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Introduction

1. Antecedents. We begin with a few relevant historical observations.

1.1. Serre’s Proj and Gabriel’s spectrum. The most important early sources
of noncommutative algebraic geometry are the description by Serre of the category of co-
herent sheaves on a projective variety [S] and the introduction by Gabriel of the injective
spectrum of a locally noetherian Grothendieck category. Gabriel assigned, in a canoni-
cal way, to every locally noetherian Grothendieck category a locally ringed space, whose
underlying topological space is the injective spectrum – the set of isomorphism classes of
indecomposable injective objects endowed with Zariski topology. He proved that this as-
signment reconstructs any noetherian scheme uniquely up to isomorphism [Gab, Chapter
6].

Note that the work of Serre appeared several years prior to scheme theory and the
Gabriel’s work around the same time as the first two volumes of EGA.

1.2. First attempts to define noncommutative schemes. There were attempts
(which started around the end of the sixties and continued to be visible for more than
a decade) to initiate noncommutative scheme theory based on a rather straightforward
extension of the Gabriel spectrum to the category of left modules over an arbitrary asso-
ciative unital ring R (its points are those isomorphism classes of indecomposable injective
objects [E] for which the quotient category by the left orthogonal to E has simple objects)
endowed with Zariski topology and a structure sheaf of associative rings determined by the
ring R. Schemes were defined as ringed spaces which are locally affine (see [Go1], [Go2]
and references therein). If R is a commutative ring, then there is a natural embedding of
the prime spectrum of R into the above defined spectrum of the category of R-modules,
which is an isomorphism if the ring R is noetherian (the case considered by Gabriel), but,
not in general. So, the restriction of this concept of a noncommutative scheme to the
commutative case recovers only locally noetherian schemes, which is already an indication
of a certain inadequacy of the spectrum used here. Nevertheless, even under noetherian
hypothesis, this theory did not go beyond the above quoted definition of a scheme (given
in the last section of [Go2]). The declared goal – the creation of a noncommutative version
of local algebra, was never achieved.

Other movements towards noncommutative algebraic geometry (initiated around the
mid-seventies) were based on the prime spectrum of rings endowed with Zariski topology
and a structure sheaf of associative rings whose construction required noetherian hypoth-
esis. This produced a version of an affine noetherian scheme. General noetherian schemes
were defined as locally affine ringed spaces [VOV]. One can show that this version of
noncommutative schemes can be obtained from the previous one by considering only left
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noetherian rings and taking a much coarser version of Zariski topology than the one used
in [Go2]. Note that the prime spectrum of most of noncommutative algebras of interest is
rather poor (e.g. it is trivial in the case of Weyl algebras over fields of zero characteristic).

1.3. Supporting motivations. There was a certain outside interest in the quest of
noncommutative algebraic geometry already at that time, i.e. in the middle of seventies
(see the introduction to [Dix]), which was mostly due to the algebraization of representation
theory (initiated by works of Kirillov, Gelfand and Kirillov, Dixmier, and his school) and
a promise of new insights and possible applications to representation theory of algebraic
groups, enveloping algebras of Lie algebras, and some other algebras of interest.

1.4. D-modules and D-schemes. Then, starting from 1980, Beilinson and Bern-
stein developed a compromise-type noncommutative algebraic geometry – the theory of
D-schemes (which are usual commutative schemes equipped with a subsheaf of the sheaf
of (twisted) differential operators) in order to study representation theory of reductive
algebraic groups. This important development led to a break-through in representation
theory and distracted the curiosity of most working mathematicians from attempts to con-
struct noncommutative scheme theory based on Gabriel’s injective spectrum, or on the
prime spectrum of associative rings.

1.5. The Cohn’s spectrum. There was another approach to noncommutative local
algebra, due to P. Cohn, which is based on the notion of the universal localization. Tech-
nically, the main difference between Cohn’s approach and the other approaches mentioned
above is that instead of dealing with abelian categories of modules over a ring, Cohn’s the-
ory operates with the exact category of projective modules of finite type (Cohn’s original
formulations use only matrix rings over a given associative unital ring).

It is worth mentioning that Cohn’s philosophy serves as a base for works of Gelfand and
Retakh and their collaborators on birational noncommutative algebra. Recently, Cohn’s
universal localization found applications in topology (see [Loc]).

1.6. Imposing naive geometric spaces. The above mentioned approaches to
noncommutative algebraic geometry insisted on a naive generalization of the standard
pattern of commutative scheme theory: noncommutative versions of schemes were sought
as geometric spaces, and the latter were understood as topological spaces endowed with
a structure sheaf of associative rings. This holds for D-schemes of Beilinson and Bern-
stein and for much more recent Kapranov’s version of formal noncommutative geometry
[Ka], because, by nature, D-schemes, as well as Kapranov’s formal NC schemes, are quasi-
coherent sheaves of associative algebras on commutative schemes. But, an arbitrary left
noetherian associative algebra is not isomorphic to the algebra of global sections of the cor-
responding structure sheaf on Gabriel’s or Cohn’s (or any other) spectrum. It is therefore
not surprising that imposing ringed spaces as the framework for noncommutative algebraic
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geometry and trying to literally mimic the pattern of commutative algebra and algebraic
geometry, led to considerable difficulties already on a very basic level.

1.7. Pseudo-geometry versus geometry. The discovery of quantum groups trig-
gered a flow of new examples supplied mostly by mathematical physics and attributed
to noncommutative geometry, reviving some stagnating areas (e.g. Hopf algebras) and
involving a big number of mathematicians and theoretical physicists fascinated by the
geometric flavor of this suddenly wide open field of research. This rise of the interest
in noncommutative algebraic geometry was marked by the transition from attempts to
build its foundations relying on naive generalizations of geometric spaces to the opposite
extreme – viewing noncommutative algebraic geometry as pseudo-geometry, that is geom-
etry in which spaces are replaced by something else. The transition was greatly influenced
by Connes’ approach to noncommutative differential geometry. On a more advanced stage,
its roots can be found in the pseudo-geometric development of Grothendieck’s algebraic
geometry between the end of the fifties and the beginning of the seventies – going from the
category of geometric (that is locally ringed) spaces to the category Esp of spaces which
are sheaves of sets on the fpqc presite of affine schemes, then expanding to toposes, al-
gebraic spaces and stacks. Note that in commutative algebraic geometry all these notions
and points of view coexisted and complemented each other.

1.8. Points from commutative algebraic geometry. The abandon of the geo-
metric point of view was due not so much to the limitations of Gabriel’s injective spectrum
and shortcomings in the attempts of using it, but, mostly to the fact that the Gabriel’s
spectrum was known to and appreciated by only a few algebraists, while the dominating
paradigm of a point came from commutative algebraic geometry: points of a commutative
scheme are equivalence classes of geometric points, i.e. morphisms from spectra of fields.

A naive noncommutative generalization of this notion is obtained by replacing fields
by skew fields. Thus, the naive points of an affine ’space’ corresponding to an associative
unital ring R are morphisms from R to skew fields, and the equivalence classes of mor-
phisms from R to skew fields are in natural bijective correspondence with completely prime
two-sided ideals of the ring R (i.e. ideals p such that the set R−p is closed under multipli-
cation). Noncommutative rings usually have very few completely prime two-sided ideals
(enveloping algebras of finite-dimensional solvable Lie algebras being among rare worthy
exceptions). One consequence of this other transplantation of a commutative paradigm
into noncommutative setting, was a widely adopted opinion that noncommutative algebraic
geometry is essentially a geometry without points. Such a viewpoint reduces noncommuta-
tive algebraic geometry to the condition of a poor relative of its commutative predecessor:
one cannot count on a noncommutative version of local algebra, in particular, one cannot
count on a local study of spaces and morphisms of spaces, which constitute at least a half
of the content of commutative algebraic geometry. Fortunately, this opinion is wrong.
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2. ’Spaces’ of noncommutative algebraic geometry.

One of the benefits of the pseudo-geometric viewpoint in noncommutative algebraic
geometry is a considerable increase of its range. Roughly, the picture is as follows.

2.1. Spaces and algebras. The duality between compact topological spaces and
commutative unital C∗-algebras is a fundamental fact of functional analysis discovered by
I.M. Gelfand in the late thirties. A. Connes extended formally this duality to the noncom-
mutative setting identifying ’noncommutative spaces’ with noncommutative C∗-algebras.
This eventually led to the creation of noncommutative differential geometry [C1], [C2].
Following the Connes’ example, V. Drinfeld [Dr] defined the category of noncommutative
affine schemes (he called them ’quantum spaces’) in a similar way, as the category dual to
the category of unital associative algebras, forcing to the noncommutative case the duality

[algebras ↔ affine schemes]

of commutative algebraic geometry.

2.2. Noncommutative Proj. Noncommutative projective spaces were introduced
(by Manin’s suggestion) via a formal extension of the Serre’s description of the category of
quasi-coherent sheaves on a projective variety [S]: the category of quasi-coherent sheaves
on the projective spectrum of an associative graded algebra R is the quotient category of
the category of graded R-modules by the subcategory of locally finite ones (this approach
was further developed in [V1], [V2], [A2], [AZ], [OW], and in a number of other works).

Thus, a noncommutative projective space X is represented by a category, CX , which
is regarded as the category of quasi-coherent sheaves on X. This viewpoint is well adapted
to the affine case: for any associative ring R, the category of quasi-coherent sheaves on the
corresponding affine scheme is identified with the category R−mod of left R-modules.

2.3. ’Spaces’ represented by abelian categories. From the prospective of the
above mentioned developments, a point of view which looked plausible at the end of eighties
(and was later, after appearance of [R1] and [R], adopted by most mathematicians working
in the area) is that ’spaces’ of noncommutative algebraic geometry are represented by
abelian categories (thought as their categories of quasi-coherent or coherent sheaves). If
X and Y are ’spaces’ represented by abelian categories, respectively CX and CY , then
morphisms from X to Y are isomorphism classes of additive functors CY −→ CX called
inverse image functors of the morphism they represent.

2.4. ’Spaces’ represented by triangulated categories. Another viewpoint mo-
tivated in the first place by representation theory of reductive algebraic groups, and later
(around 1993) by problems of mathematical physics (– homological mirror symmetry) is
to consider ’spaces’ represented by (enhanced) triangulated categories, which sometimes
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can be thought as derived categories of the categories of (quasi-)coherent sheaves on these
’spaces’.

2.5. ’Spaces’ represented by A-infinity categories. At the end of nineties,
working on deformation theory, M. Kontsevich expanded geometric flavor by considering
’spaces’ represented by A-infinity categories.

2.6. ’Spaces’ defined by presheaves of sets on the category of noncommu-
tative affine schemes. The category Affk of affine noncommutative k-schemes is the
category opposite to the category of associative unital k-algebras. Some of the important
examples of noncommutative ’spaces’, such as noncommutative Grassmannians, flag va-
rieties and many others [KR1], [KR2], [KR3], are defined in two steps. The first step is
a construction of a presheaf of sets on Affk (i.e. a functor from the category of unital
associative k-algebras to the category of sets). In commutative algebraic geometry, the
second step is taking the associated sheaf with respect to an appropriate (fpqc or Zariski)
topology on Affk. In noncommutative geometry, we assign, instead, to every presheaf
of sets on Affk a fibred category whose fibers are categories of modules over k-algebras
and define the category of quasi-coherent sheaves on this presheaf as the category oppo-
site to the category of cartesian sections of this fibred category [KR4]. The category of
quasi-coherent presheaves represents the ’space’ corresponding to the presheaf of sets.

2.7. Commutative ’spaces’ which “live” in symmetric monoidal categories.
After the formalism of Tannakian categories appeared at the end of the sixties-beginning
of the seventies [Sa], [DeM], and ’super’-mathematics approximately at the same time, the
idea of mathematics (or at least algebra and geometry), which uses general symmetric
monoidal categories, instead of the symmetric monoidal category of vector spaces, became
familiar. In [De], Deligne presented a sketch of a fragment of commutative projective
geometry in symmetric monoidal k-linear abelian categories as a part of his proof of the
characterization of rigid monoidal abelian categories having a fiber functor.

Manin defined the (category of coherent sheaves on the) Proj of a commutative Z+-
graded algebra in a symmetric monoidal abelian category endowed with a fiber functor
[M1] using, once again, the Serre’s description of the category of coherent sheaves on a
projective variety as its definition.

2.8. Quantized enveloping algebras and algebraic geometry in braided
monoidal categories. While working (in 1995) on a quantum analog of Beilinson-
Bernstein localization construction, it was discovered that ’spaces’ of noncommutative
algebraic geometry could be something different from just abelian or Grothendieck cate-
gories. In this particular situation, the natural action of the quantized enveloping algebra
of a semisimple Lie algebra on its quantum base affine space becomes differential only if
the whole picture is put into the monoidal category of Zn-graded modules endowed with
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a braiding determined by the Cartan matrix of the Lie algebra (see [LR2], [LR3], [LR4]).

This list (which is far from being complete) shows that the range of objects – spaces
and morphisms of spaces, of noncommutative algebraic geometry is considerably larger
than the range of objects of commutative algebraic geometry.

3. Pseudo-geometric start.

The pseudo-geometric noncommutative landscape sketched above is a natural point
of departure, by the simple reason that it includes most examples of interest. Instead of
trying to impose, from the very beginning, general notions of ’spaces’ and morphisms of
’spaces’, which absorb all the known cases, we approach these notions by studying algebraic
geometry in certain key pseudo-geometric settings, which are simple enough to not to get
lost and, at the same time, sufficient to obtain a rich theory and to see what one should
expect or look for in more sophisticated pseudo-geometries.

3.1. ’Spaces’ represented by categories. In the very first, in a sense the simplest,
setting of this kind, ’spaces’ are represented by svelte (– equivalent to small) categories
and morphisms of ’spaces’ X −→ Y are isomorphism classes of (inverse image) functors
CY −→ CX between the corresponding categories. This defines the category |Cat|o of
’spaces’. A morphism of ’spaces’ is called continuous if its inverse image functor has
a right adjoint (called a direct image functor), and it is called flat if, in addition, the
inverse image functor is left exact (i.e. preserves finite limits). A continuous morphism is
called affine if its direct image functor is conservative (i.e. it reflects isomorphisms) and
has a right adjoint. These notions (introduced in [R]) unveil unexpectedly rich algebraic
geometry, more precisely, geometries, living inside of |Cat|o. They appear as follows.

3.2. Continuous monads. Fix a ’space’ S such that the category CS has cokernels
of pairs of arrows. We consider the category End(CS) of continuous (i.e. having a right
adjoint) endofunctors of CS . It is a monoidal category with respect to the composition
of functors whose unit object is the identical functor. The monoids in this category are
called continuous monads on CS . In other words, continuous monads on CS are pairs
(F, µ), where F is a continuous functor CS −→ CS and µ is a functor morphism F 2 −→ F

such that µ◦Fµ = µ◦µF and µ◦Fη = idF = µ◦ηF for a (unique) morphism IdCS
η
−→ F

called the unit of the monad (F, µ). A monad morphism (F, µ) −→ (F ′, µ′) is given by a

functor morphism F
ϕ
−→ F ′ such that ϕ ◦ µ = µ′ ◦ ϕF ′ ◦ Fϕ and ϕ ◦ η is the unit of the

monad (F ′, µ′). This defines the category Monc(S) of continuous monads on CS .
If CS = Z−mod, then the category Monc(S) is naturally equivalent to the category

Rings of associative unital rings. If CS is the category of quasi-coherent sheaves on a
scheme (X ,OX ), then Monc(S) is equivalent to the category of quasi-coherent sheaves A
of rings on (X ,OX ) endowed with a morphism OX −→ A of sheaves of rings. In particular,
the sheaf of rings of (twisted) differential operators can be regarded as a monad on CS .
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If CS is the category of sets, then the category Monc(S) is equivalent to the category
of monoids in the usual sense.

3.3. Relative affine ’spaces’. Given a ’space’ S, we define the category AffS of

affine S-spaces as the full subcategory of |Cat|o/S whose objects are pairs (X,X
f
→ S)

with f an affine morphism.

3.4. Theorem. The category AffS is anti-equivalent to the category AssS whose
objects are continuous monads on the category CS and morphisms are conjugacy classes
of monad morphisms.

If CS = Z−mod, then the category AssS is equivalent to the category whose objects
are associative unital rings and morphisms are conjugacy classes of ring morphisms. If CS
is the category Sets, then AssS is equivalent to the category whose objects are monoids
and morphisms are conjugacy classes of monoid morphisms. This shows that the choice of
the base ’space’ S influences drastically the rest of the story.

3.5. Locally affine relative ’spaces’. Locally affine S-’spaces’ are defined in
an obvious way, once a notion of a cover (a quasi-pretopology) is fixed. We introduce
several canonical quasi-pretopologies on the category |Cat|o. Their common feature is
the following: if a set of morphisms to X is a cover, then the set of their inverse image
functors is conservative and all inverse image functors are exact in a certain mild way.
If, in addition, morphisms of covers are continuous, X has a finite affine cover, and the
category CS has finite limits, then this requirement suffices to recover the object X from
the covering data uniquely up to isomorphism (i.e. the category CX is recovered uniquely
up to equivalence) via ’flat descent’.

3.6. ’Spaces’ determined by presheaves of sets on Affk. By definition, the
category Affk of noncommutative affine k-schemes is the category opposite to the category
Algk of associative unital k-algebras; so that presheaves of sets on Affk are functors
from Algk to Sets. The presheaves of sets on Affk appeared in our work with Maxim
Kontsevich, for the first time in order to introduce noncommutative projective spaces. It
was an attempt to imitate the standard commutative approach realizing schemes (and
more general spaces) as sheaves of sets on the category of affine schemes endowed with an
appropriate Grothendieck pretopology. It turned out that it is not clear a priori what an
appropriate pretopology in the noncommutative case is: Zariski pretopology is irrelevant,
because the noncommutative projective ’space’ is not a scheme – it does not have an affine
Zariski cover. Flat affine covers seemed to be as a natural choice, but, they do not form
a pretopology – invariance under the base change fails. Similar story with Grassmannians
and other analogs of commutative constructions. The elucidation of this problem is as

follows. Consider the fibred category Ãffk with the base Affk whose fibers are categories
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of left modules over corresponding algebras. For every presheaf of sets X on Affk, we have

the fibred category Ãffk/X induced by Ãffk along the forgetful functor Affk/X −→ Affk.
The category Qcoh(X) of quasi-coherent sheaves on the presheaf X is defined as the

category opposite to the category of cartesian sections of the fibred category Ãffk. For a
pretopology τ on Affk/X, we define the subcategory Qcoh(X, τ) of quasi-coherent sheaves
on (Affk/X, τ).

3.7. Theorem. (a) A pretopology τ on Affk is subcanonical (– all representable
presheaves of sets are sheaves) iff Qcoh(X, τ) = Qcoh(X) for any presheaf of sets on Affk
(in other words, ’descent’ pretopologies on Affk are precisely subcanonical pretopologies).

In this case, Qcoh(X) = Qcoh(X, τ) →֒ Qcoh(Xτ ) = Qcoh(Xτ , τ), where Xτ is the
sheaf on (Affk, τ) associated with the presheaf X and →֒ is a natural full embedding.

(b) If a pretopology τ is of effective descent, then the embedding Qcoh(X) →֒ Qcoh(Xτ )
is a category equivalence.

This theorem says that, roughly speaking, the category Qcoh(X) of quasi-coherent
presheaves knows itself which pretopologies to choose. It also indicates where one should
look for a correct noncommutative version of the category Esp (of sheaves of sets on the
fpqc site of commutative affine schemes): this should be the category NEspτ of sheaves
of sets on the presite (Affk, τ), where τ is a pretopology of effective descent. From the
minimalistic point of view, the best choice would be the (finest) pretopology of effective
descent. But, there is a more important consideration. The main role of a pretopology is
that it is used for gluing new ’spaces’ (so that the preference given in commutative algebraic
geometry to fpqc pretopology on the category of affine schemes shows the readiness to
consider more general locally affine spaces than schemes).

The pretopology that seems to be the most relevant for Grassmannians (in particular,
for noncommutative projective ’spaces’) and a number of other smooth noncommutative
spaces constructed in [KR5] is the smooth topology introduced in [KR2].

The theorem is quite useful on a pragmatical level. Namely, if X is a sheaf of sets on
(Affk, τ) for an appropriate pretopology of effective descent and X is a presheaf of sets on

Affk such that its associated sheaf is isomorphic to X, and R
p1
−→
−→
p2

U
π
−→ X is an exact

sequence of presheaves with R and U representable, then the category Qcoh(X) (hence the
category Qcoh(X)) is constructively described (uniquely up to equivalence) via the pair

A
p1
−→
−→
p2

R of k-algebra morphisms representing R
p1
−→
−→
p2

U. This consideration is used to

describe the categories of quasi-coherent sheaves on noncommutative ’spaces’.

3.8. Noncommutative stacks. There is one more important observation in con-
nection with this theorem: categories which appear in noncommutative algebraic geometry
are categories of quasi-coherent sheaves on noncommutative stacks.
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4. From pseudo-geometry to geometry.

4.0. Spectra. The general expectation is that pseudo-geometric ’spaces’ should have
canonical spectral theories, and a choice of a spectral theory implies a geometric realization
of ’spaces’, which associates with every ’space’ a stack whose base is a topological space
– the spectrum of the ’space’, and fibers at points are local ’spaces’ – their spectrum has
only one closed point, which belongs to the closure of any other point.

An important evidence for this thesis is the spectral theory of ’spaces’ represented by
svelte abelian categories, which was started in the middle of the eighties. Below follows a
brief outline of some of its basic notions and facts. A detailed exposition is in Chapter II
of this monograph.

4.1. Topologizing subcategories and the spectrum Spec(−). A full subcate-
gory of an abelian category CX is called topologizing if it is closed under finite coproducts
and subquotients. For an object M , we denote by [M ] the smallest topologizing subcat-
egory of CX containing M . One can show that objects of [M ] are subquotients of finite
coproducts of copies of M . The spectrum Spec(X) of the ’space’ X consists of all nonzero
[M ] such that [L] = [M ] for any nonzero subobject L of M . We endow Spec(X) with the
preorder ⊇ which is called (with a good reason) the specialization preorder.

If M is a simple object, then the objects of [M ] are isomorphic to finite direct sums
of copies of M and [M ] is a minimal element of (Spec(X),⊇). If CX is the category of
modules over a commutative unital ring R, then the map p 7−→ [R/p] is an isomorphism
between the prime spectrum of R with specialization preorder and (Spec(X),⊇).

4.2. Local ’spaces’. An abelian category CY (and the ’space’ Y ) is called local
if it has the smallest nonzero topologizing subcategory. It follows that this subcategory
coincides with [M ] for any of its nonzero objects M ; so that it is the smallest element of
Spec(Y ). If a local category has a simple object, M , then this smallest category coincides
with [M ]. In particular, all simple objects of CY (if any) are isomorphic one to another.
The category of modules over a commutative ring is local iff the ring is local.

4.3. Serre subcategories and Spec−(−). A topologizing subcategory of an abelian
category CX is called thick if it is closed under extensions. For any subcategory T of
CX , let T − denote the full subcategory of CX whose objects are characterized by the
following property: their subquotients have nonzero subobjects from T . One can show
that (T −)− = T − and the subcategory T − is thick. We call a subcategory T of CX a
Serre subcategory if T = T −.

Let Spec−(X) denote the set of all Serre subcategories P such that the quotient
category CX/P is local. One can show that if CX is a locally noetherian Grothendieck
category (more generally, a Grothendieck category with a Gabriel-Krull dimension), then
Spec−(X) is isomorphic to the Gabriel spectrum of CX .
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Let Spec1,1t (X) denote the set of all Serre subcategories of CX such that the inter-
section P∗ of all topologizing subcategories properly containing P is not equal to P.

4.4. Theorem. (a) Spec1,1t ⊆ Spec−(X).

(b) The map which assigns to a topologizing subcategory Q the union Q̂ of all topolo-
gizing subcategories which do not contain Q is a bijection Spec(X) ∼−→ Spec1,1t (X).

(c) Let T be a Serre subcategory of CX and CX
q∗

−→ CX/T the localization functor.
(c1) If T 6⊇ [M ] ∈ Spec(X), then [q∗(M)] ∈ Spec(X/T ).

(c2) The map P 7−→ q∗
−1

(P) is a bijection from Spec−(X/T ) onto the subset
{P ∈ Spec−(X) | T ⊆ P}.

(d) Let {Ti | i ∈ J} be a finite set of Serre subcategories such that
⋂

i∈J

Ti = 0. Then

(d1) Spec−(X) =
⋃

i∈J

Spec−(X/Ti).

(d2) An element P of Spec−(X) belongs to Spec1,1t (X) iff P/Ti ∈ Spec1,1t (X/Ti)
whenever Ti ⊆ P.

The assertion (c) can be extracted from [R, Ch.III]. The last assertion, the most
important one, states that an element of Spec−(X) belongs to Spec1,1t (X) (that is it
corresponds to an element of Spec(X)) iff this element belongs to Spec1,1t (X) locally.

4.5. The geometric center of a ’space’ and the reconstruction of commu-
tative schemes. Recall that the center of the category CY is the (commutative) ring
of endomorphisms of its identical functor. If CY is a category of left modules over an
associative unital ring R, then the center of CY is naturally isomorphic to the center of R.

We endow the spectrum Spec(X) with Zariski topology (which we do not describe

here). The map ÕX which assigns to every open subset W of Spec(X) the center of the

quotient category CX/SW , where SW =
⋂

Q∈W

Q̂, is a presheaf on Spec(X). We denote by

OX its associated sheaf. One can show that the stalk of the sheaf OX at a point Q of the
spectrum is isomorphic to the center of the local category CX/Q̂, and the center of a local
category is a local commutative ring. The locally ringed space (Spec(X),OX) is called
the geometric center (or Zariski geometric center) of the ’space’ X.

One of the consequences of the theorem above is the following reconstruction theorem:

4.6. Theorem. If CX is the category of quasi-coherent sheaves on a commutative
quasi-compact quasi-separated scheme, then the geometric center (Spec(X),OX) of the
’space’ X is naturally isomorphic to the scheme. So that any quasi-separated quasi-compact
commutative scheme is canonically reconstructed, uniquely up to isomorphism, from its
category of quasi-coherent sheaves.
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In the case of a noetherian scheme, this theorem recovers Gabriel’s reconstruction
theorem [Gab], because it is easy to show that if CX is the category of modules over a
commutative noetherian ring, then the injective spectrum of CX is naturally isomorphic
to the spectrum Spec(X).

4.7. Geometric realization of a noncommutative scheme. Let CX be an
abelian category with enough objects of finite type. We have a contravariant pseudo-
functor from the category of the Zariski open sets of the spectrum Spec(X) to Cat which

assigns to each open set U of Spec(X) the quotient category CX/SU , where SU =
⋂

Q∈U

Q̂,

and to each embedding U →֒ V the corresponding localization functor. To this pseudo-
functor, there corresponds (by a standard formalism) a fibred category over the Zariski
topology of Spec(X). The associated stack, Fz

X , is a stack of local categories: its stalk at

each point Q of Spec(X) is equivalent to the local category CX/Q̂.
We regard the stack Fz

X as a geometric realization of the abelian category CX .
If X is a (noncommutative) scheme, then the stack Fz

X is locally affine.

4.8. Note: the geometric center of noncommutative schemes. Taking the
center of each fiber of the stack Fz

X , we recover the presheaf of commutative rings ÕX ,
hence the geometric center of the ’space’ X.

Note that the stalks at points of a noncommutative scheme are local abelian categories,
which only in exceptional cases are equivalent to categories of modules over rings. This
explains why imposing that noncommutative schemes should be ringed topological spaces
did not work.

4.9. The spectrum Spec0c(X). If CX is the category of quasi-coherent sheaves on a
non-quasi-compact scheme, like, for instance, the flag variety of a Kac-Moody Lie algebra,
or a noncommutative scheme which does not have a finite affine cover (say, the quantum
flag variety of a Kac-Moody Lie algebra, or the corresponding quantum D-scheme), then
the spectrum Spec(X) is insufficient. It should be replaced by the spectrum Spec0c(X)
whose elements are coreflective topologizing subcategories of CX of the form [M ]c (i.e.
generated by the object M) such that if L is a nonzero subobject of M , then [L]c = [M ]c.

There is a natural map Spec(X) −→ Spec0c(X) which assigns to every Q ∈ Spec(X)
the smallest coreflective subcategory [Q]c containing Q. If the category CX has enough
objects of finite type, this canonical map is a bijection.

4.10. Theorem. Let {Ti | i ∈ J} be a set of coreflective thick subcategories of an

abelian category CX such that
⋂

i∈J

Ti = 0; and let CX
u∗
i−→ CX/Ti be the localization

functor. The following conditions on a nonzero coreflective topologizing subcategory Q of
CX are equivalent:
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(a) Q ∈ Spec0c(X),

(b) [u∗i (Q)]c ∈ Spec0c(X/Ti) for every i ∈ J such that Q * Ti.

One of the consequences of this theorem is the following reconstruction theorem.

4.11. Theorem. Let CX be the category of quasi-coherent sheaves on a commutative
scheme X = (X ,O). Suppose that there is an affine cover {Ui →֒ X | i ∈ J} of the scheme
X such that all immersions Ui →֒ X , i ∈ J, have a direct image functor (say, the scheme
X is quasi-separated). Then the geometric center (Spec0c(X),OX) is isomorphic to the
scheme X.

If X = (X ,O) is a quasi-compact quasi-separated scheme, then the category CX
of quasi-coherent sheaves on X has enough objects of finite type, hence the spectrum
Spec0c(X) coincides with Spec(X). Thus, the reconstruction theorem for quasi-compact
quasi-separated schemes is a special case of the theorem above.

5. Noncommutative local algebra and representation theory.

A classical problem of representation theory is the construction of (interesting classes
of) irreducible representations. From the point of view of noncommutative algebraic ge-
ometry, this problem is a part of a more natural and more general problem of constructing
objects representing elements of an appropriate spectrum. Likewise, in commutative alge-
braic geometry, the set of maximal ideals of a ring is replaced by its prime spectrum.

On the experimental level, the work on the realizations of points of the spectrum
started at the end of nineteen eighties with constructing realizations of the spectrum of
several ’small’ algebras which appear in representation theory and mathematical physics,
like the first Weyl and Heisenberg algebras and their quantum analogs, (classical and
quantized) enveloping algebra of sl(2), quantum algebra of functions on SL(2). Some of the
computations are gathered in Chapters II and IV of the monograph [R]. These examples,
however, are of a special nature – they belong to the class of so called ’hyperbolic’ algebras
or rank 1 [R, Ch.II] (or ’hyperbolic monads’ of rank 1 in [R, Ch.IV]) which is particularly
convenient for spectral computations. Algebras of skew differential operators is the only
other class of algebras whose spectrum was effectively computed “by hands”[R8].

5.1. Associated points. Let M be an object of the category CX . An element Q of
Spec0c(X) is called an associated point of M in Spec0c(X) if M has a nonzero subobject

L such that Q = [L]c and L is right orthogonal to Q̂). We denote the set of associated
points of M in Spec0c(X) by Assc(M).

Associated points have properties analogous to the known properties of associated
points of modules over commutative rings.
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5.2. Induction problem. LetX and Y be ’spaces’ represented by abelian categories,

resp. CX and CY , X
f
−→ Y a continuous morphism of ’spaces’, Q a point of the spectrum

of X. The induction problem is to find representatives M of the spectrum of X such that
Q is an associated point of f∗(M).

If CX and CY are categories of quasi-coherent sheaves on commutative schemes, re-
spectively (X ,OX ) and (Y,OY), and f∗ is an inverse image functor of a scheme morphism

(X ,OX )
(ϕ,ξ)
−−−→ (Y,OY), then the induction problem is the problem of the construction of

the correspondence x 7→ ϕ−1(x) inverse to the map of the underlying topological spaces.

It turns out that all previously obtained realizations of spectral points (in particular
those of [R, Ch.II and Ch.IV]) are specializations of an induction construction, which gives
a solution of the induction problem in the case when f is a locally affine morphism and the
pair (f,Q) satisfies certain additional conditions.

In the case of an affine morphism X
f
−→ Y, the induction construction is as follows.

There is a commutative diagram

X
f
Q

−−−→ XQ

fց ւ φ
Q

Y

of affine morphisms, where XQ

φ
Q
−→ Y is the so called stabilizator of the point Q (defined

in Chapter III). Let LQ denote the composition of the functor f∗
Q

and the functor which

assigns to every object of the category CX the quotient of this object by its f−1
∗ (Q̂)-torsion,

where cQ̂ is the Serre subcategory of CX corresponding to Q (generated by all objects N
such that Q * [N ]c).

Let Spec0c(X) denote the family of representatives of elements of the Spec0c(X), i.e.

objects M such that [M ]c = Q ∈ Spec0c(X) and M is cQ̂-torsion free. Let SpecQc (XQ)
denote the family of all objects of Spec0c(XP) such that Q is an associated point of their
image in CX . If the inverse image functor f∗

Q
is exact and faithful and certain ’ampleness’

conditions are satisfied, then the functor LQ transforms every object of SpecQc (XQ) into
an object of the spectrum of the ’space’ X. Moreover, every object of the spectrum of X
whose image in CXQ

has an associated point which belongs to SpecQc (XQ) is equivalent to
the image of this associated point by the functor LQ. The functor LQ maps simple objects
from SpecQc (XQ) to simple objects of CX

The induction construction is purely noncommutative: if the morphism X
f
−→ Y

corresponds to a morphism of commutative schemes, then X
f
Q
−→ XQ is an isomorphism,

i.e. the construction is trivial. The best results are achieved when the stabilizer is trivial,
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that is XQ

φ
Q
−→ Y is an isomorphism. In general, the ’size’ of the stabilizer measures

noncommutativity (or commutativity) of the pair (f,Q).

6. Geometry of t-’spaces’.

These are ’spaces’ represented by svelte triangulated Karoubian categories. We denote
by CTX the triangulated category corresponding to the t-’space’ X. Morphisms from X toY
are isomorphism classes of triangle functors CTY −→ CTX. The pseudo-geometric picture
of t-’spaces’ is more convenient and graceful than in the case of ’spaces’ represented by
abelian categories. The key fact is an analogue of the Beck’s theorem for triangle functors
and resulted from this analogue triangular replacement of flat descent.

6.1. The spectra of a t-’space’. We start with the spectrum Spec1L(X) of a t-
’space’ X related with exact localizations. It consists of all thick triangulated subcategories
P of the triangulated category TCX such that the intersection P∗ of all thick triangulated
subcategories properly containing P does not coincide with P. This spectrum is decom-
posed into the disjoint union of two parts. One part, Spec1,0L (X), consists of points P,
which are fat in the sense that the right orthogonal complement to P inside of the sub-
category P∗ is zero; i.e. P contains a set of generators of the subcategory P∗. In the case
when the triangulated category has infinite products or coproducts, P generates the whole
triangulated category: its right orthogonal complement, P⊥, is zero. The complementary
part Spec1,1L (X), which consists of non-fat points, is the object of our study. We observe

that the spectrum Spec1,1L (X) has a natural counterpart Spec
1/2
L (X), which might be re-

garded as the triangulated version of the spectrum Spec(X). The map, which assigns to
a thick subcategory P the intersection P∗ = P∗ ∩ P⊥ is a bijection from Spec1,1L (X) onto

Spec
1/2
L (X). There are natural notions of supports of objects which are used, among other

things, to define topologies on the spectra, in particular analogs of the Zariski topology.
These spectra have simple local properties, similar to those of the spectrum Spec−(−).
Namely, if {Ti | i ∈ J} is a finite family of thick triangulated subcategories of the triangu-

lated category CTX such that
⋂

i∈J

Ti = 0, then Spec1,1L (X) =
⋃

i∈J

Spec1,1L (X/Ti).

Moreover, these spectra have much better functorial properties than the spectra of
’spaces’ represented by abelian categories. Explicitly, this means that the triangulated
analog of the induction construction outlined above – a spectral version of cohomological
induction, works without additional “ampleness” conditions on the pair (f,Q), unlike its
abelian prototype.

7. A sequence of events. Different parts of this story moved in different directions
dictated mostly by immediate needs of several concrete examples and problems.

The first serious progress was due to the discovery (in the middle of eighties) of the
spectrum Spec(−) of ’spaces’ represented by svelte abelian categories [R, Ch.III) and its
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applications to representations of algebras of mathematical physics (see [R], Chapters II,
IV). At that stage, there was a harmony between pseudo-geometry and geometry: only
’spaces’ represented by abelian (or even Grothendieck) categories were considered and
the spectrum Spec(X) (endowed with a version of Zariski topology) was regarded as the
underlying topological space of X. The monograph [R] marked the end of that period.

Then, in the middle of the nineties, appeared the work on D-modules on noncom-
mutative ’spaces’ with the goal to obtain a quantized version of the Beilinson-Bernstein
localization construction [LR1], [LR2]. The contemplation of the quantum analogues of
the base affine space, flag variety and the quantum D-’spaces’ determined by the action of
quantized enveloping algebra on this ’spaces’ (see [LR2]) led to the notion of a noncom-
mutative scheme [R2], [R3]. This notion is purely categorical and does not use any abelian
(or even additivity) hypothesis. The work on noncommutative projective spaces [KR1]
and noncommutative Grassmannians provoked the study of ’spaces’ defined by presheaves
of sets on the category of noncommutative affine schemes and (formally) smooth ’spaces’
[KR2], considerably extended the use of flat descent turning it into a tool for describing the
categories of quasi-coherent sheaves on noncommutative ’spaces’ [KR3]. This eventually
triggered (actually, required) the introduction of noncommutative stacks [KR4].

As for the geometric part, it continued to develop, for quite a while, only as the
spectral theory of (’spaces’ represented by) abelian categories of [R, Ch.III], [R4], without
any reaction to all these pseudo-geometric developments. It seemed at the time that the
spectrum Spec(−) is an exceptional notion. The absence of a spectral theory of ’spaces’
represented by triangulated categories had been of a particular nuisance, considering the
role triangulated categories play in representation theory and started to play in mathemat-
ical physics. Then spectra of ’spaces’ represented by arbitrary svelte categories – spectra
related with localizations, were discovered. They were easily adjusted to more sophisti-
cated settings; in particular, a satisfactory spectral theory of ’spaces’ represented by svelte
triangulated categories was, finally, found [R6].

Moreover, these several spectra provided enough experimental material to figure out
a general pattern producing spectra – spectral cuisine [R5]. Thanks to this work, geometry
(i.e. spectral theory) almost caught up with pseudo-geometry, at least potentially. Still,
the most important spectrum, Spec(−), continued to resist generalizations. Its straight-
forward version for ’spaces’ represented by exact categories (appeared in [R, Ch.5]) does
not inherit important properties with respect to localizations (explained in Chapter II of
this book).

Note that, from the algebraic point of view, exact categories are much more robust
than abelian categories. For instance, unlike abelian categories, they are stable under tran-
sition to the categories of filtered objects. They also contain the categories of projective
modules over associative rings and, more generally, categories of vector bundles on ringed
spaces (in particular, on schemes), which was the first reason for introducing them in ho-
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mological algebra and K-theory. Important categories of functional analysis (starting from
the category of Banach spaces) are exact. Therefore, studying ’spaces’ represented by ex-
act categories instead of abelian categories should create a bridge towards noncommutative
geometries related to analysis, in particular, to noncommutative differential geometry.

An attempt to understand cycles and K-theory of noncommutative ’spaces’ and schemes
led to a new homological algebra and, as a byproduct, to an important expansion of pseudo-
geometry: ’spaces’ represented by right (or left) exact categories. Right exact categories are
categories endowed with a Grothendieck pretopology whose covers are strict epimorphisms.
In particular, exact categories are a special case of right exact categories. Finally, an ad-
equate extension of the spectrum Spec(−) to ’spaces’ represented by svelte right exact
categories was found [R12]. Considering that every category has a canonical (the finest)
right exact structure, this last development establishes (at least temporarily) a harmony
between pseudo-geometric and geometric parts of noncommutative algebraic geometry and
opens entirely new prospectives.

8. Texts. The above described evolution (which occurred since the appearance of
the monograph [R]) formed a whole cycle of development: first new, important pseudo-
geometric notions and poorly understood pseudo-geometric examples and constructions
emerged during the second half of the nineties; then new notions, facts and insights dis-
covered during the first several years of the twenty first century allowed to fill up gaps
between different, seemingly unrelated pieces of noncommutative pseudo-geometry and
permitted to find the missing geometric parts of the story. The present state of the
subject looks, therefore, appropriate for organizing material scattered among the papers
([KR1]-[KR5], [LR1], [LR2], [R2]-[R8]) and unpublished notes into a coherent exposition of
(certain chapters of) foundations of noncommutative algebraic geometry. The manuscripts

Noncommutative ’Spaces’ and Stacks

Geometry of Noncommutative ’Spaces’ and Schemes

Homological Algebra of Noncommutative ’Spaces’ I

are the parts of the treatise written so far. The first one is mostly based on the papers
[KR1]-[KR5] and the notes of courses on noncommutative algebraic geometry and algebra
given at Kansas State University. It might be called “basics of noncommutative pseudo-
geometry”. Due to the role of pseudo-geometry, results of this manuscript are used, directly
or indirectly, in the rest of the treatise. Therefore, we give a brief outline of its content.

We start with ’spaces’ represented by svelte categories and morphisms of ’spaces’
represented by (their inverse image) functors, and develop the basic theory of locally
affine ’spaces’ and schemes with a stress on flat descent (used as a tool for describing
categories of quasi-coherent sheaves on noncommutative ’spaces’) and the noncommuta-
tive analogs of smooth and étale morphisms etc.. Then we study ’spaces’ determined by
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presheaves of sets on the category Affk of noncommutative affine schemes over a commu-
tative ring k. We introduce and study Grassmannians, generalized Grassmannians – the
non-commutative analog of Quot schemes, and (generalized) flag varieties. We associate
with presheaves of sets on Affk ringed categories, which give rise to the categories of quasi-
coherent (pre)sheaves of modules. Finally, there are two more aspects that we take into
consideration: constructions of important ’spaces’ and geometries, which “live” in different
monoidal categories. We combine the two aspects together. Namely, the constructions of
’spaces’ are made inside of geometries living in monoidal categories.

There is no need to explain here details of the third manuscript, but, of course, we
sketch the organization of the second one – the present volume.

10. Content. In order to make the exposition self-contained, the necessary pseudo-
geometric preliminaries are summarized (without proofs) in the first chapter.

Chapter II describes the spectral theory of ’spaces’ represented by abelian categories.

Chapter III studies the functorial properties of spectra and gives some of its applica-
tions to representation theory of (quantized) enveloping algebras.

Chapter IV is dedicated to the geometry of ’spaces’ represented by triangulated cat-
egories. It follows the pattern of the first three chapters. We start with a description of
continuous triangle morphisms, which is a triangulated version of Beck’s theorem. The
purpose of the chapter is to present a triangulated version of the main facts of Chapters
II and III – the relevant spectra and their functorial properties.

The reader who is interested only in geometry of abelian and triangulated categories
and their applications to algebraic representation theory, can ignore the rest of the book.

In Chapter V, “Spectra related with localizations”, we start to fill up the most obvious
aesthetical gap between the fact that main pseudo-geometric notions (like schemes, for
example) are defined for ’spaces’ represented by arbitrary svelte categories, while there
was no geometric (i.e. spectral) counterpart. Part of material is taken from [R6]. The
spectra we introduced here are directly related to exact localizations. In a sense, we
obtain natural extensions of Gabriel’s spectrum for ’spaces’ represented by arbitrary svelte
categories. Our main spectrum, Spec(−), remains out of reach in this approach.

It turns out that the spectrum Spec(−) can be recovered if we take into consideration
a structure of a right exact category. This is done in Chapter VI, “Geometry of right
exact ’spaces”’, dedicated to spectral theory of ’spaces’represented by svelte right exact
categories. In particular, we extend to right exact ’spaces’ the spectrum Spec(−) and
establish the analogues of the main facts of Chapter II.

Chapter VII is called, for a good reason, “Spectral cuisine for the working mathemati-
cians”. It is based on [R5] (enriched with some more recent observations) and describes
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a general machinery, which produces spectra. All spectra appeared so far here and in [R]
can be obtained using this machine, as well as new spectra.

In order to make the exposition “user friendly”, all spectral constructions and facts
coming from the “Spectral cuisine” which appear in other Chapters are explained inde-
pendently in each case. So that “users” might omit reading Chapter VII.

Acknowledgements. This undertaking was helped very much by the support and hos-
pitality of the Max Planck Institut für Mathematik in Bonn (starting from 1993) and the
Institute des Hautes Études Scientifiques, Bures-sur-Yvette, France (starting from 1996).
The two years at IHES (1996-1998) were priceless for the beginning of the project, as well
as seminars and activities in noncommutative geometry run together with Yuri Ivanovich
Manin at Max Planck Institute in 1998-1999 and in summer of 2001. The National Sci-
ence Foundation supported this research from 2000 until 2006. Summer of 2006 at the
Max Planck Institut, the year 2006-2007 at the Institute des Hautes Études Scientifiques
and following it year 2007-2008 at the Max Planck Institut were particularly vital for the
creation of the first parts of the treatise, especially for this volume.

I am grateful to Leo and Maria Rosenberg for helping to improve introductory parts
of this text. My family provided the main motivation to pursue the project.



Chapter I

Locally Affine ’Spaces’ and Schemes.

In Section 1, we review the first notions of noncommutative algebraic geometry –
preliminaries on ’spaces’ represented by categories, morphisms represented by their inverse
image functors. We recall the notions of continuous, flat and affine morphisms and illustrate
them with a couple of examples. In Section 2, we remind Beck’s theorem characterizing
monadic morphisms and apply it to the study of affine relative schemes. In Section 3, we
introduce the notions of a weakly locally affine morphism and a weak scheme over a ’space’.
Section 4 is dedicated to flat descent which is one of the main tools of noncommutative
algebraic geometry. In Section 5, we sketch several examples of noncommutative schemes
and more general locally affine spaces, which are among illustrations and/or motivations of
constructions of this work. The whole chapter can be regarded as a review of the few facts
of the noncommutative algebraic (or categoric pseudo-)geometry which are used in the rest
of the work. There are practically no proofs. They can be found in the first Chapter of
[KR7] and in [KR3].

1. Noncommutative ’spaces’ represented by categories and morphisms
between them. Continuous, affine and locally affine morphisms.

1.1. Categories and ’spaces’. As usual, Cat, or CatU, denotes the bicategory of
categories, which belong to a fixed universum U. We call objects of Catop ’spaces’. For any
’space’ X, the corresponding category CX is regarded as the category of quasi-coherent
sheaves on X. For any U-category A, we denote by |A| the corresponding object of Catop

(the underlying ’space’) defined by C|A| = A.
We denote by |Cat|o the category having same objects as Catop. Morphisms from

X to Y are isomorphism classes of functors CY −→ CX . For a morphism X
f
−→ Y , we

denote by f∗ any functor CY −→ CX representing f and call it an inverse image functor
of the morphism f . We shall write f = [F ] to indicate that f is a morphism having an

inverse image functor F . The composition of morphisms X
f
−→ Y and Y

g
−→ Z is defined

by g ◦ f = [f∗ ◦ g∗].

1.2. Localizations and conservative morphisms. Let Y be an object of |Cat|o

and Σ a class of arrows of the category CY . We denote by Σ−1Y the object of |Cat|o such
that the corresponding category coincides with (the standard realization of) the quotient of
the category CY by Σ (cf. [GZ, 1.1]): CΣ−1Y = Σ−1CY . The canonical localization functor

CY
p∗Σ−→ Σ−1CY is regarded as an inverse image functor of a morphism, Σ−1Y

p
Σ−→ Y .
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For any morphism X
f
−→ Y in |Cat|o, we denote by Σf∗ the family of all arrows s

of the category CY such that f∗(s) is invertible (notice that Σf∗ does not depend on the
choice of an inverse image functor f∗). Thanks to the universal property of localizations, f∗

is represented as the composition of the localization functor p∗f = p∗
Σf∗

: CY −→ Σ−1
f∗ CY

and a uniquely determined functor Σ−1
f∗ CY

f∗
c−→ CX . In other words, f = pf ◦ fc for a

uniquely determined morphism X
fc
−→ Σ−1

f∗ Y .

A morphism X
f
−→ Y is called conservative if Σf∗ consists of isomorphisms, or,

equivalently, pf is an isomorphism.

A morphism X
f
−→ Y is called a localization if fc is an isomorphism, i.e. the functor

f∗c is an equivalence of categories.
Thus, f = pf ◦ fc is a unique decomposition of a morphism f into a localization and

a conservative morphism.

1.3. Continuous, flat, and affine morphisms. A morphism is called continuous
if its inverse image functor has a right adjoint (called a direct image functor), and flat
if, in addition, the inverse image functor is left exact (i.e. preserves finite limits). A
continuous morphism is called affine if its direct image functor is conservative (i.e. it
reflects isomorphisms) and has a right adjoint.

1.4. Categoric spectrum of a unital ring. For an associative unital ring R,
we define the categoric spectrum of R as the object Sp(R) of |Cat|o represented by the
category R−mod of left R-modules; i.e. CSp(R) = R−mod.

Let R
φ
−→ S be a unital ring morphism and R−mod

φ̄∗

−→ S−mod the functor S⊗R−.
The canonical right adjoint to φ̄∗ is the pull-back functor φ̄∗ along the ring morphism φ.
A right adjoint to φ̄∗ is given by

S −mod
φ̄!

−−−→ R−mod, L 7−→ HomR(φ∗(S), L).

The map (
R

φ
−→ S

)
7−→

(
Sp(S)

φ̄
−→ Sp(R)

)

is a functor

Ringsop
Sp

−−−→ |Cat|o

which takes values in the subcategory of |Cat|o formed by affine morphisms.

The image Sp(R)
φ̄
−→ Sp(T ) of a ring morphism T

φ
−→ R is flat (resp. faithful) iff φ

turns R into a flat (resp. faithful) right T -module.
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1.4.1. Continuous, flat, and affine morphisms from Sp(S) to Sp(R). Let R

and S be associative unital rings. A morphism Sp(S)
f
−→ Sp(R) with an inverse image

functor f∗ is continuous iff

f∗ ≃M⊗R : L 7−→M⊗R L (1)

for an (S,R)-bimoduleM defined uniquely up to isomorphism. The functor

f∗ = HomS(M,−) : N 7−→ HomS(M, N) (2)

is a direct image of f .
By definition, the morphism f is conservative iff M is faithful as a right R-module,

i.e. the functorM⊗R − is faithful.
The direct image functor (2) is conservative iffM is a generator in the category of left

S-modules, i.e. for any nonzero S-module N , there exists a nonzero S-module morphism
M−→ N .

The morphism f is flat iffM is flat as a right R-module.
The functor (2) has a right adjoint, f !, iff f∗ is isomorphic to the tensoring (over S)

by a bimodule. This happens iffM is a projective S-module of finite type. The latter is
equivalent to the condition: the natural functor morphismM∗

S ⊗S − −→ HomS(M,−) is
an isomorphism. HereM∗

S = HomS(M,S). In this case, f ! ≃ HomR(M
∗
S ,−).

1.5. Example. Let G be a monoid and R a G-graded unital ring. We define the
’space’ SpG(R) by taking as CSpG(R) the category grGR−mod of left G-graded R-modules.

There is a natural functor grGR −mod
φ∗
−→ R0 −mod, which assigns to each graded R-

module its zero component (’zero’ is the unit element of the monoid G). The functor φ∗
has a left adjoint, φ∗, which maps every R0-module M to the graded R-module R⊗R0 M .
The adjunction arrow IdR0−mod −→ φ∗φ

∗ is an isomorphism. This means that the functor
φ∗ is fully faithful, or, equivalently, the functor φ∗ is a localization.

The functors φ∗ and φ∗ are regarded as respectively a direct and an inverse image

functor of a morphism SpG(R)
φ
−→ Sp(R0). It follows from the above that the morphism

φ is affine iff φ is an isomorphism (i.e. φ∗ is an equivalence of categories).
In fact, if φ is affine, the functor φ∗ should be conservative. Since φ∗ is a localization,

this means, precisely, that φ∗ is an equivalence of categories.

1.6. The cone of a non-unital ring. Let R0 be a unital associative ring, and let
R+ be an associative ring, non-unital in general, in the category of R0-bimodules; i.e. R+

is endowed with an R0-bimodule morphism R+⊗R0R+
m
−→ R+ satisfying the associativity

condition. Let R = R0 ⊕ R+ denote the augmented ring described by this data. Let TR+
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denote the full subcategory of the category R − mod whose objects are all R-modules
annihilated by R+. Let T −

R+
be the Serre subcategory (that is a full subcategory closed

by taking subquotients, extensions, and arbitrary direct sums) of the category R −mod
spanned by TR+ .

We define the ’space’ cone of R+ by taking as CCone(R+) the quotient category R −

mod/T −
R+

. The localization functor R−mod
u∗

−→ R−mod/T −
R+

is an inverse image functor

of a morphism of ’spaces’ Cone(R+)
u
−→ Sp(R). The functor u∗ has a (necessarily fully

faithful) right adjoint, i.e. the morphism u is continuous. If R+ is a unital ring, then u
is an isomorphism (see C3.2.1). The composition of the morphism u with the canonical
affine morphism Sp(R) −→ Sp(R0) is a continuous morphism Cone(R+) −→ Sp(R0). Its
direct image functor is (regarded as) the global sections functor.

1.7. The graded version: ProjG. Let G be a monoid and R = R0⊕R+ a G-graded
ring with zero component R0. Then we have the category gr

G
R − mod of G-graded R-

modules and its full subcategory gr
G
TR+ = TR+ ∩ grGR −mod whose objects are graded

modules annihilated by the ideal R+. We define the ’space’ ProjG(R) by setting

CProjG(R) = gr
G
R−mod/gr

G
T −
R+
.

Here gr
G
T −
R+

is the Serre subcategory of the category gr
G
R − mod spanned by gr

G
TR+ .

One can show that gr
G
T −
R+

= gr
G
R−mod∩T −

R+
. Therefore, we have a canonical projection

Cone(R+)
p
−→ ProjG(R).

The localization functor gr
G
R−mod −→ CProjG(R+) is an inverse image functor of a

continuous morphism ProjG(R)
v
−→ SpG(R). The composition ProjG(R)

v
−→ Sp(R0) of

the morphism v with the canonical morphism SpG(R)
φ
−→ Sp(R0) defines ProjG(R) as a

’space’ over Sp(R0). Its direct image functor is called the global sections functor.

1.7.1. Example: cone and Proj of a Z+-graded ring. Let R = ⊕n≥0Rn be a Z+-
graded ring, R+ = ⊕n≥1Rn its ’irrelevant’ ideal. Thus, we have the cone of R+, Cone(R+),
and Proj(R) = ProjZ(R), and a canonical morphism Cone(R+) −→ Proj(R).

2. Beck’s Theorem and affine morphisms.

2.1. Beck’s Theorem. Let X
f
−→ Y be a continuous morphism in with inverse

image functor f∗, direct image functor f∗, and adjunction morphisms

IdCY
ηf
−→ f∗f

∗ and f∗f∗
ǫf
−→ IdCX .



Locally Affine ’Spaces’ and Schemes. 5

Let Ff denote the monad (Ff , µf ) on Y , where Ff = f∗f
∗ and µf = f∗ǫff

∗.
We denote by Ff −mod, or by (Ff/Y )−mod the category of Ff -modules. Its objects

are pairs (M, ξ), where M ∈ ObCY and ξ is a morphism Ff (M) −→ M such that the
diagram

F 2
f (M)

µf (M)

−−−→ Ff (M)

Ff (ξ)
y

y ξ

Ff (M)
ξ

−−−→ M

commutes and ξ◦ηf (M) = idM . Morphisms from (M, ξ) to (M̃, ξ̃) are given by morphisms

M
g
−→ M̃ of the category CY such that the diagram

Ff (M)
Ff (g)

−−−→ Ff (M̃)

ξ
y

y ξ̃

M
g

−−−→ M̃

commutes. The composition is defined in a standard way.
We denote by Sp(Ff/Y ) the ’space’ represented by the category of Ff -modules and

call it the categoric spectrum of the monad Ff .
There is a commutative diagram

CX
f̄∗
−−−→ (Ff/Y )−mod

f∗ ց ւf∗

CY

(3)

Here f̄∗ is the canonical functor

CX −→ (Ff/Y )−mod, M 7−→ (f∗(M), f∗ǫf (M)),

and f∗ is the forgetful functor (Ff/Y )−mod −→ CY .
The following assertion is one of the versions of Beck’s theorem.

2.1.1. Theorem. Let X
f
−→ Y be a continuous morphism.

(a) If the category CY has cokernels of reflexive pairs of arrows, then the functor
f̄∗ has a left adjoint, f̄∗; hence f̄∗ is a direct image functor of a continuous morphism

X̄
f
−→ Sp(Ff/Y ).
(b) If, in addition, the functor f∗ preserves cokernels of reflexive pairs, then the ad-

junction arrow f̄∗f̄∗ −→ IdCX is an isomorphism, i.e. f̄∗ is a localization.
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(c) If, in addition to (a) and (b), the functor f∗ is conservative, then f̄∗ is a category
equivalence.

Proof. See [MLM], IV.4.2, or [ML], VI.7.

2.1.2. Corollary. Let X
f
−→ Y be an affine morphism (cf. 1.3). If the category

CY has cokernels of reflexive pairs of arrows (e.g. CY is an abelian category), then the

canonical morphism X
f
−→ Sp(Ff/Y ) is an isomorphism.

2.1.3. Monadic morphisms. A continuous morphism X
f
−→ Y is called monadic

if the functor

CX
f̃∗
−−−→ Ff −mod, M 7−→ (f∗(M), f∗ǫf (M)),

is an equivalence of categories.

2.2. Continuous monads and affine morphisms. A functor F is called continuous
if it has a right adjoint. A monad F = (F, µ) on a ’space’ Y (i.e. on the category CY ) is
called continuous if the functor F is continuous.

2.2.1. Proposition. A monad F = (F, µ) on Y is continuous iff the canonical

morphism Sp(F/Y )
f̂
−→ Y is affine.

Proof. A proof in the case of a continuous monad can be found in [KR2, 6.2], or in
[R3, 4.4.1] (see also [R4, 2.2]).

2.2.2. Corollary. Suppose that the category CY has cokernels of reflexive pairs of

arrows. A continuous morphism X
f
−→ Y is affine iff its direct image functor CX

f∗
−→ CY

is the composition of a category equivalence

CX −→ (Ff/Y )−mod

for a continuous monad Ff on Y and the forgetful functor (Ff/Y ) −mod −→ CY . The
monad Ff is determined by f uniquely up to isomorphism.

Proof. The conditions of the Beck’s theorem are fulfilled if f is affine, hence f∗ is the
composition of an equivalence CX −→ (Ff/Y )−mod for a monad Ff = (f∗f

∗, µf ) in CY
and the forgetful functor (Ff/Y ) −mod −→ CY (see (1)). The functor Ff = f∗f

∗ has a
right adjoint f∗f

!, where f ! is a right adjoint to f∗. The rest follows from 2.2.1.

2.3. The category of affine schemes over a ’space’ and the category of
monads on this ’space’.
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2.3.1. Proposition. Let

X
h

−−−→ Y
f ց ւ g

S

be a commutative diagram in |Cat|o. Suppose CZ has cokernels of reflexive pairs of arrows.
If f and g are affine, then h is affine.

Let AffS denote the full subcategory of the category |Cat|o/S of ’spaces’ over S

whose objects are pairs (X,X
f
→ S), where f is an affine morphism. On the other hand,

we have the category Monc(S) of continuous monads on the ’space’ S (i.e. on the category
CS) and the functor

Monc(S)
op −−−→ AffS (1)

which assigns to every continuous monad F the object (Sp(F/S, f), where Sp(F/S) is the
’space’ represented by the category F −mod and the morphism f has the forgetful functor
F−mod −→ CS as a direct image functor. It follows from 2.3.1 and 2.2.2 that this functor
is essentially full (that is its image is equivalent to the category AffS).

For every endofunctor CS
G
−→ CS , let |G| denote the set Hom(IdCS , G) of elements of

G. If F = (F, µ) is a monad, then the set of elements of F has a natural monoid structure;
we denote this monoid by |F|. And we denote by |F|∗ the group of the invertible elements

of the monoid |F|. We say that two monad morphisms F
φ

−→
−→
ψ

G are conjugate to each

other of φ = t · ψ · t−1 for some t ∈ |G|∗.
Let Monrc(S) denote the category whose objects are continuous monads on CS and

morphisms are conjugacy classes of morphisms of monads.

2.3.2. Proposition The functor (1) induces an equivalence between the category
Monrc(S) and the category AffS of affine schemes over S.

2.3.3. Example. Let S = Sp(R) for an associative ring R. Then the category
Monc(S) of monads on CS = R −mod is naturally equivalent to the category R\Rings
of associative rings over R. The conjugacy classes of monad morphisms correspond to
conjugacy classes of ring morphisms. Let Ass denote the category whose objects are
associative rings and morphisms the conjugacy classes of ring morphisms.

One deduces from 2.3.2 the following assertion:

2.3.3.1. Proposition. The category AffS of affine schemes over S = Sp(R) is
naturally equivalent to the category (R\Ass)op.

3. Noncommutative weakly locally affine ’spaces’ and schemes.
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3.1. Weak covers. We call a family {Ui
ui−→ X | i ∈ J} of morphisms of ’spaces’ a

weak cover if
– all inverse image functors u∗i are exact (i.e. the functors u

∗
i preserve finite limits and

colimits),
– the family {u∗i | i ∈ J} is conservative (i.e. if u∗i (s) is an isomorphism for all i ∈ J ,

then s is an isomorphism).

3.2. Weakly locally affine morphisms of ’spaces’. We call a morphism X
f
−→ S

of ’spaces’ locally affine if there exists a cover {Ui
ui−→ X | i ∈ J} of the ’space’ X such

that all the compositions f ◦ ui are affine.

3.2.1. Semi-separated covers and semi-separated locally affine ’spaces’. A
cover {Ui

ui−→ X | i ∈ J} is called semi-separated if each of the morphisms ui is affine.
A locally affine ’space’ with a semi-separated affine cover is called semi-separated.

3.3. Weak schemes over S. Weak schemes over a ’space’ S are locally affine mor-
phisms X −→ S, which have an affine cover {Ui

ui−→ X | i ∈ J} formed by localizatios.
The latter means that each inverse image functor u∗i is the composition of the localiza-
tion functor CX −→ Σ−1

u∗
i
CX , where Σu∗

i
= {s ∈ HomCX | u

∗
i (s) is invertible}, and an

equivalence of categories Σ−1
u∗
i
CX −→ CUi .

3.4. Schemes. A weak scheme X −→ S with an affine cover {Ui
ui−→ X | i ∈ J} is a

scheme if for every i ∈ J , the multiplicative system Σu∗
i
is finitely generated.

4. Descent: “covers”, comonads, and gluing.

4.1. Comonads associated with “covers”. Let {Ui
ui−→ X | i ∈ J} be a family

of continuous morphisms and u the corresponding morphism U =
∐

i∈J

Ui
u
−→ X with the

inverse image functor

CX
u∗

−−−→
∏

i∈J

CUi = CU , M 7−→ (u∗i (M)|i ∈ J).

It follows that the family of inverse image functors {CX
u∗
i−→ CUi | i ∈ J} is conserva-

tive iff the functor u∗ is conservative.
Suppose that the category CX has products of |J | objects. Then the morphism

U =
∐

i∈J

Ui
u
−→ X is continuous: its direct image functor assigns to every object (Li|i ∈ J)

of the category CU =
∏

i∈J

CUi the product
∏

i∈J

ui∗(Li).
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The adjunction morphism IdCX
ηu
−→ u∗u

∗ assigns to each object M of CX the mor-

phism M −→
∏

i∈J

u
i∗u

∗
i (M) determined by adjunction arrows IdCX

ηui−→ u
i∗u

∗
i .

The adjunction morphism u∗u∗
ǫu−→ IdCU

assigns to each object L = (Li|i ∈ J) of CU

the morphism (ǫu,i(L)|i ∈ J), where

u∗i (
∏

j∈J

uj∗(Lj))
ǫu,i(L)

−−−→ Li

is the composition of the image

u∗i (
∏

j∈J

uj∗(Lj))
u∗
i (pi)

−−−→ u∗i ui∗(Li)

of the image of the projection pi and the adjunction arrow u∗i ui∗(Li)
ǫui (Li)

−−−→ Li.

4.2. Beck’s theorem and gluing. Suppose that for each i ∈ J , the category CUi has
kernels of coreflexive pairs of arrows and the functor u∗i preserves them. Then the inverse
and direct image functors of the morphism u satisfy the conditions of Beck’s theorem,
hence the category CX is equivalent to the category of comodules over the comonad Gu =
(Gu, δu) = (u∗u∗, u

∗ηuu∗) associated with the choice of inverse and direct image functors

of u together with an adjunction morphism IdCX
ηu
−→ u∗u

∗.
Recall that Gu-comodule is a pair (L, ζ), where L is an object of CU and ζ a morphism

L −→ Gu(L) such that ǫu(L)◦ ζ = idL and Gu(ζ)◦ ζ = δu(L)◦ ζ. Beck’s theorem says that
if the category CU has kernels of coreflexive pairs of arrows and the functor u∗ preserves

and reflects them, then the functor CX
ũ∗

−→ (U\Gu)− comod which assigns to each object
M of CX the Gu-comodule (u∗(M), δu(M)) is an equivalence of categories.

In terms of our local data – the “cover” {Ui
ui−→ X | i ∈ J}, a Gu-comodule (L, ζ) is

the data (Li, ζi|i ∈ J), where (Li|i ∈ J) = L and ζi is a morphism

Li −→ u∗i u∗(L) = u∗i (
∏

j∈J

uj∗(Lj))

which equalizes the pair of arrows

u∗i u∗(L) = u∗i (
∏

j

uj∗(Lj))

u∗
i
ηuu∗(L)

−−−−−−−→
−−−−−−−→
u∗
i
(u
j∗
ζj)

u∗i (
∏

m

um∗u
∗
m(

∏

j

uj∗(Lj))) = u∗i u∗u
∗u∗(L)



10 Chapter 1

and such that ǫu,i(L) ◦ ζi = idLi , i ∈ J.
The exactness of the diagram

L
ζ

−−−→ Gu(L)

δu(L)

−−−→
−−−→
Gu(ζ)

G2
u(L)

is equivalent to the exactness of the diagram

Li
ζi
−−−→ u∗i (

∏

j∈J

uj∗(Lj))

u∗
i
ηuu∗(L)

−−−−−−−→
−−−−−−−→
u∗
i
(u
j∗
ζj)

u∗i (
∏

m∈J

um∗u
∗
m(

∏

j∈J

uj∗(Lj))) (1)

for every i ∈ J . If the functors u∗k preserve products of J objects (or just the products
involved into (1)), then the diagram (1) is isomorphic to the diagram

Li
ζi
−−−→

∏

j∈J

u∗i uj∗(Lj)

u∗
i
ηuu∗(L)

−−−−−−−→
−−−−−−−→
u∗
i
(u
j∗
ζj)

∏

j,m∈J

u∗i um∗u
∗
muj∗(Lj) (2)

4.3. Remark. The exactness of the diagram (1) might be viewed as a sort of sheaf
property. This interpretation looks more plausible (or less stretched) when the diagram
(1) is isomorphic to the diagram (2), because u∗i uj∗(Lj) can be regarded as the section of
Lj over the ’intersection’ of Ui and Uj and u

∗
i um∗u

∗
muj∗(Lj) as the section of Lj over the

intersection of the elements Uj , Um, and Ui of the “cover”.

4.4. The condition of the continuity of the comonad associated with a

“cover”. Suppose that each direct image functor CUi
u
i∗−→ CX , i ∈ J, has a right adjoint,

u!i; and let u! denote the functor CX −→ CU =
∏

i∈J

CUi which maps every object M to

(u!i(M)|i ∈ J). If the category CX has coproducts of |J | objects, then the functor u! has

a left adjoint, which maps every object (Li|i ∈ J) of CU to the coproduct
∐

i∈J

ui∗(Li).

Therefore, if the canonical morphism
∐

i∈J

ui∗(Li) −−−→
∏

i∈J

ui∗(Li) is an isomorphism

for every object (Li|i ∈ J) of the category CU , then (and only then) the functor u! is a
right adjoint to the functor u∗.

In particular, u! is a right adjoint to u∗, if the category CX is additive and J is finite.

4.5. Note. If, in addition, the functors ui∗ are conservative for all i ∈ J , then the
functor u∗ is conservative, and the category CU is equivalent to the category of modules
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over the continuous monad Fu = (Fu, µh), where Fu = u∗u
∗ and µu = u∗ǫuu

∗ for an

adjunction morphism u∗u∗
ǫu−→ IdCU

.

5. Some motivating examples.

5.1. The base affine ’space’ and the flag variety of a reductive Lie algebra
from the point of view of noncommutative algebraic geometry. Let g be a reduc-
tive Lie algebra over C and U(g) the enveloping algebra of g. Let G be the group of integral

weights of g and G+ the semigroup of nonnegative integral weights. Let R =
⊕

λ∈G+

Rλ,

where Rλ is the vector space of the (canonical) irreducible finite dimensional representation
with the highest weight λ. The module R is a G+-graded algebra with the multiplication
determined by the projections Rλ ⊗ Rν −→ Rλ+ν , for all λ, ν ∈ G+. By construction,
the algebra R carries a g-module structure such that the multiplication is a g-module
morphism. It is well known that the algebra R is isomorphic (both as an algebra and a
g-module) to the algebra of regular functions on the base affine space of g. Recall that
the base affine space of g (which is, actually, not affine, but, a quasi-affine variety) is, by
definition, the quotient G/U , where G is a connected simply connected algebraic group
with the Lie algebra g, and U is its maximal unipotent subgroup.

The category CCone(R) is equivalent to the category of quasi-coherent sheaves on the
base affine space Y of the Lie algebra g. The category CProjG(R) is equivalent to the
category of quasi-coherent sheaves on the flag variety of g.

5.2. The quantized base affine ’space’ and quantized flag variety of a
semisimple Lie algebra. Let now g be a semisimple Lie algebra over a field k of zero
characteristic, and let Uq(g) be the quantized enveloping algebra of g. Define the G-graded

algebra R =
⊕

λ∈G+

Rλ the same way as above. This time, however, the algebra R is not

commutative. Following the classical example (and identifying spaces with categories of
quasi-coherent sheaves on them), we call Cone(R) the quantum base affine ’space’ and
ProjG(R) the quantum flag variety of the Lie algebra g.

5.2.1. Canonical affine covers of the base affine ’space’ and the flag variety.
Let W be the Weyl group of the Lie algebra g. Fix a w ∈ W . For any λ ∈ G+, choose
a nonzero w-extremal vector eλwλ generating the one dimensional vector subspace of Rλ
formed by the vectors of the weight wλ. Set Sw = {k∗eλwλ|λ ∈ G+}. It follows from the

Weyl character formula that eλwλe
µ
wµ ∈ k∗eλ+µw(λ+µ). Hence Sw is a multiplicative set. It

was proved by Joseph [Jo] that Sw is a left and right Ore subset in R. The Ore sets
{Sw|w ∈W} determine a conservative family of affine localizations

Sp(S−1
w R)

ũw
−−−→ Cone(R), w ∈W, (4)
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of the quantum base affine ’space’ and a conservative family of affine localizations

SpG(S
−1
w R) −−−→ ProjG(R), w ∈W, (5)

of the quantum flag variety. We claim that the category gr
G
S−1
w R − mod of G-graded

S−1
w R-modules is naturally equivalent to the category (S−1

w R)0 −mod.
In fact, by 1.5, it suffices to verify that the canonical functor

gr
G
S−1
w R−mod −−−→ (S−1

w R)0 −mod

which assigns to every graded S−1
w R-module its zero component is faithful; i.e. the zero

component of every nonzero G-graded S−1
w R-module is nonzero. This is, really, the case,

because if z is a nonzero element of the λ-component of a G-graded S−1
w R-module, then

(eλwλ)
−1z is a nonzero element of the zero component of this module.
Thus, we obtain an affine cover

Sp((S−1
w R)0)

uw
−−−→ ProjG(R), w ∈W, (6)

of the quantum flag variety ProjG(R) of the Lie algebra g.
The covers (4) and (6) are scheme structures on respectively quantum base affine

’space’ and quantum flat variety. One can check that all morphisms of (4) and (6) are
affine, i.e. the covers (4) and (5) are semi-separated.

5.3. Noncommutative Grassmannians. Fix an associative unital k-algebra R.
Let R\Algk be the category of associative k-algebras over R (i.e. pairs (S,R→ S), where
S is a k-algebra and R→ S a k-algebra morphism). We call them for convenience R-rings.
We denote by Re the k-algebra R⊗k R

o. Here Ro is the algebra opposite to R.

5.3.1. The functor Gr
M,V

. Let M, V be left R-modules. Consider the functor

R\Algk
Gr

M,V

−−−→ Sets,

which assigns to any R-ring (S,R
s
→ S) the set of isomorphism classes of epimorphisms

s∗(M) −→ s∗(V ) (here s∗(M) = S ⊗RM) and to any R-ring morphism

(S,R
s
→ S)

φ
−−−→ (T,R

t
→ T )

the map Gr
M,V

(S, s)
Gr

M,V
(φ)

−−−−−−−→ Gr
M,V

(T, t) induced by the inverse image functor

S −mod
φ∗

−−−→ T −mod, N 7−→ T ⊗S N .
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5.3.2. The functor G
M,V

. Denote by G
M,V

the functor R\Algk −→ Sets, which

assigns to any R-ring (S,R
s
→ S) the set of pairs of morphisms s∗(V )

v
→ s∗(M)

u
→ s∗(V )

such that u ◦ v = ids∗(V ) and acts naturally on morphisms of R-rings. Suppose that V is

a projective R-module. Then s∗(V ) is a projective S-module for any R-ring (S,R
s
→ S),

so that the map

πM,V (S, s) : GM,V (S, s) −−−→ GrM,V (S, s), (v, u) 7−→ [u],

is surjective. Thus, we have is a functor epimorphism.

G
M,V

π
M,V

−−−→ Gr
M,V

. (1)

5.3.3. Relations. Denote by R
M,V

the ”functor of relations” G
M,V
×
Gr
M,V

G
M,V

. By

definition, R
M,V

is a subfunctor of G
M,V
×G

M,V
, which assigns to each R-ring, (S,R

s
→ S),

the set of all 4-tuples (u1, v1;u2, v2) ∈ G
M,V
× G

M,V
such that the epimorphisms u1, u2

are equivalent. The latter means that there exists an isomorphism s∗(V )
ϕ
−→ s∗(V ) such

that u2 = ϕ ◦ u1, or, equivalently, ϕ−1 ◦ u2 = u1. Since ui ◦ vi = id, i = 1, 2, these
equalities imply that ϕ = u2 ◦ v1 and ϕ−1 = u1 ◦ v2. Thus, R

M,V
(S, s) is a subset of all

(u1, v1;u2, v2) ∈ GM,V
(S, s)×G

M,V
(S, s) satisfying the following relations:

u2 = (u2 ◦ v1) ◦ u1, u1 = (u1 ◦ v2) ◦ u2 (2)

in addition to the relations describing G
M,V

(S, s)×G
M,V

(S, s):

u1 ◦ v1 = idS⊗RV = u2 ◦ v2 (3)

Denote by p1, p2 the canonical projections R
M,V
−→
−→ G

M,V
. It follows from the sur-

jectivity of G
M,V
−→ Gr

M,V
that the diagram

R
M,V

p1

−−−→
−−−→
p2

G
M,V

π
M,V

−−−→ Gr
M,V

(4)

is exact.

5.3.4. Proposition. If both M and V are projective modules of a finite type, then
the functors G

M,V
and R

M,V
are corepresentable.

Proof. See [KR2, 10.4.3].
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5.3.5. Quasi-coherent presheaves on presheaves of sets. Consider the category
Affk of affine k-schemes which we identify with the category of representable functors on
the category Algk of k-algebras, and the fibred category with the base Affk whose fibers
are categories of left modules over corresponding algebras. Let X be a presheaf of sets

on Affk. Then we have a fibred category Ãffk/X with the base Affk/X induced by the
forgetful functor Affk/X −→ Affk. The category Qcoh(X) of quasi-coherent presheaves

on X is the opposite to the category of cartesian sections of Ãffk/X.

5.3.6. Quasi-coherent presheaves on Gr
M,V

. Suppose that M and V are projec-
tive modules of a finite type, hence the functors G

M,V
and R

M,V
are corepresentable by

R-rings resp. (G
M,V

, R→ G
M,V

) and (R
M,V

, R→ R
M,V

). Then the category Qcoh(G
M,V

)
(resp. Qcoh(R

M,V
)) is equivalent to G

M,V
−mod (resp. R

M,V
−mod), and the category

Qcoh(Gr
M,V

) of quasi-coherent presheaves on Gr
M,V

is equivalent to the kernel of the
diagram

Qcoh(G
M,V

)

p∗
1

−−−→
−−−→
p∗
2

Qcoh(R
M,V

) (5)

This means that, after identifying categories of quasi-coherent presheaves in (5) with cor-
responding categories of modules, quasi-coherent presheaves on Gr

M,V
can be realized as

pairs (L, φ), where L is a G
M,V

-module and φ is an isomorphism p∗1(L)
∼−→ p∗2(L). Mor-

phisms (L, φ) −→ (N,ψ) are given by morphisms L
g
−→ N such that the diagram

p∗1(L)
p∗1(g)

−−−→ p∗1(N)

φ
y≀ ≀

y ψ

p∗2(L)
p∗2(g)

−−−→ p∗2(N)

commutes. The functor

Qcoh(Gr
M,V

)
π∗

M,V

−−−→ Qcoh(G
M,V

), (L, φ) 7−→ L,

is an inverse image functor of the projection GM,V

π
M,V
−→ GrM,V (see 5.3.3(4)).

One can show that the functor π∗
M,V

is an inverse image functor of a faithfully flat
affine morphism π̄

M,V
from an affine ’space’ Sp(G

M,V
) (where G

M,V
is a ring representing

the functor G
M,V

) to the ’space’ Grass
M,V

represented by the category Qcoh(Gr
M,V

) of
quasi-coherent sheaves on Gr

M,V
. In our terminology, this means that π̄

M,V
is an affine

semi-separated cover of Grass
M,V

.
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5.3.7. Quasi-coherent sheaves on presheaves of sets. Let X be a presheaf of
sets on Affk Given a (pre)topology τ on Affk/X, we define the subcategory Qcoh(X, τ)
of quasi-coherent sheaves on (X, τ) [KR4].

5.3.7.1. Theorem ([KR4]). (a) A topology τ on Affk is subcanonical (i.e. all
representable presheaves are sheaves) iff Qcoh(X) = Qcoh(X, τ) for every presheaf of
sets X on Affk (in other words, ’descent’ topologies on Affk are precisely subcanonical
topologies). In this case, Qcoh(X) = Qcoh(X, τ) →֒ Qcoh(Xτ ) = Qcoh(Xτ , τ), where Xτ

is the sheaf associated to X and →֒ is a natural full embedding.
(b) If τ is a topology of effective descent [KR4] (e.g. the fpqc or smooth topology

[KR2]), then the categories Qcoh(X, τ) and Qcoh(Xτ ) are naturally equivalent.

This theorem says, roughly speaking, that the category Qcoh(X) of quasi-coherent
presheaves knows, which topologies to choose. A topology that seems to be the most
plausible for Grassmannians, in particular, for NPnk , is the smooth topology introduced
in [KR2]. It is of effective descent, and the category of quasi-coherent sheaves on NPnk
defined in [KR1] is naturally equivalent to the category of quasi-coherent sheaves of the
projective space defined via smooth topology on Affk.



Chapter II

The Spectra of ’Spaces’ Represented by Abelian Categories.

Spectral theory of abelian categories was started by P. Gabriel in early sixties [Gab]
with the introduction of the spectrum of a locally noetherian Grothendieck category. The
elements of the Gabriel’s spectrum are isomorphism classes of indecomposable injectives.
If R is a commutative noetherian ring, then the Gabriel’s spectrum of the category of
R-modules is naturally isomorphic to the prime spectrum of the ring. More generally, the
Gabriel’s spectrum of the category of quasi-coherent sheaves on a noetherian scheme is iso-
morphic to the underlying space of the scheme [Gab, Ch. VI, Theorem 1]. The Gabriel’s
spectrum does not recover, in general, the prime spectrum of a non-noetherian commu-
tative ring, which prevented the extension of this remarkable theorem to non-noetherian
schemes. The central character of this chapter is the spectrum Spec(−), which possesses
the desired property: if CX is the category of modules over an arbitrary commutative
unital ring R, then Spec(X) is naturally isomorphic to the prime spectrum of R. For an
arbitrary abelian category CX , isomorphism classes of simple objects of CX correspond to
closed points of Spec(X). The main purpose is establishing local properties of the spec-
trum Spec(X), which are needed to study the underlying topological spaces of non-affine
noncommutative schemes, and are crucial for reconstruction problems. These local prop-
erties are also used in computations of the spectra and applications of noncommutative
local algebra and algebraic geometry to representation theory (see Ch. III).

Section 1 contains the necessary preliminaries on topologizing, thick, and Serre sub-
categories. In Section 2, the spectrum Spec(X) is introduced. In Section 3 is dedicated
to local ’spaces’, the spectrum Spec−(X) (whose points are Serre subcategories such that
the quotient ’space’ is local) and the counterpart Spec1,1t (X) of the spectrum Spec(X)
– the image of a natural embedding of Spec(X) into Spec−(X). Section 4 is dedicated
to the pretopology of Serre localizations and the resulting local property of the spectrum
Spec−(X). In Section 5, we discuss analogous facts for the pretopology of exact local-
izations and the related spectrum. In Section 6, we discuss shortly spectra related with
localizations of abelian categories which are used in Section 7 in formulation of its main
result: the local property of the spectrum Spec(X) in terms of its counterpart Spec1,1t (X).

In Section 8, we introduce the geometric center of a ’space’ related to the spectrum
Spec(X) and use the results of Section 7 to show that if CX is the category of quasi-
coherent sheaves on a quasi-compact quasi-separated scheme, then the geometric center of
X is isomorphic to the scheme. Section 9 is dedicated to the spectra related to the preorder
of reflective topologizing categories and their local properties. We introduce a pair spectra
– Spec0c(X) and Spec1c(X), together with a canonical map between them, which turns out
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to be an isomorphism. For an arbitrary abelian category CX , there is a natural embedding
Spec(X) →֒ Spec0c(X). If CX has enough objects of finite type (for instance, CX is the
category of quasi-coherent sheaves on a quasi-compact (noncommutative) scheme), then
Spec0c(X) and Spec(X) coincide. The main fact of the section is the local property of
the spectrum Spec0c(X) (or, ruther, of its counterpart Spec1c(X)) with respect to infinite
covers, which we formulate and prove in 9.6. If CX is the category of quasi-coherent sheaves
on a scheme X, then Spec0c(X) endowed with the Zariski topology (which is defined in
terms of topologizing subcategories) is naturally isomorphic to the underlying topological
space of the scheme X, under the condition that X admits an affine cover {Ui →֒ X | i ∈ J}
such that each immersion Ui →֒ X has a direct image functor. The latter condition holds
if the scheme is quasi-separated.

In Section C1, we relate topologies on spectra with some natural ’topological’ struc-
tures on the monoid of topologizing subcategories. Besides, this appendix contains facts
(mostly borrowed from [R4]), which are used in the main body of the paper, especially in
Sections 9 and 9. Section C2 contains some observations on supports of objects and the
Krull filtrations. In Section C3, we apply the results of Section 9 to compare closed points
of the spectrum Spec−(X) and Spec(X). Closed points of Spec(X) play a special role
due to their significance for representation theory and algebraic geometry. The spectrum
is usually easier to compute than Spec(X) due to its better functorial properties. We
show that, although Spec−(X) is, usually, considerably larger than Spec(X), their closed
points are in natural bijective correspondence in many (if not all) cases of interest.

1. Topologizing, thick, and Serre subcategories.

1.1. Topologizing subcategories. A full subcategory T of an abelian category CX
is called topologizing if it is closed under finite coproducts and subquotients.

A subcategory S of CX is called coreflective if the inclusion functor S →֒ CX has a
right adjoint; that is every object of CX has a biggest subobject, which belongs to S.

We denote by T(X) the preorder (with respect to ⊆) of topologizing subcategories
and by Tc(X) the preorder of coreflective topologizing subcategories of CX .

1.1.1. The Gabriel product and infinitesimal neighborhoods of topologizing
categories. The Gabriel product, S •T, of the pair of subcategories S, T of CX is the full
subcategory of CX spanned by all objects M such that there exists an exact sequence

0 −→ L −→M −→ N −→ 0

with L ∈ ObT and N ∈ ObS. It follows that 0 • T = T = T • 0 for any strictly full
subcategory T. The Gabriel product of two topologizing subcategories is a topologizing
subcategory, and its restriction to topologizing categories is associative; i.e. (T(X), •) is
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a monoid. Similarly, the Gabriel product of coreflective topologizing subcategories is a
coreflective topologizing subcategory, hence Tc(X) is a submonoid of (T(X), •).

The nth infinitesimal neighborhood, T(n+1), of a subcategory T is defined by T(0) = 0
and T(n+1) = T(n) • T for n ≥ 0.

1.2. The preorder ≻ and topologizing subcategories. For any two objects,
M and N , of an abelian category CX , we write M ≻ N if N is a subquotient of a finite
coproduct of copies of M . For any object M of the category CX , we denote by [M ] the
full subcategory of CX whose objects are all L ∈ ObCX such that M ≻ L. It follows
that M ≻ N ⇔ [N ] ⊆ [M ]. In particular, M and N are equivalent with respect to ≻ (i.e.
M ≻ N ≻ M) iff [M ] = [N ]. Thus, the preorder

(
{[M ] | M ∈ ObCX},⊇

)
is a canonical

realization of the quotient of (ObCX ,≻) by the equivalence relation associated with ≻.

1.2.1. Lemma. (a) For any object M of CX , the subcategory [M ] is the smallest
topologizing subcategory containing M .

(b) The smallest topologizing subcategory spanned by a family of objects S coincides

with
⋃

N∈SΣ

[N ], where SΣ denotes the family of all finite coproducts of objects of S.

Proof. (a) Since ≻ is a transitive relation, the subcategory [M ] is closed with respect
to taking subquotients. If M ≻ Mi, i = 1, 2, then M ≻ M ⊕ M ≻ M1 ⊕ M2, which
shows that [M ] is closed under finite coproducts, hence it is topologizing. Clearly, any
topologizing subcategory containing M contains the subcategory [M ].

(b) The union
⋃

N∈SΣ

[N ] is contained in every topologizing subcategory containing the

family S. It is closed under taking subquotients, because each [N ] has this property. It
is closed under finite coproducts, because if N1, N2 ∈ SΣ and Ni ≻ Mi, i = 1, 2, then
N1 ⊕N2 ≻M1 ⊕M2.

For any subcategory (or a class of objects) S, we denote by [S] (resp. by [S]c) the
smallest topologizing resp. coreflective topologizing) subcategory containing S.

1.2.2. Proposition. Suppose that CX is an abelian category with small coproducts.
Then a topologizing subcategory of the category CX is coreflective iff it is closed under small
coproducts. The smallest coreflective topologizing subcategory containing a set of objects S

coincides with
⋃

N∈S̃

[N ], where S̃ is the family of all small coproducts of objects of S.

Suppose that the category CX satisfies (AB4), i.e. it has infinite coproducts and the
coproduct of a set of monomorphisms is a monomorphism. Then, for any object M of
CX , the smallest coreflective topologizing subcategory [M ]c spanned by M is generated by
subquotients of coproducts of sets of copies of M .
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Proof. The argument is similar to that of 1.2.1 and left to the reader as an exercise.

1.3. Thick subcategories. A topologizing subcategory T of the category CX is
called thick if T • T = T; in other words, T is thick iff it is closed under extensions.

We denote by Th(X) the preorder of thick subcategories of CX . For a thick subcate-
gory T of CX , we denote by X/T the quotient ’space’ defined by CX/T = CX/T .

1.4. Serre subcategories. We recall the notion of a Serre subcategory of an abelian
category as it is defined in [R, III.2.3.2]. For a subcategory T of CX , let T− denote the full
subcategory of CX generated by all objects L of CX such that any nonzero subquotient of
L has a nonzero subobject which belongs to T.

1.4.1. Proposition. Let T be a subcategory of CX . Then
(a) The subcategory T− is thick.
(b) (T−)− = T−.
(c) T ⊆ T− iff any subquotient of an object of T is isomorphic to an object of T.

Proof. See [R, III.2.3.2.1].

1.4.2. Remark. It follows from 1.4.1 and the (definition of T−) that, for any
subcategory T of an abelian category CX , the associated Serre subcategory T− is the
largest topologizing (or the largest thick) subcategory of CX such that every its nonzero
object has a nonzero subobject from T.

1.4.3. Definition. A subcategory T of an abelian category CX is called a Serre
subcategory if T− = T. We denote by Se(X) the preorder (with respect to ⊆) of all Serre
subcategories of CX .

The following characterization of Serre subcategories turns to be quite useful.

1.4.4. Proposition. Let T be a subcategory of an abelian category CX closed under
taking subquotients. The following conditions are equivalent:

(a) T is a Serre subcategory.
(b) If S is a subcategory of the category CX , which is closed under subquotients and

is not contained in T, then S
⋂

T⊥ 6= 0.

Proof. Recall that T⊥ is the full subcategory of the category CX generated by all
objects L of CX such that CX(L,M) = 0 for all M ∈ ObT.

(a) ⇒ (b). Let T be a subcategory of CX closed under taking quotients. By the
definition of T−, an object M does not belong to T− iff it has a nonzero subquotient, L,
which does not have a nonzero subobject from T. Since T is closed under taking quotients,
the latter means precisely that Hom(N,L) = 0 for every N ∈ ObT, i.e. L ∈ ObT⊥. Thus,
M does not belong to T− iff it has a nonzero subquotient which belongs to T⊥.
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(b) ⇒ (a). By the condition (b), if an object M does not belong to T, then it has
a nonzero subquotient, which belongs to T⊥. But, by the observation above, this means
that the object M does not belong to T−. So that T− ⊆ T. The inverse inclusion holds,
because T is closed under taking subquotients (see 1.4.1(c)).

1.4.5. The property (sup). Recall that X (or the corresponding category CX)
has the property (sup) if for any ascending chain, Ω, of subobjects of an object M , the
supremum of Ω exists, and for any subobject L of M , the natural morphism

sup(N ∩ L | N ∈ Ω) −→ (supΩ) ∩ L

is an isomorphism.

1.4.6. Coreflective thick subcategories and Serre subcategories. Recall that
a full subcategory T of a category CX is called coreflective if the inclusion functor T →֒ CX
has a right adjoint. In other words, each object of CX has the largest subobject, which
belongs to T .

1.4.6.1. Lemma. Any coreflective thick subcategory is a Serre subcategory. If CX
has the property (sup), then any Serre subcategory of CX is coreflective.

Proof. See [R, III.2.4.4].

2. The spectrum Spec(X). We denote by Spec(X) the family of all nonzero objects
M of the category CX such that L ≻M for any nonzero subobject L of M .

The spectrum Spec(X) of the ’space’ X is the family of topologizing subcategories
{[M ] | M ∈ Spec(X)} endowed with the specialization preorder ⊇.

Let τ≻ denote the topology on Spec(X) associated with the specialization preorder:
the closure of W ⊆ Spec(X) consists of all [M ] such that [M ] ⊆ [M ′] for some [M ′] ∈W .

2.1. Proposition. (a) Every simple object of the category CX belongs to Spec(X).
The inclusion Simple(X) →֒ Spec(X) induces an embedding of the set of the isomorphism
classes of simple objects of CX into the set of closed points of (Spec(X), τ≻).

(b) If every nonzero object of CX has a simple subquotient, then each closed point of
(Spec(X), τ≻) is of the form [M ] for some simple object M of the category CX .

Proof. (a) If M is a simple object, then Ob[M ] consists of all objects isomorphic to
coproducts of finite number of copies of M . In particular, if M and N are simple objects,
then [M ] ⊆ [N ] iff M ≃ N .

(b) If L is a subquotient of M , then [L] ⊆ [M ]. If [M ] is a closed point of Spec(X),
this implies the equality [M ] = [L].

Notice that the notion of a simple object of an abelian category is selfdual, i.e.
Simple(X) = Simple(Xo), where Xo is the dual ’space’ defined by CXo = CopX . In
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particular, the map M 7−→ [M ] induces an embedding of isomorphism classes of simple
objects of CX into the intersection Spec(X)

⋂
Spec(Xo).

2.1.1. Proposition. If the category CX has enough objects of finite type, then the
set of closed points of Spec(X) coincides with Spec(X)

⋂
Spec(Xo).

Proof. Since every nonzero object of CX has a nonzero subobject of finite type,
Spec(X) consists of [M ] such that M is of finite type and belongs to Spec(X). On the
other hand, if M is of finite type and [M ] belongs to Spec(Xo), then [M ] = [M1], where
M1 is a simple quotient of M . Hence the assertion.

2.2. Supports of objects. For any object M of the category CX , the support of
M is defined by Supp(M) = {Q ∈ Spec(X) | Q ⊆ [M ]}. This notion enjoys the usual
properties:

2.2.1. Proposition. (a) If 0 −→ M ′ −→ M −→ M ′′ −→ 0, is a short exact
sequence, then

Supp(M) = Supp(M ′)
⋃
Supp(M ′′).

(b) Suppose the category CX has the property (sup). Then
(b1) If M is the supremum of a filtered system {Mi | i ∈ J} of its subobjects, then

Supp(M) =
⋃

i∈J

Supp(Mi).

(b2) As a consequence of (a) and (b1), we have

Supp(
⊕

i∈J

Mi) =
⋃

i∈J

Supp(Mi).

Proof. (a) Since [M ′] ⊆ [M ] ⊇ [M ′′], we have the inclusion

Supp(M ′)
⋃
Supp(M ′′) ⊆ Supp(M).

In order to show the inverse inclusion, notice that for any object L of the subcategory
[M ], there exists an exact sequence 0 −→ L′ −→ L −→ L′′ −→ 0 such that L′ is an
object of [M ′] and L′′ belongs to [M ′′]. This follows from the fact that L is a subquotient
of a coproduct M⊕n of n copies of M the related commutative diagram

0 −−−→ M
′⊕n −−−→ M⊕n −−−→ M

′′⊕n −−−→ 0x cart
x

x
0 −−−→ K ′ −−−→ K −−−→ K ′′ −−−→ 0y

y
y

0 −−−→ L′ −−−→ L −−−→ L′′ −−−→ 0

(1)
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whose rows are exact sequences, the upper vertical arrows are monomorphisms, the lower
ones epimorphisms, and the left upper square is cartesian.

