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1. Introduction

.-
In [5] Stoll showed that if M iS-··a non compact, connected complex

nianifold of dimension m· and T:.M ~ [0, +oof
00

is a C exhaustion func-

tion such that ddcT > 0 on M and (ddclogT)m _ 0 on M - ~-1 (0),

then there exists a biholomorphic map ~: ~m ~ M' such that for all

Z E ~m we have TO~(Z) = Ilzlf. Stoll's proof was simplified in various

ways (see [2],[7]~ and Stoll himself· was able to give aversion of

this theorem on complex spaces ([6]). The next step has been to study

the case when the exhaustion verifies the same assumtions on M - T-
1 (0)

and same weaker ones on T- 1 (0). This was carried out in several direc~

tions by Burns [2], Wong [8] and by the authar in [4].

stall's theorem and the successive results can be viewed. fram

different angles. On one hand they allow one to characterize complex

manifolds which carry a strictly plurisubharmo~ic-exhaustion with

some additional properties - most notheworthy its logarithm satisfies

the complex homogeneous Monge-Ampere equation. On the other hand theese

results give a classification, up to biholomorphic maps, for certain

kind of solution of the complex homogeneaus Mange-Ampere equatian.

This is of particular interest since, at the moment, there is no

satisfactory understanding of this equation fram the PDE point of view.

It is easy to give examples of solutions which are not classified

by the known theory. If H: ~m ~ IR is a positive homogeneaus poly­

nomial of bidegree (p,p) (i.e. such that H(AZ) = IAI 2PH(Z) for all

A ~ ~-" and Z E. ~m) with the property that dacH> 0 on a:m - {O},

c -. -- C In rn-
then rank~dd logH = m-1 ahd therefore (dd logH) _ 0 on ~ - {al.

Clearly up to linear isomorphisms (and in fact biholomorphisrns) the

only positive homogeneaus polynomial of bidegree (1, 1) is 11 11
2 . Far

p > 1 it is known that there are many non equivalent such polynomials.
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In light of Stoll's theorem it is natural to ask whether it is

possible to characterize the solutions of the comp1ex homogeneous

Monge-Ampere equation which pull back via a biholomorphic map

to 10gH where. H is a homogeneous polynomial of bidegree (p,p),

p > 1. Related to this problem there is also a question of Burns

(['2] ) who·asks whether a· positive homogeneous polynomial H on

a:m (1. e. such that for some positive integer n one has H(tZ) =

tnH (Z) for all t E m and Z E: a:m) such that ddcH > 0 and

(ddClogH)m :·O."·,·ön ~-{O} has to be necessarily of bidegree (p,p)

for same p.

In this paper'we address theese problems. Firstly, we give

a positive answer to Burns' question (Theorem 3.4). Then we take

over the general case and we are able to give a characterization

(Theorem 4 _J.}-··"wh·ich" coincides wi th Stol.l_~ 5 resul t when p = 1.

The main difference with Stoll's theorem is that, when p > 1,

one has that the exhaustion is not anylonger strictly plurisub-

harmonie on its zero set since its order of vanishing is too high.

This difficulty is overcame by taking suitable roots and using

the classification of non smooth exhaustions of Monge-Ampe~e type

given in [4] where we characterized the strictly plurisubharmonic

Finsler metrics over ~m. Some of the results have alternative proofs.

We ehose those which we feIt were more elementary and made the ",

paper as selfcontained as possible.

A word about notations. Upper indices will denote components

and lower ones derivatives. Summation conventions are also used

unless they rnay cause confusion. Fina11y we denote d = a + a and

d
C = 4~ (a - a) so that dd

c = in aä.

. .. ~. ~- ....
- . ',.~ .__ ...... -
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2. Preliminaries

a) The Monge-Ampere foliation.

Let M be a connected complex manifold of dimension m and

3

l' : M -+ (0, R)

(2. 1 )

(2.2)·

Since

00

be a C proper function such that

c m(dd logT) - o.

(2.3)

by taking exterior powers, we get,using (2.1) and (2.2)

(2.4) . c m m c m-1 co <. (dd 1") = 1" (dd 10g1") A d log~1" A d logT.

From (2.4) one has immediately d1" = 1"d 10g1" f 0 and (ddcloqr)rn-1 f o.

