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BESSEL PERIODS AND ANTICYCLOTOMIC p-ADIC
SPINOR L-FUNCTIONS

MING-LUN HSIEH AND SHUNSUKE YAMANA

ABSTRACT. We construct the anticyclotomic p-adic L-function that in-
terpolates a square root of central values of twisted spinor L-functions
of a quadratic base change of a Siegel cusp form of genus 2 with respect
to a paramodular group of square-free level, assuming the Bocherer con-
jecture for the central L-values with anticyclotomic twists.
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1. INTRODUCTION

The purpose of this article is to carry out the first step towards the ana-
lytic side of anticyclotomic Iwasawa theory for Siegel cusp forms by gener-
alizing the works [3], [7, [19] for elliptic cusp forms. Namely, we construct an-
ticyclotomic p-adic L-functions for scalar valued Siegel cusp forms of genus
two and weight greater than one with respect to paramodular groups of
square-free level and establish the explicit interpolation formulae.

1.1. Anticyclotomic Iwasawa main conjecture. Let 7 ~ ®]m, be a
unitary irreducible cuspidal automorphic representation of PGSp,(A) gen-
erated by a scalar valued degree two Siegel cuspidal Hecke eigenform f of
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2 MING-LUN HSIEH AND SHUNSUKE YAMANA

weight x > 2, where A denotes the rational adele ring. Let & be the set
of ramified places of the representation 7. Fix a prime number p ¢ & and
embeddings (oo : Q < C and ¢, : Q = C,. Let E/Q, be a finite exten-
sion containing Hecke eigenvalues of f. Thanks to the work of many people
(Chai-Faltings, Laumon, Shimura, Taylor and Weissauer), there exists a geo-
metric p-adic Galois representation py,, : Gal(Q/Q) — GSp,(F) such that
ptp is unramified outside & U {p} and

det(14 — LOOL;Ipf,p(Frobg)ﬁ_s)_l =L <s — K+ %, Spn(w))

for ¢ ¢ S U {p} at least if K > 2, where Froby is the geometric Frobeninus
and the right-hand side is the spinor L-factor of my. See [24] and [36] for
the complete result. Denote by ey the p-adic cyclotomic character. We are
interested in the central critical twist

Php =Py @ et : Gal(Q/Q) — GSpy(E).

Let V; = E* be the representation space of p}’p. Then V; is self-dual in
the sense that va(l) ~ Vy. We further assume the V; satisfies the follow-
ing Panchishkin condition: there exists a rank two Gal(Q,/Qp)-invariant
subspace Fil;{Vf of V; such that Fil;r Vi has positive Hodge-Tate weights
(k—1,1) while the quotient Vy/ Fil;)F Vr has non-positive Hodge-Tate weights
(0,2 — R)IEI. Let og be the ring of integers of E. We shall fix a Gal(Q/Q)-
stable og-lattice Ty C Vy once and for all. Let Ay =V /Tt and let Fﬂ;‘ Ay
be the image of Fﬂ;‘ Vr in Ay. For any algebraic extension L over Q, we
consider the (minimal) Selmer group defined by

Sel(Af/L) := ker{Hl(L,Af) — [TH (Lo, Af) % HHl(Lp,Af/Fﬂ;Af)}.

vip plp

Let K be an imaginary quadratic field of discriminant —Ag < 0 with
integer ring ox and adéle ring Ag. Denote by K2 the maximal abelian
extension over K and by R, the composition of all the Z,-extensions of
K. Take the decomposition Gal(f/K) ~ Tt @'~ so that the non-trivial
element of Gal(K/Q) acts on 't ~ Z,, by 1. Let K be the subfield of £,
with Gal(KE) = I'F. The Z,-extension K /K is called anticyclotomic. We
consider Iwasawa theory for f over K. On the algebraic side, one considers
the Pontryagin dual Sel(A;/KZ)" of the Selmer group Sel(A;/KZ ), which
is known to be a finitely generated og[[I'~]]-module. On the analytic side,
one expects the existence of the p-adic L-function L,(f/K) € og[['"]]
attached to f which interpolates the central values of L-functions associated
with pr,, twisted by characters of I'", and then one could make the following
anticyclotomic Iwasawa main conjecture for Siegel cusp forms.

1Here @, (1) has Hodge-Tate weight 1 in our convention.
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Conjecture 1.1. The characteristic ideal char,, ;p-11Sel(Ay/KL))" is gen-
erated by Ly(f/K3).

The main result of this paper is the construction of L,(f/Ks) when f is
a paramodular newform of square-free level. Actually, we will construct a
square root © of the anticyclotomic p-adic L-function.

1.2. Paramodular Siegel cusp forms. The paramodular group of level
N is defined by

7Z 7 N1z 7

NZ 7 Z Z
K(N) = Sp4(Q) N N7 NZ 7 N7Z

NZ Z Z Z

This subgroup is a good analogue of the congruence subgroup I'g(/N) under-
lying the newform theory for GLg (cf. [29]). Put

Sym, = {z € M, | = 2}, 9y =1{7Z € Sym,(C) | IZ > 0}.

Throughout this paper we require N to be square-free. Let m be an irre-
ducible cuspidal automorphic representation of PGSp,(A) generated by a
paramodular Siegel cuspidal Hecke eigenform

F(Z) =" ep(f)erm-TnB2), Z € $.
B

of genus 2 and weight « with respect to K(N). For each prime ¢t N we
write ty 1 and tg 9 for the respective eigenvalues of the Hecke operators

("3 [K(N)diag[1, 1,4, K(N)], 23 K(N)diag[1, ¢, 02, (JK(N)]
acting on f. Let
Qu(X) =1 —t10X + (btog+ (62 + 00O X2 — 25734 , X3 4 0 x4
be the Hecke polynomial of f at £. Then we have

Q") =L (s — k4 g, Spn(w)) .

We write Spn(r) for the strong lift of 7 to a cuspidal automorphic repre-
sentation of GL4(A) and Spn(w) i for the base change of Spn(m) to GL4(Ak).
We consider its L-function twisted by Hecke characters v

L(s,Spn(m)g @ v) = H L(s,Spn(me)k, @ vy).
L

When ¢ does not divide N and the conductor of v, the local L-factor is
given as follows: If £ = [ is inert in K, then

L(s,Spu(me) g, @ ve) = Qo(Ml¥/ 25 75)Qp(— M3/ *777%),
where )\[2 =(l), if £ = [? is ramified in K, then

L(S, Spl’l(?Tg)KZ X ye) — QZ()\[€3/2_H_S),
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where A\ = (1), and if £ = 113 is split in K, then
L(s, Spu(m)c, © 1) = Qo /2 )Qu (Mg £/27572),

where A, = vy(l;) for i = 1,2. The L-factors at prime factors of N are given
in . It is conjectured that there is a bijection between isogeny classes of
abelian surfaces A/Q of conductor N with EndgA = Z and such cusp forms
f with rational eigenvalues, up to scalar multiplication (see [39, [5]). In this
case Ty is the Tate module l(ElA[pn] and the generalized BSD conjecture

predicts that the vanishing order of L(s,Spn(m)x ® v) at the center s =
3 coincides the dimension dimc(A(K5) ® C)” of the v-eigenspace of the

Mordell-Weil group of A for an anticyclotomic character v of I'".

1.3. Hypotheses. The imaginary quadratic field K uniquely determines a
factorization N = NTN~ with NT divisible only by primes that are split
in K and N~ divisible only by primes that are inert or ramified in K. We
assume the following Heegner hypothesis:

(Heeg) N7~ is the product of an even number of primes.

Then there is an indefinite quaternion algebra D that is ramified precisely
at the prime factors of N~. We consider the following inner form of GSpy,:

o(3 o) =20 (] o)}

where - denotes the main involution of D. Suppose that 7, is generic for all
primes £. When p is a discrete series representation of GLy(Qg), we write
pP for its Jacquet-Langlands lift to D> (Qq). We define the representation
7P ~ @ 1P of PGUP(A) by 7P ~ 7, for v{ N~ and by 70 ~ pP x o, for
prime factors g of N, where we write m; >~ p, X 04. When N~ # 1, we will
assume the following hypothesis on the Jacquet-Langlands correspondence
between PGSp, and PGUY:

D

QUd = {g € GLy(D)

(JL) The representation 7 occurs in the space of cusp forms on PGUZ (A)

with multiplicity one.

Since PGSp, and PGU? are isomorphic to special orthogonal groups,
Arthur’s project will establish this hypothesis.

We construct the anticyclotomic p-adic L-function attached to m over K
with explicit evaluation formula for anticyclotomic characters of finite order.
The key ingredient of our construction is the Bdocherer conjecture [4], which
is a special case of the refined Gross-Prasad conjecture formulated by Yifeng
Liu [25] in full generality (cf. Conjecture below):

(Boch) For every anticyclotomic Hecke character v : K*C*A*\Ax — C*
of p-power conductor and every nonzero cusp form ¢ = ®,¢, € 7
|1 B(9)]?

W = 5@(2)&@(4)

A(L, Spu(m)k @ v) 0 ok, ($: 0)
257 A(1, 7, ad) (G0, v)



where s; = 2 or 1 according as 7 is endoscopic or not.

The Bessel period BY is defined in Section |§| and ahs v, 18 a normalized

local Bessel integral. If N~ = 1, then S is a positive definite half-integral
symmetric matrix of size 2 with determinant % and the hypothesis (Boch)
relates the central L-values of 7 to a square of the Bessel period defined by

50 Lo (0 o)) T

where z is integrated over symmetric matrices of size 2 over A/Q, e de-
notes the standard additive character on A/Q and K™ is identified with the
subgroup {t € GL2(Q) | &St = (det t)S}.

The Hecke polynomial Q,(X) at p can be factorized into

Qp(X) = (1 —apX)(1 — BpX)(1 — p* 3azx' X)(1 — p* 3851 X)
such that

0 < ordy (1, (ap)) < ordy(i,(Bp)) < K — ;

Let ag := p* "apfBp. In view of [34, Théoreme 1], the Panchishkin hypoth-
esis is equivalent to the the following Klingen p-ordinary hypothesis:

(Q) ordy(iy(ag)) = 0.

1.4. Main theorem. Let reck : K*\A% — Gal(K®"/K) denote the geo-
metrically normalized reciprocity law map. Put wg = fo. To each char-
acter v : I'™ — Qg we associate a Hecke character
V:LOOOL;IOﬁOreCK cAR KA — C*.

A character v as above is usually referred to be anticyclotomic in the sense
that v is trivial on A*. We write ¢(v) for the smallest non-negative integer
n such that v, is trivial on of% N(1+p"oy ). Fix a decomposition Ntog =
‘)TJ‘IT('{. For each prime factor ¢ of N we write e;(f) = (%, Spn(m,)) for the
eigenvalue of the Atkin-Lehner involution at £. Put ex-(f) = [[yn- €(f)-

Theorem 1.2. Assume the hypotheses (Heeg), (JL), (Béch) and (Q) are
true for m, K, p and v. Suppose that all the nonarchimedean components
7y are generic. Then there exist an element ©f € og[[['"]] and an explicitly
given complex number Q. - € C* such that for every finite-order character
v:I'— — @; we have the following interpolation formula:

A(%,Spn(m)k @ v)
Qﬂ”,N*

x 228 3=sn 2 ARl (). N H (1 —eo(f)),
(N—,Ak)

7(0y)* = ce(mp, vp)* - vTHO) - o

where e(mp, vp) is the p-adic multiplier defined by

(c(v) >0) e(mp, vp) = (pﬁ_laél)c(y)a
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2
(c(v) =0,p=pip2) e(mp,vp) H (1- 0‘7_91/\;01-1?&_2)(1 - 57;1)\;:1-17'{_2)7
=1

(c(v) =0, p=p) e(mp,vp) = (1 — ap’p™ ™) (1 - Bp7p™ ),

(c)=0,p=p")  e(mp,vp) = (1—ap' Ap"?)(1 = Bp' App"?).

Remark 1.3. (1) The complex number €2 - is given in Definition(10.13
If N~ =1, then it is given by

AQ, m, ad) ~ L
e (fs Pl /K(N)\j32 |£(Z)]2(det Y)*3dZ.

Here f is normalized so that all the Fourier coefficients of f are real
and contained in E via ¢, : @p ~ C and some Fourier coefficient of
f is non-vanishing modulo the maximal ideal of of.

(2) Assume that e(f) = —1 for every prime factor ¢ of (Dg, N7).
Then (3, Spn(n)x ® v)= (=1)!™7), where ¢(N~) is the number
of prime factors of N~. In particular, if (Heeg) is not true, then
L(%,Spu(m)k ® v)= 0.

(3) We will construct the element ©f € E[[I'"]] with the interpolation
property without (Q) more generally for Hilbert-Siegel cusp forms.

(4) Furusawa and Morimoto [12] [I3] have proved the hypothesis (Boch),
provided k > 2, v is trivial and 7 is tempered. Since 7 is not a Saito-
Kurokawa lift, Theorem 5 of [21] combined with [36] shows that 7 is
tempered at least if kK > 2 and IV is odd. The extension to nontrivial
characters of Aj;/K*A* is current in progress by them.

(5) If v has infinite order, then so does v and so by Theorem 3.10 of
28] B%(¢) = agym(go, Y =0 for all ¢ € 7P and ¢, ¢’ € 72

(6) The modified Euler factor e(my,v,) is compatible with the conjec—
tural shape of p-adic L-functions due to Coates and Perrin-Riou. In-
deed, let M be the motive over Q associated with pf7p|Ga1(f</K) Q.

Then e(mp,v,)? is the ratio between Ez(,p)(M) defined in [8, (18),
p. 109] and L,(M) = L(3,Spu(my)k, ® 1p).
1.5. Construction of ©;. We sketch the construction of the theta ele-
ment O in the special case N~ = 1. Define K(V,p) to be the subgroup

which consists of matrices (b;;) € K(IN) such that bay, b1, b3a, bsa, bat, bao are
divisible by p. We define Hecke operators on S, (K(V,p)) by

Q?‘(’,l -

UPh Zc 5 QWFptr(BZ)
UQh ZZC% B ) 2my/—1tr(BZ)
up (T )
z=1 B

where B runs over positive definite symmetric half-integral matrices of size

2 and u,(x) = (0 1> We define the p-stabilization f* € S, (K(N,p)) of f



with respect to ag and ap by
fr=ap’ag (UR—p"tapfp!) (U] —p* Paph) (U —p™*651) (U] ~p) f.
This form f¥ is an eigenform of the operators UpQ and UZ; with eigenvalues

ag and ap, respectively.
Thus N = N* and D = My(Q). We begin with some notation. Let

7 7 . .
R = <p N+7 Z) be the standard Eichler order of level p/N in D. The

group R* acts on the set ¥ € Hom(K, D) by W -7 — 7~ Ur. Let
CM(K, D) := Hom(K, D)/R*

be the set of R*-conjugacy classes of field homomorphisms from K to D. For
U € Hom(K, D), denote by [¥] the R*-conjugacy class of ¥ in CM(K, D).
For a positive integer ¢, let O, be the order of K of conductor ¢ and K, the as-
sociated ring class field. The conductor of a homomorphism ¥ € Hom(K, D)
is the unique positive integer ¢ such that ¥=1(R) = O.. Let CM(O,, R) be
the set of R*-conjugacy classes of homomorphisms ¥ € Hom(K, D) of con-
ductor ¢, which we call the set of CM points of conductor c.