Now if [L] ∈ Spec(X) and the object L′ in the diagram (1) is nonzero, then, by the
definition of the spectrum, [L′] = [L], hence [L] ∈ Supp(M ′). If L′ = 0, then the arrow
L −→ L′′ is an isomorphism, in particular, [L] = [L′′] ∈ Supp(M ′′).

(b1) The inclusion Supp(M) ⊇
⋃

i∈J

Supp(Mi) is obvious. It follows from the property

(sup) that if an object L is a nonzero subquotient of M⊕n for some n, then it contains a
nonzero subobject, L′, which is a subquotient of Mi for some i ∈ J . If [L] ∈ Spec(X),
this implies that [L] = [L′] ∈ Supp(Mi).

(b2) If J is finite, the assertion follows from (a). If J is infinite, it is a consequence of
(a) and (b1).

2.3. Topologies on Spec(X). Let Ξ be a class of objects of CX closed under finite

coproducts. For any set E of objects of Ξ, let V(E) denote the intersection
⋂

M∈E

Supp(M).

Then, for any family {Ei | i ∈ I} of such sets, we have, evidently,

V(
⋃

i∈J

Ei) =
⋂

i∈J

V(Ei).

It follows from the equality Supp(M ⊕N) = Supp(M)
⋃
Supp(N) (see 2.2.1(a)) that

V(E ⊕ Ẽ) = V(E)
⋃
V(Ẽ). Here E ⊕ Ẽ

def
= {M ⊕N | M ∈ E, N ∈ Ẽ}.

This shows that the subsets V(E) of Spec(X), where E runs through subsets of Ξ,
are all closed sets of a topology, τΞ, on Spec(X).

2.4. Zariski topology on the spectrum. Notice that the class Ξf(X) of objects of
finite type is closed under finite coproducts, hence defines a topology on Spec(X), which
we denote by τz.

2.4.1. Example. Let R be a commutative unital ring and CX the category R−mod
of R-modules. Then Spec(X) is isomorphic to the prime spectrum Spec(R) of the ring R
and the topology τz corresponds to the Zariski topology on Spec(R).

2.4.2. Zariski topology. If the category CX has enough objects of finite type, we
shall call the topology τz on Spec(X) the Zariski topology.

3. Local ’spaces’ and Spec−(−).

3.1. Local ’spaces’. A ’space’ X and the representing it abelian category CX are
called local if CX has the smallest nonzero topologizing subcategory, CXt

.
It follows that CXt

is the only closed point of Spec(X).
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3.1.1. Proposition. Let X be local, and let the category CX have simple objects.
Then all simple objects of CX are isomorphic to each other, and every nonzero object of
CXt

is a finite coproduct of copies of a simple object.

Proof. In fact, if M is a simple object in CX , then [M ] is a closed point of Spec(X).
If X is local, this closed point is unique. Therefore, objects of CXt

are finite coproducts
of copies of M (see the argument of 2.1).

3.1.2. The residue ’space’ of a local ’space’. Let X be local ’space’ and CXt
the

smallest non-trivial topologizing subcategory of the category CX . We regard the inclusion
functor CXt

→֒ CX as an inverse image functor of a morphism of ’spaces’ X −→ Xt and
call Xt the residue ’space’ of X.

3.1.3. The residue skew field of a local ’space’. Suppose that X is a local ’space’
such that the category CX has a simple object, M . We denote by kX the ring CX(M,M)o

opposite to the ring of endomorphisms of the object M . Since M is simple, kX is a skew
field, which we call the residue skew field of the local ’space’ X. It follows from 3.1.1 that
the residue skew field of X (if any) is defined uniquely up to isomorphism.

It follows that the residue category CXt
of the ’space’ X is naturally equivalent to the

category of finitely dimensional kX -vector spaces.

3.2. Spec−(X). By definition, Spec−(X) is formed by all Serre subcategories P of
CX such that X/P is a local ’space’. It is endowed with the preorder ⊇.

We define the support of an object M of CX in Spec−(X) as the set Supp−(M) of
all P ∈ Spec−(X), which do not contain M , or, equivalently, the localization of M at P
is nonzero. We leave as an exercise proving the analogue of 2.2.1 for Supp−(−).

We introduce the Zariski topology, τ−z , on Spec−(X) the same way as the topology
on Spec(X): its closed sets are the intersections of Supp−(M), where M is an arbitrary
object of finite type.

3.2.1. Indecomposable injectives and Spec−(−). If CX is a Grothendieck cat-
egory with Gabriel-Krull dimension (say, CX is locally noetherian), then the elements of
Spec−(X) are in bijective correspondence with the set of isomorphism classes of inde-
composable injectives of the category CX . The bijective correspondence is given by the
map which assigns to every indecomposable injective E of CX its left orthogonal – the full
subcategory ⊥E generated by all objects M of CX such that CX(M,E) = 0.

In other words, Spec−(X) is isomorphic to the Gabriel spectrum of the category CX .
An advantage of Spec−(X) is that it makes sense for all abelian categories, even

those, which do not have indecomposable injective objects at all. For instance, if CX is the
category of coherent sheaves on a noetherian scheme, then its Gabriel spectrum is empty,
while Spec−(X) coincides with Spec(X) and is homeomorphic to the the underlying
topological space of the scheme.
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3.3. Spec(X), Spec1,1t (X), and Spec−(X). For any subcategory P of CX , we
denote by Pt the intersection of all topologizing subcategories of CX properly containing
P. Let Spec1,1t (X) denote the set of all Serre subcategories P of CX such that Pt 6= P.

3.3.1. Proposition. Spec1,1t (X) consists of all topologizing subcategories P such

that Pt
def
= Pt

⋂
P⊥ is nonzero.

Proof. If P ∈ Spec1,1t (X), i.e. P is a Serre subcategory of CX , which is properly
contained in Pt, then it follows from 1.4.4 that Pt 6= 0.

Suppose now that P is a topologizing subcategory of CX such that Pt 6= 0. We claim
that then P is a Serre subcategory, i.e. P = P−.

In fact, let S be a topologizing subcategory of CX , which is not contained in P. Then
P • S contains Pt properly and (P • S)

⋂
P⊥ ⊆ S. In particular, Pt ⊆ S. Since Pt 6= 0,

this implies that S is not contained in P−. This (and 1.4.2) shows that P = P−.

For any subcategory Q of the category CX , we denote by Q̂ the union of all topologiz-
ing subcategories of CX , which do not contain Q. It is easy to see, that for a pair Q1, Q2

topologizing subcategories, Q1 ⊆ Q2 iff Q̂1 ⊆ Q̂2.
If Q has one object, L, then the subcategory Q̂ is the union of all topologizing sub-

categories of CX which do not contain L. We shall write 〈L〉 instead of [̂L].

3.3.2. Proposition. (a) Spec1,1t (X) ⊆ Spec−(X).

(b) For any Q ∈ Spec(X), the subcategory Q̂ is an element of Spec1,1t (X) and the
map

Spec(X) −−−→ Spec1,1t (X), Q 7−→ Q̂,

is an isomorphism of preorders.

Proof. (a) If P ∈ Spec1,1t (X), then Pt/P is naturally identified with the smallest
nonzero topologizing subcategory of CX/P.

(b1) If Q ∈ Spec(X), then Q̂ is a Serre subcategory.

In fact, suppose that Q̂ 6= Q̂−, and let M be an object of Q̂−, which does not belong
to its subcategory Q̂. The latter means that Q ⊆ [M ]. Let Q = [L] for some L ∈ Spec(X).
The inclusion Q ⊆ [M ] means that L is a subquotient of a coproduct of a finite number,

M⊕n, of copies ofM . SinceM⊕n is an object of Q̂−, the object L has a nonzero subobject
N , which belongs to Q̂; i.e. Q * [N ]. But, since L ∈ Spec(X), the subcategories [N ] and
[L] = Q coincide. Contradiction.

(b2) It follows from the definition of Q̂ that, for any subcategory Q, the subcategory

Q̂t coincides with the intersection of all topologizing subcategories of CX containing Q̂
⋃
Q.

In particular, Q̂ belongs to Spec1,1t (X) whenever Q̂ is a Serre subcategory. Together with

(b1), this shows that the assignment Q 7−→ Q̂ induces a map Spec(X) −→ Spec1,1t (X).
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(b3) Let P ∈ Spec1,1t (X). It follows from 3.3.1 that Pt 6= 0. Moreover, by the
argument of 3.3.1, if T is a topologizing subcategory of CX such that T * P, then Pt =
Pt

⋂
P⊥ ⊆ T.
(b4) Let P ∈ Spec1,1t (X). Every nonzero object of Pt = P

t
⋂
P⊥ belongs to Spec(X).

Let L be a nonzero object of Pt and L1 a nonzero subobject of L. Then [L1] ⊆ [L].
If [L1] * [L], then it follows from (b3) above that [L1] ⊆ P, or, equivalently, L1 ∈ ObP.
This contradicts to the assumption that the object L is P-torsion free.

(b5) Let P ∈ Spec1,1t (X). Then P = 〈L〉 for any nonzero object of Pt = P
t
⋂
P⊥.

Let L be a nonzero object of Pt. Since L does not belong to the Serre subcategory
〈L〉, by (b3), we have the inclusion 〈L〉 ⊆ P. On the other hand, if 〈L〉 $ P, then L ∈ ObP
which is not the case. Therefore P = 〈L〉.

(b6) The topologizing subcategory [Pt] coincides with the subcategory [L] for any
nonzero object L of Pt.

Clearly [L] ⊆ [Pt] for any L ∈ ObPt. By (b3), if Pt * [L], then [L] ⊆ P, hence L = 0.

Since, by (c), every nonzero object of Pt belongs to Spec(X), this shows that [Pt] is
an element of Spec(X).

(b7) It follows from the argument above that the map

Spec(X) −→ Spec1,1t (X), Q 7−→ Q̂,

is inverse to the map Spec1,1t (X) −→ Spec(X) which assigns to every P the topologizing
subcategory [Pt].

3.3.3. The difference between Spec1,1t (X) and Spec−(X). If CX = R −mod,
where R is a commutative noetherian ring, then the map, which assigns to each prime ideal
p of R the isomorphism class of the injective hull of R/p is an isomorphism between the
Gabriel spectrum of CX (hence Spec−(X)) and the prime spectrum of the ring R [Gab].

In this case, Spec1,1t (X) = Spec−(X), i.e. the map Q 7−→ Q̂ is an isomorphism between
Spec(X) and Spec−(X).

If R is a non-noetherian commutative ring, Spec−(X) might be much bigger than the
prime spectrum of R, while Spec(X) is naturally isomorphic to Spec(R): the isomorphism
is given by the map, which assigns to a prime ideal p the topologizing subcategory [R/p];
the inverse map assigns to Q = [M ] the annihilator of the module M .

4. The pretopology of Serre localizations and the related spectrum.

4.1. Lemma. Let CX be an abelian category. For any finite set {Ti | i ∈ J} of

topologizing subcategories of CX , we have the equality
( ⋂

i∈J

Ti
)−

=
⋂

i∈J

T−
i .
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Proof. Clearly
( ⋂

i∈J

Ti
)−
⊆

⋂

i∈J

T−
i . We need to prove the inverse inclusion.

Let J = {1, 2, ..., n}. Let M be a nonzero object of
⋂

i∈J

T−
i . And let L be any nonzero

subquotient of the object M . Since M is a nonzero object of T−
1 , the object L has a

nonzero subobject, L1, which belongs to T1. Since M is a nonzero object of T−
2 and L1 is

a nonzero subquotient of M , the object L1 has a nonzero subobject, L2, which belongs to
T2. Since T1 contains all subobjects of its objects, L2 ∈ T1

⋂
T2. Continuing this way, we

obtain a descending chain of nonzero subobjects of L, Ln → Ln−1 → ... → L1 → L, such

that Li ∈ Ob
⋂

1≤j≤i

Tj . This shows that M ∈
( ⋂

i∈J

Ti
)−

.

4.2. The Gabriel multiplication. The Gabriel product of two subcategories T and
S of an abelian category CX is the full subcategory T•S of CX generated by allM ∈ ObCX
for, which there exists an exact sequence

0 −→M ′ −→M −→M ′′ −→ 0

with M ′ ∈ ObS and M ′′ ∈ ObT. If T and S are topologizing subcategories, then such is
T • S. This multiplication is associative and has an identity element – the subcategory 0.
Note that a topologizing subcategory T of CX is thick iff T • T = T.

By Lemma III.6.2.1 in [R], if T, S are coreflective subcategories of CX , their Gabriel
product T • S is coreflective too.

4.2.1. Lemma. Let CX be an abelian category. For any finite set {S, Ti | i ∈ J} of
topologizing subcategories of the category CX , the following equalities hold:

( ⋂

i∈J

Ti
)
• S =

⋂

i∈J

Ti • S and S •
( ⋂

i∈J

Ti
)
=

⋂

i∈J

S • Ti.

Proof. (a) The inclusions
( ⋂

i∈J

Ti
)
• S ⊆

⋂

i∈J

Ti • S and S •
( ⋂

i∈J

Ti
)
⊆

⋂

i∈J

S • Ti are

evident. We need to prove the inverse inclusions.

(b) Let M ∈ Ob
⋂

i∈J

Ti • S; i.e. for any i ∈ J , there is a monomorphism fi : Mi → M

such that Mi ∈ ObTi and Cok(fi) ∈ ObS. This gives an exact sequence

0 −→
⋂

i∈J

Mi −→M −→
∏

i∈J

Cok(fi)
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Clearly
⋂

i∈J

Mi ∈ Ob
⋂

i∈J

Ti. Since J is finite,
∏

i∈J

Cok(fi) ∈ ObS, henceM ∈ Ob
( ⋂

i∈J

Ti
)
• S.

(c) Suppose S •M ∈ Ob
⋂

i∈J

Ti; i.e. for any i ∈ J , there is a monomorphismMi
fi
−→M

such that Mi ∈ ObS and Cok(fi) ∈ ObTi. Since J is finite, sup(Mi|i ∈ J) ∈ ObS, and

M/sup(Mi|i ∈ J) ∈ Ob
⋂

i∈J

Ti, hence M ∈
⋂

i∈J

S • Ti.

For any pair S and T of Serre subcategories of the category CX , the symbol S ∨ T
denotes the minimal Serre subcategory of CX containing S and T . It follows that S ∨T =
(S • T )−.

4.3. Proposition. Let CX be an abelian category. For any finite set {Ti|i ∈ J} of

Serre subcategories of the category CX , the equality
( ⋂

i∈J

Ti
)
∨ S =

⋂

i∈J

(Ti ∨ S) holds.

Proof. By Lemma 4.1,
⋂

i∈J

(Ti ∨ S) =
⋂

i∈J

(Ti • S)
− =

( ⋂

i∈J

(Ti • S)
)−

. By Lemma 4.2.1,

( ⋂

i∈J

(Ti • S)
)−

=
(
(
⋂

i∈J

Ti) • S
)−

=
( ⋂

i∈J

Ti
)
∨ S.

4.4. The pretopology of Serre localizations. We define the quasi-pretopology
of Serre localizations, τLs

, on the category |LsAb|
o by taking as covers all families of

morphisms {Ui
ui→ X | i ∈ J} such that the corresponding family of inverse image functors

is conservative. We define by τ fLs
the quasi-pretopology on |LsAb|

o obtained by taking all
covers of τLs containing a finite subcover.

It follows from Proposition 4.3 that τ fLs is a Grothendieck pretopology. We call it the
pretopology of Serre localizations.

4.5. The local property of the spectrum Spec−(−).

4.5.1. Proposition. Let {Ui
ui→ X | i ∈ J} be a cover in the pretopology τ fLs . Then

Spec−(X) =
⋃

i∈J

Spec−(Ui).

Proof. The inclusion
⋃

i∈J

Spec−(Ui) ⊆ Spec−(X) follows from the functoriality of the

S-spectrum (see 3.4.1). We need to check the inverse inclusion.
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Let x
q
→ X be any point of Spec−(X). Consider cartesian squares

Ux
i

qi
−−−→ Ui

uxi

y
y ui

x
q

−−−→ X i ∈ J

(1)

Since τ fLs is a pretopology, the pull-back {Ux
i

ux

i→ x | i ∈ J} of the cover {Ui
ui→ X | i ∈ J} is

a cover. Let P be a quasi-final object of the local category Cx. Since (by the definition of

a cover) the set of inverse image functors {Cx

ux∗
i−→ CUx

i
| i ∈ J} is conservative, ux∗j (P ) 6= 0

for some j ∈ J . Since P is the point of the spectrum of x, the object ux∗j (P ) belongs to
the spectrum, hence to the flat spectrum, of Ux

j . By functoriality of the S-spectrum (cf.

3.4.1), the morphism Ux
j

qj
−→ Uj induces a map Spec−(Uj)

x −→ Spec−(Uj) which sends

the point 〈ux∗j (P )〉 to a point Pj of Spec−(Uj). It follows from the commutativity of (1)

that the image of Pj by Uj
uj
−→ X coincides with x

q
→ X.

5. The complete spectrum and the pretopology of exact localizations. Fix a
svelte abelian category CX . The complete spectrum of the ’space’ X is the preorder (with
respect to the inclusion) Spec1(X) of all thick subcategories P of CX such that X/P is a
local ’space’. Thus, Spec−(X) is the intersection of Spec1(X) and the preorder Se(X)
of Serre subcategories of CX .

It is immediate that Spec1(X) is functorial with respect to exact localizations: any

morphism U
u
−→ X whose inverse image functor, u∗, is an exact localization induces an

embedding Spec1(U) −→ Spec1(X), which identifies Spec1(U) with the subset of all
P ∈ Spec1(X) containing Ker(u∗).

For any pair S and T of thick subcategories of the category CX , the symbol S ⊔ T
denotes the smallest thick subcategory of CX containing S and T .

5.1. Proposition. Let CX be an abelian category. Let {Ti|i ∈ J} be a finite family

of thick subcategories of the category CX . Then
( ⋂

i∈J

Ti
)
⊔ S =

⋂

i∈J

(Ti ⊔ S) for any thick

subcategory S.

Proof. The inclusion
( ⋂

i∈J

Ti
)
⊔ S ⊆

⋂

i∈J

(Ti ⊔ S) is evident. We need to prove the

inverse inclusion.
(a) Let T be a topologizing subcategory of CX and T ∞ the smallest thick subcategory

spanned by T . Objects of T ∞ are M ∈ ObCX having a filtration

0 =M0 →֒M1 →֒ . . . →֒Mn =M
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such that Mi/Mi−1 ∈ ObT for every 1 ≤ i ≤ n.
In fact, by an obvious induction argument, every object M of CX possessing such a

filtration belongs to the subcategory T ∞.
On the other hand, due to the fact that the subcategory T is closed under taking

subquotients, the full subcategory of the category CX generated by objects M having a
filtration as above form a thick subcategory of CX .

Indeed, a filtration 0 = M0 →֒ M1 →֒ . . . →֒ Mn = M with subsequent quotients
from T induces a filtration with the same property on every subobject and every quotient
object of M . Conversely, let 0 −→ M ′ −→ M −→ M ′′ −→ 0 be an exact sequence such
that the objects M ′ and M ′′ have increasing finite filtrations with subsequent quotients
from T . Then the pull-back to M the filtration on M ′′ combined with the filtration on its
subobject M ′ produces a desired filtration on M .

(b) Let {Ti | i ∈ J} be a finite set of topologizing subcategories of CX . Then

( ⋂

i∈J

Ti
)∞

=
⋂

i∈J

T ∞
i .

The inclusion
( ⋂

i∈J

Ti
)∞
⊆

⋂

i∈J

T ∞
i is obvious. We need to prove the inverse inclusion.

Ordering elements of J , we assume that J = {1, . . . ,m}. Let M be an object of
m⋂

i=1

T ∞
i . Let 0 = M0 →֒ M1 →֒ . . . →֒ Mn = M be a filtration such that Mi/Mi−1 is an

object of T1, hence it is an object of

m⋂

i=2

(
T1 ∩ T

∞
i

)
for every 1 ≤ i ≤ n. In particular,

Mi/Mi−1 is an object of T1 ∩ T
∞
2 for all 1 ≤ i ≤ n. Taking a filtration of each Mi/Mi−1

with respect to T ∞
2 and pulling it back to a filtration on Mi, we obtain a finite increasing

filtration of M such that its consecutive quotients belong to T1 ∩ T2; etc..
(c) It follows from (a), (b) and 4.2.1 that

⋂

i∈J

(Ti ⊔ S) =
⋂

i∈J

(S • Ti)
∞ =

( ⋂

i∈J

S • Ti
)∞

=
(
S • (

⋂

i∈J

Ti)
)∞

= S ⊔
( ⋂

i∈J

Ti
)
,

hence the assertion.

5.2. The pretopology of exact localizations. Let |LeAb|
o be a category whose

objects are ’spaces’ X with abelian category CX and morphisms are exact localizations.
We define the quasi-pretopology of exact localizations, τLe

, on the category |LeAb|
o by

taking as covers all families of morphisms {Ui
ui→ X | i ∈ J} such that the corresponding
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family of inverse image functors is conservative. We define by τ fLe
the quasi-pretopology

on |LeAb|
o obtained by taking all covers of τLe containing a finite subcover.

It follows from Proposition 5.1 that τ fLe is a Grothendieck pretopology. We call it the
pretopology of exact localizations, or simply the pretopology of localizations.

The following assertion is refered to as the local property of the complete spectrum.

5.3. Proposition. Let {Ui
ui→ X | i ∈ J} be a cover in the pretopology τ fLe . Then

Spec1(X) =
⋃

i∈J

Spec1(Ui)

Proof. The argument is similar to that of 4.5.1. Details are left to the reader.

5.4. Proposition. Let {Ui
ui−→ X | i ∈ J} be a finite conservative set of exact

localizations. Then Spec−(X) ⊆
⋃

i∈J

Spec−(Ui). Here Spec−(X) and Spec−(Ui), i ∈ J,

are realized as subsets of the complete spectrum Spec1(X).

Proof. Let Ti denote the kernel of the localization functor CX
u∗
i−→ CUi , i ∈ J.

The condition that {Ui
ui−→ X | i ∈ J} is conservative means that

⋂

i∈J

Ti = 0. By 4.1,

⋂

i∈J

T−
i =

( ⋂

i∈J

Ti
)−

= 0, or, equivalently, {Ũi
ũi−→ X | i ∈ J} is a finite cover of X by

Serre localizations. Here Ũi denote the ’space’ X/|T−
i | (i.e. C

Ũi
= CX/T

−
i ). Since

Ti ⊆ T−
i , the localization Ũi −→ X factors through a localization Ũi −→ Ui with the

kernel T−
i /Ti. The latter is a Serre subcategory of the quotient category CX/Ti. Therefore,

Spec−(Ũi) ⊆ Spec−(Ui). By 4.5.1, Spec−(X) =
⋃

i∈J

Spec−(Ũi) ⊆
⋃

i∈J

Spec−(Ui).

6. Spectra related with localizations. Let CX be a svelte abelian category. For
any subcategory S of CX , we denote by Sth the intersection of all thick subcategories of
CX properly containing S, and by Sth the intersection Sth

⋂
S⊥.

We denote by Spec1Th(X) the preorder of all thick subcategories P such that the

intersection Pth of all thick subcategories properly containing P is not equal to P.
We denote by Spec1Se(X) the intersection Spec1Th(X)

⋂
Se(X) of Spec1Th(X) with

the preorder Se(X) of Serre subcategories of the category CX .

6.1. Proposition. The following conditions on a topologizing subcategory T of CX
are equivalent:
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(a) T ∈ Spec1Se(X),
(b) Tth 6= 0.

In particular, Spec1Se(X) = {P ∈ Spec1Th(X) | Pth 6= 0}.

Proof. The fact follows from 1.4.4 and the argument is similar to that of 3.3.1.

6.2. Elementary properties. There are obvious inclusions

Spec1Th(X) ⊇ Spec1Se(X) ⊇ Spec−(X) ⊆ Spec1(X) ⊆ Spec1Th(X).

6.3. Proposition. Let {Ti | i ∈ J} be a finite set of thick subcategories of an abelian

category CX such that
⋂

i∈J

Ti = 0. Then

Spec1Th(X) =
⋃

i∈J

Spec1Th(Ui) (1)

and
Spec1Se(X) ⊆

⋃

i∈J

Spec1Se(Ui). (2)

If {Ti | i ∈ J} are Serre subcategories, then

Spec1Se(X) =
⋃

i∈J

Spec1Se(Ui). (3)

Proof. The arguments establishing the equalities (1) and (3) are similar to the proof
of 4.5.1. The proof of the inclusion (2) follows the argument of 5.4.

7. Local properties of Spec1,1t (X) and Spec(X).

7.1. Proposition. Let {Ti | i ∈ J} be a finite set of thick subcategories of the

category CX such that
⋂

i∈J

Ti = 0. The following conditions on a thick subcategory P of

CX are equivalent:
(a) P ∈ Spec1,1t (X),
(b) P ∈ Spec1Se(X) and P/Ti ∈ Spec1,1t (X/Ti) for every i ∈ J such that Ti ⊆ P.

If the category CX has the property (sup), then the conditions (a) and (b) are equiv-
alent to the condition

(c) P ∈ Spec1Th(X) and P/Ti ∈ Spec1,1t (X/Ti) for every i ∈ J such that Ti ⊆ P.
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Proof. (a) ⇒ (b). Let P ∈ Spec1,1t (X), and let T be a thick subcategory of CX
contained in P. Then (T • Pt • T )/T is the smallest topologizing subcategory of CX/T

properly containing P/T , and the localization functor CX
u∗

−→ CX/T maps nonzero
objects of Pt = P

t ∩ P⊥ to nonzero objects of (P/T )t = (P/T )t
⋂
(P/T )⊥.

(b) ⇒ (a). Let u∗i denote the localization functor CX −→ CX/Ti. Set JP = {j ∈

J | Tj ⊆ P}. For every i ∈ JP , we denote by Q̃i the intersection u∗
−1

i ((P/Ti)
t)
⋂
P⊥

and by Qi the topologizing subcategory [Q̃i] spanned by Q̃i. By assumption, Q̃i 6= 0 for
each i ∈ JP , hence Qi * P. The latter implies that, for every j ∈ JP , the topologizing

subcategory [u∗j (Qi • P)] contains (P/Tj)
t, or, equivalently, u∗

−1

j ((P/Ti)
t) ⊆ Tj • Qi • P.

Therefore,

Q̃j = u∗
−1

j ((P/Tj)
t)
⋂
P⊥ ⊆ (Tj • Qi • P)

⋂
P⊥ = (Tj • Qi)

⋂
P⊥ ⊆ Tj • Qi

which implies the inclusion Qj ⊆ Tj • Qi for every (i, j) ∈ JP × JP , hence

Qj ⊆
⋂

i∈JP

(Tj • Qi) = Tj •
( ⋂

i∈JP

Qi
)
.

Here the equality is due to the finiteness of JP .

It follows from the inclusion Qj ⊆ Tj •
( ⋂

i∈JP

Qi
)

that
⋂

i∈JP

Qi 6= 0, because other-

wise Qj ⊆ Tj • 0 = Ti, which is impossible, since Tj ⊆ P and Qj * P.
There are two cases: J = JP and J 6= JP . Consider each of them.

(i) Let JP = J . We set Q =
⋂

i∈JP

Qi and claim that Q is an element of Spec(X)

corresponding to P, that is P = 〈Q〉.
In fact, let S is a topologizing subcategory of CX , which is not contained in P. Then

P is properly contained in S • P and, therefore, u∗
−1

i ((P/Ti)
t) ⊆ Ti • S • P for each i ∈ J .

This implies that u∗
−1

i ((P/Ti)
t)
⋂
P⊥ ⊆ Ti • S • P

⋂
P⊥ ⊆ Ti • S. Therefore,

Q̃ =
⋂

i∈J

u∗
−1

i ((P/Ti)
t)
⋂
P⊥ ⊆

⋂

i∈J

(Ti • S) =
( ⋂

i∈J

Ti
)
• S = 0 • S = S,

which implies that Q = [Q̃] ⊆ S.

(ii) Consider now the second case: JP 6= J , i.e. JP = J − JP is non-empty. This case
can be reduced to the first case as follows.

1) Set CVP
=

⋂

j∈JP

Tj . Notice that CVP
* P.
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In fact, if i ∈ JP = J−JP , then Ti * P. Therefore, for every j ∈ JP , the topologizing
subcategory [u∗j (Ti • P)] contains (P/Tj)

t, or, equivalently, u∗
−1

j ((P/Tj)
t) ⊆ Tj • Ti • P,

which implies that Q̃j = u∗
−1

j ((P/Tj)
t)
⋂
P⊥ ⊆ (Tj • Ti)

⋂
P⊥. Thanks to the finiteness

of JP , we obtain:

Q̃j ⊆
( ⋂

i∈JP

(Tj • Ti)
)⋂
P⊥ =

(
Tj •

( ⋂

i∈JP

Ti
))⋂

P⊥. (4)

The inclusion
⋂

i∈JP

Ti ⊆ P implies (together with (4)) that Q̃j ⊆ Tj ⊆ P, which is

impossible. So that
⋂

i∈JP

Ti * P.

2) Since CVP
* P, the intersection P0 = CVP

⋂
P is an element of Spec1Se(VP).

Notice that {Ti ∩ CVP
= T̃i | i ∈ JP} is a cocover of VP , i.e.

⋂

j∈JP

T̃j = 0. It remains to

notice that P0/T̃j ∈ Spec1,1t (VP/T̃j) for each j ∈ JP .

In fact, the localization functor CX −→ CX/Tj induces an equivalence of CVP
/T̃j

and the topologizing subcategory (Tj •CVP
• Tj)/Tj of CX/Tj . The subcategory P0/T̃j

of CVP
/T̃j is the preimage of the intersection of the P/Tj ∈ Spec1,1t (X/Tj) with the

topologizing subcategory (Tj • CVP
• Tj)/Tj , hence it belongs to Spec1,1t (VP/T̃j).

3) Thus, the ’space’ VP , the cocover {T̃i | i ∈ JP}, and the point P0 = P
⋂
CVP

of the

spectrum Spec1Se(VP) satisfy the conditions (b) with all T̃i being subcategories of P0. By

2) above, P0 belongs to the spectrum Spec1,1t (VP), and P0 = 〈Q̃0〉VP
= 〈Q0〉VP

, where

Q0 is the smallest topologizing subcategory of (CVP
, hence) CX containing Q̃0. Therefore,

Q0 is a point of the spectrum Spec0t (X) and 〈Q0〉X = P.

Obviously, (b)⇒ (c) without additional conditions on the category CX . Suppose now
that CX has the property (sup).

(c)⇒ (b). It follows from (c) that P ∈ Spec1s(X), i.e. P is a Serre subcategory.

In fact, by C1.4.1, the equality
⋂

i∈J

Ti = 0 implies that
⋂

i∈J

T −
i = 0. In other words,

{T −
i | i ∈ J} is a finite cocover, which implies, by the local property of Spec1Th(X), that

T −
i ⊆ P for some i ∈ J . Notice that if T −

i ⊆ P, then P/T
−
i belongs to Spec1,1t (X/T −

i ).

This follows from the fact that P/Ti is, by the condition (c), an element of Spec1,1t (X/Ti),
and the spectrum Spec1,1t is functorial with respect to localizations (see the proof of
(a)⇒ (b) above), in particular, with respect to CX/Ti −→ CX/T

−
i .

Therefore, P/T −
i is a Serre subcategory of the quotient category CX/T

−
i . Thanks

to the property (sup), the Serre subcategory T −
i is coreflective. By the argument 9.5(b1),

this implies that P is a Serre subcategory of CX .
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7.2. Note. Proposition 7.1 is a stronger statement than [R4, 6.3] in all respects. The
equivalence (a)⇔ (b) is essentially the assertion of [R4, 6.3], but the argument presented
here is valid for arbitrary abelian categories, while the proof of [R4, 6.3] used the property
(sup). The equivalence (a) and (b) to (c) (when CX has the property (sup)) is a new
observation (which could of be made in [R4]).

7.3. Proposition. Let {Ti | i ∈ J} be a finite set of thick subcategories of an abelian

category CX such that
⋂

i∈J

Ti = 0; and let u∗i be the localization functor CX −→ CX/Ti.

The following conditions on a nonzero coreflective topologizing subcategory Q of CX are
equivalent:

(a) Q ∈ Spec(X),
(b) [u∗i (Q)] ∈ Spec(X/Ti) for every i ∈ J such that Q * Ti.

Here [u∗i (Q)] denote the topologizing subcategory spanned by u∗i (Q).

Proof. The assertion follows from 7.1.

7.3.1. Note. The condition (b) of 7.3 can be reformulated as follows:
(b’) For any i ∈ J , either u∗i (Q) = 0, or [u∗i (Q)] ∈ Spec(X/Ti).

7.4. Proposition. Let CX be an abelian category. Let U = {Ui
ui−→ X | i ∈ J} be a

finite cover of the ’space’ X such that all morphisms Uij = Ui ∩Uj
uij
−→ Ui are continuous.

Let Pi ∈ Spec1,1t (Ui), and let Li be an object of Spec(Ui) such that Pi = 〈Li〉.
The following conditions are equivalent:
(a) P = u∗

−1

i (Pi) belongs to Spec1,1t (X); i.e. P = 〈M〉 for some objectM of Spec(X);
(b) for any j ∈ J such that u∗ij(Li) 6= 0, the object uji∗u

∗
ij(Li) of CUj has an associated

point; i.e. it has a subobject Lj, which belongs to Spec(Uj);

(c) P/Ker(u∗j ) = Pj belongs to Spec1,1t (Uj) for all j such that Ker(u∗j ) ⊆ P.

Proof. (a)⇒(c) follows from 3.2(ii) and the functoriality of Spec (hence Spec1,1t ) with
respect to localizations.

(c)⇒(a) follows from 7.1.
(b)⇒(c). Suppose that Ker(u∗j ) ⊆ P, or, equivalently, u∗ij(Li) 6= 0. Then Pj =

P/Ker(u∗j ) is a point of Spec1(Uj). Let Ui
uij
←− Ui ∩ Uj = Uij

uji
−→ Uj be the canonical

embeddings. Since Li ∈ Spec(Ui) and u
∗
ij(Li) 6= 0, it follows that u∗ij(Li) ∈ Spec(Uij).

Let Lj be a nonzero subobject of uji∗u
∗
ij(Li), and Lj ∈ Spec(Uj). Then u∗ji(Lj)

is a nonzero subobject of u∗ij(Li). Therefore, since u∗ij(Li) belongs to Spec(Uij), the
objects u∗ji(Lj) and u∗ij(Li) are equivalent. Notice that, it follows from Pi = 〈Li〉 that
Pi/Ker(u

∗
ij) = 〈u

∗
ij(Li)〉. But, Pi/Ker(u

∗
ij) = Pj/Ker(u

∗
ji) = P/Ker(u

∗
jiu

∗
j ) and, by the

argument above, 〈u∗ij(Li)〉 = 〈u
∗
ji(Lj)〉. Together with the fact that Lj is an object of

Spec(Uj), this shows that Pj = 〈Lj〉.
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(a)⇒(b). Suppose that P = u∗
−1

i (Pi) belongs to Spec1,1t (X); i.e. P = 〈M〉 for some

object M of Spec(X). Let L̃i be a P-torsion free object of CX such that u∗i (L̃i) ≃ Li. The

relation u∗i (M) ≻ Li means that there exists a diagram M⊕n j
←− K

e
−→ L1

g
−→ L̃i in,

which e is an epimorphism, the arrows j and g are nonzero monomorphisms; in particular,
M ≻ L1. Notice that L1 ≻M , i.e. M and L1 are equivalent. In fact, u∗i (L1) is a nonzero
subobject of Li. Since the latter belongs to Spec(Ui), they are equivalent. Therefore,
u∗i (L1) is equivalent to u∗i (M). The relation u∗i (L1) ≻ u∗i (M) is expressed by a diagram

L⊕m
1

j′

←− K̃
e′

−→ M1
h
−→ M in which e′ is an epimorphism and j′ and h are nonzero

monomorphisms. Since M ∈ Spec(X), M1 is equivalent toM , hence the relation L1 ≻M1

which is explicit in the diagram above, implies that L1 ≻M . Thus L1 ∈ ObSpec(X).

By the functoriality of Spec with respect to exact localizations, u∗j (L1) = Lj belongs to
Spec(Uj). Since L1 is P-torsion free, the adjunction arrow Lj = u∗j (L1) −→ uji∗u

∗
jiu

∗
j (L1)

is a monomorphism. On the other hand,

uji∗u
∗
jiu

∗
j (L1) ≃ uji∗u

∗
iju

∗
i (L1) −→ uji∗u

∗
iju

∗
i (L̃i) ≃ uji∗u

∗
ij(Li), (5)

where the arrow in the middle is the image of the monomorphism L1 −→ L̃i. Since all
functors in the diagram (5) are left exact, this arrow is a monomorphism. Altogether gives
the desired monomorphism Lj −→ uji∗u

∗
ij(Li).

7.4.1. Proposition. Let CX be an abelian category and U = {Ui
ui−→ X | i ∈ J}

a finite set of continuous morphisms such that {CX
u∗
i−→ CUi | i ∈ J} is a conservative

family of exact localizations.

(a) The morphisms Uij = Ui ∩ Uj
uij
−→ Ui are continuous for all i, j ∈ J .

(b) Let Li be an object of Spec(Ui); i.e. [Li]c ∈ Spec(Ui) and Li is 〈Li〉-torsion free.
The following conditions are equivalent:

(i) Li ≃ u
∗
i (L) for some L ∈ Spec(X);

(ii) for any j ∈ J such that u∗ij(Li) 6= 0, the object uji∗u
∗
ij(Li) of CUj has an

associated point; i.e. it has a subobject Lij which belongs to Spec(Uj).

Proof. The assertion follows from 7.4.

7.5. Example. Let CX be the category of quasi-coherent sheaves on a quasi-
compact quasi-separated scheme X = (X ,OX ). Let {Ui →֒ X | i ∈ J} be an affine
cover and CUi the category of quasi-coherent sheaves on (Ui,OUi). Then all morphisms
Ui ∩ Uj −→ Ui are continuous and the equivalent conditions (a), (b), (c) hold for every

point Pi ∈ Spec1,1t (Ui). This reflects the fact that Spec(Ui) is naturally identified with
Ui and is an open subset of the spectrum Spec(X) ≃ Spec1,1t (X). It follows from 7.1 that
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Spec1,1t (X) =
⋃

i∈J

Spec1,1t (Ui). So, Proposition 7.4 becomes trivial in the case of commu-

tative schemes. It is non-trivial and meaningful in the case of noncommutative schemes,
even in the case of D-schemes.

7.6. Example: simple holonomic D-modules. Let CX be the category of holo-
nomic D-modules on a smooth quasi-compact scheme X = (X ,OX ). Let {Ui →֒ X | i ∈ J}
be an affine cover of X, and let CUi be the category of holonomic D-modules on the affine
subscheme (Ui,OUi). Then all morphisms Ui ∩ Uj −→ Ui are continuous and the equiva-
lent conditions (a), (b), (c) hold for every simple object Li of CUi . The latter is due to
the fact that direct and inverse image functors of open immersions preserve holonomicity.
Thanks to the fact that all holonomic D-modules are of finite length, the ’space’ X (i.e. the
category CX) has the Gabriel-Krull dimension zero, hence elements of Spec(X) are in a
bijective correspondence with isomorphism classes of holonomic simple objects. Therefore,

it follows from 7.4 and 7.1 that Spec1,1t (X) =
⋃

i∈J

Spec1,1t (Ui). Thus, the problem of the

description of simple holonomic modules on a smooth quasi-compact scheme is local: it
can be reduced to the affine case.

Consider, for instance, the cover of the flag variety G/B of a reductive algebraic
connected group G over C (or any other algebraically closed field of zero characteristic) by
translations Uw, w ∈W, of the big Schubert cell (here, as usual,W denotes the Weyl group
of G). Then for any w ∈ W , the category CUw is equivalent to the category An − mod
of left modules over the Weyl algebra An. So the problem of a classification of holonomic
D-modules on G/B is reduced to the problem of classification of holonomic D-modules on
the affine n-dimensional space An, that is holonomic An-modules.

7.7. Proposition. Let CX have the property (sup), and let {Ti | i ∈ J} be a

finite set of Serre subcategories of the category CX such that
⋂

i∈J

Ti = 0. Suppose that

Spec1,1t (X/Ti) = Spec−(X/Ti) for all i ∈ J . Then Spec1,1t (X) = Spec−(X); i.e. the
map

Spec(X) −→ Spec−(X), P 7−→ 〈P〉,

is an isomorphism.

Proof. By 7.1, Spec1,1t (X) coincides with

{P ∈ Spec−(X) | P/Ti ∈ Spec1,1t (X/Ti) if Ti ⊆ P}.

By 9.5, Spec−(X) =
⋃

i∈J

Spec−(X/Ti). In particular,

Spec−(X) = {P ∈ Spec−(X) | P/Ti ∈ Spec−(X/Ti) if Ti ⊆ P}.
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Hence the assertion.

7.8. Example. Let CX be the category of quasi-coherent sheaves on a smooth quasi-
compact scheme X = (X ,OX ) of dimension n. Let CA be the category of D-modules on

X and CA
u∗−→ CX the pull-back functor corresponding to the embedding of the structure

sheaf OX into the sheaf DX of differential operators on X . Let U = {Ui
ui−→ X | i ∈ J}

be an affine finite cover of X such that each Ui is isomorphic to the affine space An. Then
Spec−(A) =

⋃

i∈J

Spec−(|An −mod|), where An is the n-th Weyl algebra.

7.8.1. The case of a curve. Suppose n = 1, i.e. X is a curve. Then Spec1,1t (X)
and Spec−(X) coincide.

In fact, the equality holds when CX is the category of left modules over the first Weyl
algebra A1. This follows from the fact that A1 has Gabriel-Krull dimension one, hence
Spec−(X) consists of closed points and one generic point.

In the general case, the equality follows from this and 7.7.

7.8.2. Corollary. Let CA be the category U(sl2)−mod0 of U(sl2)-modules with the
trivial central character. Then Spec−(A) = Spec(A).

Proof. The fact is true if the base field is of positive characteristic, because then
U(sl2) is finite-dimensional over its center.

Suppose that the base field is of characteristic zero. The category CA = U(sl2)−mod0
is equivalent to the category D(P1) of D-modules on the one-dimensional projective space.
The assertion follows from 7.7.

8. Reconstruction of quasi-compact schemes.

8.1. Geometric center of a ’space’. Let CX be an abelian category. Fix a topology
τ on Spec(X). The map ÕX,τ which assigns to every open subsetW of Spec(X) the center

of the quotient category CX/SW , where SW =
⋂

Q∈W

Q̂, is a presheaf on (Spec(X), τ).

Recall that the center of the category CY is the (commutative) ring of endomorphisms of
its identical functor. If CY is a category of left modules over a ring R, then the center of
CY is naturally isomorphic to the center of R.

We denote by OX,τ the associated sheaf. The ringed space ((Spec(X), τ),OX,τ ) is
called the geometric center of the ’space’ X. If τ is the Zariski topology, then we write
simply (Spec(X),OX) and call this ringed space the Zariski geometric center of X. Recall
that open sets in Zariski topology are sets of the form U(T) = {Q ∈ Spec(X) | Q *
T}, where T is an arbitrary bireflective topologizing subcategory of CX . Recall that
’bireflective’ means that the inclusion functor T →֒ CX has right and left adjoints.
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8.2. Commutative schemes which can be reconstructed from their cate-
gories of quasi-coherent or coherent sheaves. Let X = (X ,OX ) be a ringed topo-

logical space and U = (U ,OU )
j
−→ (X ,OX ) an open immersion. Then the morphism j has

an exact inverse image functor j∗ and a fully faithful direct image functor j∗. This implies
that Ker(j∗) is a Serre subcategory of the category OX −Mod of sheaves of OX -modules
and the unique functor

OX −Mod/Ker(j∗) −−−→ OU −Mod

induced by j∗ is an equivalence of categories [Gab, III.5].

Suppose now that X = (X ,OX ) is a scheme and QcohX the category of quasi-coherent
sheaves on X. The inverse image functor j∗ of the immersion j maps quasi-coherent sheaves
to quasi-coherent sheaves. Let u∗ denote the functor QcohX −→ QcohU induced by
j∗. The functor u∗, being the composition of the exact full embedding of QcohX into
OX −Mod and the exact functor j∗, is exact; hence it is represented as the composition of
an exact localization QcohX −−−→ QcohX/Ker(u

∗) and a uniquely defined exact functor
QcohX/Ker(u

∗) −−−→ QcohU. If the direct image functor j∗ of the immersion j maps
quasi-coherent sheaves to quasi-coherent sheaves, then it induces a fully faithful functor

QcohU
u∗

−−−→ QcohX which is right adjoint to u∗. In particular, the canonical functor
QcohX/Ker(u

∗) −−−→ QcohU is an equivalence of categories.

The reconstruction of a scheme X from the category QcohX of quasi-coherent sheaves
on X is based on the existence of an affine cover {Ui

ui−→ X | i ∈ J} such that the canonical
functors QcohX/Ker(u

∗
i ) −−−→ QcohUi , i ∈ J, are category equivalences. It follows from

the discussion above (or from [GZ, I.2.5.2]) that this is guaranteed if the inverse image

functor QcohX
ui−→ QcohUi has a fully faithful right adjoint.

8.2.1. Proposition. Let X = (X ,OX ) be a quasi-compact scheme such that there

exists an affine cover {Ui
ui−→ X | i ∈ J} such that the canonical functors

QcohX/Ker(u
∗
i ) −−−→ QcohUi , i ∈ J,

are category equivalences. Then

(a) The scheme X is isomorphic to the Zariski geometric center ((Spec(X), τz),OX)
of the ’space’ X, where CX = QcohX, τz is the Zariski topology on X and OX is the sheaf
of commutative rings defined in 7.4.

(b) For every open immersion U
u
−→ X such that QcohX/Ker(u

∗) −→ QcohU is a
category equivalence, Ker(u∗) is a Serre subcategory of QcohX. In particular, Ker(u∗i ) is
a Serre subcategory for all i ∈ J .
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Proof. (a) Set CUi = QcohUi and Ti = Ker(u∗i ). Since X is quasi-compact, we can

and will assume that J is finite. The condition that {Ui
ui−→ X | i ∈ J} is a cover means

precisely that
⋂

i∈J

Ti = 0.

(a1) Let x be a point of the underlying space X of the scheme X. Let Ix̄ be the
defining ideal of the closure x̄ of the point x and Mx̄ the quotient sheaf O/Ix̄. Set
Jx = {i ∈ J | Mx̄ 6∈ ObTi}. We claim that Qx = [Mx̄] is an element of Spec(X).

For every i ∈ Jx, the object u∗i (Mx̄) of the category CUi belongs to Spec(Ui) and
Spec(Ui), because CUi is (equivalent to) the category of modules over a ring. Therefore,
[u∗i (Qx)] = [u∗i (Mx̄)] is an element of Spec(Ui). By 7.1, Qx ∈ Spec(X).

(a2) Conversely, let Q be an element of Spec(X). Let Q * Ti, or, equivalently,

Ti ⊆ Q̂. By the functoriality of Spec(X) under exact localizations, [u∗i (Q)] is an element of
Spec(Ui). Since Ui is affine, Spec(Ui) is in bijective correspondence with the underlying
space Ui of the subscheme Ui = (Ui,OUi); in particular, to the element [u∗i (Q)] there
corresponds a point x of Ui which we identify with its image in X . Notice that the point
x does not depend on the choice of i ∈ J

Q̂
= {j ∈ J | Tj ⊆ Q̂}. This gives a map

Spec(X) −→ X which is inverse to the map X −→ Spec(X) constructed in (a1) above.
These maps are homeomorphisms in the case if the cover consists of one element, i.e. the
scheme is affine. The general case follows from the commutative diagrams

Spec(Ui)
∼

−−−→ Uiy
y

Spec(X) −−−→ X , i ∈ J.

(5)

in which vertical arrows are open immersions and the upper horizontal arrow is a homeo-
morphism; hence the lower horizontal arrow is a homeomorphism.

(a3) The diagrams (5) extend to the commutative diagrams of ringed spaces

(Spec(Ui),OUi)
∼

−−−→ (Ui,OUi)y
y

(Spec(X),OX) −−−→ (X ,OX ) i ∈ J.

(6)

in which Spec0c(Ui),OUi) and (Spec0c(X),OX) are Zariski geometric centra of resp. Ui
and X, vertical arrows are open immersions and upper horizontal arrow is an isomorphism.
Therefore the lower horizontal arrow is an isomorphism.

(b) Let x be a point of Ui, which we identify with its image in the underlying space X
of the scheme X. Let Qx denote the corresponding element of Spec(X). It follows that

Qx * Ti, or, equivalently, Ti ⊆ Q̂x. Thus, Ti ⊆
⋂

x∈Ui

Q̂x. We claim that Ti =
⋂

x∈Ui

Q̂x. In
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fact, if M is an object of CX −Ti, then u
∗
i (M) 6= 0. Since the category CUi is equivalent to

the category of modules over a ring, every nonzero object of CUi has a non-empty support.
In particular, there is a point x ∈ Ui which belongs to the support of u∗i (M). The latter

means that u∗i (M) 6∈ Ob(Q̂x/Ti), or, what is the same, M 6∈ ObQ̂x.

Since each Q̂x is a Serre subcategory and the intersection of any family of Serre
subcategories is a Serre subcategory, Ti is a Serre subcategory.

8.3. Remarks. (i) A comment to the assertion 8.2.1(b): if CY is a Grothendieck
category and T is a Serre subcategory than the localization functor CY −→ CY /T has a
right adjoint.

(ii) The quasi-compactness of the scheme in 8.2.1 is an essential requirement. If
the scheme is not quasi-compact, the spectrum Spec(X) might be not sufficiently big
to reconstruct the underlying space. This was observed by O. Gabber who produced an
example of a scheme which is not isomorphic to the ringed space (Spec(X),OX) associated
with its category of quasi-coherent sheaves.

9. The spectra related to coreflective topologizing subcategories.

For a svelte abelian category CX , we denote by Tc(X) (resp. by Thc(X)) the preorder
of all coreflective topologizing (resp. thick) subcategories of CX .

9.1. The spectra Spec0c(X) and Spec1c(X). Elements of the spectrum Spec1c(X)
are coreflective thick subcategories P such that the intersection Pc of all coreflective
topologizing subcategories properly containing P contains P properly too. The spectrum
Spec0c(X) is formed by coreflective topologizing subcategories Q of CX such that the union
cQ̂ of all coreflective subcategories of CX which do not contain Q is a coreflective thick sub-
category. The canonical injective morphism Spec0c(X) −→ Spec1c(X) maps Q to cQ̂. It

follows from the definition of cQ̂ that every coreflective topologizing subcategory properly
containing cQ̂ contains Q, hence the smallest coreflective subcategory [cQ̂,Q]c containing

Q and cQ̂ coincides with cQ̂c. The injectivity of the map Q 7−→c Q̂ is a consequence of
the following fact which is going to be used more than once.

9.1.1. Lemma. If Q1, Q2 are elements of Tc(X), then Q1 ⊆ Q2 iff cQ̂1 ⊆
cQ̂2.

Proof. The argument is the same as in 4.1.

9.1.2. Proposition. Let CX be an abelian category with the property (sup).
(a) The canonical morphism

Spec0c(X) −→ Spec1c(X), Q 7−→ cQ̂, (1)

is an isomorphism.
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(b) There are natural injective morphisms

Spec(X) −→ Spec0c(X) and Spec1,1t (X) −→ Spec1c(X) (2)

such that the diagram
Spec(X) −−−→ Spec0c(X)

≀
y

y≀
Spec1,1t (X) −−−→ Spec1c(X)

commutes.
(c) If CX has enough objects of finite type, then the morphisms (2) are isomorphisms.

Proof. (a) For every P ∈ Spec1c(X), the intersection Pc ∩ P⊥ is nonzero, because
P is a Serre subcategory. The claim is that the coreflective topologizing subcategory
[P∗]c spanned by the subcategory P∗ = Pc ∩ P⊥ belongs to the spectrum Spec0c(X) and
c [̂P∗]c = P. The map

Spec1c(X) −→ Spec0c(X), P 7−→ c [̂P∗]c, (3)

is inverse to the map (1) above.
(a1) Notice that 〈[P∗]c〉 = 〈P∗〉 because a coreflective topologizing subcategory does

not contain [P∗]c iff it does not contain P∗. Therefore, our claim is that 〈P∗〉 = P.
(a2) If T is a coreflective topologizing subcategory of CX which is not contained in

P, then P∗ = Pc ∩ P⊥ ⊆ T .
In fact, if T * P, then the coreflective topologizing subcategory T • P contains P

properly, hence it contains Pc. Notice that every P-torsion free object of T •P belongs to
T . In particular, P∗ ⊆ T .

(a3) It follows from (a1) that if T ∈ Tc(X) is such that P∗ * T , then T ⊆ P. This
means that 〈P∗〉 ⊆ P. On the other hand, P∗ * P and P is a Serre subcategory; in
particular, it is coreflective and topologizing; hence the inverse inclusion, P ⊆ 〈P∗〉.

(a4) Since the map (1) is injective and has a right inverse, P 7−→ [P∗]c, it is bijective.
(b) Thanks to the property (sup), a thick subcategory of the category CX is core-

flective iff it is a Serre subcategory. In particular, since elements of Spec1,1t (X) are Serre
subcategories, Spec1,1t (X) ⊆ Thc(X). A Serre subcategory P belongs to Spec1,1t (X) iff the
intersection Pt of topologizing subcategories properly containing P contains P properly.
Therefore, Pc contains P properly. The map Spec1,1t (X) −→ Spec1c(X) is the inclusion.

Let Q ∈ Spec(X), and let [Q]c be the smallest coreflective topologizing subcategory

of CX containing Q. Clearly [Q]c * Q̂, hence Q̂ ⊆ 〈[Q]c〉. On the other hand, if T
is a coreflective topologizing subcategory of CX such that [Q]c * T , then Q * T , or,
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equivalently, T ⊆ Q̂. This shows the inverse inclusion, 〈[Q]c〉 ⊆ Q̂. The equality 〈[Q]c〉 =

Q̂, together with the fact that Q̂ is a Serre subcategory, shows that [Q]c ∈ Spec0c(X) for
every Q ∈ Spec(X). The map Spec(X) −→ Spec0c(X) assigns to every element Q of
Spec(X) the coreflective topologizing subcategory [Q]c spanned by Q.

(c) Let Q be an object of Spec0c(X). One can see that cQ̂ = 〈M〉 for every object

M of Q − cQ̂: the inclusion 〈M〉 ⊆c Q̂ is due to the fact that M ∈ ObQ and the inverse

inclusion holds because M 6∈ ObcQ̂. This implies that Q = [M ]c for any object M of

Q− cQ̂. In particular, Q = [M ]c for any nonzero object M of Q ∩ cQ̂
⊥
.

Suppose that the category CX has enough objects of finite type, i.e. every nonzero
object of CX has a nonzero subobject of finite type. In particular, any nonzero object of

the subcategory Q ∩ cQ̂
⊥

has a nonzero subobject L. Since L belongs to Q ∩ cQ̂
⊥

and
is nonzero, [L]c = Q. We claim that L is an object of Spec(X), which implies that the
topologizing subcategory [L] generated by L belongs to Spec(X).

In fact, let N be a nonzero subobject of L. Then [N ]c = Q = [L]c. In particular, L is
an object of the coreflective topologizing subcategory of CX spanned by N . Objects of the
subcategory [N ]c are precisely objects of the category CX which are supremums of their
subobjects from [N ]. In particular, L is a supremum of its subobjects from [N ]. Since
subobjects of L which belong to the topologizing subcategory [N ] form a filtered system
and L is of finite type, it follows that L is isomorphic to one of its subobjects from [N ],
i.e. L ∈ Ob[N ]. This proves that L belongs to Spec(X).

9.2. The spectra Specic(X) and SpeciSe(X). Recall that SpeciSe(X), i = 0, 1,
are the spectra of the preorder Se(X) of Serre subcategories of CX (see 8.7): points of
Spec1Se(X) are Serre subcategories P of CX such that the intersection Ps of all Serre
subcategories of CX properly containing P does not coincide with P; and Spec0Se(X)

is formed by Serre subcategories Q such that the union cQ̂s of Serre subcategories not
containing Q is a Serre subcategory.

9.2.1. Proposition. There are natural injective morphisms

Specic(X) −→ SpeciSe(X) i = 0, 1,

such that the diagram
Spec0c(X) −−−→ Spec0Se(X)

≀
y

y
Spec1c(X) −−−→ Spec1Se(X)

(1)

commutes.

Proof. The spectrum Spec1c(X) is contained in the spectrum Spec1Se(X), because
if Pc 6= P, then (Pc)− is the smallest Serre subcategory properly containing P, hence



The Spectra of ’Spaces’ Represented by Abelian Categories. 43

P belongs to Spec1Se(X). The map Spec0c(X) −→ Spec0Se(X) assigns to every Q ∈
Spec0c(X) the Serre subcategory Q− spanned by Q (cf. 1.5).

9.2.2. Extended spectra. Extended spectra are obtained via adjoining to the
original spectra a marked point. In the case of Spec0c(X) and Spec0Se(X), this marked
point might be realized as the zero subcategory. In the case of the spectra Spec1c(X)
and Spec1Se(X), the marked point is realized as the empty subcategory which reflects the
equalities 〈0〉 = ∅ = 〈0〉s.

Morphisms between the original spectra determine morphisms between the corre-
sponding extended spectra mapping marked points to marked points. In particular, the
commutative diagram (1) extends to the commutative diagram

Spec0c(X)⋆ −−−→ Spec0Se(X)⋆

≀
y

y
Spec1c(X)⋆ −−−→ Spec1Se(X)⋆

(1⋆)

9.2.2.1 Proposition. There are natural maps

SpeciSe(X)⋆ −−−→ Specic(X)⋆, i = 0, 1,

such that the diagram

Spec0c(X)⋆ −−−→ Spec0Se(X)⋆ −−−→ Spec0c(X)⋆

≀
y

y
y≀

Spec1c(X)⋆ −−−→ Spec1Se(X)⋆ −−−→ Spec1c(X)⋆

(2)

commutes and the compositions of its horizontal arrows are identical morphisms.

Proof. The map Spec1Se(X)⋆ −−−→ Spec1c(X)⋆ assigns to each P ∈ Spec1Se(X)
the Serre subcategory 〈Pc ∩ P⊥〉 if Pc 6= P (i.e. if P ∈ Spec1c(X)) and the marked point,
〈0〉 = ∅, if Pc = P. The map Spec1Se(X)⋆ −−−→ Spec1c(X)⋆ is uniquely defined by the
commutativity of the right square in the diagram (2). It follows from the (argument of)
9.1.2 that the composition of the lower horizontal arrows in (2) is the identical map. The
similar fact for the upper horizontal arrows is a consequence of this and the commutativity
of the diagram (2).

9.3. Functorial properties of Spec1c(X) and Spec0c(X). For any topologizing
subcategory T of the category CX , we set

U1
c (T) = {P ∈ Spec1c(X) | T ⊆ P}

V 1
c (T) = Spec1c(X)− U1

c (T) = {P ∈ Spec1c(X) | T * P}.

U0
c (T) = {Q ∈ Spec0c(X) | Q * [T]c} and

V 0
c (T) = Spec0c(X)− U0

c (T) = {Q ∈ Spec0c(X) | Q ⊆ [T]c}

(1)
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9.3.1. Proposition. Let T be a topologizing subcategory of the category CX .
(a) The isomorphism

Spec0c(X) ∼−→ Spec1c(X), Q 7−→c Q̂,

(cf. 9.1.2) induces isomorphisms

U0
c (T)

∼−→ U1
c (T) and V 0

c (T)
∼−→ V 1

c (T). (2)

(b) There are equalities V ic (T) = V ic (T−) and U ic(T) = U ic(T−), i = 0, 1.
(c) For every P ∈ V 1

c (T), the intersection P ∩ T is an element of Spec1c(|T|), where
C|T| = T, and the map

V 1
c (T) −→ Spec1c(|T|), P 7−→ P ∩ T, (3)

is an isomorphism. The inverse map is given by P̃ 7−→ P̃+ (see 7.1).
Similarly, the map Q 7−→ Q ∩ T induces an isomorphism V 0

c (T) −→ Spec0c(|T|).
(cbis) If T is coreflective, then the inverse isomorphism, Spec0c(|T|) −→ V 0

c (T), is
given by the identical map.

(d) The maps P 7−→ P/T− and Q 7−→ (T−•Q•T−)/T− define injective morphisms
resp.

U1
c (T) −→ Spec1c(X/T

−) and U0
c (T) −→ Spec0c(X/T

−) (4)

such that the diagram
U0
c (T) −−−→ Spec0c(X/T−)

≀
y

y≀
U1
c (T) −−−→ Spec1c(X/T−)

(5)

commutes.

Proof. (a) Let Q ∈ U0
c (T), i.e. Q ∈ Spec0c(X) and Q * [T ]c. This means precisely

that cQ̂ ∈ Spec0c(X) and T ⊆c Q̂, i.e. Q is an element of U0
c (T) iff cQ̂ is an element

of U1
c (T). The isomorphism V 0

c (T)
∼−→ V 1

c (T) follows from this and the isomorphism
Spec0c(X) ∼−→ Spec1c(X).

(b) The equalities V 1
c (T) = V 1

c (T−) and U1
c (T) = U1

c (T−) follow from an observation
that elements of Spec1c(X) are Serre subcategories, and if P is a Serre subcategory, then
T ⊆ P iff T− ⊆ P. The other two equalities follow from these isomorphisms (2) above.

(c) Let P ∈ V 1
c (T), i.e. P ∈ Spec1c(X) and T * P. The latter implies that [T]c•P is a

coreflective topologizing subcategory of CX properly containing P. Therefore, it contains
Pc, and we have:

Pc ∩ P⊥ ⊆ ([T]c • P) ∩ P⊥ = [T]c ∩ P⊥ ⊆ [T]c.
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In particular, the intersection Q̃T = T ∩ Pc ∩ P⊥ is nonzero. This implies that 〈Q̃T〉 = P
(see the argument 9.1.2(c)). Notice that if S is a coreflective topologizing subcategory of
T, then S coincides with the intersection of T with the smallest coreflective topologizing
subcategory of CX containing S. Therefore, the union 〈Q̃T〉T of coreflective topologizing

subctegories of T which do not contain Q̃T coincides with the intersection 〈Q̃T〉∩T. Thus,
〈Q̃T〉T = P ∩ T; in particular, P ∩ T ∈ Spec1c(|T|) and the corresponding element of
Spec0c(|T|) is [Pc ∩ P⊥]c ∩ T. In other words, it is obtained from P by applying the
composition of the isomorphism Spec1c(X) ∼−→ Spec0c(X) and the intersection with T, i.e.
the diagram

V 0
c (T) −−−→ Spec0c(|T|)
≀
y

y≀
V 1
c (T) −−−→ Spec1c(|T|)

(6)

whose horizontal arrows are given by P 7−→ P∩T, commutes. It follows from the argument
above that the map V 0

c (T) −→ Spec0c(|T|), Q 7−→ Q ∩ T, is an isomorphism with the
inverse map which assigns to every element Q′ of Spec0c(|T|) the coreflective topologizing
subcategory [Q′]c in CX spanned by Q′. Therefore the lower horizontal arrow in (6) is an
isomorphism too.

(cbis) If T is coreflective, then every coreflective topologizing subcategory of T is a
coreflective topologizing subcategory of CX , hence the isomorphism

Spec0c(|T|)
∼−→ V 0

c (T), Q′ 7−→ [Q′]c,

discussed above becomes an identical map.
(d) Let q∗ denote the localization functor CX −→ CX/T−.
If P belongs to U1

c (T), i.e. T ⊆ P ( Pc, then

(P/T−)c = [q∗(Pc)]c = (T− • Pc • T−)/T− ) P/T−.

This shows that P/T− is an element of Spec1c(X/T−).
If Q is the image of the element P in U0

c (T) (see the assertion (a) above), then
the coreflective subcategory [q∗(Q)]c = (T− • Q • T−)/T− is the image of P/T− in
Spec0c(X/T−). The commutativity of the diagram (5) follows from the definition of its
arrows.

9.4. The local property of the spectrum Spec1c(X).

9.4.1. Proposition. Let {Ti | i ∈ J} be a set of Serre subcategories of the category

CX such that
⋂

i∈J

Ti = 0; and let u∗i denote the localization functor CX −→ CX/Ti.
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1) The following conditions on P ∈ Spec1Se(X) are equivalent:

(a) P ∈ Spec1c(X),

(b)
⋂

i∈JP

u∗
−1

i ((P/Ti)
c) * P, where JP = {j ∈ J | Tj ⊆ P}, and if JP = J−JP 6= ∅,

then
⋂

j∈JP

Tj * P.

2) The conditions (a) and (b) imply the condition

(c) P/Ti ∈ Spec1c(X/Ti) for each i ∈ JP .

If J is finite, then the conditions (a) and (b) are equivalent to the condition (c).

Proof. 1) Since P is a Serre subcategory, the condition
⋂

i∈J

T −
i = 0 implies that

JP = {i ∈ J | Ti ⊆ P} is not empty.

In fact, if Ti * P for all i ∈ J , then Ti • P ⊇ P
c, hence Pc ⊆

⋂

i∈J

(Ti • P). But, by

C1.2.1,
⋂

i∈J

(Ti • P) =
( ⋂

i∈J

Ti
)
• P = 0 • P = P, hence Pc = P, which contradicts to the

assumption that P ∈ Spec1c(X), i.e. P ( Pc.

2) Notice that if S is a Serre subcategory, and T a subcategory of CX closed under
taking subquotients, then T * S iff T ∩ S⊥ 6= 0, because an object M of CX does not
belong to S iff it has a nonzero S-torsion free subquotient.

In particular, the condition (b) above can be written as follows:

(b)
⋂

i∈JP

u∗
−1

i ((P/Ti)
c)
⋂
P⊥ 6= 0, and

( ⋂

j∈JP

Tj
)⋂
P⊥ 6= 0, if JP = J − JP 6= ∅.

(a)⇒ (b). Let P ∈ Spec1c(X), i.e. P 6= Pc.

If i ∈ JP , that is Ti ⊆ P, then u
∗−1

i ((P/Ti)
c) = Ti • P

c • Ti.

Since Ti ⊆ P, the intersection (Ti • P
c • Ti)

⋂
P⊥ coincides with (Ti • P

c)
⋂
P⊥.

Therefore

⋂

i∈JP

u∗
−1

i ((P/Ti)
c)
⋂
P⊥ =

⋂

i∈JP

((Ti • P
c)
⋂
P⊥) =

( ⋂

i∈JP

(Ti • P
c)
)⋂
P⊥ =

(( ⋂

i∈JP

Ti
)
• Pc

)⋂
P⊥ ⊇ Pc

⋂
P⊥ 6= 0.

(1)

Here we used the equality
⋂

i∈JP

(Ti • P
c) =

( ⋂

i∈JP

Ti
)
• Pc which is due, by C1.2.1, to the

fact that the subcategory Pc is coreflective.
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Notice that if JP = J , that is Ti ⊆ P for all j ∈ J , then
⋂

i∈JP

Ti = 0, hence the last in-

clusion in (1) can be replaced by the equality, i.e. the intersection
⋂

i∈JP

u∗
−1

i ((P/Ti)
c)
⋂
P⊥

coincides with Pc ∩ P⊥.

Suppose that JP = J − JP is non-empty. If j ∈ JP , that is Tj is not contained in P,
then Tj • P is a coreflective topologizing subcategory properly containing both Tj and P,

hence properly containing P. Therefore Pc ⊆ Tj • P for all j ∈ JP , or Pc ⊆
⋂

j∈JP

(Tj • P).

Since P is a coreflective subcategory,
⋂

j∈JP

(Tj • P) =
( ⋂

j∈JP

Tj
)
• P (see C1.2.1). Thus,

Pc ⊆
( ⋂

j∈JP

Tj
)
• P , which implies (actually, is equivalent to) that

⋂

j∈JP

Tj * P.

(b)⇒ (a). There are two cases: JP = J and JP 6= J .

(i) We start with the first case; i.e. we assume that Ti ⊆ P for all i ∈ J . Set Q̃ =⋂

i∈J

u∗
−1

i ((P/Ti)
c)
⋂
P⊥ and Q = [Q̃]c – the smallest coreflective topologizing subcategory

of CX containing Q̃. We claim that Q belongs to Spec0c(X) and cQ̂ = P. Since, by

condition (b), Q * P, it suffices to show that cQ̂ = P.

Let S be a coreflective topologizing subcategory of CX which is not contained in P.
Then P is properly contained in S • P and, therefore, u∗

−1

i ((P/Ti)
c) ⊆ Ti • S • P for each

i ∈ J . This implies that u∗
−1

i ((P/Ti)
c)
⋂
P⊥ ⊆ Ti • S • P

⋂
P⊥ ⊆ Ti • S. Therefore,

Q̃ =
⋂

i∈J

u∗
−1

i ((P/Ti)
c)
⋂
P⊥ ⊆

⋂

i∈J

(Ti • S) =
( ⋂

i∈J

Ti
)
• S = 0 • S = S,

so that Q = [Q̃]c ⊆ S.

(ii) Consider now the second case: JP 6= J , i.e. JP = J − JP is non-empty. This case
can be reduced to the first case as follows.

Set CVP
=

⋂

j∈JP

Tj . Since
⋂

j∈JP

Tj * P, the intersection Pt = CVP

⋂
P is an element

of Spec1Se(VP). Notice that {Ti ∩ CVP
= T̃i | i ∈ JP} is a cocover of VP , i.e.

⋂

j∈JP

T̃j = 0.

It remains to show that the condition Q̃ =
⋂

i∈J

u∗
−1

i ((P/Ti)
c)
⋂
P⊥ 6= 0 implies the anal-

ogous condition for the object Pt = CVP

⋂
P of Spec1Se(VP) and the cover {T̃i | i ∈ JP};
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that is
Q̃0 =

⋂

i∈J

ũ∗
−1

i ((Pt/T̃i)
c)
⋂
P⊥
t 6= 0.

In fact, let ũ∗i denote the localization functor CVP
−→ CVP

/T̃i. Then

ũ∗
−1

i ((Pt/T̃i)
c) = u∗

−1

i ((P/Ti)
c)
⋂
CVP

, and

ũ∗
−1

i ((Pt/T̃i)
c)
⋂
P⊥
t = u∗

−1

i ((P/Ti)
c)
⋂
CVP

⋂
P⊥.

Therefore,

⋂

i∈J

ũ∗
−1

i ((Pt/T̃i)
c)
⋂
P⊥
t =

⋂

i∈J

u∗
−1

i ((P/Ti)
c)
⋂
P⊥

⋂
CVP

= Q̃
⋂
CVP

. (2)

On the other hand, for every i ∈ JP , there is an inclusion Ti•CVP
•P ⊇ u∗

−1

i ((P/Ti)
c),

because CVP
* P, which implies the inclusion u∗

−1

i ((P/Ti)
c)
⋂
P⊥ ⊆ Ti •CVP

. Taking the
intersection, we obtain the inclusion

Q̃ ⊆
⋂

i∈JP

(Ti • CVP
) =

( ⋂

i∈JP

Ti
)
• CVP

. (3)

Notice that Q̃ is a full subcategory of CX closed under taking subobjects. In particular,
the equality Q̃

⋂
CVP

= 0 means precisely that every object of Q̃ is CVP
-torsion free.

The latter fact together with the inclusion Q̃ ⊆
( ⋂

i∈JP

Ti
)
• CVP

(see (3)) implies that

Q̃ ⊆
⋂

i∈JP

Ti ⊆ P, which contradicts to the fact that Q̃ is a nonzero subcategory of P⊥.

This contradiction shows that Q̃
⋂
CVP

6= 0, hence, by (2),

Q̃0 =
⋂

i∈J

ũ∗
−1

i ((Pt/T̃i)
c)
⋂
P⊥
t 6= 0.

(iii) Thus, the ’space’ VP , the cocover {T̃i | i ∈ JP}, and the point Pt = P
⋂
CVP

of

the spectrum Spec1Se(VP) satisfy the conditions (b) with all T̃i being subcategories of Pt.

By (i) above, Pt belongs to the spectrum Spec1c(VP), and Pt = 〈Q̃0〉VP
= 〈Q0〉VP

, where

Q0 is the smallest coreflective topologizing subcategory of CVP
containing Q̃0. Therefore,

[Q0]c is a point of the spectrum Spec0c(X) and 〈Q0〉X = P.
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(b) ⇒ (c). The condition
⋂

i∈JP

u∗
−1

i ((P/Ti)
c)
⋂
P⊥ 6= 0 implies that the intersection

u∗
−1

i ((P/Ti)
c)
⋂
P⊥ is nonzero for every i ∈ JP . In particular, (P/Ti)

c does not coincide
with P/Ti, which means that P/T belongs to the spectrum Spec1c(X/Ti).

(c) ⇒ (b) (when J is finite). For every i ∈ JP , let Q̃i denote the intersection

u∗
−1

i ((P/Ti)
c)
⋂
P⊥ and Qi = [Q̃i]c – the smallest coreflective topologizing subcategory

of CX containing Q̃i. By assumption, Q̃i 6= 0 for each i ∈ JP , hence Qi * P. The
latter implies that, for every j ∈ JP , the coreflective topologizing subcategory spanned by
u∗j (Qi • P) contains (P/Tj)

c, or, equivalently, u∗
−1

j ((P/Ti)
c) ⊆ Tj • Qi • P. Therefore,

Q̃j = u∗
−1

j ((P/Tj)
c)
⋂
P⊥ ⊆ (Tj • Qi • P)

⋂
P⊥ = (Tj • Qi)

⋂
P⊥ ⊆ Tj • Qi

which implies the inclusion Qj ⊆ Tj • Qi for every (i, j) ∈ JP × JP , hence the inclusion

Qj ⊆
⋂

i∈JP

(Tj • Qi) = Tj •
( ⋂

i∈JP

Qi
)
.

Here the equality is due to the finiteness of JP .

It follows from the inclusion Qj ⊆ Tj •
( ⋂

i∈JP

Qi
)

that
⋂

i∈JP

Qi 6= 0, because other-

wise Qj ⊆ Tj • 0 = Ti, which is impossible, since Tj ⊆ P and Qj * P.
If J = JP , the condition (b) is fulfilled. If J 6= JP , we need to check that

⋂

i∈JP

Ti * P.

In fact, if i ∈ JP = J − JP , then Ti * P. Therefore, for every j ∈ JP , the coreflective

subcategory spanned by u∗j (Ti • P) contains (P/Tj)
c, or, equivalently, u∗

−1

j ((P/Tj)
c) ⊆

Tj • Ti • P, which implies that Q̃j = u∗
−1

j ((P/Tj)
c)
⋂
P⊥ ⊆ (Tj • Ti)

⋂
P⊥. Taking the

intersection and using the finiteness of JP , we obtain:

Q̃j ⊆
( ⋂

i∈JP

(Tj • Ti)
)⋂
P⊥ =

(
Tj •

( ⋂

i∈JP

Ti
))⋂

P⊥. (4)

The inclusion
⋂

i∈JP

Ti ⊆ P implies (together with (4)) that Q̃j ⊆ Tj ⊆ P, which is

impossible. So that
⋂

i∈JP

Ti * P.

9.4.2. Note. The reader had, probably, noticed that some parts of the proof of 9.4.1
are similar to some parts of the argument of 7.1. If one considers only the case of finite
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cocovers, one can follow the argument of 7.1 which is considerably shorter than the proof
above.

9.4.3. Proposition. Let {Ti | i ∈ J} be a set of Serre subcategories of the category

CX such that
⋂

i∈J

Ti = 0; and let u∗i denote the localization functor CX −→ CX/Ti.

The following conditions on a nonzero coreflective topologizing subcategory Q of CX
are equivalent:

(a) Q ∈ Spec0c(X),
(b) [u∗i (Q)]c ∈ Spec0c(X/Ti) for every i ∈ J such that Q * Ti.

Proof. The implication (a)⇒ (b) follows from 9.3.1(d).
(b) ⇒ (a). Let JcQ̂

denote the set of all i ∈ J such that Q * Ti, or, equivalently,

Ti ⊆
c Q̂. Notice that JcQ̂

is non-empty, because Q is nonzero and
⋂

i∈J

Ti = 0.

Fix an i ∈ JcQ̂
and set Pi = u∗

−1

i (〈u∗i (Q)〉). It follows from the formula for Pi that

Q * Pi. Notice that Pi = Pj for every j ∈ JcQ̂
.

In fact, replacing CX by CX′ = CX/(Pi ∩Pj) and Pk by P ′
k = Pk/(Pi ∩Pj), k = i, j,

we can obtain that P ′
i ∩ P

′
j = 0. It follows from 9.3.1 that the condition (b) survives this

operation. By 7.1, the image Q′ of Q in CX′ belongs to Spec0c(X
′). Therefore, P ′

i = P
′
j ,

which implies that Pi = Pj .
So, we write P instead of Pi. For every i ∈ JcQ̂

, the subcategory (P/Ti)
c contains

u∗i (Q), hence its preimage, u∗
−1

i ((P/Ti)
c), contains Q. Since

⋂

i∈J
cQ̂

u∗
−1

i ((P/Ti)
c) contains

Q, it is not contained in P. Similarly, if J
cQ̂ = J −JcQ̂

is non-empty, then Q ⊆
⋂

i∈JcQ̂

Tj ,

hence Q ⊆
⋂

i∈JcQ̂

Tj * P. Thus, P satisfies the condition (b) of 9.4.1. Therefore, by 9.4.1,

P ∈ Spec1c(X). It remains to show that Q is an element of Spec0c(X) corresponding to
P.

It follows from the argument of 9.4.1 that the element of Spec0c(X) corresponding
to P is the coreflective topologizing subcategory [QP ]c generated by QP = Q ∩ P⊥. In
particular, [QP ]c ⊆ Q. Let M be an object of the subcategory Q. Since [QP ]c is a
coreflective subcategory of CX , the object M has the biggest subobject MP →֒ M with
MP ∈ Ob[QP ]c. Consider the corresponding exact sequence

0 −→MP
j
−→M −→ N −→ 0. (5)
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For every i ∈ JcQ̂
, the morphism u∗i (j) is an isomorphism, because the images of [QP ]c

and Q in CX/Ti coincide. This means that the object N in (5) belongs to Ti = Ker(u∗i )
for each i ∈ JcQ̂

. On the other hand, Q ⊆ Tν for every ν ∈ J − JcQ̂
(by definition of JcQ̂

);

in particular, N ∈ Tν for all ν ∈ J − JcQ̂
. Thus, N is an object of

⋂

i∈J

Ti = 0, i.e. N = 0,

or, equivalently, the arrow MP
j
−→ M in (5) is an isomorphism. This proves the inverse

inclusion, [QP ]c ⊇ Q.

9.4.4. Support. For every objectM of CX , we define the support ofM in Spec0c(X)
by Supp0c(M) = {Q ∈ Spec0c(X) | Q ⊆ [M ]c}.

9.5. Some consequences.

9.5.1. Proposition. Let {Ti | i ∈ J} be a finite set of Serre subcategories of an

abelian category CX such that
⋂

i∈J

Ti = 0 and Spec1c(X/Ti) = Spec1,1t (X/Ti) for every

i ∈ J . Then Spec1c(X) = Spec1,1t (X). In particular, the canonical map

Spec(X) −−−→ Spec0c(X), Q 7−→ [Q]c,

is an isomorphism.

Proof. The inclusion Spec1,1t (X) ⊆ Spec1c(X) holds by 9.1.2(b). Let P ∈
Spec1c(X). Then, by the implication (a) ⇒ (c) in 9.4.1, P/Ti ∈ Spec1c(X/Ti) for
every i ∈ J such that Ti ⊆ P. By hypothesis, Spec1c(X/Ti) = Spec1,1t (X/Ti) for all
i ∈ J . Therefore, by the implication (b)⇒ (a) in 7.1, P belongs to Spec1,1t (X).

9.5.2. Corollary. Let {Ti | i ∈ J} be a finite set of Serre subcategories of an abelian

category CX such that
⋂

i∈J

Ti = 0 and for every i ∈ J , the quotient category CX/Ti has

enough objects of finite type. Then Spec1c(X) = Spec1,1t (X).
In particular, the canonical map Spec(X) −→ Spec0c(X) is an isomorphism.

Proof. Since each quotient category CX/Ti has enough objects of finite type, it follows
from 9.1.2(c) that Spec1c(X/Ti) = Spec1,1t (X/Ti) for all i ∈ J . The assertion follows
now from 9.5.1.

9.5.3. Affine and quasi-affine cocovers. A morphism X
f
−→ Y is called affine if

it has a conservative (i.e. reflecting isomorphisms) direct image functor, CX
f∗
−→ CY (– a

right adjoint to f∗) which has, in turn, a right adjoint. We call a ’space’ X affine over a
ring R, if there is an affine morphism X −→ Sp(R), where CSp(R) = R−mod. A ’space’
X is called affine if it is affine over Z. By [R4, 9.3.3], X is affine iff the category CX has
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a projective generator of finite type. By a well-known theorem of Gabriel and Mitchell,
the latter condition means precisely that the category CX is equivalent to the category of
modules over an associative ring.

We call set {Ti | i ∈ J} of thick subcategories of the category CX an affine cocover of

the ’space’ X if
⋂

i∈J

Ti = 0 and X/Ti is affine for every i ∈ J .

9.5.4. Proposition. Let a finite set {Ti | i ∈ J} of Serre subcategories of CX be a

cocover of X (that is
⋂

i∈J

Ti = 0) such that every quotient category CX/Ti has a family of

generators of finite type. Then Spec1c(X) = Spec1,1t (X).
In particular, Spec1c(X) = Spec1,1t (X), if {Ti | i ∈ J} is an affine cocover of X.

Proof. In fact, quotients of an object of finite type is an object of finite type. Therefore,
if a category CY has a family of generators of finite type, then every nonzero object of CY
has a subobject of finite type. The assertion follows now from 9.5.3.

9.5.5. Remark. If CX is a Grothendieck category and S is a Serre subcategory
of CX , then the localization functor CX −→ CX/S has a right adjoint, hence CX/S
is Grothendieck category (see [BD, Ch.6]). In particular, all CX/Ti are Grothendieck
categories. One can regard Grothendieck categories with a generator of finite type as a
noncommutative version of a quasi-affine scheme.

Recall that quasi-affine commutative schemes are, by definition, quasi-compact open
subschemes of affine commutative schemes.

9.6. Geometric centers of a ’space’ X associated with Spec0c(X).

9.6.1. The geometric center associated with a topology on Spec0c(X). Let τ

be a topology on Spec0c(X). For every open subset U , let ÕX(U) denote the center of the

quotient category CX/〈U〉, where 〈U〉 =
⋂

Q∈U

cQ̂. Recall that the center of the category CY

is the (commutative) ring of the endomorphisms of the identical functor CY −→ CY .

The correspondence U 7−→ ÕX(U) is a presheaf of commutative rings on the topo-
logical space (Spec0c(X), τ). We denote by OX the associated sheaf. The ringed space
((Spec0c(X), τ),OX) is called the geometric center of X associated with (Spec0c(X), τ).

9.6.2. Zariski geometric center. A topologizing subcategory T of CX is called
a Zariski topologizing subcategory if it is bireflective, i.e. the inclusion functor T →֒ CX
has right and left adjoints. Subsets U0

c (T) = {Q ∈ Spec0c(X) | Q * T}, where T runs
through the preorder Tz(X) of Zariski topologizing subcategories, are open sets of the
Zariski topology on Spec0c(X) (cf. C1.2.4.1). We call the corresponding geometric center
the Zariski geometric center of X.
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9.6.3. The topologies τc and τ c on Spec0c(X). The Zariski topology might be
trivial or too coarse in the noncommutative case. For instance, it is trivial if CX = R−mod,
where the ring R is simple (i.e. it does not have nonzero proper two-sided ideals), like, for
instance, any Weyl algebra. Following C1.7, we introduce other topologies on Spec0c(X)
by fixing a set Ξ of coreflective topologizing subcategories of CX and then taking subsets
U0
c (T) = {Q ∈ Spec0c(X) | Q * T}, T ∈ Ξ, as a base of open sets of a topology τΞ.

Taking Ξ = Spec0c(X), we obtain the topology τc (compare with C1.7.2). Thus the
sets V 0

c (Q) = {Q
′ ∈ Spec0c(X) | Q′ ⊆ Q}, Q ∈ Spec0c(X), form a base of closed subsets

of this topology.

The topology τ c is determined by Ξ consisting of the subcategories [M ]c spanned
by objects which are locally of finite type. Here ’locally of finite type’ means that the
localization of M at every point Q of Spec0c(X) (i.e. its image in the quotient category

CX/
cQ̂) is an object of finite type. It seems that τ c is an appropriate version of Zariski

topology for the spectrum Spec0c(X). If CX has enough objects of locally finite type, then
the topology τ c is finer than the topology τc.

9.7. Proposition. Let CX be the category of quasi-coherent sheaves on a scheme
X = (X ,O). Suppose that there is an affine cover {Ui →֒ X | i ∈ J} of the scheme X
such that all immersions Ui →֒ X , i ∈ J, have a direct image functor. Then the geometric
center (Spec0c(X),OX) is isomorphic to the scheme X.

Proof. The argument follows the lines of the proof of 8.2.1.

(a) The underlying space X of the scheme X is isomorphic to Spec0c(X).

Let {Ui →֒ X | i ∈ J} be an affine cover of the scheme X. For each i ∈ J , we
denote by CUi the category of quasi-coherent sheaves on the affine scheme (Ui,OUi) and

by Ti the kernel of the inverse image functor CX
u∗
i−→ CUi . This inverse image functor

uniquely determines the equivalence of the quotient category CX/Ti and CUi . The fact

that {Ui →֒ X | i ∈ J} is a cover means precisely that
⋂

i∈J

Ti = 0. The existence of a direct

image functor, CUi
ui∗−→ CX , of the embedding Ui →֒ X implies that the subcategory Ti is

coreflective: a right adjoint to the inclusion functor Ti −→ CX assigns to every object M
of CX the kernel of the adjunction morphism M −→ ui∗u

∗
i (M).

(a1) Let x be a point of the underlying space X of the scheme X. Let Ix̄ be the
defining ideal of the closure x̄ of the point x and Mx̄ the quotient sheaf O/Ix̄. Set
Jx = {i ∈ J | Mx̄ 6∈ ObTi}. We claim that Qx = [Mx̄]c is an element of Spec0c(X).

For every i ∈ Jx, the object u∗i (Mx̄) of the category CUi belongs to Spec(Ui) and
Spec(Ui) = Spec0c(Ui), because CUi is (equivalent to) the category of modules over a ring.
Therefore, [u∗i (Qx)]c = [u∗i (Mx̄)]c is an element of Spec0c(Ui). By 9.4.3, Qx ∈ Spec0c(X).

(a2) Conversely, let Q be an element of Spec0c(X). Let Q * Ti, or, equivalently,
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Ti ⊆
c Q̂. By 9.4.3, [u∗i (Q)]c is an element of Spec0c(Ui). Since Ui is affine, Spec0c(Ui) is

in bijective correspondence with the underlying space Ui of the subscheme (Ui,OUi); in
particular, to the element [u∗i (Q)]c there corresponds a point x of Ui which we identify
with its image in X . Notice that the point x does not depend on the choice of i ∈ JcQ̂

=

{j ∈ J | Tj ⊆
c Q̂}. This gives a map Spec0c(X) −→ X which is inverse to the map

X −→ Spec0c(X) constructed in (a1) above. These maps are homeomorphisms in the case
if the cover consists of one element, i.e. the scheme is affine. The general case follows from
the commutative diagrams

Spec0c(Ui)
∼

−−−→ Uiy
y

Spec0c(X) −−−→ X , i ∈ J.

(6)

in which vertical arrows are open immersions and the upper horizontal arrow is a homeo-
morphism; hence the lower horizontal arrow is a homeomorphism.

(b) The diagrams (6) extend to the commutative diagrams of ringed spaces

(Spec0c(Ui),OUi)
∼

−−−→ (Ui,OUi)y
y

(Spec0c(X),OX) −−−→ (X ,O) i ∈ J.

(7)

in which Spec0c(Ui),OUi) and (Spec0c(X),OX) are Zariski geometric centra of resp. Ui
and X, vertical arrows are open immersions and upper horizontal arrow is an isomorphism.
Therefore the lower horizontal arrow is an isomorphism.
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Complementary facts.

C1. The noncommutative cosite of topologizing subcategories and topolo-
gies on spectra.

C1.1. The noncommutative finite cosite of topologizing subcategories. We
regard topologizing subcategories of an abelian category CX as ’closed sets’ of a ’finite
topology’ τ fX defined as follows. We call a set of inclusions {T →֒ Ti | i ∈ J} of topologizing
subcategories a cocover if there exists a finite subset J0 of J such that

⋂

i∈J0

Ti = T.

Two of the three standard properties of cocovers follow immediately:

(a) T id
−→ T is a cocover;

(b) the composition of cocovers is a cocover: if {T →֒ Ti | i ∈ J} is a cocover and
{Ti →֒ Tij | j ∈ Ji} is a cocover for every i ∈ J , then {T →֒ Tij | i ∈ J, j ∈ Ji} is a
cocover.

The third standard property – the invariance under the base change, acquires the
following form:

(c) If {T →֒ Ti | i ∈ J} is a cocover, then, for any S ∈ T(X), both {T•S →֒ Ti•S | i ∈ J}
and {S • T →֒ S • Ti | i ∈ J} are cocovers.

The property (c) follows from [R4, 4.2.1]. Its proof is also contained in the argument
of C1.2.3(b) below.

We call the triple (T(X), •; τ fX) the noncommutative finite cosite of topologizing sub-
categories of CX .

C1.1.1. Note. One can define a finer topological structure on T(X) by taking as

cocovers all sets of inclusions {T →֒ Ti | i ∈ J} such that
⋂

i∈J

Ti = T. The family τX of

such cocovers satisfies the conditions (a) and (b) above, but fails, in general, the invariance
with respect to a base change. The situation improves when one considers instead of all
topologizing subcategories coreflective or reflective topologizing categories. This is made
precise below.

C1.2. Coreflective and reflective topologizing categories. Let Tc(X) (resp.
Tc(X)) denote the preorder of all coreflective (resp. reflective) topologizing subcategories of
the category CX . Recall that a subcategory B of CX is called coreflective (resp. reflective) if
the inclusion functor B →֒ CX has a right (resp. left) adjoint. By [R, III.6.2.1], both Tc(X)
and Tc(X) are monoidal subcategories of the monoidal category (preorder) (T(X), •). We

shall use the same notation – τ fX , for the restrictions of the topological structure τ fX defined
in C1.1 to Tc(X) and to Tc(X).

Notice that (Tc(X), •; τ fX) is naturally anti-isomorphic to (Tc(Xo), •; τ fXo).
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The term ’anti-isomorphic’ refers to the monoidal structure (S • T)o = To • So, where
So denotes the subcategory of CXo = CopX corresponding to the subcategory S of CX .

C1.2.1. Lemma. Suppose that CX is an abelian category with supremums of sets of
subobjects (for instance, if CX has infinite coproducts). Then

(a) The intersection of any set of reflective topologizing subcategories is a reflective
topologizing subcategory.

(b)
( ⋂

i∈J

Ti
)
• S =

⋂

i∈J

(Ti • S) for any set {Ti | i ∈ J} of topologizing subcategories

and any coreflective subcategory S.

Proof. (a) See [R, III.6.2.2].

(b) The inclusion
( ⋂

i∈J

Ti
)
• S ⊆

⋂

i∈J

(Ti • S) is obvious. On the other hand, let M be

an object of the subcategory
⋂

i∈J

(Ti • S); that is, for every i ∈ J , there exists an exact

sequence 0 −→ Mi −→ M −→ Li −→ 0 such that Mi ∈ ObS and Li ∈ ObTi. Since S
is a coreflective subcategory, the supremum MJ of the set of subobjects {Mi | i ∈ J} is
an object of S. The canonical epimorphism M −→ M/MJ factors through M −→ Li for
each i ∈ J . Therefore, the object M/MJ , being a quotient of the object Li, belongs to the

subcategory Ti for each i ∈ J , hence it belongs to
⋂

i∈J

Ti.

C1.2.2. Corollary. Let CX be an abelian category with infinums of sets of quotient
objects (i.e. the dual category CXo = CopX has maximums of sets of subobjects). Then

(a) The intersection of any set of coreflective topologizing subcategories is a coreflective
topologizing subcategory.

(b) S •
( ⋂

i∈J

Ti
)
=

⋂

i∈J

(S • Ti) for any set {Ti | i ∈ J} of topologizing subcategories

and any reflective subcategory S.

Proof. The assertion is dual to the assertion of C1.2.1.

C1.2.3. Corollary. Let CX be an abelian category with supremums of sets of subob-
jects and infinums of sets of quotient objects. Then

(a) The intersection of any set of reflective (resp. coreflective) topologizing subcate-
gories is a reflective (resp. coreflective) topologizing subcategory.

(b) If S is a reflective and U a coreflective topologizing subcategory of CX , then

S •
( ⋂

i∈J

Ti
)
=

⋂

i∈J

(S • Ti) and
( ⋂

i∈J

Ti
)
• U =

⋂

i∈J

(Ti • U)

for any set {Ti | i ∈ J} of topologizing subcategories.
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C1.2.3.1. Note. The conditions on CX in C1.2.3 hold if the category CX has infinite
products and coproducts. In particular, they hold for any Grothendieck category, or the
category of quasi-coherent sheaves on an arbitrary scheme.

C1.2.4. Interpretations. Let τX denote the family of cocovers on T(X) in the sense
of C1.1.1; that is {T →֒ Ti | i ∈ J} is a cocover iff the intersection of all Ti coincides with
T. Corollary C1.2.3 can be spelled as follows:

If the category CX has supremums of sets of subobjects and infinums of sets of quo-
tient objects, then τX induces the structure of a right cosite on the monoid (Tc(X), •)
of coreflective topologizing subcategories and the structure of a left cosite on the monoid
(Tc(X), •) of reflective topologizing subcategories.

C1.2.4.1. Zariski cosite. We denote by Tz(X) the intersection Tc(X)
⋂
Tc(X).

Objects of Tz(X) – bireflective topologizing subcategories of CX , are interpreted as Zariski
closed subspaces. By this reason, we shall call them sometimes Zariski topologizing sub-
categories. Under conditions of C1.2.3 (i.e. if CX and CXo have supremums of sets
of subobjects), (Tz(X), •; τX) is a two-sided cosite. The latter means that for any set

{S, Ti | i ∈ J} of Zariski topologizing subcategories, the intersection
⋂

i∈J

Ti is a Zariski

topologizing subcategory and

S •
( ⋂

i∈J

Ti
)
=

⋂

i∈J

(S • Ti),
( ⋂

i∈J

Ti
)
• S =

⋂

i∈J

(Ti • S). (1)

We call (Tz(X), •; τX) the noncommutative Zariski finite cosite of the ’space’ X. One
of the reasons for these interpretaions comes from the following example.