Thus, because of (2'. 2) ,.
c

rank~dd 10g1" = m-1. Using the equality

(2.5)

taking exterior powers and recalling (2.2), ane has

(2.6)

so that, if (2.1) is satisfied, it follows that (2.2). is equivalent

ta the laeal equation



(2.7)

4

where (TV~) = (T 1-1
~\J •

As ddelogT has rank m-1 and it 1s elosed, a rank 1,

integrable distribution is defined on M by

The maximal integral manifold of E are Riemann surfaees and

define the so called Monge-:-Ampere foliation associated to T. By

construetion the leaves of the Monge-Amp~re foliation are exactly

the one dimensional complex submanifold of M along whieh lOgT

is harmonie (for more details see (1] or [7] for example).

If X is the complex gradient of T, 1.e. the veetor field

dual with respect to the Kähler metrie ddcT > 0 to the form aT,

then in Ioeal coordinates

(2.9) X = x~_a_

azlf

From (2.7) and (2.9) it fellows that X(T) = T and thus, as

dT i 0, we have X # 0 on M. Again· fram (2 .. 7) and (2.9), a

simple calculation shows that ddClogT(X,X) = 0 and therefore

E is a trivial subbundle of T1 ,0 (M) generated by X. The leaves

of the Monge-Ampere folia.tion are then just the integral' (complex)

curves af X. In particular ane should note that the Mange-Ampere

foliation 1s holomorphic (i.e. E is a holomorphic subbundle of

T1.,0 (M)) if and only if X is holornarphic .. This is quite an

exceptional occurrence although X is always holomorphic when

restricted to one leaf (see [5J, Proposition 3.5 for example).

It should be noted that when (2.1) and (2.2) are satisfied,

then.we have also
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(2.10)

For a proof see for instance [8], Remark 2 in Section 5. We shall

also need two, simple lemmata. The first one is a trivial consequence

of the definition of complex. gradient and therefore we state it

without proof.

Lemma '2.1. For j = 1,2, let M
j

be aconnected complex manifold

(
00 •

of dimension m and T. : M. ~ O,R) be a C pr.oper funct~on".
J J

satisying (2.1) and (2.2). If ~: M1 ~ M2 i5 a biholomorphic

map such that

then

T = T20~1
and,' X j is the complex gradient of l' j ,

is holomorphic if and only if X2 is so.

Lemma 2.2. Let M be a connected comp1ex manifold of dimension
co

m and T : M ~ (O,R) be a C proper function satisfying (2.1)

and .(2.2). If P is a positive integer and a = T1/ p ,· then also

a satisfies (2.1) and (2.2).

Proof. Since l' satisfies (2.1) and (2.2), we have dT 1 0 and

c
rank~dd log'T = m - 1 on M. Thus

(2.11) da = 11' (1-p) /p dT '# 0
p

d loga := a~1da :# 0

(2.12)

In partlcular (ddClog'T)m = 0 on M. Moreover we have ddCloga =

~dClog'T ~ O. From the formula
p

(2.13)

one obtains ddca· ~ ddCloga ~ 0 on M. Taking exterior powers

of the right and 1eft ~ide' of (2.13) and using (2.11) and
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(2.12), we have

m C m-1 c= cr (dd logo) A d logo A d logo F O.

Hence (ddco)m > 0 and therefore ddco > o•..
q.e.d.

b) Manifolds of circular type.

In [4] we introduced the following notion. Let· M be a non

compact, connected complex manifold of dimension m and T:M ~ [O,R)

be an exhaustion function~ Define M* = {x € M I T(X) > O}. We

say that the pair (M,T) is a. rnanifold of circular~ if T

has the following properties:

(2.14)

(2.15)

(2.16)

ddCT > 0 0 Mn *;

Moreover there exists p € T- 1 (0) and a coordinate neighborhood

U of' P such that:

(2.17)

(2.18)

if 11 I1 denotes the euclidean norm, then there exist

constants C, K > 0 such that C [Iz 112 :;;; T (Z) ~ KIlz 112

for all Z E U.

there exists E > 0 so that tZ E U if Itl < E and

Ilz 11 < 2 and such that the function h:'" (-E,E) x (E (2) -{al) ~ JR+

defined by h(t,Z) = T(tZ)
<Xl

is of class C .