The Galois group G, := Gal(K./K) acts on CM(O,, R) in the following
manner (|16, p.133]): for 0 € G. and [¥V] € CM(O,, R), write 0 = reck (a) for
some a € K* and decompose V(a) = - u for some u € R* and 7 € GL2(Q)
with dety > 0 by strong approximation. The action [¥]7 is defined by

[¥]7 = [y~ er).

To each ¥ € Hom(K, D) of conductor ¢, we associate a unique half-integral
symmetric positive definite matrix Sy defined by

5y = (_01 })) W(ey/TAx/2).

Thus [¥] — [Sy] gives a map from CM(O,, R) to R*-conjugacy classes of
primitive half-integral symmetric positive definite matrices. For each non-
negative integer n, we will choose special CM points [¥,,] € CM(Opn, R) of
conductor p", and define the n-th theta element O,, € 0g[Gyn] by
O = O‘én Z CSyg (fi) " g.
O'Ggpn
The fact that f tisan UpQ—eigenform allows us to make a good choice of CM

points {[V,,]}5°; such that ©,, is norm-compatible, i.e.
I (On41) = O,

under the quotient map II7+! : Gpnt1 — Gpn, and hence we obtain the ele-

ment O, 1= lim 0, € op[[Gal(Kp~/K)]]. The theta element Oy is defined

by ©f = H;;foo ((:)oo) via the quotient map ]Y;;foo : Gal(Kp~/K) — I'". For

each anticyci%tomic character v of conductor ;70”, the interpolation 7(©y) is
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essentially the global Bessel period of f with respect to S, and v, and the
square of the global Bessel period is a product of the central L-value and
local Bessel integrals by the hypothesis (Boch).

1.6. The outline of the proof. We will construct a GSp,(Q,)-equivariant
isomorphism M, : 7, ~ /. Choose an element J € GL2(Q) which satisfies
tJSJ = S and detJ = —1. Then

(60 ® &, > alk, (0 My (my(8(3))6)))] € Hompg g (my By, v B S),

where we put t(J) = diag[J, —J~!] and define the character v of Rg =
KX xSym,(Q,) by v (t,2) = vy(t)e,(tr(Sz)). The hypothesis (Boch) relates
the square B%(¢)? to the product of the central L-value and

O‘E?,Vv (¢2, My (y (t(J))¢g)>

Our main task is to compute this local factor for a nice test vector ¢V € 7.
If v # p and both 7, and v, are unramified, then ¢! is an unramified vector
and the Bessel integral has been calculated in [25, 0]. If v divides N7,
then ¢¥ is a paramodular new vector of 7, and its Bessel period will be
computed in The quaternion case is discussed in If v = 0o, then
#Y. is a lowest weight vector and the computation is done in When
k > 2, the archimedean Bessel integral has been computed in [9] by a method
suggested by Kazuki Morimoto. Our computation is different and includes
the case kK = 2. When v = p, we construct an ordinary projector egrdp in

Section [7| and compute the Bessel integral of egrd qug in Section 8| To that

end, we will construct a local Bessel period Bgvl’/:” € Hompg (mp, V;f ) so that

W,mp
BS,VP

equation and a factorization

(egrd pgbg) is computable. By uniqueness we are led to a functional

v
W,my

—1-
—S,vp

We determine the proportionality constants in Propositions and [6.6]

W,my W, b / W,
P — i p — tp
BS,VP o Mp = C(ﬂ-I” VP)BS,VP ’ aS,l/p =c (ﬂ'p, VP)BS,VP ® B
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for Young Scientists (B) 26800017. He would like to thank Michael Harris
for very stimulating discussions and Kazuki Morimoto and Hiraku Atobe
for helpful discussions. Hsieh is partially supported by a MOST grant 103-
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2. THE BASIC SETTING

2.1. Notation. Besides the standard symbols Z, Q, R, C, Z,, Q, we denote
by N the set of positive integers, by R the group of strictly positive real

numbers and by C, = @p the completion of an algebraic closure of the p-adic
field Qp. If z is a real number, then we put [z] = max{i € Z | i < z}. For
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any finite set A we denote by A the number of elements in A. For any set X
we denote by 1x the characteristic function of X. When G is a topological
group, we write GG° for its connected component of the identity. When G is
locally compact and abelian, we denote the group of quasi-characters of G
by Q(G) and the subgroup of unitary characters of G by Q(Q).

Let F' be alocal field of characteristic zero with normalized absolute value
wp = |-|p. We often simply write |z| = |z|r and w(z) = wp(z) for x € F* if
its meaning is clear from the context without possible confusion. The group
Q(F*)° (vesp. QY(F*)°) consists of homomorphisms of the form w$. with
s € C (resp. s € vV—1R). Let 0 € Q(F*). Define Ro as the unique real
number such that owz "7 € Q' (FX).

Let F' be nonarchimedean. We denote the integer ring of F' by op, the
maximal ideal of o by p and the order of the residue field or/p by ¢ and
the different of F' by dp. Fix a prime element w of op. When o € Q(F*)°,
we put L(s,0) = W. Otherwise we put L(s,0) = 1. We extend |- |p
to fractional ideals of of by |w'|r = ¢~%. Fix a generator dr of 0 and a
nontrivial additive character ¢ on F. Put ((s) = (r(s) = ﬁ. In our later

discussion we mostly let 1) be trivial on op but not trivial on p~. When
the residual characteristic of F' is p, we define the character ¢! of F by
YF(2) = e2™V~1¥ with y € Q such that Trpq,(z) —y € Zp. Let dz be the
self-dual Haar measure on F with respect to the pairing (z,y) — % (2y).
This measure gives o the volume [d|'/2. The Haar measure d*x of F* is
normalized by d*x = ( (1)%. When K is a quadratic étale algebra over
F, let dt be the quotient measure of the Haar measures of K* and F*.

For an admissible representation (7, V') of a reductive group G over F we
will write 7V for its contragredient representation. We occasionally identify
the space V with m itself when there is no danger of confusion. When
G = GL,(F) and p € Q(F*), we define a representation 7w on the same
space Vi by (m®@pu)(g) = p(det g)m(g). When IT is an irreducible admissible
representation of GL,(F), we write II™ for its base change to GL,(K)
and write L(s, IT) for its Godement-Jacquet L-factor. Given an irreducible
admissible representation m of GSp,(F'), we denote its transfer to GL4(F') by
Spn () and its adjoint L-factor by L(s, m, ad). When 7 is not supercuspidal,
these L-parameter and degree 10 L-factor are explicitly computed in Table
A.7 of [29] and [2], respectively.

2.2. Quaternion unitary groups. For any ring R we denote by M; ;(R)
the set of ¢ x j-matrices with entries in R and write My(R) in place of
Mg ¢(R). The group of all invertible elements of My(R) and the set of
symmetric matrices of size g with entries in R are denoted by GLg4(R)
and Sym,(R), respectively. We sometimes write R* = GL;(R). The sub-
group Bgy(R) consists of upper triangular matrices in GL4(R). For matrices
B € Symy(R) and G € My,,(R) we use the abbreviation B[G] = 'GBG,

where ‘G is the transpose of G. If Aq,..., A, are square matrices, then
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diag[Aq, ..., A;] denotes the matrix with A;,..., A, in the diagonal blocks
and 0 in all other blocks. Let 1, be the identity matrix of degree g. When
G is a reductive algebraic group and Z is its center, we write PG for the
adjoint group G/Z.

Let D be a quaternion algebra over a field F. We denote by = — =
the main involution of D and by A the conjugate transpose of a matrix
A € M, (D). Let N2(z) = 27 and Tr2(z) = 2 + Z denote the reduced norm
and the reduced trace of x € D. Put D_ = {z € D | z = —z}. We frequently
regard D as an algebraic variety over F' and consider the algebraic group
GU? which associates to any F-algebra R the group

GUP(R) = {h € GLo(D @5 R) ‘ h (‘1) (1))% — () ((1) é) A(h) € RX} ,

where \ is called the similitude character of GUY. We define homomor-
phisms m,t : DX — GUY n:D_ — GUY and d: F* — GUY by

mt = (1 0) w= (3 9) me= () aw=(} 2

and denote the parabolic subgroup of GUY with a Levi factor d(F*)m(D*)
and the unipotent radical n(D_) by P.

Fix S € D_ with dg = S? # 0. Put K = F + FS C D. We choose an
element J € D_ such that JtJ=! = ¢ for t € K. Then K ~ F(y/dy) and
D =K+ KJ. Let Rg =t(K*)n(D_) ~ K* x D_ be a subgroup of P.

Let GSpy, be the symplectic similitude group of rank g defined by

0 1
Gsp2g — {h c GL2g ‘ th th = )\g(h)Jg, )\g(h) S GLl}a Jg = <_1g Og> ’

Put UL = ker X and Spy = ker A;. We define the homomorphisms
m : GL; x GL; — GSpy, n : Sym, — GSpy,
similarly by

A 0 1, =z
m(A,\) = 1, n(z)= (/7 >
an=(3 yi) =% 1
We write

m(A) =m(A4,1), t(A) =m(A,det A), d(A) =m(14, ).
Define a maximal parabolic subgroup P, = M,N, of GSpy, by
Mg ={m(A,\) | A€ GLy, A€ GL1}, Ny ={n(z) |z € Sym,}
and a Borel subgroup of GSpy, by
By ={m(A,\n(z) | A € By, A € GL1, z € Sym,}.
Note that
PGSp, ~ SO(2,1), PGSp, ~ SO(3,2), PGUY ~S0(4,1), By ~ B,.

We write U, and U, for the unipotent radicals of B, and B, respectively.
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We include the case in which D is the matrix algebra My (F'). In this case
GUS =~ GSpy, D_ ~ Sym,, P~ Py.

2.3. Abstract Bessel integrals for GUY. Let F be alocal field and (7, V)
an irreducible admissible representation of PGUZ(F). Since 7 ~ 7V, we
have a GUZ (F)-invariant bilinear perfect pairing b: V' x V — C. Given a
pair ¢1, ¢2 € V, we define the matrix coefficient ®y4, 4, : GUP(F) — C by

(I)¢1u¢2 (g) = (I)Jl,(bg(g) = b(ﬂ(g)¢1,7T(1’Il(J, _1))¢2)

Definition 2.1. Let U be a unipotent algebraic group over a p-adic field F
and f a smooth function on U(F'). We say that f has a stable integral over
U(F) if there is a compact open subgroup U of U(F") such that for any open
compact subgroup U’ containing U

Ulf(z)dz:/f(z)dz

In this case we write f;t(F) f(z)dz = [; f(z)dz.

We associate to S € D_ and A the character A of Rg by AS(t(t)n(z)) =
A(t)p(TrR(S2)). By [22, 25, [10] the following stable integral of a matrix
coefficient exists for each t € K*:

BY (61, 6a.t) = /D D5y 00 (n(2)t(0)) (X2 (52)) L=

Definition 2.2 (abstract Bessel integrals relative to S and A). We define

Sonon = [ [ el oOERE A ds

for A € Q(F*\K*) and ¢1,¢2 € V whenever the integral above converges.

When 7 is tempered and A is unitary, the iterated integral on the right-
hand side converges. We give a direct proof for representations of our interest
in Lemma [3.3] below. We know that

dime Hompg (7, A%) < 1
by Corollary 15.3 of [14]. It is important to note that
Hompgxpy(m X, AN K AS) = (CBfg\,
ie., Bg\ is a basis vector of this zero or one-dimensional spaces.

Remark 2.3. When 7 is not square-integrable, the Bessel integral may di-
verge and is defined via regularization. Yifeng Liu [25] has constructed a
regularization of the archimedean Bessel integral in general. In we will
regularize the Bessel integrals of matrix coefficients of lowest weight repre-
sentations of GSp,(R) of scalar weight via a different way.

When D = My(F), we associate to S € Symy(F') with det.S # 0 the
Bessel integral Bé\ in a similar manner.
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Remark 2.4. Let A € GLy(F), A € F* and t € T. Put

S'=\"18[4], T =A7'TA, t=A"'tA, I =A1JA
We define A’ € Q(T") by N'(t') = A(At A~1). Since

B (400w (m(AN)6s (B)E(E) = BF 5 (MAAT2IANE(1),

it follows that

B§ (m(m(A, N)g1, m(m(A, )2, t) = |A| 7| det A BG (41, pa,1').
In particular, if we define the additive character ¥y by ¥ (z) = »(Az), then

By (w(d(X)1, w(d(A)én. 1) = [\ BE (61, 02.)
B§(w(m(A, X)d1, w(m(4,\))éa) = [N % det APBE (61, 92).

3. LocAL BESSEL INTEGRALS FOR GSp,

bo
3.1. Explicit Bessel integrals. Fix § = <ch(? 2) € Symy(F). Assume
2

Co
that det S # 0. Put
do = —4det S = bg — 40,060,
K = Kg = F(y/dp),
T =Ts={Ac GLy(F) | "ASA = (det A)S}.

We denote the nontrivial automorphism of K over F by ¢ — t. Put
Tr(t) = Trk (t) = t +  and N(¢) = NE(¢) = tf for t € K. We write ¢ for the
maximal order of K and 7x/p : F* — {£1} for the character of F'* whose
kernel is N(K™). One can verify that

T = T — y%) —YCo
yag T+ y%o
We identify T' with K* via the map

bo
Y r—Y35 Yoo
x+ y/do— 2 .
2 0 < yag x —i—yb20>

d,
z,y € F, :C2—40y2750}.

We regard characters of K* as those of T'.
Let m be an irreducible admissible unitary infinite dimensional represen-
tation of PGLa(F). It possesses a Whittaker model, i.e., there is a functional

0 # W € Homy, (w0, ¢) = Homgp, gy (w0, Indgp 2" ),

which is unique up to scalar multiple. Let WW(mg, 1) be the space of functions
of the form Wy(g) = W(mo(g)f) with f € mp. We sometimes identify Vi
with W(m, ). Since 7, ~ 7y, we can define the GLy(F')-invariant pairing

byy : mg x my — C, bw(f, f/) = /FX Wf(t(a))Wf/(t(—a)) d*a.
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For o € Q(F*) we consider the induced representation

7w = 1I(m,0) = Indgfp“(F) (Mo HRo=m®c ! xo.

It is noteworthy that 7 has trivial central character and can be viewed as a
representation of PGSp,(F) ~ SO(2, 3).

We normalize the Haar measure dz on Symy(F) so that Sym,(op) has
volume 1. Choose a right invariant measure dg on Po\GSp,(F') such that

(3.1) A&%mwf@mg—éwwmfmm@»w

for all f € Indgjp‘l(m 5713/2 ®. We associate to any GLs (F)-invariant pairing

B:mgxmg—C
the GSp,(F)-invariant pairing B* : I(mg, o) x I(m, 0~ ') — C by
(32) B.¢) - | B(o(). ¢ (9)) dg.

P2\GSpy(F)
We use b% to identify I(mg,0~1) with the contragredient representation 7.

We shall study the Bessel integral for the representations of the form

I(mp,0), and in addition, we will explicitly factorize it into a product of two
appropriate local Bessel periods when K is split or my is a principal series

representation. In what follows, we fix D' € o and put 6 = DU“T‘/% €t
Fix an element J € GLo(F') such that tJ = Jt for ¢ € T. There is no loss of
generality by letting

—O} —1 Tr(6)
(3.3) S:(_Trég) N(;)), J:(O ) >

thanks to Remark The embedding ¢ : K — Ma(F') attached to this S
is

(a,be F).