C1.2.5. Example. Let CX = R − mod for an associative ring R. For every two-
sided ideal α in R, let Tα denote the full subcategory of R − mod whose objects are
modules annihilated by the ideal α. By [R, III.6.4.1], the map α 7−→ Tα is an isomorphism
of the preorder (I(R),⊇) of two-sided ideals of the ring R onto (Tc(X),⊆). Moreover,
Tα •Tβ = Tαβ for any pair of two-sided ideals α, β. This means that the map α 7−→ Tα is
an isomorphism of monoidal categories (preorders), where the monoidal structure on I(R)
is the multiplication of ideals.

It follows from this description that every reflective topologizing subcategory of CX =
R−mod is coreflective, that is Tc(X) = Tz(X).

One can see that
⋂

i∈J

Tαi = Tα
J
, where α

J
= sup(αi|i ∈ J). Thus, the cotopology

τX on Tc(X) = Tz(X) induces a (noncommutative) Zariski topology on I(R): the set of
inclusions of two-sided ideals {αi →֒ α | i ∈ J} is a cover if α = sup(αi|i ∈ J0).
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The invariance with respect to base change in I(R) is expressed by the equalities

β sup(αi| i ∈ J) = sup(βαi| i ∈ J) and sup(αi| i ∈ J)β = sup(αiβ| i ∈ J)

for any set of two-sided ideals {β, αi | i ∈ J}. One can deduce directly from these equalities
the base change invariance on Tz(X) (in the case when CX = R−mod). In fact, we have

⋂

i∈J

(Tαi • Tβ) =
⋂

i∈J

Tαiβ = Tsup(αiβ| i∈J) = Tsup(αi| i∈J)β =

Tsup(αi| i∈J) • Tβ =
( ⋂

i∈J

Tαi
)
• Tβ .

Similar calculation shows that
⋂

i∈J

(Tβ • Tαi) = Tβ •
( ⋂

i∈J

Tαi
)
.

C1.2.6. Example: reflective topologizing subcategories of the category
of quasi-coherent sheaves on a scheme. Let CX be the category QcohX of quasi-
coherent sheaves on a scheme X = (X ,OX ). Then elements of Tc(X) are in one to one
correspondence with quasi-coherent ideals of the structure sheaf OX , or, equivalently, with
closed subschemes of the scheme X.

C1.3. Example: coreflective topologizing subcategories of an affine ’space’.
Let CX be the category R −mod of left modules over an associative ring R. We denote
by Iℓ(R) the set of left ideals of R.

Recall that a set F of left ideals of R is called a topologizing filter if it is closed under
finite intersections, contains with every left ideal m left ideals (m : r) = {a ∈ R | ar ∈ m}
for all r ∈ R and all left ideals containing m.

Topologizing filters of left ideals form a monoidal category (a preorder) with respect
to the Gabriel multiplication defined as follows.

F ◦G =
⋃

m∈G

F ◦ {m}, where F ◦ {m} = {n ∈ Iℓ(R) | (n : r) ∈ F for all r ∈ m}.

There is a natural bijective correspondence between topologizing filters of left ideals
and coreflective topologizing subcategories of the category R−mod. Namely, to each core-
flective topologizing subcategory T of R−mod, there corresponds the filter FT formed by
annihilators of elements of modules from T. The inverse map assigns to each topologizing
filter F the full subcategory TF whose objects are all R-modules M such that each element
of M is annihilated by some left ideal from F. These maps are mutually inverse isomor-
phisms between the monoidal preorder (TFℓ(R), ◦) of topologizing filters of left ideals of
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the ring R and the monoidal preorder (Tc(X), •) of coreflective topologizing subcategories
of CX = R−mod.

To every left ideal m in R, one can assign the smallest topologizing filter [m] containing
m. It is easy to see that [m] consists of all left ideals n which contain (m : x) = {r ∈ R | rx ⊂
m} for some finite set x of elements of R. The corresponding coreflective topologizing
subcategory is formed by all R-modules M such that every element of M is annihilated by
the left ideal (m : x) for some finite set x of elements of R.

Notice that if m is a two-sided ideal, then m ⊆ (m : x) for any x ⊂ R. In this case the
filter [m] consists of all left ideals of R containing m and the corresponding topologizing
subcategory coincides with the subcategory Tm whose objects are modules annihilated by
m (see C1.2.1). If α and β are two-sided ideals, then [α] ◦ [β] = [αβ]. This shows that the
map I(R) −→ TFℓ(R), α 7−→ [α] is an embedding of monoidal preorders.

Thus, we have a commutative diagram of morphisms of monoidal preorders

(I(R), ·) −−−→ (TFℓ(R), ◦)

≀
y

y≀
(Tc(X), •) −−−→ (Tc(X), •)

where the lower horizontal arrow is the inclusion functor and CX = R−mod.

C1.4. The cosites of thick and Serre subcategories. Consider the preorder
Th(X) of thick subcategories and the preorderSe(X) of Serre subcategories of the category
CX together with cocovers induced from T(X).

C1.4.1. Proposition. (a) Th(X) and Se(X) are Grothendieck precosites.
(b) The map T(X) −→ Th(X) which assigns to every topologizing subcategory T the

thick subcategory T∞ generated by T is a morphism from the noncommutative precosite
(T(X), •) of topologizing subcategories to the Grothendick precosite Th(X) of thick subcat-
egories of CX .

(c) The map T(X) −→ Se(X), T 7−→ T−, is a morphism from the noncommutative
precosite (T(X), •) to the Grothendick precosite Se(X) of Serre subcategories.

Proof. For any pair of topologizing subcategories S and T, the thick subcategory
(S•T)∞ generated by S•T coincides with the coproduct S∞⊔T∞ of the thick subcategories
S∞ and T∞ generated respectively by S and T.

Similarly, (S • T)− coincides with the coproduct S− ∨ T− of Serre subcategories gen-
erated respectively by S and T.

In other words, the maps

T(X) −→ Th(X), T 7−→ T∞, and T(X) −→ Se(X), T 7−→ T−, (1)
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are morphisms of monoidal preorders resp.

(T(X), •) −→ (Th(X),⊔) and (T(X), •) −→ (Se(X),∨).

It remains to verify that the maps (1) transfer cocovers to cocovers, or, equivalently,
for any finite set {Ti | i ∈ J} of topologizing subcategories of CX , there are equalities

( ⋂

i∈J

Ti
)∞

=
⋂

i∈J

T∞
i and

( ⋂

i∈J

Ti
)−

=
⋂

i∈J

T−
i .

The first equality is proven in [R4, 4.6.1] and the second equality is the assertion [R4, 4.1].
Altogether proves (b) and (c). The assertion (a) is a consequence of (b) and (c).
In fact, for any finite set {S, Ti | i ∈ J} of thick subcategories, we have by (b)

⋂

i∈J

(Ti ⊔ S) =
⋂

i∈J

(S • Ti)
∞ =

( ⋂

i∈J

S • Ti
)∞

=
(
S • (

⋂

i∈J

Ti)
)∞

= S ⊔
( ⋂

i∈J

Ti
)
,

Similarly, if {S, Ti | i ∈ J} are Serre subcategories, then it follows from (c) that

⋂

i∈J

(Ti ∨ S) =
⋂

i∈J

(S • Ti)
− =

( ⋂

i∈J

S • Ti
)−

=
(
S • (

⋂

i∈J

Ti)
)−

= S ∨
( ⋂

i∈J

Ti
)
,

hence the assertion.

C1.5. Monoidal subcategories of (T(X), •) and topologies on spectra. Any
full monoidal subcategory G of (T(X), •) closed under arbitrary intersections defines a
topology τG on Spec0t (X) (hence on Spec(X)) by taking V 0

t (T) = {P ∈ Spec0t (X) | P ⊆
T} (resp. V (T) = {P ∈ Spec(X) | P ⊆ T}), T ∈ G, as the set of closed subsets.

The map G 7−→ τG is a surjective map from the family of full monoidal subcategories
of (T(X), •) closed under arbitrary intersections onto the set of topologies on Spec0t (X)
which are coarser than the topology τ0t corresponding to T(X).

C1.6. Coarse Zariski topology. Suppose that the category CX has supremums of
sets of subobjects (for instance, CX has infinite coproducts). Then, by [R, III.6.2.2], the
intersection of any set of reflective topologizing subcategories is a reflective topologizing
subcategory. Taking as G the subcategory Tc(X) of reflective topologizing subcategories,
we obtain the coarse Zariski topology on Spec0t (X) which we denote by τ0z . Its restriction
to Spec(X) will be denoted by τz.

C1.6.1. Proposition. Suppose CX has the property (sup) and a generator of finite
type. Then the topological space (Spec(X), τz) is quasi-compact.
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Proof. See [R, III.6.5.2.1].

C1.6.2. Example. Example C1.2.6 shows that if CX is the category of quasi-
coherent sheaves on a (commutative) scheme X, then the elements of Tc(X) are categories
of quasi-coherent sheaves on closed subschemes of X. Suppose that the scheme X is quasi-
compact and quasi-separated (more generally, quasi-compact and the embeddings of every
point has a direct image functor). Then Spec(X) is the set of points of the underlying
space of the scheme X and closed sets of the Zariski topology on Spec(X) are spectra of
closed subschemes. So that the Zariski topology on Spec(X) coincides with the Zariski
topology in the conventional sense.

C1.6.3. Example: Zariski topology on an affine noncommutative scheme.
Let CX = R − mod for an associative unital ring R. It follows from C1.6.1 that the
topological space (Spec(X), τz) is quasi-compact.

This fact is a special case of a much stronger assertion: the open subset U of the space
(Spec(X), τz) is quasi-compact iff U = U(Tα) = Spec(X)−V (Tα) for a finitely generated
two-sided ideal α of the ring R (cf. C1.2.1).

Two different proofs of this theorem can be found in [R]: I.5.6 and III.6.5.3.1. One of
its consequences is that quasi-compact open sets form a base of the Zariski topology on
Spec(X). In fact, every two-sided ideal α is the supremum of a set {αi | i ∈ J} of its

two-sided subideals, so that U(Tα) = U(sup(Tαi | i ∈ J)) =
⋃

i∈J

U(Tαi) (see C1.2.1).

C1.6.4. Note. Unlike the commutative case, the Zariski topology is trivial or too
coarse in many important examples of noncommutative affine schemes. It follows from the
previous discussion that if CX = R−mod, then the Zariski topology on Spec(X) is trivial
iff R is a simple ring (i.e. it does not have non-trivial two-sided ideals). In particular,
the Zariski topology on Spec(X) is trivial if CX is the category of D-modules on the
affine space An, because the algebra An of differential operators on An is simple. It is not
sufficiently rich in the case when CX is the category of representations of a semisimple Lie
algebra over a field of characteristic zero.

C1.7. Some other canonical topologies. A way to define a topology on Spec0t (X)
(and on Spec(X)) is to single out a class of topologizing subcategories, Ξ, of CX , take
the smallest monoidal subcategory GΞ of (T(X), •) which contains Ξ and is closed under
arbitrary intersections (which are products in (T(X),⊆)) and obtain this way the topology
τ0GΞ

. This is the same as taking the smallest topology on Spec0t (X) for which the sets
V 0
t (T), T ∈ Ξ, are closed.

C1.7.1. The topology τ∗. For instance, taking as Ξ the class of all topologiz-
ing subcategories [M ], where M is an object of finite type, we obtain a topology τ∗ on
Spec(X) which in the case when CX is the category of modules over a commutative ring
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(more generally, the category of quasi-coherent sheaves on a quasi-compact quasi-separated
scheme; see C1.2.6 above) coincides with the Zariski topology. It is drastically different in
most of noncommutative cases. For any simple ring R (in particular, for any Weyl algebra
An), the Zariski topology is trivial, while the topology τ∗ separates distinct points of the
spectrum in Kolmogorov’s sense, i.e. (Spec(X), τ∗) is a Kolmogorov’s space.

C1.7.2. The topology τs. We take as Ξ the set Spec(X) and denote the corre-
sponding topology on Spec(X) by τs. This means that finite unions of sets V (P) form a
base of the closed sets of the topology τs.

Notice that if the category CX has enough objects of finite type (i.e. every nonzero
object of CX has a nonzero subobject of finite type), then the topology τs is coarser than
the topology τ∗. In fact, in this case every element P of Spec(X) is of the form [M ] for
some object M of finite type.

C1.8. Functorialities.

C1.8.1. Proposition. Let CX and CY be abelian categories, and let X
f
−→ Y be a

continuous morphism such that adjunction arrows f∗f∗
ǫf
−→ IdCX and IdCY

ηf
−→ f∗f

∗

are monomorphisms. Then the map T 7−→ [f∗
−1

(T)] defines a morphism of monoids

(T(X), •)
T(f)
−−−→ (T(Y ), •).

Proof. (a) Let X
f
−→ Y be a morphism such that f∗ is semi-exact; i.e. f∗ maps any

exact sequence M ′ −→ M −→ M ′′ to an exact sequence (for instance, f∗ is right, or left

exact). Then f∗
−1

(T) • f∗
−1

(S) ⊆ f∗
−1

(T • S) for any pair T, S of subcategories of CX .

In particular, [f∗
−1

(T)] • [f∗
−1

(S)] ⊆ [f∗
−1

(T • S)].
In fact, if M ′ −→M −→M ′′ is an exact sequence with f∗(M ′) ∈ ObS and f∗(M ′′) ∈

ObT, then f∗(M) ∈ ObT • S, because the sequence f∗(M ′) −→ f∗(M) −→ f∗(M ′′) is
exact, due to the semi-exactness of the functor f∗.

(a1) Notice that the inverse image functor of a continuous morphism is right exact,
hence semi-exact.

(b) In order to prove the inverse inclusion, [f∗
−1

(T)] • [f∗
−1

(S)] ⊇ [f∗
−1

(T • S)], it

suffices to show that [f∗
−1

(T)] • [f∗
−1

(S)] ⊇ f∗
−1

(T • S).
Let f∗(M) ∈ ObT • S; i.e. there is an exact sequence L′ −→ f∗(M) −→ L′′ with

L′ ∈ ObS and L′′ ∈ ObT. Consider the commutative diagram

f∗f∗(L
′) −−−→ f∗f∗f

∗(M) −−−→ f∗f∗(L
′)

ǫf (L
′)

y ǫff
∗(M)

y
y ǫf (L

′′)

L′ −−−→ f∗(M) −−−→ L′′

Since ǫf is a monomorphism and ǫff
∗(M) is a strict epimorphism (coretraction), ǫff

∗(M)
is an isomorphism. The monomorphness of ǫf (L

′) and ǫf (L
′′) imply that f∗f∗(L

′) ∈ ObS
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and f∗f∗(L
′′) ∈ ObT. Thus, we have an exact sequence f∗(L

′) −→ f∗f
∗(M) −→ f∗(L

′′)

with f∗(L
′) ∈ Obf∗

−1

(S) and f∗(L′′) ∈ Obf∗
−1

(T), hence f∗f∗(M) ∈ Obf∗
−1

(T)• f∗
−1

(S).
If the adjunction morphism M −→ f∗f

∗(M) is a monoarrow, the object M belongs to the

subcategory [f∗
−1

(T) • f∗
−1

(S)] = [f∗
−1

(T)] • [f∗
−1

(S)].

C1.8.2. Note. The conditions of C1.8.1 hold if CY is a coreflective full subcategory
of CX and f∗ is the inclusion functor CY →֒ CX . In this case, the adjunction arrow

IdCY
ηf
−→ f∗f

∗ is an isomorphism, and the second adjunction arrow, f∗f∗
ǫf
−→ IdCX , is

a monomorphism.

C2. Supports and specializations. Krull filtrations.

C2.1. Support in Spec(X). Let M be an object of an abelian category CX . The
support of M in Spec(X) is the set Supp(M) of all [P ] ∈ Spec(X) such that M ≻ P , or,
equivalently, [P ] ⊆ [M ].

C2.2. Supports in Spec1(X) and in Spec−(X). The support of an object M of
CX in Spec1(X) is the set Supp1(M) of all P ∈ Spec1(X) such that M 6∈ ObP.

The support of M in the S-spectrum is the set

Supp−(M) = Supp1(M)
⋂

Spec−(X) = Supp1(M)
⋂

Se(X).

C2.3. Lemma. Let M be an object of CX .
(a) The following conditions are equivalent:

(a1) P ∈ Supp1(M);
(a2) M ≻ L for some nonzero object L of P⊛ − P.

(b) The following conditions are equivalent:
(b1) P ∈ Supp−(M);
(b2) M ≻ L for some nonzero object L of P⊛ = P⊛ ∩ P⊥.

Proof. Let CX
q∗P−→ CX/P be the localization functor at P ∈ Spec1(X).

(a1)⇒(a2). The condition P ∈ Supp−(M) means precisely that q∗P(M) 6= 0. On the
other hand, q∗P(L

′) is a quasi-final object of CX/P for every nonzero object L′ of P⊛ −P.
Therefore, q∗P(M) ≻ q∗P(L

′). The latter means that there exists a diagram

M⊕n j′

←− K ′ e′′

−→ L′′ s
−→ L′ (9)

such that Ker(j′) and Cok(s) are objects of P, e′′ is an epimorphism and s is a monomor-
phism. Replacing K ′ by K = K/Ker(j′) and L′ by the cokernel of the composition



64 Chapter 2

Ker(j′) −→ K ′ e′′

−→ L′′, we obtain the diagram M⊕n j
←− K

e
−→ L in which j is a

monomorphism and e is an epimorphism; i.e. M ≻ L. Since q∗P(L) is isomorphic to q∗P(L
′)

and L′ is an object of P⊛ − P, the object L belongs to P⊛ − P too.
(a2)⇒(a1) & (b2)⇒(b1). IfM ≻ L and L 6∈ ObP, thenM 6∈ ObP, i.e. P ∈ Supp1(X).
(b1)⇒(b2). If P ∈ Supp−(M) and L′ is a nonzero object of P⊛ ∩P⊥, then q∗P(M) ≻

q∗P(L
′) which is expressed by the diagram (9). Since this time L′ is a P-torsion object, the

composition ofKer(j′) −→ K ′ e′′

−→ L′′ is zero. Therefore, replacingK ′ byK = K ′/Ker(j′),

we obtain a diagram M⊕n j
←− K

e′′

−→ L′′ →֒ L′ in which j is a monomorphism and e′′ is an
epimorphism. So that M ≻ L′′, where L′′ is a subobject of an object of P⊛ ∩ P⊥, hence
L′′ belongs to P⊛ ∩ P⊥.

C2.4. Proposition. Let P1, P2 be elements of Spec−(X). Then the following
conditions are equivalent:

(a) P2 ⊆ P1;
(b) for every nonzero object M1 of P⊛

1 ∩ P
⊥
1 , there exists a nonzero object M2 of

P⊛
2 ∩ P

⊥
2 such that M1 ≻M2.

(c) There exists a nonzero object M1 of P⊛
1 ∩P

⊥
1 with the following property: for any

nonzero subobject L1 of M1, there is an object M2 of P⊛
2 ∩ P

⊥
2 such that L1 ≻M2.

Proof. (a)⇒(b). If P2 ⊆ P1 and M1 is a nonzero object of P⊛
1 ∩ P

⊥
1 ), then P2 ∈

Supp−(M1). By C2.3(b), there exists an object M2 of P⊛
2 ∩ P

⊥
2 such that M1 ≻M2.

(b)⇒(a). Suppose that P2 * P1; and let N be an object of P2 − P1. In particular,
P1 ∈ Supp−(N). By C2.3(b), there exists a nonzero object M1 of P⊛

1 ∩ P
⊥
1 such that

N ≻ M1. By condition (b), M1 ≻ M2 for some nonzero object M2 of P⊛
2 ∩ P

⊥
2 which

implies that N ≻ M2. The latter is impossible, because N ∈ ObP2 and M2 6∈ ObP2.
Therefore P2 ⊆ P1.

Obviously, (b)⇒(c).
(c)⇒(a). Replacing X by X/(P1 ∩ P2) and the objects M1 and M2 by their images

in CX/(P1∩P2), we can assume that P1 ∩ P2 = 0. Suppose that P2 6= 0. Then P2 is a local

subcategory. If P1 = 0, then CX is local too, and nonzero objects of P⊛
1 ∩ P

⊥
1 = 0t are

precisely quasi-final objects of CX . Since P2 6= 0, it contains 0t; in particular, M1 ∈ ObP2.
This contradicts to the condition (c) according to whichM1 ≻M2 for someM2 ∈ P

⊛
2 ∩P

⊥
2 .

Suppose now that both P1 and P2 are nonzero, hence both of them are local. There
exists a quasi-final object L2 of P2 and a monomorphism L2 −→ M1 such that M1/L2 ∈
ObP1. By condition (c), there exists a nonzero object M2 of P⊛

2 ∩P
⊥
2 such that L2 ≻M2.

Since L2 ∈ P2, we run into a contradiction again. Altogether shows that P2 = 0.

C2.5. The Krull filtration of Spec−(X) and the associated filtration of X.
Fix an abelian category CX . For every cardinal α, we define a subset S−

α (X) of Spec−(X)
as follows.
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S−
0 (X) = ∅;

if α is not a limit cardinal, then S−
α (X) consists of all P ∈ Spec−(X) such that any

P ′ ∈ Spec−(X) properly contained in P belongs to S−
α−1(X);

if α is a limit cardinal, then S−
α (X) =

⋃

β<α

S−
β (X).

It follows from this definition (borrowed from [R, VI.6.3]) that S−
1 (X) consists of all

closed points of Spec−(X).
We denote by S−

ω (X) the union of all S−
α (X). The filtration {S−

α (X)} determines a
filtration

CX0 →֒ CX1 →֒ . . . CXα →֒ . . . (5)

of the category CX (or the ’space’ X) by taking as CXα the full subcategory of CX
generated by objects M such that Supp−(M) ⊆ S−

α (X). Recall that Supp−(M) = {P ∈
Spec−(X) | M 6∈ ObP}. In particular, CXω is the full subcategory of CX generated by all
M ∈ ObCX such that Supp−(M) ⊆ S−

ω (X).
It follows from the general properties of supports that CXα is a Serre subcategory

of CX and Spec−(Xα) is naturally identified with S−
α (X); in particular, Spec−(Xω) is

identified with S−
ω (X).

C2.6. The Krull dimension. For every element P of Spec−(Xω), there is the
biggest cardinal, ht−(P), among all the cardinals α such that P 6∈ S−

α (X). The cardinal
ht−(P) is called the hight of P ([R, VI.6.3]).

The Krull dimension of X is the supremum of all ht−(P), where P runs through
Spec−(Xω) (in [R] it is called the flat dimension).

An object M of CX is said to have a Krull dimension if it belongs to the subcategory
CXω . Finally, the ’space’ X (or the category CX) has a Krull dimension if X = Xω (that
is CX = CXω ) and every nonzero object of CX has a nonempty support, i.e. CX0 = O.

C2.7. The Krull dimension and the Gabriel-Krull dimension. We recall the
notion of the Gabriel filtration of an abelian category as it is defined in [R, 6.6]. Let CX
be an abelian category. The Gabriel filtration of X assigns to every cardinal α a Serre
subcategory CX−

α
of CX which is constructed as follows:

Set CX−
0
= O.

If α is not a limit cardinal, then CX−
α

is the smallest Serre subcategory of CX con-
taining all objects M such that the localization q∗α−1(M) of M at CX−

α−1
has a finite

length.
If β is a limit cardinal, then CX−

β
is the smallest Serre subcategory containing all

subcategories CX−
α

for α < β.
Let CX−

ω
denote the smallest Serre subcategory containing all the subcategories CX−

α
.

It follows that the quotient category CX/X−
ω

has no simple objects.
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An objectM is said to have the Gabriel-Krull dimension β, if β is the smallest cardinal
such that M belongs to CX−

β
.

The ’space’ X has a Gabriel-Krull dimension if X = X−
ω .

Every locally noetherian abelian category (e.g. the category of quasi-coherent sheaves
on a noetherian scheme, or the category of left modules over a left noetherian associative
algebra) has a Gabriel-Krull dimension.

It is argued in [R, VI.6] that if X has a Gabriel-Krull dimension, then the filtration
(5) coincides with the Gabriel filtration of the category CX . In particular, X has a Krull
dimension: X = Xω = X−

ω . Thus, the Krull dimension is an extension of the Gabriel-Krull
dimension to a wider class of ’spaces’.

C2.8. A description of Spec⋊(Xω). The filtration {S
−
α (X)} of Spec−(X) induces,

via the isomorphism Spec⋊(X) ∼−→ Spec−(X) (defined in 6.4), a filtration {S⋊
α (X)} of

the spectrum Spec⋊(X). We call it the Krull filtration of Spec⋊(X).

C2.8.1. Proposition. The spectrum Spec⋊(Xω) of Xω is naturally isomorphic to⋃

α

Spec⋊(Xα/Xα−1), and Spec−(Xω) is isomorphic to
⋃

α

Spec−(Xα/Xα−1), where α

runs through non-limit cardinals. These isomorphisms are compatible with the isomor-
phisms Spec⋊(Xω)

∼−→ Spec−(Xω) and Spec⋊(Xα/Xα−1)
∼−→ Spec−(Xα/Xα−1).

Proof. More precisely,

Spec⋊(Xω) =
⋃

α

(S⋊

α (X)−S⋊

α−1(X)),

where α runs though non-limit cardinals, and for every non-limit cardinal α, there is a
natural isomorphism

S⋊

α (X)−S⋊

α−1(X) ∼−→ Spec⋊(Xα/Xα−1). (6)

The isomorphism (6) is given by the map S⋊
α (X) −→ T(X/Xα−1) which assigns to

every element P⊛ of S⋊
α (X) the smallest topologizing subcategory [q∗α−1(P⊛)] of CX/Xα−1

spanned by the image of P⊛.
Let P ∈ Spec−(Xω), i.e. P ∈ Sα(X) for some α. Consider all cardinals β such that

CXβ ⊆ P. Since P is a Serre subcategory, the smallest Serre subcategory spanned by all

CXβ coincides with CXα−1 for a non-limit cardinal α. The image P⊛ = P⊛ ∩ P⊥ of P in

Spec⋊(X) is an element of S⋊
α (X)−S⋊

α−1(X).

C2.9. The Krull filtrations and equivalences of categories.



The Spectra of ’Spaces’ Represented by Abelian Categories. 67

C2.9.1. Proposition. Let CX and CY be abelian categories. Any category equiva-

lence CX
Θ
−→ CY induces equivalences CXα

Θα−→ CYα for all cardinals α. In particular, Θ

induces a category equivalence CXω
Θω−→ CYω

Proof. The argument is by (transfinite) induction. The assertion is, obviously, true
for α = 0. It is also true for α = 1: if P is a closed point of Spec−(X), then [Θ(P)] is a
closed point of Spec−(Y ).

Suppose now that Θ induces equivalences CXα
Θα−→ CYα for all cardinals α < β. We

claim that then it induces a category equivalence CXβ
Θβ
−→ CYβ .

(a) If β is a limit cardinal, then it follows from the definition of the filtration (cf.

C2.5), that CXβ =
( ⋃

α<β

CXα
)−
. By the induction hypothesis, Θ induces a category

equivalence
⋃

α<β

CXα −−−→
⋃

α<β

CYα . It is easy to show that if Θ induces an equivalence

between a subcategory T of CX and a subcategory S of CY , then Θ induces an equivalence

T− −→ S−. In particular, Θ induces a category equivalence from CXβ =
( ⋃

α<β

CXα
)−

to

CYβ =
( ⋃

α<β

CYα
)−
.

(b) Suppose now that β is not a limit cardinal. By the induction hypothesis, Θ in-
duces a category equivalence CXβ−1

−→ CYβ−1
; hence Θ induces an equivalence between

quotient categories CX/Xβ−1

Θ̂β−1

−−−→ CY/Yβ−1
. The equivalence Θ̂β−1 induces an equiva-

lence C(X/Xβ−1)1 −−−→ C(Y/Yβ−1)1 . Notice that CXβ is the preimage of C(X/Xβ−1)1 in CX .

Similarly for CYβ . Therefore Θ induces a functor CXβ
Θβ
−−−→ CYβ and its quasi-inverse,

Θ∗, induces a functor CYβ

Θ∗
β

−−−→ CXβ . Since Θ is an equivalence, Θβ is an equivalence
with a quasi-inverse Θ∗

β .

C2.9.2. Proposition. Any category equivalence CX
Θ
−→ CY induces isomorphisms

S−
α (X) ∼−→ S−

α (Y ) and S⋊

α (X) ∼−→ S⋊

α (Y )

for all cardinals α. In particular, Θ induces an isomorphisms

S−
ω (X) ∼−→ S−

ω (Y ) and S⋊

ω (X) ∼−→ S⋊

ω (Y ).
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Proof. The assertion follows from C2.9.1 and from the fact that the natural isomor-
phisms

S−
α (X) ≃ Spec−(Xα), S⋊

α (X) ≃ Spec⋊(Xα)

are compatible with category equivalences for all cardinals α. In particular, we have
commutative diagrams

S−
ω (X)

∼

−−−→ S−
ω (Y ) S⋊

ω (X)
∼

−−−→ S⋊
ω (Y )

≀
y

y≀ and ≀
y

y≀
Spec−(Xω)

∼

−−−→ Spec−(Yω) Spec⋊(Xω)
∼

−−−→ Spec⋊(Yω)

Details are left to the reader.

C2.9.3. Corollary. Let CX be an abelian category and CX
Θ
−→ CX an autoequiva-

lence.
(a) If P ∈ Spec−(Xω), then Θ(P) ⊆ P ⇔ [Θ(P)] = P ⇔ P ⊆ [Θ(P)].

(b) If P⊛ ∈ Spec⋊(Xω), then Θ(P⊛) ⊆ P⊛ ⇔ [Θ(P⊛)) = P⊛ ⇔ P⊛ ⊆ [Θ(P⊛)).

(a) If P ∈ Spec(Xω), then Θ(P) ⊆ P ⇔ [Θ(P)] = P ⇔ P ⊆ [Θ(P)].

Here [Θ(P)] and [Θ(P⊛)) coincide with strictly full subcategories of CX generated by
resp. Θ(P) and Θ(P⊛).

Proof. (a) (i) Let Θ(P) ⊆ P. If P * [Θ(P)], then ht−([Θ(P)]) < ht−(P). By C2.9.1,
this implies that ht−([Θ∗Θ(P)]) ≤ ht−([Θ(P)]) < ht−(P). But, since Θ∗ is a quasi-inverse
to Θ, [Θ∗Θ(P)] = P. Therefore P = [Θ(P)].

(ii) The implication P ⊆ [Θ(P)]⇒ [Θ(P)] = P follows from (i), because the inclusion
P ⊆ [Θ(P)] is equivalent to the inclusion Θ∗(P) ⊆ P.

(b) The assertion (b) follows from (a) and the observation that the isomorphism
Spec−(X) ∼−→ Spec⋊(X) (cf. 6.4) is compatible with the actions of auto-equivalences

on resp. Spec−(X) and Spec⋊(X).
(c) The assertion (c) follows from (b) and an observation that the canonical embedding

Spec(X) −→ Spec⋊(X), P 7−→ P ∩ 〈P〉⊥

is compatible with the actions of auto-equivalences on resp. Spec(X) and Spec⋊(X).
Details are left to the reader.

C3. Local properties of spectra and closed points.

C3.1. Closed points of spectra and Gabriel-Krull dimension. If X has a
Gabriel-Krull dimension, then the set Spec1,1t (X)1 of the closed points of Spec1,1t (X)
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coincides with the set Spec−(X)1 of the closed points of Spec−(X). Since in this case
Spec−(X) = Spec1Se(X), the spectra Spec1Se(X), Spec−(X), and Spec1,1t (X) have the
same sets of closed points.

C3.2. Lemma. Suppose that every nonzero object of CX has a non-empty support
in Spec(X) (for instance, CX has enough objects of finite type; cf. C2.1). Then for any
closed point P in Spec1,1t (X) and for any thick subcategory T of CX such that T ⊆ P, the
subcategory P/T of CX/T is a closed point in Spec1,1t (X/T).

Proof. By 3.2(ii), P = Q̂ for a uniquely determined by this equality element Q of
Spec(X), which is a closed point in Spec(X), since P is a closed point in Spec1,1t (X).
We claim that image [q∗(Q)] of Q is T (X/T) is a closed point of Spec(X/T).

In fact, let Q′ be a nonzero topologizing subcategory of CX/T contained in [q∗(Q)].

This means that the preimage Q′′ = q∗
−1

(Q′) of Q′ in CX is a topologizing subcategory of

CX which does not contain T and is contained in q∗
−1

([q∗(Q)]). By 5.1.1, q∗
−1

([q∗(Q)]) =
T • Q • T. Any object M of the subcategory T • Q • T can be described by the diagram

M ′
1 ←−−− 0y

0 −−−→ M1 −−−→ M −−−→ M2 −−−→ 0y
M ′′

1 −−−→ 0

(1)

which incorporates two short exact sequences such that the objects M ′
1 and M2, belong to

T, and M ′′
1 ∈ ObQ. One can see from this description that M is an object of T •Q•T−T

iff M ′′
1 is an object of Q − T. It follows from the diagram (1) that M ′′

1 ∈ Ob[M ]. Since
T + Q′′ ⊆ T • Q • T, the topologizing subcategory Q′′ ∩ Q is not contained in T. In
particular, it is nonzero. Let M be a nonzero element of Q′′∩Q. By hypothesis, Supp(M)

is non-empty; i.e. there exists an element Q̃ of Spec(X) such that Q̃ ⊆ [M ]. Thus, we

have inclusions Q̃ ⊆ [M ] ⊆ Q′′ ∩ Q ⊆ Q. Since Q is a closed point of Spec(X), the

inclusion Q̃ ⊆ Q implies that Q̃ = Q. Therefore the inclusions above can be replaced by
equalities. In particular, Q′′ ∩Q = Q, that is Q ⊆ Q′′ which means that Q′ coincides with
[q∗(Q)] = (T • Q • T)/T.

C3.2.1. Corollary. Suppose that every nonzero object of CX has a non-empty
support in Spec(X). Then every closed point of Spec1,1t (X) is a closed point of Spec1(X).

Proof. Let P be a closed point of Spec1,1t (X); and let P1 be an element of Spec1(X)
such that P1 ⊆ P. By C3.2, P/P1 is a closed point of Spec1,1t (X/P1). But, X/P1 is
a local ’space’, hence it has a unique closed point – 0. This shows that P/P1 = 0, i.e.
P = P1.
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C3.3. Proposition. Suppose that CX is an abelian category with the property (sup).

Let {Ti | i ∈ J} be a finite set of Serre subcategories of CX such that
⋂

i∈J

Ti = 0. Then

(a) A point P of Spec−(X) is closed iff P/Ti is a closed point of Spec−(X/Ti) for
every i ∈ J such that Ti ⊆ P.

(b) Suppose that every nonzero object of CX has a nonzero support in Spec(X). Then
a point P of Spec1,1t (X) is closed iff P/Ti is a closed point of Spec1,1t (X/Ti) for every
i ∈ J such that Ti ⊆ P.

Proof. (a) If P ∈ Spec−(X), then P/Ti ∈ Spec−(X/Ti) for all i such that Ti ⊆ P.
And if P is a closed point, then P/Ti is a closed point.

In fact, if Ti ⊆ P, then P/Ti is an element of Spec1(X/Ti); and P/Ti is a Serre subcat-
egory of CX/Ti (due to the reflectivity of the Serre subcategory Ti which is a consequence
of the property (sup)). Therefore, it belongs to Spec−(X/Ti). If P ′ ∈ Spec−(X/Ti)
and P ′ ⊆ P, then the preimage P ′′ of P ′ in CX is a Serre subcategory which belongs
to Spec−(X) and is contained in P. Thus, if P is a closed point of Spec−(X/Ti), then
P ′′ = P, hence P ′ = P/Ti.

(a1) Conversely, let P/Ti be closed for all i ∈ J such that Ti ⊆ P. Then we claim that
P is closed. If the number Card(J) = 1, then the statement is true by a trivial reason. In
the general case, let P ′ be an element of Spec−(X) such that P ′ ⊆ P. And let JP′

denote
the set {i ∈ J | Ti * P ′}. Since J is finite, by 9.3, there exists i ∈ J such that Ti ⊆ P

′.

Therefore Card(JP′

) < Card(J). By (the end of the argument of) C1.4.1(c) (or [R4, 4.2]),

P ′ = (
⋂

i∈J

Ti) ∨ P
′ =

⋂

i∈J

(Ti ∨ P
′) =

⋂

i∈JP′

(Ti ∨ P
′).

So that {T ′
i = (Ti ∨ P

′)/P ′, i ∈ JP′

} is a set of Serre subcategories of CX/P
′ whose

intersection is zero. The point P̃ = P/P ′ of Spec−(X/P ′) is such that that P̃/T ′
i is a closed

point of Spec−(X/(Ti∨P
′) for all i ∈ JP′

such that T ′
i ⊆ P̃. Since Card(J

P′

) < Card(J),

by induction hypothesis, P̃ is a closed point of X/P ′. The latter ’space’ being local, this

means that P̃ = 0, or, equivalently, P = P ′.

(b) If P is a closed point of Spec1,1t (X), then, by C3.2, P/Ti is a closed point of
Spec1,1t (X/Ti) for every i ∈ J such that Ti ⊆ P.

Conversely, suppose that P ∈ Spec1,1t (X) is such that P/Ti is a closed point of the
spectrum Spec1,1t (X/Ti) if Ti ⊆ P. Let P

′ be an element of Spec1,1t (X) such that P ′ ⊆ P.
By 9.3, there exists i ∈ J such that Ti ⊆ P

′; in particular, Ti ⊆ P. Since P
′/Ti is a point of

Spec1,1t (X/Ti) and P/Ti is a closed point, the inclusion P ′/Ti ⊆ P/Ti implies that P ′/Ti
and P/Ti coincide. Therefore, P

′ = P.
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C3.3.1. Corollary. Suppose that CX is an abelian category with the property (sup).

Let {Ti | i ∈ J} be a finite set of Serre subcategories such that
⋂

i∈J

Ti = 0 and for every

i ∈ J , any element of Spec−(X/Ti) contains a closed point of Spec−(X/Ti). Then every
element of Spec−(X) contains a closed point of Spec−(X).

Proof. Let P ∈ Spec−(X). Since
⋂

i∈J

Ti = 0, there exists JP = {i ∈ J | Ti ⊆ P}

is non-empty. Fix an i ∈ JP . By hypothesis, Pi ⊆ P, where Pi/Ti is a closed point of
Spec−(X/Ti). If JPi = {i}, then, by C3.3(a), Pi is a closed point of Spec−(X). If JPi
contains more than one element, we take j ∈ JPi −{i} and repeat the argument replacing
P by Pi; and so on. Since J is finite, the process stabilizes. As a result, we find an element
P ′ of Spec−(X) such that P ′ ⊆ P and P ′/Tj is a closed point of Spec−(X/Tj for every
j ∈ JP′ . By C3.3(a), the latter means that P ′ is a closed point of Spec−(X).

C3.3.2. Corollary. Suppose that CX is an abelian category with the property (sup).

Let {Ti | i ∈ J} be a finite set of Serre subcategories such that
⋂

i∈J

Ti = 0 and for every

i ∈ J , the set Spec1,1t (X/Ti)1 of the closed points of Spec1,1t (X/Ti) contains the set
Spec−(X/Ti)1 of the closed points of Spec−(X/Ti). Then Spec−(X)1 ⊆ Spec1,1t (X)1.

Suppose that, in addition, one of the following conditions holds:

(a) For all i ∈ J , every element of Spec−(X/Ti) contains a closed point.

(b) Every nonzero object of CX has a non-empty support in Spec(X).

Then Spec−(X)1 and Spec1,1t (X)1 coincide.

Proof. Let P be a closed point of Spec−(X). By C3.3, P/Ti is a closed point of
Spec−(X/Ti) for all i ∈ JP = {j ∈ J | Tj ⊆ P}. By hypothesis, P/Ti is a closed point of

Spec1,1t (X/Ti) for all i ∈ JP . By 7.1, P ∈ Spec1,1t (X). Since P is a closed point of the
space Spec−(X), it is, definitely, a closed point of its subspace Spec1,1t (X). This shows
the inclusion Spec−(X)1 ⊆ Spec1,1t (X)1.

(a) Let P ∈ Spec1,1t (X). Since P is an element of Spec−(X), by C3.3.1, P ⊇ P ′,
where P ′ is a closed point of Spec−(X). By C3.3(a), for every i ∈ JP′ = {j ∈ J | Tj ⊆ P

′},
the quotient subcategory P ′/Ti is a closed point of Spec−(X/Ti), hence, by hypothesis, it
belongs to Spec1,1t (X/Ti). By 7.1, the latter implies that P ′ belongs to Spec1,1t (X). Since
it P ′ is a closed point of Spec−(X), it is a closed point of Spec1,1t (X).

(b) If every nonzero object of CX has a non-empty support, then, by C3.2.1, we have
the inverse inclusion: Spec1,1t (X)1 ⊆ Spec−(X)1.

C3.4. Proposition. Let CX be an abelian category and {Ti | i ∈ J} a finite set of

thick subcategories such that
⋂

i∈J

Ti = 0. Suppose that each category CX/Ti has enough ob-
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jects of finite type. Then closed points of Spec(X) are in a natural bijective correspondence
with the isomorphism classes of simple objects of CX .

Proof. Let u∗i denote the localization functor CX −→ CX/Ti. Let M be an object of

Spec(X) such that [M ] be a closed point of Spec(X). Since
⋂

i∈J

Ti = 0, there is an i ∈ J

such that M 6∈ Ti. Therefore, [u
∗
i (M)] is a closed point of Spec(X/Ti). Since the category

CX/Ti = CX/Ti has enough objects of finite type, all closed points of Spec(X/Ti) corre-
spond to simple objects. In particular, u∗i (M) is the direct sum of a finite number of copies
of a simple object u∗i (L), and there is a monomorphism u∗i (L) −→ u∗i (M). This monomor-

phism is described by a diagram L
s
←− L′ j′

−→ M such that u∗i (s) is an isomorphism and
Ker(j′) belongs to Ti. Since the object M is Ti-torsion free, the object Li = L′/Ker(j′)
is Ti-torsion free too. It follows that u∗i (Li) is isomorphic to u∗i (L). In particular, Li is a
nonzero subobject of M . Since M ∈ Spec(X), the object Li also belongs to Spec(X) and
[Li] = [M ]. So, we replace M by Li. Repeating this procedure consecutively for all j ∈ J
such that M does not belong to Tj , we replace M by its subobject, N such that for any
j ∈ J , the object u∗j (N) is either zero, or simple. Since N belongs to Spec(X), it follows

that for every nonzero monomorphism N ′ h
−→ N , its image u∗i (h) is an isomorphism for

every i ∈ J . The condition
⋂

i∈J

Ti = 0 means that the family of localization functors

{CX
u∗
i−→ CX/Ti | i ∈ J} is conservative; hence h is an isomorphism. This shows that N is

a simple object. Therefore, M is isomorphic to the coproduct of a finite number of copies
of N .

The following proposition is a refinement of 1.6.2.

C3.5. Proposition. Suppose that CX is an abelian category with the property (sup).

Let {Ti | i ∈ J} be a finite set of Serre subcategories of CX such that
⋂

i∈J

Ti = 0, and for

every i ∈ J , the category CX/Ti has enough objects of finite type. Then

(a) The intersection Spec(X)
⋂
Spec(Xo) coincides with the set Spec(X)1 of closed

points of Spec(X), and closed points of Spec(X) are of the form [M ], where M runs
through simple objects of CX .

(b) Closed points of Spec−(X)) are in bijective correspondence with the isomorphism
classes of simple objects of CX .

Proof. (a) By C3.4, closed points of Spec(X) are of the form [M ], where M runs
through simple objects of CX . Since simple objects of CX and CopX = CXo are the same,
the set Spec(X)1 of closed points of Spec(X) is contained in Spec(X) ∩ Spec(Xo).
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(a1) Let U denote the finite cover {Ui = X/Ti
ui−→ X | i ∈ J} associated with

{Ti | i ∈ J}. And let Spec1,1℘ (U) = {P ∈ Th(X) | P/Ti ∈ Spec1,1t (Ui) if Ti ⊆ P}. By 7.1,

the natural map Spec1,1t (X) −→ Spec1,1℘ (U) is an isomorphism. This isomorphism and

the embedding Spec1,1t (Xo) −→ Spec1,1℘ (Uo) induce an injective map

Spec1,1t (X)
⋂

Spec1,1t (Xo) −−−→ Spec1,1℘ (U)
⋂

Spec1,1℘ (Uo), (2)

where
Spec1,1℘ (U)

⋂
Spec1,1℘ (Uo) =

{P ∈ Spec−(X) | P/Ti ∈ Spec1,1t (Ui)
⋂

Spec1,1t (Uoi ) if Ti ⊆ Pi}.

Since each category CUi = CX/Ti, i ∈ J, has enough objects of finite type, it follows
from 1.6.2 and the isomorphism Spec(Ui)

∼−→ Spec1,1t (Ui) (see 3.2(ii)) that the intersec-
tion Spec1,1t (Ui)

⋂
Spec1,1t (Uoi ) coincides with the set of closed points of Spec1,1t (Ui) and

these closed points are in bijective correspondence with isomorphism classes of simple ob-
jects of the category CUi . It follows now from (the argument of) C3.4 and the isomorphism
Spec(X) ∼−→ Spec1,1t (X) (see 3.2(ii)) that the map (2) above is bijective.

(b) Notice that the conditions of this proposition imply the conditions (a) and (b) of
C3.3.2. In particular, by C3.3.2, the spectra Spec−(X) and Spec1,1t (X) have the same
closed points. The assertion follows this fact and from (a) above.

C3.6. Semilocal ’spaces’.

C3.6.1. Proposition. Suppose that there is a finite subset {Pi | i ∈ J} of Spec
−(X)

such that
⋂

i∈J

Pi = 0. Then P ∈ Spec−(X) is a closed point iff it is a closed point of

Spec1,1t (X), i.e. it is of the form P = 〈L〉 for an object L of Spec(X).
The set of closed points of Spec−(X) coincides with the set of minimal elements of

{Pi | i ∈ J}.

Proof. Let P be a closed point of Spec−(X)). By 9.3, the set JP = {i ∈ J | Pi ⊆ P}
is not empty. Since P is a minimal element of Spec−(X), the set JP consists of all i ∈ J
such that Pi = P. Thus, P/Pi is the zero subcategory of CX/Pi which is the only closed
point of the local space X/Pi = X/P. By 7.1, P is an element of Spec1,1t (X). Since
Spec1,1t (X) is a subset of the spectrum Spec−(X) and P is a closed point of the latter,
it is a closed point of Spec1,1t (X).

This argument shows that the set of closed points of Spec−(X) is a subset of the set
of minimal elements of {Pi | i ∈ J}, and that it is a subset of closed point of Spec1,1t (X).

Notice that every minimal element of {Pi | i ∈ J} is a closed point of Spec−(X).
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In fact, let Pj be a minimal element of the set {Pi | i ∈ J}, and let P ′ ∈ Spec−(X)
be a subcategory of Pj . The set JP′ = {i ∈ J | Pi ⊆ P

′} is non-empty, and Pm ⊆ P
′ ⊆ Pj

for every m ∈ JP′ . Since Pj is a minimal element, this implies that Pm = P ′ = Pj .

Let P ∈ Spec1,1t (X). The set JP = {i ∈ J | Pi ⊆ P} is not empty. Let Pi be a
minimal element of {Pj | j ∈ JP}. Then, by the argument above, Pi is a closed point of

Spec−(X), hence it is a closed point of Spec1,1t (X) which is contained in P. Thus, if P
is a closed point of Spec1,1t (X), then Pi = P.

C3.6.2. Corollary. Let CX be an abelian category. The following conditions are
equivalent:

(a) There is a finite subset {Pi | i ∈ J} of Spec
−(X) such that

⋂

i∈J

Pi = 0.

(b) The set Spec−(X)1 of closed points of Spec−(X) is finite, and the intersection⋂

P∈Spec−(X)1

P is zero.

(c) The set Spec−(X)1 is finite, and the support in Spec−(X) of any nonzero object
of CX contains a closed point.

(d) The set Spec1,1t (X)1 of closed points of Spec1,1t (X) is finite, and the support in
Spec(X) of every nonzero object of CX contains a closed point.

Proof. Obviously, (b)⇒ (a). The implication (a)⇒ (b) follows from C3.6.1.

(b) ⇔ (c). If
⋂

P∈Spec−(X)1

P = 0, then for every nonzero object M of CX , there

exists a closed point P of Spec−(X) such that M 6∈ ObP, which means precisely that
P ∈ Supp−(M). Conversely, if every nonzero object of CX has an element of Spec−(X)1

in its support, then
⋂

P∈Spec−(X)1

P = 0.

(d) ⇒ (a). The support in Spec(X) of a nonzero object M contains a point Q, that

is Q ⊆ [M ], means precisely that [M ] * Q̂, or, equivalently, M 6∈ ObQ̂. By 3.2(ii), Q is a

closed point of Spec(X) iff Q̂ ∈ Spec1,1t (X)1. Therefore, the condition (d) implies that⋂

P∈Spec
1,1
t (X)1

P = 0.

The implication (a)⇒ (b) follows from C3.6.1.

C3.6.3. Definition. Let CX be an abelian category. We call the ’space’ X semi-local
if the equivalent conditions of C3.6.2 hold.
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Spectra, Associated Points, and Representations.

Associated points. Each of the spectra gives rise to the corresponding notion of
associated points. Let M be an object of the category CX . An element Q of Spec(X)
is called an associated point of M , if Q = [L] for a nonzero subobject L of M which is

Q̂-torsion free (that is L does not have nonzero subobjects which belong to Q̂; equivalently,

L is right orthogonal to Q̂). We denote the set of associated points of M by Ass(M).
The set Ass−(M) of associated points in Spec−(X) of the object M consists of all

P ∈ Spec−(X) such that the localization MP of M at P has a closed associated point;
that isMP has a nonzero subobject which belongs to the smallest topologizing subcategory
of CX/P. If CX/P has simple objects (which is the case when CX is locally noetherian,
or, more generally, has a Gabriel-Krull dimension), then the condition means precisely
that MP has a nonzero socle. If CX is the category of coherent sheaves on a noetherian
scheme, then this notion coincides with the Grothendieck’s notion of associated points
(prime cycles) of a coherent sheaf.

Associated points in Spec0c(X) are defined similarly to those in Spec(X), and the set
of associated points of an object M is denoted by Assc(M). The reader can now easily
figure out what is the set Ass−c (M) of associated points of M in Spec−c (X).

The natural embeddings

Spec(X) −−−→ Spec0c(X)y
y

Spec−(X) −−−→ Spec−c (X)

(1)

induce the corresponding embeddings of the associated points

Ass(M) −−−→ Assc(M)y
y

Ass−(M) −−−→ Ass−c (M)

All four types of associated points have properties analogous to the known properties
of associated points of modules over commutative rings (see C3).

Induction problem. Let X and X be ’spaces’ represented by abelian categories,

resp. CX and CX , X
f
−→ X a continuous morphism of ’spaces’, P a point of the spectrum

of X. The induction problem is to find representatives M of the spectrum of X such that
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P is an associated point of f∗(M). Here by the spectrum of a ’space’ X we understand
usually Spec0c(X) or Spec(X) and sometimes one the remaining two spectra, Spec−c (X)
or Spec−(X), more precisely, their ’dual’ versions, Specc−(X) and Spec−(X) – natural

extensions of respectively Spec0c(X) and Spec(X) introduced in 2.9.4.

This Chapter is concentrated around a (spectral version of the induction) construction
which gives a solution of this problem in the case when f is a locally affine morphism and
the pair (f,P) satisfies certain additional conditions. We explain first its special case which
can be formulated without preliminaries.

A special case of the construction. Let A and B be associative unital k-algebras,

CX = B−mod, CX = A−mod, and the morphism X
f
−→ X is induced by a k-algebra mor-

phism A
ϕ
−→ B. Fix a simple A-module P . Let B̃P denote the class of all A-subbimodules

N of B which are flat as right A-modules and such that N ⊗A P is isomorphic to a direct
sum of copies of P . We call the supremum, BP , of the family B̃P the stabilizer of P in
B. Pick a simple BP -module M whose restriction to A is isomorphic to the direct sum of
copies of P . The B-module B⊗BP M has the largest B-submodule, tP (B⊗BP M), whose
restriction to A does not have any subquotients isomorphic to P . We denote by LP (M)
the quotient module B ⊗BP M/tP (B ⊗BP M). Under certain additional conditions, the
(multi-valued in general) map P 7−→ LP (M) produces simple B-modules.

An effect of noncommutativity. Notice that the above construction is useless if
the algebras are commutative, because in this case, the stabilizer BP coincides with the
whole algebra B. In general, the size of BP over A can be regarded as a measure of
the noncommutativity of the data (A → B,P ). In the best, noncommutative, case, the
stabilizer BP coincides with the image of A which makes the construction look particularly
familiar: LP (M) ≃ B ⊗AM/tP (B ⊗AM).

The insufficiency of the special case. With rare exceptions, most of isomorphism
classes of simple B-modules cannot be reached this way. But, under certain finiteness
conditions, all isomorphism classes of simple B-modules, more generally, all points of
the spectrum of X (where CX = B − mod), can be realized if we allow P run through
representatives of all, not necessarily closed points of the spectrum of the ’space’ X, where
CX = A−mod. The construction in this case becomes more subtle.

Besides, it is important to consider a non-affine version of this construction in order
to include into the picture D-modules on (quantized and classical) flag varieties and other
(commutative and noncommutative) schemes. Therefore, algebras are replaced by ’spaces’
represented by abelian categories and morphisms of algebras by locally affine morphisms
of ’spaces’. The meaning of the last words is explained above.

Reduction to the affine case and gluing. It follows from the results of [R7] that

if a locally affine morphism X
f
−→ X admits a finite affine cover {Ui

ui−→ X | i ∈ J}, then
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the problem can be split into solving it for each affine morphism Ui
fui
−→ X and checking

certain glueing conditions (explained in Section 7). If the spectrum is Spec0c(X), then the
same holds for arbitrary infinite covers as well.

The construction. A natural setting consists of an abelian category CX endowed
with an action of a svelte monoidal category Ẽ on CX given by a monoidal functor Φ̃ with
values in exact continuous (i.e. having a right adjoint) endofunctors of CX . If CX has
small limits and colimits (say, it is a Grothendieck category), then the forgetful functor

ϕ∗ from the category CA of Φ̃-modules to the category CX is a direct image functor of an

affine morphism, A
ϕ
−→ X, hence (by Beck’s theorem) the category CA can be replaced by

the category of modules over the monad Fϕ associated with (the inverse and direct image
functors of) ϕ and functor ϕ∗ by the forgetful functor Fϕ −mod −→ CX .

To each point P of the spectrum of X, there corresponds its stabilizer which is the full
monoidal subcategory Ẽ(P) of Ẽ (defined in 2.1.1). The category CAP

of modules over the

(induced by Φ̃) action Φ̃(P) of Ẽ(P) is equivalent to the category of modules over a monad
Fϕ

P
, which is also called the stabilizer of P. Thus, we have a commutative diagram

A
f
P

−−−→ AP

ϕց ւ ϕ
P

X

of affine morphisms. Let LP denote the composition of the functor f∗
P
and the functor which

assigns to every object of the category CA the quotient of this object by its ϕ−1
∗ (P̂)-torsion,

where P̂ is the Serre subcategory of CX corresponding to P.
Let Spec0c(A) denote the family of all objects M such that [M ]c = Q is an element

of the spectrum Spec0c(A) and M is cQ̂-torsion free. In other words, objects of Spec0c(A)
are representatives of elements of the spectrum. Let SpecPc (AP) denote the family of all
objects of Spec0c(AP) such that P is an associated point of their image in CX . If the

functor f∗
P

is exact and faithful and the action Φ̃ satisfies certain ’ampleness’ conditions,
then the functor LP transforms every object of SpecPc (AP) into an object of the spectrum
of the ’space’ A. Moreover, every object of the spectrum of A whose image in CAP

has an
associated point which belongs to SpecPc (AP) is equivalent to the image of this associated
point by the functor LP . The functor LP maps simple objects from SpecPc (AP) to simple
objects of CA (see Theorem 2.2 for details).

Finiteness conditions. In the construction above, given a representative M of a
point P of the spectrum of A such that ϕ∗(M) has an associated point P, one needs certain
finiteness conditions which guarantee that P can be obtained via the construction; i.e.
that it coincides with [LP(V )] for some object V of SpecPc AP . The most straightforward
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finiteness conditions say that P is an associated point of ϕ∗(M) of finite multiplicity.
The latter means that the local category CX/P has simple objects and the localization
of ϕ∗(M) at P has a finite socle. The length of this socle is called the multiplicity of the
associated point P in u∗(M). This finiteness condition works for the spectra Spec−(−)
and Spec−c (−) and, in certain cases, for Spec(−) and Spec0c(−).

Holonomic objects. Given a continuous morphism A
ϕ
−→ X, we call an object M

of the category CA holonomic over X if each nonzero subquotient of ϕ∗(M) has associated
points in Spec−c (X) and all these associated points are of finite multiplicity.

If CX is the category of quasi-coherent sheaves on a smooth scheme X and CA is the
category of D-modules on X , then holonomic objects are precisely holonomic D-modules.

If CX is the category of quasi-coherent sheaves on the quantum flag variety of a
semisimple Lie algebra g and CA is the category of quasi-coherent Uq(g)-modules on X
(cf. [LR2]), then holonomic objects are called holonomic quantum D-modules.

All simple holonomic objects can be obtained via the described above construction
(i.e. by applying the functors LP). Thanks to their functorial properties, the description
of holonomic objects is directly reduced to their description on elements of any affine cover.

The first two sections contain preliminaries. Section 1 provides a short dictionary
for ’spaces’ and morphisms of ’spaces’. We remind the notions of continuous, affine, and
flat morphisms of ’spaces’ and basic facts about them needed in the main body of the
text. Section 2 gives a short sketch of spectral theory of ’spaces’ represented by abelian
categories and related notions and facts.

Sections 3 and 4 are dedicated to the mentioned above construction of points of the
spectrum Spec0c(A). We conclude Section 4 with the reduction to the case when CX is
an element of Spec0c(X); i.e. CX is the generic point of X. This reduction is useful for
analyzing special cases. Two of them are considered in Section 3. The first one is when the
functor Fϕ = ϕ∗ϕ

∗ is isomorphic to a direct sum of auto-equivalences. The second case
is when the functor Fϕ differential and exact. The functor Fϕ being differential implies
that Fϕ (as well as every its subquotient) preserves each Serre subcategory of CX . In
combination with the exactness, this implies that Fϕ is compatible with localization at
any Serre subcategory. In each of these two cases, we are able to obtain a much more
detailed picture and in the first case a convenient variant of Theorem 2.2.

Curiously, both cases (which are, in a sense, perpendicular to each other) appear in
the example of the Weyl algebra An. Recall that An is the k-algebra generated by xi, yi
subject to the relations [xi, yj ] = δij , [xi, xj ] = 0 = [yi, yj ] for all 1 ≤ i, j ≤ n.

Taking as CX the category of modules over the polynomial algebra k[y] = k[y1, . . . , yn],
and CA = An −mod, we obtain a differential monad on X with Fϕ = An ⊗k[y] −.

Taking as CX the category of modules over the polynomial algebra k[ξ] = k[ξ1, . . . , ξn],
where ξi = xiyi, 1 ≤ i ≤ n, we obtain the functor Fϕ = An ⊗k[ξ] − which is a direct sum
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of auto-equivalences of the category k[ξ]−mod.
This is discussed in more detail in Section C1 of “Complementary facts”.

One of the main tools of studying spectra is the localization at appropriate Serre sub-
categories. The localization simplifies considerably the picture, so that in many cases it is
not difficult to compute the spectrum of the quotient ’space’. But, unlike the commutative
case, in general, not all points of the spectrum of the quotient ’space’ corresponding to
an ’open’ subspace are localizations of points of the ’space’ we started with. All we can
say is that these points come from the counterpart Specc−(X) of the spectrum Spec−c (X)

(introduced in 2.9). Notice that Spec−c (−) and, therefore, Spec
c
−(−), are functorial with

respect to localizations at Serre subcategories. These are some of the reasons why we need
an analog of Theorem 2.2 for Specc−(X) which is given in Section 4.

In Section 5, we remind local properties of the spectra which allow to construct ele-
ments of the spectra in the case of locally affine morphisms and simplify their construction
in affine cases. We illustrate the general constructions of this work by a rough sketch of
their applications to D-modules on classical and quantum flag varieties. In the classical
case, the local properties of the spectra allow to reduce the study D-modules on the flag
variety to the study of modules over the Weyl algebra An, where n is the dimension of the
flag variety. Following the philosophy of this work, we study the spectrum of the affine
scheme Sp(An) via hyperbolic coordinates, k[ξ] −→ An mentioned above. Some details
of this study are provided in “Complementary facts”. It is worth to mention that Weyl
algebras play also a crucial role in the representation theory of nilpotent Lie algebras:
if g is a finite-dimensional nilpotent Lie algebra over an algebraically closed field of zero
characteristic, then the set of primitive ideals of its universal enveloping algebra U(g) is
parameterized by the orbits of adjoint action on the dual space g∗; and for any primitive
ideal J, the quotient algebra U(g)/J is isomorphic to the Weyl algebra An.

In “Complementary facts”, besides of a fragment of the spectral theory of Weyl al-
gebras obtained via their hyperbolic structure (sketched in Section C1), there are some
remarks, in Section C2, about application of our induction machinery to natural sub-
algebras of the enveloping algebras and their quantum analogs. Thus, we observe that
highest weight modules are recovered by applying our induction functor together with
Harish-Chandra homomorphism to Cartan subalgebras. Similarly in the case of quantized
enveloping algebras. More curious possibilities appear if we use upper triangular part
instead. Section C3 is dedicated to associated points and produces a noncommutative
version of the classical facts of commutative algebra. Section C4 contains facts on affine
morphisms and differential monads, both play a big role in the main body of the text.

1. Actions of monoidal categories, stabilizers of points, induction functors.

1.1. Actions and continuous actions of monoidal categories. Let Ẽ =
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(E ,⊙, I, a; ℓ, r) be a svelte monoidal category with the product ⊙, the unit object I, the
associativity constraint a, and natural isomorphisms I⊙ IdE

ℓ
←− IdE

r
−→ IdE ⊙ I.

An action of the monoidal category Ẽ on a svelte category CX is a monoidal func-

tor Φ̃ = (Φ, φ, φ0) from Ẽ to the monoidal category Ẽnd(CX) = (End(CX), ◦, IdCX ) of
endofunctors of the category CX . Recall that here Φ is a functor E −→ End(CX), φ a
functorial morphism Φ(V ) ◦ Φ(W ) −→ Φ(V ⊙W ), and φ0 a morphism from IdCX (– the

unit object of Ẽnd(CX)) to Φ(I) – the image of the unit object of Ẽ . These morphisms
are related via the commutative diagrams

Φ(V) ◦ Φ(W) ◦ Φ(Z)
φ
V,W

Φ(Z)

−−−−−−−→ Φ(V ⊙W) ◦ Φ(Z)
φ
V⊙W,Z

−−−−−−−→ Φ((V ⊙W)⊙Z)

id
y ≀

y Φ(a
V,W,Z )

Φ(V) ◦ Φ(W) ◦ Φ(Z)
Φ(V)φ

W,Z

−−−−−−−→ Φ(V) ◦ Φ(W ⊙Z)
φ
V,W⊙Z

−−−−−−−→ Φ((V ⊙W)⊙Z)
(1)

Φ(V) ◦ Φ(I)
Φ(V)φ0

←−−− Φ(V)
φ0Φ(V)
−−−→ Φ(I) ◦ Φ(V)

φ
V,I

y id
y

y φ
I,V

Φ(V ⊙ I)
Φ(ℓV)
←−−− Φ(V)

Φ(r
V
)

−−−→ Φ(I⊙ V)

(2)

for all V,W,Z ∈ ObE .

An action Ẽ
Φ̃
−→ Ẽnd(CX) will be called continuous if Φ̃ takes values in the full

monoidal subcategory Ẽndc(CX) = (Endc(CX), ◦, IdCX ) of Ẽnd(CX) generated by all
continuous endofunctors of the category CX .

1.1.1. Example: actions of the trivial monoidal category and monads. Let Ẽ•
be the trivial monoidal category; i.e. the category consisting of one object and one (hence

identical) morphism. The category of actions of Ẽ• on the category CX is isomorphic to
the category Mon(CX) of monads on the category CX .

In fact, each action Φ̃ = (Φ, φ, φ0) is determined by the image, F = Φ(I), of the

unique (unit) object of the category E• and the morphism F ◦ F
φ
−→ F . The fact that

Φ̃ is a monoidal functor, means precisely that φ is associative, i.e. φ ◦ Fφ = φ ◦ φF , and

IdCX
φ0
−→ F is the unit of F = Φ(I): φ ◦ Fφ0 = idF = φ ◦ φ0F .

The map Φ̃ 7−→ F
Φ̃
= (Φ(I), φ) extends naturally to an isomorphism from the category

of actions of Ẽ• on CX and the category of monads on CX . This isomorphism induces an
isomorphism between the category of continuous actions of Ẽ• on CX and the category of
continuous monads on CX .
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1.2. Modules over an action and the associated monad. Fix a continuous
action Φ̃ = (Φ, φ, φ0) of a svelte monoidal category Ẽ = (E ,⊙, I, a) on the category CX .
The forgetful functor

(Φ̃/X)−mod
ϕ∗

−−−→ CX

preserves small limits. Suppose that the category CX is small-complete (i.e. it has small
limits). Since the categories CX and E are svelte, this implies, by Freyd adjoint functor
theorem, the existence of a left adjoint, ϕ∗, to ϕ∗. The functor ϕ∗ is exact and conservative.
Therefore, by Beck’s theorem, the category (Φ̃/X)−mod is equivalent to the category of
modules over a monad, Fϕ = (Fϕ, µϕ), where Fϕ = ϕ∗ϕ

∗. More precisely, the forgetful
functor ϕ∗ is equivalent to the forgetful functor Fϕ −mod −→ CX .

Notice that the latter implies that the category (Φ̃/X)−mod is small-complete too.
Assume in addition that the category CX has small colimits. It follows from the fact

that the functor Φ takes values in the category of continuous endofunctors of CX that the
functor ϕ∗ preserves small colimits, hence it has a right adjoint, ϕ!. The latter is equivalent
to the fact that the monad Fϕ is continuous.

1.3. Colimits of actions. Identifying the category (Φ̃/X)−mod of Φ̃-modules with
the category (Fϕ/X)−mod, we can take as ϕ∗ the functor which assigns to every object V
of the category CX the Fϕ-module Fϕ(V ) = (Fϕ(V ), µϕ(V )). On the other hand, ϕ∗(V )

is an (Φ̃/X)-module; that is we have an action Φ(−) ◦Fϕ(V )
ξϕ(V )

−−−→ Fϕ(V ) of Ẽ on Fϕ(V )
which is functorial in V . Taking the composition of this action with the morphism

Φ(−) = Φ(−) ◦ IdCX
Φ(−)ηϕ
−−−→ Φ(−) ◦ Fϕ(V )

(where ηϕ is an adjunction arrow), we obtain a cone Φ(−)
γϕ
−→ Fϕ. Note that monads on

CX can be identified with constant monoidal functors from Ẽ to Ẽnd(CX). One can see

that the cone Φ(−)
γϕ
−→ Fϕ is a morphism of monoidal functors Φ̃ −→ Fϕ.

Let MF(Ẽ , Ẽ ′) denote the category of monoidal functors from Ẽ to a monoidal category

Ẽ ′ and Mon(CX) the category of monads on CX . Let J∗X denote the embedding

Mon(CX) −−−→ MF(Ẽ , Ẽnd(CX))

which assigns to every monoid on CX the corresponding constant monoidal functor; and

let JX∗ be functor which assigns to each monoidal functor Φ̃ from Ẽ to Ẽnd(CX) the

monad Fϕ. The map which assigns to every monoidal functor Φ̃ from Ẽ to Ẽnd(CX) the

morphism Φ̃
γϕ
−→ Fϕ is an adjunction arrow Id

γ
−→ JX∗J

∗
X . The other adjunction arrow
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is the identical morphism. This means that the monad Fϕ corresponding to a monoidal

functor Φ̃ = (Φ, φ) is the colimit of this monoidal functor.

1.4. Colimits of continuous actions. Suppose now that the category CX has small

limits and colimits. LetMFc(Ẽ , Ẽnd(CX)) denote the full subcategory ofMF(Ẽ , Ẽnd(CX))

whose objects are continuous actions of Ẽ on the category CX . And let Monc(CX) denote
the category of continuous monads on CX . The embedding

Mon(CX)
J∗
X

−−−→MF(Ẽ , Ẽnd(CX))

induces an embedding

Monc(CX)
cJ∗
X

−−−→MFc(Ẽ , Ẽnd(CX)).

Since the monad Fϕ corresponding to the continuous action Φ̃ is continuous, the right
adjoint JX∗ to J∗X induces a right adjoint

MF(Ẽ , Ẽnd(CX))
cJX∗

−−−→Monc(CX)

to the functor cJ∗X which assigns to every continous action Φ̃ = (Φ, φ) of the monoidal

category Ẽ on the category CX its colimit – a continuous monad Fϕ = (Fϕ, µϕ).
It follows from the fact that functor Φ takes values in the category of continuous

endofunctors, that the functor Fϕ = ϕ∗ϕ
∗ is the colimit of Φ.

1.5. Functorialities. These correspondences are functorial in the following sense: if
Ẽ ′ is another svelte monoidal category and

Ẽ ′
Ψ̃

−−−−−−−→ Ẽ

Φ̃′ ց ւ
Φ̃

Ẽndc(CX)

is a quasi-commutative diagram of monoidal functors, then the monoidal functor Ψ̃ induces

a pull-back functor (Φ̃/X)−mod
f∗
−−−→ (Φ̃′/X)−mod such that the diagram

(Φ̃/X)−mod
f∗
−−−→ (Φ̃′/X)−mod

ϕ∗ ց ւ ϕ′
∗

CX

(1)
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commutes. If the category CX is small-complete, then, by the argument above, the functors

(Φ̃/X) −mod
ϕ∗

−−−→ CX and (Φ̃′/X) −mod
ϕ′

∗

−−−→ CX are equivalent to the forgetful
functors, respectively (Fϕ/X)−mod −→ CX and (Fϕ′/X)−mod −→ CX .

The functor f∗ corresponds to the restriction functor Fϕ −mod
ψ∗

−−−→ Fϕ′ −mod

along a monad morphism Fϕ′
ψ
−→ Fϕ. In particular, the functor f∗ has a left adjoint, f∗.

Thus, the diagram (1) is equivalent to the diagram of canonical direct image functors of
the commutative diagram

Sp(Fϕ/X)
Sp(ψ)
−−−→ Sp(Fϕ′/X)

ϕց ւ ϕ′

X

(2)

corresponding to a monad morphism Fϕ′
ψ
−→ Fϕ. Notice that the monads Fϕ and Fϕ′ ,

being colimits of monoidal functors, are defined uniquely up to isomorphism. By the
universal property of colimits, the monad morphism ψ is determined uniquely, once the
monads Fϕ and Fϕ′ are fixed. Therefore, the map which assigns to the diagram (1) the

monad morphism Fϕ′
ψ
−→ Fϕ is a functor, ΓX∗, from the category Actc(CX) of continuous

actions of (svelte) monoidal categories on the category CX to the category Mon(CX) of
monads on CX . The functor ΓX∗ has a right adjoint, Γ!

X , which assigns to each monad
F = (F, µ) on CX the forgetful strict monoidal functor

Ẽndc(CX)/F
Γ!
X(F)

−−−→ Ẽndc(CX).

Suppose that, in addition, the category CX is small-cocomplete. Then the monads
Fϕ and Fϕ′ are continuous, or, equivalently, all morphisms of the diagram (2) are affine.
The category Endc(CX)/F has a canonical final object – the pair (F, idF ), which implies
that the adjunction arrow ΓX∗ ◦ Γ

!
X −→ Id is an isomorphism, or, what is the same, the

functor Γ!
X is fully faithful; i.e. ΓX∗ is equivalent to a localization functor.

The functor ΓX∗ has a left adjoint (forcibly fully faithful), Γ∗
X , which assigns to every

monad F on CX the monoidal functor from the trivial monoidal category to Ẽndc(CX)
sending the unique object to F (cf. 1.1.1).

1.5.1. Example: the stabilizer of a set of subcategories. Let B be a set of
full subcategories of the category CX ; and let EB be the full subcategory of the category
E generated by all objects L such that Φ(L)(A) ⊆ A for each A ∈ B. It follows that EB
is a monoidal subcategory of Ẽ and the restriction Φ̃B of the monoidal functor Φ̃ to the
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subcategory EB is a continuous action of ẼB on CX . Thus, we have the category of Φ̃B-

modules and the restriction functor (Φ̃/X) −mod
fB∗

−−−→ (Φ̃B/X) −mod corresponding

to the embedding ẼB −→ Ẽ .

If the category CX is small-complete, then the functor (Φ̃B/X)−mod
ϕ

B∗

−−−→ CX is
equivalent to the forgetful functor Fϕ

B
−mod −→ CX for a monad Fϕ

B
on CX and we

obtain the commutative diagram

Sp(Fϕ/X)
ψ

B

−−−→ Sp(Fϕ
B
/X)

ϕց ւ ϕ
B

X

(3)

corresponding to a monad morphism Fϕ
B

ψ
B−→ Fϕ.

If, in addition, the category CX is small-cocomplete, then the monads Fϕ and Fϕ
B

are continuous and, therefore, all morphisms in the commutative diagram (3) are affine.

1.6. Stabilizers of points and related functors. We fix a svelte abelian category
CX together with a continuous action of a svelte monoidal category Ẽ = (E ,⊙, I, a) on CX
given by a monoidal functor Φ̃ = (Φ, φ, φ0) from Ẽ to the monoidal category Ẽxc(CX) of
continuous exact additive endofunctors of CX . We shall assume that the category CX has
small limits and colimits.

1.6.1. The stabilizer of a point of the spectrum. Fix a point P of Spec0c(X).

We shall write (P) for pair {P, P̂}, where P̂ is the corresponding to P Serre subcategory.

We define the stabilizer of the point P as the stabilizer E(P) of the pair (P) = {P, P̂}.
We have a commutative diagram of affine morphisms

A = Sp(Fϕ/X)
f
P

−−−→ Sp(Fϕ
P
/X) = AP

ϕց ւ ϕ
P

X

(1)

where f
P
= Sp(ψ

P
) for a monad morphism Fϕ

P

ψ
P−→ Fϕ.

1.6.2. The functor LP . Fix an element P of Spec0c(X). We denote by LP the

composition of the functors CAP

f∗P
−−−→ CA and

CA

Ψ
P

−−−→ CA, M 7−→M/tors
ϕ−1

∗ (P̂)
(M).
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Notice that since P̂ is a Serre subcategory of CX and ϕ∗ has a right adjoint, the
preimage ϕ−1

∗ (P̂) of P̂ is a Serre subcategory of CA. Thanks to the property (sup), every
Serre subcategory, S, of CA is coreflective, i.e. the inclusion functor S →֒ CA has a right
adjoint, torsS : CA −→ S which assigns to every object M its S-torsion. In particular,
tors

ϕ−1
∗ (P̂)

(M) is well defined for all M ∈ ObCA.

1.6.2.1. Proposition. Let P ∈ Spec0c(X) be such that an inverse image functor f∗P

of the morphism A
f
P−→ AP is exact. Then the functor LP is exact.

Proof. The functor LP is the composition of two right exact functors, f∗P and Ψ
P
, hence

it is right exact. It remains to verify that LP maps monomorphisms to monomorphisms.

Let K
j
−→M be a monomorphism in CAP

. Consider the commutative diagram

f∗P(K)
f∗P(j)

−−−→ f∗P(M)

e
K

y
y e

M

LP(K)
LP(j)
−−−→ LP(M)

(1)

and its image by the localization CA
q∗

−→ CA/ϕ
−1
∗ (P̂). Since, by hypothesis, the func-

tor f∗P is exact and the localization functor q∗ is exact, q∗f∗P(K)
q∗f∗P(j)

−−−→ q∗f∗P(M) is a

monomorphism. The arrows q∗f∗P(K)
q∗(eK)
−−−→ q∗LP(K) and q∗f∗P(M)

q∗(eM )
−−−→ q∗LP(M) are

isomorphisms. Therefore q∗LP(K)
q∗LP(j)
−−−→ q∗LP(M) is a monomorphism. Since the object

LP(K) is Ker(q∗)-torsion free, LP(K)
LP(j)
−−−→ LP(M) is a monomorphism.

1.6.3. Remark. The notion of the stabilizer of a point, the definition of the functor
LP , and Proposition 1.6.2.1 make sense if Spec0c(X) is replaced by any of the remained
spectra considered here: Spec(X), Spec−(X), Specc−(X), or Spec0s(X).

We need the following assertion which is of independent interest.

1.7. Proposition. Let CY be an abelian category and CY
g∗

−→ CZ a functor having

a right adjoint, g∗; and let IdCY
η
−→ g∗g

∗ be an adjunction arrow.

(a) If the functor g∗ is exact, then the adjunction morphism M
η(M)
−−−→ g∗g

∗(M) is a
monomorphism for every M ∈ Spec(Y ) such that g∗(M) 6= 0.

(b) Suppose that the category CY satisfies (AB4), i.e. it has small coproducts and the
coproduct of a set of monomorphisms is a monomorphism. If the functor g∗ is exact and g∗
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has a right adjoint, then M
η(M)
−−−→ g∗g

∗(M) is a monomorphism for every M ∈ Spec0c(Y )
such that g∗(M) 6= 0.

Proof. (a1) Let M be an arbitrary object of CY , and let K
j
−→ M be the kernel of

the adjunction morphism M
η(M)
−−−→ g∗g

∗(M). Consider the commutative diagram

K
η(K)
−−−→ g∗g

∗(K)

j
y

y g∗g
∗(j)

M
η(M)
−−−→ g∗g

∗(M)

Since g∗ is exact, the functor g∗g
∗ is left exact, in particular g∗g

∗(j) is a monomorphism.
Therefore, the equality g∗g

∗(j) ◦ η(K) = η(M) ◦ j = 0 implies that η(K) = 0.
(a2) Suppose now that M belongs to Spec(Y ). If K 6= 0, then K ≻ M , i.e. there

exists a diagram K⊕n γ
←− L

e
−→ M in which the left arrow is an epimorphism and the

right arrow is a monomorphism. Consider the associated commutative diagram

K⊕n
γ

←−−− L
e

−−−→ M

η(K⊕n)
y η(L)

y
y η(M)

g∗g
∗(K⊕n)

g∗g
∗(γ)

←−−− g∗g
∗(L)

g∗g
∗(e)

−−−→ g∗g
∗(M)

(2)

By (a1), the left vertical arrow in (2) is zero. Since L
γ
−→ K⊕n is a monomorphism and

the functor g∗g
∗ is, thanks to the exactness of g∗, left exact, g∗g

∗(γ) is a monomorphism.
Therefore, the equality g∗g

∗(γ) ◦ η(L)(= η(K⊕n) ◦ γ) = 0 implies that η(L) = 0. Then the
commutativity of the right square of (2) yields the equality η(M) ◦ e = 0. Since e is an
epimorphism, it follows that η(M) = 0. But, the equality η(M) = 0 means precisely that
the object M belongs to the kernel of the functor g∗, i.e. g∗(M) = 0.

(b) Suppose that CY satisfies (AB4) and the functor g∗ has a right adjoint.
By definition, an object M belongs to Spec0c(Y ) iff M is contained in the subcategory

[N ]c for any its nonzero subobject N . Since CY satisfies (AB4), each object of [N ]c
is a subquotients of the coproduct of a set of copies of the object N . In particular, if

K = Ker(η(M)) is nonzero, there is a diagram K⊕J γ
←− L

e
−→ M , for some, infinite in

general, set J , whose left (resp. right) arrow is a monomorphism (resp. an epimorphism).
Thus, if K 6= 0, we have a commutative diagram

K⊕J
id
−−−→ K⊕J

γ
←−−− L

e
−−−→ M

η(K)⊕J
y η(K⊕J)

y η(L)
y

y η(M)

g∗g
∗(K)⊕J

∼

−−−→ g∗g
∗(K⊕J)

g∗g
∗(γ)

←−−− g∗g
∗(L)

g∗g
∗(e)

−−−→ g∗g
∗(M)

(3)
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in which the lower left horizontal arrow is an isomorphism and the lower right horizontal
arrow is an epimorphisms. Both observations follow from the fact that, since g∗ has a right
adjoint, the composition g∗g

∗ has a right adjoint, hence it preserves arbitrary colimits.
It follows from the commutativity of the diagram (3) and the equality η(K) = 0

established in (a1) above, that η(K⊕J) = 0. Repeating the argument (a2), we obtain the
equality g∗(M) = 0.

1.7.1. Corollary. Let CY be an abelian category, CY
g∗

−→ CZ a functor having a

right adjoint, g∗, and IdCY
η
−→ g∗g

∗ an adjunction arrow.

(a) If the functor g∗ is exact and faithful, then M
η(M)
−−−→ g∗g

∗(M) is a monomorphism
for every M ∈ Spec(Y ).

(b) If the category CY satisfies (AB4), the functor g∗ has a right adjoint, and the

functor g∗ is exact and faithful, then the adjunction morphism M
η(M)
−−−→ g∗g

∗(M) is a
monomorphism for every M ∈ Spec0c(Y ).

Proof. Since the functor g∗ is faithful, g∗(M) 6= 0 for any nonzero object M , in
particular, for any M ∈ Spec0c(Y ). The assertion follows from 1.7.

1.8. Proposition. Let P be an element of Spec0c(X) such that the inverse image

functor f∗P of the morphism A
f
P−→ AP is exact and faithful. Let IdA

x
P−→ f

P∗LP be the
composition of the adjunction arrow IdA −→ f

P∗f
∗
P and the epimorphism f

P∗f
∗
P −→ f

P∗LP .
The morphism

M
x
P
(M)

−−−→ f
P∗LP(M) (3)

is a monomorphism for every M ∈ Spec(AP) such that P ∈ Supp(ϕ∗
P
(M)).

Proof. Let KM

j
M−→ M denote the kernel of the morphism (3). The functor f

P∗ pre-

serves colimits. By 1.7.1, the adjunction morphism M
x(M)
−→ f

P∗f
∗
P(M) is a monomorphism

for every M ∈ Spec(AP). Therefore ϕ
P∗(KM ) is an object of P̂ . Since M belongs to the

spectrum, if KM 6= 0, then M ∈ [KM ]c. The functor ϕ
P∗ is exact and preserves small col-

imits. Since for any object L, the subcategory [L]c is obtained from L by taking arbitrary
small colimits and subobjects, ϕ

P∗([L]c) ⊆ [ϕ
P∗(L)]c. In particular, ϕ

P∗(M) is an object

of [ϕ
P∗(KM )]c. The latter implies that ϕ

P∗(M) is also an object of the subcategory P̂;
that is P 6∈ Supp(ϕ

P∗(M)).

2. Realization of points.

2.1. Assumptions and notations. We fix a Grothendieck category CX together
with a continuous action of a svelte monoidal category Ẽ = (E ,⊙, I, a) on CX given by
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a monoidal functor Φ̃ = (Φ, φ, φ0) from Ẽ to the full monoidal subcategory Ẽxc(CX) of

Ẽnd(CX) generated by continuous exact endofunctors of CX . Being a Grothendieck cate-
gory, CX has small limits and colimits, which guarantees that continuous actions of svelte
monoidal categories on CX have colimits, and these colimits are continuous monads.

In particular, there is a (determined uniquely up to isomorphism) continuous monad

Fϕ = (Fϕ, µϕ) and a universal morphism (or universal cone) Φ̃
γϕ
−→ Fϕ whose pull-back

functor (Fϕ/X) −mod
γϕ∗

−−−→ (Φ̃/X) −mod is an equivalence between the category of

Φ̃-modules and the category of Fϕ-modules (see 1.3). The morphism γϕ gives rise to a

monoidal functor Ẽ
Ψ̃ϕ
−−−→ Ẽxc(CX)/Fϕ so that Φ̃ is the composition of Ψ̃ϕ and the

forgetful (strict) monoidal functor Ẽxc(CX)/Fϕ
F̃X
−−−→ Ẽxc(CX).

In what follows, the monoidal category Ẽ can be identified with its image in the strict

monoidal category Ẽxc(CX)/Fϕ. So, we assume, for convenience, that Ẽ is a monoidal

subcategory of Ẽxc(CX)/Fϕ and Φ̃ is the restriction to Ẽ of the forgetful functor F̃X .

2.1.1. SpecPc (AP) and SpecPc (A). Fix a point P of Spec0c(X). Let Ẽ(P) = Ẽ{P,P̂}

be the stabilizer of the point P, i.e. the full subcategory of Ẽ generated by all (U,U
v
→ Fϕ)

such that U(P) ⊆ P and U(P̂) ⊆ P̂ . Let Φ̃(P) be the restriction of Φ̃ to Ẽ(P) and FϕP
the

corresponding monad – the colimit of Φ̃(P) (cf. 1.5.1). By 1.6.1, we have a commutative
diagram of affine morphisms

A = Sp(Fϕ/X)
f
P

−−−→ Sp(Fϕ
P
/X) = AP

ϕց ւ ϕ
P

X

(1)

corresponding to a monad morphism Fϕ
P

ψ
P−→ Fϕ, where the ’space’ AP and the monad

Fϕ
P

(or, more precisely, the monad morphism ψ
P
) are called stabilizers of the point P.

We denote by SpecPc (AP) all objects P̃ of Spec0c(AP) such that P ∈ Ass(ϕ∗
P
(P̃ )), and

we set SpecPc (AP) = {[P̃ ]c | P̃ ∈ Spec
P
c (AP)}.

Objects of SpecPc (A) are all M ∈ Specc(A) such that the object f∗
P
(M) has an asso-

ciated point from SpecPc (AP). We set SpecPc (A) = {[M ]c | M ∈ Spec
P
c (A)}.

2.2. Theorem. Let P ∈ Spec0c(X) be such that the inverse image functor f∗P of the

morphism A
f
P−→ AP is exact and faithful, and the following condition holds:

(*) Let P ∈ Spec0c(X) be representative of P and M a subobject of ϕ∗(P ) such that
P ∈ Supp(ϕ∗(M)). There exists (U ′, v) ∈ ObE(P) and a subobject P ′ of P such that the
image of U ′(P ′) in Fϕ(P ) = ϕ∗ϕ

∗(P ) is a subobject of ϕ∗(M) whose support contains P.
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Then the functor CAP

LP

−−−→ CA induces a morphism

SpecPc (AP)
LP

−−−→ SpecPc (A). (1)

with the following properties:
(α) Every [M ] ∈ Spec0c(A) such that the image f∗

P
(M) of M in CAP

has an associated

point from SpecPc (AP) belongs to the image of the map (1).
(β) The functor LP maps simple objects from SpecPc (AP) to simple objects of CA.

Proof. (a) Let P̃ be an object of SpecPc (AP); i.e. P̃ is an object of Spec0c(AP) and

there exists a monomorphism P
ι
−→ ϕ∗

P
(P̃ ), where P is an object of Spec0c(X) such that

P = [P ]c. The claim is that LP(P̃ ) is an object of SpecPc (A); i.e. LP(P̃ ) ∈ [M ′]c for any

nonzero subobject M ′ of LP(P̃ ).

(i) Consider the composition P
v̂
−→ ϕ∗f

∗
P(P̃ ) of the monomorphism P −→ ϕ∗

P
(P̃ ) and

the morphism ϕ∗
P
(P̃ )

ϕ∗

P
η(P̃ )

−−−→ ϕ∗
P
f
P∗f

∗
P(P̃ ) = ϕ∗f

∗
P(P̃ ). By 1.7.1, the adjunction morphism

P̃
η(P̃ )
−−−→ f

P∗f
∗
P(P̃ ) is a monomorphism. Therefore its image by the exact functor ϕ∗

P
is a

monomorphism, which implies that P
v̂
−→ ϕ∗f

∗
P(P̃ ) is a monomorphism.

In particular, the corresponding morphism ϕ∗(P )
v
−→ f∗P(P̃ ) is nonzero.

(ii) Consider the cartesian square

P1

h
−−−→ P̃y

y η(P̃ )

f
P∗ϕ

∗(P )
f
P∗(v)

−−−→ f
P∗f

∗
P(P̃ )

(2)

The functor ϕ∗
P
, being (left) exact, maps (2) to a cartesian square

ϕ∗
P
(P1)

h′

−−−→ ϕ∗
P
(P̃ )y

y ϕ∗
P
η(P̃ )

ϕ∗ϕ
∗(P )

ϕ∗(v)
−−−→ ϕ∗f

∗
P(P̃ )

(3)

It follows from the commutative diagram

P
ι

−−−→ ϕ∗
P
(P̃ )

ηu(P )
y

y ϕ∗
P
η(P̃ )

ϕ∗ϕ
∗(P )

ϕ∗(v)
−−−→ ϕ∗f

∗
P(P̃ )

(4)
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and the universal property of cartesian squares (applied to the square (3)) that there exists

a unique morphism P
ρ
−→ ϕ∗

P
(P1) such that the diagram

P
ρ

−−−→ ϕ∗
P
(P1)

ϕ∗

P
(h)

−−−→ ϕ∗
P
(P̃ )

ηu(P )
y

y
y ϕ∗

P
η(P̃ )

ϕ∗ϕ
∗(P )

id
−−−→ ϕ∗ϕ

∗(P )
ϕ∗(v)
−−−→ ϕ∗f

∗
P(P̃ )

(5)

commutes and the composition of P
ρ

−−−→ ϕ∗
P
(P1)

ϕ∗

P
(h)

−−−→ ϕ∗
P
(P̃ ) coincides with the

monomorphism P
ι
−→ ϕ∗

P
(P̃ ) we started with. This shows, among other things, that the

canonical morphism P
ρ
−→ ϕ∗

P
(P1) is a monomorphism and the morphism P1

h
−→ P̃ is

nonzero. Since P̃ belongs to Spec0c(AP), the image, P̃1, of the morphism P1
h
−→ P̃ is

equivalent to P̃ , i.e. [P̃1]c = [P̃ ]c. By 1.6.2.1, this implies that [LP(P̃1)]c = [LP(P̃ )]c.

The decomposition of the morphism P1
h
−→ P̃ into an epimorphism P1

h1−→ P̃1 and
a monomorphism P̃1 −→ P̃ induces the corresponding decomposition of (the right square
of) the diagram (5):

P
ρ

−−−→ ϕ∗
P
(P1)

ϕ∗

P
(h1)

−−−→ ϕ∗
P
(P̃1) −−−→ ϕ∗

P
(P̃ )

ηu(P )
y

y
y ϕ∗

P
η(P̃1)

y ϕ∗
P
η(P̃ )

ϕ∗ϕ
∗(P )

id
−−−→ ϕ∗ϕ

∗(P )
ϕ∗(v1)
−−−→ ϕ∗f

∗
P(P̃1) −−−→ ϕ∗f

∗
P(P̃ )

(5′)

Therefore, one can, replacing the object P̃ by P̃1, assume that the morphism P1
h
−→ P̃

is an epimorphism. We keep this assumption for the rest of the proof.

(iii) The fact that P1
h
−→ P̃ is an epimorphism implies that the morphism ϕ∗(P )

v
−→

f∗P(P̃ ) (defined in (i)) is an epimorphism.
Indeed, the diagram (2) is equivalent (via adjunction) to the commutative diagram

f∗P(P1)
f∗P (h)

−−−→ f∗P(P̃ )y
y id

ϕ∗(P )
v

−−−→ f∗P(P̃ )

The upper horizontal arrow is an epimorphism, because the functor f∗P is right exact (as

any functor having a right adjoint). Therefore ϕ∗(P )
v
−→ f∗P(P̃ ) is an epimorphism.
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(iiibis) One can arrive to the above conclusions via a shorter argument taking into

consideration that the morphism functor AP
ϕ

P−→ X is continuous.

Indeed, let ϕ∗
P
(P )

v′

−→ P̃ be the morphism of CAP
corresponding to the monomor-

phism P −→ ϕ
P∗(P̃ ). Since the morphism v′ is nonzero and P̃ belongs to Spec0c(AP), the

image of v′ is an object of Spec(AP) and is equivalent to P̃ . Thanks to 1.6.2.1, we can (and

will) assume (replacing P̃ by the image of v′) that v′ is an epimorphism. Since the functor

f∗P is right exact, f∗Pϕ
∗
P
(P )

f∗P(v′)

−−−→ f∗P(P̃ ) is an epimorphism. Notice that ϕ∗ ≃ f∗Pϕ
∗
P
.

Thus, we have an epimorphism ϕ∗(P )
v
−→ f∗P(P̃ ).

(iv) We denote by ϕ∗(P )
e
−→ LP(P̃ ) the composition of ϕ∗(P )

v
−→ f∗P(P̃ ) and the epi-

morphism f∗P(P̃ ) −→ LP(P̃ ). Let M ′ j
−→ LP(P̃ ) be a nonzero monomorphism. Consider

the cartesian square

ϕ∗(P )
e

−−−→ LP(P̃ )

j̃
x

x j

M
ẽ

−−−→ M ′

(6)

and define the morphisms P̃M −→ f∗
P
(M) and P̃M ′ −→ f∗

P
(M ′) via the cartesian squares

f∗
P
(M)

f∗
P
(̃e)

−−−→ f∗
P
(M ′)

f∗
P
(j)

−−−→ f∗
P
(LP(P̃ ))x

x
x

P̃M
e′

−−−→ P̃M ′

j′

−−−→ P̃

(7)

It follows from 1.8 that the right vertical arrow in the diagram (7) is a monomorphism.
Therefore, by a well-known property of cartesian squares, the remaining vertical arrows
are monomorphisms too.

Since f∗
P

is an exact functor, f∗
P
(j) is a monomorphism and f∗

P
(e) is an epimorphism.

Therefore, P̃M
e′

−→ P̃M ′ is an epimorphism and P̃M ′
j′

−→ P̃ is a monomorphism.
(v) We claim that P̃M ′ 6= 0.

Notice that P ∈ Supp(ϕ∗(M
′)), because M ′ is a nonzero subobject of LP(P̃ ), in par-

ticular it does not belong to the Serre subcategory ϕ−1
∗ (P̂). Since there is an epimorphism

M −→M ′ (see (6) above) and ϕ∗ is an exact functor, P ∈ Supp(ϕ∗(M)).
By the condition (*), there exists (U ′, v) ∈ E(P) and a subobject P ′ of P such that

U ′(P ′) −→ Fϕ(P ) factors through ϕ∗(M) and the support of its image contains P. It

follows from the construction that U ′(P ′) is a subobject of ϕ∗
P
(P̃ ) and ϕ∗(M). Therefore,

P ∈ Supp(ϕ∗
P
(P̃M )) which, in turn, implies that P̃M ′ 6= 0.
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(vi) Consider the following commutative diagram

f∗P(P̃M ′) −−−→ M ′

f∗P(j
′)

y
y j

f∗P(P̃ ) −−−→ LP(P̃ )

(4)

corresponding to the right square of (7). Since M ′ j
−→ LP(P̃ ) is a monomorphism, the

morphism f∗P(P̃M ′) −→ M ′ in (4) factors through LP(P̃M ′) −→ M ′. Thus, (4) induces a
commutative diagram

LP(P̃M ′)
ι

−−−→ M ′

LP(j′) ց ւj

LP(P̃ )

By 1.6.2.1, the arrow LP(P̃M ′)
LP(j′)
−−−→ LP(P̃ ) is a monomorphism, and LP(j

′) = j ◦ ι.