It turns out that, if the other assumtions are satisfied, (2.18)
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is equivalent to

(2. 18 I ) if
~

n : M + M is the blow up of M at p, then
(X) ~

Ton € C (M).

Clearly this assumption is nicer to state, but for the porpo~se

of this paper it 1s important that the main results of [4] can

be obtained assuming only (2.18). It should be noted that in [4]

we assumed for simplicity also cdd logT ;;: 0 on M•. This, as we

noted before, follows from (2.15) and (2.17).

The main result of [4], which we shall need later, can be

stated as follows:.

Theorem 2.3. Let (M,T) be a manifold of circular type. If SUPT=+~,

then there exists a biholomorphic map ~: ~m + M such that

a = To~ 1s a strictly plurisubharrnonic exhaustion of ~m with the

praperty that a(AZ) = IAI 2a(Z) for all Z E ~m and ,x E~. If

SUpT < +00 and the Mange-Ampere foliation associated to T 1s

holornorp~ic, -theri t:here e:cists a. ~strictly pseudoconvex, complete

circular domain G ce:: ~rn and a biholomorphic map 'i': G + M such

TO'i' iso the Minkowski functional squared of G.
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m3. Homogeneous polynomials on ~

n

A polynomial H : ~m ~ ~ is said to be homogeneaus of degree

if for all t E IR and 'Z, E ~m

(3 .,1 )

In fact any C
OO

function H: ~m~ ~ which satisfies (3.1) i8 a

homogeneous polynomial of degree n. We also say that a polynomial

H : a:m ~ ce is homogeneous of bidegree (p, q) if for all A e: CI:

and Z € a:m

( 3 • 2 ) H (AZ) = A~PH (Z) •

Again
co

any C function satisfying (3.2) 1s a homogeneaus poly-

nomial of b1degree (p,q).

Given a homogeneous polynomial H

there exists a unique dec~mposit~on

(3.3)

a:m ~ a: of degree n,

If H: ~m ~ CI: is a homogeneous polynomial of bidegree

(p,q), then one checks immediately that H (resp.
lJ

homogeneous polynomial of bidegree (p-1,q) if"p ~ 1

Hp) is a

(resp.- (p ,q-1 )

if q ~ 1). Moreover, for every Z e: a:m one has the formulas

H (Z)z~ = pH (Z) if P ~ 1 ,
1-1

·(3.4)
-~ qH (Z) if' ~ 1 •H- (Z) z-, = 'q

~

Finally, we ahall say that a. homogeneous polynomial H is positive

if it is real valued and H(Z) > 0 for all Z e: ~m.
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We need a number of properties of homogeneous polynomials.

We group them together in the following

Lemma 3.1. (i) If H is a homogeneous polynomial on ~m of .bi­

degree (p,p) with ddcH > 0 on ~m - CO}, then ·H 18 positive.

(ii) If H 1s a positive homogeneous polynomial on ~m of degree

n, then n = 2p is even and HP,P i5 positive.

m(i1i) If H is a homogeneous polynomial on a: of degree n and

with the property that ddcH > 0 on a:m - CO}, then n = 2p 1s

even and ddcHP,P > 0 on a:m - CO}.

Proof. (1): By hypothesis and using (3.4), we have for z· € a:m - CO}

2= p H(Z).

(ii): Let Z E ~ - CO} and t ~ lR~ Then

o < H(eitZ) = L ~,s(eitz) =
r+s=n

If ~ were odd, then

L eit(r-s)Ff"s(Z).
r+s=n

2rr
o < f H(eitZ)dt =

o
L ~ ;s(Z) 2p eit (r-s) dt = O.

r+s=n 0

Thus n must be even: n = 2p. Moreover

2rr
o < J H(eitZ)dt =

o
L Hr , s (Z) YeH (r-s) dt =

r+s=n 0
2rrHP ,P(Z) •

(ii1): Under the hypothesis, given any Z, W E ~m - CO}, we have

o < H' - ( Z ) w~w'v = L ~,s .... ( Z ) wllwv = fL _ ( Z) •
llV r+s=n ~v -~

For any W E ~m - CO,}, HW 1s a positive homogeneous polynomial

of degree .n~:r-·Whose canp:rierit -', of bidegree fr- r-;.-s.:-+t-~t&>-gi"ven by
~: - .- .
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rr,s_w.llw~~~·~-·T!i\i~~'(iir~-:-:imQlies:tlatn = 2p for same p and that for
~\I - -, ---- .-' ... --_.

every Z E (tm - {o} we, 'have #,p_'(Z)w~w'V > O. Sinc'e W E: a:m -{al
~'V

was arbitrary, we are done.

q.e.d.