(3.4) t:M+Mﬂ@:G+fW)ﬂ€@>

We introduce the intertwining operator
M(TF(], U) : I(ﬂ-Oa U) - I(ﬂ-Oa 0_1)7
defined for Ro < 0 by the convergent integral

[M%JW@ZA PRECEICHER

and by meromorphic continuation otherwise. A normalized intertwining
operator is defined by setting

M* (7707 U) = ’7(0a o & 0-_17 1/))7(03 0_2a ¢)M(W07 O-)'
The character ¢g : Symy(F) — C* is defined by ¥s(n(z)) := ¥ (tr(Sz)).
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Definition 3.1 (explicit Bessel integrals relative to S and A). We define
Jjg/}}A € Hompgx s (I(mo,0) K I(m, 0 1), A5 X AS)
as in Definition 2.2 by the integral

Ao = [ [ BalemE)e 0T

for ¢ € I(mg,0) and ¢’ € I(mg, o~ '). Furthermore we define
B\ € Hompg gy (I(mo,0) B I(mo,0), A° R AS)
by
BgA(1, 62) = JEA (61, M (70, 0)d2), 61,62 € I(mo,0)-
Clearly, Definition [3.1]is independent of the choice of J.

3.2. Bessel periods. We have introduced the symmetric matrix S in (3.3)).
Define matrices ¢ € GLa(F') and S’ € Sym,(F) by

=) = (G9)

Then

1o (t) == sts™! = diag]t, 7], S'¢=8.
If K/F is not split, then we set

¢ =1y, S'=, le = L.

Fix a t¢-Whittaker functional W on my. In order to investigate the Bessel
integral J}g/}}A we will explicitly construct toric and Bessel periods

TXV S Homngfl (71'0, A), B?’}:X S HOHlRS, (I(T('o, O'), AS/)-
We define the toric period of f € my by
T = [ W @nan T .
FX\KX

This integral is absolutely convergent and gives rise to a nonzero K*-
invariant functional on 7y for any unitary generic representation mg.
Let ws be the Weyl element given by

0 1

-1 0 1 0
(3.5) ws= 01 =m <<0 _1>> 525152 € GSpy(F).

1 0
It is important to note that

wst(A) = t(A)ws.
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Definition 3.2. We define the Bessel period of ¢ € I(m, o) by
st
BYI@ = [ [ Wit )i (A0 ! dadr
FX\K* JSym,(F)
For i € N we put
i X
= {(; )
Lemma 3.3. Assume that K/F is split. Write A = (Mg, Ay"'). Let ¢ € .

Take i € N such that w(k)p = ¢ for elements k € 1 which satisfy k — 14 €
My(p®). Suppose that ¢ has order 0. If Ro < %, then the double integral

/FX g  W(@(wan(2)t(diagla, 1]))) s (—2)Ao(a) ' dzd*a

z,w € F| yepi}.

is absolutely convergent and equal to B?,Z‘(((ﬁ)

Proof. Conjugating ¢ by d(\) with A € 1 + p’ and making a change of
variables, we see that B?,)X(d)) is equal to

/FX /F: |44 <¢ (wsn ((i 3,)) t(diagla, 1]))) Y(Ay)Ao(a) ! dzdydwda.

Integrating both sides of this equality over A € 1 + p’, we get

Lo o (e (wn (2 2)) ttttngian) ) 22 dsdudyaa

The set Sym) is stable under the action of elements diag[a, 1]. It suffices to
check that the double integral

/F2 /F W <¢ <t(diag[a, 1)wsn <<‘; i)))) ’dxadmdw

is convergent for every y € p—-.
Observe that

n(z) = <21_"’1 12) <Z Z—1> <_12 12) (zl—Ql 1z>'

Since wst(A)w;t = t(A), we get

S

(3.6) wn(z) € NoZod(det 2)t(2)ws <_12 12) <121 12).

Let z = <§ Z) . The inner integral converges as mg is unitary and generic.

Clearly, it depends only on z +p’ and w+p’. We may therefore assume that
z,w ¢ pith If 2 ¢ p~3% then since ordz < —3i, ordy > —i and ordw < 1,

L L (w —y pditl p2itl
c; =—2 = —(detz) <—y x>€<p2i+l p=i )
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. _ _ 1 Yy 1 p2i+1
/o 1 11, T )
c, =diag[lz™,w |z = <y 1> € (p_gz 1

w

and hence

. Ro— .
IW((t(diagla, 1))wen(2))| = w2~ W(6(t(diaglaz, w]c] wen(c) J2))|
where there is a compact set K; of GLa(F') such that ¢, € K;. Put

Ci—  sw /rw<¢<t<diag[a,11c'>wsn<c>J2>>ran.
c€Symy(p~7), /€K J FX

We therefore conclude that

[ [ (o (samstopun (5 2)))) o

<C; io: i q(n+m)(28‘€071)/2'

n=3i m=—i

The last summation clearly converges. ([l

It is easy to see that Bg\,jx is Rg/-invariant and

(3.7) By R(9) = lim | TV ((wen(2)ws (~2) d=.

=00 JSymj
3.3. Factorization of Jk‘g/}}N
Proposition 3.4. If K/F is split, then
T8, ') = Ao(~1)BL S (m(m(6))¢)BYy L (n¥ (m(<)t(3)) o)
for any ¢ € m = I(my,0) and ¢’ € w¥ = I(mp,071).

Proof. For our choice of the measure dg on P2\GSp,(F') we have

/SS Bi(n(n(2))d1, 7 (6(3))d2) s (—2) dz

me(F)
st
- / / B (wan(2' + 2)), da(wen(=')6(3))) s (—2) d'dz
Sme(F) Sme(F)

(see (3.1) and (3.2))). Set ¢} = w(m(c))¢, and ¢} = 7" (m(s)t(J))p,. Take
sufficiently large 7. Then the right hand side is equal to

[ [ B tunte) hwan(-z)is (-2 - =) dadz
Sym$ J Sym}
(see the proof of Lemma . The triple integral

Lo Lo S 1w o)k eonen)) o) em (o) izt

2
-1I / . [ IW(moldingia, 165 (win(z)) dac
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is convergent in view of Lemma [3.3], which justifies our formal manipulation.

Here we put ¢/ = ¢} and ¢} = 7 (J) ).
Now we have the identity

L ylrteme)en s ¢@)eis(-) ds

ymy (F)

—[ [ owmles®)eh (). dhlwn(eo) s (<21 + 22) dsndz

Integrating over t € F*\K* and changing the order of integration, we get

Jg,vA(ﬁbla@) :/ , / Cdzidze g (22 — 21)
Sym$ J Sym}

x / bw (7o (1c(t)) 1 (wsn(21)), P (wsn(22))) dt.
FX\KX
Put f{ = ¢ (wsn(z1)) and fi = @) (wsn(z2)). Then the inner integral equals
L L et wigeb) o) a*ba*a = Ao(~DTX (TR ().
We conclude that Ao(—l)Jg}}A(@, ¢2) is equal to
[ [ R nGoN T (G )s (21 + ) derden
Sym$ J Sym}

which completes our proof by (3.7)). O
Remark 3.5. Let K/F be split. Then TXV(f) = Z(W; @ Ay', 3) is the zeta
integral for my ® Aal. Since ¢J¢~! = <? (1)), for every f € mo

2

by the functional equation in Hecke’s theory and hence
By (r(m(diag[~1, 1]))¢)
AO(_1)7 (%7 T & AUa @Z}) ’

4. EXPLICIT CALCULATIONS OF BESSEL INTEGRALS I: NEW VECTORS

TN (mo(sJs ) f) = Ao(—1)y (1,7ro ® Aaw) TY (mo(diag[—1,1]) f)

By {1 (m(m(cIs™))g) = ¢ € m=I(mg,0).

Let 7 be an irreducible admissible representation of the form I(m,o),
where 7 is an irreducible unramified unitary principal series representation
of PGLy(F) or the Steinberg representation twisted by an unramifiend qua-
dratic character of F'* and o € Q(F*)°. Let ¢, € m be a new vector, i.e.,
¢s 1s a spherical vector in the former case and ¢, is a paramodular vector
in the latter case. Our task in Sections [4] [5] and [§]is to compute

]Bg(H) — B/%(H¢J’H¢J) Bg}}A(H¢O'7H¢U)

(o 00) b (G, M*(m0,0) )
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for some Hecke operator H on GSp,(F'), where Bé\ and BEYA are the Bessel
integrals defined in Definitions [2.2] and [B.I] Since there exists a constant
m(m, o) such that

M*(ﬂ()a J)¢(T = m(7r07 U)¢a*17
it follows from Proposition [3.4] that
W,o W,o'fl _
BS’7A(¢U)B_S/7A—1 (ﬂ'v (t(§J§ 1))¢a*1)

4.1)  Bg(m(m(s))) = Ao(-1
(4.1)  B§(r(m(s")) = Ao(-1) by (60r 0 1)

Remark 4.1. Proposition [6.9] below gives

W7
1 —1 BS/’X(qu)
m(ﬂ-O?O-) =7 §aO-K AﬂﬁK “Wo—1l,, °
BS/:A ((1)0'71)
J}S/}}A(d)aﬂsgfl)
by (6o 05-1)
Liu in Theorem 2.2 of [25] for split or unramified extensions K of F, and
J}S‘/}}A(Qscﬂ(bo-—l)
V(@ sbg—1)

4.1. The unramified case. The ratio has been computed by

extended to ramified extensions in [9]. Since B4 (Id) =

obtain the following result:

Theorem 4.2 ([25, 9]). Assume the following conditions

e both m and A are unramified, unitary and generic;
® ap,bp € 0p; o € 05; —4det S generates Op; 1) has order 0;
o When the residual characteristic of F is 2, we suppose that F' = Qo;

If ¢° € V is GSp,(op)-invariant, then

B (1) — L2l CICOL(, Spu(m)x @ 4)
o B Pp|V2L(1, 7 p)L(1,m,ad)

4.2. The paramodular case. The paramodular group K(p) is the sub-
group of k € GSp,(F) such that A(k) is in 0 and
1

o O P~ oOF
(4.2) ke | P or oF oF
p p ofF P

p o oF OF
Proposition 5.1.2 of [29] gives the Iwasawa decomposition relative to K(p)
GSpy(F) = P2(F)K(p).
Define the Iwahori subgroup of GLa(0r) by

Jz{AeGLg(oF)’AE(S I) (modp)}.

Given p € Q(F*), we denote by I1() = o x ! the principal series repre-

sentation of PGLy(F'). We write St C I; (w},ﬂ) for the Steinberg representa-

tion. As is well-known, its subspace of J-invariant vectors is one-dimensional.
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Take o € Q'(F*)° and an unramified quadratic character ¢ of F'*. Let

T ~ St ® e, m~ I(mp,0).

Put p = ew},ﬂ. Then
mo C I1(p), T C I(Li(p),0).

Remark 4.3. The representations I(St ® ¢,0) are called type Ila in [29].
Their minimal paramodular level is p by Table A.13 of [29], namely, the
K(p)-invariant subspace 7K(®) is one-dimensional. They are the only generic
representations of paramodular level p by Table A.1 of [29]. If a tempered
representation of PGSp,(F') has paramodular level p, then it is of type Ila
with o € QY(FX).

Let fr, € 73 be such that
W, (t(a)) = (a)|alr 1o, (a).
The Iwasawa decomposition allows us to define ¢, € 75®) by
-3/2
6o (m(2)d(NE(A)R) = (V)Y fr,(4)
for z € Symy(F), A € F*, A € GLa(F) and k € K(p).

Since 7 has no Bessel model relative to the trivial character of K* if K/F
is the unramified quadratic extension, we assume that K = Fe; @ Fey is

1
split and let S’ = — <(1) 2) throughout this subsection. Let A = (Ay, Ag?)

5 0

be an unramified character of K* = F'* x F*. Put
v =o(w), e = —¢(w), d = Ao(w).
Define a function T’ : PGLy(F) — C by
T'(A) = Ta(mo(t(A4)) fro)-

Observe that for A € GLy(F), a,b€ F* and k €7

(4.3) T (Ang) = €T/ (A), T/ (diag[a, b|Ak) = Ag(ab™ )T/ (A).

In particular, the value T'(n(z)) depends only on oxz + op. We will write

T'(m) = T(n(=™))

for non-negative integers m. For z,y,w € F we put

s o o 2))

Recall the Bessel period
A= [ Ta(@lwm()ps(-)dz
Sym, (F)
Conjugating ¢, by d()\) with X € 0}, we get

B2 (6r) = [Tl w)i(-Ay) dodyd
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by a change of variables. Choosing A\ = 1 + v with v € p and integrating
both sides of this equality over u € p, we see that

Bgle(qﬁ(,) = /)gl /F2 T(x,y, w)Y(—y) dedwdy.

We define the function v : F' — N U {0} via

q"(x) = [xop +oF : 0F].

Lemma 4.4. Let z = <§ 3}) € Symy(F). Assume that the following

conditions are satisfied:
e v(y) <1.
e When v(y) = 0, we suppose that x ¢ op and w ¢ p.
e When v(y) = 1 and v(w) = 0, we suppose that if v(x) > 3, then
w € oy, while if v(z) < 2, then w = 0.
o When v(y) = 1 and v(z) < 1, we suppose that if v(w) > 2, then
v(z) =1, while if v(w) <1, then x = 0.
Then z € GL2(F') and
wsn(z) € NaZod(det 2)t(zJ1)K(p).
Remark 4.5. Let a,b,c € F. Since
(4.4) T(a+p b+ op,c+op)=T(a,b,c),

if v(b) < 1, then we can find a triplet z,y, w € F which satisfies the condi-
tions above and such that T(a,b,c) = T(x,y, w).
Proof. Note that

271 = (det 2)™! (w —y> € <p P >
-y oz p oF
by assumption. Now the lemma follows from (3.6)). O

Lemma 4.6. If v(y) < 1, then the value T(z,y,w) depends only on v(x),
v(y) and v(w). We may therefore write

T(z,y,w) = Ty (v(z), v(w)).

(1) Ifi > 1, then

To(i,j) — e'y_i_jq_3(i+j)/26j_i+1T’(0).
(2) Ifi>2 and j > 1, then

Tl(i,j) — G,Yfifjq73(i+j)/25j7i+1T/(0).
(3) If i > 2, then

T1(i,0) = v 'q~3/262777(1), T1(1,0) =y 2¢73T(0).
(4) If j > 1, then
Ti(1,5) = ey 7 1q3UTD/250T(1).