Therefore LP(P̃M ′)
ι
−→ M ′ is a monomorphism. In particular, LP(P̃M ′) ∈ [M ′]c. Since

P̃M ′ is a nonzero subobject of P̃ and P̃ belongs to Spec0c(AP), these objects are equivalent,

that is [P̃M ′ ]c = [P̃ ]c. By 1.6.2.1, the functor LP is exact, which implies that LP(P̃ ) ∈

LP(P̃M ′) (see the argument of 1.8). Therefore LP(P̃ ) ∈ [M ′]c.
(b) By Proposition 1.6.2.1, the functor LP is exact. Therefore, by the argument of

1.8, the subcategory [LP(M)]c depends only on the subcategory [M ]c.
(c) The inverse map. Let M ∈ SpecPc (A); i.e. M is an object of Spec0c(A), and

there exists a monomorphism P̃ −→ f∗
P
(M) such that P ∈ Ass(ϕ∗

P
(P̃ )) and P̃ belongs to

Spec0c(AP). Note that the object M is ϕ−1
∗ (P)-torsion free.

In fact, suppose that M has a nonzero subobject N which belongs to ϕ−1
∗ (P̂). Since

M ∈ Spec0c(A), M ∈ [N ]c which implies that ϕ∗(M) ∈ ObP̂ . The latter contradicts to the
fact that a representative of the subcategory P is a subobject of ϕ∗(M).

Since the object M is ϕ−1
∗ (P̂)-torsion free, the canonical morphism f∗P(P̃ ) −→ M

factors through a morphism LP(P̃ ) −→M . Due to the fact thatM belongs to the spectrum

and the natural morphism LP(P̃ ) −→ M is nonzero, M ∈ [LP(P̃ )]c. To prove that

LP(P̃ ) ∈ [M ]c, it suffices to show that the morphism LP(P̃ ) −→M is a monomorphism.

Consider the exact sequence 0 −→ K
κ
−→ LP(P̃ ) −→ M. It follows that the in-

tersection of f∗
P
(K)

f∗
P
(κ)

−−−→ f∗
P
(LP(P̃ )) with the subobject P̃ −→ f∗

P
(LP(P̃ )) is zero.

By the argument (v) above, this implies that K = 0. Therefore, the natural morphism

LP(P̃ ) −→M is a monomorphism.

(d) It remains to prove the last assertion of the theorem: if P̃ is a simple object of the

category CAP
such that P ∈ Ass(ϕ∗

P
(P̃ ), then LP(P̃ ) is a simple object of the category A.
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In fact, let K
j
−→ LP(P̃ ) be a nonzero monomorphism. By (v) above, the pull-back

of monomorphisms f∗
P
(K) −→ f∗

P
(LP(P̃ )) ←− P̃ is nonzero. Since P̃ is simple, it follows

that the morphism P̃ −→ f∗
P
(LP(P̃ )) factors through f∗

P
(K) −→ f∗

P
(LP(P̃ )). Therefore

the identical morphism LP(P̃ ) −→ LP(P̃ ) factors through K
j
−→ LP(P̃ ) which shows that

K
j
−→ LP(P̃ ) is an isomorphism.

2.2.1. The case of the trivial stabilizer. Suppose that the point P of the spectrum
Spec0c(X) has the trivial stabilizer. That is if (U,U → Fϕ) is an object of the stabilizer
of P, then U is a subfunctor of the identical functor. In this case, the condition (*) in 2.2
is equivalent to the condition

(†) If a subobject M of ϕ∗(P ) is such that P = [P ]c ∈ Supp(ϕ∗(M)), then P is an
associated point of ϕ∗(M).

Evidently, the condition (†) holds if Supp(ϕ∗ϕ
∗(P )) = Ass(ϕ∗ϕ

∗(P )).
The latter equality holds if the functor Fϕ = ϕ∗ϕ

∗ is differential (cf. C4.2, C4.3) and
P = [P ]c is a closed point. In this case, Supp(ϕ∗ϕ

∗(P )) = {P} = Ass(ϕ∗ϕ
∗(P )).

The condition (†) also holds if P is a closed point and the functor Fϕ is a coproduct
of auto-equivalences.

2.3. A reduction. Once a point P of Spec0c(X) is fixed, one can avoid dealing
with the irrelevant parts of the categories CX and CU proceeding as follows. We define
the ’space’ XP by CXP

= P. If CX is the category of quasi-coherent sheaves on a scheme,
then P corresponds to a point of the underlying space of this scheme and the category
CXP

= P is naturally equivalent to the category of quasi-coherent sheaves on the closure
of the point P. Thus, the ’space’ XP can be regarded as the closure of the point P in X.

The inclusion functor CXP

j∗P−→ CX has a right adjoint CX
j
P∗

−→ CXP
which assigns to

every object of CX its P-torsion. Let A
u
P−→ XP denote the composition of the morphisms

A
ϕ
−→ X and X

j
P−→ XP . The morphism u

P
, being a composition of two continuous mor-

phisms, is continuous. Its direct image functor is not, in general, right exact, because the

functor CX
j
P∗

−→ CXP
is not necessarily right exact. Notice that the functor j

P∗ preserves
supremums of objects; in particular, it preserves infinite coproducts. Since u

P∗ ≃ j
P∗ ◦ ϕ∗

and ϕ∗ preserves arbitrary colimits, the functor u
P∗ also preserves infinite coproducts.

We replace the category CAP
by its full subcategory CA′

P
generated by all Fϕ

P
-

modules (M, ξ) such thatM is an object of CXP
= P. The inclusion functor CA′

P

j̃∗P−→ CAP

has a right adjoint, j̃
P∗, induced by the functor CX

j
P∗

−→ CXP
. We define the functor

CA

f̃
P∗

−→ CA′
P

as the composition of the pull-back functor CA

f
P∗

−→ CAP
and the functor
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CAP

j̃
P∗

−→ CA′
P
. Thus, we obtain a quasi-commutative diagram

CA

u
P∗

−−−→ CXP

f̃
P∗
ց ր

ϕ̃
P∗

CA′
P

(1)

interpreted as the diagram of direct image functors of the morphisms of the commutative
diagram

A
u
P

−−−→ XP

f̃
P

ց ր
ϕ̃

P

A′
P

Let L̃P denote the restriction of the functor LP to the subcategory A′
P . The exactness

of the functor CA′
P

LP−→ CA, depends now on the exactness of a left adjoint, f̃∗P , to the

functor CA

f̃
P∗

−→ CA′
P
. The exactness of f̃∗P is a much weaker requirement than the exactness

of a right adjoint f∗P to the pull-back functor CA

f
P∗

−→ CAP
imposed in 2.2.

These considerations will be used in the following Sections.

3. Important special cases. Finiteness conditions.

3.1. In most of applications we have in mind (in particular, those mentioned in this
work), the monad Fϕ = (Fϕ, µϕ) belongs to one of the following two classes:

(a) The functor Fϕ is a direct sum of a family of auto-equivalences of the category
CX .

(b) The monad Fϕ (i.e. the functor Fϕ) is differential.

Below we consider each of these cases and give the corresponding specializations of
Theorem 2.2.

3.2. The case of a direct sum of auto-equivalences. Let CX be an abelian
category, and let Fϕ = (Fϕ, µϕ) a monad on CX such that Fϕ =

⊕
α∈J θα, where θα are

auto-equivalences of the category CX . We denote by A the ’space’ Sp(Fϕ/X) and by ϕ

the canonical morphism A −→ X. We take as Ẽ the full monoidal subcategory of monoidal

category Ẽxc(CX)/Fϕ generated by the coprojections θα
πα−→ Fϕ, α ∈ J.

We are going to use the reduction described in 2.3; hence we assume for the rest of
this section that the category CX has the property (sup).
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Fix an element P of Spec0c(X). Following the pattern of 2.3, we obtain a quasi-
commutative diagram of functors

CA

u
P∗

−−−→ CXP

f̃
P∗
ց ր

ϕ̃
P∗

CA′
P

(1)

Here CXP
= P, and CA′

P
= Sp(FP/XP), where FP is a monad on CXP

induced by
the monad Fϕ

P
. In other words, CA′

P
is the full subcategory of the category CAP

of
Fϕ

P
-modules whose objects are modules (M, ξ) such that M ∈ ObP.

3.2.0. The Krull filtration of Spec0c(X) and the associated filtration of X.
Fix an abelian category CX . For every cardinal α, we define a subset Sα(X) of Spec0c(X)
as follows.

S0(X) = ∅;
if α is not a limit cardinal, then Sα(X) consists of all P ∈ Spec0c(X) such that any

P ′ ∈ Spec0c(X) properly contained in P belongs to Sα−1(X);

if α is a limit cardinal, then Sα(X) =
⋃

β<α

Sβ(X).

It follows from this definition (borrowed from [R, VI.6.3]) that S1(X) consists of all
closed points of Spec0c(X).

We denote by Sω(X) the union of all Sα(X). The filtration {Sα(X)} determines a
filtration

CX0 →֒ CX1 →֒ . . . CXα →֒ . . . (5)

of the category CX (or the ’space’ X) by taking as CXα the full subcategory of CX
generated by objects M such that Supp0c(M) ⊆ Sα(X). Recall that Supp0c(M) = {P ∈
Spec0c(X) | M 6∈ ObP}. In particular, CXω is the full subcategory of CX generated by all
M ∈ ObCX such that Supp0c(M) ⊆ Sω(X).

It follows from the general properties of supports that CXα is a Serre subcategory
of CX and Spec0c(Xα) is naturally identified with Sα(X); in particular, Spec0c(Xω) is
identified with Sω(X).

3.2.0.1. Proposition. For each cardinal α, the subset Sα(X) of the spectrum is
stable under all auto-equivalences of the category CX . Let P ∈ Sω(X). If θ is an auto-
equivalence of the category CX , such that θ(P) ⊆ P, then θ(P) = P.

Proof. The assertion is true for P ∈ S0(X), because any auto-equivalence maps
spectral objects to spectral objects. So, if P is a closed point and θ(P) ⊆ P, then P = θ(P).

Suppose now that the fact is true if P ∈ Sν for any ν < α. The claim is that it holds
for any P ∈ Sα. In fact, it holds by a trivial reason if α is a limit cardinal. Let α be a not
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a limit cardinal, P ∈ Sα(X), and θ(P) ⊆ P. If θ(P) 6= P, then, by definition of Sα(X),
the element θ(P) belongs to Sα−1(X). But then, by induction hypothesis, P ∈ Sα−1(X),
hence θ(P) = P.

3.2.1. Proposition. (a) Under the conditions above, the functor CA

f̃
P∗

−→ CA′
P

has

a left adjoint; and the functor CA′
P

ϕ̃
P∗

−→ CXP
has a left adjoint which is faithfully flat.

(b) Suppose that P belongs to Sω(X). Then the functor f∗P is faithful.

Proof. (a) Set JP = {α ∈ J | θα ∈ FP} = {α ∈ J | θα(P) ⊆ P} and denote by FP the

endofunctor on CXP
= P (cf. 2.3) induced by

⊕
α∈JP

θα. The multiplication F 2
ϕ

µϕ
−→ Fϕ

induces a multiplication F 2
P

µ
P−→ FP on FP .

In fact, the monad structure on Fϕ is determined by the compositions

θα ◦ θβ
µσα,β
−−−→ θσ, α, β, σ ∈ J, (2)

of the embedding θα◦θβ −→ Fϕ◦Fϕ, the multiplication Fϕ◦Fϕ
µϕ
−→ Fϕ, and the projection

Fϕ −→ θσ. Let α, β ∈ JP 6∋ σ. Then the morphism θαθβ(M)
µσα,β(M)

−−−→ θσ(M) is zero for
every object M of the subcategory P.

(i) Suppose first that M is a representative of P. Assume that µσα,β(M) 6= 0. Since

θσ is an auto-equivalence and M ∈ Spec0c(X), the object θσ(M) belongs to Spec0c(X)
too. Therefore, the existence of a nonzero morphism θαθβ(M) −→ θσ(M) implies that the
subcategory [θαθβ(M)]c contains θσ(M). Since θαθβ stabilizes P = [M ]c, it follows that
θσ(M) belongs to [M ]c, which means precisely that θσ stabilizes P. This, in turn, implies

that θσ stabilizes P̂. In fact, θσ not stabilizing P̂ means that there exists N ∈ ObCX
such that M 6∈ [N ]c, but, M ∈ [θσ(N)]c. Since θσ is an auto-equivalence, it preserves
the relation M 6∈ [N ]c, that is θσ(M) 6∈ [θσ(N)]c. But, this contradicts to the fact that
θσ(M) ∈ [M ]c and [M ]c ⊆ [θσ(N)]c.

(ii) Suppose now that M is an arbitrary object of P. Let L be a representative of P.
Then there exists a diagram L⊕J ←− K −→ M whose the left arrow is a monomorphism
and the right arrow is an epimorphism. Thus, we have a commutative diagram

θαθβ(L
⊕J) ←−−− θαθβ(K) −−−→ θαθβ(M)y

y
y

θσ(L
⊕J) ←−−− θσ(K) −−−→ θσ(M)

whose left (resp. right) horizontal arrows are monomorphisms (resp. epimorphisms) and
vertical arrows are values of the functor morphism µσα,β on the objects respectively L⊕J , K
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and M . Suppose that α, β ∈ JP , but σ 6∈ JP . Since [L⊕J ]c = [L]c and, by hypothesis,
[L]c = P, it follows from (i) that the left vertical arrow in the diagram above is the zero
morphism; in particular, the composition of the central vertical arrow,

θαθβ(K)
µσα,β(K)

−−−→ θσ(K),

and the monomorphism θσ(K) −→ θσ(L
⊕J) is zero, hence µσα,β(K) = 0. This, in turn,

implies that the composition of the epimorphism θαθβ(K) −→ θαθβ(M) and the left

vertical arrow, θαθβ(M)
µσα,β(M)

−−−→ θσ(M), is zero which means that µσα,β(M) = 0.
(iii) Set J∨

P = J − JP and F∨
P =

⊕
β∈J∨

P
θβ . Then Fϕ = FP ⊕ F

∨
P . It follows from

the above argument that the compostition of F 2
P −→ F 2

ϕ

µϕ
−→ Fϕ with the projection

Fϕ
π
−→ F∨

P is zero. Therefore the composition of F 2
P −→ F 2

ϕ

µϕ
−→ Fϕ factors through

the embedding FP →֒ Fϕ, i.e. there exists a unique morphism F 2
P

µ
P−→ FP such that the

diagram

F 2
P

µ
P

−−−→ FPy
y

F 2
ϕ

µϕ
−−−→ Fϕ

commutes. Thus, the morphisms {θαθβ
µσα,β
−−−→ θσ | α, β, σ ∈ JP} determine an associative

multiplication F 2
P

µ
P−→ FP on FP .

(a1) The forgetful functor FP−mod
ϕ̃

P∗

−→ CXP
= P has a left adjoint, ϕ̃∗

P
, which assigns

to every object M of the category CXP
the pair (FP(M), µ̃), where µ̃ is the obvious action

of Ẽ(P) on FP(M). It follows that FP = (FP , µP
) is the monad associated with the pair

ϕ̃∗
P
, ϕ̃∗

P
of adjoint functors. Since the functor ϕ̃∗

P
is exact and conservative, the category

(Φ̃P/XP)−mod is naturally equivalent to the category FP −mod of FP -modules.

(a2) The latter implies the existence of a left adjoint, CA′
P

f̃∗P
−−−→ CA, to the functor

CA

f̃
P∗

−−−→ CA′
P

(defined in 2.3).

In fact, identifying the category CA′
P
with FP −mod, we take as f̃∗P the functor

Fϕ⊗FP
: (FP/XP)−mod −−−→ (Fϕ/X)−mod. (3)

(b) If α, β ∈ JP and σ ∈ J∨
P , then

θσθα(M)
µβσ,α(M)

−−−→ θβ(M) (4)
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is zero for every M ∈ Ob[P]c.
Suppose first that M is a representative of P. Since P ∈ Sω(X), the inclusion

[θβ(M)]c ⊆ [M ]c implies, by 3.2.0.1, the equality [θβ(M)]c = [M ]c. If the morphism (4) is
nonzero, then [θσ(M)]c ⊇ [θσθα(M)]c ⊇ [θβ(M)]c ⊇ [M ]c But, [θσ(M)]c ⊇ [M ]c ⇔ [M ]c =
[θσ(M)]c, which means that σ ∈ JP .

IfM is an arbitrary object of P, the argument is the same as the argument (ii) above.

(b1) The argument similar to that of (iii) shows that the multiplication F 2
ϕ

µϕ
−→ Fϕ

induces a morphism F∨
PFP

γP
−→ F∨

P which is a structure of a right (FP , µP)-module on F∨
P .

(b2) If follows that, as (FP , µP)-module, Fϕ is the direct sum of F∨
P and FP . Therefore,

for every FP -module (M, ξ),

f
P∗f

∗
P(M, ξ) = Fϕ ⊗FP

(M, ξ) ≃
(
F∨
P ⊗FP

(M, ξ)
)
⊕ (M, ξ),

which immediately implies that f∗P is a faithful functor.

The corresponding version of Theorem 2.2 is as follows.

3.2.2. Theorem. Suppose that the category CX has the property (sup). Let Fϕ =⊕
α∈J

θα, where θα are auto-equivalences of the category CX , and let F = {θα | α ∈ J}.

Suppose that an element P of Sω(X) is such that the functor CA′
P

f̃∗P−→ CA is exact
and the following condition holds:

(*) If P is a representative of P and M is a subobject of ϕ∗(P ) such that P ∈
Supp(ϕ∗(M)), then there exists a subobject P ′ of P and α ∈ J such that θα(P

′) is a
subobject of ϕ∗(M) and [P ′] ⊆ [θα(P

′)]c.
Then

(a) The composition CA′
P

L
P

−−−→ CA, of the functors CA′
P

f̃∗P
−−−→ CA, and

CA

Ψ
P

−−−→ CA, M 7−→M/tors
ϕ−1

∗ (P̂)
(M),

induces a morphism

SpecPc (A
′
P)

LP

−−−→ SpecPc (A). (5)

with the following property:
Every [M ]c ∈ Spec0c(A) such that the image f∗

P
(M) of M in CAP

has an associated

point from SpecPc (AP) belongs to the image of the map (1).
(b) The functor LP maps simple objects to simple objects.

Proof. The condition (*) is the specialization of the condition (*) in 2.2. Thus, the
assertion is a consequence of 3.2.1 and Theorem 2.2.
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3.2.3. Proposition. Suppose that the category CX has the property (sup). Each of
the following conditions on a point P of Sω(X) implies the condition (*) in 3.2.2:

(a) the stabilizer of P is trivial;

(b) the local category CX/P̂ has simple objects.

Proof. (i) Set JP = {α | [θα(P )] = P} and J
P = J−JP . LetM →֒ ϕ∗(P ) be such that

P ∈ Supp(ϕ∗(M)). We denote by M ′ the kernel of the composition of the monomorphism
ϕ∗(M) →֒ Fϕ(P ) and the projection Fϕ(P ) =

⊕
α∈J θα(P ) onto

⊕
α∈JP θα(P ). It follows

thatM ′ is a subobject of
⊕

α∈JP
θα(P ). Since Supp(

⊕
α∈JP θα(P )) =

⋃
α∈JP Supp(θα(P ))

does not contain the point P, and Supp(ϕ∗(M)) = Supp(M ′)
⋃
Supp(M ′′), where M ′′ de-

notes the image of ϕ∗(M) in
⊕

α∈JP θα(P ), the condition P ∈ Supp(ϕ∗(M)) is equivalent
to that P ∈ Supp(M ′). In particular, M ′ 6= 0.

(ii) Suppose that CX/P̂ has simple objects. Replacing P with an appropriate sub-

object, we can and will assume that the image q
P̂
(P ) of P in CX/P̂ is a simple object.

This implies that the image of Fϕ(P ) (which coincides with the image of
⊕

α∈JP
θα(P ))

in CX/P̂ is semisimple. Therefore, the image of M ′ in CX/P̂ is isomorphic to the image
of

⊕
α∈I θα(P ) for some subset I of JP . This means that there exists a diagram

M ′ s
←− N

t
−→

⊕

α∈I

θα(P ) (6)

in CX such that q
P̂
(s) and q

P̂
(t) are monomorphisms. Since M ′ and

⊕
α∈I θα(P ) are

P̂-torsion free objects, the object N in the diagram (6) can and will be chosen P̂-torsion
free. The latter means that the morphisms s and t are monomorphisms. Since q

P̂
(t) is an

isomorphism and the localization functor is exact, the intersection P ′
α = N

⋂
θα(P ) (i.e.

the pull-back of the monomorphism N
t
−→

⊕
α∈I θα(P ) and the coprojection θα(P ) −→⊕

α∈I θα(P )) is nonzero for every α ∈ I. Setting P ′ = θ−1
α (P ′

α), we obtain a subobject of
the object P satisfying the condition (*) of 3.2.2.

3.2.4. Corollary. Suppose that the category CX has the property (sup). Let Fϕ =⊕
α∈J

θα, where θα are auto-equivalences of the category CX , and let F = {θα | α ∈ J}.

Suppose that an element P of Sω(X) is such that the functor CA′
P

f̃∗P−→ CA is exact

and the quotient category CX/P̂ has simple objects. Then

(a) The composition CA′
P

L
P

−−−→ CA, of the functors CA′
P

f̃∗P
−−−→ CA, and

CA

Ψ
P

−−−→ CA, M 7−→M/tors
ϕ−1

∗ (P̂)
(M),
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induces a morphism

SpecPc (A
′
P)

LP

−−−→ SpecPc (A). (5)

with the following property:
Every [M ] ∈ Spec(A) such that the image f∗

P
(M) of M in CAP

has an associated

point from SpecPc (AP) belongs to the image of the map (1).
(b) The functor LP maps simple objects to simple objects.

Proof. The assertion follows from 3.2.2 and 3.2.3.

3.2.5. Proposition. Suppose that the category CX has the property (sup). Let
Fϕ =

⊕
α∈J

θα, where θα are auto-equivalences of the category CX .

Suppose that an element P of Sω(X) has a trivial stabilizer; i.e. [θα(P)] = P iff
α = 0 (here θ0 = IdCX ). Then for every representative P of P, the object LP(P ) =
ϕ∗(P )/tors

ϕ−1
∗ (P̂)

(P ) belongs to Spec0c(A). If P is simple, then LP(P ) is a simple object.

Proof. We adopt the notations of the part (i) of the argument of 3.2.3. Thanks to

the property (sup), there exists a finite subset I of JP such that the intersection M̃ =

M ′
⋂(⊕

α∈I θα(P )
)
is nonzero. Since [θα(P )]c = P for every α ∈ I, the object M̃ belongs

to Spec0c(X) and [M̃ ]c = P.
The assertion follows now from the observation 2.2.1 and Theorem 2.2.

3.3. Differential actions. For an abelian svelte category CX , we denote by
Dexc(CX) the full subcategory of the category End(CX) generated by all continuous exact
differential endofunctors. Since the composition of differential endofunctors is a differential

endofunctor, Dexc(CX) is a full monoidal subcategory of the monoidal category Ẽnd(CX).

We call an action Φ̃ = (Φ, φ, φ0) of a svelte monoidal category Ẽ = (E ,⊙, I, a; ℓ, r) on
CX differential if the functor Φ takes values in the subcategory Dexc(CX).

We assume until the end of the section that CX is a Grothendieck category. This
implies that CX has small limits and colimits. Therefore, every continuous action Φ̃ of a
svelte monoidal category Ẽ has a colimit, Fϕ = (Fϕ, µϕ), which is a continuous monad. As

in 2.1, we replace the monoidal category Ẽ by its image in Ẽx(CX)/Fϕ (determined by the

universal cone Φ̃
γϕ
−→ Fϕ) and identify the monoidal functor Φ̃ with the composition of the

inclusion functor Ẽ −→ Ẽx(CX)/Fϕ and the forgetful functor Ẽx(CX)/Fϕ −→ Ẽx(CX).

If the action Φ̃ is differential, then Ẽ is identified with a monoidal subcategory of

D̃ex(CX)/Fϕ and the action Φ̃ with the restriction to Ẽ of the forgetful monoidal functor

D̃ex(CX)/Fϕ −→ D̃ex(CX). In this case, the monad Fϕ = (Fϕ, µϕ) (that is the functor
Fϕ = ϕ∗ϕ

∗) is differential (see C4.2, C4.3). Or, in other words, the affine morphism

A = Sp(Fϕ/X)
ϕ
−→ X is differential.
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For every P ∈ Spec0c(X), we have a commutative diagram of affine morphisms

A = Sp(Fϕ/X)
f
P

−−−→ Sp(Fϕ
P
/X) = AP

ϕց ւ ϕ
P

X

corresponding to a monad morphism Fϕ
P

ψ
P−→ Fϕ, where the ’space’ AP and the monad

Fϕ
P

(more precisely, the monad morphism ψ
P
) are stabilizers of the point P (see 2.1.1).

Therefore we have a well defined functor CAP

LP−→ CA, which is the composition of

CAP

f∗P−→ CA, and the functor

CA

Ψ
P

−−−→ CA, M 7−→M/tors
ϕ−1

∗ (P̂)
(M).

Following the pattern of 2.3, consider the commutative diagram

A
u
P

−−−→ XP

f̃
P

ց ր
ϕ̃

P

A′
P

(1)

associated with

A
f
P

−−−→ AP

ϕց ւ ϕ
P

X

Notice that the composition f̃∗P of the inclusion functor CA′
P
−→ CAP

and the functor

CAP

f∗P−→ CA is a left adjoint to the functor CA

f̃
P∗

−→ CA′
P
.

3.3.1. Lemma. The functors u∗
P

and f̃∗P take values in the full subcategory CA[P−]

of the category CA formed by all Fϕ-modules (M, ξ) such that M ∈ ObP−.

Proof. Recall that P− is the smallest Serre subcategory containing P.
The assertion is due to the fact that every differential endofunctor of the category CX

preserves every Serre subcategory of CX ([LR1]). A more detailed argument is as follows.
(a) The subcategory CA[P−] coincides with the preimage, ϕ−1

∗ (P−) of a Serre subcat-
egory. Therefore it is a Serre subcategory, because the functor ϕ∗ preserves small colimits.

(b) The functor u∗
P
is a restriction of the functor CX

ϕ∗

−→ CA, L 7−→ (Fϕ(L), µϕ(L)),
to the subcategory CXP

= P. By hypothesis, the monad Fϕ = (Fϕ, µϕ) (i.e. the functor
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Fϕ = ϕ∗ϕ
∗) is differential, hence Fϕ(L) is an object of P− for every L ∈ ObP−, in

particular, for every L ∈ ObP.

(c) It follows from the construction of the functor CAP

f∗P
−−−→ CA that for every F̃-

moduleM = (M, ξ̃) (– an object of the category CAP
), there is an Fϕ-module epimorphism

ϕ∗(M) = (Fϕ(M), µϕ(M)) −→ f∗P(M). Since, by (c), ϕ∗(M) is an object of the Serre
subcategory CA[P−], its quotient object f

∗
P(M) belongs to the subcategory CA[P−] too.

The diagram (1) can be decomposed into a commutative diagram

A[P−]
u
P

−−−→ XP

j
P

x
x ϕ̃

P

A
f̃
P

−−−→ A′
P

(2)

Consider now the category CAP
. Its objects are pairs (M, ξ), where M is an object of

the category P and ξ is an action of the differential monad Fϕ
P

– the stabilizer of P.

3.3.2. Proposition. Let CYP
be the full subcategory of the category CA′

P
formed by

all (M, ξ) such that M ∈ ObP̂. Then CYP
is a Serre subcategory of CA′

P
and Spec(A′

P) =

Spec(YP)
∐
SpecPc (A

′
P). In particular, Spec(A′

P) = Spec(YP)
∐

SpecPc (A
′
P).

Proof (a) Let (M, ξ) be an object of Spec(A′
P). Then either the object M is P̂-torsion

free, or M ∈ ObP̂, or, equivalently, (M, ξ) ∈ ObCYP
.

In fact, let M
P̂
denote the P̂-torsion of M . Any differential endofunctor of a category

preserves all Serre subcategories of this category (see C4.3.3). Since objects of the monoidal

category Ẽ , in particular objects of its subcategory Ẽ(P), are pairs (U,U → Fϕ), where U

is a differential endofunctor, the P̂-torsion M
P̂

of M is a submodule of the Fϕ
P
-module

(M, ξ). Since (M, ξ) belongs to the spectrum, either M
P̂

= 0, or [(M
P̂
, ξ′)]c ⊇ [(M, ξ)]c.

Here ξ′ denotes the induced Fϕ
P
-module structure. Thanks to the exactness of the forgetful

functor ϕ
P∗, the latter implies that [M

P̂
]c ⊇ [M ]c, hence M ∈ ObP̂ , i.e. M =M

P̂
.

(b) Let (M, ξ) belong to Spec(A′
P) − Spec(YP). By (a), this implies that M is an

object of the subcategory P
⋂
P̂⊥ formed by P̂-torsion free objects of the P. It follows

that M has a nonzero subobject, L →֒ M , with L ∈ ObP
⋂
P̂⊥. Pick a representative,

P ′, of P. The inclusion L ∈ ObP means that [P ′]c ⊇ [L]c. The fact that L 6∈ ObP̂ means
precisely that [L]c ⊇ [P ′]c. Every nonzero subobject L′ of L has the same properties:
[P ′]c ⊇ [L′]c ⊇ [P ′]c. Therefore [L′]c ⊇ [L]c. This shows that L belongs to the spectrum
Spec0c(X) and [L]c = [P ′]c = P.
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The argument above shows that every nonzero objectM of P
⋂
P̂⊥ is a representative

of the point P. In particular, Ass(M) = {P}.

Now we shall make some observations related to the diagram (2) and the construction
of the functor LP .

Recall that an object M of the category CX is called P-primary if Ass(M) = {P}.

3.3.3. Proposition. Let TP denote the preimage ϕ−1
∗ (P̂) of the Serre subcategory P̂

of CX in CA; and let TP denote the preimage in CA[P−] of the subcategory P̂ ∩ CXP
(cf.

the diagram (2)).

(a) An object M = (M, ξ) of CA = (Fϕ/X) −mod is TP -torsion free iff the object

ϕ∗(M) =M is P̂-torsion free.

(b) The image in CXP
of every TP -torsion free object of CA[P−] is P-primary.

Proof. (a) LetM = (M, ξ) be an (Fϕ/X)-module, and letM
P̂
denote the P̂-torsion of

the object M . Since Fϕ = (Fϕ, µϕ), where Fϕ is a differential functor, and all differential

functors preserve Serre subcategories, the action Fϕ(M)
ξ
−→ M induces an action, ξ′, of

Fϕ on the subobject M
P̂
. Clearly, (M

P̂
, ξ′) belongs to the Serre subcategory TP .

(b) By definition, CA[P−] is a full subcategory of CA generated by Fϕ-modules (M, ξ)
such that M ∈ ObP−. Therefore, by (a), an object (M, ξ) of CA[P−] is TP -torsion free

iff M is an object of P−
⋂
P̂⊥. If M is nonzero, it contains (by the definition of P−)

a nonzero subobject L which belongs to P
⋂
P̂⊥. But, nonzero objects of P

⋂
P̂⊥ are

precisely all the representatives of P (see the part (b) of the argument of 3.3.2). This
shows that P ∈ Ass(M).

Suppose N →֒M is a subobject ofM such that N ∈ Spec(X). Then N has a nonzero

subobject L which belongs to P
⋂
P̂⊥. Therefore [N ]c = [L]c = P; i.e. P is the only

element of Ass(M).

3.3.4. Proposition. For every object M of Spec0c(A[P
−]), its image in CXP

either

belongs to P̂, or is P-primary.

Proof. LetM = (M, ξ) belong to Spec(A). By the argument of 3.3.3, the P̂-torsion,
M

P̂
, of the object M has a structure, ξ′ of a submodule ofM. Therefore, if M

P̂
6= 0, then

[(M
P̂
, ξ′)]c ⊇ [(M, ξ)]c which implies that M = M

P̂
(see the part (a) of the argument of

3.3.2). If M
P̂
= 0, then, by 3.3.3(b), the object M is P-primary.

3.3.5. Proposition. The functor CA′
P

LP−→ CA takes values in the full subcategory

of CA generated by Fϕ-modules (M, ξ) such that M is an object of the category P−
⋂
P̂⊥.

In particular, M is either zero, or P-primary.
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Proof. Recall that the functor CAP

LP−→ CA is the composition of a left adjoint,

CAP

f∗P−→ CA, the forgetful functor CA

f
P∗

−→ CAP
and the functor

CA

Ψ
P

−−−→ CA, M 7−→M/tors
ϕ−1

∗ (P̂)
(M). (3)

By 3.3.3(a), the functor (3) takes values in the full subcategory of CA generated by

all Fϕ-modules (M, ξ) such that M is a P̂-torsion free object of CX .

The functor CA′
P

LP−→ CA is the composition of the functor CAP

LP−→ CA and the
inclusion functor CA′

P
−→ CAP

; that is LP is the composition of the three functors

CA′
P
−−−→ CAP

f∗P
−−−→ CA

Ψ
P

−−−→ CA.

The composition of the first two functors takes values (thanks to the fact that Fϕ is
differential) in the subcategory CA[P−] = ϕ−1

∗ (P−). Therefore the functor LP takes values

in the preimage in CA of the subcategory P−
⋂
P̂ ⊆ CX , which is the full subcategory of

CA formed by all Fϕ-modules (M, ξ) such that M is an object of P−
⋂
P̂ . In particular,

M is either zero, or P-primary.

3.3.6. Localization. All exact differential endofunctors are compatible with localiza-
tions at Serre subcategories and induce exact differential endofunctors on the corresponding
quotient categories (cf. C4.3.3). These endofunctors on quotient categories inherit exact-
ness properties (like compatibility with limits or colimits of a certain class of diagrams, or
having a right adjoint) of the initial endofunctors (see [KR2]). Thus, localization at any
Serre subcategory S of the category CX will transform our data (differential continuous
monad (Fϕ, µϕ) and the family of exact continuous differential subfunctors of Fϕ) to the
same sort of data on CX/S. Taking an element P of the spectrum of X/S, we obtain a
relative version of the commutative diagram (1):

CA/S′′

u
P∗

−−−→ C(X/S)P

f̃∗
P

ց ր
ϕ̃∗

P

C(A/S)′
P

(4)

where S′′ = ϕ−1
∗ (S) and S′ = ϕ∗−1

P (S). The category CA/S′′ here is naturally identified
with the category FS-modules, where FS is the monad on CX/S uniquely determined by
the monad Fϕ = (Fϕ, µϕ).
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Applying this observation to the Serre subcategory P̂ and the unique closed point of
the quotient local category C

X/P̂
, we replace X by the local ’space’ X/P̂ and obtain (using

the decomposition (2) in 3.3.1) the diagram

CAr [P−]

u
P∗

−−−→ CXr
P

f̃∗
P

ց ր
ϕ̃∗

P

CAr
P

(5)

in which Xr
P is the residue ’space’ of X at the point P, CAr

P
is the category of F̃-modules

(L, ξ̃), where L is an object of the residue category CXr
P
, CAr[P−] is the category of F

P̂
-

modules (M, ξ), where M is an object of the smallest nonzero Serre subcategory of C
X/P̂

.

If the local category C
X/P̂

has simple objects (which is always the case if X has a

Gabriel-Krull dimension) and CX has infinite coproducts, then the residue category is
equivalent to the category of vector spaces over the residue field k

P
of the point P.

4. Computing Spec−(X).

4.1. The construction. We assume the setting of 2.1. That is we fix a Grothendieck
category CX endowed with an action Φ̃ of a svelte monoidal category Ẽ taking values in the

monoidal category Ẽxc(CX) of exact continuous endofunctors of CX . As in 2.1, we identify

the monoidal category Ẽ with its image in Ẽxc(CX)/Fϕ, where the continuous monad Fϕ =

(Fϕ, µϕ) is the colimit of the monoidal functor Ẽ
Φ̃
−→ Ẽxc(CX). With this identification, Φ̃

becomes the restriction to Ẽ of the forgetful monoidal functor Ẽxc(CX)/Fϕ −→ Ẽxc(CX).

Fix an element P of Specc−(X). Applying the pattern of 2.1.1 to P, we obtain the

stabilizer of P which is, by definition, the stabilizer Ẽ(P) of the pair (P) = {P, P̂}, and the
commutative diagram of affine morphisms

Sp(Fϕ/X) = A
f
P

−−−→ AP = Sp(Fϕ
P
/X)

ϕց ւ ϕ
P

X

(1)

corresponding to a monad morphism Fϕ
P

ψ
P−→ Fϕ, where the ’space’ AP and the monad

Fϕ
P

(or, more precisely, the monad morphism ψ
P
) are called stabilizers of the point P.

4.2. Specc−(AP)P and Specc−(A)P . For an element P of Specc−(X), we denote by

Specc−(AP)P the family of all objects P̃ of Specc−(AP) such that P ∈ Ass(ϕ∗
P
(P̃ )). We

denote by Specc−(AP)P the correponding subset of Specc−(AP).
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Similarly, Specc−(A)P will denote the family of all objects M of Specc−(A) such that
P is an associated point of ϕ∗(M), and denote by Specc−(A)P the corresponding subset
of the spectrum Specc−(A).

4.3. Theorem. Let P ∈ Spec−(X) be such that the inverse image functor f∗P of the

morphism A
f
P−→ AP is exact and faithful, and the following conditions hold:

(*) If P is a representative of P and M is a subobject of ϕ∗(P ) such that P ∈
Supp(ϕ∗(M)), then there exists (U ′, v) ∈ FP and a subobject P ′ of P such that the image
of U ′(P ′) in Fϕ(P ) = ϕ∗ϕ

∗(P ) is a subobject of ϕ∗(M) whose support contains P.

Then the functor CAP

LP

−−−→ CA induces a surjective morphism

Specc−(AP)P
LP

−−−→ Specc−(A)P . (1)

The functor LP maps simple objects to simple objects.

Proof. The argument is similar to the proof of 2.2. Details are left to the reader.

4.4. Finiteness conditions.

4.4.1. Associated points of finite multiplicity. Let M be an object of CX , and
let P ∈ Specc−(X) be an associated point of M ; i.e. M has a nonzero subobject which

belongs to P̂c
⊛ = P ∩ P̂⊥. We say that the associated point P has a finite multiplicity if

the P̂⊛
c /P̂-torsion of M belongs to Spec(X/P̂).

If the quotient category CX/P̂ has simple objects, then the P̂⊛
c /P̂-torsion of the

image of M in CX/P̂ coincides with its socle. The point P is of finite multiplicity in M
iff this socle is of finite length. The latter is called the multiplicity of P in M .

4.4.2. Points of the spectrum finite over a point. Let A
ϕ
−→ X be an affine

morphism and P a point of Spec−c (X). It is not guaranteed, in general, that Spec−P(AP)
is nonempty. We denote by Spec0P,f(A) the preorder of all M ∈ Specc−(A) such that P is
an associated point of ϕ∗(M) of finite multiplicity.

4.4.2.1. Proposition. Suppose that P ∈ Spec−c (X) is such that the category CX/P
has simple objects. Then for every M ∈ Spec0P,f(A), the object f

P∗(M) has a subobject

P̃ which belongs to SpecPc (AP). For any such object P̃ , the corresponding element of
Spec−c (AP) is an associated point of f

P∗(M) of finite multiplicity, and P is an associated

point of P̃ of finite multiplicity.

Proof. Consider the set ΩP of all subobjects L of f
P∗(M) such that ϕ

P∗(L) is a
representative of P. Those of them with the smallest rank of ϕ

P∗(L) belong to SpecPc (AP).
Details and the remaining observations are left to the reader.
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4.5. Holonomic objects.

4.5.1. Definition. Let A
ϕ
−→ X be a continuous morphism. We call an object M

of the category CA holonomic over X (or, more precisely, ϕ-holonomic), if each nonzero
subquotient of ϕ∗(M) has associated points in Specc−(X) and all these associated points
are of finite multiplicity.

If CX is the category of quasi-coherent sheaves on a smooth scheme X and CA is the
category of D-modules on X , then holonomic objects are precisely holonomic D-modules.

In the case CX is the category of quasi-coherent sheaves on the quantum flag variety
of a semisimple Lie algebra g and CA is the category of quasi-coherent Uq(g)-modules on
X (cf. [LR2]), then holonomic objects are called holonomic quantum D-modules.

It follows from 4.4.2.1 that all holonomic objects over X which belong to Specc−(A)
are obtained via the construction of this work. Thanks to their functorial properties, the
description of holonomic objects is directly reduced to their description on elements of an
affine cover.

5. Local properties of spectra. Applications to D-modules on classical and
quantum flag varieties.

5.1. Proposition. Let {Ti | i ∈ J} be a set of coreflective thick subcategories of

an abelian category CX such that
⋂

i∈J

Ti = 0; and let u∗i denote the localization functor

CX −→ CX/Ti. The following conditions on a nonzero coreflective topologizing subcategory
Q of CX are equivalent:

(a) Q ∈ Spec0c(X),
(b) [u∗i (Q)]c ∈ Spec0c(X/Ti) for every i ∈ J such that Q * Ti.

Proof. See [R7, 10.4.3].

5.1.1. Note. The condition (b) of 5.1 can be reformulated as follows:
(b’) For any i ∈ J , either u∗i (Q) = 0, or [u∗i (Q)]c ∈ Spec0c(X/Ti).

5.2. Proposition. Let CX be an abelian category and U = {Ui
ui−→ X | i ∈ J} a set

of continuous morphisms such that {CX
u∗
i−→ CUi | i ∈ J} is a conservative family of exact

localizations.
(a) The morphisms Uij = Ui ∩ Uj

uij
−→ Ui are continuous for all i, j ∈ J .

(b) Let Li be an object of Spec0c(Ui); i.e. [Li]c ∈ Spec0c(Ui) and Li is 〈Li〉-torsion
free. The following conditions are equivalent:

(i) Li ≃ u
∗
i (L) for some L ∈ Spec0c(X);

(ii) for any j ∈ J such that u∗ij(Li) 6= 0, the object uji∗u
∗
ij(Li) of CUj has an

associated point; i.e. it has a subobject Lij which belongs to Spec0c(Uj).
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Proof. The assertion follows from 5.1 (the argument is similar to that of [R7, 9.7.1].

5.2.1. Note. If the cover U = {Ui
ui−→ X | i ∈ J} in 5.2 is finite, then Spec0c(−) and

Spec0c(−) can be replaced by resp. Spec(−) and Spec(−).

5.2.2. Examples. (a) If CX is the category of quasi-coherent sheaves on a quasi-
separated scheme X and each Ui is the category of quasi-coherent sheaves on an open
subscheme of X , then the gluing conditions of 5.2 hold for any Li ∈ Spec

0
c(Ui); i.e. the

spectrum Spec0c(X) is naturally identified with
⋃

i∈J

Spec0c(Ui).

(b) Similarly, if CX is the category of holonomic modules over a sheaf of twisted

differential operators on a smooth scheme X , and {Ui
ui−→ X | i ∈ J} is a cover of X

corresponding to an open Zariski cover of X , then
⋃

i∈J

Spec0c(Ui).

This is due to functoriality of sheaves of holonomic modules with respect to direct
and inverse image functors of open immersions and the fact that holonomic modules are
of finite length (hence they have associated closed points).

5.3. Proposition. Let CX be an abelian category and U = {Ui
ui−→ X | i ∈ J} a

finite set of morphisms of ’spaces’ whose inverse image functors, {CX
u∗
i−→ CUi | i ∈ J},

form a conservative family of exact localizations, and Ker(u∗i ) is a coreflective subcategory

for every i ∈ J . Then Spec−(X) =
⋃

i∈J

Spec−(Ui) and Spec−c (X) =
⋃

i∈J

Spec−c (Ui).

Proof. The first equality is proven in [R7, 9.5]. The argument for the second equality
is similar to the proof of [R7, 9.5].

5.3.1. Proposition. Let CX be an abelian category and U = {Ui
ui−→ X | i ∈ J} a

set of continuous morphisms whose inverse image functors, {CX
u∗
i−→ CUi | i ∈ J}, form

a conservative family of exact localizations. Suppose that Spec−c (X) =
⋃

i∈J

Spec−c (Ui)

(e.g. J is finite) and CUi is a Grothendieck category with a Gabriel-Krull dimension (for
instance, Ui is locally noetherian; say Ui ≃ Sp(Ai) for a left noetherian ring) for each
i ∈ J . Then Spec−c (X) is isomorphic to the set of isomorphism classes of indecomposable
injective objects of the category CX .

Proof. Each (isomorphism class of) indecomposable injective E of CX corresponds to

the element ⊥E of Spec−c (X). Since direct image functors CUi
ui∗−→ CX of morphisms ui

are right adjoints to exact functors, they map (indecomposable) injective objects to (resp.
indecomposable) injective objects. For every ’space’ Y such that CY is a Grothendieck
category with a Gabriel-Krull dimension (in particular, for each Ui), the isomorphism
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classes of indecomposable injective objects are in bijective correspondence with elements
of Spec−c (Y ).

5.4. Towards some applications. The assertions above allow to apply the results

of the previous sections to locally affine morphisms; i.e. morphisms of ’spaces’ A
f
−→ X

endowed with a set U = {Ui
ui−→ X | i ∈ J} of morphisms such that {CX

u∗
i−→ CUi | i ∈ J}

is a conservative family of exact localizations whose kernels are coreflective subcategories
of CA, and for every i ∈ J , the compositions f ◦ ui is an affine morphism.

A slightly more general setting we are interested in consists of a family of commutative
diagrams

Ui
ũi
−−−→ X

fi

y
y f

Ui
ui
−−−→ X i ∈ J,

(1)

where {CX
u∗
i−→ CUi | i ∈ J} and {CX

ũ∗
i−→ CAi | i ∈ J} are conservative families of exact

localizations with coreflective kernels and morphisms Ui
fi−→ Ui are locally affine for all

i ∈ J . Even when the morphism A
f
−→ X is affine, the propositions 5.1 – 5.3.1 help to

simplify the problem by using appropriate covers. In the examples below, the morphisms
f and fi are affine. We start with differential morphisms.

5.4.1. Affine differential morphisms. Let X
f
−→ X be a differential affine mor-

phism whose inverse image functor is exact. This means that the ’space’ X is naturally
isomorphic to Sp(Ff/X), where Ff = (Ff, µf) is the monad associated with f, and the
functor Ff = f∗f

∗ is exact, differential, and has a right adjoint.

Let U
u
−→ X be a flat (i.e. continuous and exact) localization, and let CX

F
−→ CX

be an exact differential functor. Then there exists a unique exact differential functor

CU
FU−→ CU such that u∗ ◦ F = FU ◦ u

∗. The functor FU is naturally isomorphic to the
composition u∗Fu∗. If the functor F is continuous, i.e. it has a right adjoint, F !, then the
functor FU is continuous too: the composition F !

U = u∗F !u∗ is a right adjoint to FU .

Let U = {Ui
ui−→ X | i ∈ J} be a set of continuous morphisms whose inverse image

functors {CX
u∗
i−→ CUi | i ∈ J} form a conservative family of exact localizations. Then it

follows from the discussion above and C4.1 that the differential affine morphism X
f
−→ X

gives rise to a uniquely determined commutative diagram (1) in which all morphisms fi
are affine and differential.

5.4.2. Quasi-coherent sheaves of rings. Let X = (X ,OX ) be a commutative
scheme such that the embedding of each point of X into X has a direct image functor
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(e.g. X is quasi-separated). This condition implies that the scheme X can be canonically
reconstructed (is naturally isomorphic to the geometric center of) the category CX =
QcohX of quasi-coherent sheaves on X . Let AX be a quasi-coherent sheaf of associative
unital rings on X and CX the category of quasi-coherent sheaves of AX -modules. Let

OX
ψ
−→ AX be a morphism of sheaves of rings. The morphism ψ gives rise to an affine

morphism X
f
−→ X of ’spaces’. Fix an affine cover {Ui

ui−→ X | i ∈ J} of X . Then we have
a commutative diagram

Ui
ũi
−−−→ X

fi

y
y f

Ui
ui
−−−→ X i ∈ J,

(1)

where Ui = Sp(OX (Ui)), Ui = Sp(AX (Ui)), fi is the affine morphism corresponding to

the ring morphism OX (Ui)
ψ(Ui)
−−−→ AX (Ui), and the morphisms ui and ũi have restriction

functors to the open subset Ui as inverse image functors. Since u∗i and ũ∗i are localization
functors, the commutative diagram (1) shows that X is a (noncommutative in general)

scheme, {Ui
ũi−→ X | i ∈ J} its affine cover, and X

f
−→ X is a scheme morphism.

Fix i ∈ J and pick a point x of the open set Ui. To the point x, there corresponds an
element Pix of Spec(Ui) = Spec0c(Ui). Since Ui is a Zariski open subset of the commutative
scheme X , the point Pix is the image of a uniquely determined point Px of X.

We assume that the ring morphism OX(Ui)
ψ(Ui)
−−−→ AX (Ui) is flat; i.e. the functor

f∗i = AX (Ui) ⊗OX (Ui) − from CUi to CUi is exact. The stabilizer of the point Pix can be
identified with the subring APix

of the ring AX (Ui) which contains the image of OX (Ui)
and such that the induced morphism OX (Ui) −→ APix

(– the corestriction of ψ(Ui)) is flat.

5.4.2.1. Finiteness conditions. Let CXx
f
denote the full subcategory of the cate-

gory CX generated by all objects M of CX such that x is an associated point of f∗(M) of
finite multiplicity (or, what is the same, Px is an associated point of f∗(M) of finite multi-
plicity). It follows from generalities on associated points (see C3.2) that the subcategory
CXx

f
is closed under extensions. It follows from 4.4.2.1 and 4.3 that every object M of the

subcategory CXx
f
has an associated point of the form LPx(V ), where V is an element of

the spectrum of the stabilizer Sp(APix
) of the point Pix whose image in CX is an element

of Spec(X) representing the point Pix. Therefore, if M is the point of the Spec−(Ui), then
M is equivalent to LPix

(V ).

5.4.2.2. Example. Let now X = (X ,OX ) be a smooth scheme over Spec(k); and let
AX be the sheaf of algebras of twisted differential operators on X . Then Spec−c (X)

⋂
CXx

f
,
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consists of all semisimple holonomic AX -modules whose simple components are isomorphic
to each other.

5.4.3. Remark. Given a cover U = {Ui
ui−→ X | i ∈ J}, Proposition 5.2 suggests

a way of constructing points of Spec0c(X) starting from a point P of Spec0c(X), taking
its image in Spec0c(Ui) for some Ui containing P (i.e. u∗i (P) 6= 0) and an object Mi

of Spec0c(Ui) such that its image in CUi has u∗i (P) as an associated point. Notice that
the object Mi can be obtained via our induction procedure applied to some other affine

morphism, Vi
ϕi
−→ Ui, and a point Qi of Spec

0
c(Vi). All we need to know is that the image

of Mi in CUi has an associated point of the form u∗i (P) for some P ∈ Spec0c(X). Thus,
the gluing data related to this approach is described by the diagram

Vi

ϕi
←−−− Ui

ũi
−−−→ X

fi

y
y f

Ui
ui
−−−→ X i ∈ J,

(3)

where {CX
u∗
i−→ CUi | i ∈ J} and {CX

ũ∗
i−→ CAi | i ∈ J} are conservative families of

continuous exact localizations and the morphisms Vi
ϕi
←− Ui

fi−→ Ui are affine for all i ∈ J .

5.4.4. Example: D-modules on flag varieties. Let g be a semisimple Lie algebra
over an algebraically closed field of zero characteristic, G a connected simply connected
algebraic group whose Lie algebra is isomorphic to g. Let B be a Borel subgroup of G, and
W its Weyl group. The sheaf DG/B of algebras of differential operators on G/B defines a
noncommutative scheme XG/B represented by the category of D-modules on G/B, together

with the affine morphism XG/B
f
−→ XG/B corresponding to the morphism OG/B −→ DG/B

of sheaves of rings. Here XG/B denotes the ’space’ corresponding to the scheme G/B, i.e.
CXG/B is the category of quasi-coherent sheaves on G/B. By Beilinson-Bernstein theorem,
the category CXB/B = DG/B −mod of D-modules on the flag variety G/B is equivalent to
the category Uρ(g)−mod of U(g)-modules with the trivial central character.

Consider the canonical affine cover {Uw
ui−→ G/B | w ∈ W} of the flag variety by the

translations of the big cell. Each open subscheme Uw is isomorphic to the affine space An.
Therefore, for all w ∈ W, the algebra DG/B(Uw) is isomorphic to the Weyl algebra An.
Thus we have commutative diagrams of ’spaces’

Sp(An)
ψ̃w
−−−→ Uw

ũw
−−−→ XG/B

ϕn

y fw

y
y f

Sp(Γ(An))
ψw
−−−→ Uw

uw
−−−→ XG/B w ∈ W,

(1)
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where left horizontal arrows are isomorphisms, ϕn is a morphism corresponding to the
embedding of the algebra k[y] = Γ(An) of polynomials in n variables to the Weyl algebra.

By 5.2, the construction of points of Spec0c(XG/B) is reduced to

(i) the construction of points of Spec0c(Uw) = Spec(Uw) ≃ Spec(Sp(An)),
(ii) verifying the gluing conditions of 5.2(b).

As it is observed in 5.2.2(b), the gluing conditions hold automatically if we study
holonomic D-modules. We look at the first, most important, problem.

5.4.4.1. The standard approach. The diagram (1) invites to apply the developed
here induction machinery to the morphism ϕn corresponding to the standard embedding
k[y] →֒ An. It follows from 3.3.1 that for every closed irreducible subvariety V of An (– a
point of the spectrum of k[y]), the functor LV produces An-modules supported in V. If the
subvariety V is smooth, then the stabilizer of V in An coincides with the ring of differential
operators on V. In this case, it follows from the Kashiwara’s theorem, that the induction
functor establishes an equivalence between the category DV −mod of D-modules on V and
the full subcategory An −modV of the category An −mod whose objects are An-modules
supported on V.

5.4.4.2. Hyperbolic coordinates. They are given by the k-algebra embedding

k[ξ̄] = k[ξ1, . . . , ξn]
ψ
−→ An which maps each indeterminate ξi to the product xiyi. The

main advantage of this choice is that only a countable number of points of Spec(k[ξ̄]) have
a nontrivial stabilizer, and their stabilizer can be easily described and taken into account.
Thus, we extend the diagram (1) to the diagram

Sp(k[ξ])
ψ̃

←−−− Sp(An)
ψ̃w
−−−→ Uw

ũw
−−−→ XG/B

ϕn

y fw

y
y f

Sp(Γ(An))
ψw
−−−→ Uw

uw
−−−→ XG/B w ∈ W,

(2)

and use the morphism ψ̃ = Sp(ψ) for constructing elements of the spectrum of Sp(An).

5.5. Quantized D-modules on quantum flag varieties.

5.5.1. The cone of a non-unital ring. Let R0 be a unital associative ring and
R+ an associative (non-unital in general) ring in the category of R0-bimodules; i.e. R+ is

endowed with an R0-bimodule morphism R+ ⊗R0 R+
m
−→ R+ satisfying the associativity

condition. We denote by R the augmented unital ring R0 ⊕ R+ and by TR+ the full
subcategory of R−mod whose objects are all R-modules annihilated by R+.

We define the ’space’ cone of R+ by taking as CCone(R+) the quotient category

R − mod/T −
R+

of R − mod by the Serre subcategory spanned by TR+ . The localization
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functor R−mod
u∗

−→ R−mod/T −
R+

is an inverse image functor of a morphism of ’spaces’

Cone(R+)
u
−→ Sp(R). The functor u∗ has a (necessarily fully faithful) right adjoint, i.e.

the morphism u is continuous. If R+ is a unital ring, then u is an isomorphism (see
[KR2, C3.2.1]). The composition of the morphism u with the canonical affine morphism
Sp(R) −→ Sp(R0) is a continuous morphism Cone(R+) −→ Sp(R0). Its direct image
functor is (regarded as) the global sections functor.

5.5.2. The graded version: ProjG. Let G be a monoid and R = R0 ⊕ R+ a G-
graded ring with zero component R0. Then we have the category grGR−mod of G-graded
R-modules and its full subcategory grGTR+ = TR+ ∩grGR−mod whose objects are graded
modules annihilated by the ideal R+. We define the ’space’ ProjG(R) by setting

CProjG(R) = grGR−mod/grGT
−
R+
.

Here grGT
−
R+

is the Serre subcategory of the category grGR −mod spanned by grGTR+ .

One can show that grGT
−
R+

= grGR−mod∩T
−
R+

. Therefore, we have a canonical projection

Cone(R+)
p
−→ ProjG(R).

The localization functor grGR−mod −→ CProjG(R+) is an inverse image functor of a

continuous morphism ProjG(R)
v
−→ SpG(R). The composition ProjG(R)

v
−→ Sp(R0) of

the morphism v with the canonical morphism SpG(R)
φ
−→ Sp(R0) defines ProjG(R) as a

’space’ over Sp(R0). Its direct image functor is called the global sections functor.

5.5.2.1. Standard example: cone and Proj of a Z+-graded ring. Let R =⊕
n≥0Rn be a Z+-graded ring, R+ its ’irrelevant’ ideal. Thus, we have Cone(R+),

Proj(R) = ProjZ(R), and the canonical morphism Cone(R+) −→ Proj(R).

5.5.3. The category of D-modules on the flag variety of a reductive Lie
algebra. Let g be a reductive Lie algebra over C and U(g) the enveloping algebra of g.
Let G be the group of integral weights of g and G+ the semigroup of nonnegative integral
weights. Let R = ⊕λ∈G+Rλ, where Rλ is the vector space of the (canonical) irreducible
finite dimensional representation with the highest weight λ. The module R is a G-graded
algebra with the multiplication determined by the projections Rλ ⊗ Rν −→ Rλ+ν , for all
λ, ν ∈ G+. It is well known that the algebra R is isomorphic to the algebra of regular
functions on the base affine space of g. Recall that G/U , where G is a connected simply
connected algebraic group with the Lie algebra g, and U is its maximal unipotent subgroup.

5.5.3.1. Base affine space and flag variety. The category CCone(R) is equivalent
to the category of quasi-coherent sheaves on the base affine space Y of the Lie algebra g.
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The category ProjG(R) is equivalent to the category of quasi-coherent sheaves on the
flag variety of g.

5.5.3.2. D-modules on the flag variety. Consider the cross-product U(g)#R
associated with the Hopf action of U(g) on R. This is a G-graded algebra (with the grading
induced by the grading of the algebra R). One can show that the category CProjG(U(g)#R)

is equivalent to the category D − modG/B of D-modules on the flag variety of the Lie
algebra g. In other words, the ’space’ represented by the category of D-modules on the
flag variety is isomorphic to Proj(U(g)#R).

5.5.4. The quantum base affine ’space’ and quantum flag variety of a
semisimple Lie algebra. Let now g be a semisimple Lie algebra over a field k of zero
characteristic, and let Uq(g) be the quantized enveloping algebra of g. Define the G-graded
algebra R =

⊕
λ∈G+

Rλ the same way as above, i.e. Rλ is a simple finite-dimensional
module with the highest weight λ. This time, however, the algebra R is not commutative.
If g = sl2, then R is isomorphic to the algebra kv[x, y] = k〈x, y〉/(xy − vyx) for an ap-
propriate v. Following the classical example (and representing ’spaces’ by the categories
of quasi-coherent sheaves on them), we call Cone(R) the quantum base affine ’space’ and
ProjG(R) the quantum flag variety of the Lie algebra g. We call R the algebra of functions
on the quantum base affine ’space’.

5.5.4.1. Canonical affine covers of the quantum base affine ’space’ and the
quantum flag variety. Let W be the Weyl group of the Lie algebra g. Fix a w ∈ W .
For any λ ∈ G+, choose a nonzero w-extremal vector eλwλ generating the one dimensional
vector subspace of Rλ formed by the vectors of the weight wλ. Set Sw = {k∗eλwλ|λ ∈ G+}.

It follows from the Weyl character formula that eλwλe
µ
wµ ∈ k∗eλ+µw(λ+µ). Hence Sw is a

multiplicative set. It was proved by Joseph [Jo] that Sw is a left and right Ore subset in
R. The Ore sets {Sw|w ∈W} determine a conservative family of affine localizations

Sp(S−1
w R) −−−→ Cone(R), w ∈W, (4)

of the quantum base affine ’space’ and a conservative family of affine localizations

SpG(S
−1
w R) −−−→ ProjG(R), w ∈W, (5)

of the quantum flag variety. Here SpG(S
−1
w R) is the ’space’ represented by the category

grGS
−1
w R−mod of G-graded grGS

−1
w R-modules.

We claim that the category grGS
−1
w R−mod is naturally equivalent to (S−1

w R)0−mod.
By 1.5, it suffices to verify that the canonical functor grGS

−1
w R − mod −→ S−1

w R)0 −
mod which assigns to every graded S−1

w R-module its zero component is faithful; i.e. the
zero component of every nonzero G-graded S−1

w R-module is nonzero. This is, really, the
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case, because if z is a nonzero element of λ-component of a G-graded S−1
w R-module, then

(eλwλ)
−1z is a nonzero element of the zero component of this module.
This shows that for every w ∈ W , the morphism SpG(S

−1
w R) −−−→ ProjG(R) is

isomorphic to the morphism Sp((S−1
w R)0)

uw
−−−→ ProjG(R). The morphism uw form an

affine cover

Sp((S−1
w R)0)

uw
−−−→ ProjG(R), w ∈W (6)

of the quantum flag variety ProjG(R) turning it into a noncommutative scheme.

5.5.5. The quantum flag D-variety. Similar to 5.5.3.2, we consider the cross-
product Uq(g)#R, where R is the algebra of functions on the quantum base affine ’space’
defined in 5.5.4, with G-grading induced by the G-grading of R. We call the ’space’
Proj(Uq(g)#R) the quantum flag D-variety. The objects of the category representing
ProjG(Uq(g)#R) are called quantum D-modules on the quantum flag variety ProjG(R).

The natural algebra morphism R −→ Uq(g)#R induces an affine morphism

Proj(Uq(g)#R)
f

−−−→ Proj(R).

As every affine morphism, the morphism f is isomorphic to the natural morphism

Sp(Ff/ProjG(R))
f̃

−−−→ ProjG(R)

for a monad Ff. The monad Ff can be chosen canonically: it is uniquely determined by the
action of Uq(g) on the category grGR −mod of G-graded R-modules, because this action
is compatible with the localization grGR−mod −→ ProjG(R).

Moreover, the action of Uq(g) on grGR−mod becomes differential in an appropriate
sense (explained in [LR1] and [LR2]). This implies, among other things, that the action of
Uq(g) on grGR−mod is compatible with localizations at the Ore sets Sw for each w ∈W .
So that the cover of ProjG(R) described in 5.5.4.1(6) induces a cover

Sp((S−1
w (Uq(g)#R)0)

uρw
−−−→ ProjG(Uq(g)#R), w ∈W (7)

of the ’space’ Proj(Uq(g)#R) such that the diagram

Sp((S−1
w (Uq(g)#R))0)

uρw
−−−→ ProjG(Uq(g)#R)y

y
Sp((S−1

w R)0)
uw
−−−→ ProjG(R) w ∈W

(8)
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whose all four arrows are affine morphisms, commutes. In particular, the cover (7) turns
the ’space’ ProjG(Uq(g)#R) into a noncommutative separated scheme.

5.5.6. The global sections functor. For any G-graded k-algebra R, there is a

canonical continuous morphism ProjG(R)
γ

−−−→ Sp(R0) whose direct image functor is

the composition of the right adjoint CProj(R)

q∗

−−−→ grGR − mod to the localization

functor grGR−mod
q∗

−−−→ CProj(R) and the functor

grGR−mod
p∗

−−−→ R0 −mod

which assigns to every G-graded R-moduleM its zero component endowed with the action
of the zero component R0 of the algebra R. We call the direct image functor γ∗ = p∗q∗ of
the morphism γ the global sections functor.

Thus, if R is the algebra of functions on the quantum (or classical) flag variety of the
Lie algebra g, then R0 = k. If R = U(g)#R, then R0 = U(g); and the diagram

ProjG(Uq(g)#R)
γ̃

−−−→ Sp(U(g))

f
y

y

ProjG(R)
γ

−−−→ Sp(k)

(9)

(where the right vertical arrow corresponds to the k-algebra structure on U(g)) commutes.

By [LR2] (see also [T]), the morphism ProjG(Uq(g)#R)
γ̃

−−−→ Sp(Uq(g)) is affine and
its direct image function establishes an equivalence between the category CProjG(Uq(g)#R)

of quantum D-modules on the flag variety and the full subcategory Uq(g)ρ−mod of Uq(g)-
modules with the trivial central character. Thus, we can replace the diagram (9) with the
commutative diagram

ProjG(Uq(g)#R)
γρ
−−−→ Sp(Uq(g)ρ)

f
y

y

ProjG(R)
γ

−−−→ Sp(k)

(10)

whose upper horizontal arrow is an isomorphism.Therefore, it induces isomorphisms be-
tween the corresponding spectra of these ’spaces’. In particular, the direct image functor
γρ∗ of the morphism γρ maps Spec0c(ProjG(Uq(g)#R)) to Spec0c(Sp(Uq(g)ρ)) and this map

induces an isomorphism from Spec0c(ProjG(Uq(g)#R)) onto Spec0c(Sp(Uq(g)ρ)).
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5.6. The twisted version. Fix a central character χ of the quantized enveloping al-
gebra Uq(g) and consider the twisted cross-product Uq(g)#χR. We call ProjG(Uq(g)#χR)
the quantumDχ-variety, or the quantum twisted D-variety. The constructions of 5.5 can be
repeated literally for the twisted D-varieties and summarized in the commutative diagrams

Sp((S−1
w (Uq(g)#R))0)

uχw
−−−→ ProjG(Uq(g)#χR)

γχ
−−−→ Sp(Uq(g)χ)y

y
y

Sp((S−1
w R)0)

uw
−−−→ ProjG(R)

γ
−−−→ Sp(k) w ∈W

(1)
It follows from [LR2] (and [T]) that if χ is regular, anti-dominant, then γχ is an

isomorphism. In this case, computing the spectra of the twisted flag D-variety is the same
as the computing the corresponding spectra of the affine scheme Sp(Uq(g)χ).

As to the studying the spectra of the flag Dχ-variety, it is reduced to the study
of the spectra of elements of the cover, Sp((S−1

w (Uq(g)#R))0), w ∈ W. The spectra of
Sp((S−1

w (Uq(g)#R))0) can be studied via the affine morphism

Sp((S−1
w (Uq(g)#R))0) −−−→ Sp((S−1

w R)0), (2)

or, possibly, using a different affine morphism

Sp((S−1
w (Uq(g)#R))0)

ψ̃w
−−−→ Sp(Aw). (3)

5.7. Remarks.

5.7.1. These constructions for the usual enveloping algebras. If the quantized
enveloping algebra Uq(g) is replaced by the enveloping algebra U(g) and the algebra R of
functions on the quantum base affine ’space’ by the algebra R of functions on the base affine
space, then the constructions of 5.5 and 5.6 become another, purely algebraic, description
of D-modules on a flag variety, the related canonical covers of the flag variety, and the
corresponding (twisted) D-scheme. In particular, the algebra (S−1

w R)0 is isomorphic to
the polynomial algebra k[ȳ] = k[y1, . . . , yn] – the coordinate algebra of the affine space An,
and (S−1

w (U(g)#R))0 is, therefore, isomorphic to the Weyl algebra An for all w ∈W .
A sensible choice of the algebra Aw in (3) is the polynomial algebra k[ξ̄] = k[ξ1, . . . , ξn]

and the morphism (3) is induced by the algebra morphism k[ξ̄]
ψ
−→ An which maps each

indeterminate ξi to the product xiyi – hyperbolic coordinates (see 5.4.4.2). Why this choice
is sensible is shown in Section C1 (see also [R, Chapters II and IV]).

5.7.2. Quantum hyperbolic coordinates. In the quantum case, the algebras
(S−1
w R)0 of functions on the quantum translations of the big cell are rather complicated
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noncommutative algebras, if g is a simple Lie algebra of the rank higher than one. Finding
their own spectra is already a problem, so that the standard method, i.e. using the mor-
phism (2) for the construction (induction) of the points of the spectra of (S−1

w (Uq(g)#R))0
becomes unpractical. Amazingly, the second method, the induction along hyperbolic coor-
dinates, survives. That is one can take as the algebra Aw in (3) the algebra of polynomials
k[ξ] = k[ξ1, . . . , ξn] and a morphism

k[ξ]
ψw
−−−→ (S−1

w (Uq(g)#R))0 (4)

which is a part of the hyperbolic structure. In the classical limit (i.e. after factorization by
the ideal generated by (q − 1)), the algebra (S−1

w (Uq(g)#R))0 becomes the Weyl algebra

An and the morphism (4) turns into the canonical morphism k[ξ̄]
ψ
−→ An (see 5.4.4.2).

In the case when the Cartan matrix of the Lie algebra g is of the type (A) or (C) and
w is the longest element of the Weyl group, the construction of the hyperbolic structure
on the algebra (S−1

w (Uq(g)#R))0, in particular the morphism (4), can be deduced from
[Ha]. The construction is written explicitly (for a more general case) in [R, IV.C2.7].

The existence of the deformations (4) of the canonical map k[ξ̄]
ψ
−→ An (more precisely,

of its composition with the isomorphism An
∼−→ (S−1

w (U(g)#R))0) implies that not only
the highest weight simple Uq(g)-modules are deformations of the highest weight simple
U(g)-modules (which is a well known result of G. Lusztig [L]), but also that ’almost all’
representations of the quantized enveloping algebra Uq(g) parameterized by the points
P of Spec(k[ξ̄]) via the maps (4) and related functors LP (hence these representations
belong to the spectrum of the noncommutative ’space’ Sp(Uq(g))) are deformations of
the representations of the enveloping algebra U(g) parameterized by the same points of

Spec(k[ξ̄]) via the maps k[ξ̄]
ψ
−→ An

∼−→ (S−1
w (U(g)#R))0 and the functors LP determined

by the ring morphism ψ.
Note that the hyperbolic algebra structure works more or less the same way in all

cases, so that the piece of spectral theory of (S−1
w (Uq(g)#R))0 (hence of Uq(g)) related to

the morphism (4) is produced approximately the same way as the piece of spectral theory

of the Weyl algebra An related to hyperbolic coordinates k[ξ̄]
ψ
−→ An. For the material

supporting the latter assertion, we refer to the section C1 of this paper (see below) and
Chapters II and IV of the monograph [R].

5.7.3. Hyperbolic coordinates and holonomic objects. One can show that all
simple An-modules obtained via the functor LP corresponding to the algebra morphism

k[ξ̄]
ψ
−→ An, where P runs through the closed points of Spec(k[ξ̄]), are holonomic. This

follows from the Roos criterium of the holonomicity, the formulas for the functors LP in
hyperbolic case, and the fact that the closed points of Spec(k[ξ̄]) have the trivial stabilizer
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(see C1 below). Each simple holonomic module on an element of the cover (– a translation
of the big cell) determines a simple holonomic D-module on the flag variety.

Similar facts hold in the quantum case for the algebra morphisms (4).
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Complementary facts.
C1. Weyl and Heisenberg algebras.

The studying the spectra of universal enveloping algebra U(g) of a reductive Lie
algebras over algebraically closed fields of zero characteristic is reduced (via the passage
to the categories of quasi-coherent modules over sheaves of twisted differential operators
on flag variety and using the standard cover of the latter by translations of the big cell) to
studying modules over Weyl algebras (see 5.4.4).

Weyl algebras play also a crucial role in representation theory of nilpotent Lie algebras:
if g is a finite-dimensional nilpotent Lie algebra over an algebraically closed field of zero
characteristic, then the set of primitive ideals of its universal enveloping algebra U(g) is
parameterized by the orbits of adjoint action on the dual space g∗; and for any primitive
ideal J, quotient algebra U(g)/J is isomorphic to the Weyl algebra An.

Recall that the Weyl algebra An is a k-algebra generated by xi, yi subject to the
relations

[xi, yj ] = δij , [xi, xj ] = 0 = [yi, yj ] for all 1 ≤ i, j ≤ n. (3)

We assume that k is a field of zero characteristic.

C1.1. The standard realization. Let now CX be the category of modules over the

polynomial algebra k[y] = k[y1, . . . , yn], and CA = An−mod
ϕ∗
−→ CX the pull-back functor

corresponding to the embedding k[y] →֒ An. Then CA = Fϕ −mod, where Fϕ = (Fϕ, µϕ)
is a differential monad on X; i.e. Fϕ = An ⊗k[y] − is a differential functor.

Fix a point P of Spec0c(X) and consider the related commutative diagram (see (2) in
3.3)

CA[P−]

u
P∗

−−−→ CXP

f̃∗
P

ց ր
ϕ̃∗

P

CA′
P

(4)

Let VP denote the Zariski closed irreducible subspace of Spec(k[y]) corresponding to
P. The category CA′

P
is equivalent to the category D(VP)−mod of modules over the ring

D(VP) of differential operators on the subvariety (corresponding to) VP . The category
CA[P−] is the category of An-modules whose support is contained in VP . If the subvariety

VP is smooth, then, by a Kashiwara’s theorem, the functor CA[P−]

f̃∗
P

−−−→ CA′
P
in (4) is an

equivalence of categories.

Thus, the problem of finding the part of the spectrum of A corresponding to the point
P such that VP is a smooth subvariety, is reduced to the problem of classifying points of
the spectrum of D-modules on the subvariety VP . If P is not a generic point, we reduce the
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dimension. The price to pay is studying D-modules on a possibly much more complicated
variety.

Since we study only D-modules related to the point P, we can localize at P and
consider, together with the diagram (4), the diagram

CAr [P−]

u
P∗

−−−→ CXr
P

f̃∗
P

ց ր
ϕ̃∗

P

CAr
P

(5)

Here Xr
P is the residue ’space’ of X at the point P; CAr

P
is the category of F̃-modules

(L, ξ̃), where L is an object of the residue category CXr
P
, and CAr [P−] is the category of

F
P̂
-modules (M, ξ), where M is an object of the residue Serre subcategory (which is by

definition the smallest nonzero Serre subcategory) of C
X/P̂

(cf. 3.3.6).

In the case of studying Spec−(X), the diagram (4) can be replaced by (5).
The residue category CXr

P
in (5) is equivalent to the category of vector spaces over the

residue field k
P
of the point P. The category CAr

P
is equivalent to the category of modules

over the ring of differential operators on the subvariety VP with rational coefficients. The
category CAr [P−] is equivalent to the category of modules with support in the subvariety
VP over the algebra of differential operators with coefficients in the residue field k

P
.

If P is a generic point, then VP = Spec(k[y]), CA[P−] = CA′
P
= CA, the residue field

k
P
is the field k(y) of rational functions in y = (y1, . . . , yn).
Depending on the point P the algebras of differential operators with coefficients from

the residue field k
P
, hence the categories of modules over them, might be quite complicated.

C1.2. The hyperbolic structure. Let CX be the category of modules over the
polynomial algebra R = k[ξ1, . . . , ξn], where ξi = xiyi, 1 ≤ i ≤ n,. We take CA = An−mod

and consider the morphism A
u
−→ X corresponding to the embedding k[ξ] →֒ An. So

the category CA = An − mod is realized as the category of modules over the monad
Fϕ = (Fϕ, µϕ) on CX , where Fϕ = An ⊗R −.

The algebra An is a free right R-module of rank Zn. Explicitly,

An =
⊕

s,t∈Zn
+
, s·t=0

xsytR (6)

Here xn = xs11 . . . xsnn and s · t =
∑

1≤i≤n siti.
The left R-module structure and the rest of multiplication are given by

rxsyt = xsytϑt−s(r) for all r ∈ R;

xiyi = ξi, yixi = ϑ−1
i (ξi) = ξi − 1,

[xi, yj ] = [xi, xj ] = [yi, yj ] = 0 for all 1 ≤ i, j ≤ n, i 6= j.

(7)
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Here ϑs = ϑs11 ◦ . . . ◦ ϑ
sn
n and ϑi is an automorphism of the algebra R determined by

ϑi(ξj) = ξj + δij , where δij is the Kronecker symbol.
It follows from this description that the functor Fϕ = An ⊗R − is a direct sum of

automorphisms of the category CX = R−mod; namely, Fϕ =
⊕

s∈Zn ϑs. The multiplication
is defined by

ϑi ◦ ϑj
id
−→ ϑiϑj if i 6= j, and ϑni ◦ ϑ

m
i

ξ(i)n,m
−−−→ ϑn+mi for all i,

where ξ
(i)
n,m = id if n and m are both non-positive or both nonnegative. For n ≥ m ≥ 1,

the morphisms ξ
(i)
n,−m and ξ

(i)
−n,m are defined by

ξ
(i)
n,−m = ξ

(i)
n−1,−m+1 ◦ ϑ

n−1
i ξiϑ

−m+1
i and ξ

(i)
−n,m = ξ

(i)
−n+1,m−1 ◦ ϑ

−n+1
i ξiϑ

m−1
i . (8)

Here ξi is the endomorphism of the identical functor which assigns to every object N of
CX (– an R-module) the action of the element ξi on N .

C1.3. The non-degenerate part of the spectrum. Points P of the spectrum of
CX are in bijective correspondence with irreducible Zariski closed subspaces VP of Spec(R).
The point P has a non-trivial stabilizer iff the subvariety VP is stable by the transformation
θm1
1 . . . θmnn , where at least one of the integers mi is nonzero. This shows that, generally,
a point of Spec0c(X) has a trivial stabilizer.

C1.3.1. The description. If a point P of Spec0c(X) has a trivial stabilizer, then
the functor f∗P coincides with ϕ∗ : N 7−→ (Fϕ(N), µϕ(N)). Let M = R/p, p ∈ Spec(R),

be a representative of P. Then M
λ(M)
−−−→ M is either zero or a monomorphism for any

endomorphism λ of IdCX . In particular, either ξiϑ
n
i (M) is a monomorphism for all n, or

ξiϑ
n
i (M) = 0 for some unique n (see 8.1.3). The latter means that ξi − n annihilates the

R-module M ; i.e. ξi − n is an element of the prime ideal p.
If ξiϑ

n
i (M) is a monomorphism for all n and all i, then one can show that the ϕ∗(〈M〉)-

torsion the Fϕ-module ϕ∗(M) = (Fϕ(M), µϕ(M)) is zero. Therefore, by 2.2, ϕ∗(M) is an
object of Spec(A). The general case is as follows. We set

Vi,ni(M) =
⊕

m<ni

ϑmi (M) if ni ≥ 0, and Vi,ni(M) =
⊕

m≥ni

ϑmi (M) if ni < 0.

Let ΞM denote the set of all pairs (i, ni) such that ξiϑ
ni
i (M) = 0, or, equivalently,

ξi − ni belongs to the prime ideal p. We set

V (M) = 0 if ΞM = ∅, and V (M) =
⊕

(i,ni)∈ΞM

Vi,ni(M) if ΞM 6= ∅.
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The Fϕ-submodule Ṽ (M) of ϕ∗(M) = (Fϕ(M), µϕ(M)) generated by V (M) coin-

cides with the ϕ−1
∗ (〈M〉)-torsion of ϕ∗(M). So, the quotient Fϕ-module ϕ∗(M)/Ṽ (M) is

isomorphic to LP(M). By 3.2.2, LP(R/p) belongs to Spec(A).

C1.3.2. Note. We denote by Specϕ,0(X) the subset of all points with trivial sta-
bilizer and by Specϕ,0(R) the corresponding subset of Spec(R). Let P1, P2 be points of
Specϕ,0(X), and let p1, p2 be the corresponding prime ideals – the elements of Specϕ,0(R).
Set Mi = R/pi, i = 1, 2. It follows from the construction in C1.3.1 that if P1 ⊆ P2, or,
equivalently, p2 ⊆ p1, then there is an epimorphism LP1(M1) −→ LP2(M2). In particular,
the point [LP2(M2)] is a specialization of [LP1(M1)].

C1.4. The degenerate part of the spectrum. For an element P of Spec0c(X),
we set GP = {t ∈ Zn | ϑt(P) = P}. This is a subgroup of Zn which we assume here to be
nonzero, hence it is isomorphic to Zm for some positive integer m. Let {ti | 1 ≤ i ≤ m}
be free generators of GP . The category CAP

is isomorphic to the category RP −mod of

left modules over the hyperbolic algebra RP corresponding to the data {ϑ̃i = ϑti , ξ̃i =

ξ(ti) | 1 ≤ i ≤ m}. Here ξ(ti) =
∏

1≤j≤n

ξj(tij), where tij is the j-th component of ti, and

ξj(ν) = 1 if ν = 0,

ξj(ν) =
∏

0≤s<ν

ϑsj(ξj) =
∏

0≤s<ν

(ξj + s) if ν > 0, and

ξj(ν) = ϑνj (ξj(−ν)
∏

1≤s≤−ν

(ξj − s) if ν < 0.

(9)

That is RP is generated by the algebra R and by the indeterminates x̃i, ỹi subject to
the relations

x̃ir = ϑ̃i(r)x̃i, rỹi = ỹiϑ̃i(r),

x̃iỹi = ξ̃i, ỹix̃i = ϑ̃−1
i (ξ̃i);

[x̃i, ỹj ] = [x̃i, x̃j ] = [ỹi, ỹj ] = 0 for all r ∈ R, and 1 ≤ i, j ≤ m such that i 6= j.

(10)

The functor CA

f
P∗

−→ CAP
corresponds to the algebra morphism RP −→ An which is

identical on R and maps x̃i to x
t
+
i yt

−
i and ỹi to x

t
−
i yt

+
i , 1 ≤ i ≤ m. Here t+i and t−i are

elements of Zn+ uniquely defined by the conditions: ti = t+i − t−i , t
+
i · t

−
i = 0.

The category CA′
P

is naturally equivalent to the category RP/(p) −mod. Here p is
the prime ideal in R corresponding to the point P and (p) denote the two-sided ideal in
RP generated by p.
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The points of SpecPc (AP) are identified with those points of Spec(A′
P) which survive

the localization at P. The latter is given by the localization of the algebra R at p. Thus,
SpecPc (AP) is identified with a subset of the spectrum of Ar

P (cf. 3.3.6). The category

CAr
P

is naturally equivalent to the category modules over the algebra kP [(x̃i, x̃
−1
i ; ϑ̃i)] of

skew Laurent polynomials in (x̃i | 1 ≤ i ≤ m) with coefficients in the residue field kP of
the point P which can be identified with the residue field K(R/p) of the prime ideal p.

Here we used the fact that the elements ξ̃i, 1 ≤ i ≤ m, do not belong to the ideal p.
Indeed, it follows from the formulas (9) that if ξ̃i ∈ p, then there is s such that

ξs + t ∈ p and tis 6= 0. Since ϑti(p) = p, the element ϑℓti(ξs) = ξs + ℓtis belongs to the
ideal p for any ℓ ∈ Z. But, since char(k) = 0, this is impossible.

C1.4.1. The points of the spectrum over the generic point. Since char(k) = 0,
the only Zn-invariant point of Spec0c(X) is the generic point P0 corresponding to the zero
ideal of the k-algebra R = k[ξ1, . . . , ξn].

The categories CA, CAP0
, and CA′

P0
coincide, and the localization at P0 provides an

embedding SpecP0
(A) −→ Spec(Ar) = Spec(Ar

P0
). The category CAr here is equivalent

to the category of modules over the algebra k(ξ1, . . . , ξn)[x
±1
1 , . . . , x±1

n ; θ1, . . . , θn] of skew
Laurent polynomials in x1, . . . , xn with coefficients in the field k(ξ1, . . . , ξn) of rational
functions in ξ1, . . . , ξn.

C1.5. Heisenberg algebras. Recall that the Heisenberg algebra Hn (– the envelop-
ing algebra of the Heisenberg Lie algebra) is an associative k-algebra generated by xi, yi,
and z subject to the relations

[xi, yj ] = δijz, [xi, z] = [xi, xj ] = 0 = [yi, yj ] = [yi, z] for all 1 ≤ i, j ≤ n. (1)

Let R = k[z, ξ1, . . . , ξn]. The Heisenberg algebra Hn is a free right R-module with
the basis formed by xsyt, where s ∈ Zn+ ∋ t are such that s · t =

∑
1≤i≤n siti = 0,

xs = xs11 . . . xsnn (see C1.2):

Hn =
⊕

s,t∈Zn
+
, s·t=0

xsytR (2)

The multiplication is given by

rxsyt = xsytϑt−s(r) for all r ∈ R;

xiyi = ξi, yixi = ϑ−1
i (ξi) = ξi − z,

[xi, yj ] = [xi, xj ] = [yi, yj ] = 0 for all 1 ≤ i, j ≤ n, i 6= j.

(3)

Here ϑs = ϑs11 ◦ . . . ◦ ϑ
sn
n and ϑi, 1 ≤ i ≤ n, are automorphisms of the algebra R defined

by ϑi(ξj) = ξj + δijz, ϑi(z) = z.
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The spectral picture corresponding to the embedding R →֒ Hn is recovered the same
way (and in the same degree) as the spectrum of the Weyl algebra An regarded as a
hyperbolic algebra over the ring of polynomials. We leave details to the reader.

C2. Remarks on enveloping algebras.

C2.1. The Harish-Chandra homomorphism and the highest weight simple
modules. Let g be a semisimple Lie algebra over a field k of zero characteristic. Fix its
Cartan subalgebra h. We take CX = U(h) − mod, CA = U(g) − mod, and the functor

CA
ϕ∗
−→ CX corresponding to the embedding U(h) −→ U(g).

We consider the canonical grading U(g) =
⊕

λ∈Q

U(g)λ defined by the adjoint action of

g on U(g) (cf. [D, 7.4]). The subalgebra U(g)0 is the centralizer of U(h) in U(g).
Let P be a point of Spec0c(X) = Spec(X), and p the corresponding prime ideal of

U(h). The category CAP
is equivalent to the category of modules over the QP -graded

subalgebra U(g)
P
=

⊕

λ∈QP

U(g)λ, where QP is the subgroup of Q stabilizing P (i.e. the

ideal p). In particular, the centralizer U(g)0 of U(h) stabilizes the subcategory P =
U(h)/p−mod for every point P. For most of points P, the subgroup QP is trivial, hence
the category CAP

is naturally equivalent to the category U(g)0−mod. In particular, CAP

is equivalent to U(g)0 −mod for all closed points P of Spec0c(X) = Spec(X).

Set CA0 = U(g)0 − mod. The Harish-Chandra homomorphism U(g)0
ϕ

H−→ U(h)

induces a full embedding CX
ϕ

H∗

−→ CA0 which identifies the category CX with a coreflective
topologizing subcategory of CA0 . Therefore, the embedding ϕ

H∗ determines an embedding
Spec(X) −→ Spec(A0). So that every element P of Spec(X) is identified with the
corresponding element of SpecPc (AP).

Let M = U(h)/p. Then the composition of the embedding

CX = U(h)−mod −−−→ U(g)0 −mod = CAP

with the functor LP assigns to M the highest weight module corresponding to the ideal p.

C2.1.1. Example. If g = sl2, then U(g) is generated by indeterminates x, y, z
subject to the relations

[x, y] = z, [x, z] = αx, [y, z] = −αy, (1)

where α is a nonzero element of the base field k. Thus, U(h) = k[z], U(g)0 = k[z, ξ], and
the Harish-Chandra homomorphism k[z, ξ] −→ k[z] assigns to every polynomial f(z, ξ) the
element f(z, 0) of k[z]. The corresponding map Spec(U(h)) −→ Spec(U(g)0) assigns to
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any prime ideal p in k[z] the prime ideal (p, ξ). If P is a closed point (i.e. p is a maximal
ideal), then U(g)0 is the stabilizer of P in the sense that CAP

is equivalent to the category
U(g)0−mod = k[z, ξ]−mod. The functor f∗P is isomorphic to U(g)⊗U(g)0 −. The functor
LP assigns to the simple U(g)0-module M = U(g)0/(p, ξ) ≃ U(h)/p the corresponding

Verma module U(g)/(p, y) =
⊕

m≥0

xmM, if p 6= (z − n/2) for any nonnegative integer n.

If p = (z − n/2) for some nonnegative integer n (there is only one such integer n),

then the module M = k[z]/(z − n/2) is one-dimensional and LP(M) =
⊕

0≤m≤n

xmM has

dimension n + 1 over the field k. In particular, if n = 0, then LP(M) is the unique
one-dimensional representation of U(sl2).

Set R = k[z, ξ] = U(g)0. The relations (1) are equivalent to the relations

xy = ξ, yx = θ−1(ξ); xr = θ(r)x, ry = yθ(r) (2)

for all r ∈ R. Here θ is the automorphism of the algebra R is defined by θ(f)(z, ξ) = f(z+
α, ξ+z+α). In terminology of [R, Ch.II], (2) is the representation of U(sl2) as a hyperbolic

ring over R. We take CX = R −mod, CA = U(sl2) −mod and the functor CA
ϕ∗
−→ CX

corresponding to the embedding R −→ U(sl2). Application the functors LP gives a fairly
complete description of the rest of the picture. Closed points of Spec(X) ≃ Spec(R) have
trivial stabilizer, and the functor LP for such point P coincides with the induction functor.
By 2.2, LP maps a simple module R/p representing P to a simple U(sl2)-module. If P
is a curve, then [LP(R/p)] is a noncommutative curve in Spec(A). If P is the generic
point, then we localize at the multiplicative set of nonzero elements of R and reduce the
problem to the description of simple modules over a skew polynomial ring k(z, ξ)[x, θ]
which is a Eucledian domain. Therefore, its simple modules correspond to irreducible
(skew) polynomials. See [R, II.4.3] for details.

If g has a higher rank (starting from g = sl3), then U(g)0 is a rather complicated
noncommutative subalgebra of U(g). In particular, it is not clear how to approach to the
description of SpecPc (AP).

C2.1.2. Remark. Similar facts on the connection of the Harish-Chandra homomor-
phism and highest weight simple modules hold for quantized enveloping algebras Uq(g) in
the case when q is not a root of one [XT]. Also, Uq(sl2) has a hyperbolic structure over the
ring R = k[z, z−1, ξ] which allows to get a description to the spectrum of A = Sp(Uq(sl2)
(see [R,II.4.2]).

C3. Associated points and primary decomposition.
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C3.1. Associated points. Fix an abelian category CX . For every M ∈ ObCX , the
set Ass(M) of associated points of M can be described as the set of all Q ∈ Spec0c(X)

such that there exists a nonzero monomorphism L →֒M with L from Q ∩c Q̂⊥.
We define Ass1,1t (M) as the set of all P ∈ Th(X) such that there exists a nonzero

monomorphism L →֒M with L from Pt ∩ P⊥. It follows that Ass1,1t (M) ⊆ Spec1,1t (X).

We define Ass−(M) as the set of all P ∈ Th(X) such that there exists a nonzero
monomorphism L →֒M with L from P⊛ = P⊛ ∩ P⊥.

It follows that Ass−(M) ⊆ Spec−(X).
We denote by Ass0,1(M) the set of elements P⊛ of Spec−(X) such that there is a

nonzero subobject L →֒M with L ∈ ObP⊛.

Finally, AssL(M) is the set of all P ∈ Th(X) such that there exists a nonzero
monomorphism L →֒M with L from P⋆ = P

⋆∩P⊥. In particular, AssL(M) ⊆ Spec1,1Th(X).

We denote by Ass0,1Th(M) the set whose elements are P⋆ = P⋆ ∩ P⊥ of Spec0,1Th(X)
such that M has a nonzero subobject which belongs to P⋆.

It follows from these definitions that the commutative diagram

Spec0c(X)
α

−−−→ Spec−(X)
β

−−−→ Spec0,1Th(X)

≀
y ≀

y
y≀

Spec1,1t (X) −−−→ Spec−(X) −−−→ Spec1,1Th(X)

(1)

(see C2.6(5)) induces for any object M of the category CX a commutative diagram

Ass(M) −−−→ Ass0,1(M) −−−→ Ass0,1Th(M)

≀
y ≀

y
y≀

Ass1,1t (M) −−−→ Ass−(M) −−−→ AssL(M)

(2)

whose horizontal arrows are embeddings and the vertical arrows are isomorphisms.
It follows that

Ass1,1t (M) = Ass−(M)
⋂

Spec1,1t (X) = AssL(M)
⋂

Spec1,1t (X) and

Ass−(M) = Ass1,1Th(M)
⋂

Spec−(X).
(3)

C3.2. Remarks. (a) If X has a Gabriel-Krull dimension, then, by [R6, 8.7.1], the
inclusion map Spec−(X) −→ Spec1,1Th in the diagram (1) is an isomorphism, hence the
right horizontal arrows in the diagrams (1) and (2) are isomorphisms.
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(b) The correspondence M 7−→ AssL(M) is studied in [R6, 10.8–10.10], where it is
shown that AssL(M) enjoys all general properties of associated points in the context of
commutative algebra. Similar facts hold for the map M 7−→ Ass0,1(M).

Here we sketch the facts about M 7−→ Ass(M) imitating [R6, 10.8–10.10] whenever
it is possible to do.

C3.3. Proposition. (a) For any exact sequence

0 −→M ′ −→M −→M ′′ −→ 0,

Ass(M ′) ⊆ Ass(M) ⊆ Ass(M ′)
⋃

Ass(M ′′).

(b) Suppose X has the property (sup). Let an object M of CX be a supremum of an
ascending family, Ξ, of its subobjects. Then

Ass(M) =
⋃

M ′∈Ξ

Ass(M ′).

(c) For every object M of CX , any exact localization, Y
u
−→ X, induces an injective

map Ass(M) ∩ UT(Ker(u
∗)) −→ Ass(u∗(M)). Here UT(S) = {T ∈ T(X) | T * S}.

(d) If M belongs to Spec0c(X), then Ass(M) = {[M ]}.

Proof. (a) The inclusion Ass(M ′) ⊆ Ass(M) follows from definitions.
Let P ∈ Ass(M), i.e. there exists a nonzero subobject, L, of M such that [L] = P.

Suppose L′ = L∩M ′ 6= 0. Then L′ is a nonzero subobject ofM ′ and L. The latter implies
that [L′] = [L] = P, hence P ∈ Ass(M ′). If L′ = 0, then the composition of L →֒ M and
the canonical epimorphism M −→ M ′′ is a monomorphism, hence P ∈ Ass(M ′′). This
proves the inclusion Ass(M) ⊆ Ass(M ′)

⋃
Ass(M ′′).