It 1s known that homogeneous polynomials of bidegree (p,p)

give rise to solutions of the. homogeneous Monge-Ampere equation

of the kind described in Section 2. For the reader's convenience

we give here a precise statement.

Proposition 3.2. Let m·H : CI: ~ m. be a homogeneous polynomial

of b1degree (p,p) such that ddcH > 0 on a:m - {O}. Then H i8

an exhaustion of a:m such that on a:m - {O} we have 'H > 0 and

(ddclogH)m = O. Moreover the complex gradient X of H is given

so that the Mange-Ampere foliation associatedby X(Z) = p-1 z }.1_a_
az~

to H is holomophic and its leaves are complex lines through

the origin.

Eroef. From Lemma 3.1 it follows that H is positive and there­
·m

fore that it is an exhaustion of ~ . Let u = 10gH. Then given

A E a: and Z E a:m - {O}, one has

(3.5)
2 .

u(;\Z) = plogl;..1 + u(Z).

Differentiating both sides of (3.5) with respect to ;.. and A

and taking ;\ = 1, one obtains

(3 .6) u _(Z)zl:!'Zv = o.
llV

Equation (3 .• 6) implies that ranka:ddcu.< m and therefore that

(ddcu)m = 0 on a:m - {O}. In order to compute the complex gradient
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of H it 1s enough to observe ,that, using (3.4), we have Hv(Z) =
-1 IIP H - (Z) z • The rest of the statement then follows immediately·...

~\)

q .e,.• d.

The aim of this section is to show that among the homogeneous

polynomials only those of.bidegree (p,p) have the propeties listed

in Proposition 3.2. We need the following preliminary observation.

Lemma.3.3. Let. H be a positive homogeneous polynomial on ~rn

of degree n with ddcH > 0 and (ddclogH)m = 0 on ~m - {al.

Then n = 2p and", if H' = H
1/p,- the' pair (~,H) is a manifold

of circular type.

Proof. Because of Lemma 3.1, we have n ~ 2p for some positive

integer p. As H is positive, the function H = H1/ p 1s a weIl

m 00 m
defined exhaustion of ~, of class C on ~ - {al. Since for

any t E lR and Z E a:m one has H(tZ) = t 2
1i·(Z), it 1s easy

-to verify that H 'fulfill the conditions, (2.17) and (2.18).'

Lemma 2.2 shows that H satisfies also (2,.15) and (2.16) and

therefore the claim 1s proved.

q.e.d.

Theorem 3.4. Let H be a positive homogeneaus polynomial on ~m

of degree n such th~t ddcH> 0 and (ddclogH)m = a on ~rn - {al.

Then n = 2p i5 even and - H is homogeneaus of bidegree (p,p).

Proof. Because of Lemma 3.3 and Theorem 2.3, we know that n =
2p and that,. if ~ = H1./p , there exists an automorphism t of

~m such that for every Z E ~m

IAI2Ho~(Z). Thus if we denote

and A e: CC" we have
A
H = HO~; we have that

-HO~(AZ) :::%

H E CIXl(~m)
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and satisfies H(,".Z) = lAI 2PH(Z) for all AE a: and Z E a:m•

'"Hence H is a homogeneous polynomial of bidegree (p,p) such that

ddcH> O. In. particular, as we saw in Proposition 3.2, its.complex

gradient '"X is holamorphie . Then Lemma 2. ·1. implies that

and that X is holomorphic.

Since H is homogeneous of degree 2p,. we have for-all t E m

and Z € a:m

Recalling the definition (2.5) of' X, we have

Since X i5 -, holomorphic, it must be of the form

(3 .7) x (Z)

where A = (a~) E GL(m,~).
'J

Let H = L:: Hr,s be the decomposition of 'H in
r+s=2p

homogeneous polynomials of bidegree (r, s)". Because of Lemma 3. 1 (iii)

and Proposition· 3.2, we know that

(3.8)

on the other hand

C Hr!.s
r+s=2p 'J

s~1

Since by' ,l3 .7) '·each x~ is homogeneous of bidegree (1,0), comparing

the degrees of the two ends of this equality, we can conclude

.~ ~ .....
r ~.~, _ • ~r
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(3 .9)

( 3 .,1 Q) if r,s ~ 1 and r+s = 2p.

