
E· L· L = 2. Heoce E ::! I?l X jpl aod Le ::! Orlxrl(I, 1). Let f be a fiber of
E - p(E). Since Nf == Ofl and JVßI/ == Ord-l) we get detJVf == Ort(-I) aod
therefore K Xlf == 0,1 (-1), so that (KX + L)f == 0Pl. By a consequence of Bertini's
theorem (see [S3L (0.6.2» we can assurne that the general element S of ILI contains
fand S, E intersect transversely along f. Then J(sl/ = (Kx + L)J ~ Orl, that is
K S . f = O. Therefore (f . f)s = - 2, so we contradict again e) and we are done.

Q.E.D.

\Ve can prove now t.he main result of the paper.

(3.3) Theorelu. Let (X", L") be a smooth threefold polarized with a veryample
line bundle L". Let S" l,e a smooth surface in IL" I Assume that ",(X") 2: O. Then
hO(Kxl'o + L") ~ 5 with equality onJy if (X"! L") is a smooth quintic hypersurface
in wt. Furthermore eitIJer Pg(S") 2: 6 or 5" is a degree d" = 5 surface in p3 with
Pg(S") = 4.

Proof. Let (X, L), r : .'\" - .'\ be the reduction of (X", L"). Let S be a smooth
element in ILI corresponding to S" and 'Y the number of points blown up under T.
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Let dj,dj,j = 0,1,2,3, be the pluridegrees of (X'" L"),(X,L). From (2.4) we know
that hO(Kx '" + L") ~ 4. Thus we can assurne hO(Kx + L) :5 5. From

hO(Kx + L) ~ hO(Kx) + hO(L) - 1 2: hO(Kx) + hO(L") - 1

we see that hO(Kx ) ~ 1 implies hO(L") :5 5. Since K(X") ~ 0 ODe has hO(L".) =5
and (X", L") is a hypersurface in pot. Since hO( Kx'" + L") = hOl KX + L) :5 5 we
have d" = 5. Therefore in what follows we can assurne hO(KxA) = hO(Kx) = 0
(compare with (2.1.2)). \Ve can also assurne that the numerical ioequali ties of (2.2)
hold true. Indeed, if not, we would have hOU(XA + L") 2: hOl L"') 2: 5 aod hence
either hO(KxA + L"') ~ 6, in which case we are done, or hO(L") = 5, and we would
fall again in the special case above. Hy using this and a11 numerical conditions stated
in previous sections, namely (note that not aU the following conditions are the best
possible):

1) 1 :5 X( Os) :5 2ho (KX + L) (from 5 being of general type aod Tsuji inequality
(0.6));

2) 5:5 d:5 d'2 :5 9X(Os) (from (2.1.1) and Miyaoka inequality);
3) 2g(L) - 2 =d 1 + d (the genus formula (0.2));
4) d+ 1 :5 g(L) :5 12(2hO(Kx +L) - X(Os)) (genus formula aod d1 :5 d (see (2.1.1))

give the lower bound a.s weil as g( L) :5 d1 + 1. Then the Tsuji inequality (0.6)
gives the upper bound);

5) d + 2 :5 d2 ~ 9X(Os) (from d1 ~ d, and the Miyaoka inequality);
6) di 2: dd2 (Hodge index relation (004.1));
7) d'2 2: B(X(Os) - hO(Kx + L)) + d (from (0.10.3));
B) d2 + 2 ~ d3 ~ d~/dl (from (2.2) and (0.4.1));
9) d2 = d3 mod(2) (parity condition (0.4.1));

10) 0 :5 'Y :5 d - 5 (from 'Y = d - d" and d 2: d" 2: 5 (see proof of (2.1.1));
11) d" = d - 'Y, df = d1 + 'Y, d~ =d2 - 'Y (from (0.4));
12) d"(d" - 5) - 10(g(L) - 1) + 12X(Os) 2: d~ (Lemma (0.5.3));
13) 2hO(Kx + L) - X(Os) ~ (8d1 + 3d3 )/96 (from Tsuji inequality (0.6));
14) 44h°(I(x + L) + 58X(Os) + 4 ~ 12d2 + 17d1 + d3 + (20 - d")d" (Proposition

(0.5.2)),

\Ve carried these computations out by using a simple Pascal program that we include
for completeness at the end of the proof. In the remaining ca.se above one has d'J =
9X(0 s) - 1 an cl d1 < d+ 4. Therefore Proposi tion (3.2) applies to rule it out. Thus,
except for smoot.h quintic hypersurfaces in jp4, hO(Kx + L) 2: 6. This proves the first
part of the statement.

To show that Pg (5" )( = Pg (5)) 2: 6, look at the exact sequeoce

(3.3.1) 0- Kx'" - KXA ® L" - KSA - O.