(b) It follows from (a) that the inclusion Ass(M) ⊇
⋃

M ′∈Ξ

Ass(M ′) holds without any

additional conditions on X.
Let P ∈ Ass(M), i.e. M has a nonzero subobject L such that [L] = P. Since X

has the property (sup), L ∩M ′ 6= 0 for some M ′ ∈ Ξ. Therefore P ∈ Ass(M ′) (see the

argument in (a) above). This verifies the inverse inclusion, Ass(M) ⊆
⋃

M ′∈Ξ

Ass(M ′).

(c) Let u∗ be an inverse image functor of Y
u
−→ X. Set Ker(u∗) = S. The claim is

that the injective map UT(X) −→ Th(Y ), P −→ P/S, induces a (forcibly injective) map
Ass(M) ∩ UTh(S) −→ Ass(u∗(M)).

Let P ∈ Ass(M) ∩ UT(S), that is P * S, and there exists a nonzero subobject L of
M such that [L] = P. Since P * S, the object L is S-torsion free. Therefore, u∗(L) is a
nonzero subobject of u∗(M) which belongs to Spec0c(X).
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(d) The assertion follows from the definition of Spec0c(X).

C3.4. Corollary. (i) For any finite set, {Mi | i ∈ J}, of objects of CX ,

AssL(
⊕

i∈J

Mi) =
⋃

i∈J

AssL(Mi).

If X has the property (sup), then the finiteness condition can be dropped.

(ii) Let {Li | i ∈ J} be a finite set of subobjects of an object M such that
⋂

i∈J

Li = 0.

Then

AssL(M/(
⋂

i∈J

Li)) ⊆
⋃

i∈J

AssL(M/Li).

Proof. (i) For a finite set {Mi | i ∈ J}, the assertion follows from C3.3(a). The infinite
case is a consequence of C3.3(b).

(ii) The assertion follows from (i) and C3.3(a) applied to the canonical monomorphism

M/(
⋂

i∈J

Li) −→
⊕

i∈J

M/Li.

C3.5. Corollary. The full subcategory, CX∅
Ass

, of the category CX whose objects,

M , have no associated points, AssL(M) = ∅, is closed under extensions, taking subobjects,
and colimits of filtered diagrams of monoarrows.

Proof. The assertion is a consequence of C3.3(a) and (b).

C3.6. Proposition. Let Y
u
−→ X be an exact localization such that S = Ker(u∗)

is a coreflective subcategory of the category CX . Let P ∈ Spec1,1t (X) and S ⊆ P. Let M
be an object of CX such that Ass(L) 6= ∅ for any nonzero subobject, L, of M . Then the
following conditions are equivalent:

(a) Ass1,1t (M) = {P};
(b) Ass1,1t (u∗(M)) = {P/S} and M is S-torsion free.

Proof. (a)⇒(b). Let tSM denote the S-torsion of M . If tSM 6= 0, then, by hypothesis,
Ass(tSM) 6= ∅, i.e. Ass(tSM) = {P}. The latter means that tSM has a nonzero subobject
L such that to 〈L〉 = P; in particular, L is P-, hence S-torsion free, which contradicts to
that L is a nonzero object of the subcategory S.

Since M is S-torsion free, it follows from C3.3(c) that Ass1,1t (u∗(M)) = {P/S}.
(b)⇒(a). There is a subobject N of M such that 〈u∗(N)〉 = P/S. By hypothesis,

since N 6= 0, Ass(N) 6= ∅; i.e. there exists a subobject L →֒ N such that [L] ∈ Spec0c(X).
Since L is P-torsion free, it follows that P = 〈L〉.
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C3.7. Proposition. Suppose X has the property (sup). Let M ∈ ObCX , and let Φ
be a subset of Ass(M). Then there exists a subobject L −→M such that

Ass(M/L) = Ass(M)− Φ and Ass(L) = Φ. (4)

Proof. (a) Let DΦ be the set of subobjects, M ′, of M such that Ass(M ′) ⊆ Φ. The
set DΦ is not empty, because it contains the zero subobject. It follows from C3.3(b) that
supΞ ∈ DΦ for every filtered subset Ξ of DΦ. Therefore, by Zorn’s lemma, there exists
a maximal element (subobject), L, in DΦ. We claim that the subobject L satisfies the
conditions (4). Thanks to C3.3(a), it suffices to show that Ass(M/L) ⊆ Ass(M)− Φ.

(b) Let P ∈ Ass(M/L), i.e. M/L has a subobject, N −→ M/L such that P = [N ].
Consider the short exact sequence

0 −→ L −→ Ñ =M ×M/L N −→ N −→ 0. (5)

associated with N −→ M/L. By C3.3(a), Ass(Ñ) ⊆ Ass(L)
⋃

Ass(N). By C3.3(d),

Ass(N) = {P}. Since L is a maximal element of DΦ and a proper subobject of Ñ ,

the latter does not belong to DΦ. Therefore P ∈ Ass(Ñ)− Φ.

C3.8. Primary decomposition.

C3.8.1. Definition. Let M be an object of an abelian category CX . We call a
subobject N of M primary, or P-primary, if Ass(M/N) consists of one element, P.

C3.8.2. Proposition. Let {Ni | i ∈ J} be a finite set of P-primary subobjects of an

object M of an abelian category CX . Then
⋂

i∈J

Ni is a P-primary subobject of M .

Proof. The fact follows from C3.4(ii).

C3.8.3. Definition. Let N be a subobject of an object M of the category CX . A
primary decomposition of N →֒ M is a finite set, {Ni | i ∈ J}, of primary subobjects of

M such that N is a subobject of
⋂

i∈J

Ni and Ass(
⋂

i∈J

Ni/N) = ∅.

C3.8.3.1. Note. It follows from this definition and C3.4(ii) that if a subobject N of
M has a primary decomposition, then Ass(M/N) is a subset of {Pi | i ∈ J}, in particular,
Ass(M/N is finite. Here Ass(M/Ni) = {Pi}.

C3.8.4. Proposition. Let N be a subobject of an object M such that Ass(M/N) is
finite. Then there exists a primary decomposition, {NP | P ∈ Ass(M/N)}, such that NP

is P-primary for every P ∈ Ass(M/N).



Spectra, Associated Points, and Representations. 131

Proof. Replacing M by M/N , we can and will assume that N = 0. By C3.7, for
every P ∈ Ass(M), there exists a subobject NP of M such that Ass(M/NP) = {P} and

Ass(NP) = Ass(M) − {P}. Set M0 =
⋂

P∈Ass(M)

NP . For each P ∈ Ass(M), we have the

inclusion Ass(M0) ⊆ Ass(NP), hence Ass(M0) = ∅.

C3.8.5. Definition. Let N be a subobject of an object M such that Ass(M/N) is
finite. Let {Ni | i ∈ J} be a primary decomposition of N in M with Ass(M/Ni = {Pi}.
The primary decompsition {Ni | i ∈ J} is called reduced if

(a) for any i ∈ J , Ass(
⋂

J∋j 6=i

Nj/
⋂

j∈J

Nj) 6= ∅; in particular, the intersection
⋂

J∋j 6=i

Nj

is not a subobject of Ni;

(b) if i 6= j, then Pi 6= Pj .

C3.8.5.1. Note. Starting with an arbitrary primary decomposition, one can obtain a
reduced primary decomposition as follows. Let {Ni | i ∈ J} be any primary decomposition
of N →֒ M with Ass(M/Ni) = {Pi}, i ∈ J . Set Φ = {Pi | i ∈ J}. Let J0 is a minimal
element of the set of subsets, I, of J such that {Ni | i ∈ I} is a primary decomposition.

Clearly, {Ni | i ∈ J0} satisfies the condition (a). For each P ∈ Φ, let NP =
⋂

Pi=P

Ni. By

C3.8.2, NP →֒M is P-primary. Since
⋂

P∈Φ

NP =
⋂

i∈J

Ni, the set of subobjects {NP | P ∈ Φ}

is a reduced primary decomposition of N →֒M .

C3.8.6. Proposition. Let N be a subobject of an object M such that Ass(M/N) is
finite. Let {Ni | i ∈ J} be a primary decomposition of N in M with Ass(M/Ni) = {Pi}.

(i) The following conditions are equivalent:

(a) The decomposition {Ni | i ∈ J} is reduced.

(b) All Pi belong to Ass(M/N) and Pi 6= Pj if i 6= j.

(ii) If the equivalent conditions (a), (b) are fulfilled, then

Ass(M/N) = {Pi | i ∈ J} and

Ass(Ni/N) = {Pj | j ∈ J, j 6= i} for all i ∈ J.

Proof. (a)⇒(b). Let {Ni | i ∈ J} be a reduced primary decomposition. By C3.8.3.1,

Ass(M/N) is a subset of {Pi | i ∈ J}. Set N∨
i =

⋂

J∋j 6=i

Nj . We can and will assume that

N =
⋂

j∈J

Nj = N∨
i ∩Ni. Since the decomposition {Ni | i ∈ J} is reduced, Ass(N

∨
i /N) 6= ∅.



132 Chapter 3

Because N∨
i /N is isomorphic to the subobject sup(N∨

i , Ni)/Ni of M/Ni, this implies that
Ass(N∨

i /N) = {Pi}, whence the inverse inclusion: {Pi | i ∈ J} ⊆ Ass(M/N).
(b)⇒(a). If the condition (b) holds, {Nj | j ∈ J−{i}} cannot be a primary decomposi-

tion, because this would imply that Pi /∈ Ass(M/N). Therefore the primary decomposition
{Ni | i ∈ J} of N →֒M is reduced.

The equality Ass(M/N) = {Pi | i ∈ J} is already established. It remains to show that
for any i ∈ J , Ass(Ni/N) = {Pj | j ∈ J, j 6= i}. Applying C3.3(a) to the exact sequence

0 −→ Ni/N −→M/N −→M/Ni −→ 0,

we obtain inclusions

Ass(Ni/N) ⊆ Ass(M/N) ⊆ Ass(Ni/N)
⋃

Ass(M/Ni) = Ass(Ni/N)
⋃
{Pi}.

This and the equality Ass(M/N) = {Pj | j ∈ J} imply that

{Pj | j ∈ J − {i}} ⊆ Ass(Ni/N) ⊆ {Pj | j ∈ J}.

On the other hand, since N =
⋂

j∈J−{i}

(Ni ∩Nj), we have an inclusion

Ass(Ni/N) ⊆
⋃

j∈J−{i}

Ass(Ni/(Ni ∩Nj)).

But, Ni/(Ni∩Nj) is isomorphic to the subobject sup(Ni, Nj)/Nj of the objectM/Nj , hence
Ass(Ni/(Ni ∩Nj)) ⊆ Ass(M/Nj) = {Pj}. This gives the inverse inclusion: Ass(Ni/N) ⊆
{Pj | j ∈ J − {i}}.

C3.8.7. Corollary. Let {Ni | i ∈ J} be a primary decomposition of a subobject N
of an object M . Then Card(Ass(M/N)) ≤ Card(J). The decomposition {Ni | i ∈ J} is
reduced iff Card(Ass(M/N)) = Card(J).

Proof. Following the procedure described in C3.8.5.1, one can obtain, starting from
{Ni | i ∈ J}, a reduced primary decomposition, {Ñj | j ∈ I} such that Card(I) ≤ Card(J).
The rest follows from C3.8.6.

For any object M of the category CX , let D℘(M) denote the set of reduced primary
decompositions of 0 →֒M . By C3.8.6, each element ofD℘(M) is a set, {NP | P ∈ Ass(M)}

of subobjects of M such that Ass(M/NP) = {P} and Ass
( ⋂

P∈Ass(M)

NP

)
= ∅.
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C3.8.8. Proposition. Let {NP | P ∈ Ass(M)} and {ÑP | P ∈ Ass(M)} be two

elements of D℘(M), and let Φ be a subset of Ass(M). Then {NP | P ∈ Φ}
⋃
{ÑP | P ∈

Ass(M)− Φ} is an element of D℘(M).

Proof. Set NΦ =
⋂

P∈Φ

NP and Ñ∨
Φ =

⋂

P∈Ass(M)−Φ

ÑP . Since Ass(M/NP) = {P} and

Ass(M/ÑP) = {P} for all P ∈ Ass(M), it suffices to verify (thanks to C3.8.6) that

Ass(NΦ

⋂
Ñ∨

Φ ) = ∅.
By C3.8.6(ii), Ass(NP) = Ass(M) − {P}, in particular, P /∈ Ass(NP). There-

fore, every element of Φ does not belong to Ass(NΦ), i.e. Φ
⋂

Ass(NΦ) = ∅. Similarly,

(Ass(M)− Φ)
⋂

Ass(Ñ∨
Φ ) = ∅. Thus, Ass(NΦ

⋂
Ñ∨

Φ ) ⊆ Φ
⋂
(Ass(M)− Φ) = ∅.

C4. Monads and localizations. Differential monads.

C4.1. Localizations compatible with monadic morphisms. Fix a monadic mor-

phism X
f
−→ Z and a Serre localization U

u
−→ Z (i.e. CZ

u∗

−→ CU is the localization at a
Serre subcategory) compatible with f . Here compatible means that the functor Ff = f∗f

∗

maps Σu∗
def
= {s ∈ HomCZ | u

∗(s) ∈ Iso(CU )} to Σu∗ ; or, equivalently, there exists a

functor CU
FU−→ CU such that u∗ ◦Ff = FU ◦u

∗. Thanks to the universal property of local-
izations, the functor FU is determined uniquely by the latter equality. The monad structure

F 2
f

µf
−→ Ff induces a monad structure FU

µ
−→ FU , hence we obtain a monad FU = (FU , µ).

The localization functor u∗ induces a functor (Ff/Z)−mod
ũ∗

−−−→ (FU/U)−mod which

maps an Ff -module (M,Ff (M)
ξ
→M) to the FU -module (u∗(M), FUu

∗(M)
u∗(ξ)
−→ u∗(M)).

It is easy to see that ũ∗ is (isomorphic to) an exact localization and Ker(ũ∗) is
generated by all Ff -modules (M, ξ) with M ∈ ObKer(u∗).

Suppose now that the localization ϕ is continuous, and let u∗ is its direct image functor.

The equality FU ◦ u
∗ = u∗ ◦ Ff implies an isomorphism u∗Ffu∗ = FUu

∗u∗
FU ǫu
−−−→ FU ,

where ǫu is an adjunction isomorphism u∗u∗ −→ IdCU . The compatibility of Ff with the

localization functor u∗ means precisely that the morphism u∗Ff
u∗Ffηu
−−−→ u∗Ffu∗u

∗, where
ηu is an adjunction arrow IdCZ −→ u∗u

∗, is an isomorphism. This isomorphism allows to
write the multiplication µ̃ on u∗Ffu∗ as the composition of the isomorphism

(u∗Ffu∗)
2 = (u∗Ffu∗u

∗)Ffu∗
∼−→ u∗F 2

f u∗ and u∗F 2
f u∗

u∗µfu∗

−−−→ u∗Ffu∗.

One can show that µ̃ is a monad structure on u∗Ffu∗ and the canonical isomorphism
u∗Ffu∗

∼−→ FU described above is a monad isomorphism (u∗Ffu∗, µ̃)
∼−→ (FU , µ).
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One of the consequences of this isomorphism is a description of a canonical right

adjoint ũ∗ to the localization functor Ff −mod
ũ∗

−−−→ FU −mod.

In fact, let FU denote the monad (u∗Ffu∗, µ̃). Every morphism u∗Ffu∗(M)
ξ
−→ M

determines via adjunction (and is determined by) a morphism Ff (u∗(M))
ξ̂
−→ u∗(M).

If ξ is an (u∗Ffu∗, µ̃)-module structure, then ξ̂ is an Ff -module structure. This defines

a functor FU − mod
ũ∗

−−−→ Ff − mod. The functor ũ∗ is a right adjoint to the func-

tor Ff − mod
ũ∗

−−−→ FU − mod which maps an Ff -module (M, ζ) to the FU -module
(u∗(M), ζu), where ζu is the composition of the isomorphism u∗Ffu∗u

∗(M) ∼−→ u∗Ff (M)

and u∗Ff (M)
u∗(ζ)
−−−→ u∗(M). One can verify that the adjunction morphisms u∗u∗

ǫu−→ IdCU
and IdCZ

ηu
−→ u∗u

∗ give rise to the adjunction morphisms ũ∗ũ∗ −→ IdFU−mod and
IdFf−mod −→ ũ∗ũ

∗. In particular, ũ∗ũ∗ −→ IdFU−mod is an isomorphism, which shows
that ũ∗ is a localization. It follows from this description that the diagram

FU −mod
ũ∗

−−−→ Ff −mod

fu∗

y
y f∗

CU
u∗

−−−→ CZ

quasi-commutes. Here the vertical arrows are forgetful functors.

C4.1.1. Lemma. Let U
u
−→ X be a continuous morphism such that u∗ is a localiza-

tion, and CX
F
−→ CX is a functor compatible with the localization u∗. If the functor F is

continuous, then the induced endofunctor CU
FU−→ CU is continuous.

Proof. Let F ! be a right adjoint to the functor F and IdCX
η
−→ F !F , FF ! ǫ

−→ IdCX
adjunction arrows. By the argument above, the functor FU uniquely determined by the
equality FU ◦ u

∗ = u∗ ◦ F , is naturally isomorphic to u∗Fu∗, and the compatibility of F
with the localization u∗ (i.e. the existence of FU is equivalent to that the natural morphism

u∗F
u∗Fηu
−−−→ u∗Fu∗u

∗ is an isomorphism. Here ηu is the adjunction arrow IdCX −→ u∗u
∗.

The claim is that the functor u∗F !u∗ is a right adjoint to u∗Fu∗ (hence to FU ).
In fact, there are natural morphisms

(u∗Fu∗)(u
∗F !u∗) = (u∗Fu∗u

∗)(F !u∗)
∼−→ u∗FF !u∗

u∗ǫu∗−→ u∗u∗
ǫu−→ IdCU

and

IdCU
ǫ−1
u−→ u∗u∗

u∗ηu∗

−−−→ u∗F !Fu∗
u∗F !ηuFu∗

−−−→ u∗F !u∗u
∗Fu∗ .
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One can check that their respective compositions produce a pair of adjunction morphisms.
Details are left to the reader.

C4.2. Infinitesimal neighborhoods of the diagonal. Differential calculus.
Fix a monoidal category A∼ = (A,⊗,1, a). Here 1 denotes the unit object and a the
associativity constraint. In order to simplify the exposition, we assume that the category
A is quasi-abelian (i.e. it is additive and every morphism has a kernel and cokernel) and
that the functor M ⊗− : L 7−→M ⊗ L preserves small colimits.

Fix a full monoidal subcategory T of A closed with respect to colimits taken in A.
The pair (A∼, T ) is the initial data for differential calculus.

Objects of the nth neighborhood T (n+1) of the subcategory T are called T -differential
objects of order ≤ n. In particular, zero objects are the only T -differential objects of the
order −1, and T consists of T -differential objects of order ≤ 0. Sometimes we shall loosely
call the subcategory T the ’diagonal’.

C4.2.1. Proposition. The category T (∞) def
=

⋂

n≥1

T (n) of T -differential objects is a

monoidal subcategory of A∼.

Proof. See [RL1].

C4.2.2. Corollary. The category T∞ whose objects are colimits of objects of the
category T (∞) is a monoidal subcategory of A∼.

Proof. The assertion follows from C4.2.1 and the assumption that the functors M⊗ :
L 7−→M ⊗ L, M ∈ ObA, preserve colimits.

C4.2.3. The smallest diagonal. We denote the smallest ’diagonal’ (i.e. the
monoidal subcategory of A∼ closed with respect to colimits (taken in A) and generated
by the identity object 1) by ∆A∼ .

C4.3. Differential functors and differential monads.

C4.3.1. Differential functors and (co)monads. LetA∼ be the monoidal category
Endr(CX) of right exact endofunctors of an abelian category CX and T = ∆A∼ the smallest

diagonal of A∼. Objects of the subcategory T(∞) = ∆
(∞)
A∼ are called differential functors.

A monad (F, µ) (resp. a comonad (G, δ) is called differential if the endofunctor F
(resp. G) is differential.

C4.3.2. Differential bimodules. Let R be an associative unital ring and A∼

the monoidal category of R-bimodules: A∼ = R − bimod∼ = (R − bimod,⊗R, R). In
this case the smallest diagonal is the full subcategory of R − bimod whose objects are all

central bimodules, i.e. bimodules M generated by their center C(M)
def
= {z ∈ M | rz =

zr for all r ∈ R}. The corresponding differential objects are called differential bimodules.
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Note that the monoidal category of differential bimodules is equivalent to the monoidal
category of differential endofunctors CX −→ CX , where CX = R−mod.

C4.3.3. Proposition. (a) Let CX be an abelian category and CX
F
−→ CX a dif-

ferential endofunctor. Then every thick subcategory T of the category CX is F -stable, i.e.
F (T) ⊆ T.

(b) If, in addition, the functor F is exact, then there exists a unique endofunctor FT

of the quotient category CX/T such that FT ◦ q
∗
T
= q∗

T
◦F. Here q

T
is the localization functor

CX −→ CX/T. The functor FT is exact and differential.
(c) If the differential functor F is exact and continuous (i.e. it has a right adjoint),

then for every continuous exact localization CX
q
T−→ CX/T, the induced endofunctor FT of

CX/T is continuous.

Proof. (a) If F belongs to the diagonal, then F (S) ⊆ S for every full subcategory of
CX closed under coproducts and quotients (taken in CX). In particular, every topologizing
(hence every thick) subcategory of CX is F -stable.

In general, an endofunctor F is differential iff it has an increasing filtration, F−1 =
0 →֒ F0 →֒ . . . →֒ Fn = F such that all quotients Fi/Fi−1, 0 ≤ i ≤ n, belong to the
diagonal. In particular, for every object M of a thick subcategory T, there is a filtration
0 →֒ F0(M) →֒ . . . →֒ Fn(M) = F (M) such that all quotients Fi(M)/Fi−1(M), 0 ≤ i ≤ n,
belong to T. Therefore, F (M) is an object of T.

(b) If a functor F stabilizes a thick subcategory T and is exact, then it determines a
unique endofunctor FT of the quotient category CX/T such that q∗

T
◦ F = FT ◦ q

∗
T
. Since

the functor q∗
T
◦ F is exact, it follows from [GZ, 1.1.4] that the functor FT is exact.

(c) If F∗ is a right adjoint to the endofunctor F and q
T∗ is a right adjoint to the

localization functor CX
q
T−→ CX/T. The checking (or reading [KR2, C2.1]) is left to the

reader.
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Geometry of ’Spaces’ Represented by Triangulated Categories.

This Chapter contains a sketch of the beginning of one of the simplest forms of derived
noncommutative geometry. Here ’spaces’ are represented by svelte triangulated categories
(we call them t-’spaces’) and morphisms by isomorphism classes of triangle functors. We
start with pseudo-geometry following pattern of Chapter 1, that is we consider continuous
morphisms and look for a triangulated version of Beck’s theorem (which plays a central
role for studying ’spaces’ represented by ordinary categories, incorporating both affine
schemes and, in the dual context, descent theory). The triangulated picture, turns to
be much easier: the triangulated version of Beck’s theorem on descent side states that
every continuous morphism is the composition of a comonadic morphism and a continuous
localization. In particular, any faithfully flat (in triangle sense) morphism is comonadic.

The geometric picture looks even better. There are two spectra, Spec1,1L (X) and

Spec
1/2
L (X) which are triangulated analogs of the spectra respectively Spec1,1t (X) and

Spec(X). There is a natural bijective map Spec
1/2
L (X) ∼−→ Spec1,1L (X). But, unlike the

bijection Spec(X) ∼−→ Spec1,1t (X) of II.3.3.2, this map does not preserve the specialization
preorder ⊇. The specialization preorder on Spec1,1L (X) is what we expect from specializa-

tion. So that the preorder (Spec1,1L (X),⊇) is regarded as the ”principal” spectrum of the

t-’space’ X. On the other hand, the points of the spectrum Spec
1/2
L (X) are closed with

respect to the topology determined by the specialization preorder, or a natural version of

Zariski topology on Spec
1/2
L (X). This gives certain technical advantages (which are not

used here) and curious interpretations.

1. Preliminaries on triangulated categories.

1.0. Z-Categories. Recall that a Z-category is a category endowed with an action
of Z, where Z is regarded as a monoidal category: objects are elements and the tensor
product is given by addition. In other words, a Z-category is a category CX with an auto-
equivalence θX and an associativity isomorphism θX ◦ (θX ◦θX)

∼−→ (θX ◦θX)◦θX satisfying
the usual cocycle conditions.

1.1. The category of triangulated categories. Triangulated k-linear categories
are triples (CX, θX;TrX), where (CX, θX) is an additive k-linear Z-category, and TrX a full
subcategory of the category of diagrams of the form

L −→M −→ N −→ θX(L).



138 Chapter 4

The objects of the subcategory TrX are called triangles. They satisfy to well known
axioms due to Verdier [Ve1]. We denote a triangulated category (CX, θX;TrX) by CTX.

A triangle k-linear functor from a triangulated k-linear category CTX = (CX, θX;TrX)
to a triangulated k-linear category CTY = (CY, θY;TrY) is a pair (F, φ), where F is a
k-linear functor CX −→ CY and φ a functor isomorphism θY ◦ F

∼−→ F ◦ θX such that for
any triangle L −→M −→ N −→ θX(L) of CTX, the diagram

F (L) −→ F (M) −→ F (N ) −→ θY(F (L)),

where F (N ) −→ θY(F (L)) is the composition of F (N −→ θX(L)) and the isomorphism

FθX(L)
φ(L)
−→ θY(F (L)), is a triangle of the triangulated category CTY.

We denote by TrCatk the category whose objects are svelte triangulated categories
and morphisms are triangle functors between them.

1.3. Multiplicative systems in triangulated categories. Fix a triangulated
category CTX = (CX, γ;TrX). A multiplicative system Σ of (X, γ) is said to be compatible
with triangulation if for any pair of triangles (L,M,N, u, v, w) and (L′,M ′, N ′, u′, v′, w′)
and any commutative diagram

L
u

−−−→ M

s
y

y s′

L′
u′

−−−→ M ′

where s and s′ are elements of Σ, there exists a morphism N
t
−→ N ′ which belongs to Σ

and such that (s, s′, t) is a morphism of triangles.
We shall use same notations: SM(X) (resp. SsM(X)) for the preorder of multiplica-

tive (resp. saturated multiplicative) systems of the tr-’space’ X. The dualization functor
X 7−→ Xo induces an isomorphism of preorders

SM(X) ∼−→ SM(Xo) and SsM(X) ∼−→ SsM(Xo).

1.4. Triangulated subcategories. Recall that a full subcategory, T, of the category
CX is called a triangulated subcategory if it is stable by translations, and has a triangulated
structure such that the inclusion functor T →֒ CX is exact.

Let T be a full subcategory of CX stable by translations. The subcategory T admits
a triangulated structure which makes it a triangulated subcategory of CTX iff for any

morphism L
f
−→M of T, there exists a triangle (L,M,N, f, g, h) such that N ∈ ObT.
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1.4.1. Definitions. (1) A full triangulated subcategory, T, of CTX is called saturated
(in [Ve2]), if every direct summand (in CX) of an object of T belongs to T.

(2) A full triangulated subcategory, T, of CTX is called thick (in [Ve1] and everywhere

else), if every triangle (L,M,N, u, v, w) such that N ∈ ObT and L
u
−→M factors through

an object of T, belongs to T (that is L and M are objects of T).
These two notions are equivalent: A full triangulated subcategory of a triangulated

category is thick iff it is saturated.

1.5. Triangulated subcategories and multiplicative systems. For any full
triangulated subcategory, T, of the triangulated category CTX, let ΣT denote the family of
all morphisms L

u
−→ M of CTX such that there exists a triangle (L,M,N, u, v, w), where

N is an object of T.

1.5.1. Proposition [Ve2, 2.1.8]. For any full triangulated subcategory of a trian-
gulated category CTX, the family ΣT is a multiplicative system. The system ΣT is saturated
iff the subcategory T is thick.

For any multiplicative system Σ in the triangulated category CTX, let TΣ denote the
full subcategory of CTX generated by objects N contained in a triangle (L,M,N, u, v, w)

such that L
u
−→M belongs to Σ.

1.6. Proposition [Ve1, 2.1]. The map Σ 7−→ TΣ is an isomorphism of the preorder
SsM(X) of saturated multiplicative systems of a triangulated category CTX onto the pre-
order Tht(X) of thick triangulated subcategories of CTX. The inverse isomorphism is given
by the map T 7−→ ΣT.

1.6.1. Corollary. The intersection of any set of saturated multiplicative systems of
a triangulated category is a saturated multiplicative system.

Proof. The assertion follows from an easily checked fact that the intersection of any
set of thick triangulated subcategories of a triangulated category is a thick triangulated
subcategory.

The following proposition (which is a part of [Ve2, 2.3.1]) is a convenient reference for
the rest of this section.

1.7. Proposition. Let B and A be full triangulated subcategories of a triangulated
category CTX such that B ⊆ A.

(a) The canonical functor A/B −→ CTX/B is fully faithful and injective on objects.
The image of this functor is q∗B(A), where q

∗
B is the canonical functor CTX −→ CTX/B.

The subcategory A is thick iff the subcategory q∗B(A) is thick.
(b) The map A 7−→ q∗B(A) is an isomorphism of the preorder of strictly full triangulated

subcategories of CTX containing the kernel, Bt of the functor q∗B onto the preorder of strictly
full triangular subcategories of CTX/B.
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(c) The canonical functor CTX/A −→ (CTX/B)/(A/B) is an isomorphism of triangu-
lated categories.

1.7.1. Corollary. Let B and A be full triangulated subcategories of a triangulated
category CTX such that B ⊆ A. Let Bt be the thick envelope of B in CTX. Then Bt ∩ A is
the thick envelope of B in A.

Proof. Consider the commutative diagram

Bt −−−→ CTX −−−→ CTX/Bx
x

x
BtA −−−→ A −−−→ A/B

with exact rows. By 1.7(a), the functor A/B−−−→CTX/B is faithful. Therefore, the kernel,
BtA, of the localization functor A −→ A/B, which is the thick envelope of B in A, coincides
with Bt ∩ A.

1.8. Preliminaries on orthogonality. For any subcategory B of CTX, the left
orthogonal, ⊥B, of B is the full subcategory of CTX generated by all objects N such that
CTX(N,M) = 0 for allM ∈ ObB. The right orthogonal of B is defined dually and is denoted
by B⊥. Its objects are B-torsion free objects of CTX. If B is a triangulated subcategory,
then B⊥ and ⊥B are thick triangulated subcategories.

1.8.1. Proposition [Ve2, 2.3.3]. Let B be a full triangulated subcategory of a

triangulated category CTX and CTX
q∗
B−→ CTX/B the canonical localization functor.

(a) For every object M of CTX, the following conditions are equivalent:
(i) The object M is q∗

B
-free.

(ii) The object M is left closed for ΣB, i.e. CTX(s,M) is an isomorphism for every
s ∈ ΣB. Here ΣB is the multiplicative system corresponding to B (cf. 1.5).

(iii) Every morphism M
s
−→ N with s ∈ ΣB admits a retraction.

(iv) The object M is B-torsion free, that is for every L ∈ ObB, CTX(L,M) = 0.
(v) For every N ∈ ObCTX, the map

CTX(N,M) −→ CTX/B(q
∗
B
(N), q∗

B
(M))

is an isomorphism.
(b) The full subcategory L(q

B
) of CTX generated by q∗

B
-free objects is a thick triangu-

lated subcategory.
(c) The composition of the inclusion functor CTL(q

B
) →֒ CTX and the localization

functor CTX
q∗
B−→ CTX/B is a fully faithful functor injective on objects.
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(d) Let CTTrX(qB∗) be the full subcategory of the quotient triangulated category CTX/B
generated by all objects M such that the functor CTX/B(q

∗
B
(−),M) is representable. The

subcategory CTTrX(qB∗) is triangulated and strictly full. If infinite coproducts or products
exist in CTX, then CTTrX(qB∗) is thick.

(e) The localization functor q∗
B
induces an equivalence of categories

CTL(q
B
) −→ CTTrX(qB∗).

(f) An object N of CTX belongs to the preimage, CTR(q
B
) = q∗

−1

B
(CTTrX(qB∗)), of the

subcategory CTTrX(qB∗) iff there exists a morphism N
s
−→ M such that M is q∗

B
-free and

q∗
B
(s) is invertible.
(g) The inclusion functor CTL(q

B
) −→ CTR(q

B
) has a left adjoint.

Proof. See [Ve2, 2.3.3].

1.8.2. Corollary [Ve1, 6–3]. Let T be a thick triangulated subcategory of the
triangulated category CTX. The full subcategory of CTX generated by objects which are left
closed for ΣT, is the right orthogonal, T⊥, of the subcategory T.

Proof. The fact follows from the equivalence of (ii) and (iv) in 1.8.1.

1.8.3. Proposition [Ve1, 6–5]. Let T be a thick triangulated subcategory of CTX,
and let

T
ι∗
T−→ CTX

q∗
T−→ CTX/T

be the inclusion and localization functors. The following properties are equivalent:
(a) The functor ι∗

T
has a right adjoint.

(b) The functor q∗
T
has a right adjoint.

1.9. The category of t-’spaces’. If CTX = (CX, θX;TrX) is a svelte Karoubian
(that is the category CX is Karoubian) k-linear triangulated category, we say that it

represents a t-’space’ X. A morphism X
f
−→ Y from a t-’space’ X to a t-’space’ Y is an

isomorphism class of triangle functors from CTY to CTX. A representative of a morphism
f will be called an inverse image functor of f and denoted, usually, by f∗. The composition
f ◦ g is, by definition, the isomorphism class of the composition g∗ ◦ f∗ of inverse image
functors of respectively g and f . This defines the category EspTr of t-’spaces’.

2. Triangulated categories and Frobenius Z-categories.

We need some facts about abelianization of triangulated categories.
For any k-linear category CX, we denote byMk(X) the abelian category of presheaves

of k-modules on CX and by CXa
the full subcategory ofMk(X) generated by all presheaves
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of k-modules which have a left resolution formed by representable presheaves. Since CXa

contains all representable presheaves, the Yoneda functor CX
hX−→Mk(X) factors through

the embedding CXa
−→ Mk(X). We denote by HX the corestriction CX −→ CXa

of

the Yoneda functor. Every k-linear functor CX
F
−→ CY induces a right exact functor

CXa

Fa−→ CYa
such that the diagram

CX
F
−−−→ CY

hX

y
y hY

CXa

Fa

−−−→ CYa

(1)

commutes. The functor Fa is determined uniquely up to isomorphism.
If CX is a Z-category, then the categoriesMk(X) and CXa

inherit a Z-action such that

the functors hX and HX become Z-functors. It follows that for every Z-functor CX
F
−→ CY ,

the functor CXa

Fa−→ CYa
is a Z-functor.

2.1. Frobenius abelian Z-categories. An exact k-linear Z-category is called a
Frobenius category if it has enough projective and injective obects and its projective and
injective objects coincide. In this chapter, we are interested only in abelian Frobenius
categories. We denote by FZCatk the category whose objects are svelte Frobenius k-
linear abelian Z-categories and morphisms are exact k-linear functors which map projective
objects to projective objects.

2.2. Theorem. (a) For any triangulated k-linear category CTX = (CX, θX;TrX), the
category CXa

is a Frobenius abelian k-linear Z-category. If the category CX is Karoubian,

then the canonical functor CX
HX−→ CXa

induces an equivalence between the category CX

and the full subcategory of CXa
generated by its projective objects.

(b) The correspondence CTX 7−→ CXa
extends to a fully faithful functor from the

category TrCatk to the category FZCatk.

Proof. The assertion is equivalent to a part of Theorem 3.2.1 in [Ve2].

3. Localizations, continuous morphisms, and (co)monadic morphisms.

3.1. Localizations and conservative morphisms. Let X
f
−→ Y be a morphism

of t-’spaces’. Its inverse image functor CY
f∗

−→ CX is a composition of the localization at
the thick subcategory Ker(f∗) and a faithful triangle functor. In other words, we have a
canonical decomposition f = pf◦fc, where p

∗
f is the localization functor CY −→ CY/Ker(f

∗)
and f∗c is a faithful triangle functor determined (uniquely once f∗ is fixed, hence) uniquely
up to isomorphism.
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We call a morphism of t-’spaces’ X
f
−→ Y a localization if fc is an isomorphism, or,

equivalently, if its inverse image functor is a category equivalence.

3.2. Continuous morphisms. We call a morphism X
f
−→ Y of t-’spaces’ continuous

if its inverse image functor, f∗ has a right adjoint, f∗, and this right adjoint is a triangle
functor.

3.2.1. Proposition. The following conditions are equivalent:

(a) A morphism X
f
−→ Y of t-’spaces’ is continuous.

(b) The functor CXa

f∗a
−−−→ CYa

is an exact functor and has a right adjoint.

(c) The functor CYa

fa∗

−−−→ CXa
is an exact functor and has a left adjoint.

Proof. (a) ⇒ (b). Let X
f
−→ Y be a continuous morphism of t-’spaces’; that is its

inverse image functor f∗ has a right adjoint, f∗, which is a triangle functor. Then fa∗ is a
right adjoint to the functor f∗a and it maps injective objects to injective objects. Since the
category CYa

has enough injective objects, the latter implies that the functor f∗a is exact.

(b)⇒ (a). Conversely, if the functor CXa

f∗a
−−−→ CYa

is exact and has a right adjoint,
fa∗, then the latter maps injective objects to injective objects. Since injective objects
in CXa

and CYa
coincide with projective objects and the categories CXa

and CYa
are

Karoubian, the embeddings CX −→ CXa
and CY −→ CYa

induce equivalences between
the category CX (resp. CY) and the full subcategory of the category CXa

(resp. CYa
)

generated by projective objects. Therefore, the functor fa∗ induces a functor CY
f∗−→ CX

which is a right adjoint to f∗.
The implications (a)⇔ (c) follow by duality.

3.3. Monads and comonads in triangulated categories. Let TCX = (CX, θX,TrX)
be a triangulated category. A monad on TCX (or a monad on the corresponding t-’space’ X)

is a monad F = (F, µ) on the category CX such that F is a triangle functor and F 2 µ
−→ F is

a morphism of triangle functors. Dually, a comonad on TCX (or X) is a comonad G = (G, δ)

such that G is a triangle functor on TCX and G
δ
−→ G2 is a morphism of triangle functors.

The category (F/X) − mod of F-modules has a structure of triangulated category

induced by the forgetful functor (F/X)−mod
f∗−→ CX.

The following assertion is the triangulated version of Beck’s theorem.

3.4. Proposition. Let TCX and TCY be Karoubian triangulated categories and

TCY
f∗

−−−→ TCX
f∗
−−−→ TCY
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a pair of adjoint triangle functors with adjunction morphisms

f∗f∗
ǫf
−→ IdTCX

and IdTCY

ηf
−→ f∗f

∗.

(a) The canonical functor

TCY
f̃∗

−−−→ Gf − Comod = (X\Gf )− Comod, M 7−→ (f∗(M), f∗ηf (M)), (1)

is a localization functor. It is a category equivalence iff the functor f∗ is faithful.
(b) Dually, the canonical functor

TCX
f̃∗
−−−→ Ff −mod = (Ff/Y)−mod, L 7−→ (f∗(L), f∗ǫf (L)), (2)

is a localization. It is a category equivalence iff the functor f∗ is faithful.
Here Gf = (Gf , δf ) = (f∗f∗, f

∗ηff∗) and Ff = (Ff , µf ) = (f∗f
∗, f∗ǫff

∗) are respec-
tively the comonad and the monad associated with the pair of adjoint functors f∗, f∗.

Proof. It suffices to prove (a), because the two assertions are dual to each other.
Let CXa

denote the abelianization of the triangulated category TCX. Any triangle func-

tor TCX
F
−→ TCY gives rise to an exact Z-functor CXa

Fa−→ CYa
between the corresponding

abelian Z-categories which maps injective objects to injective objects. In particular, we
have a pair of adjoint exact Z-functors

CYa

f∗
a

−−−→ CXa

fa∗

−−−→ CYa

which map injective objects to injective objects. Thus, we have the canonical functor

CYa

f̃∗a
−−−→ (Xa\Gfa)− Comod.

Since both adjoint functors, f∗a and fa∗ are exact functors between abelian categories, it

follows from Beck’s theorem that f̃∗a is a localization functor. If the functor f∗ is faithful,
then the functor f∗a is faithful. This follows from the fact that every object M of the
category CXa

is a quotient object of an object N of CX and a subobject of an object

L of TCX. Therefore, the composition N
β
−→ L of the epimorphism N −→ M and a

monomorphism M −→ L is nonzero iff M is nonzero. Since the functor f∗ is faithful,
f∗(β) 6= 0 whenever M 6= 0, which, in turn, implies that f∗a (M) 6= 0 if M 6= 0.
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Since the functor CYa

f∗
a−→ CXa

is exact and the category CYa
is abelian, the faithfulness

of f∗a is equivalent to its conservativeness. The fact that f∗a is conservative implies that f̃∗a
is conservative too. Therefore, being a localization functor, f̃∗a is a category equivalence.

3.5. Continuous and (co)monadic morphisms of t-spaces. Let X
f
−→ Y be a

continuous morphism of t-’spaces’. We call it comonadic if the canonical functor

TCY
f̃∗

−−−→ Gf − Comod = (X\Gf )− Comod, M 7−→ (f∗(M), f∗ηf (M)), (1)

is a category equivalence. Dually, f is called a monadic morphism if

TCX
f̃∗
−−−→ Ff −mod = (Ff/Y)−mod, L 7−→ (f∗(L), f∗ǫf (L)), (2)

is a category equivalence.

By 3.4, a continuous morphism X
f
−→ Y is comonadic (resp. monadic) iff its inverse

(resp. direct) image functor is faithful.

3.5.1. Decomposition. One can show that if X
f
−→ Y is a continuous morphism,

then both localization pf and the ’faithful’ component fc in the decomposition f = pf ◦ fc
(see 3.1) are continuous morphisms. It follows from 3.4 that every continuous morphism of
t-’spaces’ is a unique composition of a continuous localization and a comonadic morphism.

4. Presite of localizations.

4.1. Proposition. Let T CX be a svelte triangulated category and {Ti | i ∈ J} a finite
family of thick triangulated subcategories of T CX. Then

( ⋂

i∈J

Ti
)
⊔ S =

⋂

i∈J

(Ti ⊔ S)

for any thick triangulated subcategory S.

Proof. Let CXa
denote the abelianization of the triangulated category T CX. For a

triangulated subcategory T of T CX, let T
a denote the smallest thick Z-subcategory of CXa

generated by the image of T in CXa
.

(a) If T is a thick triangulated subcategory of T CX, then T = T a
⋂
CX.

In fact, objects of the subcategory T a are arbitrary subquotients of objects of T . Let
M be an object of CX which is a subquotient of an object N of CXa

, i.e. there exists a

diagram N
j
−→ K

e
−→ M in which j is a monomorphism and e is an epimorphism. Since
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M is a projective object, the epimorphism e splits, i.e. there exists a morphism M
h
−→ K

such that e◦h = idM . SinceM is an injective object of CXa
, the monomorphism j◦h splits.

If the object N belongs to the subcategory T , thenM is also an object of T , because thick
subcategories contain all direct summands of all their objects.

(b) The equality (S ⊔ T )a = Sa ⊔ T a holds for any pair S, T of thick triangulated
subcategories of T CX.

In fact, the squares

CX −−−→ CX/T CXa
−−−→ CXa

/T ay
y and

y
y

CX/S −−−→ CX/(S ⊔ T ) CXa
/Sa −−−→ CXa

/(Sa ⊔ T a)

are cocartesian and the abelianization functor transforms cocartesian squares into cocarte-
sian squares, which implies that the unique functor

CXa
/(Sa ⊔ T a) −−−→ CXa

/(S ⊔ T )a

is a category equivalence.

(c) The equality
⋂

i∈J

Ta
i =

( ⋂

i∈J

Ti
)a

holds for any finite family {Ti | i ∈ J} of thick

triangulated subcategories of T CX.

Replacing T CX by T CX/T and Ti by Ti/T , where T =
⋂

i∈J

Ti, we reduce the assertion

to the case
⋂

i∈J

Ti = 0. In this case, the claim is
⋂

i∈J

Ta
i = 0. The equality

⋂

i∈J

Ti = 0 means

precisely that the triangle functor

T CX −−−→
∏

i∈J

T CX/Ti

induced by the localization functors {T CX −→ T CX/Ti | i ∈ J} is faithful. But, then its
abelianization,

CXa
−−−→

∏

i∈J

CXa
/T a
i ,

is a faithful functor, i.e. its kernel, the intersection
⋂

i∈J

Ta
i , equals to zero.



Geometry of ’Spaces’ Represented by Triangulated Categories. 147

(d) It follows from (a), (b) and (c) that

(
⋂

i∈J

Ti) ⊔ S = ((
⋂

i∈J

T a
i ) ⊔ S

a)
⋂
CX = (

⋂

i∈J

(T a
i ⊔ S

a))
⋂
CX =

⋂

i∈J

((T a
i ⊔ S

a)
⋂
CX) =

⋂

i∈J

(Ti ⊔ S).

for any finite family {S, Ti | i ∈ J} of thick triangulated subcategories of T CX.

4.2. Presite of exact localizations. Let EspLTr denote the subcategory of the
category EspTr of t-’spaces’ whose objects are t-’spaces’ and morphisms are localizations
(i.e. their inverse image functors are compositions of localization functors and category

equivalences). We call a set {Ui
ui→ X | i ∈ J} of morphisms of EspLTr a cover of the

t-’space’ X if there is a finite subset J of J such that the family of inverse image functors

{TCX
u∗
i−→ TCUi | i ∈ J} is conservative. We denote the set of all such covers of X by Tf(X).

4.2.1. Proposition. The covers defined above form a pretopology, Tf, on EspLTr.

Proof. The morphisms of the subcategory EspLTr are determined, uniquely up to
isomorphism, by the kernel of their inverse image functors. A family of inverse image

functors {TCX
u∗
i−→ TCUi | i ∈ J} is conservative iff the intersection of kernels of these

inverse image functors is zero. The assertion follows now from 4.1.

5. The spectra of t-’spaces’.

Fix a svelte triangulated category CTX = (CX, θX,TrX). We denote by Tht(X) the
preorder (with respect to the inclusion) of all thick triangulated subcategories of CTX.
Recall that a full triangulated subcategory of CTX is called thick if it contains all direct
summands of its objects.

5.1. Spec1L(X) and its decompositions. For any triangulated subcategory T of
CTX, let T

⋆ denote the intersection of all thick triangulated subcategories of CTX which
contain T properly. And let T⋆ be the intersection of T ⋆ and the subcategory T ⊥ – the
right orthogonal to T . Recall that T ⊥ is the full subcategory of CTX generated by all
objects N such that CTX(N,M) = 0 for allM ∈ ObT . It follows that T ⊥ is a triangulated
subcategory of CTX (for any subcategory T which is stable by the translation functor).

We denote by Spec1L(X) the subpreorder of Tht(X) formed by all thick triangulated
subcategories P for which P⋆ 6= P. We have a decomposition

Spec1L(X) = Spec1,1L (X)
∐

Spec1,0L (X)
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of Spec1L(X) into a disjoint union of

Spec1,1L (X) = {P ∈ Tht(X) | P⋆ 6= 0} and

Spec1,0L (X) = {P ∈ Spec1L(X) | P⋆ = 0}.

5.2. L-Local triangulated categories and Spec1,1L (X). We call a triangulated
category CTY L-local if it has the smallest nonzero thick triangulated subcategory.

5.2.1. Proposition. Let P ∈ Spec1,1L (X). Then
(a) P = ⊥P∗.
(b) The triangulated category P⊥ is L-local and P⋆ is its smallest nonzero thick tri-

angulated subcategory.

Proof. (a) The condition P⋆ 6= 0 implies, obviously, that P⋆ contains P properly, i.e.
P is an object of Spec1L(X)

The inclusion P⋆ ⊆ P
⊥ is equivalent to the inclusion P ⊆⊥ P⋆. If the (thick triangu-

lated) subcategory ⊥P⋆ contains P properly, then ⊥P⋆/P is a nonzero thick triangulated

subcategory of CTX/P, hence it contains the image, P̃⋆, of the subcategory P⋆. This
means that for every L ∈ ObP⋆, there exists an object, M , of ⊥P⋆ and an isomorphism

q∗P(M) ∼−→ q∗P(L). The latter is determined by a diagram M
s′
−→ K

s
←− L whose both

arrows belong to ΣP . Since L is an object of P⊥, it follows from the equivalence of (iii)

and (iv) in 1.8.1 that the morphism K
s
←− L admits a retraction, K

s′′
−→ L. Let M

t
−→ L

be the composition s′′ ◦ s′. Since the morphism t belongs to ΣP , there exists a triangle

M
t
−→ L −→ N such that N ∈ ObP. In particular, N ∈ Ob⊥P⋆. Thus, we have a triangle,

M
t
−→ L −→ N , such that M and N are objects of the thick subcategory ⊥P⋆. Therefore,

L is an object of ⊥P⋆, which cannot happen, unless L = 0. Thus, ⊥P⋆ cannot contain P
properly, i.e. P = ⊥P⋆.

(b) Let T be a nonzero thick triangulated subcategory of P⊥. Then the image, q∗P(T),
in the quotient category CTX/P is nonzero, hence its thick envelope contains the subcat-
egory P⋆/P. In particular, it contains the image of the subcategory P⋆. Since objects of
the thick envelope of q∗P(T) are direct summands of objects of q∗P(T), this means that for
every object L of P⋆, there exists an object M of T such that q∗P(L) is a direct summand
of q∗P(M). Since both objects, L and M , belong to the subcategory P⊥ and, by 1.8.1(c)
(and 1.8.1(i)⇔ (iv)), the restriction of the localization functor q∗P to the subcategory P⊥

is a fully faithful functor, it follows that L is a direct summand of M . Since T is a thick
subcategory of CTX, it contains all direct summands of its objects. Thus P⋆ ⊆ T.

5.2.1.1. Corollary. Let P be a thick triangulated subcategory of CTX such that the
intersection P⋆ = P

⊥ ∩ P⋆ is nonzero. Then P is closed under all colimits which exist in
CTX, in particular, P is closed under all coproducts which exist in CTX.
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Proof. In fact, by 5.2.1, P = ⊥P⋆; and the left orthogonal to any subcategory is closed
under arbitrary colimits which exist in CTX.

5.2.2. Proposition. Suppose that infinite coproducts or products exist in CTX. Let P
be a thick triangulated subcategory of CTX. Then the following properties of are equivalent:

(i) P⋆ = P
⊥ ∩ P⋆ is nonzero, i.e. P ∈ Spec1,1L (X);

(ii) P belongs to Spec1L(X) and the composition of the inclusion P⋆ →֒ CTX and

the localization functor CTX
q∗P−→ CTX/P induces an equivalence of triangulated categories

P⋆
∼−→ P⋆/P.
(iii) P belongs to Spec1L(X) and the inclusion functor P →֒ P⋆ has a right adjoint.
(iv) P belongs to Spec1L(X) and P

⊥ is nonzero.

Proof. The implications (iii) ⇐ (ii) ⇒ (i) ⇒ (iv) ⇐ (iii) hold by obvious reasons
(see 3.1(a)). The implication (iii)⇒ (ii) follows from 1.8.3 (see also 1.8.2). Thus, (iii)⇔
(ii) ⇒ (i) ⇒ (iv) without any additional hypothesis on CTX. The existence of infinite
coproducts or products is needed for the implication

(iv) ⇒ (ii). Fix an object P of Spec1L(X). By 1.8.1(e) (see also 1.8.1(i) ⇔ (iv)),
the composition of the localization functor q∗P with the inclusion functor P⊥ →֒ CTX
induces an equivalence of the triangulated categories P⊥ −→ CTTrX(qP∗). Here CTTrX(qP∗)

is the full subcategory of the quotient category CTX/P generated by all objects M such
that the functor CTX/P(q

∗
P(−),M) is representable. By 1.8.1(d), if infinite coproducts, or

infinite products exist in CTX, then CTTrX(qP∗) is a thick triangulated subcategory of the

L-local triangulated category CTX/P. If P⊥ 6= 0, then (and only then) the subcategory
CTTrX(qP∗) is nonzero, hence it contains the (smallest non-trivial thick) subcategory P⋆/P
which implies that CTTrX(qP∗) is an L-local triangulated category having P⋆/P as the

smallest nonzero thick subcategory. This, in turn, implies that P⋆ = P⊥ ∩ P⋆ is nonzero
and, moreover, the localization q∗P induces an equivalence between P⋆ and P⋆/P.

5.2.3. Corollary. Suppose that infinite coproducts or products exist in CTX. Then
Spec1,0L (X) consists of all P ∈ Spec1L(X) such that P∗ 6= P and P⊥ = 0.

5.2.4. Remark. Loosely, 5.2.3 says that the elements of Spec1,0L (X) can be regarded
as ”fat” points – they generate (in a weak sense) the whole category CTX.

The local properties of Spec1L(X) and Spec1,1L (X) are described by the following
proposition:

5.2.5. Proposition. (a) Let {Ti | i ∈ J} be a finite set of thick subcategories of a

triangulated category T CX such that
⋂

i∈J

Ti = 0. Then

Spec1L(X) =
⋃

i∈J

Spec1L(X/Ti) (1)
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(b) Suppose that ⊥(T ⊥
i ) = Ti for all i ∈ J . Then

Spec1,1L (X) =
⋃

i∈J

Spec1,1L (X/Ti) (2)

Proof. (a) The inclusion
⋃

i∈J

Spec1L(X/Ti) ⊆ Spec1L(X) follows from the functoriality

of Spec1L(−) with respect to localizations. Let P ∈ Spec1L(X). By 4.1,

P =
( ⋂

i∈J

Ti
)
⊔ P =

⋂

i∈J

(Ti ⊔ P) (3)

which implies that Ti ⊆ P for some i ∈ J . In fact, if Ti * P for all i ∈ J , then Ti ⊔ P

contains properly Pi for all i ∈ J , hence the intersection
⋂

i∈J

(Ti ⊔ P) contains properly P,

which contradicts to (3). This proves the inverse inclusion, that is the equality (1).

(b) The inclusion
⋃

i∈J

Spec1,1L (X/Ti) ⊆ Spec1,1L (X) follows from the functoriality of

Spec1,1L (−) with respect to localizations at thick subcategories T such that ⊥(T ⊥) = T .
The inverse inclusion follows from (a).

5.3. The spectrum Spec
1/2
L (X). Let Spec

1/2
L (X) denote the full subpreorder of

Tht(X) whose objects are thick triangulated subcategories Q such that ⊥Q belongs to
Spec1L(X) and every thick triangulated subcategory of CTX properly containing ⊥Q con-
tains Q; i.e. ⊥Q ∨ Q is the smallest thick triangulated subcategory of CTX properly
containing ⊥Q.

5.3.1. Proposition. (a) The map Q 7−→ ⊥Q induces a bijective map

Spec
1/2
L (X) ∼−→ Spec1,1L (X). (1)

(b) If Q is an object of Spec
1/2
L (X), then Q is a minimal nonzero thick triangulated

subcategory of CTX.
(c) Suppose that CTX has infinite coproducts or products. Then the following properties

of a thick triangulated subcategory Q are equivalent:

(i) Q belongs to Spec
1/2
L (X);

(ii) Q is a minimal nonzero thick triangulated subcategory of CTX such that ⊥Q
belongs to Spec1L(X).
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Proof. (a) Let Q be an object of Spec
1/2
L (X). This means that ⊥Q belongs to

Spec1L(X) and (⊥Q)⋆ = ⊥Q ∨Q. Since Q is contained in the intersection

Q1 = (⊥Q)⊥ ∩ (⊥Q)⋆ = (⊥Q)⊥ ∩ (⊥Q ∨Q)

and Q 6= 0, the subcategory ⊥Q belongs to Spec1,1L (X).
By 3.1(b), the triangulated category (⊥Q)⊥ is L-local and Q1 is its smallest nonzero

thick triangulated subcategory. Therefore, Q1 = Q. Thus, the composition of the map

Spec
1/2
L (X) −−−→ Spec1,1L (X), Q 7−→ ⊥Q, (1)

with the map P 7−→ P⋆ = P
⊥∩P⋆ is identical. It follows from 3.1 that the correspondence

P 7−→ P⋆ defines a map

Spec1,1L (X) −−−→ Spec
1/2
L (X). (2)

The argument above shows that the map (2) is inverse to the map (1).

(b) If Q is an object of Spec
1/2
L (X), then, by (a), Q is the smallest thick triangulated

subcategory of the L-local category (⊥Q)⊥; in particular, Q is a minimal nonzero thick
triangulated subcategory of CTX.

(c) Suppose that CTX has infinite coproducts or products. Let Q be a thick tri-
angulated subcategory of CTX such that ⊥Q belongs to Spec1L(X). Then (⊥Q)⊥ con-
tains a nonzero subcategory Q, hence it is nonzero. By 3.3(iv), this is equivalent to that
Q1 = (⊥Q)⊥ ∩ (⊥Q)⋆ is nonzero. By 3.1(b), Q1 is the smallest thick triangulated subcate-
gory of the L-local triangulated category (⊥Q)⊥. In particular, Q1 ⊆ Q. If Q is a minimal
nonzero thick triangulated subcategory of CTX, then the inclusion Q1 ⊆ Q implies that Q
coincides with Q1. The assertion follows now from (a).

5.3.2. Corollary. (a) If Q is an object of Spec
1/2
L (X), then Q = [M ]t for any

nonzero object M of Q.
(b) The following properties of an object M of the category CTX are equivalent:

(i) The thick envelope, [M ]t, of M belongs to Spec
1/2
L (X).

(ii) ⊥M belongs to Spec1L(X), and if T is a thick triangulated subcategory of CTX
properly containing ⊥M , then M ∈ ObT.

(iii) [M ]t is a minimal nonzero thick subcategory, and ⊥M belongs to Spec1L(X).
(c) The equivalent conditions (i), (ii), or (iii) imply the following property:

(iv) ⊥M belongs to Spec1L(X), and every nonzero thick triangulated subcategory of
(⊥M)⊥ contains M .

(d) If infinite coproducts or products exist in CTX, then (iv) is equivalent to the prop-
erties (i), (ii), and (iii).
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Proof. (a) The assertion follows from the minimality of Q (see 5.3.1(b)).

(b) (i) ⇒ (ii). Let Q be an object of Spec
1/2
L (X); and let M be a nonzero object of

Q. Since Q = [M ]t and
⊥M = ⊥[M ]t, the subcategory ⊥M coincides with ⊥Q. Since Q

belongs to Spec
1/2
L (X), ⊥Q∨Q is the smallest thick subcategory of CTX properly containing

⊥Q. It contains the object M .
(ii)⇒ (i). The conditions (ii) mean that ⊥M ∨ [M ]t is the smallest thick triangulated

subcategory of CTX properly containing ⊥M = ⊥[M ]t.
The implications (ii)⇔ (iii) follow from 1.7.
(c) (iii) ⇒ (iv). Let Q = [M ]t. It follows from 1.7(ii) that (⊥M)⊥ = (⊥Q)⊥ is an

L-local triangulated category and Q = [M ]t is its smallest nonzero thick subcategory.
Clearly M ∈ ObQ.

(d) The implication (iv)⇒ (iii) follows from 1.7(c).

5.3.3. Corollary. Let T CX be a triangulated category with small coproducts or
products. Then Spec1,1L (X) = {P ∈ Spec1L(X) |

⊥(P⊥) = P}.

Proof. The inclusion Spec1,1L (X) ⊆ {P ∈ Spec1L(X) |
⊥(P⊥) = P} holds without

any conditions on the triangulated category T CX and follows from 5.3.1, because if P is
an element of Spec1,1L (X) and Q = P⋆ ∩ P⊥, then P ⊆ ⊥(P⊥) ⊆ ⊥Q = P.

If the triangulated category T CX has infinite products or coproducts, then, by 5.2.2,
Spec1,0L (X) consists of all P ∈ Spec1L(X) such that P⊥ = 0, i.e. ⊥(P⊥) = T CX. In
particular, ⊥(P⊥) 6= P.

5.4. Flat spectra. Let Se(X) denote the family of all thick triangulated subcate-
gories of the triangulated category CTX which satisfy equivalent conditions of 1.8.3. We
define the complete flat spectrum of X, Spec1fL(X), by setting

Spec1fL(X) = Spec1L(X)
⋂

Se(X). (1)

We define the flat spectrum of X as a full subpreorder, Spec0fL(X), of Tht(X) whose

objects are all P such that P̂ ∈ Spec1fL(X)}.

It follows from these definitions that the map P 7−→ P̂ defines an injective morphism

Spec0fL(X) −−−→ Spec1fL(X). (2)

Let Spec
1/2
fL (X) denote the full subpreorder of Spec

1/2
L (X) whose objects are all Q

such that ⊥Q belongs to Se(X).

5.4.2. Proposition. (a) The map

Tht(X) −→ Tht(X), Q 7−→ ⊥Q,
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induces an isomorphism

Spec
1/2
fL (X) ∼−→ Spec1fL(X). (3)

(b) Spec0fL(X) = Spec0L(X)
⋂

Spec
1/2
fL (X). The canonical morphism (2) is the com-

position of the inclusion Spec0fL(X) →֒ Spec
1/2
fL (X) and the isomorphism (3).

Proof. Notice that Spec1fL(X) ⊆ Spec1,1L (X). This follows from 1.8.3 and the defini-
tions of these spectra. Now the assertion becomes a consequence of 5,3.1.

5.4.3. Proposition. (a) If Q is an object of Spec
1/2
fL (X), then Q = [M ]t (hence

⊥Q = ⊥M) for any nonzero object M of Q.
(b) The following properties of an object M of the category CTX are equivalent:

(i) The thick envelope, [M ]t, of M belongs to Spec
1/2
fL (X).

(ii) ⊥M belongs to Spec1fL(X), and if T is a thick triangulated subcategory of CTX
properly containing ⊥M , then M ∈ ObT.

(iii) [M ]t is a minimal nonzero thick subcategory, and ⊥M belongs to Spec1fL(X).

(iv) M is a nonzero object which belongs to every nonzero thick triangulated sub-
category of (⊥M)⊥ and such that the inclusion functor ⊥M −→ CTX has a right adjoint.

Proof. (a) The assertion is a consequence of the minimality of Q (see 5.3.1(b)).

(b) The implications (i)⇔ (ii)⇔ (iii)⇒ (iv) follow from the corresponding implica-
tions of 5.3.2.

(iv) ⇒ (iii). By 1.6.3, the inclusion functor ⊥M −→ CTX has a right adjoint iff
the localization functor CTX −→ CTX/

⊥M has a right adjoint. The latter implies that
the quotient category CTX/

⊥M is equivalent to the triangulated category (⊥M)⊥. The
condition that M is contained in every nonzero thick triangulated subcategory of (⊥M)⊥

means that (⊥M)⊥ is L-local and [M ]t is its smallest thick triangulated subcategory.
Therefore, ⊥M belongs to Spec1fL(X), and [M ]t is a minimal nonzero thick triangulated
subcategory of CTX.

5.5. Supports and Zariski topology.

5.5.1. Supports. For any object M of the category CX , the support of M in
Spec1L(X) is defined by Supp1L(M) = {P ∈ Spec1L(X) | M 6∈ ObP}. It follows that
Supp1L(L ⊕M) = Supp1L(L)

⋃
Supp1L(M).

5.5.2. Topologies on Spec1L(X) and Spec1,1L (X). We follow the pattern of II.2.3
and II.2.4. Let Ξ be a class of objects of CX closed under finite coproducts. For any set E

of objects of Xi, let V1
L(E) denote the intersection

⋂

M∈E

Supp1L(M). Then, for any family
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{Ei | i ∈ I} of such sets, we have, evidently,

VL(
⋃

i∈J

Ei) =
⋂

i∈J

VL(Ei).

It follows from the equality Supp1L(M ⊕N) = Supp1L(M)
⋃
Supp1L(N) (see 2.2.1(a))

that V1
L(E ⊕ Ẽ) = V1

L(E)
⋃
V1
L(Ẽ). Here E ⊕ Ẽ

def
= {M ⊕N | M ∈ E, N ∈ Ẽ}.

This shows that the subsets V1
L(E) of Spec1L(X), where E runs through subsets of

Ξ, are all closed sets of a topology, τ1Ξ, on the spectrum Spec1L(X).

We denote by τ1,1Ξ the induced topology on Spec1,1L (X) and by τ fLΞ the induced topol-
ogy on Spec1fL.

5.5.3. Compact topology. The class Ξc(X) of compact objects of the category
CX is closed under finite coproducts, hence it defines a topology on Spec1L(X), which we
denote by τc and call the compact topology.

Restricting the compact topology to Spec1,1L (X) or to Spec1fL(X), we obtain the com-
pact topology on these spectra.

5.5.4. Zariski topology on Spec1,1L (X). We define the Zariski topology on the

spectrum Spec1,1L (X) by taking as a base of closed sets the supports of compact objects

and closures (i.e. the sets of all specializations) of points of Spec1,1L (X).
If the category CX is generated by compact objects, then the Zariski topology coincides

with the compact topology τc.

5.5.5. Zariski topology on Spec
1/2
L (X). It is important to realize that the topolo-

gies we define are determined in the first place by the choice of a preorder on the set of
thick subcategories (or topologizing subcategories in the case of abelian categories). And
so far, the preorder was always the inverse inclusion.

Following these pattern, for any object M of a svelte triangulated category CTX, we

define the support of M in Spec
1/2
L (X) as the set of all Q ∈ Spec

1/2
L (X) such that the

smallest thick triangulated subcategory [M ]tr containing M contains also Q.

We define the Zariski topology on Spec
1/2
L (X) by taking supports of compact objects

and the finite subsets of Spec
1/2
L (X) as a base of its closed sets.

It follows from this definition of Zariski topology and 5.2.1(b) that all points of the

spectrum Spec
1/2
L (X) are closed; that is Zariski topology on Spec

1/2
L (X) is a T1-topology.

The bijective map

Spec
1/2
L (X) ∼−→ Spec1,1L (X) (4)

is continuous, but, usually, not a homeomorphism.
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5.5.6. Remark. Suppose that CX is the heart of a t-structure on CTX. Then we
have a commutative diagram

Spec(X) −−−→ Spec
1/2
L (X)

≀
y

y≀
Spec1,1t (X) −−−→ Spec1,1L (X)

(5)

where horizontal arrows are embeddings and vertical arrows are canonical bijections. Thus,

the Zariski topology on Spec
1/2
L (X) induces a T1-topology on the spectrum Spec(X) of

the ’space’ represented by the abelian category CX , which, obviously, differs from Zariski
topology on Spec(X), unless Spec(X) is of zero Krull dimension.

5.6. A geometric realization of a triangulated category. We assign to a
Karoubian triangulated category TCX having a set of compact generators the contravariant
pseudo-functor from the category of Zariski open subsets of the spectrum Spec1,1L (X) to
the category of svelte triangulated categories. The associated stack is the stack of local
triangulated categories.

5.7. The geometric center. We define the center of a svelte triangulated category
TCY = (CY, θY,TrY) as the subring OT(Y) of the center z(CX) of the category CY formed
by θY-invariant endomorphisms of the identical functor of CY. One can show that the ring
OT(Y) is local if the triangulated category TCY is local.

Let TCX be a Karoubian triangulated category with a set of compact generators and
TFZ

X the corresponding stack of local triangulated categories (cf. 5.6). Assigning to each

fiber of the stack TFZ
X its center, we obtain a presheaf of commutative rings on the spectrum

Spec1,1L (X) endowed with the Zariski topology. The associated sheaf, OT
X, is a sheaf of

local rings. We call the locally ringed topological space (Spec1,1L (X),OT
X) the geometric

centrum of the triangulated category TCX.

5.7.1. Note. Similarly to the abelian case, one can define the reduced geometric
centrum of TCX. Details of this construction are left to the reader.

5.8. On the spectra of a monoidal triangulated category.

5.8.1. A remark on spectral cuisine. There are certain rather simple general
pattern of producing spectra starting from a preorder (they are outlined in Chapter VII).
Here, these pattern are applied to the preorder Tht(X) of thick triangulated subcategories
of the triangulated category CTX.

5.8.2. Application to monoidal triangulated categories. Suppose that a trian-
gulated category TCX has a structure of a monoidal category. Then, replacing the preorder



156 Chapter 4

of thick subcategories with the preorder of those thick subcategories which are ideals of
TCX and mimicking the definitions of Spec1L(X) and Spec1,1L (X), we obtain the spectra

respectively Spec1L,⊗(X) and Spec1,1L,⊗(X). If the monoidal category TCX is symmetric,

then Spec1L,⊗(X) coincides with the spectrum introduced by P. Balmer in different terms,
as a straightforward imitation of the notion of a prime ideal of a commutative ring.

However, triangulated categories associated with noncommutative ’spaces’ of interest
do not have any symmetric monoidal structure. A typical example is the monoidal category
of continuous (that is having a right adjoint) endofunctors of a category CX .

6. Functorialities.

6.1. Induction. Let X
f
−→ Y be a continuous morphism of t-’spaces’. For every

point Q of the spectrum Spec
1/2
L (Y), we have a commutative diagram

CX

q̃∗

−−−→ C
X/f−1

∗ (Q̂)

f̃
Q∗

−−−→ CXQ,f∗

f∗

y f
Q∗

y
y f̂

Q∗

CY

q∗

Q

−−−→ C
Y/Q̂

j
Q∗

−−−→ Q̂⋆/Q̂ = Q

(1)

in which the horizontal are locaization functors. The localization functors q∗
Q
and q̃∗ have

right adjoint functors; the functor j
Q∗ is a right adjoint to the full embedding Q̂⋆/Q̂ =

Q
j∗
Q
−→ C

Y/Q̂
(hence it is a localization functor); the functor f̃

Q∗ is the lozalization functor

at the class of all arrows which the composition j
Q∗ ◦ fQ∗ maps to isomorphisms.

All functors of the right square of (1) have a left adjoint and both vertical arrows are
conservative functor. Therefore, by 3.4 (or 3.5), the diagram is isomorphic to the diagram

CX

q̃∗

−−−→ Ff
Q
−mod

f̃
Q∗

−−−→ F̂
f
Q

−mod

f∗

y f
Q∗

y
y f̂

Q∗

CY

q∗

Q

−−−→ C
Y/Q̂

j
Q∗

−−−→ Q̂⋆/Q̂ = Q

(2)

where Ff
Q

and F̂
f
Q

are monads on the triangulated categories respectively C
Y/Q̂

and Q

and f
Q∗, f̂Q∗ the corresponding forgetful functors.

6.1.1. The stabilizer of a morphism at a point. The ’space’ XQ,f∗ over Q is
called the stabilizer of the morphism f at the point Q of the spectrum. We also call the
monad F̂

f
Q

the stabilizer of the morphism f at the point Q.
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6.1.2. The related maps of the spectra. The diagram (1) gives rise to the
diagram

Spec
1/2
L (XQ,f∗) −−−→ Spec

1/2
L (X/f−1

∗ (Q̂))y
y

{Q} ←−−− Spec
1/2
L (X)

(3)

in which the upper horizontal and the right vertical arrows are embeddings.

Thus, to each point Q of the spectrum Spec
1/2
L (Y), it is assigned a canonical em-

bedding of the spectrum of the stabilizer XQ,f∗ of the morphism f at the point Q into the

spectrum Spec
1/2
L (X) of the t-’space’ X.

6.2. The covariant functoriality. Let X
f
−→ Y be a continuous morphism of

t-’spaces’. For every point P of the spectrum Spec
1/2
L (X), the set Ass(f∗(L)) does not

depend on the choice of a nonzero object L of the category P. Therefore, we denote this
set by Ass(f∗(P)). The correspondence

Spec
1/2
L (X) −−−→ 2Spec

1/2

L
(Y), P 7−→ Ass(f∗(P)) (4)

expresses the covariant functoriality of the spectrum.

6.3. Dual notions. From the general nonsense point of view, the dual notions have

the same rights. Thus, given a continuous morphism X
f
−→ Y of t-’spaces’, we have a

(contravariant) correspondence

Spec
1/2
L (Y) −−−→ 2Spec

1/2

L
(X), Q 7−→ Ass(f∗(Q)). (5)

Similarly, for any point P of Spec
1/2
L (X), we have the dual version of the diagram (1):

CY

q̃∗

−−−→ C
Y/f∗−1 (P̂)

f̃
P∗

−−−→ CYP,f∗

f∗
y f∗

P

y
y f̂∗

P

CX

q∗

Q

−−−→ C
X/P̂

j
P∗

−−−→ P̂⋆/P̂ = P

(6)

in which the right square is cartesian (in pseudo-functorial sense), its upper and lower
horizontal arrows are localization functors having left adjoints, and its right vertical arrows
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are conservative functors having right adjoints. The latter implies, by Beck’s theorem for
triangulated categories (see 3.4), that the diagram (5) is isomorphic to the diagram

CY

q̃∗

−−−→ GfP − comod
f̃∗
P

−−−→ Ĝ
fP
− comod

f∗
y f∗

P

y
y f̂∗

P

CX

q∗

Q

−−−→ C
X/P̂

j
P∗

−−−→ P̂⋆/P̂ = P

(7)

which is the dual version of the diagram (2) in 6.1.
The diagram (5) gives rise to the diagram

Spec
1/2
L (YP,f∗) −−−→ Spec

1/2
L (Y/f∗

−1

(P̂))y
y

{P} ←−−− Spec
1/2
L (Y)

(8)

in which the upper horizontal and the right vertical arrows are embeddings.

6.4. Multiplicities and finiteness conditions.

6.4.1. Multiplicities. Let Y be a t-’space’. For any object L of the category

CY and any point Q of the spectrum Spec
1/2
L (Y)., we denote by m

Y
(L;Q) the image of

the Q-torsion of the object L in the K-group K0(Q). We call the element m
Y
(L;Q) the

multiplicity of the object L at the point Q. The map which assigns to any object L of CY

its multiplicity function, Q 7−→ µ
Y
(L;Q), induces a group homomorphism

K0(TCY)
m

Y

−−−→
∏

Q∈Spec
1/2

L
(Y)

K0(Q). (9)

6.4.2. Locally finite objects. It follows that, for every L ∈ ObCY, the support

Supp(m
Y
(L,−)) of the function Q 7−→ m

Y
(L;Q) (that is the set of Q ∈ Spec

1/2
L (Y) such

that m
Y
(L;Q) is nonzero) is contained in Ass(L). We call an object L of the category CY

locally finite if Supp(m
Y
(L,−)) coincides with Ass(L). In other words, every associated

point of the object L appears with a finite non-trivial multiplicity.

6.4.3. Relatively locally finite objects. Let X
f
−→ Y be a continuous morphism

of t-’spaces’. To every object L of the category CX and every point Q of Spec
1/2
L (Y), we

assign the multiplicity m
Y
(f∗(L);Q) of the object f∗(L) at the point Q.

We call an object L of the category CX locally finite over Y (or, more explicitly,
f-finite), if its direct image, f∗(L), is a locally finite object in CY.



Chapter V

Spectra Related with Localizations.

This Chapter can be regarded as an introduction to basic spectra associated with exact
localizations of general ’spaces’, i.e. ’spaces’ represented by arbitrary categories regarded as
categories of quasi-coherent sheaves. Section 1 contains preliminaries on localizations and
multiplicative systems. In Section 2, we introduce the spectrum of exact localizations, or,
shortly, the L-spectrum, of a ’space’ and discuss its functorial properties. In Section 3, we
define L-local ’spaces’ and show that the localization at a ’point’ of the L-spectrum is an L-
local ’space’. In Section 4, we introduce the complete L-spectrum and show its functoriality
with respect to exact localizations. In Section 5, we define the closed spectrum (resp. the
complete closed spectrum) and the flat spectrum (resp. the complete flat spectrum) of a
’space’. In Section 6, we extend the notions of the spectra to the case of categories with
an action of a monoidal category. This material, important by itself, is used further only
in the simplest case of so called Z-categories, in order to give a background to spectral
theory of triangulated categories.

1. Preliminaries on localizations.

1.1. Multiplicative systems. A family of arrows Σ of a category CX is called a
left multiplicative system if it has the following properties:

(S1) Σ is closed under composition and contains all identical arrows of CX .

(SL2) Every diagram M ′ s
←−M

f
−→ L, where s ∈ Σ, can be completed to a commu-

tative square

M
f

−−−→ L

s
y

y s′

M ′
f ′

−−−→ L′

where s′ ∈ Σ.

(SL3) If M
f

−→
−→
g

N is a pair of arrows such that f ◦ s = g ◦ s for some s ∈ Σ, then

there exists a morphism N
t
−→ N ′ of Σ such that t ◦ f = t ◦ g.

A family Σ ⊆ HomCX is a right multiplicative system if it has dual properties. Finally,
Σ is called a multiplicative system if it is both right and left multiplicative.

We denote by SMℓ(X) (resp. by SMr(X)) the family of all left (resp. right) mul-
tiplicative systems in CX . We denote by SM(X) the family SMℓ(X)

⋂
SMr(X) of all

multiplicative systems in CX .
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We regard SMℓ(X), SMr(X), and SM(X) as preorders with respect to ⊆.

1.1.1. Saturation. Let Σ be a family of morphisms of the category CX . Let qΣ

be the localization morphism Σ−1X −→ X and CX
q∗
Σ−→ CΣ−1X = Σ−1CX its canonical

inverse image functor.
The family Σs = Σq

Σ
of all arrows of CX which q∗

Σ
transfers into isomorphisms (cf.

1.2) is called the saturation of Σ. A family of arrows Σ is called saturated if it coincides
with its saturation.

1.1.2. Generalities on saturated families of arrows. It follows from the universal

property of localizations, that for any morphism Y
f
−→ X, the family Σf of all arrows of CX

which f∗ transforms to isomorphisms (see 1.2) is saturated. In particular, the saturation
of any family of arrows is saturated.

Any set, {Yi
fi
−→ X | i ∈ J}, of morphisms of ’spaces’ defines uniquely a morphism

Y =
∐

i∈J

Yi
f
−→ X with an inverse image

CX
f∗

−−−→ CY =
∏

i∈J

CYi

uniquely determined by a choice of inverse images, CX
f∗
i−→ CYi , of morphisms fi, i ∈ J .

Evidently, Σf =
⋂

i∈J

Σfi . This shows that the intersection of any set of saturated families

of morphisms is saturated.

1.1.3. Saturation of multiplicative systems. If Σ is a left multiplicative system,
then its saturation, Σs, consists of all morphisms L

u
−→ M which can be inserted in a

commutative diagram of the form

L
u

−−−→M

s
y ւv

y t

V
u1

−−−→W

where s, t ∈ Σ (see [GZ, 1.1.3.5]).
It follows from this description that the saturation of a (left and right) multiplicative

system Σ coincides with all arrows s ∈ HomCX such that there exist morphisms u and v
such that u ◦ s ∈ Σ ∋ s ◦ v.

1.1.3.1. Proposition. The saturation of a (left and right) multiplicative system is a
multiplicative system.
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Proof. Let Σ be a multiplicative system. It suffices to show that the saturation, Σs,
of Σ has the properties (SL2) and (SL3).

Let M
s
−→ M ′ be an element of Σs; i.e. there exist morphisms M ′ u

−→ M ′′ and

N
v
−→M such that u ◦ s ∈ Σ ∋ s ◦ v. And let M

f
−→ L be an arbitrary morphism.

By the property (SL3), the diagram M ′′ u◦s
←−M

f
−→ L can be inserted in a commuta-

tive diagram

M
f

−−−→ L

u ◦ s
y

y s′

M ′′
f ′

−−−→ L′

(1)

where s′ ∈ Σ. The diagram (1) can be rewritten as

M
f

−−−→ L

s
y

y s′

M ′
f ′◦u
−−−→ L′

which proves (SL2).

Let M ′
f

−→
−→
g

L is a pair of arrows such that f ◦ s = g ◦ s. In particular, f ◦ (s ◦ v) =

g ◦ (s ◦ v). Since s ◦ v ∈ Σ, there exists (by the property (SL3)) a morphism L
t
−→ L′ of Σ

such that t ◦ f = t ◦ g.

1.1.3.2. Note. The analogous assertion is not true, in general, for left (or right)
multiplicative systems. It is true, however, if the category CX has finite colimits (finite
limits in the case of right multiplicative systems); see 1.2.1(b) and 1.2.2 below.

1.1.4. Notations. We denote by SsMℓ(X) (resp. by SsMr(X)) the family of all
saturated left (resp. right) multiplicative systems in CX .

We denote by SsM(X) the family of all saturated (left and right) multiplicative
systems in CX ; that is SsM(X) = SsMℓ(X)

⋂
SsMr(X).

We regard SsMℓ(X), SsMr(X), and SsM(X) as preorders with respect to ⊆.

It follows from 1.1.3.1 that the saturation, Σ 7−→ Σs induces a functor

SM(X) −→ SsM(X)

which is left adjoint to the inclusion functor SsM(X) −→ SM(X).
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1.2. Left exact, right exact, and exact morphisms. A morphism X
f
−→ Y

is called right exact (resp. left exact, resp exact), if its inverse image functor preserves
colimits (resp. limits, resp. both limits and colimits) of arbitrary finite diagrams.

The following assertion is a reformulation of Propositions 1.3.1 and 1.3.4 in [GZ].

1.2.1. Proposition. (a) Let Σ be a left multiplicative system in CX . Then the

canonical morphism Σ−1X
q
Σ−→ X is right exact.

(b) Let f = pf ◦ fc be the canonical decomposition of a morphism X
f
−→ Y into a

conservative morphism X
fc
−→ Σ−1

f Y and a localization Σ−1
f Y

pf
−→ Y . Suppose CY has

finite limits (resp. finite colimits). Then f is left exact (resp. right exact) iff the family of
arrows Σf is a left (resp. right) multiplicative system. In this case both the localization pf
and the conservative morphism fc are left (resp. right) exact.

In particular, if the category CY has limits and colimits of finite diagrams, then f
is exact iff both the localization pf and the conservative component fc are exact. The
exactness of pf is equivalent to that Σf ∈ S

sM(X).

1.2.2. Corollary. Suppose the category CX has finite colimits. Then the saturation
map, Σ 7−→ Σs induces a functor SMℓ(X) −→ SsMℓ(X) which is left adjoint to the
corresponding inclusion functor SsMℓ(X) −→ SMℓ(X).

1.2.3. Corollary. Suppose CX has finite colimits. Then the intersection of any set
of saturated left multiplicative systems is a saturated left multiplicative system.

1.3. Continuous morphisms and flat morphisms. A morphism f of |Cat|o, or
Catop, is called continuous if its inverse image functor has a right adjoint, f∗, which is
called a direct image functor of f .

A morphism f is called flat if it is exact and continuous.
One can show that a morphism f is continuous iff both the localization pf and the

conservative component fc are continuous.

2. The L-spectrum.

Fix a ’space’ X. Recall that SsM(X) denote the preorder (with resp. to ⊆) of
all saturated (left and right) multiplicative systems of the category CX . The preorder
SsM(X) has the initial object – the family Iso(CX) of all isomorphisms of CX . Let
SsM⋆(X) denote SsM(X)− {Iso(CX)}.

For any Σ ⊆ HomCX , denote by Σ̂ the union of all saturated multiplicative systems
of CX which do not contain Σ. It follows that if Σ1 ⊆ Σ2, then Σ̂2 ⊆ Σ̂1. Notice that
if Σ1 and Σ2 are saturated multiplicative systems, then the inverse implication holds, i.e.
Σ1 ⊆ Σ2 iff Σ̂2 ⊆ Σ̂1.
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2.1. Definition. The L-spectrum, Spec0L(X), of X consists of all saturated multi-

plicative systems Σ such that Σ̂ is a saturated multiplicative system.
In other words, elements of Spec0L(X), are saturated multiplicative systems Σ such

that there exists the biggest saturated multiplicative system, Σ̂, which does not contain
Σ. In particular, Spec0L(X) ⊆ SsM⋆(X).

2.1.1. Note. If CX is a groupoid, then SsM⋆(X) is empty, hence Spec0L(X) = ∅.

2.1.2. Specialization preorder. We call the preorder, ⊇, on SsM(X) the special-
ization preorder: Σ is a specialization of Σ′ if Σ ⊆ Σ′.

It follows that if Σ, Σ′ are elements of Spec0L(X), then Σ is a specialication of Σ′ iff

the saturated multiplicative system Σ̂ is a specialization of Σ̂′.

2.2. Functorial properties of the L-spectrum. Let LeEsp denote the subcategory
of |Cat|o formed by exact localizations (cf. 1.2). Since identical morphisms are exact
localizations, ObLeEsp = Ob|Cat|o. Let POrd⋆ denote the category of preorders with
initial objects; its morphisms are morphisms of preorders mapping initial objects to initial
objects.

2.2.1. Lemma. The map X 7−→ SsM(X) gives a rise to a contravariant functor

SsMo : LeEsp
op −−−→ POrd⋆

and to a covariant functor

SsM : LeEsp −−−→ POrd⋆.

Proof. Let X
u
−→ Y be an exact localization and CY

u∗

−→ CX its inverse image functor.
Set Σu = Σu∗ = {s ∈ HomCY | u

∗(s) ∈ IsoCX}. The functor u∗ induces a map

SsM(Y )
SsMo(u)
−−−−−−−→ SsM(X)

which assigns to a family Σ ∈ SsM(Y ) the minimal saturated multiplicative system con-
taining u∗(Σ), and a map

SsM(X)
SsM(u)
−−−−−−−→ SsM(Y )

which sends any saturated multiplicative system Σ′ to its preimage, u∗
−1

(Σ′). Notice that
SsMo(u)◦S

sM(u) is the identical map. This shows that SsMo(u) and S
sM(u) induce an
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isomorphism between SsM(X) and the preorder SsMΣu(Y ) of saturated multiplicative
systems of CY containing Σu. Notice that the map SsMo(u) can be represented as the
composition of the map

SsM(Y ) −→ SsMΣu(Y ), Σ 7−→ Σ ∨ Σu,

and the restriction of SsMo(u) to S
sMΣu(Y ) (the inverse to SsM(u)). It is easy to see

that both maps, u 7−→ SsMo(u) and u 7−→ S
sM(u) are functorial.

2.2.2. Extended L-spectrum. For any ’space’ X, set Spec0L⋆(X) = Spec0L(X) ∪
{⋆X}, where ⋆X = Iso(CX). We call Spec0L⋆(X) the extended spectrum of X. Notice that
̂Iso(CX) = ∅. Thus, the added trivial multiplicative system ⋆X can be viewed as ∞ (with

respect to the specialization preorder ⊇).

2.2.3. Proposition. Any exact localization X
u
−→ Y induces a morphism of extended

spectra Spec0L⋆(Y ) −→ Spec0L⋆(X). This correspondence defines a contravariant functor,
Spec0L⋆, from the category LeEsp to the category POrd⋆ of preorders with initial objects.

Proof. Fix an inverse image functor, CY
u∗

−→ CX , of the morphism u. The map

SsMo(u) : S
sM(Y ) −−−→ SsM(X)

(cf. 2.2.1) induces a morphism of spectra Spec0L⋆(Y ) −→ Spec0L⋆(X).

In fact, let ΣP ∈ Spec0LY and ΣP * Σu. Then Σu ⊆ Σ̂P . By (the argument of) 2.2.1,
the map SsMo(u) induces an isomorphism between SsM(X) and the preorder SsMΣu(Y )

of saturated multiplicative systems of CY containing Σu. In particular, the image, Σ̂′
P ,

of Σ̂P is a saturated multiplicative system. It follows that Σ̂′
P is the biggest saturated

multiplicative system in CX which does not contain the image, Σ′
P , of the saturated

multiplicative system Σu ∨ ΣP . In fact, if Σ′
P * Σ′ for some saturated multiplicative

system Σ′, then ΣP is not contained in the saturated multiplicative system Σ = u∗
−1

(Σ′).

Therefore Σ ⊆ Σ̂P , hence the assertion.

2.2.4. Remarks. (a) For any S ∈ SsM(X), let UL(S) denote {Σ ∈ Spec0L(X) | Σ *
S} It follows that UL(S) = {Σ ∈ Spec0L(X) | S ⊆ Σ̂}.

The argument of 2.2.3 proves that any exact localization, X
u
−→ Y , induces an injec-

tive map UL(Σu) −→ Spec0LY .

(b) In general, the map SsM(X)
SsM(u)
−−−→ SsM(Y ) corresponding to an exact local-

ization X
u
−→ Y does not induce a map Spec0L⋆(X) −→ Spec0L⋆(Y ).

For any exact localization U
u
−→ X, set Spec0L(U ;X) = {Σ ∈ Spec0L(X) | Σu ⊆ Σ̂}.
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2.2.5. Proposition. Let {Ui
ui→ X | i ∈ J} be a conservative set of exact localizations.

Then Spec0L(X) =
⋃

i∈J

Spec0L(Ui;X).

Proof. By hypothesis, the family of localization functors, {CX
u∗
i−→ CUi | i ∈ J}, is

conservative, i.e.
⋂
i∈J Σui = Iso(CX). Therefore, for every Σ ∈ Spec0L(X), there exists

i ∈ J such that Σ * Σui which means precisely that Σui ⊆ Σ̂ and the image of Σ ∨Σui in
SsM(Ui) belongs to Spec0L(Ui) (see 2.2.3 and 2.2.4(a)), hence the assertion.

3. L-Local ’spaces’ and the spectrum Spec0L(X).

We call a ’space’ X L-local (here L- stands for ’localization’), if SsM⋆(X) has the
smallest element, or, equivalently, the intersection, ΣX , of all non-trivial saturated multi-
plicative systems is a non-trivial saturated multiplicative system.

3.1. Proposition. The following conditions on a ’space’ X are equivalent:
(a) The ’space’ X is L-local.

(b) The family of arrows ΣX =
⋂

Σ∈SsM⋆(X)

Σ belongs to Spec0L(X).

(c) The spectrum Spec0L(X) has an element, Σ′, such that Σ̂′ = Iso(CX).

Proof. (a) ⇒ (b) & (a) ⇒ (c): If X is L-local and Σ is a saturated multiplicative
system, then ΣX * Σ iff Σ /∈ SsM⋆(X), that is if Σ = Iso(CX).

(b) ⇒ (a) follows from definitions: if ΣX ∈ Spec0L(X), then ΣX ∈ SsM⋆(X), hence
X is L-local.

(c) ⇒ (a): Let Σ′ ∈ Spec0L(X) be such that Σ̂′ = Iso(CX). Then Σ′ ∈ SsM⋆(X)
and Σ′ is contained in any non-trivial saturated multiplicative system, i.e. Σ′ = ΣX .

3.2. Proposition. For any Σ ∈ Spec0L(X), the ’space’ Σ̂−1X is L-local.

Proof. The localization functor CX
q∗P−→ Σ̂−1CX induces an isomorphism between

the preorder of (non-trivial) saturated multiplicative systems of C
Σ̂−1X

= Σ̂−1CX and

saturated multiplicative systems of CX which contain Σ̂ properly. Since every saturated
multiplicative system which contains Σ̂ properly contains Σ as well, the preorder of satu-
rated multiplicative systems properly containing Σ̂ coincides with the preorder of saturated
multiplicative systems containing Σ̂ ∨Σ. Therefore the image of Σ̂ ∨Σ in SsM(Σ̂−1X) is

the smallest element of SsM⋆(Σ̂−1X).

4. The complete L-spectrum.

For any ’space’ X, we define its complete L-spectrum, Spec1L(X), as follows. Ele-
ments of Spec1L(X) are saturated multiplicative systems, Σx, of CX such that the ’space’
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of fractions Σ−1
x X is L-local. In other words, elements of Spec1L(X) are saturated mul-

tiplicative systems, Σx, such that the intersection of all saturated multiplicative systems
properly containing Σx is a saturated multiplicative system which contains Σx properly
too. We consider Spec1L(X) together with the preorder ⊆. By 3.2, there is a morphism

Spec0L(X) −→ Spec1L(X) defined by Σ 7−→ Σ̂.

4.1. Proposition. The map X 7−→ Spec1L(X) extends to a functor, Spec1L, from
the category LeEsp to the category POrd of preorders.

Proof. The map SsM(X)
SsM(u)
−−−→ SsM(Y ), Σ 7−→ u∗

−1

(Σ), corresponding to an

exact localization X
u
−→ Y induces a map Spec1L(X) −→ Spec1L(Y ).

Indeed, Σ−1X ≃ SsM(u)(Σ)−1Y , so that SsM(u)(Σ)−1Y is L-local if Σ−1X is L-
local, hence the assertion.

4.2. Note. For any ’space’ X,

Spec1L(X) =
⋃

Σ∈SsM(X)

Spec0L(Σ
−1X) =

⋃

Σ∈Spec1
L
(X)

Spec0L(Σ
−1X).

Here Spec1L(Σ
−1X) is identified with its image in Spec1L(X).

4.3. The extended complete L-spectrum. For any ’space’ X, set Spec1L⋆(X) =
Spec1L(X) ∪ {⋆X}, where ⋆X = Iso(CX). We call Spec1L⋆(X) the extended complete
L-spectrum of X.

4.3.1. Proposition. The map X 7−→ Spec1L(X) gives rise to a contravariant functor

aSp : LeEsp
op −−−→ POrd⋆

and to a covariant functor

aSp : LeEsp −−−→ POrd⋆

to the category POrd⋆ of preorders with initial objects.

Proof. The functor aSp : LeEsp −−−→ POrd⋆ is the unique extension of the functor
Spec1L : LeEsp −−−→ POrd of 4.1.

Let X
u
−→ Y be an exact localization. We define the map

aSp(u) : Spec1L(Y ) −→ Spec1L(X)

as follows. Let Σx ∈ Spec1L(Y ). If Σu ⊆ Σx, then
aSp(u)(Σx) is the minimal saturated

multiplicative system containing u∗(Σx). By transitivity of localizations, aSp(u)(Σx) ∈
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Spec1L(X). If Σu * Σx, then
aSp(u) maps Σx to the trivial family, ⋆X = Iso(CX). It is

easy to check that the map u 7−→a Sp(u) is functorial.

4.4. Remark. The dualization functor, X 7−→ Xo, establishes an isomorphism
between the preorder of left (saturated) multiplicative systems on X and right (saturated)
multiplicative systems on Xo. This isomorphism induces an isomorphism of preorders of
(saturated) multiplicative systems:

SM(X) ∼−→ SM(Xo) and SsM(X) ∼−→ SsM(Xo). (1)

In particular, a ’space’ X is L-local iff its dual, Xo is L-local.
Thus, the isomorphism SsM(X) ∼−→ SsM(Xo) induces isomorphisms of spectra

Spec1L(X) ∼−→ Spec1L(X
o) and Spec0L(X) ∼−→ Spec0L(X

o). (2)

as well as the extended versions of these spectra.
The spectra Spec1L(X) and Spec0L(X) are too large, which is one of the reasons why

the duality (2) takes place. In the next section, we single out smaller spectra inside of
Spec1L(X) and Spec0L(X).