Thus, us~ng (3.8) ,.we compute

(3.11)

= (HP, p) \jCl (Z ) HP , P' (Z) Xet ( Z)
llV

= (HP,p)~a(Z)HP~P(Z) = lzCl
\,) P

Now, using (3.4) and (3.9), we have

From (3.10), using (3.4) and (3.11), we compute

and

Hence, if +,s ~ 1 and r+s = 2p, then either r = s = P or

~,s = O. In conclusion H = HP,P and the proof is complete.

q.e.d.

Remark 1 • Le,t H be a homogeneous polynomial on a:m of bidegree

(p, p) such that ddcH > Q on a:m _ {Q}. If ~ E Aut (a:m) and

.....
15 a homogeneous polynomial of bidegree (q,g) , then itH = Ho4l

follows that ~ i8 linear and P = q. This i8 easy to see since,

.....
{Z a:m, 1. H(Z) 1 } and {Z e: a:m I H(Z) 1 } , thenif" "0 = E. < D = <

both
.....

and are complete circular domains and ~ restricted0 D

.....
1s a biholornorphic onto 0 which fixes the origin.to 0 map

By a classical theorem of Cartan, then ~ is necessarily linear.

Theorem 3.4 shows that if H = Ho~ i8 just a homogeneaus polynomial
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of degree n" then the same conclusion holds i.e. ~ is linear

and n = 2p. Thi~ 1s immediat~'from the theorem since if H

satisfies (2.1) and (2.2) on ~m - {a} then. so does ft ..

Remark 2. Up to linear isomorphisms (and therefore- up. to biholo-

morphisms) there exists only one strictly plurisubharmonic_~\

homogeneaus . polynomial of bidegree (1) 1): 11' 1r. This is not the

case for higher bidegree. This i5 fairly obvious hut it may be

convenient to give an explicit example. Let Ha: ~2 ~ IR be

defined by a 4 4 2 2H (z, w) = 1 z 1 +. 1w 1 +. a I z 1 1w I with a > o.

Clearly ddcHa for all 0. > a and 2 . 4
> 0 H' (z,w) = lJ(z,w)1I .- We

claim that if a 4- 2 then HC't cannot be equivalent to . H
2 up

. .

to complex linear isornorphisms. Assume that there exists A E GL(2,~)

such that p = H2
0A = Ha fer seme a # 2. If A = (~ ~), then

we must have

1 = Ha ( 1 , 0) = p (1 , 0 ) = laI 2 + 1c I2 .

Also one computes

pzz(z,w) 41 az 2 2lcz + dwl2= + bwl +

pwW(z,w) 2
+- 41cz +

2= 2laz + 'bwl dw[ .

Thus

4 = H~z(1,0) = Pzz(1, 0.) = 41al 2 .f; 21c]2 = 2]a1
2

+ 2

a pwW(1,O) 2lal 2
+ 41 c l2

2[c1
2

+ 20. = H -(1,0) = = =ww'

and therefore
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2 2
2 1 a = 21al + 21cl = 2

which is impossible •

.-Remark 3. Let T : ~ +. [0, +co) be an exhaustion such that

T E CO(~m) n Cco(~rn - {Oll and.satisfying (2.1) and' (2.2). More-

over· let us assume that T 1s homogeneous of degree n: T (tZ) =

for all t E m. and Z E ~m. If T
co

were of class C- also

at the origin then it would be a homogeneous polynomial and Theorem

3 • 4 would. app ly. In general if a = T 2/n, then us i-ng the hama­

geneity of .T~ and Lemma 2-.2, one shows. as in Lemma 3.3: that (~m,a)

is a manifald of circular type. Thus there exists ~ E Aut(~m)

so that if p = a 04>, then p is homoge neous a f b iq'egree . ( l'~ ,-1 ) •. In

particular p can be written 'as p (Z) = ]I zl12g (Z). where 9 is

a.bounded positive function, which 1s constant on .L n ~m - {O}

for"each complex line L thraugh the origin (af course in general
. .. ---.- , ... ~, ~ .....~. ...~.. ~-;.._--.- ~:..,... ~ .