Hy what already proven we can assurne hO (I(x'" ® L") ~ 6. lndeed otherwise (5", L")
is a smooth quintic surface in JF3 with Pg(S") = 4. Ir hO(KxA) = 0, then p,(S) ~
hO(KxA 0 L") ~ 6, so we are done. Thus we may assurne hO(KxA) ~ 1. We may
also assurne that 5" lies in JFN with N 2: 4, so that

(3.3.2)

Indeed, if IL~A I embeds 5'" in JF3 as a surface of degree d" =L" . L'" . LA, we have

pg(5) =h°(I\SA) =hO(Os.... (d" - 4)) = hO(Or3 (d" - 4» 2: 6
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aB soon aB dll ~ 6. Since K(X II ) ~ 0, we have dll ~ 5 and either we are in the special
case where 511 is a degree dll = 5 surface in p3 or hO( L~,,) 2: 5. Note that

(3.3.3)

Assume hO( KX") 2: 2. Then by Lemma (0.11) we get hO( KX" 15") 2: 2, so we are done
by combining (3.3.2) and (3.3.3). Thus, by the above, we can assurne hO(Kx") =
1, hO( L~,,) = 5. Hence in particular XII lies in ifll5 so that q(X A

) = q(SII) = O.
Therefore from the exact cohomology sequence associated to (3.3.1) we conclude that

h1(Kx") =0, X(Ox")(= X(Ox» = 0, and X(Os")(= X(Os» =6. Now, the same
Pascal program used above, running now with the invariants X(Ox) = 0, X(Os) = 6,
and the double point inequality (0.5.3) as an equality, shows that there are no possible
cases. Q.E.D.

Pascal Program listing iuvariants wheu hO(Kx" 0 LA) :5 5.

var hO, hüKL. cbiS. d. g, dl, d1. d3, gamma. dbal, dlhat, d2hal, dJbac longil1l;

begin
writeln(' ','bOKL',' ','chiS',' '. 'd',' '. 'g',' ','ganuna',' ','dI'.' ','d2',' ','d3');
for bOKL := I to 5 do

begln
for chiS := I to 2 * bOKL do

begin
for d := 5 to 9 • chiS do

begin
for g := d + I to 12 • (2 * hOteL - chiS) + 1 do

begin
dI := 2 • g - 2 - d:
for d2 := dl + 2 to 9 • chiS do

begin
if d2 <= dl * dl div d then
lf 8 • (chiS· hüKL) <= d2 - d then
for d3 := d2 + 2 to d2 • d2 div d1 do

begin
if 0 = (d3 • d2) mod 2 then
for gamma:= Oto d· 5 do

begin
dhat:= d· gamrna:
dlhat:= dl + gamma:
d2hat := d2 - gamrna;
if dhat * (dbat - 5) • 10 * (g - I) + 12 '" chiS >= 2 • d2hat then
if2· hOKL· chiS >= (32 '" dl + 12" d3 + 12· 32 - 1) div (12 '" 32) then

if 44 • hOKL + 58 * chiS + 4 >= 12 • d2 + 17 * d 1 + d3
+ (20 - dhat) * dhat + 5 • gamma then

writeln(hOKL. chiS, d. g, gamma. dl, d2. d3):
end;

end:
end:

end;
end:

end:
end;

end.
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Let us point out the following standard consequence of the results above in the
higher dimensional case.
(3.4) Remark (the higher dimensional case). Let LII be a very ample line bUDdle
on an projective maoifold, XII, of dimension n 2: 3. let V be the 3-fold obtained aa
the transversal intersection of n - 3 general elements Al" .. I An -3 of 11" 1. Let I:, be
the restriction of L II to V. Then we have:

1. Ir (V,I:,) is of log-general type, then hOC K XA + (n - 2)LII
) 2: 2;

2. [f K(V) 2:: 0, e.g. if the Kodaira dimension of KXA (?) Llln
-

3 is non-negative, then
hO(KxA @ Llln

-
2

) 2:: 5 with equality only if n = 3 and (X", LII
) is a degree 5

hypersurface of j?4.

If n =3 the resul t is proved in the Theorems (1. 2) and (3.3). Therefore we can
assurne n 2: 4. The Kodaira vanishing theorem yields

Then 1) follows from the corresponding n =3 statement (1.2). By using again the
inequality above aod (3.3) we have either hO(KxA @ Llln

-
2

) 2: 6 or hO(Kv + C) =5
and (V, C) is a quintic hypersurface ofW4. In this case, since L II is very ample, it ia easy
to see that (XII, LII

) is a degree 5 hypersurface in llJfl+l and hO(KxA + (n - 2)LII
) =

n + 2 2:: 6. This shows 2).
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