5. Closed spectra and flat spectra.

5.1. Σ-Torsion free objects. Let Σ ⊆ HomCX . We say that an object, M , of

the category CX is Σ-torsion free if every morphism M
t
−→ N which belongs to Σ is a

monomorphism. We denote by CXΣ the full subcategory of the category CX whose objects
are Σ-torsion free.

5.1.1. Lemma. Let Σ ⊆ HomCX be such that for every diagram L̃
s
←− L

g
−→ M ,

where s ∈ Σ and g is a monomorphism, there exists a commutative diagram

L
g

−−−→ M

s
y

y t

L̃
g̃

−−−→ M̃

(1)

where t ∈ Σ (e.g. Σ is a left multiplicative system).
Then any subobject of a Σ-free object is Σ-free.

Proof. Let L
g
−→M be a monomorphism, and L

s
−→ L̃ a morphism of Σ. Then there

exists a commutative diagram (1) in which t ∈ Σ. If M is Σ-torsion free, then M
t
−→ M̃ is

a monomorphism. Thus t ◦ g is a monomorphism. It follows from the equality t ◦ g = g̃ ◦ s
that s is a monomorphism, hence the assertion.
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5.2. Closed families of morphisms and closed spectra. Let Σ ⊆ HomCX .
We say that Σ is closed, or right closed, if for every M ∈ ObCX , there exists a morphism
M −→ M̃ of Σ such that M̃ ∈ ObCXΣ .

5.2.1. Proposition. Let Σ ⊆ HomCX be a left saturated multiplicative system such

that the canonical morphism Σ−1X
q
Σ−→ X is continuous; and let q∗

Σ
and qΣ∗ be resp. its

inverse and direct image functors. Then the following conditions on an object M of CX
are equivalent:

(i) M is Σ-torsion free.

(ii) An adjunction morphism M
η
Σ
(M)

−−−→ qΣ∗q
∗
Σ
(M) is a monomorphism.

Proof. Let Σ be a saturated multiplicative system and CX
q∗
Σ−→ CΣ−1X = Σ−1CX a

localization functor at Σ. If the family Σ is flat, the functor q∗
Σ
has a right adjoint, qΣ∗. For

everyM ∈ ObCX , the adjunction arrow,M
η
Σ
(M)

−−−→ qΣ∗q
∗
Σ
(M), belongs to Σ. In particular,

if M is a Σ-torsion free object, then the adjunction morphism ηΣ(M) is a monomorphism.

Let M
s
−→ N be a morphism from Σ. Then the upper horizontal arrow in the

commutative diagram

qΣ∗q
∗
Σ
(M)

q
Σ∗q

∗

Σ
(s)

−−−→ qΣ∗q
∗
Σ
(N)

ηΣ(M)
x

x ηΣ(N)

M
s

−−−→ N

is an isomorphism. If ηΣ(M) is a monomorphism, then ηΣ(N) ◦ s = qΣ∗q
∗
Σ
(s) ◦ ηΣ(M)

is a monomorphism. Therefore s is a monomorphism. This shows that the object M is
Σ-torsion free.

5.2.2. Corollary. Let Σ be a left saturated multiplicative system such that the

canonical morphism Σ−1X
q
Σ−→ X is continuous. Then Σ is closed.

Proof. For every M ∈ ObCX , the adjunction arrow, M
η
Σ
(M)

−−−→ qΣ∗q
∗
Σ
(M) belongs to

Σ. If M̃ = qΣ∗q
∗
Σ
(M), then the adjunction arrow ηΣ(M̃) is an isomorphism, in particular

it is a monomorphism.

5.2.3. Closed spectra. We denote by CSsM(X) the preorder of all closed saturated
multiplicative systems on X. The complete closed spectrum, Spec1C(X), is defined by

Spec1C(X) = CSsM(X)
⋂

Spec1L(X);
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that is elements of Spec1C(X) are closed saturated multiplicative systems, Σ, such that
Σ−1X is L-local.

We call Spec0C(X) = {Σ ∈ Spec0L(X) | Σ̂ ∈ Spec1C(X)} the closed spectrum of X.

5.3. Continuous localizations and flat spectra. Let Σ ⊆ HomCX . Recall that
an object M of CX is called left closed for Σ if CX(s,M) is a bijection for each morphism
s of Σ [GZ, I.4].

5.3.1. Lemma. (a) Let Σ ⊆ HomCX , and let M be an object of CX such that

CX(s,M) is a surjection for each morphism s of Σ. Then every morphism M
t
−→ N

which belongs to Σ is a retraction (i.e. u ◦ t = idM for some morphism u). In particular,
M is Σ-torsion free.

(b) Suppose for any diagram L̃
s
←− L

g
−→ M such that s ∈ Σ, there exists a commu-

tative diagram

L
f

−−−→ M

s
y

y t

L̃
f̃

−−−→ M̃

(1)

where t ∈ Σ (e.g. Σ is a left multiplicative system). Then CX(s,M) is a surjection for

each morphism s of Σ iff every morphism M
t
−→ N which belongs to Σ is a retraction.

Proof. (a) If M
t
−→ N is a morphism of Σ, then the map

CX(N,M) −→ CX(M,M), f 7−→ f ◦ t,

is surjective. In particular, there exists a morphism N
u
−→M such that u ◦ t = idM .

(b) Suppose that the object M is such that every morphism M −→ N which belongs

to Σ is a retraction. Then CX(s,M) is surjective for any morphism L
s
−→ L̃ of Σ.

In fact, let L
f
−→M be an arbitrary morphism. By hypothesis, there is a commutative

diagram (1), where t ∈ Σ. By condition, t is a retraction, i.e. there exists a morphism

M̃
u
−→ M such that u ◦ t = idM . Then (u ◦ f̃) ◦ s = u ◦ (t ◦ f) = f . This shows the

surjectivity of CX(s,M).

5.3.2. Proposition. Suppose that Σ ⊆ HomCX is a left multiplicative system. Then
the following conditions on an object M of CX are equivalent:

(a) M is left closed for Σ;
(b) CX(s,M) is surjective for any s ∈ Σ;
(c) any morphism M −→ N which belongs to Σ is a retraction.
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Proof. The implications (b) ⇔ (c) follow from 5.3.1(b). The implication (a) ⇒ (b)
holds by definition. The implication (b)⇒ (a) is proved in [GZ, 1.4.1.1].

5.3.3. Localizations and continuous localizations. Let X
f
−→ Y be a morphism

with an inverse image functor CY
f∗

−→ CX . An object N of CY is called f -free over an
object M of CX , if there exists a morphism f∗(N)

u
−→ M such that for any morphism

f∗(L)
v
−→ M there exists a unique morphism L

ṽ
−→ N satisfying v = u ◦ f∗(ṽ). In other

words, (N, f∗(N)
u
−→M) is a final object of the category f∗/M , or, what is the same, the

object N represents the functor CX(f∗(−),M) : CopY −→ Sets. We denote by CL(f) the
full subcategory of the category CY generated by f -free objects.

Let CD(f∗) denote the full subcategory of CX generated by allM ∈ ObCX such that the
functor CX(f∗(−),M) : CopY −→ Sets is representable. A choice for each M ∈ ObCD(f∗)

of an object, f∗(M), of the subcategory CL(f) representing the functor CX(f∗(−),M)
extends uniquely to a functor D(f∗) −→ CY taking values in CL(f). Let CR(f∗) denote

f∗
−1

(D(f∗)). The morphism f is continuous iff D(f∗) = X and, therefore, R(f∗) = Y .

5.3.3.1. Proposition. Suppose that Σ ⊆ HomCX is a left multiplicative system.

And let Σ−1X
q
Σ−→ X be the localization morphism. Then

(a) CL(q
Σ
) is the full subcategory of CX generated by all objects which are left closed

for Σ.
(b) The subcategory CR(q

Σ
) is generated by all M ∈ ObCX such that there exists a

morphism M
s
−→ N , where N is left closed for Σ and qΣ(s) is invertible.

(c) The composition of the inclusion CL(q
Σ
) −→ CX and the canonical localization

functor CX
q∗
Σ−→ Σ−1CX is a fully faithful functor injective on objects. This functor induces

an isomorphism D(qΣ)
∼−→ L(qΣ).

(d) The inclusion functor CL(q
Σ
)

q̃
Σ∗

−→ CR(q
Σ
) has a left adjoint, q̃∗

Σ
.

Proof. (a) Let Y
f
−→ X be a morphism, M an object of CY such that the functor

C(f
∗(−),M) is representable. Then any object, N , representing C(f

∗(−),M) is, obviously,
left closed for Σf = {s ∈ HomCX | f

∗(s) ∈ Iso(CY )}.
If f = qΣ , then the converse is true: if N ∈ ObCX is left closed for Σ, then it follows

from the universal property of the localization at Σ that the objectN represents the functor
CΣ−1X(q∗

Σ
(−), q∗

Σ
(N)).

(b) By definition, the subcategory CR(q
Σ
) is generated by all M ∈ ObCX such that

the functor CΣ−1X(q∗
Σ
(−), q∗

Σ
(M)) is representable by some object, N , of the category CX .

In particular, there exists a canonical morphism M
t
−→ N corresponding to the identical

arrow q∗
Σ
(M) −→ q∗

Σ
(M). It follows that q∗

Σ
(t) is an isomorphism.
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(c) The canonical localization functor CX
q∗
Σ−→ CΣ−1X is identical on objects, hence

the composition of q∗
Σ

with the inclusion functor CL(q
Σ
) −→ CX is injective on ob-

jects. For any M ∈ ObCL(q
Σ
) and any L ∈ ObCX , we have a functorial isomorphism

CΣ−1X(q∗
Σ
(L), q∗

Σ
(M)) ≃ CX(L,M). In particular, the composition of the embedding

CL(q
Σ
) −→ CX with q∗

Σ
is a fully faithful functor.

(d) By (b), for any M ∈ ObCR(q
Σ
), there exists a morphism M

t
−→ N , where N is

left closed for Σ. It follows from 5.3.2 that the object N here is defined uniquely up to
isomorphism. A choice of N for every M ∈ ObCR(q

Σ
) defines a functor, q̃∗

Σ
, from CR(q

Σ
)

to CL(q
Σ
). This functor is a left adjoint to the inclusion functor CL(q

Σ
) −→ CR(q

Σ
).

One of the corollaries of 5.3.3.1 is the following fact:

5.3.3.2. Proposition [GZ, 1.4.1]. Suppose that Σ ⊆ HomCX is a left multiplicative
system. Then the following conditions are equivalent:

(a) The canonical morphism Σ−1X
q
Σ−→ X is continuous.

(b) For every object M of the category CX , there exists an object M̃ left closed for Σ

and a morphism M
s
−→ M̃ such that qΣ(s) is invertible.

5.3.4. Continuous and flat multiplicative systems. We call Σ ⊆ HomCX

continuous if it is a left multiplicative system and the canonical morphism Σ−1X
q
Σ−→ X

is continuous. It follows from [GZ, 1.1.3] that if Σ is continuous, then the saturation of Σ
is a left multiplicative system, hence it is continuous. We denote by Lcℓ(X) the preorder
of all continuous left saturated multiplicative systems and by Lc(X) the preorder of all
continuous saturated multiplicative systems, i.e. Lc(X) = Lcℓ(X) ∩ SsM(X).

We will call continuous saturated multiplicative systems flat.

5.3.5. The flat spectra Spec0fL(X) and Spec1fL(X). The elements of the flat

complete L-spectrum Spec1fL(X) are flat multiplicative systems Σ such that the ’space’ of
fractions Σ−1X is L-local.

We call Spec1fL(X) the complete flat L-spectrum of X.

The flat L-spectrum, Spec0fL(X), of the ’space’ X is defined by setting

Spec0fL(X) = {Σ ∈ Spec0L(X) | Σ̂ ∈ Spec1fL(X)}.

It follows that

Spec0fL(X) ⊆ Spec0C(X) and Spec1fL(X) ⊆ Spec1C(X).

We leave to the reader the definition of the extended versions of these spectra.
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5.3.6. Another description of flat localizations and Spec1fL(X). Fix a ’space’
X. Consider the preorder fL(X) of all strictly full subcategories CY of CX such that the

inclusion functor CY
ι
Y ∗

−→ CX has an exact left adjoint CX
ι∗Y−→ CY . These functors are

regarded as resp. direct and inverse image functors of a strictly full embedding Y
ι
Y
→֒ X. The

map which assigns to every such subcategory the family of arrows Σι∗
Y

= ι∗
−1

Y (Iso(CY ))
is an isomorphism of the preorder (fL(X),⊇) onto the preorder (Lc(X),⊆) of continuous
saturated multiplicative systems.

Thus, the flat spectrum Spec1fL(X) can be identified with the preorder of all strictly

full embeddings Y
ι
Y
→֒ X such that Y is a local ’space’ and ι∗Y is an exact functor.

5.4. The spectrum Spec1Fl(X). Objects of Spec1Fl(X) are continuous saturated
multiplicative systems Σ in CX such that there exists the smallest continuous saturated
multiplicative system properly containing Σ.

Let fL⋆(X) denote the set fL(X)−{idX} of all proper strictly full embeddings. Thanks
to the isomorphism (Lc(X),⊆) ∼−→ (fL(X),⊇) (cf. 5.3.6), elements of Spec1Fl(X) can be

identified with strictly full embeddings Y
ι
Y
→֒ X such that ι∗Y is an exact functor and the

preorder (fL⋆(Y ),⊆) of proper strictly full embeddings into Y has the biggest element.

6. Actions of monoidal categories and their spectra.

We fix a monoidal category C̃T = (CT ,⊙, a; 1, φl, φr). Here CT × CT
⊙
−→ CT is

a monoidal structure (’tensor product’); a is an associativity constraint, i.e. a functor
isomorphism

⊙ ◦ (⊙× IdCT ) −→ ⊙ ◦ (IdCT ×⊙)

satisfying certain natural compatibility conditions; 1 denotes the unit object,

1⊙−
φl−→ IdCT

φr
←− −⊙ 1

are canonical isomorphisms.

6.1. Actions. Let X be a ’space’. Fix an action, CT ×CX
γ∗

−→ CX , of the monoidal
category C̃T = (CT ,⊙, 1) on the category CX . The functor γ∗ induces a functor

CT
Γ
−→ End(CX), a 7−→ Γa,

where End(CX) denote the category functors CX −→ CX , and Γa(M) = γ∗(a,M). The
functor γ∗ being an ’action’ means precisely that Γ is a monoidal functor, i.e. for any
a, b ∈ ObCT , there are natural morphisms

Γa ◦ Γb
φa,b
−−−→ Γa⊙b and Γ1

∼−→ IdCX
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related in a natural way between themselves and with associativity constraint on C̃T .

A pair (CX , γ
∗), where γ∗ is a C̃T -action, is called a C̃T -category. We call a pair

(X, γ∗) a C̃T -’space’. A morphism (more precisely, a 1-morphism) between two C̃T -’spaces’,

(X, γ∗) −→ (Y, γ̃∗), is given by a pair (F, φ), where F is a functor CY
F
−→ CX such that

the diagram

CT × CY
Id×F
−−−→ CT × CX

γ∗
y

y γ̃∗

CY
F
−−−→ CX

quasi-commutes, and φ is a functor isomorphism γ∗ ◦ (Id × F ) ∼−→ F ◦ γ∗ satisfying a
standard cocycle condition. The composition of morphisms is defined naturally.

6.1.1. Note. In the language of ’spaces’, the monoidal structure, CT × CT
⊙
−→ CT ,

can be regarded as an inverse image of a morphism (a coaction) T −→ T
∐
T , and the

action γ∗ as an inverse image functor of a morphism X
γ
−→ T

∐
X.

6.1.2. Actions of a monoid. Z-categories. Any monoid, G, might be regarded as
a discrete category with the monoidal structure given by multiplication. This defines an
isomorphism between the category of monoids and the category of discrete ’small’ monoidal
categories which allows to define actions of monoids on categories. Thus, a G-category is a
pair (CX , γ

∗), where γ∗ is a monoidal functor from G to the monoidal category End(CX)
of functors CX −→ CX . If G is a group, the functor γ takes values in the monoidal
subcategory Pic(X) of End(CX) formed by invertible functors and isomorphisms between
them. The group Z is of particular interest because triangulated categories, categories of
graded modules, and the category of quasi-coherent sheaves on (noncommutative) Proj are
Z-categories.

6.2. A graded category associated with an action. Suppose the category CT is
’small’. For any pair of objects, L, M, of the category CX and an object a of the category
CT , set C

a
X(L,M) = CX(L, γ∗(a,M)) = CX(L,Γa(M)). If N ∈ ObCX and b ∈ ObCT ,

then we define a map

CaX(L,M)× CbX(M,N) −−−→ Ca⊙bX (L,N) (1)

as the composition of the maps

CX(L,Γa(M))× CX(M,Γb(N)) −−−→ CX(L,Γa(M))× CX(Γa(M),Γa ◦ Γb(N))y
CX(L,Γa(M))× CX(Γa(M),Γa⊙b(N)),
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where the vertical arrow is induced by the functor morphism Γa ◦ Γb
φa,b
−−−→ Γa⊙b, and

the composition map

CX(L,Γa(M))× CX(Γa(M),Γa⊙b(N)) −−−→ CX(L,Γa⊙b(N)) = Ca⊙bX (L,N)

This defines an enriched category, C(X,γ∗), with the same objects as CX ; morphisms

between objects are C̃T -graded sets. To every morphism, (X, γ∗) −→ (Y, γ̃∗), of C̃T -
actions, there corresponds a morphism, C(X,γ∗) −→ C

(Y,̃γ∗)
, of enriched categories.

6.2.1. The case of ’spaces’ over a monoid. Let G be a monoid and (X, γ∗) a G-
’space’ such that CX is a k-linear category for for some commutative ring k. Then C(X,γ∗)

gives rise to an enriched category over the monoidal category of G-graded k-modules. In
particular, a Z-’space’ defines an enriched category of the monoidal category of Z-graded
k-modules.

6.3. Stable saturated multiplicative systems. Let SsM(X, γ∗) denote the
family of saturated multiplicative systems in CX which are invariant with respect to the
action of C̃T . It follows from the universal property of localizations that for every Σ ∈
SsM(X, γ∗)⋆, the ’space’ of fractions, Σ−1X, inherits a C̃T -action uniquely defined by the

condition that the canonical morphism Σ−1X
q
Σ−→ X is a morphism of actions.

6.3.1. Proposition. (a) If Σ is a C̃T -stable multiplicative system, then its satura-

tion, Σs is a C̃T -stable multiplicative system too.
(b) If Σ1 and Σ2 are C̃T -stable saturated multiplicative systems, then the smallest

saturated multiplicative system, Σ1 ∨ Σ2, spanned by Σ1 and Σ2 is C̃T -stable.
(c) Suppose CX has finite colimits. Then the intersection of any set of C̃T -stable

saturated left multiplicative systems is a C̃T -stable saturated left multiplicative system.

Proof. (a) The saturation, Σs, of a multiplicative system Σ consists of all morphisms s

of CX such that u◦s ∈ Σ ∋ s◦v for some morphisms u and v (see 1.3.3). If Σ is C̃T -stable,
then

Γa(u) ◦ Γa(s) = Γa(u ◦ s) ∈ Σ ∋ Γa(s ◦ v) = Γa(s) ◦ Γa(v)

for all a ∈ ObCT (cf. 6.1 for notations); hence Γa(s) ∈ Σ for all a ∈ ObCT .
(b) We need several steps.
(i) Let Σ1 and Σ2 be two left multiplicative systems, and let Σ1 ⊔ Σ2 denote the

smallest family of arrows closed under composition and containing Σ1 and Σ2. We claim
that Σ1 ⊔ Σ2 is a left multiplicative system.

The family Σ1 ⊔ Σ2 consists of all possible compositions of arrows of Σ1

⋃
Σ2. Since

Σ1 and Σ2 are closed under composition and contain all identical morphisms, a generic
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element, s, of Σ1 ⊔ Σ2 can be represented as a composition

M0
s1−→ L1

t1−→M1
s2−→ . . .

sn−→ Ln
tn−→Mn, (2)

where si ∈ Σ1 and ti ∈ Σ2, i = 1, ..., n.

Let s be an element of Σ1⊔Σ2 given by the composition (2), and letM0
f
−→M ′

0 be an
arbitrary morphism. By the property (SL2) (see 1.3), there exists a commutative square

M0

s1
−−−→ L1

f
y

y g1

M ′
0

s′1
−−−→ L′

1

where s′1 ∈ Σ1. Applying the property (SL2) to the pair of morphisms L′
1

g1
←− L1

t1−→M1,
we complete it to a commutative diagram

L1

t1
−−−→ M1

g1

y
y f1

L′
1

t′1
−−−→ M ′

1

where t′1 ∈ Σ2. Continuing this process, we obtain a commutative diagram

M0

s1
−−−→ L1

t1
−−−→ M1

s2
−−−→ . . .

sn
−−−→ Ln

tn
−−−→ Mn

f
y

y g1

y f1 . . . gn

y
y fn

M ′
0

s′1
−−−→ L′

1

t′1
−−−→ M ′

1

s′2
−−−→ . . .

s′n
−−−→ L′

n

t′n
−−−→ M ′

n

where s′i ∈ Σ1 and t′i ∈ Σ2, i = 1, ..., n. Thus, Σ1 ⊔Σ2 has the property (SL2). It remains
to verify the property (SL3) (see 1.3).

Let s be an element of Σ1⊔Σ2 presented as the composition (2). And let Mn

f

−→
−→
g

N

be a pair of arrows such that f ◦ s = g ◦ s. This equality can be presented as

(f ◦ tn ◦ sn ◦ ... ◦ t1) ◦ s1 = (g ◦ tn ◦ sn ◦ ... ◦ t1) ◦ s1.

By the property (SL3), there exists an element s′1 ∈ Σ1 such that

s′1 ◦ (f ◦ tn ◦ sn ◦ ... ◦ t1) = s′1 ◦ (g ◦ tn ◦ sn ◦ ... ◦ t1). (3)
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Applying (SL3) to the equality (3) presented in the form

(s′1 ◦ f ◦ tn ◦ sn ◦ ... ◦ s2) ◦ t1 = (s′1 ◦ g ◦ tn ◦ sn ◦ ... ◦ s2) ◦ t1,

we find an element t′1 ∈ Σ2 such that

t′1 ◦ (s
′
1 ◦ f ◦ tn ◦ sn ◦ ... ◦ s2) = t′1 ◦ (s

′
1 ◦ g ◦ tn ◦ sn ◦ ... ◦ s2).

By an induction argument, we obtain the equality

(t′n ◦ s
′
n ◦ ... ◦ t

′
1 ◦ s

′
1) ◦ f = (t′n ◦ s

′
n ◦ ... ◦ t

′
1 ◦ s

′
1) ◦ g,

where s′i ∈ Σ1 and t′i ∈ Σ2, i = 1, ..., n.

(ii) It follows from the description of Σ1 ⊔ Σ2 in (i) that if Σ1 and Σ2 are C̃T -stable,

then Σ1 ⊔ Σ2 is C̃T -stable too.
(iii) The smallest saturated multiplicative system, Σ1 ∨ Σ2, spanned by Σ1 and Σ2

is, evidently, the saturation of Σ1 ⊔ Σ2. By (ii), the left multiplicative system Σ1 ⊔ Σ2 is

C̃T -stable. Therefore, by (a), its saturation, Σ1 ∨ Σ2, is C̃T -stable.
(c) The assertion follows from 1.4.3.

6.4. Spectra. Clearly, the trivial multiplicative system, Iso(CX), is C̃T -invariant, i.e.
Iso(CX) ∈ SsM(X, γ∗). Let SsM(X, γ∗)⋆ denote the family SsM(X, γ∗) − {Iso(CX)}

of non-trivial C̃T -invariant saturated multiplicative systems.
All notions and facts considered so far in this work are extended to ’spaces’ with

an action of a monoidal category C̃T = (CT ,⊙, 1) by simply replacing SsM(X)⋆ by

SsM(X, γ∗)⋆ and inserting ”C̃T -invariant” whenever it is required.

Thus, L-local C̃T -’spaces’ are those C̃T -’spaces’ (X, γ
∗) for which the intersection of

all Σ ∈ SsM(X, γ∗)⋆ belongs to SsM(X, γ∗)⋆.

The complete L-spectrum, Spec1L(X, γ
∗), of a C̃T -’space’ (X, γ

∗) consists of all Σ ∈

SsM(X, γ∗)⋆ such that the C̃T -’space’ of fractions (Σ
−1X, γ̃∗) is L-local. In other words,

there exists the smallest C̃T -invariant saturated multiplicative system, Σ⋆, properly con-
taining Σ.

The L-spectrum, Spec0L(X, γ
∗), of a C̃T -’space’ (X, γ

∗) is formed by Σ ∈ SsM(X, γ∗)

such that there exists the biggest C̃T -invariant saturated multiplicative system, Σ̂, which
does not contain Σ.

6.4.1. Proposition. The map Σ 7−→ Σ̂ is an injective morphism from Spec0L(X, γ
∗)

to Spec1L(X, γ
∗).
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Proof. Let Σ ∈ Spec0L(X, γ
∗). By 6.3.1(b), Σ ∨ Σ̂ is the smallest C̃T -invariant

saturated multiplicative system which contains Σ and Σ̂. If Σ1 is a C̃T -invariant saturated
multiplicative system which properly contains Σ̂, then it contains Σ too, hence it contains
Σ∨ Σ̂. Therefore, Σ∨ Σ̂ is the smallest C̃T -invariant saturated multiplicative system which
properly contains Σ̂; in particular, Σ̂ ∈ Spec1L(X, γ

∗).

Injectivity of the map Σ 7−→ Σ̂ follows from that Σ1 ⊆ Σ2 iff Σ̂1 ⊆ Σ̂2.

The definitions of the remaining spectra are even more straightforward.

6.4.2. Closed spectra and flat spectra. Elements of the closed complete L-
spectrum, Spec1C(X, γ

∗), are those Σ ∈ Spec1L(X, γ
∗) which are closed in the sense of 5.2.

The closed L-spectrum, Spec0C(X, γ
∗), consists of all Σ ∈ Spec0L(X, γ

∗) such that Σ̂ is
closed.

The flat complete L-spectrum, Spec1fL(X, γ
∗), is formed by Σ ∈ Spec1L(X, γ

∗) such
that the localization Σ−1X −→ X is continuous (i.e. it has a direct image functor).

The flat L-spectrum, Spec0fL(X, γ
∗), is formed by Σ ∈ Spec0L(X, γ

∗) such that Σ̂

belongs to Spec1fL(X, γ
∗).

6.4.2.1. Note. For any Σ ∈ SsM(X, γ∗), the full subcategory of the category

CX generated by objects which are left closed for Σ (cf. 5.3) is C̃T -stable. But, the
full subcategory of CX whose objects are Σ-torsion free objects of CX is not, in general,
C̃T -stable.

6.5. Locally trivial actions and spectra.

6.5.1. Proposition. Let (X, γ∗) be a C̃T -’space’ such that there exists a family
{Σi | i ∈ J} of saturated stable multiplicative systems with the following properties:

(a)
⋂

i∈J

Σi = Iso(CX);

(b) every Σ ∈ SsM(X) containing some of Σi is C̃T -stable.
Then the canonical map

Spec0L(X) −→ Spec1L(X), Σ 7→ Σ̂,

takes values in Spec1L(X, γ
∗).

Proof. Let Ui denote the ’space’ Σ−1
i X and ui the canonical morphism Ui −→ X,

i ∈ J . Since each Σi is stable, the action γ∗ induces a C̃T -action, γ
∗
i on Ui. The condition

(a) means that the family of localizations {Ui
qi
−→ X | i ∈ J} is conservative. By 2.2.5,

Spec0L(X) =
⋃
i∈J Spec

0
L(Ui;X), where Spec0L(Ui;X) = {Σ ∈ Spec0L(X) | Σui ⊆ Σ̂}.

The condition (b) means that for every i ∈ J , all Σ ∈ SsM(Ui) are C̃T -stable. In



178 Chapter 5

particular, Spec0L(Ui, γ
∗
i ) = Spec0L(Ui) for every i ∈ J . This implies that for every

Σ ∈ Spec0L(X), the multiplicative system Σ̂ is C̃T -stable. Thus, the map Σ 7−→ Σ̂ is an
embedding Spec0L(X) −→ Spec1L(X, γ

∗).



Chapter VI

Geometry of Right Exact ’Spaces’.

In this chapter, we extend the spectrum Spec(X) to ’spaces’ represented by svelte
right exact categories with weak equivalences. We call them right exact ’spaces’ with weak
equivalences, or, simply, right exact ’spaces’. By definition, a right exact category with
weak equivalences is a triple (CX ,EX ,WX), where CX is a category, EX is a class of strict
epimorphisms which forms a pretopology on CX and WX is a subpretopology of EX . In
other words, the class EX and its subclass WX contain all isomorphisms of CX and are
closed under composition and pull-backs. Every exact category (in particular, any abelian
category) is identified with a right exact category with trivial (that is consisting only of
isomorphisms) class of weak equivalences, whose deflations are admissible epimorphisms.
Right exact categories with the trivial class of weak equivalences came into life as a (half of
the) base for a version of homological algebra developed in [R13] (and outlined in [R11]).

One of the motivations behind choosing right exact ’spaces’ as a setting for spectral
theory comes from the fact that they form a natural (although not the most general) do-
main for K-theory. Grothendieck introduced K-theory for studying cycles on commutative
schemes. Having K-groups of right exact ’spaces’ already defined [R13], [R11], the next
question is what are cycles in this case. Other motivations are of a more pragmatical
nature. Abelian categories are too restrictive even for commutative algebraic geometry.
Already extending the spectral picture to ’spaces’ represented by exact categories (which
are a special case of right exact categories) considerably increases the area of potential
applications, because, for instance, the category of Banach vector spaces has a natural
exact structure. This exact structure coincides with the finest right exact structure, which
exists on any category.

The spectral theory of (’spaces’ represented by) abelian categories (sketched in Chap-
ter II) is based on the notions of topologizing, thick and Serre subcategories and some
of their basic properties. A starting observation behind the content of this chapter was
that a subcategory of an abelian category can be replaced by the class of epimorphisms
whose kernels are objects of this subcategory. So that the idea was to describe classes of
epimorphisms corresponding to topologizing, thick and Serre subcategories, and then use
this description for right exact categories. The realization of this program turned out to
be way more subtle than it looked in the beginning.

We start, in Section 1, with preliminaries (borrowed from [R11]) on kernels of arrows
in categories with initial objects and then continue with right exact categories with weak
equivalences. An important new notion which appears here is that of stable class of de-
flations. In Section 2, we introduce topologizing, thick and Serre systems of deflations
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and establish their main properties, which in abelian case turn into the known properties
of respectively topologizing, thick and Serre subcategories (discussed in Chapter II). In
Section 3, we define the spectra of a right exact ’space’ (X, ĒX) with weak equivalences
related with topologizing, thick and Serre systems of deflations. In particular, we define
the spectrum Spect(X, ĒX) which, in the case of abelian category CX with the standard
exact structure, is naturally isomorphic to the spectrum Spec(X).

In Section 4, we sketch an alternative version of spectral theory based on the notions
of semitopologizing and strongly closed (– a replacement of Serre) systems. This theory re-
quires less conditions on the right exact categories and, therefore, is much more universal.
In general, the spectra of ’spaces’ differ from those defined in Section 3. Both spectral the-
ories coincide in the abelian case. In Section 5, we introduce strongly ’exact’ functor and,
in particular, strongly ’exact’ localizations, and establish their basic properties. In Section
6, we study functorial properties of the spectra with respect to strongly ’exact’ localiza-
tions. We establish the so called locality theorems for the spectrum Spect(X, ĒX) and its
semitopological analog Specst(X, ĒX), which is one of the most important properties of
these spectra. In Section 7, the main notions and facts of the work are specialized for right
exact categories with initial objects. In particular, we obtain a spectral theory of ’spaces’
represented by exact categories and, in the abelian case, recover main constructions and
facts of Chapter II. We conclude with a couple of examples of illustrative nature.

’Complementary facts’ are dedicated to properties of kernels of morphisms.

1. Preliminaries on right exact categories.

1.1. Kernels of arrows.

Let CX be a category with an initial object, x. For a morphism M
f
−→ N we define

the kernel of f as the upper horizontal arrow in a cartesian square

Ker(f)
k(f)
−−−→ M

f ′
y cart

y f

x −−−→ N

when the latter exists.
Cokernels of morphisms are defined dually, via a cocartesian square

N
c(f)
−−−→ Cok(f)

f
x cocart

x f ′

M −−−→ y

where y is a final object of CX .
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If CX is a pointed category (i.e. its initial objects are final), then the notion of the

kernel is equivalent to the usual one: the diagram Ker(f)
k(f)
−−−→M

f

−−−→
−−−→

0

N is exact.

Dually, the cokernel of f makes the diagram M

f

−−−→
−−−→

0

N
c(f)
−−−→ Cok(f) exact.

1.1.1. Lemma. Let CX be a category with an initial object x.

(a) Let a morphism M
f
−→ N of CX have a kernel. The canonical morphism

Ker(f)
k(f)
−−−→M is a monomorphism, if the unique arrow x

iN−→ N is a monomorphism.

(b) If M
f
−→ N is a monomorphism, then x

iM−→M is the kernel of f .

Proof. The pull-backs of monomorphisms are monomorphisms.

1.2. Corollary. Let CX be a category with an initial object x. The following condi-
tions are equivalent:

(a) If M
f
−→ N has a kernel, then the canonical arrow Ker(f)

k(f)
−−−→ M is a

monomorphism.

(b) The unique arrow x
iM−→M is a monomorphism for any M ∈ ObCX .

Proof. (a) ⇒ (b), because, by 1.1(b), the unique morphism x
iM−→ M is the kernel of

the identical morphism M −→M . The implication (b)⇒ (a) follows from 1.1.1(a).

1.3. Note. The converse assertion is not true in general: a morphism might have
a trivial kernel without being a monomorphism. It is easy to produce an example in the
category of pointed sets.

1.4. Examples.

1.4.1. Kernels of morphisms of unital k-algebras. Let CX be the category Algk
of associative unital k-algebras. The category CX has an initial object – the k-algebra k.

For any k-algebra morphism A
ϕ
−→ B, we have a commutative square

A
ϕ

−−−→ B

k(ϕ)
x

x

k ⊕K(ϕ)
ǫ(ϕ)
−−−→ k

where K(ϕ) denote the kernel of the morphism ϕ in the category of non-unital k-algebras
and the morphism k(ϕ) is determined by the inclusion K(ϕ) −→ A and the k-algebra
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structure k −→ A. This square is cartesian. In fact, if

A
ϕ

−−−→ B

γ
x

x

C
ψ

−−−→ k

is a commutative square of k-algebra morphisms, then C is an augmented algebra: C =
k⊕K(ψ). Since the restriction of ϕ ◦ γ to K(ψ) is zero, it factors uniquely through K(ϕ).

Therefore, there is a unique k-algebra morphism C = k ⊕K(ψ)
β
−→ Ker(ϕ) = k ⊕K(ϕ)

such that γ = k(ϕ) ◦ β and ψ = ǫ(ϕ) ◦ β.

This shows that each (unital) k-algebra morphism A
ϕ
−→ B has a canonical kernel

Ker(ϕ) equal to the augmented k-algebra corresponding to the ideal K(ϕ).

It follows from the description of the kernel Ker(ϕ)
k(ϕ)
−−−→ A that it is a monomor-

phism iff the k-algebra structure k −→ A is a monomorphism.

Notice that cokernels of morphisms are not defined in Algk, because this category
does not have final objects.

1.4.2. Kernels and cokernels of maps of sets. Since the only initial object of the
category Sets is the empty set ∅ and there are no morphisms from a non-empty set to ∅, the

kernel of any map X −→ Y is ∅ −→ X. The cokernel of a map X
f
−→ Y is the projection

Y
c(f)
−−−→ Y/f(X), where Y/f(X) is the set obtained from Y by the contraction of f(X)

into a point. So that c(f) is an isomorphism iff either X = ∅, or f(X) is a one-point set.

1.4.3. Presheaves of sets. Let CX be a svelte category and C∧
X the category of

non-trivial presheaves of sets on CX (that is we exclude the trivial presheaf which assigns
to every object of CX the empty set). The category C∧

X has a final object which is the
constant presheaf with values in a one-element set. If CX has a final object, y, then
ŷ = CX(−, y) is a final object of the category C∧

X . Since C∧
X has small colimits, it has

cokernels of arbitrary morphisms which are computed object-wise, that is using 1.4.2.
If the category CX has an initial object, x, then the presheaf x̂ = CX(−, x) is an

initial object of the category C∧
X . In this case, the category C∧

X has kernels of all its

morphisms (because C∧
X has limits) and the Yoneda functor CX

h
−→ C∧

X preserves kernels.
Notice that the initial object of C∧

X is not isomorphic to its final object unless the
category CX is pointed, i.e. initial objects of CX are its final objects.

1.5. Some properties of kernels. See Appendix 1.
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1.6. A construction. For a class of arrows S of a category CX , we denote by S⊼

the class of all arrows s of CX such that some pull-back of s belongs to S.

1.6.1. Proposition. Fix a category CX .

(a)
⋃

i∈J

T ⊼

i =
( ⋃

i∈J

Ti
)⊼

for any set {Ti | i ∈ J } of classes of arrows of CX .

(b) S ⊆ S⊼ and S⊼ = (S⊼)⊼ for any class of arrows S of the category CX .

(c) Suppose that the category CX quasi-filtered in the sense that any diagram of the
form L −→M ←− N in the category CX can be completed to a commutative square

L̃ −−−→ Ly
y

N −−−→ M

(for instance, CX is a category with fibred products, or CX has initial objects).

(i) Let S be a class of arrows of CX stable under arbitrary pull-backs. Then the class
S⊼ is stable under pull-backs.

(ii) Suppose that S is stable under pull-backs and satisfies the following condition:

(#) If in the commutative diagram

L̃
s̃

−−−→ K

j′
y cart

y j

L
s

−−−→ M
t

−−−→ K

with cartesian square t ◦ j = idN and morphisms t and s̃ belong to S, then t ◦ s ∈ S.

Then the class S⊼ is multiplicative (that is closed under composition).

Proof. (a)&(b). The equality
⋃

i∈J

T ⊼

i =
( ⋃

i∈J

Ti
)⊼
, the inclusion S ⊆ S⊼ and the

equality S⊼ = (S⊼)⊼ are obvious.

(i) Let L
s
−→M be a morphism of S⊼ and

L̃
s̄

−−−→ M̃

f′
y cart

y f

L
s

−−−→ M



184 Chapter 6

a cartesian square. Since s ∈ S⊼, there exists a cartesian square

L
t

−−−→ M

φ′
y cart

y φ

L
s

−−−→ M

with t ∈ S. By condition, there exists a commutative square

M̃
φ̄

−−−→ M̃

f′′
y

y f

M
φ

−−−→ M

Set ϕ = f ◦ φ̃ = φ ◦ f′ and consider the cartesian square

L̃
γ

−−−→ M̃

ϕ′
y cart

y ϕ

L
s

−−−→ M

(1)

The equalities f ◦ φ̃ = ϕ = φ ◦ f′ imply two decompositions of the square (1),

L̃
γ

−−−→ M̃ L̃
γ

−−−→ M̃

φ̄′
y cart

y φ̄ f̃
y cart

y f′′

L̃
s̄

−−−→ M̃ and L
t

−−−→ M

f′
y cart

y f φ̃
y cart

y φ

L
s

−−−→ M L
s

−−−→ M

(2)

Since the class S is stable under pull-backs and L
t
−→M belongs to S, it follows from the

upper cartesian square of the right diagram (2) that the morphism L̃
γ
−→ M̃ belongs to S.

The upper cartesian square of the left diagram (2) shows that the pull-back L̃
s̄
−→ M̃ of

the morphism L
s
−→M belongs to the class S⊼.

(ii) Let L
s
−→M and M

t
−→ N be morphisms of S⊼; i.e. there exist cartesian squares

L̃
s̄

−−−→ M̃ M
t̄

−−−→ N

f′
y cart

y f and g′
y cart

y g

L
s

−−−→ M M
t

−−−→ N
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whose upper horizontal arrows belong to S. By hypothesis, there exists a commutative
square

M
f̄

−−−→ M

g′′
y

y g′

M̃
f

−−−→ M

which gives rise to a pair of diagrams

M̃
s̃

−−−→ M L
γ

−−−→ M

φ̄′
y cart

y g′′ ϕ′
y cart

y ϕ

L̃
s̄

−−−→ M̃ and M
t̄

−−−→ N

f′
y cart

y f g′
y cart

y g

L
s

−−−→ M M
t

−−−→ N

(3)

with cartesian squares, where ϕ = t̄ ◦ f̄. The latter equality implies the existence of a

unique arrow M
j
−→ M̃ such that γ ◦ j = idM.

Notice that in the diagram

M̃
ũ

−−−→ M

j̄
y cart

y j

L̃
u

−−−→ L
γ

−−−→ M

φ̄
y cart

y φ cart
y ψ = g ◦ ϕ

L
s

−−−→ M
t

−−−→ N

(4)

built of cartesian squares, we can take M̃ = M̃ and ũ = s̃.

In fact, it follows from the equality φ ◦ j = f ◦ g′′, universal property of cartesian
squares (and the fact that composition of cartesian squares is a cartesian square) that the
cartesian square

M̃
ũ

−−−→ M

φ̄ ◦ j̄
y cart

y φ ◦ j

L
s

−−−→ M
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is isomorphic to the cartesian square

M̃
s̃

−−−→ M

f′ ◦ φ̄′
y cart

y f ◦ g′′

L
s

−−−→ M

In particular,M
ũ
−→M is an arrow of S. Applying the condition (#) to the subdiagram

M̃
ũ

−−−→ M

j̄
y cart

y j

L̃
u

−−−→ L
γ

−−−→ M

of the diagram (3), we obtain that the composition L̃
γ◦u
−−−→ M belongs to S. Since the

square

L̃
γ◦u
−−−→ M

φ̄
y cart

y ψ

L
t◦s
−−−→ N

(derived from the lower two squares of (3)) is cartesian, this means that t ◦ s ∈ S⊼.

1.6.2. Remarks. (a) It follows that a class of arrows S satisfying the condition (#)
of 1.6.1 is multiplicative, that is closed under composition.

(b) It follows from the argument of 1.6.1(ii) that it suffices to require in the condition
(#) that the object K runs through a cofinal class of objects K. The word cofinal means
that for any M ∈ ObCX , there is an arrow K −→M with K ∈ K.

Thus, if CX is a category with an initial object, x, then the condition (#) of 1.6.1 can
be replaced by the following condition:

(#’) If a morphism L
s
−→M is such that canonical arrow Ker(s) −→ x belongs to S

andM
t
−→ x is from S, then the compositionM

t◦s
−→ x is a morphism of S.

Notice that if S is a class of arrows of CX stable under pull-backs along morphisms
from initial objects (in particular, morphisms of S have kernels), then the class S⊼ consists

of all arrows M
s
−→ L such that the canonical morphism Ker(s) −→ x (– the pull-back

of s along the unique arrow x −→ L) belongs to S.
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(c) Let K be a cofinal class of objects of the category CX . Suppose that a functor

CX
F
−→ CY is such that pull-backs of retracts K −→M from

ΣF
def
= {s ∈ HomCX | F (s) ∈ Iso(CY )}

with K ∈ K along arrows from Σ⊼

F belong to ΣF . Then the system ΣF satisfies the
condition (#).

In fact, if the condition above holds and

L̃
s̃

−−−→ K

j′
y cart

y j

L
s

−−−→ M
t

−−−→ K

is a commutative diagram with cartesian square such that t ◦ j = idN and morphisms t
and s̃ belong to ΣF , then j is a retract from ΣF and, therefore, both vertical arrows and
upper horizontal arrow of the diagram

F (L̃)
F (̃s)
−−−→ F (K)

F (j′)
y

y F (j)

L
F (s)
−−−→ F (M)

are invertible. Therefore F (s) is invertible, i.e. s ∈ ΣF . In particular, t ◦ s ∈ ΣF .

(c’) Suppose that the category CX has an initial object x and a functor CX
F
−→ CY

preserves pull-backs along the morphisms from x (for instance, CY has initial objects too
and F preserves kernels of arrows). Then the system ΣF satisfies the condition (#’) above.

If the categories CX , CY and the functor F are additive and all morphisms of CX
have kernels, then

[F preserves pull-backs of retracts]⇔ [F preserves kernels]⇔ [F is left exact].

1.6.3. Morphisms with a trivial kernel. Let Iso(CX) denote the class of all iso-
morphisms of a category CX . We call elements of Iso(CX)⊼ morphisms with trivial kernel.
It follows from the observation 1.6.2(b) that if CX is a category with initial objects, then
Iso(CX)⊼ = {s ∈ HomCX | Ker(s) is an initial object}. If the category CX is additive,
then the class Iso(CX)⊼ coincides with the class of all monomorphisms of the category
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CX . There are many non-additive categories having this property. One of them is the
category Algk of unital associative k-algebras (see 1.4.1).

1.7. Proposition. Suppose that CX is a quasi-filtered category, i.e. any diagram of
the form L −→ M ←− N in the category CX can be completed to a commutative square
(say, CX has initial objects). Then

(
⋂

i∈J

Si)
⊼ =

⋂

i∈J

S⊼i

for any finite set {Si | i ∈ J} of classes of arrows of CX which are stable under pull-backs.

Proof. Evidently, (
⋂

i∈J

Si)
⊼ ⊆

⋂

i∈J

S⊼i for any set {Si | i ∈ J} of classes of arrows of

the category CX . The claim is that the inverse inclusion holds when J is finite and each
Si is stable under pull-backs.

In fact, let J = {1, 2, . . . , n}, and let s ∈
⋂

i∈J

S⊼i . Then a pull-back, s1, of s belongs

to S1. Since, by 1.6.1, each of the classes S⊼i is closed under pull-backs. So that s1 is an

element of S1 ∩
( ⋂

2≤i≤n

S⊼i
)
. By a standard induction argument, (

⋂

2≤i≤n

Si)
⊼ =

⋂

i∈J

S⊼i .

Therefore, there is a pull-back, s̃1 of s1 which belongs to
⋂

2≤i≤n

Si. By hypothesis, S1

is stable under pull-backs, in particular, s̃1 ∈
⋂

1≤i≤n

Si. Since s̃1 is a pull-back of s, this

proves the desired inverse inclusion (
⋂

i∈J

Si)
⊼ ⊇

⋂

i∈J

S⊼i .

1.8. The dual construction. For a class S of arrows of a category CX , we denote
by S⊻ the class of all arrows s of CX such that some push-forward of s belongs to S. The
dual versions of the facts above are left to the reader.

We shall call the arrows of Iso(CX)⊻ morphisms with trivial cokernel. It the category
CX is additive, Iso(CX)⊻ coincides with the class of all epimorphisms of CX (see 1.6.3).
In this case, the intersection Iso(CX)⊼ ∩ Iso(CX)⊻ consists of all bimorphisms of CX .

1.9. Right exact ’spaces’ with weak equivalences.

Right exact categories and ’spaces’ (they represent) were introduced in [R13]. Here
we need a slightly more flexible structure – right exact categories with weak equivalences.

1.9.1. Right exact categories and ’exact’ functors. A right exact category is
a pair (CX ,EX), where CX is a category and EX is a Grothendieck pretopology on CX
whose covers are strict epimorphisms called (after P. Gabriel) deflations.
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1.9.2. Right exact categories and ’spaces’ with weak equivalences. We call
this way triples (CX ,EX ,WX), where (CX ,EX) is a right exact category and (CX ,WX)
is an exact subcategory of (CX ,EX) (i.e. WX is a subpretopology of EX). We call arrows
ofWX weak equivalences. For convenience, we denote the pair (EX ,WX) by ĒX and write
(CX , ĒX) instead of (CX ,EX ,WX). An ’exact’ functor from (CX , ĒX) to (CY , ĒY ) is an

’exact’ functor (CX ,EX)
F
−−−→ (CY ,EY ) such that F (WX) ⊆ WY .

1.9.3. Examples. Fix a right exact category (CX ,EX).
(a) The smallest class of weak equivalences is WX = Iso(CX) – the class of all iso-

morphisms of the category CX .
(b) An example essential for this work is

WX = E⊛
X

def
= Iso(CX)⊼ ∩ EX .

In other words, the class WX consists of deflations with trivial kernels (see 1.6.3). If
the category CX is additive, then, as it is observed in 1.6.3, the class Iso(CX)⊼ consists
of all monomorphisms of CX . Since deflations are strict epimorphisms, it follows that
E⊛
X = Iso(CX); i.e. weak equivalences are isomorphisms in this case. There are many

natural examples of non-additive categories having this property.
(c) One of them is the category Algk of unital associative k-algebras with strict epi-

morphisms as deflations. In fact, a k-algebra morphism has a trivial kernel iff its kernel as
a k-module morphism is trivial (see 1.4.1). So that algebra morphisms with trivial kernels
are monomorphisms.

1.10. Stable classes of deflations. Fix a right exact category (CX ,EX). We call a
class of deflations S of (CX ,EX) stable if it is closed under pull-backs and S = EX ∩ S

⊼.

1.10.1. Proposition. Let (CX ,EX) be a right exact category such that the category
CX is quasi-filtered, i.e. any pair of arrows L −→ M ←− N can be completed to a
commutative square (for instance, CX has initial objects, or it has fiber products). Then,

(a) For any class S of arrows of the category CX which is closed under pull-backs, the
intersection EX ∩ S

⊼ is a stable class.
(b) The union and the intersection of any set of stable classes are stable classes.

Proof. (a) It follows from 1.7 and the equality S⊼ = (S⊼)⊼ (see 1.6.1) that

EX ∩ (EX ∩ S
⊼)⊼ = EX ∩ (E⊼

X ∩ (S⊼)⊼) = EX ∩ S
⊼.

Since the category CX is quasi-filtered, by 1.6.1, the class S⊼ inherits from S the
stability under pull-backs. Therefore, the intersection EX ∩ S

⊼ is stable under pull-backs
too.
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(b1) By 1.6.1(a),
( ⋃

i∈J

Si
)⊼

=
⋃

i∈J

S⊼i for any {Si | i ∈ J} of classes of arrows of the

category CX . Therefore, if all classes Si are stable, then

⋃

i∈J

Si =
⋃

i∈J

(EX ∩ S
⊼

i ) = EX ∩
( ⋃

i∈J

Si
)⊼
.

(b2) For any set {Si | i ∈ J} of classes of arrows of the category CX , there is an obvious

inclusion (
⋂

i∈J

Si)
⊼ ⊆

⋂

i∈J

S⊼i . If {Si | i ∈ J} is a family of stable classes of deflations, then

the inclusion above implies that

⋂

i∈J

Si ⊆ EX ∩
( ⋂

i∈J

Si
)⊼
⊆ EX ∩

( ⋂

i∈J

S⊼i
)
=

⋂

i∈J

(EX ∩ S
⊼

i ) =
⋂

i∈J

Si.

In particular,
⋂

i∈J

Si = EX ∩
( ⋂

i∈J

Si
)⊼
, which means, by definition, that the intersection

⋂

i∈J

Si is a stable class.

1.10.2. Proposition. Let (CX , ĒX) = (CX ,EX ,WX) be a right exact category with
a class of weak equivalences containing all deflations with trivial kernels and a left divisible
class of deflations: s ◦ t ∈ EX ∋ t implies that s ∈ EX . Then every class S of deflations
of (CX , ĒX) which is closed under pull-backs and push-forwards (we assume that arbitrary
push-forwards of arrows of S exist) and coincides with WX ◦ S is stable.

Proof. Let L
u
−→M be an arrow of S⊼ ∩ EX ; that is there exists a cartesian square

L
s

−−−→ M

f′
y cart

y f

L
u

−−−→ M

(5)

whose upper horizontal arrow belongs to S. Taking a push-forward of s along the morphism
f′, we obtain a decomposition of this diagram into a commutative diagram

L
s

−−−→ M

f′
y (co)cart

y f̃1

L
u1

−−−→ M̃
u2

−−−→ M

(6)
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with a cocartesian square and the morphism u2 uniquely determined by the equalities
u2 ◦u1 = u, u2 ◦ f1 = f. Notice that the square in the diagram (6) is also cartesian, because

the square (5) is cartesian. By hypothesis, the arrow L
u1−→ M̃ belongs to S and the arrow

u2 is a deflation. Taking a pull-back of the deflation u2 along the morphism M
f
−→M, we

obtain a further decomposition of the diagram (5) into the diagram

L
s1
−−−→ M̃

s2
−−−→ M

f′
y (co)cart

y f̃1 cart
y f

L
u1

−−−→ M̃
u2

−−−→ M

(7)

whose both squares are cartesian and s = s2 ◦ s1. A morphism K
v
−→ M̃ gives rise to the

diagram

K(s)
λs

−−−→ K

id
y≀ cart

y k′

K(s)
t

−−−→ K(s2)
λs2

−−−→ K

k1

y cart
y k cart

y s2 ◦ v

L
s1
−−−→ M̃

s2
−−−→ M

f′
y (co)cart

y f̃1 cart
y f

L
u1

−−−→ M̃
u2

−−−→ M

(8)

built of cartesian squares. Here the arrow K
k′

−→ K(s2) is uniquely determined by the
equalities λs2 ◦ k

′ = id
K
, k ◦ k′ = v. The upper cartesian square (with the identical left

vertical arrow) is due to the fact that the square in the diagram (6) is cartesian. All
horizontal arrows of the diagram (8) are deflations, because u1 and u2 are deflations and

each of the remaining arrows is a pull-back of either u1, or u2. In particular, K(s)
t
−→ K(s2)

is a deflation. The fact that t = k′ ◦ λs is a strict epimorphism implies that k′ is a strict
epimorphism. On the other hand, k′ is a monomorphism, due to the equality λs2 ◦k

′ = id
K
;

hence k′ is an isomorphism. Therefore, λs2 is an isomorphism. The latter means that the

arrow M̃
u2−→ M belongs to E⊛

X = Iso(CX)⊼ ∩ EX , i.e. it is a deflation with a trivial
kernel. By hypothesis all deflations with a trivial kernel are weak equivalences. Thus, our
arbitrary element u of S⊼ ∩ EX is the composition u2 ◦ u1, where u1 ∈ S and u2 ∈ WX .
Since WX ◦ S = S, the arrow u belongs to S.

1.10.3. Right exact categories with stable classes of weak equivalences. We
are particularly interested in the right exact categories (CX ,EX) with a stable class weak
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equivalences WX , that is WX =W⊼

X ∩ EX . Since any class of weak equivalences contains
all isomorphisms of the category CX , the smallest stable class coincides with the class
E⊛
X = Iso(CX)⊼ ∩ EX of all deflations with trivial kernels.

1.11. Coimages of morphisms and deflations with trivial kernels.

1.11.1. Coimages of morphisms. Fix a category CX with an initial object x. Let

M
f
−→ N be an arrow which has a kernel, i.e. we have a cartesian square

Ker(f)
k(f)
−−−→ M

f ′
y cart

y f

x
iN
−−−→ N

with which one can associate a pair of arrows Ker(f)
k(f)

−→
−→
0f

M, where 0f is the composition

of the projection f ′ and the unique morphism x
iM−→M . Since iN = f ◦ iM , the morphism

f equalizes the pair Ker(f)
k(f)

−→
−→
0f

M. If the cokernel of this pair of arrows exists, it will

be called the coimage of f and denoted by Coim(f), or. loosely, M/Ker(f).

Let M
f
−→ N be a morphism such that Ker(f) and Coim(f) exist. Then f is the

composition of the canonical strict epimorphismM
pf
−−−→ Coim(f) and a uniquely defined

morphism Coim(f)
jf
−−−→ N .

1.11.1.1. Lemma. Let M
f
−→ N be a morphism such that Ker(f) and Coim(f)

exist. There is a natural isomorphism Ker(f) ∼−→ Ker(pf ) and the kernel of the morphism

Coim(f)
jf
−−−→ N is trivial.

Proof. The outer square of the commutative diagram

Ker(f)
f ′

−−−→ x −−−→ x

k(f)
y cart

y
y

M
pf
−−−→ Coim(f)

jf
−−−→ L

(1)

is cartesian. Therefore, its left square is cartesian which implies, by A.3, that Ker(pf ) is
isomorphic to Ker(f ′). But, Ker(f ′) ≃ Ker(f).

1.11.2. Right exact categories with coimages of deflations.
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1.11.2.1. Proposition. Let (CX ,EX) be a right exact category and Ec
X the class

of deflations which are isomorphic to their coimage. The class Ec
X is closed under

composition and contains all isomorphisms of the category CX .

Proof. Consider the commutative diagram

Ker(f̃)
k(f̃)
−−−→ Ker(gf)

f̃
−−−→ Ker(g)

g′

−−−→ x

≀
y k(gf)

y cart
y k(g) cart

y iN

Ker(f)
k(f)
−−−→ L

f
−−−→ M

g
−−−→ N

φ
y
V

(2)

where f and g belong to Ec
X and the morphism L

φ
−→ V equalizes the pair of arrows

Ker(gf)
k(gf)

−→
−→
0gf

L. It follows from the left square of the diagram (2) that φ equalizes the

pair of arrows Ker(f)
k(f)

−→
−→
0f

L. Since, by hypothesis, L
f
−→M is an equalizer of this pair

of arrows, there is a unique morphism M
γφ
−→ V such that φ = γφ ◦ f . Since φ equalizes

the pair Ker(gf)
k(gf)

−→
−→
0gf

L, it follows from the commutativity of the central square of (2)

that γφ equalizes the composition of the morphism Ker(gf)
f̃
−→ Ker(g) and the pair

of arrows Ker(g)
k(g)

−→
−→
0g

M. Since Ker(gf)
f̃
−→ Ker(g) is a pull-back of a deflation,

it is a deflation, in particular, it is a strict epimorphism. Therefore, the cokernel of this

composition is the cokernel of the pair Ker(g)
k(g)

−→
−→
0g

M. Since M
g
−→ N is an equalizer of

the latter pair, there exists a unique morphism N
λφ
−→ V such that γφ = λφ ◦ g.

Thus, φ = (λφ ◦ γφ) ◦ (g ◦ f). Since g ◦ f is an epimorphism, a morhism ξ such that

φ = ξ ◦ (g ◦ f) is unique. Therefore, g ◦ f is a cokernel of the pair Ker(gf)
k(gf)

−→
−→
0gf

L.

1.11.2.2. Corollary. Let (CX ,EX) be a right exact category such that every its
deflation has a coimage which is also a deflation and the system of deflations EX is left
divisible, i.e. if a composition t ◦ γ of two arrows is a deflation, then t is a deflation.
Then EX = E⊛

X ◦ E
c
X and for every deflation, this decomposition is defined uniquely up to

isomorphism.
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Proof. It follows from 1.11.1.1, 1.11.2.1 and the imposed conditions that every deflation
e is the composition ẽ ◦ t, where t coincides with its coimage and ẽ is a morphism with a
trivial kernel. Since, by hypothesis, EX is left divisible, ẽ is a deflation.

1.11.3. Proposition. Let M
s
−→ N be a deflation from Ec

X . Any cartesian square

M̃
t

−−−→ N

f′
y

y f

M
s

−−−→ L

such that s and t are epimorphisms having kernels and s is isomorphic to its coimage is a
cocartesian square.

Proof. In fact, let

M̃
t

−−−→ N

f′
y

y ξ2

M
ξ1
−−−→ L

be a commutative square. It follows from the commutative diagram

Ker(t)
k(t)
−−−→ M̃

t
−−−→ N

≀
y f′

y
y ξ2

Ker(s)
k(s)
−−−→ M

ξ1
−−−→ L

and the fact that the morphism t (hence ξ2 ◦ t) equalizes the pair Ker(t)
k(t)

−→
−→
0t

M̃, that

M
ξ1
−→ L equalizes the pair Ker(s)

k(s)

−→
−→
0s

M. Therefore, since, by hypothesis, s is the

cokernel of this pair of arrows ξ1 = ξ̃1 ◦ s for a uniquely determined morphism L
ξ̃1
−→ L.

So that we have:
ξ2 ◦ t = ξ1 ◦ f

′ = ξ̃1 ◦ s ◦ f
′ = (ξ̃1 ◦ f) ◦ t.

Since t is an epimorphism, the equality ξ2 ◦ t = (ξ̃1 ◦ f) ◦ t implies that ξ2 = ξ̃1 ◦ f.

1.11.3.1. Corollary. Let M
s
−→ N be a deflation from Ec

X . Then any cartesian
square

M̃
t

−−−→ N

f′
y

y f

M
s

−−−→ L
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is a cocartesian square.

Proof. The fact follows from 1.11.3.

1.11.3.2. Note. Suppose that the conditions of 1.11.2.2 hold. Let

M̃
t

−−−→ N

f′
y cart

y f

M
s

−−−→ L

(3)

be a cartesian square and M
s
−→ L is a deflation. By 1.11.3, s = es ◦ sc, where sc ∈ Ec

X

and es ∈ E⊛
X . To this decomposition, there corresponds a decomposition

M̃
t

−−−→ Nc

tc
−−−→ N

f′
y (co)cart

y fc cart
y f

M
sc
−−−→ Lc

es
−−−→ L

(4)

of the square (3) into two cartesian squares. Since the class E⊛
X of deflations with trivial

kernel is stable under pull-backs, the horizontal arrows of the right square belong to E⊛
X ,

in particular, they are weak equivalences. By 1.11.3, the left square of (4) is both cartesian
and cocartesian.

2. Topologizing, thick and Serre systems.

2.0. Assumptions. Fix a right exact category with weak equivalences (CX , ĒX) =
(CX ,EX ,WX). Below is the list of assumptions which appear (not necessarily simultane-
ously) in different assertions of this work.

(a) The category CX is quasi-filtered, i.e. every pair of arrows L −→ M ←− N can
be completed to a commutative square.

(b) The class of weak equivalences is stable, i.e. WX =W⊼

X ∩ EX , and has two more
properties:

(b1) If s ◦ t ∈ WX and both s and t are deflations, then s ∈ WX ∋ t.
(b2) The class WX is invariant under push-forwards along deflations; that is for any

pair L
e
←− N

w
−→M of deflations with w ∈ WX , there is a cocartesian square

N
w
−−−→ M

e
y cocart

y e′

L
v

−−−→ Ñ
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with both horizontal arrows from WX .
The class EX of deflations is left divisible in the sense that
(c) if t ∈ EX ∋ s ◦ t, then s ∈ EX ,

and weakly right divisible in the following sense:
(d) if s ∈ EX ∋ s ◦ t, then t ∈ W⊼

X ◦ EX .
(e) There is a multiplicative class DX of arrows of the category CX which includes all

deflations and W⊼

X and a map which assigns to every s ∈ DX a decomposition s = γs ◦ es,

where es is a strict epimorphism, such that γs ∈ W
⊼

X and es ∈ EX , whenever s ∈ EX ◦W
⊼

X .
A more detailed version of this condition is obtained by adding to (e) the following:
(e’) There is a multiplicative subclass EX of the class of strict epimorphisms of the

category CX and a multiplicative subclass WX ofW⊼

X such that es ∈ EX and γs ∈WX for
all s ∈ DX ; and the arrows λ ∈WX and t ∈ EX in the decomposition λ ◦ t are determined
uniquely up to isomorphism. In particular, es is isomorphic to s for all s ∈ EX and γt ≃ t
for all t ∈WX .

2.0.1. Comments. (a) The condition (a) holds automatically if the category CX
has initial objects, or if it has fiber products.

(b) Every stable class WX of weak equivalences contains the class E⊛
X of deflations

with trivial kernel. The class E⊛
X satisfies the condition (b1) and, if there exist push-

forwards of deflations with trivial kernels along deflations with trivial kernels, it satisfies
the condition (b2) as well.

(c) The largest class Est
X of deflations of the category CX (which consists of all strict

epimorphisms such that their arbitrary pull-backs exist and are strict epimorphisms) sat-
isfies the condition (c). This follows from two observations:

(i) if s ◦ t is a strict epimorphism, then s is a strict epimorphism;
(ii) if there exist arbitrary pull-backs of the composition s ◦ t and of the morphism t,

then there are arbitrary pull-backs of the morphism s.
(d)&(e’) Suppose that the class of all strict epimorphisms of the category CX is stable

under pull-backs and, for every morphism M
f
−→ N of the category CX , there exists a

kernel pair Ker2(f) =M×N M

p1

−−−→
−−−→
p2

M and the cokernel M
c2(f)
−−−→ Coim2(f) of

the pair (p1, p2) which we call 2-coimage of the morphism f.

Suppose that the class W⊼

X contains all monomorphisms.
(d) Then the largest class of deflations Est

X (which coincides with the class of all strict
epimorphisms) satisfies the conditions (d) by a trivial reason, because, under the conditions
above, every morphism f is the composition j(f) ◦ c2(f) of a strict epimorphism, c2(f), and

a monomorphism; and, by hypothesis, W⊼

X contains all monomorphisms.
(e1) By the same reason, the class Est

X satisfies the condition (e’) with EX = Est
X and

with WX equal to the class of all monomorphisms of the category CX .
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Notice that W⊼

X contains all monomorphisms automatically, if the category CX has
initial objects, because it contains all morphisms with a trivial kernel and monomorphisms
have trivial kernels.

(d1) Actually, we need a weaker condition instead of 2.0(d) which is as follows. Let

L
t

−−−→ N
s1
−−−→ M

s2

y cart
y s′2

L
ξ1
−−−→ Ñ

be a diagram whose square is cartesian and formed by deflations and the compositions
s2 ◦ t and s2 ◦ t are deflations. Then t ∈ W⊼

X ◦ EX .
(e2) Suppose that the category CX has initial objects and kernels and coimages of

all morphisms. Then every morphism f is the composition jf ◦ pf of its coimage, pf and

a morphism jf. The latter belongs to Iso(CX)⊼, hence it belongs to W⊼

X . Thus, if the
coimage of any deflation is a deflation, then it follows from (the argument of) 1.11.2.1
and from 1.11.2.2 that the condition (e’) holds if we take as EX the class of all strict
epimorphisms which coincide with their coimage and as WX the class of all morphisms
with trivial kernel.

2.0.2. Examples. (i) Suppose that the category CX is additive. Then the class
Iso(CX)⊼ of all morphisms with a trivial kernel coincides with the class of all monomor-
phisms of the category CX and a morphism has a kernel iff it has a 2-kernel. It follows
also that the coimage of a morphism is the same as its image. Thus, if the class Es

X of all
strict epimorphisms of the category CX is closed under pull-backs, then (CX ,E

s
X , Iso(CX))

satisfies all the conditions of 2.0.
(ii) Let CX be the category Algk of associative unital k-algebras (see 1.4.1). Then,

similarly to the additive case, the class of all strict epimorphism is stable under base change,
the class of morphisms with trivial kernel coincides with the class of monomorphisms of
the category CX (see 1.9.3(c)) and (CX ,E

s
X , Iso(CX)) satisfies all the conditions of 2.0.

2.1. Systems. We call a class of arrows S of CX a system in (CX , ĒX) if
(a) S is closed under pull-backs,
(b) WX ◦ S ◦WX = S ⊇ WX ,

We denote the set of systems in (CX , ĒX) by S(X, ĒX) and regard it as a preorder
with respect to the inclusion. The smallest system, WX , will be referred as trivial.

We denote by S⊼(X, ĒX) the subpreorder of S(X, ĒX) formed by stable systems of
deflations, i.e. systems S such that S = EX ∩ S

⊼.

2.1.1. Proposition. The set S(X, ĒX) of systems and the set S⊼(X, ĒX) of stable
systems in (CX , ĒX) are closed under compositions and arbitrary unions and intersections.



198 Chapter 6

Proof. The inclusion T ⊆ WX ◦T ◦WX holds for any class of arrows T of the category
CX . If {Si | i ∈ J} is a set of systems, then

WX ⊆
⋂

i∈J

Si ⊆ WX ◦
( ⋂

i∈J

Si
)
◦WX ⊆

⋂

i∈J

Si

and, evidently,

WX ⊆
⋃

i∈J

Si ⊆ WX ◦
( ⋃

i∈J

Si
)
◦WX =

⋃

i∈J

(WX ◦ Si ◦WX) =
⋃

i∈J

Si.

The fact that each Si is invariant under base change implies that
⋃

i∈J

Si and
⋂

i∈J

Si have

the same property. Therefore
⋃

i∈J

Si and
⋂

i∈J

Si are systems.

The similar assertion for stable systems follows from 1.10.1(b).

2.2. Right and left divisible systems. We call a system S in (CX , ĒX) right
(resp. left) divisible if s ∈ S (resp. t ∈ S) whenever t ◦ s ∈ S.

We say that a system S is right (resp. left) divisible in EX if s ∈ S (resp. t ∈ S)
whenever t ◦ s ∈ S and s ∈ EX .

It follows that the class of right (resp. left) divisible systems is stable under arbitrary
unions and intersections. Similarly for systems which are right (resp. left) divisible in EX .

2.2.1. Proposition. Suppose that the category CX has pull-backs. Then, for any
right (resp. left) divisible system S, the system S⊼ is right (resp. left) divisible.

If the system S is left divisible in EX , then S⊼ is left divisible in EX .

Proof. (a) In fact, letM
u
−→ N be an arrow from S⊼, that is its pull-back along some

arrow L
f
−→ N belongs to S. Let u = t ◦ s. Then, since pull-backs exist in CX , we have

the decomposition

M̃
s̃

−−−→ K̃
t̃

−−−→ L

f ′
y cart

y cart
y f

M
s

−−−→ K
t

−−−→ N

(1)

of the pull-back of u along f into cartesian squares. So, if S is right (resp. left) divisible,
then s̃ ∈ S (resp. t̃ ∈ S), hence s ∈ S⊼ (resp. t ∈ S⊼).

(b) Suppose now that S is a system which is left divisible in EX , that is if u = t◦s ∈ S
and s is a deflations, then t ∈ S. Consider a pull-back of such u which belongs to S and
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consider its decomposition described by the diagram (1) above. Since, by hypothesis, s is
a deflation, the arrow s̃ in (1) is a deflation. Therefore, t̃ ∈ S which implies that t ∈ S⊼.

2.3. Orthogonal complements. For a class of arrows Σ containing WX , we define
the orthogonal complement Σ⊥ of Σ as the union of all right divisible systems S such that
S ∩ Σ = WX . In other words, Σ⊥ is the largest right divisible system having the trivial
intersection with Σ.

2.3.1. Proposition. Let (CX , ĒX) be a quasi-filtered right exact category with a
stable class of weak equivalences; and let S be a class of deflations of (CX , ĒX) closed
under pull-backs. If the category CX has pull-backs, then (S⊥)⊼ = S⊥.

Proof. It follows from 1.6.1 and 1.7 that

S ∩ (S⊥)⊼ ⊆ EX ∩ (S⊼ ∩ (S⊥)⊼) = EX ∩ (S ∩ S⊥)⊼ = EX ∩W
⊼

X .

By hypothesis, the system of weak equivalences is stable, that is EX ∩W
⊼

X =WX .
Since S⊥ is right divisible and the category CX has pull-backs, it follows from 2.2.1

that the system (S⊥)⊼ is right divisible. Therefore, S⊥ = (S⊥)⊼.

2.3.2. Example. Let CX be a category with an initial object x and kernels of
morphisms. For a strict subcategory T of the category CX containing initial objects, we
set

ΣT = {s ∈ HomCX | Ker(s) ∈ ObT }.

It follows from the general properties of kernels that ΣT is stable under base change.
Suppose that the kernel of any morphism M

e
−→ N of CX with M ∈ ObT belongs to

the subcategory T . Then ΣT is a right divisible system.
This observation follows from the commutative diagram

Ker(s)
k(s)
−−−→ N

s
−−−→ M

t
−−−→ L

≀
x k(s)

x cart
x

x

Ker(s̃)
k(̃s)
−−−→ Ker(ts)

s̃
−−−→ Ker(t) −−−→ x

(1)

with the cartesian central square.
Suppose that WX = E⊛

X – the class of all deflations with trivial kernels (cf. 1.9.3(b)).

Let S = EX,T
def
= ΣT ∩EX . One can see that the orthogonal complement S⊥ to S coincides

with ΣT, where T is the full subcategory of CX determined by

ObT = {M ∈ ObCX | Ker(M→N ) 6∈ ObT − {initial objects} for any arrowM→N}.
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In the case of an abelian category CX , this description means that ObT consists of all
T -torsion free objects of the category CX .

2.4. Topologizing systems of deflations.

2.4.1. Conventions. We assume that (CX , ĒX) = (CX ,EX ,WX) is a svelte right
exact category with a stable class of weak equivalences satisfying the condition 2.0(e); that
is there exists a a multiplicative class DX of arrows of the category CX which includes all
deflations and W⊼

X and a map which assigns to every s ∈ DX a decomposition s = γs ◦ es,

where es is a strict epimorphism, such that γs ∈ W
⊼

X and es ∈ EX , whenever s ∈ EX ◦W
⊼

X .

In some cases (like 2.4.4 below), we need a stronger assumption 2.0(e’).

2.4.2. Left topologizing and right topologizing and topologizing systems
of deflations. We call a system S of deflations of (CX , ĒX) left topologizing (resp. right
topologizing, resp. topologizing) if it is left divisible (resp. right divisible, resp. divisible)
in EX and the following conditions hold:

(a) If all arrows of a cartesian or a cocartesian square belong to S, then the composition
of the consequent arrows of this square belongs to S.

(b) The system S is closed under push-forwards.

(c) For any s ∈ S ◦ W⊼

X , the deflation es in the decomposition s = γs ◦ es belongs to

the system S. In particular, S ◦W⊼

X ⊆ W
⊼

X ◦ S.

2.4.3. Proposition. Suppose that the class of deflations of (CX , ĒX) is left divis-
ible and the class of weak equivalences stable. Then every left topologizing (resp. right
topologizing, resp. topologizing) system is stable.

Proof. Since the class of weak equivalences is stable, it contains the class E⊛
X of

deflations with a trivial kernel. By definition, every (left or/and right) topologizing system
is closed under push-forwards and composition with weak equivalences. Therefore, the
assertion follows from 1.10.2.

We denote the preorder (with respect to the inclusion) of all left topologizing systems
of (CX , ĒX) by Tℓ(X, ĒX) and the preorder of topologizing systems by T(X, ĒX).

It follows that the class WX of weak equivalences is the smallest topologizing system.

One can see that Tℓ(X, ĒX) and T(X, ĒX) are closed under arbitrary intersections
and filtered (with respect to the inclusion) unions.

2.4.4. Proposition. Let (CX , ĒX) = (CX ,EX ,WX) be a right exact category with
weak equivalences and left divisible system of deflations (see 2.0(c)). Suppose that the
condition 2.0(e’) holds. Then

(a) The composition of left topologizing systems is a left topologizing system.
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(b) Suppose that the class WX of weak equivalences is stable (the condition 2.0(b))
and the class EX of deflations is weakly right divisible (the condition 2.0(d)). Then the
class T(X, ĒX) of topologizing systems is closed under composition.

Proof. (a) Let S, T be left topologizing systems of deflations. By 2.1.1, the compo-
sition of two systems is a system. In particular, T ◦ S is a system. Since a push-forward
of a composition of two arrows is the composition of the corresponding push-forwards, the
system T ◦ S is closed under push-forwards.

The system T ◦ S ◦W⊼

X is preserved by the map u 7−→ eu.

In fact, let u = t ◦ s ◦w, where t ∈ T , s ∈ S, and w ∈ W⊼

X . Then

u = t ◦ (γsw ◦ esw) = γtγsw ◦ (etγsw ◦ esw),

where etγsw ∈ T and esw ∈ S, because the systems T and S are left topologizing, and

γtγsw ∈ WX ⊆ W
⊼

X . By the condition 2.0(e’), the representation of a morphism as a
product γ ◦ e of γ ∈ WX and e ∈ EX is unique up to isomorphism. In particular, the
arrows etγsw ◦ esw ∈ T ◦ S and eu are isomorphic.

It remains to show that the system T ◦ S is left divisible in EX . Let

N
s

−−−→ L

u
y

y t

M
v

−−−→ N

(4)

be a commutative square whose all arrows are deflations with s ∈ S and t ∈ T . Since S is
closed under push-forwards, the diagram (4) is decomposed into the diagram

N
s

−−−→ L

t
y cocart

y t′

M
s̃

−−−→ M
λ

−−−→ N

(5)

with a cocartesian square, whereM
s̃
−→M is an element of S and the morphism M

λ
−→ N

is uniquely determined by the equalities λ◦ s̃ = v and λ◦t′ = t. Since t′ and t are deflations,
t ∈ T , and the system T is left divisible in EX , it follows that λ ∈ T . So, v = λ◦ s̃ ∈ T ◦S,
which shows that the system T ◦ S is left divisible in EX .

(b) Suppose now that the systems T and S are topologizing (that is left topologizing
and divisible) and the conditions 2.0(b) and 2.0(d) hold. The claim is that these conditions
imply that the system T ◦ S is right divisible (hence divisible) in EX .
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In fact, consider again the commutative square (4). This time, we decompose it by

taking pullback of the arrow t ∈ T alongM
v
−→ N; that is we consider the diagram

N
γ

−−−→ M̃
ξs
−−−→ L

t̂
y cart

y t

M
v

−−−→ N

(6)

with cartesian square and morphism N
γ
−→ M̃ uniquely determined by the equalities

ξs ◦ γ = s and t̂ ◦ γ = u. Since ξs and s are deflations, it follows from the condition 2.0(b)

that γ = w ◦ eγ , where w ∈ W⊼

X and eγ is a deflation. Thus, u = (̂t ◦ w) ◦ eγ . Since, by
hypothesis, the system of deflations EX is left divisible and u ∈ EX , it follows from this
equality that t̂ ◦ w is a deflation. On the other hand, it belongs to EX ∩ (T ◦ W⊼

X) and,

since T is a topologizing system, T ◦W⊼

X ⊆ W
⊼

X ◦ T (see 2.4.2(c)). Therefore,

EX ∩ (T ◦W⊼

X) ⊆ EX ∩ (W⊼

X ◦ T ) ⊆ (EX ∩W
⊼

X) ◦ T =WX ◦ T = T ,

because the class of weak equivalences WX is, by hypothesis, stable, i.e. WX =W⊼

X ∩EX .

Altogether shows that t̂ ◦ w ∈ T . The class of deflations EX being left divisible, the
fact that s = ξs ◦ γ = (ξs ◦ w) ◦ eγ implies that ξs ◦ w is a deflation. Since s ∈ S and
the system S is right divisible, it follows from the equality s = (ξs ◦ w) ◦ eγ that eγ ∈ S.
Therefore, u = (̂t ◦w) ◦ eγ ∈ T ◦ S.

This shows that the system T ◦ S is right divisible. Since, by (a) above, T ◦ S is left
topologizing, it is topologizing.

2.4.5. Proposition. (a) Let {Si | i ∈ J} be a finite family of systems of deflations
which are right divisible in EX (that is if t ◦ s ∈ Si and s ∈ EX , then s ∈ S). Suppose that
the class WX of weak equivalences is stable and the condition 2.0(d1) holds. Then

⋂

i∈J

(T ◦ Si) = T ◦
( ⋂

i∈J

Si
)

for any topologizing system T .
(b) Let {Si | i ∈ J} be a finite family of systems which are left divisible in EX (that is

if s ◦ e ∈ Si and e ∈ EX , then s ∈ S). Suppose that T is a system of deflations such that

for any pair L
s
←−M

t
−→ N of arrows of T , there exists a cocartesian square

M
s

−−−→ L

t
y cocart

y t̃

N
s′

−−−→ N
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with t̃ ◦ s ∈ T . Then ⋂

i∈J

(Si ◦ T ) =
( ⋂

i∈J

Si
)
◦ T .

Proof. The inclusions

⋂

i∈J

(Si ◦ T ) ⊇
( ⋂

i∈J

Si
)
◦ T and

⋂

i∈J

(T ◦ Si) ⊇ T ◦
( ⋂

i∈J

Si
)

hold for class of arrows T and any family of classes of arrows {Si | i ∈ J}. The claim is
that the inverse inclusions hold under respective conditions (a) and (b).

(a) Let v be an element of
⋂

i∈J

(T ◦ Si), that is u = ti ◦ si, where si ∈ Si, ti ∈ T and i

runs through J . So that for any i, j ∈ J , we have a commutative square

M
si
−−−→ Mi

sj

y
y ti

Mj

tj
−−−→ N

which is decomposed into the diagram

M
γ

−−−→ M
t̃i

−−−→ Mi

t′j

y cart
y ti

Mj

tj
−−−→ N

with a cartesian square, where the morphism M
γ
−→ M is uniquely determined by the

equalities t′j ◦ γ = sj and t̃i ◦ γ = si. Since si and sj are deflations, it follows from the

condition 2.0(d1) that γ = w ◦ e, where e ∈ EX and w ∈ W⊼

X . Set ui = t̃i ◦ w and
uj = t′j ◦ w. Since si = ui ◦ e, sj = uj ◦ e and the classes Si and Sj are right divisible

in EX , the deflation e belongs to Si ∩ Sj . The composition t = ti ◦ t̃i belongs to T and

ti ◦ ui = t ◦ w is a deflation which belongs to T ◦ W⊼

X . But, by the argument 2.4.4(b),

EX ∩ (T ◦ W⊼

X) = T . Thus, the element u = ti ◦ si equals to the composition (t ◦ w) ◦ e,

where e ∈ Si ∩ Sj and t ◦ w ∈ T . This proves the inclusion
⋂

i∈J

(T ◦ Si) ⊆ T ◦
( ⋂

i∈J

Si
)
in

the case when |J | = 2. By an induction argument, it follows for an arbitrary finite J .
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(b) Suppose now that the conditions (b) hold. Let u be an element of
⋂

i∈J

(Si ◦ T ),

that is u = si ◦ ti, where si ∈ S, ti ∈ T and i runs through J . Thus, for any i, j ∈ J , we
have a commutative square

M
ti

−−−→ Mi

tj

y
y si

Mj

sj
−−−→ N

which is decomposed into the diagram

M
ti

−−−→ Mi

tj

y cocart
y t′i

Mj

t̃j
−−−→ L

λ
−−−→ N

with a cocartesian square, where the morphism L
λ
−→ N is uniquely determined by the

equalities λ ◦ t̃j = sj and λ ◦ t
′
i = si. Since t̃j and t′i are deflations and, by hypothesis, the

classes Si and Sj are left divisible in EX , the morphism λ belongs to Si∩Sj . On the other
hand, the composition t̃j ◦ tj belongs to T , because T is a topologizing system and both
ti and tj are its elements. Thus, si ◦ ti = λ ◦ (̃tj ◦ tj) = sj ◦ tj . The rest of the proof is the
standard induction argument.

2.4.6. Proposition. Suppose that (CX ,EX ,WX) is such that W⊼

X ◦ EX = HomCX ,
the class WX of weak equivalences is stable and the condition 2.0(d1) holds. Then

⋂

i∈J

(T ◦ Si) = T ◦
( ⋂

i∈J

Si
)

for any topologizing system T and any finite set {Si | i ∈ J} of classes of morphisms which
are right divisible in EX .

Proof. The argument is similar to that of 2.4.5(a). Details are left to the reader.

2.5. Thick systems of deflations. We call a system of deflations S of (CX , ĒX)
thick if it is left and right divisible in EX , closed under compositions and stable. We denote
by M(X, ĒX) the preorder (with respect to the inclusion) of thick systems of (CX , ĒX).

It follows that WX is the smallest thick system of (CX , ĒX).

2.5.1. Example. Suppose that CX has an initial object, x. Let T be a strictly full
subcategory of CX containing initial objects and

S = EX,T
def
= ΣT ∩ EX = {s ∈ EX | Ker(s) ∈ ObT }
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(see 2.3.2). Suppose that the kernel of any deflation M
e
−→ N with M ∈ ObT belongs to

the subcategory T . Then it follows from the diagram 2.3.2(1) that the system S = EX,T is
right divisible in EX . Notice that the cartesian square (2) gives rise to a cartesian square

Ker(t ◦ s′) −−−→ Ker(t)y cart
y

Ker(s) −−−→ x

(3)

with all arrows in EX,T . The condition of 2.4.2 holds iff for each cartesian square (2) with
arrows from EX,T , the composition Ker(t ◦ s′) −→ x of consecutive arrows of (3) belongs
to EX,T . Notice that the object (Ker(t ◦ s′),Ker(t ◦ s′)→ x) of the category CX/x is the
product of (Ker(s),Ker(s)→ x) and (Ker(t),Ker(t)→ x).

2.5.2. Proposition. Suppose that each deflation has a coimage which is also a
deflation, every morphism to an initial object is a deflations, and the class of deflations
EX is left divisible.

(a) The system EX,T is topologising iff the subcategory T /x is closed under finite

products (taken in CX/x) and for any deflation M
e
−→ N with M ∈ ObT /x, both Ker(e)

and N are objects of T /x.

(b) The system EX,T is thick iff for any deflation M
e
−→ N such that N has arrows

to initial objects, M is an object of the subcategory T then and only then the objects N
and Ker(e) belong to T .

Proof. The argument for (a) follows from the discussion above. The proof of (b) uses
the commutative diagram 2.3.2(1). Details are left to the reader.

2.5.3. The case of a pointed category. If x is also a final object of CX , then the
categories CX/x and CX are naturally isomorphic and, therefore, K(t ◦ s′) is isomorphic
to the product of Ker(t) and Ker(s).

2.5.4. Topologizing and thick subcategories of exact and abelian categories.
It follows that if (CX ,EX) is an exact category, then EX,T is a topologizing system iff the
subcategory T is closed under finite products and admissible subquotients. In particular, if
(CX ,EX) is an abelian category, then EX,T is a topologizing system iff T is a topologizing
subcategory of CX in the sense of Gabriel.

It follows from 2.5.2 that any thick subcategory of an exact category (CX ,EX) is
topologizing. If (CX ,EX) is abelian, then thick categories are thick in the usual sense.

2.6. Serre systems.

Fix a svelte right exact category with weak equivalences (CX , ĒX) = (CX ,EX ,WX).
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2.6.1. The closure. For a class S of deflations of (CX , ĒX), let RS denote the
set of all systems of deflations Σ divisible in EX such that any non-trivial right divisible
subsystem Σ′ of Σ has a non-trivial intersection with S (that is S∩Σ′−WX is non-empty).
We denote by S− the union of all Σ ∈ RS and call it the closure of S.

2.6.2. Proposition. (a) S− belongs to RS (hence it is the largest element of RS).
(b) (S−)− = S−.
(c) The system S− is closed under the composition.
(d) Suppose that the class WX of weak equivalences is stable. Then the system S− is

stable, that is S− = EX ∩ (S−)⊼.

Proof. (a) Since divisible systems are closed under arbitrary unions, S− is a divisible
system. Let Σ be a non-trivial right divisible subsystem of S−. Then there exists Σ′ ∈ RS

such that Σ′ ∩ Σ is a non-trivial right divisible system. Since it is a subsystem of Σ′ and
Σ′ ∈ RS , the intersection Σ′ ∩ Σ ∩ S is non-trivial. In particular, Σ ∩ S is non-trivial.

(b) It follows from the argument (a) that RS = RS− ; hence (S−)− = S−.
(c) Let Σ be a non-trivial right divisible in EX system contained in S− ◦ S−. Let

t, s be elements of S− such that t ◦ s ∈ Σ −WX . Since Σ is right divisible, it contains
s. Suppose that s is non-trivial, that is s 6∈ WX . Take any right divisible subsystem of Σ
containing element s and denote by Σ̃ its intersection with S−. Thus, Σ̃ is a non-trivial
right divisible subsystem of S− ∩ Σ, hence it has a non-trivial intersection with S. If
s ∈ WX , then Σ contains t ◦ s, and we apply the argument above to t ◦ s itself. This shows
that S− ◦ S− ∈ FS , or, equivalently, S

− ◦ S− = S−.
(d) It follows from the definition of S− that it coincides with the union of all divisible

systems of deflations T such that T ∩S⊥ =WX . One can consider only stable systems T ,
because, by 2.3.1,

(EX ∩ T
⊼) ∩ S⊥ = EX ∩ (T ⊼ ∩ (S⊥)⊼) = EX ∩ (T ∩ S⊥)⊼ = EX ∩W

⊼

X =WX .

It follows from 1.6.1 that the union of stable systems is a stable system, hence S− is a
stable system.

2.6.2.1. Note. One can see that W−
X = WX . In fact, W⊥

X coincides with HomCX ,
whence the equality T ∩W⊥

X =WX for a system T means precisely that T =WX .

2.6.3. Serre systems of deflations. We call a class S of deflations of (CX , ĒX) a
Serre system of deflations if S− = S. We denote by Se(X,EX) the preorder (with respect
to the inclusion) of all Serre systems of deflations of (CX , ĒX).

It follows from this definition and 2.6.2 that Serre systems of deflations are thick.

2.6.4. Proposition. Let (CX ,EX) be a svelte right exact category.
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(a) The intersection of any family of Serre systems of deflations of (CX ,EX) is a
Serre system.

(b) Let {Si | i ∈ J} be a finite set of right divisible systems of deflations of (CX ,EX).

Then
⋂

i∈J

S−i =
( ⋂

i∈J

Si
)−
.

Proof. (a) Let {Σj | j ∈ I} be a set of Serre systems of deflations of (CX ,EX). Let
S be a divisible system of deflations such that every non-trivial right divisible subsystem

S of S has a non-trivial intersection with
⋂

j∈I

Σj . In particular, S ∩ Σj is non-trivial for

every j ∈ I. Since Σj = Σ−
j for all j ∈ I, it follows that S ⊆ Σj for all j ∈ I; that is

S ⊆
⋂

j∈I

Σj . This shows that
⋂

j∈I

Σj =
( ⋂

j∈I

Σj
)−
.

(b) Let {Si | i ∈ J} be a set of right divisible systems of deflations of (CX ,EX). Then,

evidently,
⋂

i∈J

S−i ⊇
( ⋂

i∈J

Si
)−
. If J is finite, then the inverse inclusion holds.

Since, by (a) above,
⋂

i∈J

S−i is a Serre system of deflations, it suffices to show that any

non-trivial right divisible subsystem of
⋂

i∈J

S−i has a non-trivial intersection with
⋂

i∈J

Si.

Let J = {1, 2, . . . , n}, and let T be a non-trivial right divisible subsystem of
⋂

i∈J

S−i .

In particular, T is a non-trivial right divisible subsystem of S−1 . Therefore, T ∩ S1 is a

non-trivial right divisible subsystem of
⋂

2≤i≤n

S−i . By a standard induction argument, this

implies that (T ∩ S1) ∩
( ⋂

2≤i≤n

Si
)
= T ∩

( ⋂

i∈J

Si
)

is a non-trivial right divisible system.

Therefore, T ⊆
( ⋂

i∈J

Si
)−
. In particular,

⋂

i∈J

S−i ⊆
( ⋂

i∈J

Si
)−
.

2.6.5. The lattice of Serre systems. Fix a svelte right exact category (CX ,EX).
For any pair Σ1, Σ2 of Serre systems of deflations, we denote by Σ1∨Σ2 the smallest Serre
system containing Σ1 and Σ2.

2.6.5.1. Proposition. Let {Si | i ∈ J} be a finite set of Serre systems of deflations

of (CX ,EX). Then Σ ∨
( ⋂

i∈J

Si
)
=

⋂

i∈J

(Σ ∨ Si) for any Serre system of deflations Σ.



208 Chapter 6

Proof. There are the equalities

⋂

i∈J

(Σ ∨ Si) =
⋂

i∈J

(Σ ∪ Si)
− =

( ⋂

i∈J

(Σ ∪ Si)
)−

=
(
(
⋂

i∈J

Si) ∪ Σ
)−

=
( ⋂

i∈J

Si
)
∨ Σ.

Here the second equality follows from 2.6.4.

2.7. Serre subcategories of a right exact category with initial objects.
Suppose that the category CX has an initial object, x and all morphisms to x are deflations.
Let S be a class of deflations of (CX , ĒX). We denote by T̃S the full subcategory of the
category CX generated by all M ∈ ObCX having the following property: for any pair

of deflations M
e
−→ L

t
−→ x such that t is non-trivial (i.e. t 6∈ WX), there exists a

decomposition t = u ◦ s, where u and s are deflations and s is a non-trivial element of S.
We denote by TS the full subcategory of CX generated by all M ∈ ObCX such that for

any pair of deflations M
u
−→ L

t
−→ x the object Ker(u) belongs to the subcategory T̃S .

It follows from the definition of TS that if M is an object of TS and M
e
−→ L

t
−→ x

are deflations, then L ∈ ObTS .

In fact, let L
u
−→ N

t
−→ x be deflations. Then we have a commutative diagram

Ker(u ◦ e)
e′

−−−→ Ker(u)
λu

−−−→ xy cart
y cart

y
M

e
−−−→ L

u
−−−→ N −−−→ x

in which all horizontal arrows are deflations and Ker(u ◦ e) is an object of T̃S . Therefore,

Ker(u) ∈ ObT̃S , which implies that L ∈ ObTS .
By 2.3.2, the latter property implies that ΣTS

is a left divisible system.

2.7.1. Proposition. Let (CX , ĒX) be a right exact category with an initial object x
and the class of weak equivalences coinciding with E⊛

X = {e ∈ EX | Ker(e) ≃ x}.
If S is a class of deflations of (CX , ĒX) closed under pull-backs, then ΣTS

= S−.

Proof. (a) The system ΣTS
belongs to RS ; in particular, ΣTS

⊆ S−.

In fact, let M
t
−→ N be an element of ΣTS

− WX . By condition, this means that
Ker(t) is non-trivial (i.e. it is not an initial) object of the subcategory TS . Therefore, the

canonical morphism Ker(t)
et−→ x is the composition of a non-trivial arrow Ker(t)

s
−→ L

of S and a deflation L −→ x. This shows that any right divisible system containing the

arrow M
t
−→ N has a non-trivial morphism from S; hence ΣTS

⊆ S−.
(b) It remains to show that S− ⊆ ΣTS

.
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Suppose this is not true, and let M
s
−→ L be an arrow from S− which does not

belong to ΣTS
; that is Ker(s) is not an object of TS , which means that the canonical

deflation Ker(s)
es−→ x factors through a deflation Ker(s)

v
−→ N such that Ker(v)

λv−→ x

is a composition of two deflations, Ker(v)
u
−→ L and L

t
−→ x, where t is non-trivial and

S-torsion free in the sense that if t = t′ ◦ γ and γ ∈ S, then γ ∈ WX . Since S− is a left

divisible system of deflations, the deflation L
t
−→ x belongs to S−.