9 is not cantinuous at the origin). 'Using' eJ:e -~r?St;-~· of .Sec:~ion ,4

of.·· [" 4 ] ~;-- i t' ·:·~~n~ be shoWn' tha t~ ."a( z") = p (Z) + 0 ( 1~ 1p). Therefbre

T (Z) = Itz Irh (Z) + 0 (11Z IF+1) for all Z E ~m' and where h = gn/2.

But then, since .T is homogeneous of degree n, we can conclude

that T must be expressed by T (Z) = 11 Z Irh (Z). In other words

. any such exhaustion ~ is,;th~ product of apower of the norm

times the pull back fram IPn-1 of a suitable smooth functian.
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4. The general characterization.

.,.-

We shall now turn to the problem of cruuacteriz~ in general

the solutions of the homogeneous complex Monge-Amp~re equation

which, up to. biholomorphic' rnaps, are the loga~ithm of a. homogeneous

polynomial of bidegree (p,p). We start by fixing some terminology.

Let M be a complex manifold of dimension m and f: M + lR

co
be a function of class C . We say that f vanishes of order n

at a E M if fand all its derivatives of order s < n vanish

at a .and same derivative of order S of f is nonzero at a.

If f vanishes of order n at a E M, then the leading Hessian

Hf Ta(M) + IR of f at a is defined by

(4 • 1 )

decomposes intowhere

the surn of its components of bidegree (p,q):

where each . H~,q i5 defined by

H =f
L H~,q

p+q=n

(4.2)

If n = .2p is even, we say that

of :f.

p -0Hf' A<. is the leading Levi form

If we identify T (M)
a with ma: , then Hf 1s a homogeneous

polinomial of degree n on a:m and the decomposition of Hf

given by the H~'~ is exactly the decornposition of Hf into the

sum of homogeneous polynomials of bidegree (p,q).

We shall say that Hf 1s positive if Hf(X) > 0 for all

X E Ta(M) -' {C} i.e. if Hf is positive as a hornogeneous·polynomial.
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We,shall consider the following. situation. Let M be' a

connected, non compact complex manifold of dimension m and

T : M ~" [0 , + co )
co

be an exhaustion function of class C which satisfies

the following assumptions:

(4.3)
cdd. T > 0 on M* = {x E M I T(X) > O};

(4.4)

(4.5) T vanishes of. order n at a point a E T- 1 (0) and if

H is the leading 'Hessian of T at a, then H is

positive and ddcH > .0 on T (M) - {O}.a

Proposition 4 •. 1. The zero, set of .T: consists. of exactly one

point 0M which we call the center of M.

Proof. It is known that the hypothesis (4.3) and (4.4) irnply that

T- 1 (0) is non empty and connected (see [4], Theorem 2.5 for

example). Thus the the conclusion follows from. '. (4.5) since a = 0~\1

is a strict minimum for T and therefore an isolated point of

'[-1 (0) •

q.e.d.

Before going into our classification,. it 1s of interest to

give a more precise description of T near the center 0M.

Proposition 4.2. The order of'··vanishing of T at the center 0M

is even: n = 2p. Moreover the leading Hessian of

coincides with the leading Levi form.

'- - ------.-... ~

T

... _._---

at



Proof. Let H be the leading. Hessian of T at °M· Here we

shall freely identify' TOM (M) = a:m. Since H is positive, Lemma

3. 1 (ii) shows that the degree of H and therefore the'order of

vanishing of T at DM is even n. = 2p. Since by hypothesis

(4.5) we have ddcH > 0
m - {o}, the claim will follow fromon a: -

Theorem 3.4 if we can show (ddclogT)m - 0 on a:m _: {O} •

Let U be a, small enough c.oordinate neighborhood centered

at O~ and let Z E a:m --{al. For t € IR such that tz € U we

have
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Also recall that, as we noted in Section 2, whenever (2.1) 1s

satisfied, locally the Monge-Ampere equation (2.2) is equivalent

to the equation (2.7) .• Thus for small t #- 0 we compute

-
tnH(Z) + O(tn+ 1) = T(tZ) = T-(tZ)TVl:l(tZ)T (tZ)

v l.l

Dividing the first and the last term of the equality by t n and

takig limit as t + 0, we obtain

H(Z) :: H-(Z)H~lJ(Z)H (Z)
v l.l

which, as observed above, 1s equivalent to (ddClogH(Z));m = o.