21

Proof. In view of Remark we may assume that z,y,w satisfy the as-
sumptions of Lemma [£.4] Then

T(z,y, w) = o(det z)| det 2| ~3/>T'(2J})
= eo(det 2)| det 2| 73/>T’ (2diag[w, 1])
by [(.3). If y = 0 or if v(z) > 2 and v(w) > 1, then since
wr Y 4

. 12N -
=y w> = diag[wz, w| <wy 1f’3> € diag[wz, w|7J,

w

zdiag[w, 1] = <
we get
T(x,y, w) = eo(det 2)| det 2| 73/2Ag(waw )T/ (13).
If viz) <1 or v(w) = 0, then we can use (4.4) to verify that T(z,y,w)
depends only on v(z), v(y) and v(w) by conjugating ¢, by t(diag[u, 1]),
t(diag(1,v]) and d(X) with u,v, A € 05. We have proved (/1) and .
Next we shall prove . Let j =0. If + > 3, then since

o7 o\ (ol w0 1) /1 1
1 1 - 0 1 1 0 0o 1)’
we get
iy edth 11\ (0 1\ _ &t (w1
Tt e =T <<0 1) (1 0>>_’yiq3“2T 0 1))
We can easily prove the case i = 1 as T(w ™!, ,0) = T(0,o~!,0). Since
w? w0 1\ (w! =?
w0 1o/ \0o wl)

we get T(w 2,0 1,0) =7 2¢ 3T (n(w ™ 1)).
If j > 2, then we can prove by observing that

1 o\ _ (1 o\ (1-=/"t 0
1 w7) \0 w™ w’ 1)
From the computation
0 o\ (1 wt\/-10
1 w ') \0 w! w 1
we can deduce the remaining case 1 = j = 1. O

Now we are led to

BYar) = [ | [ T (v(0), vw)piy) dadudy

=30 g (L - gty LI (T (6, ) - T (7, ).

i—1 j—=0
If i > 2 and j > 1, then Ty(7,5) = T1(4,7) by Lemma , . Hence
B% A(¢0) =a(To(1,0) — T1(1,0))
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(1-q Zq Ty (i,0) — T1(i,0))

+(1-q" qu“(To(Lj) —T'(1,5))
j=1
—=q(To(1,0) — T1(1,0)) + (1 — ¢~ (Lo + Jo) + I1 + J1,

where
e .
Io=">_¢'Tq(i,0), L=—(1-q ZqZTl i,0),
2 R
Jo=Y_ ¢ 'To(L, ), Ji=—(1—q Zqﬂ“Tl (1,9)-
j=1
Lemma gives
o i i 3i/2 s—it1p ey g o] /
_ 1 —1,,—31 —1 _
IO _qufy q ) T(O) - 1_7,15,1(‘771/21—‘(0)7
=2
Z i+l ey =13 =304 /253 7/ (0 = ey ?q"'9 7(0)
q 1—~-lg1/2 :
Lemma (4.6 E gives

> -2 1 -1
_ (1 _ 1 i —i, —3i/252—imprqy )4 (1-q7)
[1 - (1 q );q"y q 0 T(l) - 1_7_15_1(]_1/2,1_'(1)'

Lemma (4.6 m gives

o'T"(1) ey ¢ o1 —q )
+1 _ /
Si=-1-q¢ Zq] SIHBGHD2 T T g1/ ().

Proposition 4.7. Ifm > 1, then

_ 671)m
T’m:1+65(67T’0, T'(0) = L(1,eAgh).
(m) = ( )qm(l—q—l) (0) (0) = L(1,eAy )
Proof. Since my has no GLy(0o)-invariant vector,

3 T’( (1 ;’)) — _T/(AJ)) = —eT'(Adiag[, 1])

xEUF/]J

by (4.3). Observe that

()= D=0 )06 )

for x € oy. If m > 2, then we get

T (n(w' ™)) +e(g— 1) T (n(x'~™)diag[w, 1]) = —T’(n(w'~™)diag[w, 1]),
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letting A = n(y) and y = w!~™. It follows that
T'(m)=—q e 'T'(m—1)=--- = (—¢ tes H™IT'(1).
Letting y = 0, we get

T ((1 0)) _ T (n(—z)diagw, 1]) = 0T (n(w)) = dT'(1)

z 1
for every x € 0. We obtain
T'(1) = —(1+e ) (g—1)7'T"(0).
Since W, (diag[a,1]) = e(a)lalrlo.(a), one can easily compute 77(0).

U
Proposition 4.8.
L (l a_lA)
BY, o) = -1 _-1/2 20K Ll, A—l )
S,A(¢ ) ey q L(%,EO’) L(l,O'_2) ( €y )
Proof. Proposition [4.7] gives
—2 -1 -1 -1 —2 -2 -1
T (l-q) —€b ’ Y"1+ )
I =— 1+ed)————T = T
1 1_ 771571(171/2( T )q(l IS (0) 1 —~-15-1qg-1/2 (0),
—2 1 -1 -1 —2 -2
¢ d(l—q ) —ed / Y g (1 +€d)
J=— 1 0)————T'(0) = —————=T7(0).
' R (+e )Q(l—q*l) ©) 1 —~~15g=1/2 ©

Now we have

(1-g¢g Y Hlo+5L ey 2qg 16! Y221 467

= -1
I:= 7'(0) =(1-¢q )1 — ym1l51gm1/2 11—y 15-1g-1/2
ey 2l 22
T 1 Alg g2
J o= (I—g Yo+ ey ¢+~ 2"

TO) Lol
By Lemma , we have

To(1,0) — T1(1,0)
7(0)

6’}/_2q_1(5 + ’V_Qq_2

1— ,y—l(gq—l/2

L J= e,yfqu/z 2472 4

_ ey Lg=1/2 4 5y 3q5/2
1—~-lg~1/2

We conclude that
By al®s) _ev ¢l 9% eyl P 0y
7'(0) 1 -yt tg1/2 1—~~15g~1/2
_ el (14 ey g3 (1 -y 2¢7 1)
(1=~ 1q /)1 — v~ 1og~1/2)
The proof is complete by Proposition [£.7] 0
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We use the Iwasawa decomposition to define ¢P* € I(Id, 1) by
SPHA(NE(A)n(2)k) = |\,
where A € F*, A € GLa(F'), z € Symy(F) and k € K(p). The elements

bw € I(11 (w;1/2), 1) are defined in Sectionbelow. The pairing q : 1(Id, 1) x
I(Id, 1) — C will be defined in (5.2]).

Lemma 4.9. We have
0P = G4+ bsy + Psy + Pursy + 4 H(Paasy + Gsisan + O + bugsnsa),
a(gP*, ¢**) = ¢2¢(1)%¢(2) 7%
Proof. Since sy € K(p), it is clear that
PP (1) = ¢P*(51) = PP*(52) = @™ (s152) = 1,
PP (s251) = PP (s15281) = PP (s25152) = PP (s1525182).

Since m(diag[cw ™!, 1])s1528152 € K(p), we get ¢P3(s1525152) = g 3/2. The
Iwasawa decomposition relative to GSp,(or) gives

a(¢P, 6P) = / (k)2 dk = 3 6P (w)Pvol (Tut).

GSpy(or) weWw

Clearly, vol(Iwl) = g,vol(I) (see Definition [2.1)). Since vol(Isisgsisol) +
vol(Isgs1sell) = 1 for our choice of the measure, vol(I) = ¢~ 4(1+¢~1)~! and

a(@™, ") = (1+q 17" D " (w)’q g
weW
=(+q ) Ha ' +20 7+ 2 +q (P + 207 + 1)),
which proves the second identity. O
Proposition 4.10. Let o, Ag € Q' (F*)°. Fiz a quadratic unramified char-
acter € : F* — {£1}. Put m = I(St®¢e,0). Then
1/2
_1Px[CR)CAL (3. Spu(n) ke © A)

B&(r(m(s™1))) = —eq(1+q %) Ag(w) PF[2L(1, 75¢/p) L(1, 7, ad)

Proof. We know that
(4.5) L(s,Spn(m)x ® A) = L(s, 05" A) L(s, o A) L(s, wil ek A),
L(s,m,ad) = C(s)¢(s + 1) L(s, 0~ 2) L(s, 0*) L(s,wy *co) L(s,wi *co™ 1)
(see [29] Table A.8] and [2], (13)]). We also remark that
£(1/2,St ® eAgt) = Ag(w) H(—e),
(cf. [7, Lemma 3.1, Proposition 3.8]). By and Remark [3.5]

1 -1
by 6608 (ramls ) =7 (3,500 A0 ) BY (60 BE A6
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By Proposition [4.§] the right hand side is equal to
L(1,eA) . L3, 0N L (3,0kA) L(1,eA51)?
L(1,eA5h) qL (3,e0) L(1,072)L (3,e071) L(1,0?)
L(3,Spn(m)kx ® A)
qL(1,7,ad)

(—&)Ao(w)

=(—€)Ao(@)¢(1)¢(2)
Since Wy, (t(diag[a,1])) = e(a)|a|rl,,(a) for a € F*, we have
bw((9) ¢, 77 (9)Pe-1) = C(2)6P*(9)?
and hence b%(@,, Po-1) = ((2)a(¢P?, ¢P*) = g~ 2¢(1)%¢(2) . u

5. EXPLICIT CALCULATIONS OF BESSEL INTEGRALS II: DEGENERATE
VECTORS

5.1. Degenerate principal series. Let D be a quaternion algebra over a
local field F' of characteristic zero. We retain the notation in Section[2l Fix
a quadratic character ¢ of F’*. For o € Q(F*) we consider the normalized
induced representation m = I(g o NIQ ,0), which is realized on the space of
smooth functions ¢ : GUP (F) — C satisfying

S(dNt(A)n(2)g) = o (AN 2e(NP(4)(9)

for Ac DX, z€ D_, A€ F* and g € GUP(F).

In the p-adic case we fix a maximal compact subring op of D and set
K = GUL(F)NGLy(op). In the archimedean case we fix a maximal compact
subgroup K of GUY(F). For g € GUY(F) the quantity |a(g)| is defined by
setting |a(g)| = |A|z', where we write g = pk with p = d(A\)t(A)n(z) € P
and k € K. For ¢ € m and s € C we define ¢(®) € I(e o NP ow?) by
#)(g) = ¢(g)|alg)|~*. We define the intertwining operator

M(eoNB,0): I(oNB,0) = I( o NB,07)
by
[M(oNP,0)¢](g) = lim | ¢©) ((? (1)> o) g) o
D_

s—0

The integral converges for Rs + Ro < —% and admits meromorphic contin-
uation to whole s-plane.

5.2. Degenerate Whittaker model. Fix S € D_. Put
dy = —-N2(259), K = F(\/do).
We identify K with the subalgebra F'+ F'S of D. Put
Rs={t(t)n(z) | z2€ D_, t € K*}.
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We define an additive character 1 on D_ by thg(z) = (Tr2(Sz)) and
associate a character A® of Rg by A%(t(t)n(z)) = A(t)ys(2) to a character
A of F*\K*. The integral

Bt = [ o0 ((§ ) ne)) B

is absolutely convergent for Rs + Ro < —% and makes sense for all s by

an entire analytic continuation. In the nonarchimedean case the integral
stabilizes. The reader who are interested in the archimedean case can consult
[35]. One can easily see that

(5.1) Gom(t(t)) = e(NE () BE
for t € K*. Thus B¢ is a Bessel functional on 7 relative to S and e .
We introduce the GUP (F)-invariant pairing
q:I(eoNR o) x I(coNR o71) = C
by
62 aéne= [ e

P\GUZ (F)

“fo (o)) (3 o))

for ¢1 € I(eoNE o) and ¢ € I(¢ o N2, 071). Define the Bessel integral by

Js(d1, 62) = / a(m(n(2))ér, 7(d(~1))g2)bs(2) dz

= lim o(~1) /D 2_ ) ((g é) n(z — z’)> e (((1) é) n(z’)> 42" b5 (2)dz.

The double integral absolutely converges for s < 0 and can be continued
as an entire function to the whole complex plane. We have the factorization

(5.3) Ts(6,9') = BE(¢)BZ (r"(d(~1))¢).
It follows that
Js € Hompgxpry(I(e o NE o) R (e o N o071 e K eP).
If I( o N2, o) has a new vector ¢,, then we have a functional equation
M(coNE 0)¢y = c(e,0)¢,-1
with factor ¢(e, o) of proportionality. We set
Bs(¢,¢') = Js(¢, M(c o NP, 0)¢).
Then
Bs(60,60)  _ BY(60)BZg (1(d(=1))¢,-1)

B o Mz oND. 0)g) (B0 90) |
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5.3. The quaternion case. Let D be a quaternion division algebra over a
p-adic field F' of characteristic 0. We denote by op the maximal compact
subring of D and by ‘P the maximal proper two-sided ideal of op. Put
0}, = 0p N D_. Define a maximal compact subgroup K() of GUZ(F) by

53 xm={(2 §)ecur)

Then GUP (F) = PK(R).

Let 0 = w} be an unramified character of F* and ¢ = w% an unramified
quadratic character of F*. Put m = I(eo NIQ, o). We define its L-factors as
those of I(g o St, o). It follows from [2] that

L(%,Spn(ﬂ)[{@&‘[{) _ L(%,(o_la)K)L(%,(Ua)K)L(l,TK/F)

L(1,7,ad) T C(2)L(1,072)L(1,02)L(3,e07 1) L(3,c0)

a,6 €op, BEP, 76‘3}-

For g € GUY(F) the quantity |a(g)| is defined via
|a(d(\)m(A)n(2)k)| = [NF(A)]r,
where A € F*, A€ D*, z € D_ and k € K(B). We define ¢, € 7 by

60(9) = I\(9)1 5 |a(g)|

Proposition 5.1 (Hirai [18]). Let S € o, and K = F+FS. Take the Haar
measure dz on D_ which gives D_ NP the volume 1.

(1) If w15 ¢ o, then
3/2(c0) (o)~
B (0,) - T L
(2) a(do, do-1) = ((2)¢(4) 7"
Proof. Put K(B)' = d(w) 'K(B)d(w). Observe that
r_ a B D -1
K(B) = {(7 5) € GUy'(F) | a,6 €op, BEP, vy E'B }

Define the function A, : GUP(F) — C by Ay(g) = |a(gd(w) ). Set

o) = [ 4 ((9 5) n(z))(mgww(z)dz

for n € w0}, and x € C. Put
¢y = m(d(@) ") s, S =w s

By a change of variables we have

B3 = [ o ((] o)) vt a:

— q(2573)/2 . qug/((b;)
_ q(2s+3)/2 . q(25_3)/204p(5',t N S).

(—25+2t+3)/2

D=
~—~~
™
qI

—
~—
=
SN—
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Theorem 2.3 of [I8] explicitly computes ap (7, s). By the assumption on S’
Cre (s +3)
C(2s+1)¢(s+3)

We remind the reader that the measure in [18] gives N D_ volume 1. The
second part follows from the obvious equality q(¢,, ¢,-1) = ¢ 3 (0, %) O

Now we have the following conclusion by ([5.4) and Proposition
Corollary 5.2.

Bs(do.0) a2 SOLG Son(mx @ ex)

q(¢o, M(c 0N, o)) C(2)L(, 7xyp)L(1, 7, ad)
5.4. The archimedean case. We discuss the case in which /' = R and
K =C. Put {p(s) = ﬂ_s/zp(%). We define the character of C by e(z) =

2™ =1z for 2 € C. Its restriction to F is denoted by . The measure dz on

R is the Lebesgue measure and d*z = ‘iﬁ. Let dz be the standard measure

on Sym,(R) defined by viewing Syms(R) as R? in an obvious fashion.
Denote by Symg(R)“‘ the set of positive definite symmetric matrices of

rank g over R. Let
G2y (B)° = {h € GSpyy | M) > 0}

be the identity component of the real reductive group GSpy,(R). We can
define the action of the connected component GSpQg(R)O on the space

$Hy=1{7 € Sym,(C) [ IZ ¢ Symg(R)+}
and the automorphy factor on GSp,y,(R)° x H, by

Oép(S,,S) _ q(2s+3)/2

q?)

hZ = (AZ +B)(CZ+ D)"Y,  j(h,Z) = (deth)~Y2det(CZ + D)

for Z € 4 and h = é g € GSpQQ(R)O with matrices A, B, C, D of size
g. Put iy = v/—11,. Define the maximal compact subgroup of GSpy,(R)°

by

U,={he GSpQg(R>O | h(ig) =i}
Definition 5.3. For each positive integer x we denote the lowest weight
representation of GSpy,(R)° with lowest Ug-type k — j(k,ig) ™" by C‘D,(ﬁg)
and the highest weight representation with highest Ug-type k& — j(k,ig)"
by C‘D(_g,){. The direct sum DY) = 9 & Z‘D(_g,){ extends to an irreducible
representation of GSpy, (R).