Consider the smallest right divisible system generated by the morphism L
t
−→ x. It

consists of all deflationsM
e
−→ Ñ such that there is a deflation Ñ

w
−→ N and a cartesian

square

L
t

−−−→ xx cart
x

M
w◦e
−−−→ N

Since the composition of cartesian squares is a cartesian square, we have a decomposition

L −−−→ M −−−→ L L
id
−−−→ L

t
y cart we

y cart
y t of t

y
y t

x −−−→ N −−−→ x x
id
−−−→ x

and a decomposition

L
ẽ

−−−→ Ker(w)
ew
−−−→ x L

t
−−−→ xy cart

y cart
y of

y cart
y

M
e

−−−→ Ñ
w
−−−→ N M

w◦e
−−−→ N

IfM
e
−→ Ñ is a non-trivial element of S, then, since (by hypothesis, Ker(e) is non-

trivial and) Ker(̃e) ≃ Ker(e), the arrow L
ẽ
−→ Ker(w) is a non-trivial element of S, which

contradicts to the condition on L
t
−→ x.

2.8. Coreflective systems and Serre systems. Let (CX , ĒX) be a right exact
category with weak equivalences and S a class of its deflations containingWX . We call the

class S coreflective if every deflation M
e
−→ L is the composition of an arrow M

se−→ N

of S and a deflation N
γe
−→ L such that any other decomposition M

t
−→ N

u
−→ L of e

with t ∈ S factors through M
se−→ N

γe
−→ L. The latter means that there exists a deflation

N
v
−→ N such that se = v ◦ t and u = γe ◦ v. Since t is an epimorphism, the first equality

implies that v is uniquely defined.
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2.8.1. Proposition. Every coreflective system of deflations which is stable under
base change and closed under compositions is a Serre system.

Proof. In fact, each deflationM
e
−→ L has the biggest decompositionM

se−→ N
γe
−→ L,

where se ∈ S. Since S is closed under composition, γe has only a trivial decomposition.
Therefore, S− = S.

3. The spectra related with topologizing, thick and Serre systems.

Fix a svelte right exact category with a stable class of weak equivalences (CX , ĒX) =
(CX ,EX ,WX). Recall that T(X, ĒX) denotes the preorder of all topologizing systems of
deflations of (CX , ĒX), Se(X, ĒX) the preorder of all Serre systems and M(X, ĒX)
the preorder of all thick systems of (CX , ĒX). We denote by MT(X, ĒX) (resp. by
SeT(X, ĒX)) the subpreorder of all thick (resp. Serre) topologizing systems. That is

MT(X, ĒX) = M(X, ĒX) ∩ T(X, ĒX) and SeT(X, ĒX) = Se(X, ĒX) ∩ T(X, ĒX).

3.1. The support in topologizing systems. For any class S of the deflations
of (CX , ĒX) containing the class WX of weak equivalences, we denote by SuppT(S) the
subpreorder of T(X, ĒX) formed by all topologizing systems which do not contain S, and
call it the support of S in topologizing systems.

We denote by Ŝ the union of all systems of SuppT(S). It follows that the inclusion

S1 ⊆ S2 implies that Ŝ1 ⊆ Ŝ2. If S2 is topologizing, then the inverse implication holds: if
Ŝ1 ⊆ Ŝ2, then S1 ⊆ S2 (because, if S1 * S2, then S2 ⊆ Ŝ1, but, S2 * Ŝ2). Let [S] denote

the smallest topologizing system containing S. It is clear that Ŝ = [̂S].

Finally, notice that if S ⊇ S1 * Ŝ, then Ŝ ⊆ Ŝ1 ⊆ Ŝ, that is Ŝ1 = Ŝ.

The system Ŝ is the largest element of SuppT(S) whenever Ŝ is topologizing. The
following assertion provides sufficient conditions for this occurrence.

3.1.1. Lemma. Let (CX , ĒX) = (CX ,EX ,WX) be a svelte right exact category with
a stable class of weak equivalences (condition 2.0(b)) and with a left divisible a weakly
right divisible class EX of deflations (conditions 2.0(c) and 2.0(d)). Suppose also that the

condition 2.0(e’) holds. If S is a class of deflations such that the system Ŝ is multiplicative,

then Ŝ is topologizing.

Proof. Let T1, T2 be topologizing systems from the support of S. If Ŝ is multiplicative,
then T1 ◦ T2 ⊆ Ŝ. By 2.4.4, the system T1 ◦ T2 is topologizing and it contains T1 and T2.
This shows that the support of S is filtered, hence Ŝ is a topologizing system.

3.2. The spectrum Spect(X, ĒX). The elements of the spectrum Spect(X, ĒX)

are all topologizing systems S such that Ŝ is a Serre system, i.e. Ŝ = Ŝ−. We endow
Spect(X, ĒX) with the preorder ⊇ called (with a good reason) the specialization preorder.
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3.3. The spectra Spec1t (X, ĒX) and Spec1,1t (X, ĒX). For any system S of de-
flations of (CX , ĒX), let S∗ denote the intersection of all topologizing systems properly
containing S. We denote by Spec1t (X, ĒX) the preorder (with respect to ⊇) of all thick
topologizing systems of deflations Σ such that Σ∗ 6= Σ and set

Spec1,1t (X, ĒX) = Spec1t (X, ĒX)
⋂

Se(X, ĒX).

Thus, the spectrum Spec1t (X, ĒX) is the disjoint union of

Spec1,1t (X, ĒX) = {Σ ∈ T(X, ĒX) | Σ = Σ− ( Σ∗} and

Spec1,0t (X, ĒX) = {Σ ∈MT(X, ĒX) | Σ 6= Σ∗ ⊆ Σ−}.

3.4. Proposition. Suppose that (CX , ĒX) = (CX ,EX ,WX) is a svelte right exact
category with a stable class of weak equivalences (condition 2.0(b)) and with a left divisible
a weakly right divisible class EX of deflations (conditions 2.0(c) and 2.0(d)). Then there
is a natural isomorphism

Spec1,1t (X, ĒX) ∼−→ Spect(X, ĒX).

Proof. Consider the map which assigns to each Σ ∈ Spec1,1t (X, ĒX) the union Σ∗ of
all right divisible in EX subsystems of Σ∗ which have trivial intersection with Σ. Notice
that, since Σ is a Serre system, the right divisible system Σ∗ is a non-trivial. The claim
is that the topologizing system [Σ∗] spanned by Σ∗ (which is a topologizing subsystem of
the topologizing system Σ∗) is an element of the spectrum Spect(X, ĒX).

(i) Observe that Σ ⊆ Σ̂∗, because the system Σ is topologizing and the equality
Σ∗ ∩ Σ =WX combined with the non-triviality of the system Σ∗ implies that Σ∗ * Σ.

(ii) On the other hand, if S is a topologizing system of deflations which is not
contained in the system Σ, then Σ∗ ⊆ S.

In fact, suppose that S * Σ. Then, by 2.4.4(b), the composition S◦Σ is a topologizing
system properly containing Σ. Therefore,

Σ∗ ⊆ (S ◦ Σ) ∩ Σ⊥ ⊆ S ◦ (Σ ∩ Σ⊥) = S ◦WX = S.

In other words, if S is a topologizing system which does not contain Σ∗, then S ⊆ Σ.
This proves the inverse inclusion, Σ̂∗ ⊆ Σ., hence the equality Σ− = Σ = Σ̂∗. As it is

observed in 3.2, Σ̂∗ = [̂Σ∗]; so that [Σ∗] is an element of the spectrum Spect(X, ĒX).
Thus, we obtained a map

Spec1,1t (X, ĒX) −−−→ Spect(X, ĒX), Σ 7−→ [Σ∗]. (1)
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Let now S ∈ Spect(X, ĒX), that is S is a topologizing system such that Ŝ is a Serre
system. Since, by 2.6.2(c), any Serre system is multiplicative, it follows from 3.1.1 that

the system Ŝ is topologizing. If Σ is a topologizing system properly containing Ŝ, then Σ
contains S. This shows that Ŝ∗ coincides with the smallest topologizing system containing
Ŝ ∪ S; in particular, Ŝ− = Ŝ 6= Ŝ∗, i.e. Ŝ is an element of the spectrum Spec1,1t (X, ĒX).
One can see that the map

Spect(X, ĒX) −−−→ Spec1,1t (X, ĒX), S 7−→ Ŝ,

is inverse to the map (1).

3.5. Remark. It follows from the argument of 3.4 that the map

Σ 7−→ Σ∗, Σ ∈ Spec1,1t (X, ĒX),

gives a canonical realization of Spect(X, ĒX) as the preorder of systems of deflations S
which are characterized by the following properties:

(a) Ŝ is a Serre system and S ∩ Ŝ =WX ;

(b) if a system T of deflations is such that T̂ = Ŝ and T ∩ Ŝ =WX , then T ⊆ S.

Notice that that for every such system S, the corresponding Serre system Ŝ coincides
with the union Š of all topologizing systems of deflations Σ such that S ∩ Σ =WX .

3.6. Local right exact ’spaces’ and categories with weak equivalences. Let
(CX , ĒX) = (CX ,EX ,WX) be a svelte right exact category with weak equivalences. We call
(CX , ĒX) (and the right exact ’space’ (X, ĒX) it represents) local if there is the smallest
non-trivial topologizing system, or, equivalently, the intersection W∗

X of all non-trivial
topologizing systems of (CX ,EX) is non-trivial.

It follows that a right exact ’space’ (X, ĒX) is local iff the spectrum Spect(X, ĒX)
has a unique closed point, and this closed point belongs to the support of any non-trivial
divisible system of (CX , ĒX).

3.7. The spectrum Spec1,1M (X, ĒX). The elements of this spectrum are all Serre
systems Σ such that the intersection Σ⋆ of all thick systems of deflations of (CX , ĒX)
properly containing Σ is not equal to Σ. Equivalently, Spec1,1M (X, ĒX) consists of all Serre

systems Σ such that Σ⋆
def
= Σ⋆ ∩ Σ⊥ is non-trivial. As all other spectra, the spectrum

Spec1,1M (X, ĒX) is endowed with the specialization preorder ⊇.

One of the most essential properties of the spectrum Spec1,1M (X, ĒX) is the following.

3.7.1. Proposition. Let (X, ĒX) be a right exact ’space’ and Σ ∈ Spec1,1M (X, ĒX).
For any finite family {Si | i ∈ J} of right divisible in EX systems of deflations, Si * Σ for

all i ∈ J iff
⋂

i∈J

Si * Σ.
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Proof. By 2.6.4,
⋂

i∈J

S−i =
( ⋂

i∈J

Si
)−
, and by 2.6.5.1, Σ ∨

( ⋂

i∈J

S−i
)
=

⋂

i∈J

(Σ ∨ S−i ).

Therefore,

Σ ∨
( ⋂

i∈J

Si
)−

=
⋂

i∈J

(Σ ∨ S−i ). (2)

If Si * Σ for all i ∈ J , then each of the strongly closed systems S−i ∨ Σ contains
Σ properly. Since Σ is an element of the spectrum Spec1,1sc (X, ĒX), the intersection of
S−i ∨ Σ, i ∈ J, contains in Σ properly. Then it follows from the equality (5) that the

intersection
⋂

i∈J

Si is not contained in Σ.

Since the spectrum Spec1,1t (X, ĒX) is contained in Spec1,1M (X, ĒX), the elements of

Spec1,1t (X, ĒX) have the property described in 3.7.1.

4. Semitopologizing systems and the related spectral theory.

The topological systems defined in 2.4 might be inconvenient in some situations, be-
cause they require invariance of deflations under push-forwards, which is not necessarily
available in right exact, or even exact categories. There is a different setting based on the
notion of a semitopological system,which does not require push-forwards and still recovers
the abelian theory. It is sketched below.

4.0. Conventions. We fix a svelte right exact category with a stable class of weak
equivalences (CX , ĒX) = (CX ,EX ,WX) such that WX ◦ W

⊼

X =W⊼

X . We assume that the
category CX has fiber products.

4.1. Strongly stable, cartesian complete and semitopologizing systems.
(i) A class S of deflations of (CX , ĒX) will be called strongly stable if it is invariant

under pull-backs, stable (that is S = EX ∩ S
⊼) and, in addition,

S = EX ∩ (S ◦W⊼

X). (1)

(ii) We call a class of deflations S cartesian complete if, for any cartesian square with
arrows in S, the composition of two consecutive arrows belongs to S.

(iii) We call a system of deflations right semitopologizing (resp. left semitopologizing)
if it is cartesian complete, strongly stable, and right (resp. left) divisible in EX .

We say that a system semitopologizing if it is both left and right semitopologizing.

4.1.1. Topologizing and semitopologizing systems. Suppose that the class EX
of deflations is left divisible in the following sense: if t◦s ∈ EX ∋ s, then t ∈ EX . Then every
left (resp. right) topologizing system of deflations is left (resp. right) semitopologizing.
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In fact, any left (resp. right) topologizing system is, by definition, cartesian complete
and, by 2.4.3 (or 1.10.2), stable. If T is a left (or/and right) topologizing system, then

T ◦W⊼

X ⊆ W
⊼

X ◦ T (see 2.4.2(c)), so that

T ⊆ EX ∩ (T ◦W⊼

X) ⊆ EX ∩ (W⊼

X ◦ T ) = (EX ∩W
⊼

X) ◦ T =WX ◦ T = T ,

whence T = EX ∩ (T ◦ W⊼

X). Here the first equality is due to the left divisibility of EX
and the second one to the stability of WX .

4.1.2. About cartesian completeness. Let CX have an initial object, x, and let
T be a full subcategory of the category CX/x. Consider the system ST of all deflations s
of (CX , ĒX) such that (Ker(s),Ker(s) −→ x) is an object of T. The class of arrows ST is
cartesian complete iff T is a category with finite products.

This follows from the observation that to every cartesian square

M
s′

−−−→ M

t̃
y cart

y t

L
s

−−−→ N

(2)

there corresponds a cartesian square

Ker(s ◦ t̃) −−−→ Ker(t)y cart
y

Ker(s) −−−→ x

obtained via pulling back the square (2) along the unique arrow x −→ N .

4.1.3. Proposition. (a) Let S be a system of deflations satisfying the equality

S = EX ∩ (S ◦W
⊼

X). Then the stable envelope EX ∩ S
⊼ of the system S has this property;

that is the class EX ∩ S
⊼ is strongly stable.

(b) The family of strongly stable classes of deflations is closed under arbitrary inter-
sections and unions.

(c) The family of cartesian complete classes of deflations is closed under arbitrary
intersections and filtered (with respect to the inclusion) unions. Similarly for left or/and
right semitopologizing systems.

Proof. (a) Since, by hypothesis, the category CX has fiber products, for any pair of
classes of arrows S, T , there is an obvious inclusion S⊼ ◦ T ⊼ ⊆ (S ◦ T ⊼)⊼. In particular,
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S⊼ ◦ W⊼

X ⊆ (S ◦ W⊼

X)⊼. Therefore, for any system S such that S = EX ∩ (S ◦ W⊼

X), we
obtain the following:

EX ∩ S
⊼ ⊆ EX ∩ ((EX ∩ S

⊼) ◦W⊼

X) ⊆ EX ∩ (S⊼ ◦W⊼

X) ⊆ EX ∩ (S ◦W⊼

X)⊼ =

EX ∩ (E⊼

X ∩ (S ◦W⊼

X)⊼) = EX ∩ (EX ∩ (S ◦W⊼

X))⊼ = EX ∩ S
⊼.

(b) Let {Ti | i ∈ J} be a set of classes of arrows such that Ti = EX ∩ (Ti ◦W
⊼

X) for all
i ∈ J . Then

⋂

i∈J

Ti ⊆ EX ∩
(( ⋂

i∈J

Ti
)
◦W⊼

X

)
⊆ EX ∩

( ⋂

i∈J

Ti ◦W
⊼

X

)
=

⋂

i∈J

(EX ∩ (Ti ◦W
⊼

X)) =
⋂

i∈J

Ti.

Similarly,

⋃

i∈J

Ti ⊆ EX ∩
(( ⋃

i∈J

Ti
)
◦W⊼

X

)
= EX ∩

( ⋃

i∈J

Ti ◦W
⊼

X

)
=

⋃

i∈J

(EX ∩ (Ti ◦W
⊼

X)) =
⋃

i∈J

Ti.

By 2.1, the class of (right or/and left) stable systems is closed under arbitrary inter-
sections and unions.

(c) The assertion follows from (b).

4.1.4. Proposition. (a) For any system of deflations T , the intersection

EX ∩ (T ◦W⊼

X)⊼

is the smallest strongly stable system containing T .
(b) If the system T is cartesian complete, then the smallest strongly stable system

containing T is cartesian complete.
(c) Suppose that the condition 2.0(d) holds. Then, for any right divisible system of

deflations T , the smallest strongly stable system containing T is right divisible.
In particular, if T is a right divisible and cartesian complete system, then its strongly

stable envelope EX ∩ (T ◦W⊼

X)⊼ is a right semitopological system.

Proof. (a) By 1.6.1(ii), if a system S satisfies the equality S = EX ∩ (S ◦S
⊼), then the

class of arrows S⊼ is multiplicative. In particular, the class of arrows W⊼

X is closed under
composition. So that, for any system S, we have

EX ∩ (S ◦W⊼

X) ⊆ EX ∩ ((EX ∩ (S ◦W⊼

X)) ◦W⊼

X) ⊆

EX ∩ ((S ◦W⊼

X) ◦W⊼

X) = EX ∩ (S ◦W⊼

X),
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which shows that the system T = EX ∩(S ◦W
⊼

X) satisfies the equality T = EX ∩(T ◦W
⊼

X).
Evidently, T is the smallest system containing S and satisfying this equality.

By 4.1.2(a), the system EX ∩ T
⊼ is the smallest strongly stable system containing T .

Notice that

EX ∩ T
⊼ = EX ∩ (EX ∩ (S ◦W⊼

X)⊼ = EX ∩ (E⊼

X ∩ (S ◦W⊼

X)⊼) = EX ∩ (S ◦W⊼

X)⊼

hence the assertion.

(b1) If a class of deflations T is cartesian complete, then EX ∩ (T ◦ W⊼

X) has this
property.

In fact, for any pair of arrows ti ◦ wi ∈ EX , i = 1, 2, such that ti ∈ T and wi ∈
W⊼

X , i = 1, 2, we have diagram

L
w′′

2

−−−→ M
t′′2
−−−→ L1

w̃1

y cart
y w′

1 cart
y w1

L′
w′

2

−−−→ M′
t′2
−−−→ M1

t̃1

y cart
y t′1 cart

y t1

L2

w2

−−−→ M2

t2
−−−→ N

built out of cartesian squares. So that

(t1 ◦w1) ◦ (t
′′
2 ◦w

′′
2) = (t1 ◦ t

′
2) ◦ (w

′
1 ◦w

′′
2) ∈ EX ∩ (T ◦W⊼

X),

because, by hypothesis, T is cartesian complete and W⊼

X ◦W
⊼

X =W⊼

X .

(c) Consider a commutative square

L
w
−−−→ M

s1

y
y t

L
s2
−−−→ M

where t ∈ T , w ∈ WX , and t ◦w, s1 and s2 are deflations. The square is decomposed into
the diagram

L
f

−−−→ L̃
w2

−−−→ M

t1

y cart
y t

L
s2
−−−→ M
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with cartesian square such that s̃2 ◦ f = w and t1 ◦ f = s1. By the condition 2.0(d), the

latter equality implies that f = w1 ◦ e, where e is a deflation and w1 ∈ W
⊼

X . It follows from
the fact that w = (w2 ◦w1) ◦ e ∈ WX and e is a deflation that w2 ◦w1 ∈ WX and e ∈ WX .

Therefore, s1 = t1 ◦ (w1 ◦ e), where t1 ∈ T and w1 ◦ e ∈ W
⊼

X .

4.2. Strongly thick systems. We call a system of deflations S strongly thick if it
is divisible in EX , stable, and S ◦ S⊼ = S⊼.

We denote by Ms(X, ĒX) the preorder (with respect to the inclusion) of all strongly
thick systems of (CX , ĒX). It follows from our assumptions (see 4.0) that the class WX of
weak equivalences is the smallest element of Ms(X, ĒX).

4.2.1. Observations. (a) Thanks to the existence of fiber products in CX , for any
class of arrows S which is invariant under pull-backs, the inclusion S◦S⊼ ⊆ S⊼ is equivalent
to the multiplicativity of S⊼, that is the inclusion S⊼ ◦ S⊼ ⊆ S⊼.

In particular, a system S is strongly thick iff it is stable and S⊼ ◦ S⊼ = S⊼.
(b) Every strongly thick system of deflation S is multiplicative, because

S ◦ S ⊆ EX ∩ (S ◦ S⊼) = EX ∩ S
⊼ = S.

(c) Every strongly thick system S is semitopologizing, because it is multiplicative and

EX ∩ (S ◦W⊼

X) ⊆ EX ∩ (S ◦ S⊼) = EX ∩ S
⊼ = S.

(d) A stable, divisible in EX system of deflations S is strongly thick, when it satisfies
the condition

(#) If in the commutative diagram

L̃
s̃

−−−→ K

j′
y cart

y j

L
s

−−−→ M
t

−−−→ K

(3)

with cartesian square t ◦ j = idN and morphisms t and s̃ belong to S, then t ◦ s ∈ S.

Indeed, if the condition (#) holds, then, by 1.6.1(ii), the class S⊼ is multiplicative.

(e) Evidently, the class of deflations EX is strongly thick iff EX ◦ E
⊼

X = E⊼

X .
(f) It follows from 4.1.2 that the preorder Ms(X, ĒX) of strongly thick systems is

closed under arbitrary intersections and filtered unions.

4.2.2. Note. One can see that the condition (#) from 4.2.1(d) holds for EX , if the
class EX is left divisible, because (t ◦ s) ◦ j′ = s̃ ∈ EX (see the diagram (3) above).
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In general, the condition (#) provides an effective tool for finding if a system is stable
or not. The following assertion shows that in most of cases of interest the condition (#)
is a criterium.

4.2.3. Proposition. Suppose that the class EX of deflations satisfies the condition
(#) (say, it is left divisible). Let S be a stable class of deflations invariant under pull-backs.
Then the following conditions are equivalent:

(a) S⊼ ◦ S⊼ ⊆ S⊼,
(b) S satisfies the condition (#).

Proof. (a)⇒ (b). The morphism t ◦ s in the condition (#) belongs to the intersection
of S ◦S⊼ and EX due to the fact that the arrows s̃ and t in the condition (#) are deflations
and EX satisfies (#). Therefore, if the condition (b) holds and S is stable, t ◦ s belongs to
S⊼ ∩ EX = S.

The implication (b)⇒ (a) follows from 1.6.1(ii).

4.2.4. Proposition. Suppose that E⊼

X ⊆ W
⊼

X ◦ EX . Then a strongly stable divisible
in EX system of deflations S is strongly thick iff it is multiplicative.

In other words, a thick system S is strongly thick iff S = EX ∩ (S ◦W⊼

X).

Proof. By 4.2.1(b), any strongly thick system is multiplicative.
The claim is that any multiplicative strongly stable right divisible in EX class of

deflations satisfies the condition (#).

In fact, the inclusion E⊼

X ⊆ W
⊼

X ◦ EX allows to replace the diagram in (#) by the
diagram

L̃
s̃1
−−−→ K1

w̃
−−−→ K

j′
y cart

yj1 cart
y j

L
s1
−−−→ M1

w
−−−→ M

t
−−−→ K

(4)

with cartesian squares, where w̃ ◦ s̃1 = s̃, w ◦ s1 = s, s1 ∈ EX , and w ∈ W⊼

X .
Since the system of deflations EX is left divisible in EX , the morphism w̃ is a deflation

(hence it belongs toWX thanks to the stabiligy ofWX). The composition t◦w is a deflation,
because, by hypothesis, the system of deflations satisfies (#) and both w̃ and t are deflations

(look at the diagram (3) ignoring its left square). The equality EX ∩ (S ◦W
⊼

X) = S implies
that t ◦ w ∈ S. Since the system S is right divisible in EX , the arrow s̃ belongs to S,
whence s1 ∈ EX ∩ S

⊼ = S (thanks to the stability of S). Finally, the multiplicativity of S
implies that t ◦ s = (t ◦w) ◦ s1 ∈ S.

4.2.5. Note. For any class of arrows S invariant under pull-backs and such that
WX ◦S = S, there is the inclusionW⊼

X ◦S ⊆ S
⊼. In particular,W⊼

X ◦EX ⊆ E⊼

X . Therefore,

the inclusion E⊼

X ⊆ W
⊼

X ◦ EX used in 4.2.4 is equivalent to the equality E⊼

X =W⊼

X ◦ EX .
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The equality E⊼

X = W⊼

X ◦ EX holds when EX coincides with the class of all strict
epimorphisms of the category CX , in CX , there exist 2-coimages of arbitrary arrows (see

2.0.1(d)&(e)), and W⊼

X contains all monomorphisms of CX (say, CX has initial objects).

Indeed, in this case W⊼

X ◦ EX (hence E⊼

X) coincides with HomCX .

4.3. Strongly closed systems.

4.3.1. The strong closure. For a class of deflations S of (CX , ĒX), let Rs
S denote

the set of all systems T divisible in EX such that T = EX ∩ (T ◦W
⊼

X) and T ∩S⊥ =WX .
We denote by S† the union of all T ∈ Rs

S .

The construction S 7−→ S† has the properties similar to those of the closure S 7−→ S−.

4.3.2. Proposition. (a) For any class of deflations S, the system S† belongs to Rs
S

(hence it is the largest element of Rs
S).

(b) (S†)† = S†.
(c) The system S† is closed under the composition.

(d) The system S† is stable (hence strongly stable), that is S† = EX ∩ (S†)⊼.

Proof. (a) The assertion follows from 4.1.2(b).

(b) It follows that Rs
S† ⊆ Rs

S . On the other hand, S† ∈ Rs
S† . Hence the equality.

(c) The argument is similar to that of 2.6.2(c).

(d) If T ∈ Rs
S , then the associated stable system, EX ∩ T

⊼, belongs to Rs
S .

In fact, by 4.1.2(a), the system EX ∩ T
⊼ is strongly stable. On the other hand, the

equality S⊥ = (S⊥)⊼ implies that

(EX ∩ T
⊼) ∩ S⊥ = EX ∩ T

⊼ ∩ (S⊥)⊼ = EX ∩ (T ∩ S⊥)⊼ = EX ∩W
⊼

X =WX .

This shows that EX ∩ T
⊼ belongs to Rs

S . In particular, EX ∩ (S
†)⊼ belongs to Rs

S , which
implies the stability of S†.

4.3.3. Observations. (a) One can see that S† is the largest divisible in EX strongly

stable subsystem of S−. So that S− = S† iff EX ∩ (S− ◦W⊼

X) = S−.
It follows from 4.1.1 that if the class of deflations EX is left divisible (in the sense of

4.1.1) and S− is a topological system, then S− = S†.
In particular, S− = S† in the case of an abelian category (CX , ĒX).
(b) Since, by hypothesis, the class WX of weak equivalences is strongly stable and, by

2.6.2.1, W−
X =WX , it follows that WX =W†

X .

4.3.4. Proposition. Let {Si | i ∈ J} be a finite set of right divisible in EX systems

of deflations of (CX ,EX). Then
⋂

i∈J

S†i =
( ⋂

i∈J

Si
)†
.
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Proof. The argument is similar to the proof of 2.6.4(b).

4.3.5. Strongly closed systems of deflations. We call a class S of deflations of
(CX , ĒX) a strongly closed system if S = S†. Strongly closed systems of (CX , ĒX) form a
preorder with respect to the inclusion, which we denote by Ses(X,EX).

By 4.3.2, strongly closed systems are strongly stable and multiplicative; and, by defi-
nition, they are divisible in EX . Therefore, every strongly closed system is semitopological.

4.3.6. Proposition. (a) The intersection of any set of strongly closed systems of
deflations of (CX ,EX) is a strongly closed system.

(b) Suppose that E⊼

X = W⊼

X ◦ EX . Then every strongly closed system of deflations is
strongly thick.

Proof. (a) The argument is similar to that of 2.6.4(a).
(b) The assertion follows from the multiplicativity of strongly closed systems (see

4.3.2(c)) and 4.2.4.

4.3.7. The lattice of strongly closed systems. Fix a svelte right exact category
(CX ,EX). For any pair Σ1, Σ2 of strongly closed systems of deflations, we denote by
Σ1 ⊔ Σ2 the smallest strongly closed system containing Σ1 and Σ2.

4.3.7.1. Proposition. Let {Si | i ∈ J} be a finite set of strongly closed systems of

deflations of (CX ,EX). Then Σ ⊔
( ⋂

i∈J

Si
)
=

⋂

i∈J

(Σ ⊔ Si) for any strongly closed system of

deflations Σ.

Proof. There are the equalities

⋂

i∈J

(Σ ⊔ Si) =
⋂

i∈J

(Σ ∪ Si)
† =

( ⋂

i∈J

(Σ ∪ Si)
)†

=
(
(
⋂

i∈J

Si) ∪ Σ
)†

=
( ⋂

i∈J

Si
)
⊔ Σ.

Here the second equality follows from 2.6.4.

4.4. Spectra. For every class of deflations S, we denote by Sst the intersection of all
semitopologizing systems properly containing S and by Ssc the intersection of all strongly
stable thick systems properly containing the class S.

We denote by Spec1,1sc (X, ĒX) the preorder (with respect to ⊇) formed by those
strongly closed systems of deflations Σ for which Σsc 6= Σ, or, equivalently, the intersection

Σsc
def
= Σsc ∩ Σ⊥ is a non-trivial system of deflations.
Similarly, we define the spectrum Spec1,1st (X, ĒX) as the preorder formed by all

strongly closed systems Σ for which Σst 6= Σ, or, what is the same, the system of de-
flations

Σst
def
= Σst ∩ Σ⊥
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is non-trivial. It follows from the definitions that the spectrum Spec1,1st (X, ĒX) is a
subpreorder of the spectrum Spec1,1st (X, ĒX).

The following useful fact is a direct analog uf 3.7.1.

4.4.1. Proposition. Let Σ ∈ Spec1,1sc (X, ĒX). For any finite family {Si | i ∈ J} of

right divisible in EX systems of deflations, Si * Σ for all i ∈ J iff
⋂

i∈J

Si * Σ.

Proof. The argument below is similar to the proof of 3.7.1.

By 4.3.4,
⋂

i∈J

S†i =
( ⋂

i∈J

Si
)†
, and by 4.3.7.1, Σ ⊔

( ⋂

i∈J

S†i
)
=

⋂

i∈J

(Σ ⊔ S†i ). Therefore,

Σ ⊔
( ⋂

i∈J

Si
)†

=
⋂

i∈J

(Σ ⊔ S†i ). (5)

If Si * Σ for all i ∈ J , then each of the strongly closed systems S†i ⊔ Σ contains
Σ properly. Since Σ is an element of the spectrum Spec1,1sc (X, ĒX), the intersection of

S†i ⊔ Σ, i ∈ J, contains in Σ properly. Then it follows from the equality (5) that the

intersection
⋂

i∈J

Si is not contained in Σ.

5. Strongly ’exact’ functors and localizations.

5.0. Strongly ’exact’ functors. Let (CX , ĒX) = (CX ,EX ,WX) and (CY ,EY ,WY )
be right exact categories with weak equivalences. Recall that an ’exact’ functor from
(CY , ĒY ) to (CX , ĒX) is given by a functor CY −→ CX which maps deflations to deflations,
weak equivalences to weak equivalences and preserves pull-backs of deflations.

We say that an ’exact’ functor (CY , ĒY )
F
−→ (CX , ĒX) is strongly ’exact’ if any carte-

sian square

M̃
f̃

−−−→ Ñ

s′
y cart

y s

M
f

−−−→ N

whose left vertical arrow is a deflation can be completed by a pull-back of this deflation

L̃
ξ̃

−−−→ M̃
f̃

−−−→ Ñ

s′′
y cart s′

y cart
y s

L
ξ

−−−→ M
f

−−−→ N
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such that F maps the outer cartesian square

L̃
f̃◦ξ̃
−−−→ Ñ

s′′
y cart

y s

L
ξ◦f
−−−→ N

to a cartesian square.

In particular, any functor CY
F
−→ CX which maps deflations to deflations and pre-

serves cartesian squares having at least one deflation among its arrows is strongly ’exact’.

5.0.1. Strong ’exactness’ and preserving kernels. This seemingly technical
notion has a transparent meaning in the case the category CX has initial objects and
morphisms to initial objects are deflations. In this case,

an ’exact’ functor (CY , ĒY )
F
−→ (CX , ĒX) is strongly exact iff the functor CY

F
−→ CX

preserves kernels of arrows.

5.1. Proposition. Let (CX , ĒX)
F
−→ (CY , ĒY ) be a strongly ’exact’ functor.

(a) F (S⊼) ⊆ F (S)⊼ for any class of deflations S of the category CX .

In particular, F (W⊼

X) ⊆ F (WX)⊼ ⊆ W⊼

Y and F (E⊼

X) ⊆ F (EX)⊼ ⊆ E⊼

Y .
(b) The map T 7−→ EX ∩ F

−1(T ) transfers stable, strongly stable, thick and semi-
topologizing systems of deflations to systems of deflations of the same kind.

(c) Suppose that one of the following conditions holds:
(i) If in the commutative diagram

L̃
s̃

−−−→ K

j′
y cart

y j

L
s

−−−→ M
t

−−−→ K

in CX or CY the square is cartesian, t ◦ j = idN and morphisms t and s̃ are deflations,
then the composition t ◦ s is a deflation.

(ii) E⊼

X =W⊼

X ◦ EX .
Then the map T 7−→ EX ∩ F

−1(T ) preserves strongly thick systems.

Proof. (a) The inclusions follow from definitions.

(b1) Suppose that T is a class of arrows of CY satisfying T = EY ∩ (T ◦W
⊼

Y ). Then

F (EX ∩ ((EX ∩ F
−1(T )) ◦W⊼

X)) ⊆ EY ∩ F (F
−1(T )) ◦W⊼

X) ⊆

EY ∩ (T ◦ F (W⊼

X)) ⊆ EY ∩ (T ◦W⊼

Y ) = T ,
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which implies the inclusion

EX ∩ ((EX ∩ F
−1(T )) ◦W⊼

X) ⊆ EX ∩ F
−1(T ).

Since the inverse inclusion holds (for any class of arrows T ), we obtain the equality

EX ∩ ((EX ∩ F
−1(T )) ◦W⊼

X) = EX ∩ F
−1(T ).

(b2) Similarly with the stability: if T = EY ∩ T
⊼, then

F (EX ∩ (EX ∩ F
−1(T ))⊼) = F (EX ∩ (E⊼

X ∩ (F−1(T ))⊼) =

F (EX ∩ (F−1(T ))⊼) ⊆ EY ∩ F ((F
−1(T ))⊼) ⊆ EY ∩ T

⊼ = T ,

which implies the inclusions

EX ∩ F
−1(T ) ⊆ EX ∩ (EX ∩ F

−1(T ))⊼ ⊆ EX ∩ F
−1(T )

equivalent to the stability of the class EX ∩ F
−1(T ).

(b3) The fact that the map T 7−→ EX ∩ F
−1(T ) respects strong stability implies,

obviously, that it maps semitopologizing systems to semitopologizing systems.
(c1) Suppose that the class of deflations EX satisfies the condition (i). Let S be a

stable class of deflations of (CY , ĒY ) invariant under pull-backs and satisfying the condition
(#) If in the commutative diagram

L̃
s̃

−−−→ K

j′
y cart

y j

L
s

−−−→ M
t

−−−→ K

(1)

with cartesian square t ◦ j = idN and morphisms t and s̃ belong to S, then t ◦ s ∈ S.
Then the class EX ∩ F

−1(S) satisfies this condition.
In fact, let (1) be a diagram whose square is cartesian and s̃ and t are arrows from

EX ∩ F
−1(S). Since the functor F is strongly ’exact’ and the arrow s̃ in the diagram (1)

is a deflation, there exists a pull-back of s̃ along some arrow K
γ
−→ K such that F maps

the pull-back of L
s
−→M along K

j◦γ
−→M to a pull-back of F (s) along F (j ◦ γ).

By hypothesis, the class of deflations EX satisfies the condition (#). So that the
composition t◦s is a deflation. Taking a pull-back of the deflation t◦s along the morphism
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K
γ
−→ K, we obtain the diagram

L̃
ŝ

−−−→ K

λ′
y cart

y λ

L
s̄

−−−→ M
t̄

−−−→ K

γ′′
y cart

y γ′ cart
y γ

L
s

−−−→ M
t

−−−→ K

(2)

built of cartesian squares, where the morphism K
λ
−→ M is uniquely determined by the

equalities γ′ ◦λ = j ◦ γ and t̄ ◦λ = idK. Since the functor F is ’exact’ and the arrows t and
t ◦ s are deflations, F preserves pull-backs of this arrows which implies that it maps the
lower two cartesian squares of the diagram (2) to cartesian squares. Since, by construction,

F preserves the pull-back of the arrow L
s
−→ M along the morphism γ′ ◦ λ = j ◦ γ, it

follows that F maps the upper square of (2) to a cartesian square as well. By the condition
(#), F (̄t ◦ s̄) = F (̄t) ◦ F (s̄) ∈ S, that is t̄ ◦ s̄ ∈ F−1(S) ∩ EX . Since, by hypothesis, the
class S is stable and t̄ ◦ s̄ is a pull-back of the deflation t ◦ s, it follows from the assertion
(b) that t ◦ s ∈ F−1(S) ∩ EX .

(c2) Suppose that the condition (i) holds, that is the both classes of deflations, EX
and EY , satisfy the condition (#). The fact that EY satisfies (#) implies, by 4.2.3, that
any class S of deflations of (CY , ĒY ) invariant under pull-backs and such that S⊼ is mul-
tiplicative satisfies the condition (#). If, in addition, the class S is stable, then, by (c1)
above, the class EX ∩F

−1(S) satisfies the condition (#), which implies the multiplicativity
of the class (EX∩F

−1(S))⊼. Since, by (b), the map T 7−→ EX∩F
−1(T ) preserves strongly

stable systems, we obtain that it preserves strongly thick systems.
(c3) If E⊼

X = W⊼

X ◦ EX , then, by 4.2.4, a strongly stable divisible in EX system is
strongly thick iff it is multiplicative. Evidently, the T 7−→ EX ∩ F

−1(T ) maps multiplica-
tive systems to multiplicative systems. Therefore, it maps strongly stable multiplicative
systems (in particular, strongly thick systems) to strongly thick systems.

5.2. Proposition. Let (CY , ĒY )
F
−−−→ (CZ , ĒZ) be a strongly ’exact’ functor. Set

EY,F = ΣF ∩ EY = {s ∈ EY | F (s) ∈ Iso(CZ)}.
(a) Suppose that the class of deflations EY satisfies the condition (i) of 5.1. Then the

class (EY,F )
⊼ is multiplicative.

(b) If all deflations of (CZ , ĒZ) having a trivial kernel are isomorphisms, then EY,F
is a stable class, that is EY,F = (EY,F )

⊼ ∩ EY .

Proof. (a) It suffices to show that if L
s
−→ M and M

t
−→ N are morphisms of CX

such that s ∈ E⊼

Y,F and t ∈ EY,F , then t ◦ s ∈ E⊼

Y,F . Since s ∈ E⊼

Y,F and the functor F is
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strongly ’exact’, there is a cartesian square

L̃
s̃

−−−→ K

j′
y cart

y j

L
s

−−−→ M

(3)

such that s̃ ∈ EY,F and the functor F maps it to a cartesian square. Taking pull-back of

L
t◦s
−→ N along the morphism K

t◦j
−→ N , we obtain a diagram

L̃
s̃

−−−→ K

β′
y cart

y β

L
s̄

−−−→ M
t̄

−−−→ K

γ′′
y cart

y γ′ cart
y γ = t ◦ j

L
s

−−−→ M
t

−−−→ K

(4)

built of cartesian squares with the arrow K
β
−→M uniquely determined by the equalities

t̄ ◦ β = idK, γ
′ ◦ β = j (and with γ′′ ◦ β′ equal to the left vertical arrow j′ in the cartesian

square (3)). Since M
t
−→ K is a deflation, the functor F , being ’exact’, maps the right

cartesian square of the diagram (4) to a cartesian square. In particular, t̄ ∈ EY,F . By
construction, F transfers the square (3) to a cartesian square, which implies that it maps
the upper square of the diagram (4) to a cartesian square. The equality t̄ ◦ β = idK
together with the fact that F (̄t) is an isomorphism, implies that F (β) is an isomorphism.
Therefore, F (β′) is an isomorphism. Since s̃ ∈ EY,F by construction, we obtain that F (s̄) is
an isomorphism. So that F (̄t ◦ s̄) is an isomorphism. By hypothesis, the class of deflations
EY satisfies the condition (i) of 5.1, which implies that t̄ ◦ s̄ is a deflation. Since t̄ ◦ s̄ is a

pull-back of t ◦ s, the latter belongs to E⊼

Y,F .

(b) For any strongly ’exact’ functor (CY , ĒY )
F
−−−→ (CZ , ĒZ) and any class of

deflations S of (CY , ĒY ), we have, by 5.1(a), the inclusions

F (S⊼) ⊆ (F (S))⊼ and F (S⊼ ∩ EY ) ⊆ (F (S))⊼ ∩ EZ .

So that if S ⊆ EY,F = {s ∈ EY | F (s) ∈ Iso(CZ)}, then F (S⊼ ∩ EY ) is contained in the

class E⊛
Z

def
= Iso(CZ)

⊼ ∩EZ of deflations with a trivial kernel. Therefore, if E⊛
Z = Iso(CZ),

then S ⊆ S⊼ ∩ EY ⊆ ΣF ∩ EY = EY,F , hence EY,F is a stable class of deflations.
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5.3. ’Exact’ and strongly ’exact’ localizations. An ’exact’ (resp. strongly

’exact’) functor (CY , ĒY )
q∗

−−−→ (CX , ĒX) will be called an ’exact’ (resp. strongly ’exact’)

localization, if CY
q∗

−→ CX is a localization and the essential image of EY (resp. the essential
image of WY ) coincides with EX (resp. with WX).

5.3.1. Note. Since CY
q∗

−→ CX is a localization functor, it is determined by the class
of arrows

Σq∗
def
= {s ∈ HomCY | q

∗(s) ∈ Iso(CX)}.

The fact that (CY , ĒY )
q∗

−→ (CX , ĒX) is a ’exact’ localization means that the class of

deflations EY,q∗
def
= Σq∗ ∩ EY is invariant under pull-backs.

5.4. Strongly ’exact’ saturation. Every strongly ’exact’ functor

(CY , ĒY )
F
−−−→ (CZ , ĒZ)

factors through a strongly ’exact’ localization (CY , ĒY )
q∗

−−−→ (CX , ĒX) uniquely deter-
mined by the equality Σq∗

F
= ΣF . This implies that for any class of arrows S of a right

exact category (CY , ĒY ), there exists the smallest strongly ’exact’ localization q∗S which
maps all arrows of S to isomorphisms.

In fact, we consider the family ΞS of all strongly ’exact’ functors from (CY , ĒY )
which map all arrows of S to isomorphisms. Since the category CY is svelte, the family
{ΣF | F ∈ ΞS} is a set. Therefore, there is a subset Ξ̃S of ΞS such that {ΣF | F ∈

Ξ̃S} = {ΣF | F ∈ ΞS}. The set of ’exact’ functors Ξ̃S defines an ’exact’ functor ΦS to the

product of the corresponding right exact categories. Evidently, ΣΦS
=

⋂

F∈Ξ̃S

ΣF .

We denote Σq∗
S
= ΣΦS

by S̄ and call it the strongly ’exact’ saturation of S.

5.5. Saturated multiplicative classes of deflations. We call a class of deflations
S of a right exact category with weak equivalences (CX , ĒX) saturated if S̄ ∩ EX = S.

It follows that, for any class of deflations S, the intersection S̄ ∩ EX is the smallest
saturated class of deflations containing S.

Since the localization at S̄ is an ’exact’ functor, in particular it maps deflations to
deflations, the class S̄ is left and right divisible in EX in the sense that if s ◦ e ∈ S̄ and e
is a deflation, then both s and e are elements of S. In particular, the system of deflations
S̄ ∩ EX is divisible in EX .

5.5.1. Proposition. (a) Suppose that the class of deflations EX satisfies the condi-
tion (i) of 5.1. Then, for any saturated system S of deflations of (CX , ĒX), the class S⊼

is multiplicative.
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(b) If the system S is stable (that is S = S⊼ ∩EX), then deflations with trivial kernel
of the quotient right exact category (CS̄−1X , ĒS̄−1X) are isomorphisms.

Proof. (a) Let (CX , ĒX)
q∗

−→ (CZ , ĒZ) be the localization at the saturation S̄ of S.
Since, by definition of S̄, the functor q∗ is strongly ’exact’, it follows from 5.2 that the
system S⊼ is multiplicative.

(b) Let M
s′

−→ N be a deflation of (CZ , ĒZ) with a trivial kernel. The latter means
that there exists a cartesian square

M
t′

−−−→ N

f′
y cart

y f

M
s′

−−−→ N

(1)

whose upper horizontal arrow is an isomorphism. Since q∗ is an ’exact’ localization functor,
every arrow of EZ is isomorphic to the image of an arrow of EY , there is a deflation

M
s
−→ N and an arrow Ñ

φ
−→ N such that the pair of arrows q∗(M

s
−→ N

φ
←− Ñ) is

isomorphic to the pair of arrows M
s′

−→ N
f
←− N. Therefore, the functor q∗ maps the

cartesian square

M̃
s̃

−−−→ Ñ

φ′
y cart

y φ

M
s

−−−→ N

(2)

to a square isomorphic to the cartesian square (1). In particular, s̃ is a deflation which
q∗ maps to an isomorphism; that is s̃ ∈ S. Since, by hypothesis, S is stable, the lower

horizontal arrow of (2), M
s
−→ N, belongs to S too. Therefore, the arrow M

s′

−→ N in the
diagram (1) is an isomorphism.

5.6. Stable saturated classes. For a svelte right exact category with weak equiv-
alences (CX , ĒX) = (CX ,EX ,WX), we denote by Ms(X,EX) the preorder (with respect
to the inclusion) formed by stable saturated classes of deflations of (CX , ĒX) and by

M̃s(X,EX) the (isomorphic to Ms(X,EX)) preorder formed by the strongly ’exact’ satu-
rations {S̄ | S ∈Ms(X,EX)} of these classes.

It follows that every stable saturated class of deflations containing the class WX of
weak equivalences is thick. Notice that, since any saturated class of deflations is stable
and contains all isomorphisms, each element of Ms(X, ĒX) automatically contains WX , if
the latter consists of deflations with trivial kernels.
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6. Functorial properties of spectra.

6.1. Proposition. Let (CX , ĒX)
u∗

−−−→ (CU , ĒU ) be an ’exact’ localization having
the following properties:

(1) Σu∗ ⊆ (Σu∗ ∩ EX)⊼,

(2) Σu∗ is closed under push-forwards of deflations along arrows of Σu∗ ,

(3) If M
e
−→ L

t
←− N are deflations such that the arrows u∗(e) = u∗(t) ◦ φ for some

isomorphism φ, then there exists a pull-back M̃
ẽ
−→ L̃

t̃
←− Ñ of these arrows along some

morphism L̃ −→ L and a commutative diagram

M
s

−−−→ M̃

s′
y

y ẽ

Ñ
t̃

−−−→ L̃

where s, s′ are arrows of Σu∗ and s is a deflation.

Let Σ be a system of deflations containing EX ∩ Σu∗ . Then for any strongly stable
system T of deflations of (CX , ĒX), there is the equality

T ∩ Σ⊥ = EX ∩ u∗
−1

([u∗(T ∩ Σ⊥)]) ∩ Σ⊥. (2)

Proof. The inclusion T′ ⊆ u∗
−1

([u∗(T′)]) for any class of arrows T′ imply, in partic-
ular, that

T ∩ Σ⊥ ⊆ EX ∩
(
u∗

−1

([u∗(T ∩ Σ⊥)]) ∩ Σ⊥. (3)

The claim is that the inverse inclusion holds.

In fact, let L
ξ
−→ M be an element of EX ∩ u∗

−1

([u∗(T ∩ Σ⊥)]) ∩ Σ⊥. This means
that ξ ∈ EX ∩ Σ⊥ and there exists an isomorphism u∗(ξ) ≃ u∗(t) for some t ∈ T ∩ Σ⊥.
This isomorphism is represented by a diagram

L
ξ

−−−→ M

σ
x

x γ

L′ M′

σ′
y

y γ′

L
t

−−−→ M



Geometry of Right Exact ’Spaces’. 229

whose vertical arrows belong to Σu∗ and, in addition, the upper vertical arrows, σ and γ
are deflations. Using the fact that ξ and t are deflations, we can form two cartesian squares

L
ξ

−−−→ M L′
t′

−−−→ M′

γ̃
x cart

x γ and γ̃′
y cart

y γ′

L
ξ′

−−−→ M′ L
t

−−−→ M

whose vertical arrows belong to Σu∗ and, besides, all arrows of the left square are deflations.

The arrow L′ t′

−→ M′ belongs to T ∩ Σ⊥, because t ∈ T ∩ Σ⊥ and both T and Σ⊥

are base change invariant. One can see that the arrows u∗(ξ′) and u∗(t′) are isomorphic.

By hypothesis, there exists a pull-back L̃′ t̃′

−→ M̃′ ξ̃
←− L̃ of these two arrows along some

morphism M̃′ −→M′ and an isomorphism between them which can be represented by a
commutative diagram

L′′
s

−−−→ L̃

s′
y

y ξ̃

L̃′
t̃′

−−−→ M̃′

(4)

whose upper horizontal and left vertical arrows belong to Σu∗ and both horizontal and the
right vertical arrows are deflations. In particular, there exists a kernel pair

Ker2(s) = L̃
∏

s,s

L̃

p1

−−−→
−−−→
p2

L̃.

of the morphism L̂
s
−→ L. Since s is a deflation, there exists a cocartesian square

L̃
s

−−−→ L

s′
y cocart

y s′′

L′
e

−−−→ M′

whose arrows belong to Σu∗ . It is easy to see that the arrow L′ e
−→M′ is the cokernel of

the pair

Ker2(s)

s′p1

−−−→
−−−→

s′p2

L′.

It follows from the commutativity of the diagram (4) that t̃′ = t̄ ◦ e and ξ̃ = t̄ ◦ s′′

for a uniquely determined morphism M′ t̄
−→ M′. Since t′ ∈ T and the system T is left
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divisible in EX , the morphism t̄ belongs to T. This shows that an appropriate pull-back
of the morphism ξ belongs to T ◦ Σu∗ , that is ξ ∈ (T ◦ Σu∗)⊼. So that we obtained the

inclusion u∗
−1

([u∗(T)]) ⊆ (T ◦ Σu∗)⊼ which implies the inclusion

EX ∩
(
u∗

−1

([u∗(T)])
)
∩ Σ⊥ ⊆ EX ∩

(
(T ◦ Σu∗)⊼

)
∩ Σ⊥. (5)

By 2.3.1, Σ⊥ = (Σ⊥)⊼. Therefore, we have

EX ∩ (T ◦ Σu∗)⊼
)
∩ Σ⊥ = EX ∩ (T ◦ Σu∗)⊼ ∩ (Σ⊥)⊼ =

EX ∩ ((T ◦ Σu∗) ∩ Σ⊥)⊼ = EX ∩ ((T ◦ Σu∗) ∩ Σ⊥)⊼.

Since Σ⊥ is right divisible,

(T ◦ Σu∗) ∩ Σ⊥ = T ◦ (Σu∗ ∩ Σ⊥) ∩ Σ⊥. (6)

By hypothesis, Σu∗ ⊆ (Σu∗ ∩ EX)⊼. Therefore,

Σu∗ ∩ Σ⊥ ⊆ (Σu∗ ∩ EX)⊼ ∩ Σ⊥ ⊆ Σ⊼ ∩ Σ⊥ ⊆ (Σ ∩ Σ⊥)⊼ =W⊼

X . (7)

The last inclusion, Σ⊼ ∩Σ⊥ ⊆ (Σ∩Σ⊥)⊼, is due to the fact that if s is an element of the
intersection Σ⊼ ∩ Σ⊥, then some pull-back of s is an element of Σ ∩ Σ⊥ =WX .

Applying the inclusion Σu∗ ∩ Σ⊥ ⊆ W⊼

X from (7) to (6), we obtain the inclusion

(T ◦ Σu∗) ∩ Σ⊥ ⊆
(
T ◦W⊼

X

)
∩ Σ⊥. (8)

It follows from (8) that

(T ◦ Σu∗)
)
∩ Σ⊥ ⊆ (T ◦W⊼

X) ∩ Σ⊥. (9)

Combining all above (starting with (5)) and using the stability of T and the equality

EX ∩ (T ◦W⊼

X) = T , we obtain

EX ∩
(
u∗

−1

([u∗(T)])
)
∩ Σ⊥ ⊆ EX ∩ (T ◦W⊼

X)⊼ ∩ Σ⊥ =

EX ∩ E⊼

X ∩ (T ◦W⊼

X)⊼ ∩ Σ⊥ = EX ∩ (EX ∩ (T ◦W⊼

X))⊼ ∩ Σ⊥ =

(EX ∩ T
⊼) ∩ Σ⊥ = T ∩ Σ⊥

whence the equality (2).
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6.2. Proposition. Let (CX , ĒX)
u∗

−→ (CU , ĒU ) be a strongly ’exact’ localization
satisfying the conditions (1)–(3) of 6.1 and such that EX ∩ Σu∗ is a stable system.

Then, for any Q ∈ Spec1,1sc (X, ĒX) such that Σu∗ ∩ EX ⊆ Q, the system [u∗(Q)]
belongs to the spectrum Spec1,1sc (U, ĒU ). If Q ∈ Spec1,1st (X, ĒX), then [u∗(Q)] belongs to
the spectrum Spec1,1st (U, ĒU ).

Proof. Q ∈ Spec1,1sc (X, ĒX) and EX∩Σu∗ ⊆ Q. Let T be a strongly stable thick system
of deflations of (CU , ĒU ) properly containing [u∗(Q)]. Since EU = [u∗(EX)], this means

precisely that u∗
−1

(T) contains Q properly, hence it contains Qsc. So that [u∗(Qsc)] ⊆ T.
On the other hand, [u∗(Q)] ( [u∗(Qsc)], because, by 6.1,

EX ∩ u∗
−1

([u∗(Q ∩ Q⊥)]) ∩ Q⊥ = Q ∩Q⊥ =WX ,

while
EX ∩ u∗

−1

([u∗(Qsc ∩ Q⊥)]) ∩ Q⊥ = Qsc ∩ Q⊥ def
= Qsc

and, since Q ∈ Spec1,1sc (X, ĒX), the system Qsc is non-trivial.
Same argument (with T a semitopological system) shows that [u∗(Q)] ∈ Spec1,1st (U, ĒU )

for any Q ∈ Spec1,1st (X, ĒX).

6.3. Covers. We call a set {(Ui, ĒUi)
ui−→ (U, ĒU ) | i ∈ J} of ’exact’ localizations

a cover of (X, ĒX) if EX ∩
( ⋂

i∈J

Σu∗
i

)
=WX . Below we consider only covers which have

finite subcovers whose elements satisfy the conditions of 6.1.

6.4. Proposition. Let U = {(Ui, ĒUi)
ui−→ (X, ĒX) | i ∈ J} be a cover of the

right exact ’space’ (X, ĒX) by strongly ’exact’ localizations which has a finite subcover

U = {(Ui, ĒUi)
ui−→ (X, ĒX) | i ∈ I} with the following properties:

(1) Σu∗
i
⊆ (Σu∗

i
∩ EX)⊼,

(2) Σu∗
i
is closed under push-forwards of deflations along arrows of Σu∗

i
,

(3) If M
e
−→ L

t
←− N are deflations such that the arrows u∗i (e) = u∗i (t) ◦ φ for some

isomorphism φ, then there exists a pull-back M̃
ẽ
−→ L̃

t̃
←− Ñ of these arrows along some

morphism L̃ −→ L and a commutative diagram

M
s

−−−→ M̃

s′
y

y ẽ

Ñ
t̃

−−−→ L̃

where s, s′ are arrows of Σu∗
i
and s is a deflation.
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Then the following conditions on a Serre system Σ of deflations of (CX , ĒX) are
equivalent:

(a) Σ ∈ Spec1,1st (X, ĒX),
(b) Σ ∈ Spec1,1tc (X, ĒX) and [u∗i (Σ)] ∈ Spec1,1st (Ui, ĒUi) whenever EX ∩ Σu∗

i
⊆ Σ.

Proof. The implication (a)⇒ (b) follows from 6.2.

(b) ⇒ (a). Fix a finite subcover UI = {(Ui, ĒUi)
ui−→ (X, ĒX) | i ∈ I} of the cover

U. Set IΣ = {j ∈ I | EX,u∗
j
⊆ Σ}. Let Σ be an element of Spec1,1M (X, ĒX) such that

[u∗i (Σ)] ∈ Spec1,1t (Ui, ĒUi) for every i ∈ IΣ. The claim is that Σ ∈ Spec1,1t (X, ĒX).

For every i ∈ IΣ, we denote by S̃i the intersection EX ∩ u∗
−1

i ([u∗i (Σ)]
∗) ∩ Σ⊥.

Recall that Σ⊥ is the largest right divisible system having the trivial intersection with
Σ (cf. 2.2). Since Σ is a Serre system of deflations, the right divisible system of deflations

S̃i is non-trivial, and S̃i * Σ. By 4.4.1, this implies that S̃ =
⋂

i∈IΣ

S̃i is not contained in

Σ. Since S̃ ⊆ Σ⊥, this means precisely that S̃ is a non-trivial system.
We consider each of the two cases: IΣ = I and IΣ 6= I.

(i) Suppose that IΣ = I. Set S̃ =
⋂

i∈IΣ

S̃i. The claim is that 〈S̃〉 = Σ which im-

plies that Σ ∈ Spec1,1st (X, ĒX). The equality 〈S̃〉 = Σ means precisely that if T is a

semitopologizing system of deflations of (X, ĒX) such that S̃ * T, then T ⊆ Σ.

Since S̃ ⊆ Σ⊥, the fact S̃ * T is equivalent to S̃ * T ∩ Σ⊥.
It follows from 6.1 that

T ∩ Σ⊥ = EX ∩ u∗
−1

i ([u∗i (T ∩ Σ⊥)]) ∩ Σ⊥ and

S̃ = S̃ ∩ Σ⊥ = EX ∩ u∗
−1

i ([u∗i (S̃)]) ∩ Σ⊥
(2)

for every i ∈ I. The equality (2) implies that if S̃ * T ∩ Σ⊥, then [u∗i (S̃)] * [u∗i (T)]. But,

then [u∗i (T)] ⊆ [u∗i (Σ)], whence T ⊆ u∗
−1

i ([u∗i (Σ)]) ∩ EX = Σ.

(ii) Suppose now that IΣ 6= I. Set IΣ = I − IΣ and EΣ
X =

⋂

i∈IΣ

EX,u∗
i
. Since, by the

definition of IΣ, EX,u∗
i
* Σ for all i ∈ IΣ, it follows from 4.4.1 that EΣ

X * Σ.

Set S = S̃ ∩ EΣ
X . The claim is that 〈S〉 = Σ.

Indeed, if T is a semitopologizing system of deflations of (X, ĒX) such that S * T,
then it follows from the argument (i) above that [u∗i (S)] * [u∗i (T)] for some i ∈ I. Notice
that this i belongs to IΣ, because S ⊆ EΣ

X , hence u∗i (S) ⊆ Iso(CUi) ⊆ [u∗i (T)] for every
i ∈ IΣ. Therefore, the end of the argument of (i) applies.

Similar fact (but, with additional assumptions) holds for the spectrum Spec1,1t (X, ĒX).
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6.5. Proposition. Let (CX , ĒX) = (CX ,EX ,WX) be a svelte right exact category

with a stable class of weak equivalences (that is WX = W⊼

X ∩ EX) and a left divisible
and weakly right divisible class of deflations (conditions 2.0(c) and 2.0(d)). Let U =

{(Ui, ĒUi)
ui−→ (X, ĒX) | i ∈ J} be a cover of the right exact ’space’ (X, ĒX) by strongly

’exact’ localizations which has a finite subcover U = {(Ui, ĒUi)
ui−→ (X, ĒX) | i ∈ I} with

the following properties:
(1) Σu∗

i
⊆ (Σu∗

i
∩ EX)⊼,

(2) Σu∗
i
is closed under push-forwards of deflations along arrows of Σu∗

i
,

(3) If M
e
−→ L

t
←− N are deflations such that the arrows u∗i (e) = u∗i (t) ◦ φ for some

isomorphism φ, then there exists a pull-back M̃
ẽ
−→ L̃

t̃
←− Ñ of these arrows along some

morphism L̃ −→ L and a commutative diagram

M
s

−−−→ M̃

s′
y

y ẽ

Ñ
t̃

−−−→ L̃

where s, s′ are arrows of Σu∗
i
and s is a deflation.

(4) The functors u∗i preserve push-forwards of deflations.
Then the following conditions on a Serre system Σ of deflations of (CX , ĒX) are

equivalent:
(a) Σ ∈ Spec1,1t (X, ĒX),
(b) Σ ∈ Spec1,1M (X, ĒX) and [u∗i (Σ)] ∈ Spec1,1t (Ui, ĒUi) whenever EX ∩ Σu∗

i
⊆ Σ.

Proof. The argument is similar to that of 6.4. Details are left to the reader.

6.6. Comments about the conditions on localizations. In the assertions of

this section, we consider strongly ’exact’ localizations (CX , ĒX)
u∗

−→ (CU , ĒU ) such that
Σu∗ ∩ EX is stable and the following properties hold:

(1) Σu∗ ⊆ (Σu∗ ∩ EX)⊼,
(2) Σu∗ is closed under push-forwards of deflations along arrows of Σu∗ ,

(3) IfM
e
−→ L

t
←− N are deflations such that u∗(e) = u∗(t)◦φ for some isomorphism

φ, then there exists a pull-back M̃
ẽ
−→ L̃

t̃
←− Ñ of these arrows along some morphism

L̃ −→ L and a commutative diagram

M
s

−−−→ M̃

s′
y

y ẽ

Ñ
t̃

−−−→ L̃
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where s, s′ are arrows of Σu∗ and s is a deflation.
(1) The condition (1) in combination with the stability of EX,u∗ = Σu∗ ∩ EX implies

that the system of deflations EX,u∗ is saturated (cf. 5.5).
(2) The condition (2) holds if Σu∗ is closed under taking cokernels of pairs of arrows

M
t1
−→
−→
t2

N such that u∗(t1) = u∗(t2) (see the argument of 6.1).

The condition (2) holds, if the functor u∗ preserves push-forwards of deflations.

(3) It follows from the condition (1) that there exists a pull-back M̃
ẽ
−→ L̃

t̃
←− Ñ of

the deflationsM
e
−→ L

t
←− N along some morphism L̃ −→ L such that the isomorphism

φ is described by a diagram

M
s

−−−→ M̃

s′
y

y ẽ

Ñ
t̃

−−−→ L̃

whose upper horizontal and left vertical arrows belong to Σu∗ , which the functor u∗ trans-
forms to a commutative diagram. The condition (3) holds for sure if the category CX is
pointed (or, more generally, CX has initial objects and, for any object of CX , there is at
most one morphism to an initial object): it suffices to take a pull-back of the square above

along the unique arrow x −→ L̃ from an initial object.

Notice that the conditions (1), (2), (3) stand finite intersections. So that one talk
about covers and the corresponding pretopology. We shall not go into details of this here.

7. Spectra of right exact ’spaces’ over a point.

We start with ’spaces’ represented by right exact categories with stable class of weak
equivalences and initial objects and gather together different facts and observations scat-
tered in the previous sections.

7.0. Right exact ’spaces’ over a point. A “point”, x, is represented by the trivial
right exact category, that is the category Cx with only one (hence identical) arrow.

A right exact ’space’ over a point x is a pair ((X, ĒX), γ), where γ is a continuous
morphism (X, ĒX) −→ x. Right exact ’spaces’ over the point x form a category in a
standard way: morphisms from ((X, ĒX), γ) to (Y, ĒY ), γ̃) are given by morphisms of

’spaces’ X
f
−→ Y whose inverse image functor f∗ is an ’exact’ functor from (CY , ĒY ) to

(CX , ĒX) and such that γ̃ ◦ f = γ, which means that f∗ ◦ γ̃∗ ≃ γ∗.

Recall that continuous means that an inverse image functor Cx
γ∗

−→ CX of the mor-
phism γ has a right adjoint. One can see that this condition means precisely that γ∗ maps
the unique object of the category Cx to an initial object of the category CX . It follows
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that morphisms of right exact ’spaces’ over a point are precisely those morphisms of right
exact ’spaces’ whose inverse image functor preserves initial objects.

7.0.1. Conventions. We fix a right exact ’space’ ((X, ĒX), γ) over a point x together
with an inverse image functor the morphism γ. The latter means that we fix an initial
object x of the category CX . We assume that (CX , ĒX) has a stable class of weak equiv-
alences and that all split epimorphisms of the category CX are deflations. In particular,
every morphism to an initial object is a deflation.

Since in a general right exact category deflations are not invariant under push-forwards,
we look at the version of the spectral theory based on the notion of a semitopological system
(see Sections 4 and 5). Fix an initial object x of the category CX .

7.1. Stable systems of deflations and subcategories of CX/x. Following general
pattern, we consider the correspondence which assigns to any class of deflations S of
(CX , ĒX) the full subcategory TS of the category CX/x whose objects are pairs (M,M

s
→ x)

with s ∈ S. In other words, TS is generated by the kernels of arrows of S. Here by a

kernel of a morphismM
f
−→ N we understand the pair (Ker(f),Ker(f)→ x) (– an object

of CX/x), where Ker(e)→ x is the canonical morphism.
The stability of a class S of deflations of (CX , ĒX) means that

S = {s ∈ EX | Ker(s) ∈ TS}.

The correspondence S 7−→ TS establishes an isomorphism between the preorder of stable
systems invariant under pull-backs and the preorder formed by strictly full subcategories
of the category CX/x containing kernels of weak equivalences; in particular, they contain
initial objects. The inverse maps assigns to a strictly full subcategory T of the category
CX/x the class ET

X of all deflations s such that Ker(s) ∈ T .
Given a strictly full subcategory T of the category CX/x, let K

T
X denote the class of

all arrows of CX which have a kernel from T . By definition, ET
X = EX ∩ KT

X . It follows

that (ET
X)⊼ = KT

X . So that if S is a stable system of deflations, then S⊼ = KTS

X , i.e. S⊼

consists of all arrows of CX whose kernel exists and belongs to TS .

7.2. Cartesian closedness and divisibility. A stable system S of deflations of
(CX , ĒX) is cartesian closed iff the corresponding full subcategory TS of the category CX/x
is closed under finite products (taken in CX/x).

A system S is left divisible iff for any M ∈ ObTS and any deflation M −→ N (in
CX/x), the object N belongs to TS . A system S is right divisible if for any object M of

TS , the kernel of any deflation M
e
−→ N belongs to TS .

7.3. Strong stability. The class W⊼

X contains all morphisms with trivial kernel,

in particular, all monomorphisms. Therefore, the condition S = EX ∩ (S ◦ W⊼

X) (which
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makes a difference between the strong stability and stability) implies that the subcategory
TS is closed under taking arbitrary (not only “admissible”) subobjects. If morphisms
with trivial kernel are isomorphisms and all weak equivalences are isomorphisms, then
the system S is strongly stable iff the corresponding subcategory is closed under taking
arbitrary subobjects.

7.4. Semitopologizing systems and strongly topologizing subcategories.
Summarizing all above, one can see that the map S 7−→ TS induces an isomorphism be-
tween the preorder of semitopologizing systems of deflations of (CX , ĒX) and the preorder
of full subcategories T of CX which are closed under finite products and subobjects (taken

in CX) and such that for any deflation M
e
−→ N with M ∈ ObT , the object N belongs

to T . We call such subcategories strongly topologizing.

7.4.1. Note. We use here strongly topologizing, because the name “topologizing
subcategories” was given (years ago) to the most straightforward generalization of this
notion for exact categories [R, Ch.5]. We recall it for completeness: a subcategory T of
an exact category is called topologizing if it is closed under finite products and for any
deflationM

e
−→ N withM∈ ObT , both N and Ker(e) are objects of the subcategory T .

7.5. Thick systems and thick subcategories. A system S of deflations of
(CX , ĒX) is thick iff the corresponding subcategory TS is thick in the most expected,

ordinary sense: if M
e
−→ N is a deflation in CX/x, then M is an object of TS iff both

N and Ker(e) are objects of TS . In other words, the subcategory TS is topologizing and
closed under extensions.

7.6. Strongly thick systems and strongly thick subcategories. A system of
deflations S is strongly thick iff the corresponding subcategory TS is strongly topologizing
and closed under extensions; or, what is the same, strongly topologizing and thick.

7.7. Orthogonal complements. We call objects of the subcategory TWX
trivial.

If WX consists of arrows with trivial kernel, then objects of TWX
are pairs (V, V → x),

where V runs through initial objects of CX (i.e. V → x is an isomorphism).
Let T be a strictly full subcategory of the category CX/x containing TWX

. We denote
by T ⊥ the full subcategory of the category CX generated by all objects M of CX such
that the kernel of a deflationM−→ N belongs to T iff it is trivial. It follows that, for any

stable system of deflations S, its orthogonal complement S⊥ contains K
T
⊥
S

X and is contained

in K
T
⊥
S

X

⋃
{morphisms of CX without kernel}.

In particular, if the category CX has kernels of all morphisms, then S⊥ = K
T
⊥
S

X .

7.8. Serre systems of deflations and Serre subcategories of CX/x. For any
subcategory T of the category CX/x, let T

− denote the full subcategory of CX/x generated
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by all objectsM having the following property: ifM
e
−→ N is a non-trivial deflation (that

is Ker(e) is non-trivial), then there exists a non-trivial deflation Ker(e)
ξ
−→ L (in CX/x)

with Ker(ξ) ∈ ObT . We call a subcategory T of CX/x a Serre subcategory if T = T −.
There is the equality (EX,T )

− = EX,T − .
In particular, a system of deflations S of Σ of deflations of (CX , ĒX) is a Serre system

iff it is stable and TS = T−
S . This establishes an isomorphism between the preorders of

Serre systems of deflations of (CX , ĒX) and Serre subcategories of CX/x.

7.9. Strongly closed systems of deflations and strongly closed subcategories
of CX/x. For any subcategory T of the category CX/x, let T

† denote the full subcategory

of CX/x generated by objects M ∈ T − such that for any morphism L −→ M from W⊼

X ,
the object L belongs to T −.

We call a subcategory T of CX/x strongly closed if T = T †.
It follows from 7.8 and the observation 4.3.3(a) that (EX,T )

† = EX,T † . In particular,

a system of deflations S is strongly closed iff it is stable and TS = T†
S .

7.10. Strongly ’exact’ functors. An ’exact’ functor (CX , ĒX)
F
−→ (CY , ĒY ) is

strongly ’exact’ iff it maps cartesian squares of the form

Ker(f) −−−→ xy cart
y

M
f

−−−→ N

(1)

to cartesian squares. If F maps initial objects to initial objects, this condition means that
F preserves kernels of arrows. Since localizations map initial objects to initial objecs, an
’exact’ localization is strongly ’exact’ iff it preserves kernels.

7.10.1. Remark. Since morphisms to initial objects in CX are deflations, it follows

from the diagram (1) that, for a strongly ’exact’ functor (CX , ĒX)
F
−→ (CY , ĒY ), the class

of arrows ΣF = {s ∈ HomCX | F (s) is invertible} is contained in (ΣF ∩ EX)⊼ = E⊼

X,F iff
all arrows of ΣF have kernels. So that, in the case when all arrows of the category CX
have kernels, ΣF ⊆ E⊼

X,F for any strongly ’exact’ functor F .

7.10.2. Kernels of strongly ’exact’ functors. Suppose that a strongly ’exact’

functor (CX , ĒX)
F
−→ (CY , ĒY ) maps initial objects to initial objects. Then F induces a

functor (CXx
, ĒXx

)
Fx
−→ (CYy

, ĒYy
), where CXx

= CX/x, CYy
= CY /y, y = F (x).

One can see that the subcategory TEX,F coincides with the kernel of the functor

CX/x
Fx
−→ CY /y, and the latter is naturally equivalent to the full subcategory of kernel of

the functor F generated by all objects N of Ker(F ) having a morphism to x.
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We denote the kernel of the functor Fx by Ker(F ).

7.10.3. Covers by strongly ’exact’ localizations. Elements of the covers we con-
sider here are morphisms (U, ĒU )

u
−→ (X, ĒX) whose inverse image functors are strongly

’exact’ localizations such that all arrows of Σu∗ have kernels and the intersection EX,u∗ =
EX ∩ Σu∗ is a stable system of deflations. We call a set

{(Ui, ĒUi)
ui−→ (X, ĒX) | i ∈ I}

of such morphisms a cover of the right exact ’space’ (X, ĒX) if EX ∩
( ⋂

i∈J

Σu∗
i

)
=WX , or,

equivalently,
⋂

i∈J

TEX,u∗
i

= TWX
. Taking into consideration the discussion and notation of

7.10.2, we can rewrite the latter equality as
⋂

i∈J

Ker(u∗i ) = TWX
. If the class WX consists

of deflations with a trivial kernel (which is a standard choice), then the trivial subcategory
TWX

is trivial in the usual sense: all its objects are initial.

7.11. The spectra. For every subcategory T of the category CX/x, we denote by
T ⋆ the intersection of all strongly thick subcategories of CX/x which contain properly the
subcategory T . We denote by T⋆ the intersection T ⋆ ∩ T ⊥.

We denote by Spec1,1SC(X, ĒX) the preorder (with respect to the inverse inclusion)
formed by all strongly closed subcategories T of the category CX/x for which T

⋆ 6= T , or,
equivalently, the subcategory T⋆ is non-trivial.

Similarly, we denote by T ∗ the intersection of all strongly topologizing subcategories
of CX/x properly containing T and set T∗ = T ∗ ∩ T ⊥. We denote by Spec1,1ST(X, ĒX) the

subpreorder of Spec1,1SC(X, ĒX) formed by those strongly closed subcategories T of the
category CX/x for which T

∗ 6= T , or, equivalently, T∗ is a non-trivial subcategory of CX/x.

7.11.1. Proposition. The map S 7−→ TS induces isomorphisms

Spec1,1sc (X, ĒX) ∼−→ Spec1,1SC(X, ĒX)

Spec1,1st (X, ĒX) ∼−→ Spec1,1ST(X, ĒX)
(2)

between the spectra defined in terms of systems of deflations (4.4) and the spectra defined
in terms of strongly closed subcategories.

Proof. The assertion follows from the sketched above dictionary between the stable
systems of deflations of different kind and the subcategories of the category CX/x.

7.11.2. Proposition. Let U = {(Ui, ĒUi)
ui−→ (X, ĒX) | i ∈ J} be a cover of the

right exact ’space’ (X, ĒX) by strongly ’exact’ localizations which has a finite subcover
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U = {(Ui, ĒUi)
ui−→ (X, ĒX) | i ∈ I} such that, for every i ∈ I, the subcategory Ker(u∗i ) of

CX/x is invariant under push-forwards of deflations (which holds if Ker(u∗i ) is invariant
under cokernels of pairs of arrows).

Then the following conditions on a strongly closed subcategory P of the category CX/x
are equivalent:

(a) P ∈ Spec1,1ST(X, ĒX),

(b) P ∈ Spec1,1SC(X, ĒX) and [u∗i (P)] ∈ Spec1,1ST(Ui, ĒUi) whenever Ker(u∗i ) ⊆ P.

Proof. The claim is that the assertion follows from 6.4.
If fact, since, by the definition of covers, the arrows of Σu∗

i
have kernels for all i ∈ J ,

the condition (1) of 6.4 holds: Σu∗
i
⊆ (Σu∗

i
∩ EX)⊼ for all i ∈ J (see 7.10.1).

It follows from isomorphisms of 7.11.1 that one can, replacing the category CX by
CX/x, assume that the category is pointed. Therefore, the condition (3) holds (see 6.6(3)).

Finally, the invariance of the subcategories Ker(u∗i ) under push-forwards of deflations
is what remains of the condition (2) of 6.4.
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8. Special cases, some examples.

8.1. The abelian case. Let (CX , ĒX) be an abelian category; that is CX is an
abelian category, deflations are arbitrary epimorphisms and weak equivalences are isomor-
phisms. Then (as it was already mentioned in the text) semitopological classes of deflations
become topological and, therefore, the spectral theories outlined in Sections 3 and 4 coin-
cide. To every class S of epimorphisms of the category CX , we assign a full subcategory
TS of CX whose objects are kernels of morphisms from S. The correspondence S 7−→ TS

induces isomorphisms between the preorder of topological systems of deflations and the
preorder (with respect to the inclusion) of topological subcategories of the category CX
in the sense of Gabriel (– full subcategories of CX closed under taking subquotients and
finite products). Similarly, S 7−→ TS induces an isomorphism between the preorder of
thick (resp. Serre) systems and the preorder of thick (resp. Serre) subcategories of CX .

Strongly ’exact’ functors between abelian categories are the same as ’exact’ functors

and the latter are just exact functors in the usual sense. For any exact functor CX
F
−→ CY ,

the class of arrows ΣF = {s ∈ HomCX | F (s) is an isomorphism} satisfies all the conditions
which appear in the main assertions of Section 6 (and are discussed in 6.6).

It follows from this isomorphisms and coincidences that the results of this Chapter
(translated into the language of topological, thick and Serre subcategories) recover all
essential facts of Chapter II.

8.2. Spectra of ’spaces’ represented by exact categories. Suppose that
(CX , ĒX) is an exact category. In this case, weak equivalences are isomorphisms and
deflations are called sometimes admissible epimorphisms. Since, for a general exact cate-
gory, deflations are not invariant under push-forwards, we look at the version of the spectral
theory based on the notion of a semitopological system (see Sections 4 and 5).

Following general pattern, we consider the correspondence which assigns to any class
of deflations S the full subcategory TS of the category CX generated by all objectsM such
that morphism from M to the zero object belongs to S.

Notice that, since the category CX is additive and weak equivalences are isomorphisms,
the class W⊼

X consists of all monomorphisms of the category CX . Therefore, a system S
of deflations of (CX , ĒX) is strongly stable iff the subcategory TS is closed under taking
arbitrary subobjects (cf. 7.3).

The map S 7−→ TS induces an isomorphism between the preorder of semitopologizing
systems of deflations of (CX , ĒX) and the preorder of strongly topologizing subcategories
T of CX which are full subcategories of CX closed under finite products and subobjects
(taken in CX) and such that for any deflation M

e
−→ N with M ∈ ObT , the object N

belongs to T (see 7.4).

8.3. A note about the spectral theory of the category of algebras. Let
CX be the category Algk of associative unital algebras over a commutative unital ring k,
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deflations are strict (that is surjective) epimorphisms of algebras and weak equivalences
are isomorphisms. The k-algebra k is the canonical initial object of the category Algk and
the category Algk/k is isomorphic to the category of augmented algebras. The category
Algk/k of augmented k-algebras is naturally equivalent to the category Alg1k of non-unital

k-algebras. The equivalence is given by the functor Alg1k
ι∗k−→ Algk/k which assigns to a

non-unital k-algebra R the augmented algebra (k⊕R, k⊕R → k). Its quasi-inverse functor
maps an augmented algebra (A, ξA) to its augmentation ideal Ker(ξA).

We have a commutative diagram of functors

Alg1k
ι∗k
−−−→ Algk/k

j∗k
−−−→ Algk

f̃∗
x
y f̃∗ f̄∗

x
y f̄∗ f∗

x
y f∗

k −mod
Id
−−−→ k −mod

Id
−−−→ k −mod

(1)

where f̃∗ is the forgetful functor, f̃∗ its left adjoint which assigns to every k-module V the

irrelevant ideal T≥1
k (V ) =

⊕

n≥1

V ⊗kn of the tensor algebra Tk(V ) of the module V ; j∗k is

the canonical forgetful functor and the functor f̄∗ assigns to each k-module V the tensor
algebra Tk(V ) with the canonical augmentation and f∗ is the forgetful functor.

By 7.11.1, the spectral theory outlined here requires only the category Algk/k of
augmented k-algebras. There is another pair of adjoint functors

k −mod
ϕ∗
−→
←−
ϕ∗

Algk/k, (2)

where the functor ϕ∗ assigns to each k-module V the k-algebra k ⊕ V with V · V = 0. Its

left adjoint functor, ϕ∗, assigns to every augmented k-algebra (A,A
ξA
→ k) the k-module

Ker(ξA)/Ker(ξA)
2. The composition ϕ∗ ◦ ϕ∗ is the identical functor, which means that

ϕ∗ is a fully faithful functor and, therefore, ϕ∗ is a localization functor. The functor
ϕ∗ is ’exact’ and induces a natural equivalence between the category k − mod and the
topologizing subcategory T0 of the category Algk/k whose objects are those augmented

algebras (A,A
ξA
→ k) for which Ker(ξA)

2 = 0. Thus, the spectrum of the ’space’ Sp(k)
(which is isomorphic to Spec(k) – the prime spectrum of k, is embedded into Spec1,1ST(Xx).

The picture looks slightly simpler in terms of the category CA1
X
= Alg1k of non-unital

k-algebras. Namely, the pair of adjoint functors (2) corresponds to the functors

k −mod
γ∗
−→
←−
γ∗

Alg1k, (2′)
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where γ∗ assigns to each k-module V the same k-module with the zero multiplication and
the functor γ∗ maps each non-unital k-algebra A to the k-module A/A2. The kernel of

the localization functor γ∗ is the full subcategory C
Af

X
= Algfk of the category Alg1k = CA1

X

whose objects are so-called firm algebras A defined by the equality A2 = A (evidently,
every unital algebra is firm). One can show that the spectrum Spec1,1ST(A

1
X , ĒA1

X
) is the

disjoint union of the image of the prime spectrum of k and the spectrum Spec1,1ST(A
f
X , ĒAf

X
)

of the right exact ’space’ represented by the subcategory of firm k-algebras.

8.3.1. Generalizations. Let C̃X = (CX ,⊙, I) be a monoidal category with ’tensor’
product ⊙ and the unit object I. We assume that CX is a pointed category with countable
colimits preserved by ’tensor product; and tensoring any object by a zero object produces a
zero object. Besides, CX is endowed with a right exact structure EX with weak equivalences
WX such that all split epimorphisms of CX are deflations, both respected by the ’tensor’
product ⊙. The latter means that α⊙β is a deflation (resp. a weak equivalence), if α and
β are deflations (resp. weak equivalences).

Let CAX denote the category Alg
C̃X

of algebras in the C̃X (in classical sources, like

[ML], the objects of Alg
C̃X

are called monoids). Thanks to the existence of countable

coproducts and the compatibility of ’tensor’ product with them, the forgetful functor

CAX

f∗−→ CX has a left adjoint, f∗ which assigns to every object V of the monoidal category

C̃X its tensor algebra (T (V ), µV ), where T (V ) =
⊕

n≥0

V ⊙n and the multiplication µV is

given by the canonical isomorphisms V ⊙n ⊙ V ⊙m ∼−→ V ⊙n+m. Here V ⊙0 def
= I.

The category of algebras has a natural initial object – the ’unit’ algebra I. We denote
the category Alg

C̃X
/I of augmented algebras by CA1

X
.

If the category CX is additive, then the category of augmented algebras is naturally
equivalent to the category Alg1

C̃X
of non-unital algebras.

Like in the case of k-algebras, we have a commutative diagram of functors

CA1
X

j∗X
−−−→ CAX

f̄∗
x
y f̄∗ f∗

x
y f∗

CX
Id
−−−→ CX

(3)

where j∗X is the functor which forgets augmentation.
We define deflations on the category CAX of algebras by setting EAX = f−1

∗ (EX)
and weak equivalences by WAX = f−1

∗ (WX). The right exact structure on the category
of augmented algebras induced via the forgetful functor j∗X , so that EA1

X
= f̄−1

∗ (EX) and

WA1
X
= f̄−1

∗ (WX) (see the diagram (3)).
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There is also the embedding CX
φ∗
−→ CA1

X
, which assigns to every object V of CX

the algebra (I⊕ V, µ0
V ), where µ

0
V is the multiplication trivial on V . This embedding has

a left adjoint, CAX

φ∗

−→ CA1
X
, which maps every augmented algebra (A,A

ξA
→ I) to the

object Ker(ξA)/(Ker(ξA)
2. Notice that the object Ker(ξA) exists because ξA is a split

epimorphism, hence a deflation.

The embedding CX
φ∗
−→ CA1

X
induces an embedding of the spectrum Spec1,1ST(X, ĒX)

of the ’space’ (X, ĒX) into the spectrum Spec1,1ST(A
1
X , ĒA1

X
) of the ’space’ (A1

X , ĒA1
X
)

represented by the right exact category of augmented algebras.

8.3.2. Example. Let R be an associative unital k-algebra and CX the monoidal
category of R-bimodules endowed with the standard exact structure. Algebras in this
monoidal category are associative unital k-algebras A endowed with an algebra morphism

R
ψA
−→ A. In other words, the category of algebras is isomorphic to the category R\Algk

of k-algebras over R. Augmented algebras are triples (ψA, A, ξA), where A
ξA
−→ R is

the left inverse to ψA, that is ξA ◦ ψA = idR. The right exact structure on the cate-
gory of (augmented) algebras over R is standard: deflations are surjective morphisms and
weak equivalences are isomorphisms. We have the natural embedding of the spectrum
Spec1,1ST(X, ĒX) of the ’space’ (X, ĒX) represented by the category of R-bimodules into

the spectrum Spec1,1ST(A
1
X , ĒA1

X
) of the ’space’ (A1

X , ĒA1
X
) represented by the right exact

category of augmented algebras. The complement to the image of Spec1,1ST(X, ĒX) is the

spectrum of the ’subspace’ (Af
X , ĒAf

X
) of the right exact ’space’ (A1

X , ĒA1
X
) represented by

the subcategory of all augmented rings (ψA, A, ξA) such that Ker(ξA)
2 = Ker(ξA). These

augmented algebras correspond to the firm non-unital k-algebras over the algebra R.

Complements: some properties of kernels.

C.1. Proposition. Let M
f
−→ N be a morphism of CX which has a kernel pair,

M ×N M
p1
−→
−→
p2

M. Then the morphism f has a kernel iff p1 has a kernel, and these two

kernels are naturally isomorphic to each other.

Proof. Suppose that f has a kernel, i.e. there is a cartesian square

Ker(f)
k(f)
−−−→ M

f ′
y cart

y f

x
iN
−−−→ N

(1)
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Then we have the commutative diagram

Ker(f)
γ

−−−→ M ×N M
p2
−−−→ M

f ′
y p1

y cart
y f

x
iM
−−−→ M

f
−−−→ N

(2)

which is due to the commutativity of (1) and the fact that the unique morphism x
iN−→ N

factors through the morphism M
f
−→ N . The morphism γ is uniquely determined by

the equality p2 ◦ γ = k(f). The fact that the square (1) is cartesian and the equalities
p2 ◦ γ = k(f) and iN = f ◦ iM imply that the left square of the diagram (2) is cartesian,

i.e. Ker(f)
γ

−−−→M ×N M is the kernel of the morphism p1.

Conversely, if p1 has a kernel, then we have a diagram

Ker(p1)
k(p1)
−−−→ M ×N M

p2
−−−→ M

p′1

y cart p1

y cart
y f

x
iM
−−−→ M

f
−−−→ N

which consists of two cartesian squares. Therefore the square

Ker(p1)
k(f)
−−−→ M

p′1

y cart
y f

x
iN
−−−→ N

with k(f) = p2 ◦ k(p1) is cartesian.

C.2. Remarks. (a) Needless to say that the picture obtained in (the argument of)

C.1 is symmetric, i.e. there is an isomorphism Ker(p1)
τ ′
f
−→ Ker(p2) which is an arrow in

the commutative diagram

Ker(p1)
k(p1)
−−−→ M ×N M

p1
−−−→ M

τ ′f

y≀ τf

y≀
y idM

Ker(p2)
k(p2)
−−−→ M ×N M

p2
−−−→ M



Geometry of Right Exact ’Spaces’. 245

(b) Let a morphismM
f
−→ N have a kernel pair,M×NM

p1
−→
−→
p2

M, and a kernel. Then,

by C.1, there exists a kernel of p1, so that we have a morphism Ker(p1)
k(p1)
−−−→ M ×N M

and the diagonal morphism M
∆M
−−−→M ×N M . Since the left square of the commutative

diagram

x −−−→ Ker(p1)
p′1
−−−→ xy cart c(p1)

y
y

M
∆M
−−−→ M ×N M

p1
−−−→ M

is cartesian and compositions of the horizontal arrows are identical morphisms, it follows
that its left square is cartesian too. Loosely, one can say that the intersection of Ker(p1)
with the diagonal of M ×N M is zero. If there exists a coproduct Ker(p1)

∐
M , then the

pair of morphisms Ker(p1)
k(p1)
−−−→M ×N M

∆M
←−−−M determine a morphism

Ker(p1)
∐

M −−−→M ×N M.

If the category CX is additive, then this morphism is an isomorphism, or, what is the
same, Ker(f)

∐
M ≃ M ×N M . In general, it is rarely the case, as the reader can find

out looking at the examples of 1.4.

C.3. Proposition. Let

M̃
f̃

−−−→ Ñ

g̃
y cart

y g

M
f

−−−→ N

(3)

be a cartesian square. Then Ker(f) exists iff Ker(f̃) exists, and they are naturally iso-
morphic to each other.

C.4. The kernel of a composition and related facts. Fix a category CX with
an initial object x.

C.4.1. The kernel of a composition. Let L
f
−→ M and M

g
−→ N be morphisms

such that there exist kernels of g and g ◦ f . Then the argument similar to that of C.3
shows that we have a commutative diagram

Ker(gf)
f̃

−−−→ Ker(g)
g′

−−−→ x

k(gf)
y cart

y k(g) cart
y iN

L
f

−−−→ M
g

−−−→ N

(1)
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whose both squares are cartesian and all morphisms are uniquely determined by f, g and
the (unique up to isomorphism) choice of the objects Ker(g) and Ker(gf).

Conversely, if there is a commutative diagram

K
u

−−−→ Ker(g)
g′

−−−→ x

t
y cart

y k(g)
y iN

L
f

−−−→ M
g

−−−→ N

whose left square is cartesian, then its left vertical arrow, K
t
−→ L, is the kernel of the

composition L
g◦f
−−−→ N .

C.4.2. Remarks. (a) It follows from C.3 that the kernel of L
f
−→ M exists iff

the kernel of Ker(gf)
f̃

−−−→ Ker(g) exists and they are isomorphic to each other. More
precisely, we have a commutative diagram

Ker(f̃)
k(f̃)
−−−→ Ker(gf)

f̃
−−−→ Ker(g)

g′

−−−→ x

≀
y k(gf)

y cart
y k(g) cart

y iN

Ker(f)
k(f)
−−−→ L

f
−−−→ M

g
−−−→ N

whose left vertical arrow is an isomorphism.
(b) Suppose that (CX ,EX) is a right exact category (with an initial object x). If the

morphism f above is a deflation, then it follows from this observation that the canonical

morphism Ker(gf)
f̃

−−−→ Ker(g) is a deflation too. In this case, Ker(f) exists, and we
have a commutative diagram

Ker(f̃)
k(f̃)
−−−→ Ker(gf)

f̃
−−−→ Ker(g)

≀
y k(gf)

y cart
y k(g)

Ker(f)
k(f)
−−−→ L

f
−−−→ M

whose rows are conflations.

The following observations is useful (and are used) for analysing diagrams.

C.4.3. Proposition.(a) Let M
g
−→ N be a morphism with a trivial kernel. Then

a morphism L
f
−→ M has a kernel iff the composition g ◦ f has a kernel, and these two

kernels are naturally isomorphic one to another.
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(b) Let

L
f

−−−→ M

γ
y

y g

M̃
φ

−−−→ N

be a commutative square such that the kernels of the arrows f and φ exist and the kernel
of g is trivial. Then the kernel of the composition φ ◦ γ is isomorphic to the kernel of the
morphism f , and the left square of the commutative diagram

Ker(f)
∼

−−−→ Ker(φγ)
k(f)
−−−→ L

f
−−−→ M

γ̃
y cart γ

y
y g

Ker(φ)
k(φ)
−−−→ M̃

φ
−−−→ N

is cartesian.

Proof. (a) Since the kernel of g is trivial, the diagram C.4.1(1) specializes to the
diagram

Ker(gf)
f̃

−−−→ x
idx
−−−→ x

k(gf)
y cart

y k(g)
y iN

L
f

−−−→ M
g

−−−→ N

with cartesian squares. The left cartesian square of this diagram is the definition ofKer(f).
The assertion follows from C.4.1.

(b) Since the kernel of g is trivial, it follows from (a) that Ker(f) is naturally isomor-
phic to the kernel of g ◦ f = φ ◦ γ. The assertion follows now from C.4.1.

C.4.4. Corollary. Let CX be a category with an initial object x. Let L
f
−→ M be a

strict epimorphism and M
g
−→ N a morphism such that Ker(g)

k(g)
−−−→ M exists and is a

monomorphism. Then the composition g ◦ f is a trivial morphism iff g is trivial.

C.4.4.1. Note. The following example shows that the requirement ”Ker(g) −→ M
is a monomorphism” in C.4.4 cannot be omitted.

Let CX be the category Algk of associative unital k-algebras, and let m be an ideal
of the ring k such that the epimorphism k −→ k/m does not split. Then the identical
morphism k/m −→ k/m is non-trivial, while its composition with the projection k −→ k/m
is a trivial morphism.



Chapter VII

Spectral Cuisine for the Working Mathematicians.

The main construction is presented in Section 1. Roughly, it runs as follows. With
any category, H, we associate two spectra, Spec0(H) and Spec1(H). These spectra are
subcategories of H. And, by construction, there is a natural functor Spec0(H) −→ H

(different from the inclusion functor). Given a functor G
F
−→ H, we define (in 1.6) two

spectra, Spec0(G, F ) and Spec1(G, F ), of the pair (G, F ) as pullbacks of Spec0(H) and
Spec1(H) along F . If H is a preorder (which is the case of our main examples), then
there exists a canonical morphism Spec0(G, F ) −→ Spec1(G, F ). In particular, there is
a canonical morphism Spec0(H) −→ Spec1(H).

Taking as F the inclusion map of the preorder of Serre subcategories to the preorder
of topologizing subcategories of an abelian category, we recover the spectrum Spec(X) of
Chapter II. If H is the preorder of saturated multiplicative systems of a category (resp.
triangulated category) and F is the identical functor, we recover the basic spectra of an
arbitrary category (resp. triangulated category). These and some other applications of
the general construction are sketched in Section 2.

Spectra considered in Section 2 are related with saturated (left and right) multiplica-
tive systems, or what is the same, with exact (i.e. preserving finite limits and colimits)
localizations. In the case of an abelian or triangulated category, they correspond to thick
subcategories. There are categories with only trivial saturated multiplicative systems. A
fundamental example is the category Sets of sets which belong to a given universe. It has
no non-trivial right multiplicative systems, but has plenty of saturated left multiplicative
systems. The latter are in bijective correspondence with right exact (– preserving colimits)
localizations. In Section 3 we apply the pattern of Section 1 to the preorder of saturated
left multiplicative systems of a category and obtain, as a result, left versions of the spectra
discussed in Section 2 (and in Chapter II).