q.e.d.
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Remark 1. According to Stall· [5]., a· strictly parabolic manifold

of infinite radius is a pair (M,T) ·such that M is a,connected,

non compact complex manifold of dimension m and T : M ~ [O,+~)

co
is an exaustion of class C satisfying (4.3), (4.4) and such that

ddcT > 0 also on T- 1 (0). Then it can b~ shown (see [5], Proposition

2.2·) that T vanishes of order 2 at every point of T- 1 (0)

and that (4.5) is verified. Conversely if T satisfies (4.3),

(4.4) and (4.5) with order of vanishing n = 2, then (M,T) 1s

strictly parabolic of infinite radius. This is immediate from

~roposition 4.1 and 4.2. In fact ·oT-l (0) = {OM} and near 0M

we have T(Z) = H(Z) + O(I~lr) where H is a homogeneous poly-

nomial of bidegree (1~1) which 1s strictly plurisubharmonic out­

side the origin. Thus H(Z) = IIA(z)112 for same A E GL(m,(t) and

therefore ddcT(OM) > O. In conclusion when the order of vanishing

is 2 our class of manifolds coincides with Stoll's strictly

parabolic manifolds. Therefore, as we shall see in amoment, our

classification theorem extends Stoll's result ([5]) to exhaustions

with higher order of vanishing.

We can now state and prove our main result.

Theorem 4.3. Let. M be a connected, non compact complex manifold

of dimension m and T : M -+ [ 0 I +co)
co

a C exhaustion satisfyung

(4.3) I (4.4) and (4.5) . Then the order of vanishing n of T

at its zero set is even and there exists a biholomorphin map

~ . (trn ~ M such that Toll> is a homogeneous polynornial of bi-.
degree (P/P) where 1p = 2"n.

Proof. We know already that n = 2p for some positive integer p



and that T-
1 (0) = {DM}. We want to use Theorem 2.3. ~o this

end we shall show that if a = T
1

/ p , then the pair (Mja) i8 a

manifold of circular type., Clearly a € cO (M) n CCl) (M*) and frem

Lemma 2.2 it fellows that a satisfies also (2.15) and (2.16).

We need to show only that (2.17) and (2.17) hold for o.

If U is a small.enough .ceordinate neighborhood c~tehed

at DM' then T has the following expansion on U:

T(Z) = H(Z) + R(Z)

where H 1s a positive homogeneou8 polynomial of bidegree (p,p)

and R is a CCI) function such that IR (Z) I < ·All Z Irp + 1 for same

A > O. There exist ro, M > 0 so that 2m.! ~ 1:1
2p ::;; H (Z) ::;; Milz Irp ~

Since for Ilz 11 5mall enough we have Al Jz Irp
+ 1 < milZ Irp , we can

conclude for Z in a neighborhood of 0M5.

:;; (H ( Z ) + IR ( Z) I) 1 / P :;; (M + m) 1 / p Ilz Ir

20

so that a satisfies (2.17) • Let E > 0 so that if I tl < E

and Ilz 11 < 2 we have tZ E U and define W = (-E , E) x (m(2) -{O}).

Define h . W ~m. by h(t,Z) = a (tZ) . We need to show that h.
+

18 of class
CI)

(t, Z) E W, t ,. 0, haveC • For we

(4.6) o < T(tZ) = t 2PH(Z) + R(tZ)

H(Z) + tT(t"Z) > 0
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for any . (t,Z) E W. But then

h (-t,. Z)
2 . 2

= a(tZ) = t. (H(Z)';+ tT(t,Z-l)

00
and therefore h is of class e •

Since supa = +00, by Theorem 2.3, there exists a biholomorphic

map <I> ,a:ID -+- M such that we have 0 (<I> (AZ)) ,= Ih 12a (4' (Z)·) for

cii'l-- . A E a: and ":. --Z· e: a:~- .. ;But·~·-:then- we'-liave al.so:- Ta<!> ("hZ) = l~12Pt_o(I){Z)
•• ~. • - ~~.~ '..-'\...... '....~... - r ~Jp~-"'.I.- .. ~ _ w· .....- ....

and ,-~ since-: ..~~1'~.~~._ i~::.of.: cl·asS:-.<;;· ; :the claim follows.