Remark 5.4. If S € Sym,(R) is positive or negative definite, then Theorem
3.10 of [28] says that D admits a Bessel model relative to (A, S) if and
only if A is trivial. This fact is compatible with our observations in the
previous subsection.
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To simplify notation, we set
J(m) = I(sgn™ o det,w >/ N(m) = M(sgn™ o det, w® >™/?)

for m € Z. As is well-known, @g,){ are subrepresentations of the degenerate
principal series J (k) which is here viewed as a representation of GSp,(R)°.
The representation ’D,(f) (resp. 53(_2,1) is generated by the function ¢, (h) =
j(h,is)™" (resp. ¢—y(h) = j(h,iz) ). These functions ¢, are extended
uniquely to elements of J(k). Since ¢ (hd(—1)) = ¢_.(h), we can view DY
as a subrepresentation of J(k).

Put ¢, = ,(@25_3) € J(3—k) and B = BZD%. Observe that
B2 (p) = / 89 (Jon(2))e(—tr(S2)) dz
Sym, (R)

:/ | det(z + i2)|° det(z + i) "e(—tr(Sz)) dz
Symy(R)

s s
= 1 787 - a0 _7> .
§ ( 22Ty
The confluent hypergeometric function £(Y, S; a, B) is extensively studied in
[32]. By Lemma 3.1 of [37] the operator
M (sgn” o det,wg®)
L(—s— 1, sgn")I"(—s)

is entire. In particular, M (sgn® o det,wg®) is holomorphic at s = xk — %

Letting S =0, s =2k — 3+t and t — 0, we get

. 3—t 3t _
N(3—N)%=}g%€(12,0;2,2 - )dﬁ ‘)
I (§ —t— I{)
— 1 _1 I{271 2 3 2 22K+2t*3
S e E L

— (—1)"47 (2n) [5(3/2) 12230, = 271 (—4)" %,

by (1.31) of [32], where I3(s) = /7L'(s)['(s — 3). We write PP for the
subrepresentation of J(3 — k) generated by ¢,. It has the module D,(f)
as a quotient. The quotient map D,g) — fo) is realized by the operator
N(3 — k). Since J(3 — k) is multiplicity free even as a representation of Ug,
any GSp,(R)-invariant pairing PP x DP) - C factors through the quotient
map. We construct a GSp,(R)-invariant pairing r : D,(f) X D,(f) — C in the

following way: for ¢, ¢’ € 2P we set

r(¢,¢') = ale, @),
where we take ¢ € PP o that N3 —k)p = ¢.
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Definition 5.5 (Bessel integrals for D,(f)). We define

A5(6, ') = / r(D2 (n(2))é, D (d(—~1))#)e(tr(57)) dz

Syms, (R)
for € N, S € Sym,(R)* and ¢,¢' € D).

Remark 5.6. We make the integral above meaningful by analytic continua-
tion (see the previous subsection). If k > 2, then D is a discrete series
and this integral converges absolutely by Proposition 3.15 of [25].

+

Proposition 5.7. For every positive integer k and S € Symy(R)™ we have

A& (b, i)
v, D (d(-1))e,)
Proof. In view of ([5.3) we arrive at

a1 (det §)(2r=8)/2 —4nmtr(S)

= 2" (2m) T2k —1)

AL(6, ') = / a(DD (n(2))¢, DA (d(~1))¢)e(tr(52)) d
Sme(R)
= BH 9 2()BE22(DO) (d(-1))¢).
Let ¢ = ¢’ = ¢, and o = 2(—4) "7 2¢,. Then
r(6 D(A(~1))6,.) = 2(—4) "7 2q(pe, DD (d(~1))d,)
= o(—d) "2 / on(Jon(2))d_(Jon(2)) dz
Sme(R)

= 2(—4) "% <12, 0; % ;’) =2(—4)7".

From (4.34.K) and (4.35.K) of [32]

4 det S) (2r=3)/2 e—27rtr(S)
F(H)F(FL — %) ’

BE 20 = ¢ (12,8 5,3 - ) = (apmte2ne®.

BE29/2(9,) = €(ia. 55, 0) = (-1 dmtiD/2l

We get B(S%f?’)ﬂ(go) = 2¢72™(%) and conclude that

AL (¢, br)
r(¢, DI (d(~1))6,.)

=27 (—4)"BS" 2 (p)BC A (DO (d(~1)) )

— 91 (_4)m26—27rtr(S)B§)—2’i)/2(gbn)’

which completes our proof. O
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6. BESSEL PERIODS ON PRINCIPAL SERIES REPRESENTATIONS

6.1. Tate’s local zeta integral. Let us recall Tate’s theory for local factors
of quasi-characters of the multiplicative group of a local field L. Denote by
S(L) the space of Bruhat-Schwartz functions on L. Fix a non-trivial additive
character vy, of L. Tate’s local zeta integral is defined by

Z(®,0) = /L b(2)o(z) d*z

for 0 € Q(L*) and ® € S(L). The gamma factor

_ s o1
v(s,0,%1) :6(87071/}L)L(1L(870-))

is defined as the proportionality constant of the functional equation
Z(®,07 w ") = (5,0, 91) Z(2, 0w},
where
B(y) = [ @@)pulye)do
is the Fourier transform with respeLct to ¢r. We repeatedly use the equation
(6.1) v(s,0,0L)y(1 = 8,071 pr) = o(=1),
Define the additive character 1 on K by ¢ (x) = ¢(TrE (77 1z)), where
- {61 —es if K = Fe; & Fe is split,
0—0 if K is not split.
6.2. Principal series representations. Let x1,x2,0 € Q(F*) be such

that x1x2 = 0~2. We consider the principal series representation

GSp,(F
T=1I(x) = X1 X X2 X 0= Ind32p4( ',

where the character x of By is defined by
v(m(diagla, d, \Ju) = i (@xa(d)o()  (a,d, A€ FX, u € Up(F)),

The induction is always normalized, i.e., the space V of m consists of C-
valued functions on GSp,(F) with the transformation property

¢(m(diagla, ], \ug) = x1(a)x2(d)o(N)|al*|d|A|7*/6(g).
If x1 and x32 are unitary, then 7 is irreducible by Lemma 3.2 of [30].
Then 7 is equivalent to the induced representation I (7o, o), where we put
mo = I1(x10). A »-Whittaker functional W on [;(x10) is constructed by
the Jacquet integral

st
Wile) = Wixlo)f) = [ F(n()g)v(—e) da.
We define the GLy(F)-invariant pairing bw : mo x 7§ — C by

bw(f, f) = /F W (diagla, 1)) W p (ding[a, 1) da
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1 -1 -1

and identify 7V with I(my,07 ) ~ x7" x x5 x o~! via the pairing

(6, 8) = / b (6(wen(2)), & (wsn(2))) dz.
Symy (F)

For a Weyl element w of GSp,(F') we define x* € Q(7Tz2) by x“(t) =
x(w™'tw) and define the intertwining operator My (x): I2(x) — I2(x*) by
the integral

(Mo (0)6)(g) = /u o g

This integral is absolutely convergent if x lies in some open set, and can be
meromorphically continued to all x. Let Y be the set of positive roots of
GSp,. For each a € X, let G, be the derived group of the centralizer in
GSp, of the kernel of aw. Then G, has relative semi-simple rank one. Letting
o @ SLy — G, be the relevant homomorphism, we define x, € Q(F*) by
Xa(a) = x(ia(diaga,a™t])) for @ € F*. Now we define the normalized
intertwining operator

Mi) = JI 700, Xa®) - Mu(x).

a€EXy, V¢,

For example,

M;ﬂ (X) = 7(07 XlX;la w)’}/(oa X1X2, ¢)7(07 X1, 7@7(0» X2, w)MwT (X)7
My, (X) = (0, xax2, ¥)v(0, x1,%)7(0, X2, ¥) M, (X)-

6.3. Toric periods on principal series representations. Let mp = I (u).
We define the toric period of f € I1(u) in the split case by

) = [ fdingde Do) e 3= (7 7).
FX
where we have written A = (Ay, Ay 1), and in the non-split case by
TH(H = [ St
FX\KX

otherwise. The former integral is convergent if Ru > —%.

Lemma 6.1. If K/F is split, then for f € I (u)
1 4
Th =~ <2,ﬂ A 1,w> X (f)-

Proof. For each ® = &1 ® ®3 € S(F' & F) we define the Godement section
f= ff as in (6.2]). The left hand side equals

/Fx p(a )|a|1/2 /FX P <(0,b) (2 —11>) B2l Ao(a) ! d¥bd* a

= Z(Py, qu_lw},/z)Z((ﬁg, ,quwllw/Q).
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The right hand side equals the product of v (%, ,u_lAa L 1/)) and

/F/ |“’1/2/x <(0’b) (2 _;Ul>>/~‘(b)2|b|Fw(_(m))deddea

—1, 1/2 1/2
= Z(@1, pAg w2 (P, 1 AT w0 ) (o) (1)
The lemma follows from the functional equation for Tate’s local integral. [

We associate to A € QL(F*\K*) the toric integral
Pp € Homgox o jox (I (p) R I (p™t), AR A)

by the convergent integral
PAG ) = L) [ bw(ml S m(@) A B .
FX\KX

The normalized intertwining operator M (1, p2) = I(p1, ) — I(p2, p1)
is defined by the integral

(M1, p2) f1(g) := 7(0,u1u51,w)Lf(J1n(x)g) dz

if R(p1pg 1) > 1, and by meromorphic continuation otherwise. To simplify
notation, we will write M(o) = M(a,071).

Lemma 6.2.
_ 1
T?\ 1 0 M(U) =7 <270-KA7wK> T
Proof. Since W(M(o)f) = W(f) for the choice of a normalization of the
intertwining operator, if K/F is split, then Lemma gives
1 _A—1
Y (57 UA(] ) ?ﬂ) o <1
— TA =7\ 35 UKA) 1/1K T

7(%70—_1A017w) 2
Let K be a field. To each ® € S(F @ F) we associate the Godement section

62)  120) = otdetg) detgly? [ B(0.0)0)o(bblrdb € (o).

We shall identify ® with a Bruhat-Schwartz function on K in such a way
that ®(af + b) = ®(a,b). Define the Fourier transforms of ¢ by

P(2) = / & (z)hx (z2) dz, d(z) = / O (2)x (27) dz.
K K
The proof of Lemma 14.7.1 of [20] tells us that

(6.3) M(o)fe =

Notice that ¥ ((ad + b) (20 + y)) = (ay — bx).
Observe that

T?\_l o M(o) =

1/2

o (b*tt)|b*tt
TS (f2) = / / SO gt = 2(@, oA W)
FX\K* JFx A(t)
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We define 7 € S(K) by ®"(2) = ®(z). Since ®(z) = ®7(—2) and A(—f) =
A(t)~! for t € KX, the lemma follows again from (6.3)) and the functional
equation for GL; (K). O

6.4. Factorizations. Given ¢ € 7 = I1(x) and ¢’ € Ir(x 1), we define

J5 (0. ¢') = / / ) by (m((2)t() ¢, ¢')AS (n(2)t(1))) didz.
FX\K* JSym,(F)

1 1 1

Put x1 = po™" and x2 = p~ o~ '. Then I(m, o) is equivalent to I2(x).
Let 7, be a generic irreducible subrepresentation of Ij(u). Since T is
necessarily proportional to TAW on 7(, by uniqueness, Lemma allows us
to define the Bessel period B’é,,A € Hompgy,, (I(m),0), Asr) by

B A(¢) = lim T\ (¢(wsn(z))) s (—2) dz.

1—00 i
Sym?

If K is a field, then the pairing

L(peh(p ) fef - f(e)f'(e)de
FX\KX

is also GLg(F')-invariant as GLy(F') = B1K*.
Lemma 6.3. If K/F is not split, then for f € Iy(u) and f' € I (1)
1/2
L ) oy T O
Proof. Define f}i € I (1) by fi(B1) =0 and f}(Jin(z)) = 1,,(z). Then
W i (diagla, 1]) = p(a) " [a]/* 1o, (a)

bw(f, f') = p(=1)

and hence bw (hy,, 1) = p(=1)¢(1). Since

64)  ufx) = <3c + r_l[‘r(é?) —1\;(9)> _ (N(mo—i- 0) z+ ;H(Q)) Jin(x),

we have
Fi(e(@ +0)) = pxc(@ + 0)|a + 0]} 1o ()

for z € F. Since fl(F*) =0,

1/2 .
/FX\KX IO () de = Eﬁ,‘m /F (LD +9)) mdx

The identity therefore holds if f = f); and f/ = f;_l. Since the GLy(F')-

invariant pairings must be proportional, it holds in general. O

Proposition 6.4. For f € I1(u) and f' € I;(p™ 1)

Pa(f, f') = p(=1)C()[0r V2|05~ /2Th (w0 (s) /) TH (mo(<T) f).
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Proof. Set h = mp(s)f and h' = mo(sJ)f’. In the split case we have

P, 1) = / by (015 (), W)A(E) A%t

FX\K*
:/ W (6(ba)) Wy (6(—b))Ag(a) L d*bd* a.
FX FX

Lemma now proves the declared identity.
Next we shall prove the non-split case. Lemma gives

, ‘DF|1/2 .
Py(f, f) =p(-1 73 Flet) f(e)A) ™t dedt.
|°K\ 12 Jpx ko< FX\KX
The double integral above is clearly equal to Tk (f)T’;\_l1 (mo(J) f1). O

Proposition 6.5. For ¢ € I5(x) and ¢' € Ir(x )

_ 1/2 —1
TH6.) = e ST (O (O)OIBY o (<m0

Proof. One can prove Proposition in the same way as in the proof of
Proposition [3.4] using Proposition [6.4]} O

6.5. Functional equations for B’é A+ Our goal is to prove the following
functional equation:

Proposition 6.6.
-1 * 1 1 _
Bg’,A o MwT (X) =7 <27 /’LKAa T/JK> Y <27 UKlAa 1/1K> B)g’/,/\'
By uniqueness we arrive at a functional equation
Bfé,’A o M} (x) = c(w, x, A, ¢)B)§,7A.

When both x and A are unramified, the factor c¢(w, x, A, 1) and Lemma
were calculated in [6]. We will generalize these results to ramified characters.

Proposition 6.7.

0(517X7A7¢)) = <;7 (XlU)KAM/JK> ) 0(827X7A7¢) =L
Proof. Let ¢ € I3(x). From the expression
BYLME009) = lim | TR (MOao)d(wn(z)is (~2) dz
ymo

We deduce the assertion for sy from Lemma [6.2]
To prove the assertion for so, we consider the following embedding

ad — be

a b a b
t: GLa — GSpy, L<<c d>> = 1
d



36 MING-LUN HSIEH AND SHUNSUKE YAMANA

and the subgroup U} of Ny given by

5= {o((0 ) e

Then ¢(J1) = s2, and we can write a unique expression

wsnt(t) = «(Jin(z))d, g = sqwsu"t(t), u" e Uy.
Put Bfé,A = BX,’AOﬂ'( m(s)) with m = I5(x). Recall that the upper left entry
of S'is 1. If Ro > —5, then B’éA(M* (x)9) is equal to

/FX\KX // (e(Jin(2))g' )i (—x) da s (u) AT (t) du”dt.

Note that x*2 = (X, Xz ' X20). We define the function f : GLy(F) — C via
£(4) = 0(1(A)g") Cleatly,

fellot xio), [M:,(0)8](1(A)g") = [M(o7", x10) f1(A).
Since W(M (o1, x10)h) = W(h) for any h € I(c!, x10), we find that

BY (M, (x)
/ / / ¢(u(Jin(2))g' ) (—x)da s (u”)A(t) du”dt = B 5 (¢),
FX\Kx* JUY
which proves the assertion for ss. ([

Now we will prove Proposition Observe that

s28152 — (

X2 = (X1 X5 5 X20)s XT%2 = (X3 ' X1 X20)s X X2 xi ot

and y51529152 = 1, Propositiongives
C(’UJT, X Au @b)
26(517 X8281S2a A7 ¢)C(52a XSlsQa Av 1#)6(5]_, XSZ ) A) 1/})0(327 X5 A7 T,Z))

=y (; (XQU)[_(lAﬂ/}K> 1y <; (XlXQU)KA7¢K> 1

6.6. Local coefficients. The factor c(w, x, A, 1) is an analogue of the local
coefficients for Bessel models instead of Whittaker models and have been
studied in [I0] in more general situations. We will discuss a functional
equation for the Bessel periods BY 57A 7 introduced in Definition which is
of interest in its own right. This result is not used in our later discussion
and the reader can skip the rest of this section and continue reading from
the next section onwards.

Conjecture 6.8. Let my be an irreducible admissible unitary generic rep-
resentation of PGLy(F') and o € Q(F*). Then

W,o~1 * 1 W,o
By o M*(mo,0) =7 <2,UK1A,wK> Byf.
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We will prove this conjecture, provided that 7 is not supercuspidal. One
will be able to prove the supercuspidal case by the global method.

Proposition 6.9. Conjecture is true if o is not supercuspidal and —% <
Ro < L.
2

Proof. By uniqueness the Bessel period admits a functional equation
W,o~1 W,
By o M*(m,0) = c(mo,0,A,9)Bg .

Take 1 € Q(F*) with R > —3 such that 7 is equivalent to the (unique)
irreducible subrepresentation of the principal series representation I (u) of
GLo(F). Since X = (x5 ', X7 >0 1), we have Iy(x**) = I(mp,0"). The
restriction of My (x) to I(m, o) agrees with the normalized intertwining
operator M*(m,0), and consequently

C(ﬂ'Ov Ua A7 1/}) = C(w57 X7 A7 ¢)

Since ¢(mp, ow}, 1) is a meromorphic function in s, it suffices to prove
the equality for ¢ in a general position. We may therefore suppose that
~(s, UAal,d}) and (s, 0_1xf1A61,1j)) have no pole or zero at s = % Then

1 _
C(w&XaAvw) =1- 0(517X827A7¢> 1= Y <270K1A7¢K>
by Proposition [6.7] O

0

7. THE IWAHORI HECKE ALGEBRAS AND THE ORDINARY PROJECTOR €4

We introduce the ordinary projector on principal series representations of
GSpy(F). Define the Iwahori subgroup of GSp,(or) by

X ok kK
0 * * *
I=<g€GSpylop) |g= 00 % 0 (mod p)
0 0 % =
We define elements of GSp,(F') by
01 = dlag[wv L, w_lv 1]) 0y = dlag[_wv —w, 1, ”7
0 19 01
e -1 0) T\ o) )
1 0 0 01 -1
B 1l [0 o 10 1
2= 1 "7 o0 w00 |
-1 w 0 0 0 1

Observe that

-1 -1
wp = 51828182, N = S2818202,  So =msan ., M1 = S1.
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Let (m,V) be an admissible representation of GSp,(F'). For an open
compact subgroup K of GSp,(F) the subspace VX = {¢ € V | n(k)p = ¢}

consists of IC-invariant vectors.

Definition 7.1 (Hecke operators). Given g € GSp,(F), we write Igl =
Uuer, w9l and define the operator [Igl] on VIby

[Igllv = Z 7(ug)v.

u€ly
Put ¢, = I:In gﬂgfl] = t1,. Define the Hecke operators by
U< = [16,1], U” = [16,1].

Let D be the diagonal torus of Sp, and N the normalizer of D(F) in
Sp4(F). The Weyl group W = N/D(F) has 8 elements and is generated by
the images of s1, s2. We may view W as a subgroup of Spy(or) and will not
distinguish in notation between the matrices s1, s and their images in W.
The affine Weyl group W = N/D(or) is generated by the images of sq, s1
and so. The length £(w) of w € W is defined as the minimum number of
uses of sp, s1 and sy required to express w. If L(ww') = £(w)l(w'), then

(7.1) Guw’ = G [Tww'T] = [Twl] [Iw'T).

Let x1,x2,0 € QYF*)° be such that y;x2 = 0~ 2. We consider the
unramified principal series representation

T=x1 X X2 X0 = Indgjp“(F) X,

which is irreducible by Lemma 3.2 of [30]. Put
Oé:)(l(TD), B:XQ(W)a 7:0—(@)7 Qp = Q7.

The space V! has the basis {¢y}wew, where ¢y, is the unique I-invariant
vector of V such that ¢, (w) =1 and ¢, (w') = 0 for w # w' € W. We will
primarily be interested in ¢f = Gwy = Psysasys,- 1t 18 convenient to order the
basis as follows:

¢14> ¢817 ngz? ¢82817 ¢5182817 gbslsza ¢818281827 ¢828152-
With respect to this basis the actions of [Is;I] and [InI] on V' are given by

0 q
1 g-—-1
0 q
_ 1 g-—-1
[Hslﬂ]— q—l 1
q 0
q—1 1
q 0
0 0 q 0 0 0 0 0
0 0 0 0 0 q 0 0
1 0 g—1 0 0 0 0 0
0 0 0 0 0 0 0 q
I=21=15 o o o 0 o q 0
0 1 0 0 0 ¢g—1 0 0
0 0 0 0 1 0 qg—1 0
0 0 0 1 0 0 0 qg—1
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[Inl] = T72

aBy
4372

thanks to Lemma 2.1. of [31]. We have [Isol] = [InI][IsoI][InI] L. Let

¢?< = @1, Ps; + Psy + Psasy + Psysasy + Psysy + ¢T + Psasysn
be the unique element of 7 that takes the value 1 on GSp,(or).

Definition 7.2 ((a™!,~)-stabilizations). Introduce the ordinary projector

(6
€ord = W(Ug —*/B)UT = @) (UT = ¢*Pya)(U” - ¢**4B)

(cf. [27]). Define stabilizations of ¢9 by

¢¢ = egrd(rb?(v

¢’ =q Py aP U — PR U = a)(UC — #B)(UC — *571) ).
Remark 7.3. The operators US and UF are commutative.

Proposition 7.4. (1) The support of ¢' is contained in Bowila(oF).
(2) @' is an eigenform for both US and U7, i.e.,

U2" = ¢*a "o, UPo! = ¢*29t.
(3) ¢t and ¢ are eigenforms for both U and UF. Moreover,
¢t =(1—ag (1 -Bg (1 -7’ (1 -72¢ gl ¢ =(a+1)¢"
Remark 7.5. One can partially deduce from , namely,
[18:T)¢" = (16,161 (wr)e'.
Let g € GSpy(F) be such that ([I5,1]¢7)(g) # 0. There exists u € I such

that ¢f(gud;) # 0. We have gud; € Bowilla(op) in view of . Since
5@2/[2(0}7)(52-_1 C Z/{Q(UF), we get g € BQ?U-I—H = BQ'LUTZ/[Q(UF).

Proof. Put
Uy = wTL{QwJ;l, Us(p) = {u € Us(op) |u=14 (mod p)}.
Thanks to the Iwahori factorization I = Us(p)Ba(or) = Ba(op)Usa(p), we get
Bollwi] = Bgﬁg(p)wTH = Bywil = ngﬂflg(p)Bg(op) = Bowilhz(oF).
To prove , one can show that
U< = [Is1][Iso1] [Is1 I [Isol], U = [Isol)[Tsy 1] [Tso ][I,
using . By direct computations the matrix representation of U< is

*The matrix for [[s1]] in Lemma 2.1.1 of [31] contains a typo.
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o 0 0 0 0 0 0 0
ag(g—1) B 0 0 0 0 0 0
0 0 o 0 0 0 0 0
2
0 a(l¢—1)(B+1) ag(q—1) 2% 02 0 0 0
(a+1)(¢—1) (g—1)? a(q — 1)? e L Balg — 1) 0 0
0 0 ag(q—1) 0 0 >B 0 0
2 2_
2(g—1)* Blg—1) (g—1){alg—1+3)+1} 0 0 (¢—D*B+1) L L
2
a(g—1) 0 a(g—1)* 0 0 q¢g-1EB+1H 0 L
and the matrix representation of U% is given by
3/2
‘17/ 0 0 0 0 0 0 0
3/2
0 e 0 0 0 0 0 0
1/2
LRASCESH 0 yag®/? 0 0 0 0 0
0 LHAICESH) 0 yag®/? 0 0 0 0
ad
_ 12
Ve = 0 vaq'/?(q - 1) Sl 0 0 0
a'/2(q-1) a'/2(q-1) 3/2
(q—01)2 (P 247424 1) wa?qﬁ—1> wa(qo—l)z 1/20 i 2/2 ’
~q372 4372 o1/2 172 vBa (¢ — 1) 0 q 0
_ L2 1/2 4
q:;1/12 (—qul/)Q 0 ’Yaql/z(q -1) 0 e ,Y({Z D 0 ’yq3/2

From these we can prove and observe that both ¢* and ¢° are multiples
of ¢'. By a brute force calculation one can show that

ay3gTBRWUC - @B U — ¥y ) UT - ¢¥2ya) (U — ¢¥24B)eo
=(1—aqg )1 =B (1 —~+*a¢ (1 =y 2¢ Ve,
where eg = {(1,1,1,1,1,1,1,1) and e7 = {0,0,0,0,0,0,1,0). O
8. EXPLICIT CALCULATIONS OF BESSEL INTEGRALS III: ORDINARY
VECTORS

Let p,0 € Q(F*)°. Put mo = I1() and x = (po~t,p~to™1 o). Let
m = I(mp,0) = I2(x) be an irreducible unramified unitary principal series
representation of PGSp,(F). Recall that ¢* = egrd¢?< is the p-stabilization

of the spherical section ¢9< in I>(x) obtained by the ordinary projector egrd
in Definition Let A € Q(FX\K>*).

Definition 8.1. When A is trivial on t*, set ¢(A) = 0. Otherwise we put
¢(A) = max{s € N| A is trivial on 1 4 p°t}.

For any given positive integer n we put

( P )7 p

(o0 1
> otherwise,

w” 0
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Set n = max{1,c¢(A)}. Our task in this section is to compute

BA(r(e0)e0 ) — T2 TEM N brad, M, (OT(EM)eGad)
’ ! b (63 M5, ()0%) |

where we use the pairing b%v to define J é} Recall the unique section ¢ €

Ir(x) supported in Bow;Na(oF) with ¢f(wi) = 1. Since (¢™)1Js™ € 7,

the following result readily follows upon combining Propositions[6.5|and
T4 (m(E™)et, M, () (™))

C(l)'}/ (%7 N’KA7 Q/)K') Y (%7 U[_{1A7 Q/)K')

=[0r|"?[0x|7PBY 5 (m(m(ss™))")BY g, (m(m(cs™))gh).

We retain the notation in the previous section. Put

(8.1) L(1,7k/F)

a = p(w), v =o(w).
In the split case we write A = (Ag, Ag"'). Set
mo~ L(p),  x=(uo uloTho),  w=I(x) ~I(m,o0).
Definition 8.2. Define the modified p-Euler factor
o)

L (3, (a0)xd) L(3.0%'A)

Recall the element f:ﬂ € I1(p) defined in the proof of Lemma
Lemma 8.3. We have

k|2 L(1, k/F)  [Ao(—-1) fK=F&F,
~ PrlP(an)g {

e(m,A) =

T (mo(sss™) £)

1 otherwise.

Proof. Note that

no_1
T if K/F is split,
Y0 1
if K/F is non-split.
w" 0

Since Wf; (diag[a, 1)) = p(a)~ a|'/?1,,(a), if K/F is split, then

TA(7T0(§§(n))fT) t a 0\ (To" -1 1ax
e~ () (7 7)) s
= [ da)lam" 2 p(am") (0 Aofa) ! 47
FX

=Z(, Aaluflwllm/g)Ao(w)",
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where ®(z) = ¢ (=) 1o, (). Since d(z) = 1,-nt,,, we obtain

_ 2@ Aopef?) () " ho(w) g2
(&AL Y) v (3 A L)
Observe that vol(ew ™" + OF) =vol(1+p") = qfnC( ).

Next we assume K to be a field. Since

KX =F*(1+op0)| |F*(p+0),

vol(w ™ "+op).

we use the formula
!

d'y
| twd= [ e rpondy [ fowo) ,
FX\KX op P ly + 0|k
where d’y is the Haar measure on F giving o the volume L(1, TK/ F)Di

Since fu( Ly + 6’)(,5 )) =0 by (6 ,
T (mo (s £}) 2/0 £ <<1 +yTr(6) _yN(6)> ( 0 1>> A1 +y0)d'y

Y 1 w" 0

LA 2 )

= (@) "q"? /0 Lo (@ y) d'y.
This finishes the proof. F O
Lemma 8.4. We have
B} \ (r(m(s)s™)g1) = 7"q=*"/>Th (mo(s6y™) 1])-
Proof. For any ¢ € m we have
[m(m()€™) ) (wan(2)) = 7> 2mo (s ) plwan (6 T2 T TH).

Since S[«én)] € Sym,(or) and since ¢f(t(A)wsn(z)) = f;ﬂ(A)]lSymz(oF)(z)
by definition, we find the first identity by (3.7]). Remark and Lemma
give the second identity. ([l

The main result of this section is the following explicit formula for the
Bessel integral of ordinary vectors.