<, ." ~t:.e_-.~·~.. '

Remark 2. We always assumed ~
00

to be of cla5s e . It should be

underlined that less is needed. In fact Theorem 2.3 can be proved

assuming that the exhaustion is of cla5s eS on M* since this much

15 needed in [2] to prove Theorem 3.1. Thus our Theorem 4.3 holds
k .

even assuming that ~ 1s of class C where k = max {5, n}. At

any rate Theorem. 4.3 can be viewed also as a regularity result

for degenerate: Monge-Amp~re equations~ In fact it implies that

T is real analytic on M.

Remark 3. If M 15 as above and T.: M -+- [0,+00) 1s an exhaustion

satisfying (4.3) and (4.4) but only continuous on -1
1"' (0), we can

still classify M and 1 if we assume instead of (4.5) the

following:

(4.5' ) There ex1sts a € ~-1(0) sush that

(i) with re5pect to coordinate centered at a we have

C ltz Ir :si T (Z) :si Kllz Ir for some C, K > 0 and positive

integer n;

(ii) the function h defini te for 1t 1-· < E an::3. 0 < Hz 11 < E',



22

for some E, E t > O,'by h.(t,Z). = .(T(tZ))2/n is
co

of class C .
,

Theese assumptions, which for T smoeth on T-·1 (0) are equivalent

to these of Theorem 4.3, allow aooto apply Theorem 2.3 to the

exhaustion a =.T 2 / n . Then, in the same way as in Remark 3 of

Section 3, it can b~ shown that there exists a biholomorph1c map.

~ : ~m + M such that TO~(Z) = 1~IFg(z) where 9 1s a bounded

function on ~m constant on each punctured complex line through

the origin.

5. Final remarks

A nurnber of questions arise naturally in this context and

yet cannot be answered.

Firstly, our characterization of homogeneous polynomials

(Theorem 4.3) applies only to unbounded exhaustions while Stoll's

theorem ([5]) classifies also bounded anes. In fact if M is a

non compact, connected complex manifold of dimension m which
co ",- "

carries a. C , ..$tr~ct;ly.':._plurisubharmonic exhaustion T such that
... .)- .- - - _.---~-

SUPT = 1 and (ddclogT)m = 0 on {T > O}, then M is biholo-

morphic to the ball in etm and T pulls back to I1 11
2 . We

cont~cture that the some kind of theorem should hold for homo-

geneous polynomials of bidegree (p,p). More explicitly if ~

and T are as in Theorem 4.3 but sup T = 1, there should be a

a homogeneous polynomial H of bidegree (p,p) so that, if G =

{Z E etm I H(Z) < 1 }, then there exists a biholomorphic map ~ : afti+ M ~

with To4> = H.
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The difficulty in. proving~~~ result, at. least. with our method,

1s that, in order to apply Theorem 2.3, one needs to. show. that

the Mange-Ampere foliation associated' to T· is holomorph1c. In

the case of unbounded exhaustion, this .follows from a theorem'of

Burns [2]. When the exhaustion is bounded instead, the Monge­

Amp~re foliation 1s generically not holomorphic (cfr.[3]). However

we feel that under the above assumptions the foliation iso indeed

holomorphic and that therefore our conjecture holds true.

A second kind.af problems concernes ways to improve our-,
character1zation. Namely we need a relatively strang assumption

about the behavior of T at its zero set. It is quite interesting

to investigate whether they can.be relaxed. A step in this .

direction would be. to prove Theorem 3.4. assuming that the homo-

geneous polynomial H is just nonnegative. It should. be observed

that. the nature of the theorem changes cansiderably. In fact, if

H is only nonnegative, then H- 1 (0) is apriori a noncompact. s~t

and thus H is not anylonger a proper function. In this case the

associated Mange-Ampere exhaustion cauld·be very wild. An entirely

different approach may be needed ta solve this problem and even

a counterexample may be almost as interesting as a positive result.
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