Proposition 8.5. Let n = max{1,c¢(A)} and a = x1(w). Then

B3 (r(m(E™)eS) _ 0kl L(3,Spu(m)x ® A)
L(1, 7k r)C(2)C(4) Pp|V/2L(1, ad, )
Proof. 1t is proved in Proposition |7.4] n . that

eord¢x :d(X)il(ﬁTa d(X) :L(lv Xl)L(17 XQ)L(L (XlU)Z)L(lv 0-72)‘

6(7‘(’, A)ZOé_an_4n.
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Put ¢/ = 7(£M™)¢!. By Lemmas and (8.1)
L(L, /) T3 (8, My, (0)) ongon Pl L, 7h )
C)y (5 16N ¥) 7 (3, 0% A ¥ore) or[/2(an)?mgn
Since

L —aemy L (%’UKA_l)
"}/ <70- A7 wK) = 7 —77
27K L (%’UKIA)
1 ey LG AT
’Y(TMKAMZJK) = (a) L (5 1xh)

by the definition of the gamma factors, we get
T5(¢', My, ()9) _ ok o 26(A)~2n i L (5ookATY) L (5,15 AT
COLLriyr) g2 L (3,00 A) L (L e A)
= [or| 72k |12 L(1/2, Spn(m)k ® A)e(m, A)*a~2g ",

In view of (9) of [I] we have

M 00 = Fiyrapgr e

Let fg be a unique section of [;(u) such that fS(GLg(oF)) = 1. Then

DL(1,ad, 7 1)2
W(f) = L) bw(fis f1) = <<2§(L<)1,;2>L<1,(3—2> - CC((;) '

Since ¢ (t(A)ws) = fS(A)7 we have

s 0 0 oy C(1)? a(wsn(z))|3dz = ————
R B = Gy 8= oy

We conclude that
d(x)*bw (¢y, My, (X\)83) = L(1,m,ad)¢(1)¢(2) 71 ¢(4) "

From these our proof is complete. [l

9. GLOBAL BESSEL PERIODS FOR GUY

9.1. Notation. If L is a number field, then oy is the ring of integers of
L, Ap, is the adele ring of L and Lo = L ®g R is the infinite part of Ay.
When L = Q, we suppress the subscript . Let Z beA the ring of algebraic
integers of Q, Z, the f-adic completion of Z in C, = Q, and 7= [1,Z, the
finite completion of Z. Given an abelian group M, we put M=M ®7z Z.
In particular, A;, = Ly @ L. Let e = 1, e» denote the standard additive
character of A/Q such that e,(z) = ¢™ 1% for z € R and v € ¥. Set
Yt =eo Tr({i. When G is a reductive algebraic group over L, we denote by
eusp(G) the space of cusp forms on G(Ar). For an adele point g € G(Ar)
we denote its projections to G(L), G(Lso) and G(Ly) by g¢, goo and g,
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respectively. We fix once and for all an embedding tso : Q — C and an
isomorphism jy : C ~ C, for each rational prime £. Let 1y = Jp 0 1o be their
composition. We regard L as a subfield of C (resp. Cy) via it (resp. tg)
and Hom(L, Q) = Hom(L, Cy).

Let F be a totally real number field of degree d and K a totally imaginary
quadratic extension of F. We denote by Ap (resp. Ag) the discriminant of
F (resp. K), by 0p = [[,0p, the different of F', by DX the relative different
of K/F and by 7/ the quadratic Hecke character of A* corresponding to
K/F. Fix a square free ideal 91 = MM~ of op such that every prime factor
of Mt (resp. M) is split (resp. not split) in 0. Fix a decomposition

Ntox = NN
Suppose that the number of prime factors of 91~ is even. Then there exists
a totally indefinite quaternion algebra D over F' of discriminant 917, i.e., D

is a central simple algebra of dimension 4 over F' such that D, := D ®, F,
is a division algebra if and only if v divides 91~. Put

Ng =NjoNp, Trf =TigoTrp, N =f(op/MN), N~ =f(op/MN).

Once and for all we fix a prime p of F', which does not divide 91, CM type

XY of K and a finite idele dp = (df,) € F* such that dp is a generator of
the local different 95, for each finite prime [. We identify X with the set of
real places of F. Fix a maximal order op of D. For any finite prime p we
set 0p, = 0p ®op 0p,. If p divides MN~, then we write P, for the maximal
ideal of 0p,. We choose an element ¢ € K such that

e 37(0) > 0 for every 7 € X,

e {1,0} is an op-basis of o, for every prime [ dividing pDEN;

e 0 is a uniformizer of ok, for every prime [ ramified in K.

We regard K as a subalgebra of D. Put S = Sy := 1(6 — 0) € D_(F).

Recall that J; = <_01 é) Put J, = diag[ls, J1]. For v {9~ we fix an

isomorphism i, : Ma(F,) ~ D,, by which we identity Mo, (F,) with M, (D).
Since iy 1(z) = J; iy Y (x)Jy for © € D, we arrive at

J,GUR(F,)J ! = GSpy(F,), J1D_(F,) = Symy(F,).

Trg (0) —NE(0)
1 0

( 1 _Tr%(@)
Jlsa = & (0 '
~52 NE©)

We identify < > with 6. Then

We always take the adelic measure dg on PGU? (Ar) to be the Tamagawa
measure. We define the bilinear pairing by

0= | 6(9)6 (g7s0) g,
PGUP (F)\PGUL (Ap)
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where 7o = [[yex 7o With 7, = d(—1) € GUP(E,).

Let m ~ @) 7, be an irreducible admissible representation of PGUY (Af)
which is realized on a subspace V' of ;zf’cusp(PGUQD ). The space Husp(PGSpy)
satisfies multiplicity one thanks to the work of Arthur. It is conjectured
in general that szcusp(PGUQD ) satisfies multiplicity one, which we assume.
Then since 7, ~ 7/ for every v, we have V =V := {¢ | ¢ € V}. Thus the
restriction of the pairing (, ) to V x V is nondegenerate.

Let dz denote the Tamagawa measure on D_(Ap). When [ and N~ are
coprime, we take the Haar measure dz; on D_(F}) so that the measure of
D_(F)Nop, is 1. For each prime factor q of M~ we take the Haar measure
dzq on D_(Fy) so that the measure of D_(Fy)N*P, is 1. For v € X we define
the Haar measure dz, on D_(F,) by identifying D_(F,) ~ Sym,(F,) with
F3 with respect to the standard basis. Then by Lemma 2.1 of [3§]

(9.1) dz = AN 2 [ dze

Fix a Hecke character A € Q' (K*AX\A%). Let df be the invariant measure
on K*AR\Ay normalized to have total volume 2A(1, 7/ r), where
A(s, T /p) = a MR P((s+1)/2) L, TK/F)

is the complete Hecke L-function of 7x/p.
We define the Sth Fourier coeflicient and the Bessel period relative to S
and A of a cusp form ¢ € Hysp(PGUL) by

WS(¢79) =

/ H(n(2)g)0F (r(52)) dz,
D_(F\D_(Ar)

BY0.9) = | e sl A0 at

Here e is the identity element in GUZ (Ar). We will write B3 (¢) = B(¢,e).

9.2. The refined Gross-Prasad conjecture for the Bessel periods.
For each place v we normalize the local Bessel integrals by

L(%, Spn(my) K, ® Av)
L(]., TKU/FU)L(L Ty, ad) '

We denote the complete Dedekind zeta function of F' by £r(s), the com-
plete adjoint L-function of m by A(s,7,ad) and the complete Godement-
Jacquet L-function of an automorphic representation II of a general linear
group by A(s, IT). Recall that s, = 2 or s, = 1 according as 7 is endoscopic
or not. A special case of [25, Conjecture 2.5] is stated as follows:

BS' = c(my, Ay) B, e(mo, M) = Cr, (2)Cr, (4)

Conjecture 9.1 (Yifeng Liu). Assume that 7, is generic for almost all v.
If ¢ = ®y0,, ¢ = Ry, €V satisfy (¢, ¢') # 0, then

B (¢)BA(¢) A(3,Spn(m)k ® A) BY (6, 4),)
.0y I e AL ad) L (G e
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Remark 9.2. (1) One can easily see that Conjecture is equivalent to

the hypothesis (Boch).

(2) It is easily seen that dt = [[, dt,. Thus Cg, = 1 and %, (o, o) =
2A(1, 7, F) in the notation of [25].

(3) Furusawa and Morimoto [12} [I3] have demonstrated Conjecture
provided that 7 is tempered, 7, is square-integrable for every v € X,
A is the trivial character and the special Bessel period B}s is not
zero on V. More generally, they proved the conjecture for such
representations of SO(2n + 1) and the trivial character of SO(2). In
the course of the proof they verified that 7 has the weak lift Spn(r)
to GL2,(AF) and obtain L(s,m,ad) to be the symmetric square L-
function of Spn(r), which is holomorphic and nonzero at s = 1, for
the exterior square L-function of Spn(7) has a pole at s = 1.

9.3. A central value formula. Let x € N* be a tuple of d natural numbers
indexed by X. We define the action of GUY (F..)° on the space

9y :={ZecMy(F®qC) | (2" =2zJ, 3(Z2J7 ) >0}
and the automorphy factor .J,, : GUP (F..)° x $5 — C* by

hz = (thv>v627 thv = (a’UZU + b’l})(CUZ’U + dv)ilv
Te(h, 2) = [ i(he, Z0)™,  §(he, Zo) = NP (coZo + dy) /NP (ho) 2,
veX

where we write h, = <ZU Z”) Let i = /—1J; € 5. Put
Uy ={g € UP(Fx) | g(i) = i}.

The open compact subgroup K(I) (resp. K(9()) of GUY (F) is defined in
(4.2) (resp. (5.5))). The paramodular subgroup of level 9 is defined by

Kp) =[] 7 'K L x [T KB x [ 7 ' GSpalor) ..
(ot m- o
From now on let 7 be an irreducible cuspidal automorphic representation of

PGU? (Ar) whose archimedean component is ®ye gDﬁf,) and such that 7 is

generic for each finite prime [. Let V,(m,91) denote the subspace of V' on
which the group Uy’ x Kp (M) acts by the character k + J(koo, i)™t

Definition 9.3. For ¢, ¢’ € V,,(7,M) we normalize the pairing by
(0.8 kpem = (6:0) [T (@ +1) [T (af — D).

[0+ (N

Suppose that dim Vi, (m, M) = 1. Fix 0 # ¢r = ®,¢0 € Vi (7, M). Put

a(m) =< (3:8pu(m)). e (1) = [T a).

(|9t
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Take X1, x2,0 € Q(F;)° so that my, ~ x1 X x2 X 0. Put oy = x1(wp) and
Y = o(wy). Define the (oz,;l, 7p)-stabilization of ¢ by
0 0 0 0
601rd,;3¢7r - (®U75P¢v) ® eord,p(bp’

where the ordinary projector egrd p 18 defined in Definition with respect
to (a;l,%). For a € FZ put a” = [[,cxlalf. For [19 we take 0 € K,
and A; € GLy(F}) so that ox, = 05, + 05,0, and J1Sg, = (J159)[A(]. Recall

(1 -0
*T\-1 6 )
(n)

Definition 9.4. For each positive integer n we define ¢, € GL2(F}) by

i ) [ g
where ¥ = 6 if p splits in K and ¥ = 0 otherwise, and define
¢ =m(iy(”)) TT m(s™) T mic(40) [T d(dr) € GUP(F).
[+ Hm [

Theorem 9.5. We suppose that A; is unramified for every prime | distinct
from p. Put n = max{1,c(Ap)}. Assume that m and A satisfy Conjecture
[9.1. Assume that Fy = Qg if [ # p and 2 is divisible by [. Then

By (0 (™) A2Ep(2)Ep(4ANR(4S) ok : 0p + o] 3
TP (si) s
<¢7ra ¢7r>ICD Q) 647‘—\/711‘ o (59 Em+ (W)A(mg)22d+ ﬂA}(/2N(8(Se)3/2
e(mp, Ap)? 2A/l(%,Spn(ﬂ')K@M\) H

L(1, 7k, /R,) (I=a(m)A(Ik))
2n ,4n ’ o/Fp ’
;" gy NA(1,7,ad) -k,

where e(my, Ap) is the p-adic multiplier
-1

—1
c(A 1 1 -
6(7Tp7Ap) = Olp( ») : L<27 (XlU)KPAP> L<27 O-KéAp>

Ay
Proof. Put Bg\‘(H ) = %, where Bg‘ is defined with respect to an addi-

tive character of order 0. It should be remarked that when Fj is of residual
characteristic ¢, we have defined BiA‘ with respect to the additive character

ey o Trg‘e on F,. Taking Remark |2.4|into account, we have
B! (m(m(Ay, dp)Her, m(m(Ar, dp))Hey) = [0~ det Ar|35§;[ (H).
Since [], | det A[|}[1 = [0k : 0p + Oop], it follows from Conjecture [9.1| that
3/2
By (¢k,6)? e er(d) DY A(L, Spn(r)x ® A) M
<¢7Ta¢7r> [UK : UF+90F]3(N7)22S”/1(1,7T,ad) Soy \ord
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Bs'( ¢ o) A - A
X H F(00 mo(d(—1))90) H Bg'(m(m(s™h))) H BSe[I(Id)'
vex TN o hiss Hpn+
Taking Remark [2.4] into account, we deduce from Theorem [4.2] that
A 120, -
Bt (1d) = s | [or 7/

if [ and pM are coprime. If [ divides 91—, then by Corollary [5.2] and (5.1])
’1/2

Ba(1d 1—
s (14) = 0p|1/2 = 1 —e(m)A(Ig) if [ =13 is ramified.

[J%9 = {1 if K,/F} is unramified,
If M is divisible by [, then Proposition [4.10] gives
A - 1/2 -
B3 (m(s™) = e(m)A (@) or iy on |21 + ;).
Since the measure dt, gives F*\ K¢ the volume 2, Proposition gives

BAU( 0 ¢0) s
Sp \FPvs Pou _ 24/{1)—2ND1; (Sg)(251J—3)/264ﬂﬁTr6 (51)
r(¢Y, my(d(—1))4Y) e

for v € X in view of ¢(my,, Ay) = Sgmi Proposition [8.5| gives

I'(2ky—1)m
A /2,5 - on —
B (my(m(€™)elay) = [0rc L2 0rl ~2L(L gy 1y ey, Ag) Py 2,
Upon combining these calculations we obtain Theorem O

10. THETA ELEMENTS AND p-ADIC L-FUNCTIONS

10.1. Quaterinionic modular forms. Let

Dt :={S e D_(F)|JiS >0 for every v € X}.
Given B € DT, we define a function Wj(B o : GUP(F0)° — C by
(10.1) Wi (h) = VI BhD) g (p, 1)~

Definition 10.1 (adehc quaternioic cusp forms). Let K be an open compact

subgroup of GUL(F ) A quaternionic cusp form of weight  and level K is
a C-valued function ¢ on GUY (F)\GUP (Ar)/K which satisfies

¢(zhk) = d(h) T (k,1) "
for every k € Uy and z € AX and admits a Fourier expansion of the form

=3 Wi, )= > wi(d he)) Wy (heo)

BeDt BeDT

for h € GUY (Foo)°GUD(F), where wp(p, —) : he — wy(¢, he) is a locally
constant C-valued function on GUZ(F).
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We denote the space of adelic quaternionic cusp forms of weight « and level
K by @2(K). The space &2(K) is contained in the subspace of Feys, (PGUL)
which consists of right /C-invariant cuspidal automorphic forms with scalar
K-type k — J.(k,i)~! (cf. [1]). The finite adele group PGUZ(F) acts on
the space &) = (J #/2(K) by right translation. If an irreducible cuspidal
automorphic representation of PGUY (Ar) has the lowest weight represen-
tation with minimal K-type k ~ J.(k,i)*! as its archimedean component,
then its non-archimedean component appears in the decomposition of .<70.

10.2. Theta elements. Let (7, V) be an irreducible cuspidal automorphic

representation of PGUY (Ap) such that 7, ~ D,(i) for v € X, such that = is

generic for every finite prime [ and such that dim Vi (7, 91) = 1. Fix a basis
vector ¢ = ®@,¢° € Vi(m,N). Let Opn = op + p"og be the order of ox
of conductor p” and G, = K*\K*/ (’A)pxn its Picard group. We identify G,
with the Galois group of the ring class field Ky» of conductor p™ over K via

geometrically normalized reciprocity law. Denote by [-], : KX — G, the
natural projection map. Define

Ty KX = GU?(?), zn(t) = t(t)C(")-
Definition 10.2. Let ag = q{j_lap_l. Define the nth theta element by

03(0n) = ag" 3. a"Ws(egpbmswa())aln € CLGA].

[a]n€Gn
The sequence {03 (¢x)}n satisfies the following compatibility condition:
Lemma 10.3. Let H}}“ 1 Gni1 — Gy be the natural quotient map. Then
(07 11(0r)) = O3 (¢r)-

Proof. For n' > n, let K]{l be the kernel of the quotient map G, — G,.
Recall that

o, z oy wy X
ws o 25 2 ool )=((5 )
z€op /pycop/p 2€0F /p?
Since Upg@ir = qgap_lgzﬁzr, we have

S ws (¢i,t<a><<">m ((wo" f))) — oy ws (61, 4(a)c).

:BGOF/p

Observing that

1+ nge - if p splits in K
(-1 ne oy () 0 1+wyafd PP ’
() (1+ @, z0)s, = ) .

therwise,
@y xN(0) 1+wg:1;Tr(9)> OTIETISe
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we get

> w6k ta(1 + mpa0)C ) = gy ws (0, 6(a)¢ ™).

x€op/p
The left hand side is 3 pen+1 Wg (gf)}h xn+1(au)) in view of the description

K = (05w = {[1 + wyabl |« € op/p" "},
The proof is complete by Definition [10.2 O

Put G = 1Lm G,,. Lemma [10.3] enables us to define

@S(¢w) = {95(¢W)}n € lgn(C[[gn]]

Assuming that c¢(A;) = 0 for [ # p, we will write ¢(A) = ¢(Ay). When
n > c¢(A), we can view A as a character of G,, and extend it linearly to a
function A : C[G,] — C. Let Wk be the group of roots of unity in K and
wy its order. Put Qg = 05 : Wrox] € {1,2}.

Proposition 10.4. Assume that © and A satisfy Conjecture [9.1 Assume
that Fy = Qg if L # p and 2 is divisible by I. If n > 1 and n > ¢(A), then

MOS0 o 5 ApALPNR(45) A(%,Spu(m)x @ A)
(Prs Prdicp () _QKwK24d+2+SWN5(S)3/2§F(2)€F< ) NA(1,7,ad)

e(my, Ap)?eq+ () o
[0k :0p + 90F]3A(‘ﬁ3_) [I‘ﬁﬂil)l, [:@{(1 (m)A(lk)).

Proof. We may assume that n = max{1,c(A)} by Lemma [10.3] Denote by
vol(O,:) the volume of the image of KO, in K*AZ\Ag with respect to
the measure dt. Remark together with the class number formula gives
VOI(C’A)an) = vol(65)L(1, TKP/Fp)Qp_n = 2d+1QI}1w;{1\/AFA;(1L(1, TKP/FP)Qp_n~
Since W (t(t)g) = W (g) for t € K by (10.1),

K/2
At ) _ _(detS) t (n) 1
Bg<¢mC ) B TIEET i e o WS(ébmt(t)C )A(t) dt

= oI ol (055 ) gy "o " A(©5 (6)).
Theorem [9.5] gives the declared formula. O

10.3. Classical quaternionic cusp froms. Hereafter let F' = Q. Thus

N=N=N"N", K=Q(H/-Ak), Kp(N)=KpN)nUPQ).
It is important to note that

(10.3) D*(A)=D*-DX°R*, GUL(A)=GUY(Q)GUP(R)°Kp(N).
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We associate to ho € UY(R) and a function f : £ — C another function
flihoo : 93 = C, flehoo(Z) = [ (hooZ)J(hoo, Z) ™
Symbolically, we will abbreviate g8 = 2™V=1T > (B2) for B ¢ DT.

Definition 10.5 (classical quaternionic cusp forms). A quaternionic cusp
form of weight x with respect to a discontinuous subgroup K C UQD (Q) is a
holomorphic function f on $3 which satisfies f|,y = f for every v € K and
admits for every 3 € UP(Q) a Fourier expansion of the form

fleB(Z) = Y ep(flB)a”
BeD*

Let Sk(K, C) stand for the space of such cusp forms.

Let K be an open compact subgroup of GUY(Q). Set K = ul@Q)nkK. 1f
GUy (A) = GUZ (Q)GUZ (R)K,
then we can associate to each f € S, (K, C) a unique ¢ € &2(K) such that
F(Z) = ¢5(hoo) J(hoo, 1) (hoo € GUP(R), hoo(i) = Z).

We shall call ¢ the adelic lift of f. By definition wg(¢f,e) = cp(f). Let
I, be the standard Iwahori subgroup in GSp,(Z,) in Section |7} Put

Kp(N,p) ={g € Kp(N) | gp €I}, Kp(N,p) =Kp(N,p) nUF(Q).

Recall that J, is the Iwahori subgroup of GL2(Z;). Let R be an Eichler
order of level NT in op. We identify Ry = R ®gz Z; with My(Z,) or Jy via iy
according to whether £{ N or /|[NT. Put

L={zeD| Tr§ (zy) € Z for all y € R},
R_o={zeD_|Trf(zy) € Zforallye R-ND_}.
Observe that if Nt is divisible by £, then

JUK (), = {(‘CL Z)

It follows that

- (2§

Thus the Fourier coefficients of cusp forms in the spaces S, (Kp(NV),C) and
S.(Kp(N,p),C) are indexed by R = R_ n D*.

The operators Ug) and UpQ on the space #2(Kp(N,p)) are defined in
Definition We define the operators UP and UQ on Sx(Kp(N,p),C) by

(U] 1(Z) = p" 2 - (U} é5)(hoo) - Ji(hoos 1),
u

a,d € Ry, b€ Ry, ceeRj}.

a,d€ R, be R, ceNRL}.

» Nz
5 11(2) =P (U641 (hoo) - J(hoo, 1),
where f € SN(KD(N,p),C) and heo € GUP(R)° with hoo(i) =
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Proposition 10.6. Let f € S,(Kp(N,p),C). Then

UPA(Z)= > cps(f)P?,  [USA(Z Z > sy (£dP,

BeRt z=1 peR*

where v, € D* is such that v, € iy ((0 1>> DXORX

Proof. The first formula is easy to prove. We see by ((10.2) and (10.1]) that

URelh) =Y Y j(@ﬁl 0)_(6) )

=1 X€R_/vzR_%

=p " Zp: > > cp(f)er™V G (Bra (Z+X)3: 1)

r=1 BeRT X€R_/v2R-7a

p

=3 Y cs(f)q? B’ > 2V I (7 Bz ' X)

=1 BERt XER_/v2R_ s

where R~ = RN D_. Note that

3 2TV IR (35 By ' X) _ #(R_/v.R_7,) if B€4,R_~,,
0 otherwise.

XeRf/’YzRfﬁ/z

On the other hand,

_ 0 T
R ot = Svu@)) (2 9) symatz,) (5 7).
We find that #(R/v.R7.) = p°. O

Definition 10.7. For each subring A C C the space S, (K, A) consists of
cusp forms f € S, (K, C) such that cg(f) € A for every B € D™.

The following result follows from Proposition [10.6] immediately.

Corollary 10.8. UpQ and UZ; stabilize S, (Kp(N,p), A) for any A.

Lemma 10.9. If f € S.(Kp(N,p), A), then for every B € Dt andt € K~
P wp(of, zn(t)) € A.

Proof. Let R C R be the Eichler order of level pNT. Given t € K X, we use
10.3) to write tg,gn) = yru with v € D*(Q), N(g('y) > 0 and v € R*. Then
t(ve) 'zn(1)d(p") € Kp(N,p). Let hoo € GUP(R)°. Put Z = hoo(i). Then

o) =0y (7 ) he)
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—n fIZ
_ f({jl i 5 7) — p—nnj:(p—n,y—lz,y)'
g (7 Z
" << 0 p"V*) >
Thus anWB(QZ)fa zn(t)) = Wp"w—lB'y(QZ)fa e) = Cp”'y—lB'y(f) €A O

10.4. Anticyclotomic p-adic L-functions. Let f € S.(Kp(N),C) be a
Hecke eigenform and 7 an irreducible cuspidal automorphic representation
of PGUL (A) generated by the associated adelic lift ¢ := ¢; € &2 (Kp(N)).
Denote the ring of integers of the Hecke field of m by 0,. We may further
assume that f belongs to S.(Kp(N),o0r) (cf. [11, Proposition 1.8 on p. 146]

r [23]). Since ¢r equals 7(7o0)dr up to scalar by the multiplicity one, we
may assume that a = (Too ) P

Let {a,, a;, 'yp ,*yp} be the Satake parameters of m),. Put

P32 K=3/2,~1,, 1

Yp» Bp=p Yo O

ag=p* "apfp =p" oy, Bgo= p“’lapﬁp =p" o,
Definition 10.10. Let
fHi=aptagt - (UR - Bo)(U) — p* o' ) (U] — p* 2851 (U] — Bp) f.

Let ord,, : @p —» er denote the normalized additive valuation. From now
on we assume one of the parameters of 7, to satisfy

ap =

(@ ord, (ag) = 0.
It is convenient to suppose that another parameter satisfies
(P) ord, tp(ap) = 0.

Remark 10.11. (1) The condition (Q) + (P) is referred to as the p-
ordinary assumption relative to the Borel subgroup Bg
(2) The eigenvalues of UpQ are ag, fo, " 2 ,p2”” 26 and those of

UZ,’ are ap, ﬁp,p%_?’a;l,p%_?’ﬁ; by the proof of Proposition
(3) The eigenvalue of f* for UpQ is a p-adic unit if and only if (Q) holds.
(4) The eigenvalue of f* for U7 is a p-adic unit if and only if (P) holds.

Lemma 10.12. If m, satisfies (Q) and A contains o, and eigenvalues of
U7 and U2, then o, - f* € Sx(Kp(N,p), A).

Proof. Remark [10.11{[2) and Corollary imply that
BQ? B’P? p2ﬁ_3a7;17 p2n_367;1 € Za
and the lemma follows from (Q) and Definition [10.10 O

Let I'" be the maximal Z,-free quotient group of Go, and A the torsion
subgroup of G.,. We have an exact sequence

12A—-Go—1T" — 1.
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Fix a noncanonical isomorphism G, ~ A x ' once and for all. If n > 1,
then the map A — G, — G, is injective and hence
Gn~ A XTI, I -1, =G,/A.
Let x : A — Q* be a branch character. Define the y-branch of O (¢,) by
O} (¢n, x) = x(O3(¢r)) € C[L'; ).

Enlarge o, to a ring A so that A contains values of x and eigenvalues of UZ?
and Ug. By Lemma 05 (¢, x) belongs to A[T,;], and hence

0% (¢, x) := Lim O} (6, X) € A[[L]]-

Definition 10.13 (periods). We normalize f € S,(Kp(N),0,) so that not
all the Fourier coefficients vanish modulo the maximal ideal of the comple-
tion of o with respect to ;. Define a period Q, y- of 7 by

QW,N_ = A(la T, ad)/(fa f>KD(N)a

where we define the Petersson norm of f by
(fs Pxpv) = / 1£(2))? (det Y)F3d X dY.
Kp(N)\9H3

Proposition 10.14. Let N = NTN~ be a square-free integer. Then
vol(Kp(N)\93) = 260(2)60(4) [] (2 +1) [] (2.
qN+ fN-
Let f € S.(Kp(N),C). Then
(fs Dxpv) = §0(2)6(4)(br, dr)icp(N)-

Proof. Recall that a motive M of Artin-Tate type is attached to UL in
Section 1 of [I7] and a canonical Haar measure |w,| on UP(Q,) is defined
in Section 4 of [I7]. For each rational prime g, let p4 be the Haar measure
Ly(MY(1))|wg| on UP(Q,). Let pioo be Euler-Poincaré measure on UY(R).
Then g = ®qp, defines a Haar measure on Ug) (A). Since the Tamagawa
number of UL is 1, we have

(10.4) = Loo(M)/c(Spy(R))

/U 2 (Q\UP (4)

by Theorem 9.9 of [I7], where ¢(Sp,(R)) is a cohomological invariant at-
tached to the real symplectic group of rank 2.
Let H = D? be a left D-vector space with Hermitian form

((z,9), (,y))) = 27 +yT'.
Let L = op @ 0p be a maximal lattice in H(Q), where

op ={z € DQ) | Tr(g(wy) € op for every y € op}.
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Put L, = L ®z Z,. Define an open compact subgroup (L) of UQD(@) by

=[xy, K(Lg) = {g € GUY(Qy) | Lyg = Ly}

Then K(L) ~ Kp(N~). By the strong approximation property of U
Ua(Q)\Ug'(A) ~ (K\H3) x Uy x K

for any open compact subgroup K = Hq Ky of UP (@), where we put K =
K NUP(Q). Now we see from ([10.4)) that

vol(K\93)vol(UZ) [ 11a(Ky) = Loo (M) /c(Sp4(R)).

q

Taking Lemma 3.3.3 of [29] into account, we get

Vl(Kp(V\D2) 11, 2
wol(Kp(v- o) = LL @+

qIN Tt

Proposition 9.3 of [15] says that p1,(K(L,)) = 1 or ¢>—1 according to whether
D is split over @, or not. It is well-known that

vol(Sp4(Z)\$H2) = 260(2)ép(4).

Combining these results, we obtain the first equality. Proposition 3.1 of [9]
combined with this equality and Definition [9.3] gives the second identity. [

Take 6 so that ox = Z + Z6. Recall the decomposition NTox = ‘ﬁg’)’Tg.

Theorem 10.15. Let A be a subring of @p which contains o0, values of x
and eigenvalues of U‘Z)D and UpQ. If mp, satisfies (Q), then

ap - ©%(¢r, x) € AllGoo]]-

Letv: T~ — @; be a p-adic character of finite order. Then

(0% (¢r, X))
<fa f>KD (V)

A(%,Spn(ﬂ);{ ®X1/)
N2s7= A(1, 7, ad)
X en+(m )(XV)(W(T)_I 11 (1 —ea(m)(xv)(Ik))-

N 7AK)7 Z:@{

Proof. By Deﬁnitlons 7 2 an O 10 ap ord p@r is the adelic lift of ozp It
In view of Lemmas [10.9] and |1 we conclude that

=wi 22 NG (T, Xpp)

a’P : p WS<eord,p¢ﬂ') xn(t)) €A

for every t € K* and nonnegative integers n. Since F' = Q, we have Qx = 1.
We have det S = % for our choice of 8. We finally get the stated formula

by Propositions and [10.14] O
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10.5. Reformulation in terms of optimal embeddings. We explain
theta elements in Definition [10.2| agrees with the one given in the intro-
duction. When O is an order of o, an embedding ¢ : O — R is said to
be optimal if «(K) N R = «(O). Fix an optimal embedding ¥ : oxg — R.
Recall that R C R is the Eichler order of level pN*. For any positive in-

teger n, write g;c(,n) € %ﬁx for some 7, € D*. Then one verifies directly

that the embedding ¥,, € Hom(K, D) defined by ¥,,(z) = v, ¥ (z)y, is an
embedding from Op» to R of conductor p", namely an optimal embedding
in Hom(Opn, R). For ¢ € Gal(Kyn/K), write 0 = reck(t)|k,, for some

t € K*. Write ¥, (t) € yR*. By definition,
n(t) = t(t)s)") € YW (t)v, i € WA R>.

On the other hand, according to the recipe of the Galois action on W,

Svg =7 U (p" V= AK/2)y = " (W) Sy
By Lemma we find that

pnnWSql (xn(t)’ fi) = Cpn(%y)—lsww(fi) = chf,n (fi)

This shows that the theta element ©3(¢,,1) with S = Sy agrees with the
one described in the introduction.
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