In Section 4, we look at injective objects and related localizations and spectra, in par-
ticular, the Gabriel’s spectrum. Injective objects play important role not only in abelian
(Grothendieck) categories, but also in a large class of non-additive categories which in-
cludes toposes. Therefore, the exposition here is not restricted to abelian or even additive
categories. We define a left exact multiplicative system as a saturated left multiplicative
systems such that the corresponding localization functor preserves strict monomorphisms.
In the case of abelian categories, left exact multiplicative systems are precisely saturated
(left and right) multiplicative systems. On the other hand, in the case of the category
Sets, every saturated left system is left exact, but, as it is mentioned above, there are no
non-trivial right saturated multiplicative systems.
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To any injective object E of a category C, there corresponds a left exact multiplica-
tive system ΣE which consists of all arrows s such that HomC(s, E) is an isomorphism.
Injective spectra, in particular (the non-additive version of) the Gabriel’s spectrum, are
obtained by applying to this correspondence the general formalism of Section 1.

It is worth to mention that left exact multiplicative systems are usually more impor-
tant, at least from spectral prospective, than injective objects. For instance, if C is the
category Sets1 of non-empty sets, then there are only trivial left multiplicative systems
of the form ΣE . In particular, injective spectra are trivial. On the other hand, the pre-
order of left exact multiplicative systems is isomorphic to the order of infinite cardinals.
Both spectra, Spec0 and Spec1, of this preorder are naturally isomorphic to the order of
non-limit infinite cardinals.

The purpose of this Chapter is to explain what stands behind the known constructions
of spectra and give a couple of curious examples. There is no attempt to make the list
of applications and examples complete (i.e. include all applications which seem to be
important ones) and, with more reason, no attempt to impose choices. The reader might

make a different choice of the functor G
F
−→ H and use the ’spectral cuisine’ of Section 1

to produce other spectra which could be appropriate for something.

1. General pattern.

Fix a category H. Let H0 denote the full subcategory of H whose objects are initial
objects of H. Thus, H0 is either empty, or a groupoid. Let H1 denote the full subcategory
of H defined by ObH1 = ObH−ObH0.

1.1. Definition. We call H local if the category H1 has an initial object.

1.1.1. Note. It follows that if H is local, than H has initial objects, i.e. H0 6= ∅.

1.1.2. Example. The preorder {x → y} is local, since H1 has only one object, y,
and one morphism, idy.

1.1.3. Example. Let R be an associative commutative unital ring, and let IR denote
the set of its ideals. The preorder (IR,⊇) is local iff the ring R is local, i.e. there exists a
maximal ideal in R which contains all other proper ideals.

1.2. The spectrum Spec1(H). We denote by Spec1(H) the full subcategory of the
category H generated by all x ∈ ObH such that the category x\H is local. We call Spec1(H)
the local spectrum of H.

In other words, an object x of H belongs to Spec1(H) iff there exists an object x⋆ of

H and an arrow x
γx
−→ x⋆ such that γx is not an isomorphism and if x

f
−→ y is not an

isomorphism, then there exists a unique arrow x⋆
f̄
−→ y such that f = f̄◦γx. The morphism
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x
γx
−→ x⋆ (in particular, the object x⋆) is determined by these conditions uniquely up to

isomorphism.

1.2.1. Note. It follows from this definition and 1.1.1 that H is local iff it has initial
objects and they belong to Spec1(H).

1.2.1.1. Example. Let H = Sets. The category Sets has one initial object – ∅. It
is local: every one element set is an initial object of the category Sets1. Notice that the
spectrum Spec1(Sets1) is empty. Therefore Spec1(Sets) consists of one point which is the
initial object ∅.

1.2.2. Maximal proper objects and Spec1(H). We call an object x of the category
H proper if there exists an arrow x −→ y which is not an isomorphism. We call a proper

object, x, maximal if any two proper morphisms, y1
s
←− x

t
−→ y2, are isomorphic; that is

there exists an isomorphism y1
u
−→ y2 such that t = u ◦ s.

We denote byMax(H) the full subcategory of H generated by maximal proper objects.
It follows that Max(H) is a groupoid which is connected iff all maximal proper objects
are isomorphic to each other.

If for every proper object, y, there is an arrow from y to a maximal proper object,
then the groupoidMax(H) is connected iff Hop is a local category.

1.2.2.1. Proposition. Max(H) ⊆ Spec1(H).

Proof. In fact, if x is an object of Max(H), then the category x\H is equivalent to
the preorder {x→ y}, hence it is local (cf. 1.1.2).

1.2.2.2. Example. If H is the preorder (IℓR,⊆) of left ideals of an associative unital
ring R, thenMax(H) coincides with the set MaxℓR of left maximal ideals of R regarded
as a discrete category. The category MaxℓR is connected iff R has only one left maximal
ideal, µ. Notice that in this case the left ideal µ is two-sided, because for every r ∈ R− µ,
the ideal (µ : r) = {a ∈ R | ar ∈ µ} is a maximal left ideal, hence it coincides with µ.

1.2.3. Minimal proper objects. We call x ∈ ObH a minimal proper object of the
category H if x is a maximal proper object of Hop. We denote by Min(H) the full sub-
category of H generated by minimal proper objects. By definition,Min(H) is isomorphic
to Max(Hop). In particular, Min(H) is a groupoid which is connected iff H is a local
category. By 1.2.2.1,Min(H) ⊆ Spec1(Hop).

1.2.3.1. Example. Let CX be a category with an initial object, and let CM(X)

be the subcategory of CX formed by all monoarrows of CX . Then Min(CM(X)) is the
groupoid of all simple objects of the category CX . Isomorphism classes of simple objects
can be regarded as a naive spectrum of CX .
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The groupoidMin(CM(X)) is connected (that is the category CM(X) is local) iff the
category CX has a unique, up to isomorphism, simple object.

1.2.3.2. Note. A useful version of 1.2.3.1 is obtained by taking instead of CM(X)

the subcategory CMs(X) generated by all strict monomorphisms of the category CX .

Recall that a monomorphism L
h
−→M is called strict if every arrow L′ −→M which

equalizes all pairs of arrows M
g1
−→
−→
g2

N equalized by h is represented as the composition of

h and an arrow L′ −→ L uniquely determined by this property. If an arrow L
h
−→ M is

such that there exists a fibred coproduct M
∐
LM , then h is a strict monomorphism iff

the canonical diagram L
h
−→M

π1
−→
−→
π2

M
∐
LM is exact.

The groupoid Min(CMs(X)) is generated by objects which are simple in a ”strict”
sense. For instance, if CX is the category of continuous representations of a topological
algebra in topological vector spaces, objects ofMin(CMs(X)) are topologically irreducible
representations of this algebra.

1.2.3.3. Example: injectives and the Gabriel’s spectrum. Let CX be a cate-
gory with finite limits. An object E of the category CX is called injective if the functor
CX(−, E) : CopX −→ Sets preserves strict epimorphisms (in other words, CX(j, E) is a
surjective map for any strict monomorphism j). We denote by CI(X) the subcategory of
CX formed by injective objects and strict monomorphisms (see 1.2.3.2) If follows that if E

is an injective object, than any strict monomorphism E
g
−→M is a split monomorphism;

i.e. h ◦ g = idE for some M
h
−→ E.

We call an arrow in CX a zero morphism if it factors through an initial object (if any).
We call an injective object E of the category CX indecomposable if the only nonzero

idempotent E −→ E is the identical morphism. Equivalently, any strict monomorphism
E1 −→ E with E1 injective and non-initial, is an isomorphism.

Objects of the groupoid Min(CI(X)) are precisely indecomposable injective objects
of the full subcategory C1

X of the category CX formed by non-initial objects. Isomorphism
classes of indecomposable injective objects are points of the Gabriel’s spectrum.

1.2.4. Functorial properties. Let H
F
−→ H̃ be a functor. For any x ∈ ObH, the

functor F induces a functor x\H
Fx−→ F (x)\H̃. Suppose that the functor F is such that Fx

is an equivalence of categories. Then F induces a functor Spec1(H) −→ Spec1(H̃).
A typical example is the functor

y\H
f⋆
−→ z\H, (y, y

g
→ v) 7−→ (z, z

gf
→ v),

corresponding to a morphism z
f
−→ y, or the canonical functor y\H −→ H.
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1.3. Supports. For any x ∈ ObH, we denote by SuppH(x) the full subcategory of H
generated by all y ∈ ObH such that H(x, y) = ∅. We call SuppH(x) the support of x in H.

1.3.1. Proposition. (a) For any two objects, x and y, of the category H, there exists
an arrow x→ y iff SuppH(x) ⊆ SuppH(y).

(b) Let {xi | i ∈ J} be a set of objects of H such that there exists a coproduct,
∐

i∈J

xi.

Then

SuppH
(∐

i∈J

xi
)
=

⋃

i∈J

SuppH(xi). (1)

Proof. (a) If there exists a morphism x −→ y and H(x, z) = ∅, then, obviously,
H(y, z) = ∅, hence SuppH(x) ⊆ SuppH(y).

If H(x, y) = ∅, i.e. y ∈ SuppH(x), then, since y /∈ ObSuppH(y), the inclusion
SuppH(x) ⊆ SuppH(y) does not hold.

(b) Since H(
∐

i∈J

xi, z) ≃
∏

i∈J

H(xi, z), it follows that H(
∐

i∈J

xi, z) = ∅ iff H(xi, z) = ∅ for

some i ∈ J , whence the equality (1).

1.3.2. Support in Spec1(H). For any x ∈ ObH, we denote the intersection
SuppH(x)

⋂
Spec1(H) by Supp1H(x) and call it the support of x in Spec1(H). Evidently,

1.3.1(b) is still true if SuppH(x) is replaced by Supp1H(x), as well as a half of 1.3.1(a): if
H(x, y) is not empty, then Supp1H(x) ⊆ Supp1H(y).

1.4. The spectrum Spec0(H).

We denote by Spec0(H) the full subcategory of H generated by x ∈ ObH such that
SuppH(x) is not empty and has a final object, x̂.

1.4.1. Proposition. Let H be local. Then initial objects of H1 belong to Spec0(H).

Proof. Let H0 be the full subcategory (groupoid) of H generated by all initial objects
of H. If x is an initial object of the category H1, then SuppH(x) coincides with H0.

In fact, suppose that there is an arrow, x
f
−→ y, for some y ∈ ObH0. Since y is an

initial object of the category H, there exists a unique morphism y
g
−→ x. By the universal

property of y, the composition y
fg
−→ y is the identical morphism. Since x is an initial

object of the category H1, the composition x
gf
−→ x is the identical morphism too. This

means that the morphism x
f
−→ y is an isomorphism which contradicts to the fact that x

is not an initial object of the category H.
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Thus, H0 is a subcategory of SuppH(x). Since for every z ∈ ObH1 = ObH − ObH0

there is a (unique) morphism x −→ z, the subcategory SuppH(x) is contained in H0; i.e.
SuppH(x) = H0.

Since H0 is a connected groupoid, every object of H0 is final.

1.4.2.1. Example. The spectrum Spec0(Sets) coincides with the subcategory Sets1

of all non-empty sets, because the support of any non-empty set consists of only ∅.

1.4.2. Proposition. The full subcategory, Spec0(H)0, generated by initial objects of
Spec0(H) coincides with be the full subcategory H1 = (H1)0 of the category H generated by
initial objects of the subcategory H1.

Proof. By definition, the subcategory SuppH(x) (cf. 1.4) is not empty for every object
x of Spec0(H). Therefore initial objects of the category H do not belong to Spec0(H), i.e.
Spec0(H) is contained in the subcategory H1. In particular, the subcategory Spec0(H)0
of initial objects of Spec0(H) is contained in H1 = (H1)0. The converse inclusion is a
consequence of 1.4.1.

1.4.3. Corollary. Let |Spec1(H)| denote the set of isomorphism classes of objects of
Spec1(H). Then

ObSpec1(H) =
⋃

x∈|Spec1(H)|

{
y | (y, x→ y) = ẑ, z ∈ ObSpec0(x\H)0

}
. (1)

In particular,

ObSpec1(H) ⊆
⋃

x∈|Spec1(H)|

{
y | (y, x→ y) = ẑ, z ∈ ObSpec0(x\H)

}
. (2)

Here ẑ is a final object of the category Suppx\H(z) (cf. 1.4).

Proof. The formula (1) follows from 1.4.2 applied to the category x\H.

1.4.4. Lemma. A choice for every x ∈ ObSpec0(H) of a final object, x̂, of the

category SuppH(x) extends to a functor Spec0(H)
ϑH−→ H.

Proof. In fact, if x, y ∈ ObSpec0(H), and there is a morphism x −→ y, then
SuppH(x) ⊆ SuppH(y). Therefore there exists a unique morphism x̂ −→ ŷ.

1.4.5. Remark. Notice that the functor Spec0(H)
ϑH−→ H is faithful iff H is a

preorder, i.e. for any pair of objects, x, y, of H, there is at most one morphism x −→ y.
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1.4.6. Proposition. Suppose the category H is a preorder with finite coproducts

(i.e. supremums of pairs of objects). Then the functor Spec0(H)
ϑH−→ H takes values in

Spec1(H), i.e. it induces a functor Spec0(H)
θH
−−−→ Spec1(H).

Proof. For any x ∈ ObSpec0(H), the final object, x̂, of the category SuppH(x) belongs
to Spec1(H). More explicitly, we claim that the canonical coprojection, x̂ −→ x ⊔ x̂, is an
initial object of the category (x̂\H)1.

In fact, let x̂
g
−→ y be a morphism. Then one of two things happens: either y ∈

ObSuppH(x), or not. If y ∈ ObSuppH(x), then, since x̂ is a final object of the category

SuppH(x), there is a unique morphism y
h
−→ x̂. It follows from the universal property of

x̂ that h ◦ g = id
x̂
. By hypothesis, H is a preorder, in particular, h is a monomorphism.

Therefore, h is an isomorphism inverse to g.

If y /∈ ObSuppH(x), then there exists an arrow x −→ y which, together with x̂
g
−→ y,

determines (and is determined by) a morphism (x⊔ x̂, x̂→ x⊔ x̂) −→ (y, x̂
g
→ y). Since H

is a preorder, this is all we need.

1.4.6.1. Example. Let H be a category with initial objects and such that H(x, y) 6= ∅
for every x ∈ ObH and H(y, z) = ∅ if y is not an initial object and z is an initial object.
Then SuppH(x) = H0 for any x ∈ ObH1. Therefore, Spec0(H) coincides with H1. If H is a
preorder, then, under conditions, H1 is a connected groupoid, hence Spec1(H) = H0 and

the functor Spec0(H)
θH
−−−→ Spec1(H) is a category equivalence.

What might happen if H is not a preorder is illustrated by the following.

1.4.6.2. Example. If H = Sets, then, by 1.2.1.1, Spec1(H) = {∅, id∅} and by
14.2.1, Spec0(H) = Sets1 – the category of all non-empty sets. There is only one functor
Spec0(H) −→ Spec1(H).

1.4.7. Proposition. Suppose that the category H is a preorder with coproducts. Then

ObSpec1(H) =
⋃

x∈|Spec1(H)|

{
y | (y, x→ y) = ẑ, z ∈ ObSpec0(x\H)

}
. (3)

Proof. The assertion follows from 1.4.6 and 1.4.3(2).

1.4.8. Support in Spec0(H). For any object x of the category H, we denote by
Supp0H(x) the preimage of SuppH(x) by the functor Spec0(H) −→ H, z 7−→ ẑ, (cf. 1.4.4)
and call it the support of x in Spec0(H). This means that Supp0H(x) is a full subcategory
of H whose objects are all objects z of Spec0(H) such that H(x, ẑ) = ∅, or, equivalently,
SuppH(z) ⊆ SuppH(x). By 1.3.1, the latter means precisely that there exists a morphism
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z → x. Thus, Supp0H(x) is a full subcategory of H generated by all objects z of Spec0(H)
such that z → x.

1.4.9. Proposition. (a) The map x 7−→ Supp0H(x) is functorial: if there exists an
arrow x→ y, then Supp0H(x) ⊆ Supp0H(y).

(b) Let {xi | i ∈ J} be a set of objects of H such that there exists a coproduct,
∐

i∈J

xi.

Then
Supp0H

(∐

i∈J

xi
)
=

⋃

i∈J

Supp0H(xi). (1)

Proof. (a) The assertion follows from the fact that

ObSupp0H(x) = {z ∈ ObSpec0(H) | H(z, x) 6= ∅}

(see the discussion in 1.4.8).

(b) An object z of Spec0(H) belongs to Supp0H
(∐

i∈J

xi
)
iff H

(∐

i∈J

xi, ẑ
)
= ∅. Since

H
(∐

i∈J

xi, ẑ
)
=

∏

i∈J

H(xi, ẑ), this occurs iff H(xi, ẑ) = ∅ for some i ∈ J .

1.5. Topologies and spectra.

1.5.1. Generalities on topologies. Let τ be a topology on Hop, i.e. τ is a function
which assigns to every object x of H a set, τ(x), of subfunctors of the functor H(x,−)
(called the refinements of x) satisfying the following conditions:

(a) for every arrow x
f
→ y of H and every R ∈ τ(x), the fibre product, Rf , of

R −→ H(x,−)
H(f,−)
←− H(y,−) belongs to τ(y);

(b) If R ∈ τ(x) and E is a subfunctor of H(x,−) such that Ef ∈ τ(y) for any f ∈ R(y)
and any y, then E ∈ τ(x).

1.5.1.1. Cocovers. A family of arrows x̃ = {x
ui→ xi | i ∈ J} generates a subfunctor,

R
x̃
, of H(x,−) defined as follows: R

x̃
(y) consists of all arrows x −→ y which factor through

x
ui→ xi for some i ∈ J . The family x̃ = {x

ui→ xi | i ∈ J} is called a cocover (or a cover in
Hop) for the topology τ if R

x̃
∈ τ(x).

1.5.1.2. Sheaves. Subcanonical topologies. A functor H
F
−→ Sets (viewed as

a presheaf of sets on Hop) is called a sheaf (on (Hop, τ)) if for every x ∈ ObH and any
refinement R of x, the map F (x) −→ Hom(R,F ) induced by the embedding R →֒ H(x,−)
and the Yoneda isomorphism F (x) ≃ Hom(H(x,−), F ), is a bijection.
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The topology τ on Hop is called subcanonical if every representable presheaf, i.e. a
functor of the form H(x,−), x ∈ ObH, is a sheaf.

1.5.1.3. Cosieves. It is convenient sometimes to describe topologies on Hop in terms
of cosieves. Recall that a cosieve in a category A is a full subcategory, B, of A such that
for every x ∈ ObB, all arrows x −→ y belong to B.

Let x be an object of the category H. There is a one-to-one correspondence between
cosieves of the category x\H and subfunctors of the functor H(x,−). Namely, an object

(y, x
ξ
→ y) of x\H belongs to the cosieve R̃ corresponding to a subfunctor R of H(x,−) iff

the morphism x
ξ
→ y is an element of R(y).

Thus, a topology, τ , on Hop can be described as a function which assigns to each object
of H a non-empty family of cosieves of the category x\H, which are also called refinements
of x, satisfying the conditions reflecting properties (a) and (b) of 1.5.1.

One can see that a topology τ on Hop is subcanonical iff for every x ∈ ObH each
refinement of x is a terminal cone. In other words, for every refinement R̃ of x, the limit

of the canonical functor R −→ H, (y, x
ξ
→ y) 7−→ y, is isomorphic to x.

1.5.1.4. Pretopologies on Hop. A pretopology on Hop is a function, τ , which assigns
to each object x of H a family, τx, of sets of arrows {x → xi | i ∈ J} (in H) having the
following properties:

(a) for every x ∈ ObH, {idx} ∈ τx;
(b) if {x → xi | i ∈ J} ∈ τx and {xi → xij | j ∈ Ji} ∈ τxi for every i ∈ J , then

{x→ xij | i ∈ J, j ∈ Ji} ∈ τx;

(c) for any x̃ = {x → xi | i ∈ J} ∈ τx and any morphism x
φ
−→ y, there exists

ỹ = {y
vj
→ yj | j ∈ I} ∈ τy such that the morphism φ can be lifted to a morphism x̃

φ̃
−→ ỹ.

The latter means that for every j ∈ I, the composition of x
φ
−→ y and y −→ yj factors

through x −→ xi for some i ∈ J .
Elements of τx are called cocovers of x. Arrows which belong to cocovers are inter-

preted as closed subsets. The corresponding arrows in Hop are viewed as open subsets.
Every pretopology determines a topology obtained by taking cosieves (or subfunctors

of representable functors) associated with cocovers.

1.5.2. Proposition. Suppose that τ is a subcanonical topology on Hop; and let
x̃ = {x

ui→ xi | i ∈ J} be a cocover for τ . Then

Spec1(x\H) =
⋃

i∈J

Spec1(xi\H).

Here Spec1(xi\H) is identified with its image in x\H via the morphism x
ui→ xi.
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Proof. Let an object z̃ = (z, x
f
→ z) belong to Spec1(x\H). By definition, this

means that the subcategory (z̃\(x\H))1 has an initial object. Notice that the category
z̃\(x\H) is isomorphic to the category z\H. Thus, the category (z\H)1 has an initial

object, (z⋆, z
ξ
→ z⋆). By condition, ξ is not an isomorphism.

Let R
x̃
be a refinement of x associated with the cocover x̃ = {x

ui→ xi | i ∈ J}; and

let R
ξ

x̃
be the corresponding refinement of the object z. Notice that there exists y ∈ ObH

and an element z
g
→ y of R

ξ

x̃
(y) such that (y, z

g
→ y) /∈ Ob(z\H)1.

In fact, if such element would not exist, then, since (z⋆, z
ξ
→ z⋆) is an initial object

of (z\H)1, every element z
g
→ y of R

ξ

x̃
(y) factors through z

ξ
→ z⋆, and this factorization is

unique. Since the topology τ is subcanonical, (z, idz) is an initial object of the sieve R̂
ξ

x̃

associated with R
ξ

x̃
. Therefore, there exists a unique morphism (z⋆, ξ) −→ (z, idz). But,

this cannot happen (see the argument of 1.4.6).

Thus, there exists an element z
g
→ y of R

ξ

x̃
(y) such that (y, z

g
→ y) /∈ Ob(z\H)1, or,

what is the same, the arrow z
g
→ y is an isomorphism. By the definition of R̂

ξ

x̃
, there exists

a commutative diagram

x
f

−−−→ z

ui

y
y g

xi
fi

−−−→ y

(4)

for some i ∈ J . Since the arrow g in (4) is an isomorphism, it follows from (4) that

x
f
→ z factors through the element x

ui→ xi of the cocover x̃. Therefore, the object (z, f) of
Spec1(x\H) is the image of an object (z, gfi) of Spec1(xi\H); hence the assertion.

For any x ∈ ObH, let UH(x) denote the full subcategory of H generated by all y ∈ ObH
such that H(y, x) = ∅. Thus, UH(x) coincides with

(
SuppHop(x)

)op
.

1.5.3. Proposition. Let x ∈ ObH be such that for any z ∈ ObH, there exists a
coproduct, x ⊔ z. Then the map z 7−→ (x ⊔ z, x→ x ⊔ z) defines a functor

Spec0(H)
⋂
UH(x) −−−→ Spec0(x\H).

Proof. For any y ∈ ObH, we set f∗(y) = (y⊔x, x→ y⊔x). The map y 7→ f∗(y) extends

to a functor, H
f∗

−→ x\H, which is left adjoint to the functor x\H
f∗
−→ H, (v, x→ v) 7→ v.

Let z be an object of the subcategory Spec0(H)
⋂
UH(x), and let ẑ be a final ob-

ject of the category SuppH(z). Since z ∈ ObUH(x), i.e. H(z, x) = ∅, there exists a
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unique morphism x → ẑ. We claim that the (ẑ, x → ẑ) is a final object of the category
Suppx\H(f

∗(z)).
In fact, x\H(f∗(z), (y, x → y)) ≃ H(z, y) which shows that (y, x → y) is an ob-

ject of Suppx\H(f
∗(z)) iff y is an object of SuppH(z). Therefore, (ẑ, x → ẑ) belongs to

Suppx\H(f
∗(z)) and, moreover, is a final object of this category.

1.5.4. Corollary. Let x
u
→ y be a morphism of H such that for any other morphism,

x
v
→ z, there exists a fibred coproduct, y ⊔x z. Then the functor

y\H
u∗−→ x\H, (z, y

g
→ z) 7−→ (z, x

gu
→ z),

has a left adjoint, u∗; and u∗ induces a functor

Spec0(x\H)
⋂
Ux\H(y, u) −−−→ Spec0(y\H).

Proof. The fact is a consequence of 1.5.3 applied to the category x\H.

1.5.5. Proposition. Let x = {x
ui→ xi | i ∈ J} be a set of arrows such that

the cone x −→ R̃x is terminal (i.e. x = lim R̃x) and for any arrow x −→ y, there
exist fibred coproducts xi ⊔x y. If H is a preorder, then the image of the canonical map
Spec0(x\H) −→ Spec1(x\H) is contained in the union of images of Spec0(xi\H), i ∈ J,
in Spec1(x\H).

Proof. By 1.5.4, there are natural functors

Spec0(x\H)
⋂
Ux\H(xi, ui) −−−→ Spec0(xi\H)

Therefore, it suffices to show that for any object (z, ξ) of Spec0(x\H), there exists i ∈ J
such that there are no morphisms from (z, ξ) to (xi, ui).

Suppose that for each i ∈ J , there is an arrow (z, ξ) −→ (xi, ui). Since H is a preorder,

these arrows determine a cone z −→ R̃x. By hypothesis, x = lim R̃x, hence there exists a
morphism (z, ξ) −→ (x, idx). Since (x, idx) is an initial object of the category x\H, this
means that for any object of x\H there is an arrow from (z, ξ) to this object, which cannot
happen, because (z, ξ) belongs to Spec0(x\H). Thus, there exists i ∈ J such that there
are no morphisms from (z, ξ) to (xi, ui).

1.5.6. The spectrum of a precosite. Let τ be a pretopology on Hop. We call the
pair (H, τ) a precosite. Let Hτ denote the subcategory of H formed by arrows which belong
to some cocovers. For every x ∈ ObH, we denote by τx the induced pretopology on Hop/x =
(x\H)op. We denote bySpec0(x\H, τx) the full subcategory of x\H generated by the images
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of Spec0(y\H) for all arrows x → y of the subcategory Hτ . We call Spec0(x\H, τx) the
spectrum of the precosite (x\H, τx).

Thus, if the category H has an initial object, we obtain the spectrum, Spec0(H, τ),
of the precosite (H, τ). If, in addition, all arrows of the subcategory Hτ are isomorphisms
(for instance, the pretopology τ is discrete), then Spec0(H, τ) coincides with Spec0(H).

1.5.6.1. Proposition. Suppose that Hτ = H and H is a preorder with finite coprod-
ucts and an initial object. Then Spec0(H, τ) is isomorphic to Spec1(H).

Proof. The assertion is a consequence of 1.4.6.

1.5.6.2. Proposition. To any morphism, x −→ y, of the subcategory Hτ , there cor-
responds an inclusion Spec0(y\H, τy) ⊆ Spec0(x\H, τx), i.e. the map x 7−→ Spec0(x\H, τx)
extends to a functor Hopτ −→ Cat.

Proof. The fact follows from definitions.

1.6. Relative spectra.

LetG
F
−→ H be a functor. We define the relative spectra,Spec1(G, F ) andSpec0(G, F ),

via cartesian squares

Spec1(G, F )
θ1F
−−−→ G Spec0(G, F )

ϑF
−−−→ G

πF1

y
y F and πF0

y
y F

Spec1(H)
θ1H
−−−→ H Spec0(H)

ϑH

−−−→ H

(1)

(in the bicategorical sense, i.e. the squares quasi-commute), where Spec0(H)
ϑH−→ H is

the canonical functor of 1.4.4.
Explicitly, objects of the categorySpec1(G, F ) are triples (z, x;φ), where z is an object

of Spec1(H), x ∈ ObG, and φ is an isomorphism z ∼−→ F (x). Morphisms from (z, x;φ) to

(z′, x′;φ′) are given by pairs of arrows, z
g
−→ z′ and x

h
−→ x′ such that the diagram

z
g

−−−→ z′

φ
y≀ ≀

y φ′

F (x)
F (h)
−−−→ F (x′)

commutes. The projections Spec1(H)
πF1←− Spec1(G, F )

θ1F−→ G in the left diagram (1) are
defined by πF1 (z, x;φ) = z and θ1F (z, x;φ) = x.
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Similarly, objects of the category Spec0(G, F ) are triples (z, x;ψ), where z is an object
of Spec0(H), x ∈ ObG, and ψ is an isomorphism ϑH(z)

∼−→ F (x).

1.6.1. Proposition. Let i be 0 or 1. The map (G, F ) 7−→ Speci(G, F ) extends to
a pseudo-functor Speci : Cat/H −→ Cat.

Proof. The assertion follows from the universal property of cartesian squares.

1.6.2. Proposition. Suppose H is a preorder with finite coproducts. Then for every

functor G
F
−→ H, there is a canonical functor

Spec0(G, F )
ϑ(G,F )

−−−→ Spec1(G, F ). (2)

The family {ϑ(G,F ) | (G, F ) ∈ ObCat/H} is a morphism of pseudo-functors,

Spec0
ϑ

−−−→ Spec1. (3)

Proof. Since H is a preorder with finite coproducts, the functor Spec0(H)
ϑH−→ H

takes values in Spec1(H), hence it factors through the embedding Spec1(H) −→ H (see
1.4.6). By the universal property of cartesian squares, there exists a unique functor (2)
such that θ1F ◦ ϑ(G,F ) = ϑF and πF1 ◦ ϑ(G,F ) = πF0 (see the diagram (2)).

It is useful to have an explicit description of the functor (2) in terms of the descriptions
of Spec0(G, F ) and Spec1(G, F ) given above. The functor ϑ(G,F ) maps an object (z, x;ψ)

of Spec0(G, F ) to the object (ϑH(z), x;ψ) of Spec1(G, F ).
It follows from this description that ϑ = {ϑ(G,F ) | (G, F ) ∈ ObCat/H} is a morphism

of pseudo-functors.

1.7. The strict support and the spectrum Spec(H).

We fix a category H with an initial object x. For any pair of objects y, z of H, we
shall write y ∩ z = x if any diagram y ← w → z factors through y ← x → z; that is there
exists a morphism w → x such that the diagram

y ←−−− w −−−→ z

id
y

y
y id

y ←−−− x −−−→ z

commutes.

1.7.1. Observations. (a) It follows that y ∩ z = x if y is an initial object.
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(b) Recall that a morphism y −→ z is called trivial if it factors through an initial
object. If y ∩ z = x, then there are no non-trivial arrows between y and z.

(b’) In particular, if all arrows of H are monomorphisms (say, H is a preorder), then
y ∩ z = x implies that either y is an initial object, or H(y, z) = ∅.

(c) If all arrows of H are monomorphisms, then y ← w → z factors through y ← x→ z
iff the object w is trivial.

1.7.2. The strict support. For any x ∈ ObH, we denote by SuppsH(x) the full
subcategory of H generated by all y ∈ ObH such that y ∩ x = x. We call the subcategory
SuppsH(x) the strict support of x.

It follows thatSuppsH(x) is a strictly full subcategory of H containing all initial objects.
In particular, SuppsH(x) is non-empty for all objects x (unlike the support SuppH(x) of
1.3 which might be empty for some objects x).

Notice that if x is an initial object, then SuppsH(x) = H.
We denote the final object of SuppsH(x) (if any) by x̌.

1.7.2.1. Note. It follows from 1.7.1(b’) that if all arrows of H are monomorphisms,
then SuppsH(x) ⊆ SuppH(x) for all x ∈ ObH1. If both a final object x̌ of SuppsH(x) and a
final object x̂ of SuppH(x) exist, then there is a unique arrow x̌ −→ x̂. This arrow is an
isomorphism if x ∩ x̂ = x.

1.7.2.2. Lemma. The map x 7−→ SuppsH(x) is a contravariant functor: if x → y,
then SuppsH(y) ⊆ SuppsH(x).

1.7.3. The closure. For an object x of H, let {x}− denote the full subcategory of H
generated by all objects y such that if z → y is a non-trivial morphism, then z ∩ x 6= x.

It follows from this definition that, for any object x of H, the subcategory {x}−

contains the full subcategory H0 generated by all initial objects of H, and if x is an initial
object, then {x}− coincides with H0. It follows from 1.7.1(b) that x is an object of {x}−.

We denote the final object of {x}− (if any) by x−.

1.7.4. Proposition. Let H be a preorder with initial objects.
(a) If there exists a morphism x→ y, then {x}− ⊆ {y}−.
(b) Let x ∈ ObH be such that x− exists. Then (x−)− ≃ x−.
(c) Let x ∈ ObH be such that the final object x̌ of SuppsH(x) exists. Then x̌− = x̌.

Proof. (a) Suppose that an object z′ belongs to {x}−, that is for any non-trivial arrow
z → z′ there exists a diagram x ← w → z, where w is not an initial object. But then we
have the diagram y ← w → z (thanks to the arrow x→ y), hence z′ ∈ Ob{y}−.

(b) By definition, Ob{x−}− consists of all objects y of H such that if z → y is a
non-trivial arrow, then z ∩ x− 6= x. The latter means that there exists a pair of arrows
z ← w → x− with non-trivial w. Since x− is an object of {x}−, the intersection w ∩ x
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is non-trivial; i.e. there exists a diagram w ← v → x with non-initial v. Composing it
with z ← w, we obtain the diagram z ← v → x. Therefore, y ∈ Ob{x}−. This proves the
inclusion {x−}− ⊆ {x}−. The inverse inclusion follows from the existence of the morphism
x→ x− (because x ∈ Ob{x}− and x− is a final object of {x}−) and (a) above.

(c) Let x be an object of H such that there exists a final object, x̌, of SuppsH(x). Let
y be an object of {x̌}−, that is for any non-trivial morphism z → y, the intersection z ∩ x̌
is non-trivial. The claim is that y belongs to SuppsH(x), i.e. y ∩ x = x.

Suppose that, on the contrary, y ∩ x is non-trivial; i.e. there is a diagram y ← z → x
with non-initial z. Then z ∩ x̌ is non-trivial, that is there exists a diagram z ← w → x̌
with a non-initial w. Composing with z → x, we obtain a diagram x ← w → x̌, which
contradicts to the fact that x ∩ x̌ = x.

1.7.5. Note. For any subset B of objects of H, set SuppsH(B)
def
=

⋂

x∈B

SuppsH(x). For

a subcategory B of H, we set SuppsH(B)
def
= SuppsH(ObB).

One can see that {x}− = SuppsH(SuppsH(x)) for any x ∈ ObH.

1.8. The relative version. Fix a functor G
F
−→ H.

1.8.1. Relative closure. For any x ∈ ObH, we define the closure {x}−F of x in G via
the cartesian square

{x}−F −−−→ Gy cart
y F

{x}− −−−→ H

In other words, {x}−F is the preimage of {x}− in G.

1.8.1.1. Example. Let CX be a svelte abelian category and H the preorder (with
resp. to the inclusion) of its strictly full subcategories closed under taking subobjects, G
the preorder of strictly full subcategories of CX closed under taking subquotients, F the
inclusion functor G →֒ H. Then for each subcategory S ∈ H, the subcategory S− exists
and coincides with the Serre envelope of the subcategory S. Objects of S− are all objects
M of CX whose nonzero subquotients have nonzero subobjects from S. Thus, S− is a
Serre (in particular, thick) subcategory of CX .

1.8.1.2. Example: the closure in Serre subcategories. Let H be as above, G
the preorder Se(X) of Serre subcategories of CX , and F the inclusion functor. Although
{S}−F is, usually, not the same as in the previous setting, the final object is the same – the
Serre envelope S− of the subcategory S.



Spectral Cuisine for the Working Mathematicians. 263

1.8.2. The relative strict support. Similarly, the relative strict support of x ∈ ObH
is defined via the cartesian square

SupF (x) −−−→ Gy cart
y F

SuppsH(x) −−−→ H

i.e. objects of SupF (x) are all y ∈ ObG such that F (y) ∩ x = x.

1.8.2.1. Example. Consider the setting of 1.8.1.2; that is H the preorder of strictly
full subcategories of a svelte abelian category CX which are closed under taking subob-
jects, G is the preorder Se(X) of Serre subcategories of CX , and F the inclusion functor.
The subpreorder SupF (x) has a final object iff the smallest topologizing subcategory [x]
spanned by x belongs to the spectrum Spec(X).

There is a relative version of 1.7.4 which looks as follows.

1.8.3. Proposition. Let H be a preorder with initial objects and G
F
−→ H a functor.

(a) If x, y are objects of H and there exists a morphism x→ y, then {x}−F ⊆ {y}
−
F .

(b) Suppose that the closure {x}−F of an object x of H in G has a final object, x−.
Then the closure {F (x−)}− of F (x−) in G has a final object which is isomorphic to x−.

(c) Let x ∈ ObH be such that the support SupF (x) of x in G has a final object, x̌.
The object x̌ is a final object of the relative closure of F (x̌).

Proof. (a) The assertion follows from 1.7.4(a) and the definition of the relative support.
(b) and (c). The arguments are adaptations of the corresponding arguments of 1.7.4.

Details are left to the reader.

1.9. The spectra.

Fix a preorder H with an initial object x. Recall that H1 denote the full subcategory
of H generated by non-initial objects.

1.9.1. The spectrum Spec(H). Recall that the spectrum Spec0(H) is a full sub-
category of H whose objects are those x ∈ ObH1 for which SuppH(x) has a final object,
x̂. We denote by Spec∨(H) the full subcategory of Spec(H) generated by all x such that
x ∩ x̂ = x. Consider the functor

Spec∨(H)
φH

−−−→ H, x 7−→ x̂,

and the class ΣφH
of all arrows of Spec∨(H) which φH transforms into isomorphisms.

We define the spectrum Spec(H) as the localization Σ−1
φH

Spec∨(H).
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1.9.2. The ’strict’ spectrum Specs(H). We denote by Spec∨s (H) the full subcat-
egory of H generated by all x ∈ ObH1 such that SuppsH(x) has a final object, x̌. Let

Spec∨s (H)
ψH

−−−→ H be the functor which assigns to every object x of Spec∨s (H) the final
object x̌ of the strict support SuppsH(x) of x. We denote by Specs(H) the quotient category

Σ−1
ψH

Spec∨s (H) and call it the strict spectrum of H.
It follows from 1.7.2.1 that the embedding Spec∨(H) ⊆ Spec∨s (H) induces a functor

Spec(H) −→ Specs(H).

1.9.3. The spectrum Spe(H). We denote by Sp(H) the full subcategory of H1

generated by objects x such that if y → x is an arrow of H1, then SuppsH(y) = SuppsH(x).
The spectrum Spe(H) is defined as the localization of Sp(H) at the class ΣγH of all

arrows which the functor

Sp(H)
γH
−−−→ 2H, x 7−→ SuppsH(x),

maps to isomorphisms. Here 2H denotes the preorder (with respect to the inclusion) of all
strictly full subcategories of H.

1.9.4. The relative versions. Fix a functor G
F
−→ H. Then we have the relative

spectrum Spec(G, F ) defined via the canonical cartesian square

Spec(G, F ) −−−→ Gy cart
y F

Spec(H)
φH

−−−→ H

Similarly, the spectrum Specs(G, F ) is defined by the cartesian square

Specs(G, F ) −−−→ Gy cart
y F

Specs(H)
ψH

−−−→ H

Finally, the relative spectrum Spe(G, F ) is defined via the cartesian square

Spe(G, F ) −−−→ 2Gy cart
y 2F

Spe(H)
γH
−−−→ 2H

where 2F is the induced by the functor F morphism from the preorder of strictly full
subcategories of G to the preorder of strictly full subcategories of H.
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1.9.5. Examples. (a) Let H be the preorder of full subcategories of a svelte abelian
category CX closed under taking subobjects, G is preorder Se(X) of Serre subcategories of
CX , and F the inclusion functor. Then each of the three spectra, Spec(G, F ), Specs(G, F ),
and Spe(G, F ), is naturally isomorphic to the spectrum Spec(X) of the ’space’ X.

The isomorphism Spec(G, F ) ∼−→ Spec(X) assigns to every element of Spec(G, F )
the smallest topologizing subcategory [x] containing a representative x of this element.

Notice that there is the biggest representative of the class equal (therefore) to the
union of all its representatives. If x is the biggest representative, (or any other represen-
tative which is closed under coproducts), then the smallest topologizing subcategory [x]
containing x is generated by all possible quotients of objects of x.

Same map gives isomorphisms Specs(G, F )
∼−→ Spec(X) ∼←− Spe(G, F ).

(b) Let H be the preorder of full coreflective subcategories of CX closed under taking
subobjects, G is preorder Thc(X) of thick coreflective subcategories of CX , and F the in-
clusion functor. Then each of the three spectra, Spec(G, F ), Specs(G, F ), and Spe(G, F ),
is naturally isomorphic to the spectrum Spec0c(X) of the ’space’ X.

In the case of Spec(G, F ), the isomorphism in question assigns to every element of
Spec(G, F ) the smallest coreflective topologizing subcategory of CX containing a repre-
sentative of this element. Similarly for Specs(G, F ) and Spe(G, F ).

1.10. Complementary facts: relative support and associated points.

1.10.1. Relative support. Fix a functor G
F
−→ H. For an x ∈ ObG, we call

SuppH(F (x)) the support of x in H, or the relative support of x.

1.10.2. Weakly associated points. For any x ∈ ObG, we denote by Ass1(G,F )(x)

the full subcategory of Spec1(H) generated by all objects z for which there exists x̃ −→ x
such that z ∈ ObSuppH(F (x̃)) and there is an arrow F (x̃) −→ z⋆. As before, (z, z → z⋆)
denotes an initial object of (z\H)1.

It follows from this definition that Ass1(G,F )(x) is a subcategory of the relative support,

SuppH(F (x)), of the object x.
We call objects of Ass1(G,F )(x) weakly associated points of x in (G, F ).

If F is the identical functor H −→ H, we shall write Ass1H(x) instead of Ass1(H,IdH)(x)
and call objects of this category weakly associated points of x. It follows that objects of
Ass1H(x) are z ∈ ObSpec1(H) such that there exist arrows z⋆ ←− x̃ −→ x and z belongs
to SuppH(x̃).

1.10.3. Associated points. Fix a functor G
F
−→ H. For an object x of G, we denote

by Ass1(G,F )(x) the full subcategory of Spec1(H) generated by all objects z such that there
exists x̃ ∈ ObG having the following properties:

(a) there exist arrows x̃ −→ x and F (x̃) −→ z⋆;
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(b) if there exists an arrow y −→ x̃, then H(F (y), z) = ∅.
We call objects of Ass1(G,F )(x) associated points of the object x in (G, F ).

It follows from the condition (b) that z belongs to SuppH(F (x̃)). Together with the
condition (a), this means that Ass1(G,F )(x) ⊆ Ass

1
(G,F )(x).

If F is the identical functor H −→ H, we shall write Ass1H(x) instead of Ass1(H,IdH)(x).

It follows that objects of Ass1H(x) are z ∈ ObSpec1(H) for which there exists a pair of
arrows z⋆ ←− x̃ −→ x with x̃ such that there is no diagram of the form z ←− y −→ x̃.

1.10.4. Associated points and weakly associated points in Spec0(H). We
define Ass0(G,F )(x), resp. Ass0(G,F )(x), as full subcategories of H generated by all z ∈

ObSpec0(H) such that ẑ is an object of Ass1(G,F )(x), resp. an object of Ass1(G,F )(x).

Consider the following two properties:
(sup1) If x ∈ ObH is the supremum of a filtered system, {xi | i ∈ J}, of its subobjects,

then for any morphism x̃ −→ x, there exists a cofinal subset I ⊆ J such that for every i ∈ I,
there exists a fibre product, x̃i = x̃ ×x xi, and the canonical arrow colim(x̃i|i ∈ I) −→ x̃
is an isomorphism.

(sup2) If x ∈ ObH is the supremum of a filtered system, {xi | i ∈ J}, of its subobjects,
then for any morphism x̃ −→ x, there exists a diagram x̃←− y −→ xi for some i ∈ J .

1.10.5. Proposition. (a) If x = colim(xi | i ∈ J), then

⋃

i∈J

Ass1(G,F )(xi) ⊆ Ass
1
(G,F )(x) and

⋃

i∈J

Ass1(G,F )(xi) ⊆ Ass1(G,F )(x).

(b) Let x ∈ ObH be the supremum of a filtered system, {xi | i ∈ J}, of its subobjects.
(i) If H is a preorder with the property (sup1) and F preserves colimits of filtered

systems, then

Ass1(G,F )(x) =
⋃

i∈J

Ass1(G,F )(xi).

(ii) Suppose G possesses the property (sup2). Then

Ass1(G,F )(x) =
⋃

i∈J

Ass1(G,F )(xi).

Proof. (a) Let z ∈ ObAss1(G,F )(xi), that is z belongs to Spec1(H) and there exists a

pair of arrows, z⋆ ←− F (x̃i) and x̃i −→ xi, such that z ∈ ObSuppH(F (x̃i)). Since there
is an arrow xi −→ x, same x̃i serves for x. Therefore Ass1(G,F )(xi) ⊆ Ass1(G,F )(x) for all

i ∈ J . Similar argument shows the inclusion
⋃

i∈J

Ass1(G,F )(xi) ⊆ Ass1(G,F )(x).
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(b)(i) Suppose that (G, F ) possesses the property (sup1). Let z be an object of
Ass1(G,F )(x); i.e. z belongs to Spec1(H) and there exists a pair of arrows, z⋆ ←− F (x̃)

and x̃ −→ x, such that z ∈ ObSuppH(F (x̃)). By the property (sup1), a fibre product
x̃i = x̃ ×x xi exists for i ∈ I, where I is a cofinal subset of J , and the canonical arrow
colim(x̃i|i ∈ I) −→ x̃ is an isomorphism. If for every i ∈ I, there is an arrow F (x̃i) −→ z,
then there is an arrow F (x̃) −→ z, that is z does non belong to SuppH(F (x̃)), which
contradicts to the hypothesis. Thus, z ∈ ObSuppH(F (x̃i)) for some i ∈ I, which means
that z is an object of Ass1(G,F )(xi).

(ii) Let now (G, F ) have the property (sup2). Let z be an object of Ass1(G,F )(x); i.e.

z belongs to Spec1(H) and there exists a pair of arrows, z⋆ ←− F (x̃) and x̃ −→ x, such
that if H(F (y), z) 6= ∅, then G(y, x̃) = ∅. By the property (sup2), for some i ∈ J , there
exists a pair of arrows x̃←− x̃i −→ xi. It follows that if H(F (y), z) 6= ∅, then G(y, x̃i) = ∅,
hence z belongs to Ass1(G,F )(xi).

1.10.6. Example: supports and associated points of a family of arrows. Fix
a svelte category CX . Let H be the preorder SsM(X) of saturated multiplicative systems
of CX . Let G be the preorder (with respect to the inclusion) of non-empty families of

arrows of the category CX , and let G
F
−→ H be the functor which assigns to each family S

the intersection, [S]•, of all saturated multiplicative systems containing S.

The support, Supp(F (S)), of a family of arrows S in H = SsM(X) consists of all
saturated multiplicative systems Σ which do not contain S.

Weakly associated points of S are saturated multiplicative systems Σ such that there
exists S̃ ⊆ S which is not contained in Σ, but is contained in Σ⋆. Here Σ⋆ is the intersection
of all saturated multiplicative systems of CX properly containing Σ.

Thus, the preorder Ass(G,F )(S) of weakly associated points of a family of arrows S
coincides with the preorder AssL(S) of weakly associated points of S defined in [R6, 9.4.2].

Notice that in this case, associated points and weakly associated points of S coincide.

In fact, by definition 1.10.3, associated points of S are saturated multiplicative systems
Σ having the following property: there exists a non-empty subfamily, T , of S such that
T ∩ Σ = ∅. Let Σ be a weakly associated point of S, i.e. there exists S̃ ⊆ S such that
Σ + S̃ ⊆ Σ⋆. The family T = S̃ − Σ is non-empty, and T ∩ Σ = ∅. This means, precisely,
that Σ is an associated point of S.

1.10.7. Supports and associated points of objects. Let G, H and F be same
as in 1.10.6; i.e. G is a preorder of families of arrows of a category CX , H is the preorder
SsM(X) of saturated multiplicative systems of CX , and F maps every family S to the

smallest saturated multiplicative system containing S. Fix a functor CY
φ∗

−→ CX . The
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functor φ∗ determines, for every M ∈ ObCY , a functor CY /M
φ∗
M−→ CX/φ

∗(M). The map

ObCY −→ G, M 7−→ φ∗M (Ob(CY /M)),

defines a functor CY
Φ
−→ G. Let CY

Υφ
−→ H denote the composition of the functor Φ with

the functor F . The functor Υφ provides the notions of the support, weakly associated
points and associated points in H = SsM(X) of any object M of the category CY .

The support of an object M consists of all saturated multiplicative systems Σ such

that φ∗(ξ) /∈ Σ for some arrow L
ξ
−→M .

A saturated multiplicative system Σ of CX is a weakly associated point of an object
M of the category CY iff there exists a morphism L −→M such that φ∗(CY (N,L)) ⊆ Σ⋆

for all N ∈ ObCY and φ∗(ξ) /∈ Σ for some arrow M ′ ξ
−→M .

Finally, Σ is an associated point of M iff there exists a morphism L −→M such that

Σ 6∋ φ∗(ξ) ∈ Σ⋆ for every arrow N
ξ
−→ L.

1.10.8. A canonical setting. Let CY denote the subcategory of CX formed by all
non-initial objects of CX and strict monomorphisms; and let φ∗ be the inclusion functor
CY →֒ CX . Applying the construction of 1.10.7, we obtain non-trivial notions of the sup-
port and weakly associated and associated points of any non-initial object of the category
CX .

1.10.8.1. The case of an abelian category. If CX is an abelian category, these
notions are equivalent to those introduced in [R6, 9.4, 10.8]. The equivalence is given by
the isomorphism between the preorder SsM(X) of saturated multiplicative systems and
the preorder Th(X) of thick subcategories of the category CX . By definition, a saturated
system ΣT corresponding to a thick subcategory T belongs to the support of an object

M of CX iff there exists a monomorphism N
g
−→ M which does not belong to ΣT. This

means, precisely, that Cok(g) does not belong to the subcategory T. Thus, ΣT belongs to
the support of M iff M does not belong to T.

A multiplicative system ΣT is a weakly associated point of an object M if there exists
a subobject N of M such that all monoarrows L −→ N belong to Σ⋆

T
= ΣT⋆ , but some

of them do not belong ΣT. This means that N is an object of the subcategory T⋆ which
does not belong to T. Here T⋆ is the intersection of all thick subcategories of CX properly
containing T.

A multiplicative system ΣT is an associated point of an object M if there is nonzero
subobject N of M such that every nonzero monoarrow L −→ N belongs to ΣT⋆ and does
not belong ΣT. This means that the subobject N belongs to T⋆ and is T-torsion free.

1.10.8.2. The direct description. Fix an abelian category CX . Let G be the
subcategory CM⋆(X) of CX formed by all nonzero monomorphisms and all nonzero objects
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of CX . Let H be the preorder Th(X) of thick subcategories of the category CX . The

functor G
F
−→ H assigns to every object M of the category CM⋆(X) the smallest thick

subcategory, [M ]•, containing M .
The support, Supp(F (M)), of the object M in H = Th(X) consists of all thick

subcategories T such that F (M) = [M ]• * T, or, equivalently, M /∈ ObT.
A thick subcategory T is a weakly associated point of a nonzero object M iff there

exists a subobject M̃ of M which belongs to ObT⋆ −ObT.
A thick subcategory T is an associated point of a nonzero object M iff there exists a

nonzero subobject M̃ of M which belongs to T⋆ and is T-torsion free.
Thus the preorder Ass1(G,F )(M) coincides with the preorder Ass1Th(M) of weakly

associated points of M in the sense of [R6, 10.1]. The preorder Ass1(G,F )(M) coincides

with the preorder Ass1L(M) introduced in [R6, 10.8].

2. Applications: spectra of ’spaces’.

2.1. The spectra of exact localizations.

Let CX be a svelte category. We take as H the preorder SsM(X) of saturated multi-
plicative systems of CX and set

Spec1L(X) = Spec1(SsM(X)) and Spec0L(X) = Spec0(SsM(X)).

Since SsM(X) is a preorder, there exists a canonical injective morphism

Spec0L(X) −→ Spec1L(X), Σ 7−→ Σ̂

(cf. 1.4.6). Notice that the support, SuppSsM(X)(Σ), of Σ consists of all saturated multi-

plicative systems of CX which do not contain Σ, and its final object, Σ̂, is the union of all
multiplicative systems which belong to the support of Σ.

2.2. Closed spectra and flat spectra.

The closed spectra of a ’space’ X are relative spectra corresponding to the inclu-

sion functor, CSsM(X)
JC(X)
−−−→ SsM(X), where CSsM(X) is the preorder of all closed

saturated multiplicative systems of CX (cf. 2.0.5). Thus,

SpeciC(X) = Speci(CSsM(X), JC(X)), i = 0, 1.

Similarly, the flat spectra of X are relative spectra of (Lc(X), JL(X)), where Lc(X)
is the preorder of all flat saturated multiplicative systems of CX (cf. 2.0.6) and JL(X) is
the inclusion functor Lc(X) →֒ SsM(X). Thus,

SpecifL(X) = Speci(Lc(X), JL(X)), i = 0, 1.
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2.3. Spectra of ’spaces’ represented by abelian categories.

Fix a ’space’ X such that CX is an abelian category.

2.3.1. Thick spectra. We take as H the preorder Th(X) of thick subcategories of
CX and set

SpeciTh(X) = Speci(Th(X)), i = 0, 1.

Since the preorder Th(X) is naturally isomorphic to the preorder SsM(X) of saturated
multiplicative systems, the isomorphism Th(X) ∼−→ SsM(X) induces isomorphisms

SpeciTh(X) ∼−→ SpeciL(X), i = 0, 1

such that the diagram
Spec0Th(X)

∼

−−−→ Spec0L(X)y
y

Spec1Th(X)
∼

−−−→ Spec1L(X)

commutes. Here the vertical arrows are canonical embeddings of 1.4.6.

2.3.2. Representatives of Spec0Th(X). Let CM(X) denote the subcategory of CX
formed by all monomorphisms of CX . The map which assigns to each object, M , of
the category CX the smallest thick subcategory, [M ]•, containing M defines a functor

CM(X)
FX−→ Th(X). We denote by Spec0Th(X) the preimage, F−1

X (Spec0Th(X)), of the

spectrum Spec0Th(X). An object M of Spec0Th(X) is regarded as a representative of the

object [M ]• of Spec0Th(X).
It follows from [R6, 7.1.1] that the functor

Spec0Th(X) −−−→ Spec0Th(X), M 7−→ [M ]•, (1)

is surjective. Namely, if P is an object of Spec0Th(X), then P = [M ]• for any M ∈

ObP −ObP̂. Here P̂ is the union of all thick subcategories of CX which do not contain P.

2.3.3. Closed and flat spectra. Let CTh(X) be the preorder of coreflective thick
subcategories of the category CX , and JCT(X) the inclusion functor CTh(X) →֒ Th(X).
Recall that a full subcategory T of CX is coreflective if the inclusion functor T −→ CX
has a right adjoint. In other words, every object of CX has the biggest subobject which
belongs to T.

The coreflective spectra of X are defined by

SpeciCTh(X) = Speci(CTh(X), JCT(X)), i = 0, 1.
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By [R6, 7.2.1], the isomorphism Th(X) ∼−→ SsM(X) induces an isomorphism of the
preorder CTh(X) and the preorder CSsM(X) of closed saturated multiplicative systems.
Therefore, SpeciCTh(X) is isomorphic to the closed spectrum, SpeciC(X) defined in 2.2.

Let Thc(X) denote the preorder of all thick subcategories T such that the localization
functor CX −→ CX/T has a right adjoint. And let Jc(X) denote the inclusion functor
Thc(X) →֒ Th(X). Since the preorder Thc(X) is isomorphic to the preorder Lc(X) of flat
saturated systems of CX (cf. 2.2), the spectrum

SpeciThc
(X) = Speci(Thc(X), Jc(X))

is isomorphic to the corresponding flat spectrum SpecifL(X) defined in 2.2. Here i = 0, 1.

2.3.4. Relative Serre spectrum. Fix an abelian category CX . Let Se(X) be the
preorder of Serre subcategories of CX and JSe(X) the inclusion functor Se(X) →֒ Th(X).
The Serre spectra, or, shortly, S-spectra of X are defined by

SpeciSe(X) = Speci(Se(X), JSe(X)), i = 0, 1.

Since Thc(X) ⊆ CTh(X) ⊆ Se(X), there are inclusions of spectra,

SpeciThc
(X) ⊆ SpeciCTh(X) ⊆ SpeciSe(X), i = 0, 1.

By 2.3.4.1, if CX is a category with the property (sup), then CTh(X) = Se(X), in
particular the spectra SpeciSe(X) and SpeciCTh(X) coincide. If CX is a Grothendieck
category, then Thc(X) = CTh(X) = Se(X), hence in this case,

SpeciThc
(X) = SpeciCTh(X) = SpeciSe(X), i = 0, 1.

2.3.4.3. The category Spec0s(X). We denote by Spec0s(X) the full subcategory of
the category CM(X) generated by nonzero objects M such that M ∈ Ob[N ]• if there exists
a nonzero arrow N −→M (see [R6, 7.3.4]). By [R6, 7.3.5], Spec0s(X) ⊆ Spec0Se(X).

It is easy to see that a nonzero object M belongs to Spec0s(X) iff [L]• = [M ]• for any
nonzero subobject L of M .

2.3.4.4. Proposition. The image, Spec0s(X), of the map

Spec0s(X) −→ Spec0Th(X), M 7−→ [M ]•, (2)

contains Spec0CTh(X). If the category CX has the property (sup), then the image of (2)

coincides with Spec0CTh(X).
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Proof. Let P is an object of Spec0CTh(X); i.e. P is an object of Spec0Th(X) such

that the thick subcategory P̂ is coreflective. Let M ∈ ObP −ObP̂ . Since P̂ is coreflective,
M has a P̂-torsion, t

P̂
M . Replacing M by the quotient M/t

P̂
M , we can assume that

M is P̂-torsion free. Since P̂ = 〈M〉•, it follows from [R6, 7.3.6] that M is an object of
Spec0s(X) such that [M ]• = P.

By [R6, 7.3.5], the subcategory 〈M〉• is a Serre subcategory for every object M of
Spec0s(X). If the category CX has the property (sup), then, by [R6, 7.3.8], every Serre
subcategory of CX is coreflective.

2.3.5. Spectra related to topologizing subcategories. Let T(X) denote the
preorder of all topologizing subcategories of the category CX . Let JtX denote the inclusion
functor Th(X) −→ T(X).

Thus, we have two spectra associated to this functor,

Specit(X) = Speci(Th(X), JtX), i = 0, 1.

and a canonical morphism from one to another, Spec0t (X) −→ Spec1t (X).

2.3.5.1. Proposition. (a) There is a natural map Spec1t (X) −→ Spec1Th(X).
(b) The functor T(X) −→ Th(X) which assigns to every topologizing subcategory T the

smallest thick subcategory, T•, containing T, induces a functor Spec0t (X) −→ Spec0Th(X).

Proof. (a) The category Spec1t (X) is defined by the cartesian square

Spec1t (X) −−−→ Th(X)y
y

Spec1(T(X)) −−−→ T(X)

in which the right vertical arrow and the lower horizontal arrow are inclusions (see 1.6).
It follows from this description (or from the explicit description of relative spectra in 1.6)
that objects of Spec1t (X) are naturally identified with thick subcategories, P, which are
objects of Spec1(T(X)). The latter means that that there exists the smallest topologizing
subcategory, Pt, properly containing P. Therefore, the smallest thick subcategory, [Pt]•,
containing Pt is the smallest thick subcategory properly containing P, hence P belongs to
Spec1Th(X).

(b) The spectrum Spec0t (X) is defined by the cartesian square

Spec0t (X) −−−→ Th(X)y
y

Spec0(T(X)) −−−→ T(X)

(1)
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(see 1.6). By definition, objects of Spec0(T(X)) are topologizing subcategories, P, such

that SuppT(X)(P) has a final object. This means, precisely, that the union, P̂t, of all
topologizing subcategories which do not contain P is a topologizing subcategory. The
lower horizontal arrow of the diagram (1) maps an element P to P̂t.

It follows that objects of Spec0t (X) can be identified with topologizing subcategories,

P, such that P̂t is a thick subcategory. Therefore, P̂t is a final object of the support
SuppTh(X)(P•), where P• is the smallest thick subcategory containing P. This implies
that the map

Spec0t (X) −→ Th(X), P 7−→ P•,

takes values in Spec0Th(X), hence the assertion.

2.3.5.2. Representatives of Spec0t (X). Let CM(X) denote the subcategory of CX
formed by all monomorphisms of CX . The map which assigns to each object, M , of the
category CX the smallest topologizing subcategory, [M ], containing M defines a functor

CM(X)
FX−→ T(X). We denote by Spec0t (X) the preimage, F−1

X (Spec0t (X)), of the spectrum

Spec0t (X). An object M of Spec0t (X) is regarded as a representative of the object [M ] of
Spec0t (X).

2.3.5.3. Proposition. The functor

Spec0t (X) −→ Spec0t (X), M 7−→ [M ],

is surjective.

Proof. Let P be an object of Spec0t (X). For any M ∈ ObP −ObP̂t, the union, 〈M〉,
of all topologizing subcategories of CX which do not contain the object M coincides with
P̂t. In fact, 〈M〉 ⊆ P̂t, because M ∈ ObP; and P̂t ⊆ 〈M〉, because M /∈ ObP̂t.

It remains to notice that [M ] = P. Clearly [M ] ⊆ P. The inverse inclusion, P ⊆ [M ],
holds because if P * [M ], then [M ] ⊆ 〈M〉 which is impossible by the definition of 〈M〉.

2.3.6. Closed spectra defined by topologizing subcategories. Let JsX be the
inclusion functor CTh(X) −→ T(X). This functor creates two spectra,

SpeciCt(X) = Speci(CTh(X), JsX), i = 0, 1.

and a canonical morphism from one to another, Spec0Ct(X) −→ Spec1Ct(X).

2.3.6.1. The spectrum Spec(X). We denote by Spec(X) the full subcategory of
the category CM(X) generated by nonzero objects M such that M ∈ Ob[N ] if there exists
a nonzero morphism N −→M .
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Since [N ] ⊆ [N ]• for every object N , it follows that Spec(X) ⊆ Spec0s(X). In partic-
ular, Spec(X) ⊆ Spec0Se(X).

It is easy to see that a nonzero object M belongs to Spec(X) iff [L] = [M ] for every
nonzero subobject L of M . In other words, the functor

CM(X) −→ T(X), M 7−→ [M ],

maps every nonzero (mono)morphism L −→M to the (identical) isomorphism.

2.3.6.2. Proposition. The image Spec(X) of the map

Spec(X) −→ Spec0t (X), M 7−→ [M ], (1)

contains Spec0Ct(X). If the category CX has the property (sup), then the image of (1)
coincides with Spec0Ct(X).

Proof. Let P is an object of Spec0Ct(X); i.e. P is an object of Spec0t (X) such that

P̂t is a coreflective thick subcategory. Let M ∈ ObP − ObP̂t. Since P̂t is coreflective,
M has a P̂t-torsion, t

P̂tM . Replacing M by the quotient M/t
P̂tM , we assume that M is

P̂t-torsion free. Since P̂t is the union, 〈M〉, of all topologizing subcategories of CX which
do not contain M , it follows that M is an object of Spec(X) such that [M ] = P.

Since 〈M〉 is thick, it coincides with 〈M〉•. In particular, it is (by [R6, 7.3.5]) a Serre
subcategory. If the category CX has the property (sup), then, by [R6, 7.3.8], every Serre
subcategory of CX is coreflective.

2.4. Spectra defined by Serre subcategories.

Let H be the preorder Se(X) of all Serre subcategories of the category CX . Thus, we
have two spectra and an embedding:

Spec0(Se(X)) −−−→ Spec1(Se(X)).

2.4.1. Proposition. There are natural functors

SpeciSe(X) −−−→ Speci(Se(X)), i = 0, 1,

such that the diagram

Spec0Se(X) −−−→ Spec0(Se(X))y
y

Spec1Se(X) −−−→ Spec1(Se(X))
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commutes.

Proof. The functor Spec1Se(X) −−−→ Spec1(Se(X)) is the inclusion. The functor
Spec0Se(X) −−−→ Spec0(Se(X)) assigns to each object P of Spec0Se(X) the Serre sub-
category P−.

2.5. Spectra defined by closed cosubspaces.

Let CT(X) denote the preorder of all coreflective topologizing subcategories of the
category CX . Let JctX denote the inclusion functor CTh(X) −→ CT(X).

Thus, we have two spectra associated to this functor,

Specic(X) = Speci(Th(X), JctX), i = 0, 1.

and a canonical morphism from one to another, Spec0c(X) −→ Spec1c(X).
If the category CX has the property (sup), then the preorder CTh(X) of coreflective

thick subcategories coincides with the preorder Se(X) of Serre subcategories.

2.5.1. Proposition. Suppose that the category CX has the property (sup).
(a) There is a natural map Spec1c(X) −→ Spec1(Se(X).
(b) The functor

CT(X) −→ Se(X), T 7−→ T−,

(see 2.4) induces a functor Spec0c(X) −→ Spec0(Se(X).

Proof. The argument is similar to that of 2.3.5.1. Details are left to the reader.

2.5.2. The spectrum Spec0c(X). We denote by Spec0c(X) the full subcategory of
the category CM(X) generated by nonzero objects M such that M ∈ Ob[N ]c if there exists
a nonzero morphism N −→ M . Here [N ]c denotes the smallest coreflective topologizing
subcategory of CX containing the object N .

Since [N ]c ⊆ [N ]− for every object N , it follows that Spec0c(X) ⊆ Spec0s(X). In
particular, Spec(X) ⊆ Spec0Se(X).

2.5.2.1. Remarks. (a) It is easy to show that a nonzero object M belongs to
Spec0c(X) iff [L]c = [M ]c for every nonzero subobject L of M . In other words, the functor

CM(X) −→ CT(X), M 7−→ [M ]c,

maps every nonzero (mono)morphism L −→M to the (identical) isomorphism.
(b) Suppose the category CX has infinite coproducts. Then one can show that, for

any object M ∈ ObCX , objects of the subcategory [M ]c are subquotients of a coproduct of
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a set of copies of M , while objects of the subcategory [M ] are subquotients of a coproduct
of a finite set of copies of M .

Thus, a nonzero object M belongs to Spec0c(X) iff M is a subquotient of a coproduct
of a set of copies of any of its nonzero subobjects. And a nonzero object M ′ belongs to
Spec(X) iffM ′ is a subquotient of a coproduct of a finite set of copies of any of its nonzero
subobjects.

2.5.3. Proposition. Suppose that the category CX has the property (sup). Then the
map

Spec0c(X) −→ Spec0c(X), M 7−→ [M ]c, (1)

is surjective.

Proof. Let P is an object of Spec0c(X); i.e. P is a coreflective topologizing subcategory

such that the union, P̂ct, of all coreflective topologizing subcategories of CX which do not
contain P is a Serre subcategory. Let M ∈ ObP − ObP̂ct. Since P̂ct is coreflective, we
can and will assume M that M is P̂ct-torsion free. Since P̂ct is the union, 〈M〉c, of all
topologizing subcategories of CX which do not contain M , it follows that M is an object
of Spec0c(X) such that [M ]c = P.

Recall that an object M of a category CX is of finite type if the functor CX(M,−)
preserves colimits of filtered systems of monomorphisms. If the category CX has the
property (sup), then M is of finite type iff the following condition holds: if M is the
supremum of a family, F, of its subobjects, then M is the supremum of a finite subfamily
of F. If CX is the category of modules over some associative ring, then its objects of finite
type are finitely generated modules.

2.5.4. Proposition. Suppose that the category CX has the property (sup) and every
nonzero object of CX has a nonzero subobject of finite type. Then Spec0c(X) = Spec(X).

Proof. The inclusion Spec(X) ⊆ Spec0c(X) holds without any additional hypothesis.
The inverse inclusion is a consequence of the following observations.

(a) Thanks to the property (sup), the smallest coreflective subcategory spanned by
a topologizing subcategory, T, is generated by objects which are supremums of objects of
T. In particular, for any object N of the category CX , objects of the subcategory [N ]c
are supremums (of a filtered family) of their subobjects which belong to [N ]. This implies
that every object of finite type of the category [N ]c belongs to [N ].

(b) Let P be an object of Spec0c(X). By 2.5.3, P = [M ]c for some object M of
Spec0c(X). Suppose that M is of finite type. Then M belongs to Spec(X).

In fact,M belongs to the subcategory [N ]c for any nonzero subobject N ofM . By (a),
since M is of finite type, it belongs to [N ]. This means that M is an object of Spec(X).
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(c) Since [M ]c = [L]c for any nonzero subobject, L, of M , and, by hypothesis, M has
a nonzero subobject of finite type, we can choose M to be of finite type.

2.5.4.1. Corollary. If CX is the category of left (or right) modules over an associa-
tive unital ring, then Spec0c(X) = Spec(X).

2.6. Spectra of ’spaces’ represented by triangulated categories.

2.6.1. The spectra of exact localizations. Let CTX = (CX , γ;D) be a triangulated
category. Let Tht(X) denote the preorder of all thick triangulated subcategories of CTX.
Following the standard procedure, we associate with the preorder Tht(X) two spectra of
the ’space’ X represented by the triangulated category CTX

SpeciTht(X) = Speci(Tht(X)), i = 0, 1.

and a canonical morphism from one to another,

Spec0Tht(X) −−−→ Spec1Tht(X) (1)

which assigns to every object P of Spec0Tht(X) the union, P̂tr, of all thick triangulated
subcategories of CTX which do not contain the subcategory P.

2.6.2. Flat spectra. Let Se(X) denote the family of all thick triangulated categories

T of CX such that the localization functor CX
q∗
T−→ CX/T has a right adjoint, q

T∗.
The flat spectra of X are relative spectra

SpecifL(X) = Speci(Se(X), JS), i = 0, 1,

corresponding to the inclusion functor Se(X)
JS

−−−→ Tht(X). The morphism (1) induces
a canonical morphism

SpecifL(X) −−−→ SpecifL(X). (2)

Let Spec
1/2
fL (X) denote the full subpreorder of Tht(X) whose objects are thick trian-

gulated subcategories Q such that ⊥Q belongs to Spec1fL(X) and every thick triangulated

subcategory of CTX properly containing ⊥Q contains Q; i.e. ⊥Q ∨Q is the smallest thick
triangulated subcategory of CTX properly containing ⊥Q. Here ⊥Q is the left orthogonal
to Q, i.e. the full subcategory of CTX generated by all objects L such that CTX(L,M) = 0
for every M ∈ ObQ.

3. The left spectra.
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There are ’spaces’ with only trivial saturated multiplicative systems. They might be
called simple in the same sense as a ring with only trivial two-sided ideals is called simple.
If X is such a ’space’, then Spec1L(X) = {Iso(CX)} and Spec0L(X) = {HomCX}. It
follows that all other spectra introduced above (closed, flat, etc.) are one-element sets too.
Some of simple ’spaces’ have quite meaningful left spectra. The latter are associated with
the preorder of saturated left multiplicative systems.

A fundamental example of a simple ’space’ is the ’space’ represented by the category
Sets = SetsU of sets which belong to a given universe U.

3.1. Basic left spectra. Let X be a ’space’. We take as H the preorder SsMℓ(X)
of saturated left multiplicative systems on CX and set

SpeciL,ℓ(X) = Speci(SsMℓ(X)), i = 0, 1.

By 1.4.6, there exists a canonical injective map

Spec0L,ℓ(X) −−−→ Spec1L,ℓ(X), Σ 7−→ Σ̂.

3.1.1. The spectrum Spec1L,ℓ(X) and left local quotient ’spaces’. We call a
’space’ Y left local if the preorder (SsMℓ(Y ),⊆) is local, i.e. there is the smallest non-
trivial saturated left multiplicative system on CY . It follows that Spec1L,ℓ(X) is formed
by all Σ ∈ SsMℓ(X) such that the quotient ’space’ Σ−1X is left local.

3.2. Closed left spectra. Let CSsMℓ(X) denote the preorder of all closed saturated
left multiplicative systems on CX (cf. 2.0.5). They give rise to the spectra

Specif,ℓ(X) = Speci(CSsMℓ(X)), i = 0, 1.

and the relative spectra

SpeciC,ℓ(X) = Speci(CSsMℓ(X), JC,ℓ), i = 0, 1,

where JC,ℓ denotes the embedding CSsMℓ(X) →֒ SsMℓ(X).
They are related by canonical injective maps

Spec0f,ℓ(X) −−−→ Spec1f,ℓ(X),

Spec0C,ℓ(X) −−−→ Spec1C,ℓ(X)

(see 1.4.6 and 1.6.2).
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3.3. Continuous left multiplicative systems and continuous left spectra. A
left multiplicative system Σ in CX is called continuous if the corresponding localization
functor CX −→ Σ−1CX has a right adjoint.

Let Lcℓ(X) denote the preorder of continuous saturated left multiplicative systems.
By [R6, 5.2.1, 5.2.2], every continuous saturated left multiplicative system is closed, i.e.
Lcℓ(X) ⊆ CSsMℓ(X).

Let Jc,ℓ denote the embedding Lcℓ(X) →֒ SsMℓ(X). This data provides us with the
continuous left spectra

SpeciFl,ℓ(X) = Speci(Lcℓ(X)), i = 0, 1.

and the relative continuous left spectra

SpecifL,ℓ(X) = Speci(Lcℓ(X), Jc,ℓ), i = 0, 1,

together with the canonical injective maps

Spec0Fl,ℓ(X) −−−→ Spec1Fl,ℓ(X),

Spec0fL,ℓ(X) −−−→ Spec1fL,ℓ(X).

3.3.1. Another realization of continuous localizations and continuous left
spectra. Fix a ’space’ X. Consider the preorder fLℓ(X) of all strictly full subcategories

CY of CX such that the inclusion functor CY
ι
Y ∗

−→ CX has a left adjoint CX
ι∗Y−→ CY . These

functors are regarded as resp. direct and inverse image functors of a continuous strictly

full embedding Y
ι
Y
→֒ X. The map which assigns to every such subcategory the family

of arrows Σι∗
Y

= ι∗
−1

Y (Iso(CY )) is an isomorphism of the preorder (fLℓ(X),⊇) onto the
preorder (Lcℓ(X),⊆) of continuous saturated left multiplicative systems.

Thus, the continuous left spectrum Spec1fL(X) can be identified with the preorder of

all continuous strictly full embeddings Y
ι
Y
→֒ X such that Y is a left local ’space’.

Let fL⋆ℓ (X) denote the set fL(X) − {idX} of all proper continuous strictly full em-
beddings. Thanks to the isomorphism (Lc(X),⊆) ∼−→ (fL(X),⊇) elements of Spec1Fl,ℓ(X)

can be identified with continuous strictly full embeddings Y
ι
Y
→֒ X such that the preorder

(fL⋆(Y ),⊆) of proper strictly full continuous embeddings into Y has the biggest element.

3.4. The left spectra of Sets. Let E denote the ’space’ represented by the category
Sets = SetsU of sets which belong to a fixed universe U, i.e. CE = Sets.

The preorder SsMr(E) of right saturated multiplicative systems on Sets is trivial: it
consists only of Iso(CE) and HomCE . In particular, the preorder SsM(E) of saturated
multiplicative systems on Sets is trivial.
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For an infinite cardinal number α, let Σα denote the family of all maps M
f
−→ N (–

morphisms of CE) such that
(a) M 6= ∅ if N 6= ∅,
(b) Card(N − f(M)) < α,
(c) There exists a subset M ′ of M such that Card(M −M ′) < α and the restriction

of the map f to M ′ is injective.

Let Σα∗ denote the family of all maps M
f
−→ N satisfying (b) and (c) only. So that

Σα ⊂ Σα∗. Explicitly, Σα∗ = Σα
⋃
{∅ −→ N | Card(N) < α}.

Both Σα and Σα∗ are saturated left multiplicative systems on Sets. Moreover, every
saturated left multiplicative system on Sets is either Σα or Σα∗ for a suitable infinite
cardinal α (see [GZ], I.2.5f) and I.3.5).

Let Sp(U) denote the order of non-limit cardinals which belong to the universe U.

3.4.1. Proposition. (a) Let α be an infinite cardinal number. Then the following
conditions are equivalent:

(i) α is a non-limit cardinal,
(ii) Σα belongs to Spec0L,ℓ(E).

(b) The map α 7−→ Σα defines an isomorphism of preorders Sp(U)
̺0

−→ Spec0L,ℓ(E).

(c) If α is a non-limit infinite cardinal, then Σα−1∗ belongs to Spec1L,ℓ(E). The map

α 7−→ Σα−1∗ defines an isomorphism of preorders Sp(U)
̺1

−→ Spec1L,ℓ(E) such that the
diagram

Spec0L,ℓ(E)
θℓ(E)
−−−→ Spec1L,ℓ(E)

̺0 տ ր ̺1

Sp(U)

(1)

commutes. In particular, the canonical preorder morphism Spec0L,ℓ(E)
θℓ(E)
−−−→ Spec1L,ℓ(E)

is an isomorphism.

Proof. (a) Fix an infinite cardinal number α.

(i)⇒(ii). Let α be a non-limit cardinal. Then the union, Σ̂α of all elements of the
support of Σα (that is the union of all saturated left multiplicative system on CE which do
not contain Σα) coincides with Σα−1∗. This shows that Σα is an element of Spec0L,ℓ(E).

(ii)⇒(i). If α is a limit cardinal, then Σ̂α =
⋃

β<α

Σβ∗ ⊇
⋃

β<α

Σβ = Σα. This shows that

the support, Supp(Σα), of Σα does not have the final object, i.e. the left multiplicative
system Σα does not belong to Spec0L,ℓ(E).

(b) Let α be any cardinal of a set from U. The support of Σα∗ consists of all Σβ and

all Σγ∗ with γ < α. Thus Σ̂α∗ = HomCE1

⋃
{∅ −→ N | Card(N) < γ, γ < α}, where CE1
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is the full subcategory of CE formed by all non-empty sets. It follows from this description
that Σ̂α∗ is not closed under composition, hence the support of Σα∗ does not have the final
object, i.e. the left multiplicative system Σα∗ does not belong to Spec0L,ℓ(E). Since every
saturated left multiplicative system on Sets is either Σα, or Σα∗, this proves that the map
α 7−→ Σα is an isomorphism Sp(U) −→ Spec0L,ℓ(E).

(c) Let α be an infinite non-limit cardinal number. That Σα−1∗ is an element of
Spec1L,ℓ(E) follows, together with the commutativity of the diagram (1), from the fact
that Σα−1∗ is the final object of the support of Σα (see the argument (i)⇒(ii) above) and
1.4.6. Clearly the map

Sp(U)
̺1

−−−→ Spec1L,ℓ(E), α 7−→ Σα−1∗, (2)

is a morphism of preorders. It remains to show that this map is bijective.
In fact, for any pair of infinite cardinal numbers β and γ such that β < γ, the system

Σβ is contained properly in Σγ and in Σβ∗. On the other hand, Σβ = Σγ
⋂
Σβ∗. Therefore

Σβ does not belong to Spec1L,ℓ(E) for any infinite cardinal number β. Therefore elements

of Spec1L,ℓ(E) are systems Σβ∗ for some β. Suppose Σβ∗ belongs to Spec1L,ℓ(E), i.e. there

exists the smallest system Σ⋆β∗ in SℓMr(E) properly containing Σβ∗. Since Σβ∗ is not
contained in Σσ for any σ, the system Σ⋆β∗ should coincide with Σα∗ for some α. But,
Σβ∗ ( Σγ∗ iff β � γ. Therefore, β � α and there are no intermediate cardinal numbers,
i.e. α is a non-limit cardinal number and β = α− 1.

3.4.2. Other spectra. Let Σ ⊆ HomCE . By definition, and object M of CE is
Σ-torsion free if every morphism M −→ M ′ which belongs to Σ is a monomorphism.
Suppose Σ is Σα or Σα∗ for some infinite cardinal number α. Then a set M is Σ-torsion
free iff Card(M) ≤ 1 (that is either M = ∅, or M is a one-element set). It follows from the
definitions of Σα and Σα∗ that objects of CE having a morphism to a Σ-torsion free object
are precisely sets N such that Card(N) < α. This shows that the only closed saturated
left multiplicative systems on CE are Iso(CE) and HomCE . Since, by [R6, 5.2.2], every
continuous saturated left multiplicative system is closed, there are no non-trivial continuous
saturated left multiplicative systems either. Therefore, Spec0f,ℓ = Spec0Fl,ℓ = {HomCE}

and Spec1f,ℓ = Spec1Fl,ℓ = {Iso(CE)} (see notations in 3.2 and 3.3).
The relative continuous and closed left spectra (cf. 3.2, 3.3) are empty.

3.4.3. Sets without empty set. Let CE1 = Sets1U, where (in accordance with
notations in Section 1), Sets1U is the full subcategory of SetsU formed by non-empty sets
which belong to the universe U. It follows that the preorder SsMr(E

1) of saturated
right multiplicative systems on Sets1U is trivial and the set SsMℓ(E

1) of saturated left
multiplicative systems consists of all systems Σ1

α = Σα
⋂
HomCE1 , where α runs through
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infinite cardinal numbers (notice that Σα∗
⋂
HomCE1 = Σ1

α for any α). There is a following
analogue of 3.4.1:

3.4.4. Proposition. (a) Let α be an infinite cardinal number. Then the following
conditions are equivalent:

(i) α is a non-limit cardinal,
(ii) Σ1

α belongs to Spec0L,ℓ(E
1).

(b) The map α 7−→ Σ1
α defines an isomorphism of preorders Sp(U)

ν0

−→ Spec0L,ℓ(E
1).

(c) If α is a non-limit infinite cardinal, then Σ1
α−1 belongs to Spec1L,ℓ(E

1). The map

α 7−→ Σ1
α−1 defines an isomorphism of preorders Sp(U)

ν1

−→ Spec1L,ℓ(E
1) such that the

diagram

Spec0L,ℓ(E
1)

θℓ(E
1)

−−−→ Spec1L,ℓ(E
1)

ν0 տ ր ν1

Sp(U)

(1)

commutes. In particular, the canonical morphism Spec0L,ℓ(E
1)

θℓ(E
1)

−−−→ Spec1L,ℓ(E
1) is an

isomorphism.

Proof. The assertion follows from 3.4.1. Details are left to the reader.

The canonical map Spec0L,ℓ(E
1)

θℓ(E
1)

−−−→ Spec1L,ℓ(E
1) (of 1.4.6) assigns to each

element Σ1
α of Spec0L,ℓ(E

1) the system Σ1
α−1. Notice that the inverse map assigns to

each element Σ of Spec1L,ℓ(E
1) the smallest saturated left multiplicative system properly

containing Σ.

3.5. Example: finite sets. Let CEf
be the category Setf of finite sets. There are

no non-trivial left or right multiplicative systems on Setsf; so that the ’space’ Ef can be
viewed as an analog of a ’point’ – the spectrum of a field.

4. Left exact multiplicative systems and injective spectra.

4.1. Left exact multiplicative systems. Fix a ’space’ X. We call a saturated

left multiplicative system Σ left exact if the localization functor CX
q∗Σ−→ Σ−1CX = CΣ−1X

maps strict monomorphisms to strict monomorphisms. Let SsℓsM(X) denote the preorder
of all left exact multiplicative systems.

If CX is an abelian category, then every left exact multiplicative system is a right
multiplicative system, i.e. SsℓsM(X) = SsM(X).

4.2. Proposition. Suppose that the category CX has finite colimits and kernels of

pairs of arrows. Let CX
f∗

−→ CY be a right exact functor (i.e. it preserves finite colimits)
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which maps strict monomorphisms to strict monomorphisms, and let Σ = Σf∗ = {s ∈
HomCX | f

∗(s) ∈ Iso(CX)}. Then both functors, p∗f and q∗f , in the canonical decomposi-

tion f∗ = p∗fq
∗
f (here q∗f is the localization functor CX −→ Σ−1CX and p∗f is a conservative

functor) are right exact and map strict monomorphisms to strict monomorphisms. In par-
ticular, Σ ∈ SsℓsM(X).

Proof. (a) By [GZ, I.3.4], the functors q∗f and p∗f are right exact and Σ = Σf∗ belongs
to SsℓM(X). It remains to show that q∗f and p∗f map strict monomorphisms to strict
monomorphisms.

(b) Let L
j
−→M

p1
−→
−→
p2

M1 =M
∐
LM be an exact diagram. We claim that its image

by the localization functor q∗f is exact too.

In fact, let a morphism q∗f (N)
g′

−→ q∗f (M) equalize the pair q∗f
(
M

p1
−→
−→
p2

M1

)
. Since Σ

is a left multiplicative system, there exist arrows N
g
−→ M ′ s

←− M such that s ∈ Σ and
g′ = q∗f (s)

−1q∗f (g), and there exist commutative diagrams

M
pi
−−−→ M1

s
y

y si

M ′
p′i
−−−→ Ni i = 1, 2,

with s1, s2 ∈ Σ. By the same reason, there exists a commutative diagram

M1

s1
−−−→ N1

s2

y
y s′2

N2

s′1
−−−→ N ′

1

with s′2 ∈ Σ. Since the system Σ is saturated and the arrows s1, s2, s
′
2 belong to Σ, the

remaining arrow, s′1, belongs to Σ too. Thus, we obtain a commutative diagram

L
j

−−−→ M

p1

−−−→
−−−→
p2

M1

s
y

y t

N
g

−−−→ M ′
φ1

−−−→
−−−→
φ2

N ′
1

(1)

where s and t = s′2s1 are arrows from Σ and φi = s′ip
′
i. It follows from the definition of

N
g
−→ M ′ and the commutativity of the diagram (1) that q∗f (φ1g) = q∗f (φ2g). Since Σ
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is saturated, this means precisely that there exists an arrow N ′
1

u
−→ M ′′

1 in Σ such that

(uφ1)g = (uφ2)g. Set φ′i = uφi, i = 1, 2, and let L′ j′

−→ M ′ denote the kernel of the

pair of arrows M ′

φ′
1
−→
−→
φ′
2

M ′′
1 . Then we have the diagram L′ j′

−→M ′
π1
−→
−→
π2

M ′
1

σ
−→M ′′

1 , where

M ′
1 = M ′

∐
L′ M ′, π1, π2 are coprojections, and σ is a morphism uniquely determined by

the equalities σπi = φ′i, i = 1, 2. Combining these decompositions with (1), we obtain a
commutative diagram

L
j

−−−→ M

p1

−−−→
−−−→
p2

M1

t
−−−→ N ′

1

s′
y s

y
y u

N
g′

−−−→ L′
j′

−−−→ M ′

π1

−−−→
−−−→
π2

M ′
1

σ
−−−→ M ′′

1

(2)

Here N
g′

−→ L′ j′

−→ M ′ is the unique decomposition of the morphism N
g
−→ M ′ and

the arrow L
s′
−→ L′ is uniquely determined by the commutativity of the diagram (2) and

the fact that L′ j′

−→ M ′ is the kernel of the pair of arrows M ′
σπ1
−→
−→
σπ2

M ′′
1 . Applying the

localization functor q∗f to (2) and using that arrows s, t, u, σ belong to Σ, we obtain a
commutative diagram

q∗f (L)
q∗f (j)

−−−→ q∗f (M) −−−→
−−−→ q∗f (M1)

q∗f (s
′)

y ≀
y

y≀

q∗f (N)
q∗f (g

′)

−−−→ q∗f (L
′)

q∗f (j
′)

−−−→ q∗f (M
′) −−−→
−−−→ q∗f (M

′
1)

(3)

Since two of the three vertical arrows in (3) are isomorphisms and the diagrams

q∗f (L)
q∗f (j)

−−−→ q∗f (M) −−−→−−−→ q∗f (M1)

and

q∗f (L
′)

q∗f (j
′)

−−−→ q∗f (M
′) −−−→−−−→ q∗f (M

′
1)

are exact, the third one, q∗f (s
′), is an isomorphism, or, equivalently, s′ ∈ Σ. This shows that

any morphism q∗f (N)
g′

−→ q∗f (M) which equalizes the pair q∗f
(
M

p1
−→
−→
p2

M1

)
factors uniquely
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through the kernel of this pair. Notice that our argument shows the existence of this
kernel.

(c) Let q∗f (L)
ξ′

−→ q∗f (M
′) be a morphism in Σ−1CX and L

ξ
−→M

s
←−M ′ morphisms

such that s ∈ Σ and ξ′ = q∗f (s)
−1q∗f (ξ) (cf. (b) above). Consider the cokernel diagram

L
ξ

−−−→ M

p1

−−−→
−−−→
p2

M1 =M
∐

L

M

of the morphism L
ξ
−→ M . Since the localization functor q∗f preserves finite colimits, the

diagram

q∗f
(
L

ξ
−−−→ M

p1

−−−→
−−−→
p2

M1 =M
∐

L

M
)

is isomorphic to the cokernel diagram of the morphism q∗f (L)
ξ′

−→ q∗f (M
′). Let L′ j

−→ M

denote the kernel of the pair of arrows M
p1
−→
−→
p2

M1, and let L
t
−→ L′ j

−→ M be the

canonical decomposition of L
ξ
−→M .

It follows from the construction that q∗f (L)
ξ′

−→ q∗f (M
′) is a strict monomorphism

iff t ∈ Σ, hence the morphism ξ′ is isomorphic to q∗f (L
′)
q∗f (j)
−→ q∗f (M). Therefore p∗f (ξ

′) is

isomorphic to p∗f
(
q∗f (L

′)
q∗f (j)
−→ q∗f (M)

)
= f∗(L′)

f∗(j)
−→ f∗(M). By hypothesis, the functor f∗

preserves strict monomorphisms, hence p∗f (ξ
′) is a strict monomorphism.

The following assertion is suggested by (the part (b) of) the argument of 4.2.

4.2.1. Proposition. Suppose the category CX has kernels of pairs of arrows and for
any arrow L −→M , there exists a push-forward M

∐
LM . Then the following conditions

on a left saturated multiplicative system Σ are equivalent:

(a) Σ is left exact.

(b) If in the commutative diagram

L
j

−−−→ M

p1

−−−→
−−−→
p2

M1 =M
∐
LM

s′
y s

y
y t

L′
j′

−−−→ M ′

φ1

−−−→
−−−→
φ2

M ′′

(4)
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the rows are exact and the vertical arrows s and t belong to Σ, then the left vertical arrow
belongs to Σ too.

Proof. (a)⇒(b). The diagram (4) gives rise to the commutative diagram

L
j

−−−→ M

p1

−−−→
−−−→
p2

M1

t
−−−→ M ′′

s′
y s

y
y u

y idM ′′

L′
j′

−−−→ M ′

π1

−−−→
−−−→
π2

M ′
1

σ
−−−→ M ′′

(5)

where M ′
1 = M ′

∐
L′ M ′, M1

σ
−−−→ M ′′ is uniquely determined by σπi = φi, i = 1, 2;

and M1
u
−→ M ′

1 is uniquely defined by the left square in (5) (due to the functoriality of

coproducts). Applying the localization functor CX
q∗

−→ Σ−1CX to the diagram (5), we
obtain the diagram

q∗(L)
j̃

−−−→ q∗(M)

p′
1

−−−→
−−−→
p′
2

q∗(M1)

q∗(s′)
y q∗(s)

y u′
y
x σ′

q∗(L′)
j̃′

−−−→ q∗(M ′)

π′
1

−−−→
−−−→
π′
2

q∗(M ′
1)

(6)

where σ′ = q∗(t)−1q∗(σ). Since the system Σ is left exact, the functor q∗ maps the diagrams
L −→ M−→−→M1 and L′ −→ M ′−→

−→M
′
1 to exact diagrams. Therefore the commutative

square

q∗(M) −−−→
−−−→ q∗(M1)

q∗(s)−1
x

x σ′

q∗(M) −−−→
−−−→ q∗(M1)

and (6) yield a commutative square

q∗(L)
j̃

−−−→ q∗(M)

σ̃
x

x q∗(s)−1

q∗(L′)
j̃′

−−−→ q∗(M ′)
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It follows from the universal property of kernels that σ̃q∗(s′) = idq∗(L), hence σ̃ is a strict

epimorphism. On the other hand, the equality j̃σ̃ = q∗(s)−1̃j′ (together with the fact that

j̃′ is a monomorphism) implies that σ̃ is a monomorphism; hence it is an isomorphism.
(b)⇒(a). The argument is a repetition of the part (b) of the argument of 4.2. Details

are left to the reader.

4.2.2. Example: left multiplicative systems in Sets. Let CE = Sets. Then
SsMℓ(E) = S

sMℓs(E), i.e. every saturated left multiplicative system on Sets is left exact.
In fact, SsMℓ(E) consists of systems Σα and Σα∗, where α is an infinite cardinal

(which belongs to a given universe). Recall that Σα∗ = Σα
⋃
{∅ −→ N | Card(N) < α}

and Σα is the family of all maps M
f
−→ N (– morphisms of CE) such that

(a) M 6= ∅ if N 6= ∅,
(b) Card(N − f(M)) < α,
(c) There exists a subset M ′ of M such that Card(M −M ′) < α and the restriction

of the map f to M ′ is injective (see 3.4).

Notice that the conditions (b) and (c) (defining Σα∗) are equivalent to the following
condition which explains the meaning of Σα∗ and is more convenient for our purposes:

(b’) There exists a subset M ′ of M such that the restriction of the map f to M ′ is
injective and Card(M −M ′) < α > Card(N − f(M ′)).

Let Σ be Σα or Σα∗. Consider a commutative square

L
j

−−−→ M

s
y

y t

L′
j′

−−−→ M ′

in CE = Sets whose horizontal arrows are monomorphisms and the right vertical arrow,

M
t
−→M ′, belongs to Σ. Then L

s
−→ L′ belongs to Σ too.

Suppose first that M = ∅. Then L = ∅. If Σ = Σα, then L
′ = M ′ = ∅. In particular,

L
s
−→ L′ belongs to Σ.

If M = ∅ and Σ = Σα∗, then Card(M
′) < α. Since L′ j′

−→ M ′ is an injective map,

and Card(L′) ≤ Card(M ′) < α. Therefore L
s
−→ L′ belongs to Σα∗.

Suppose now that M 6= ∅ and L and L′ are subsets of resp. M and M ′. The map

M
t
−→M ′ belongs to Σ iff there exists a subset M ′′ of M such that the restriction of t to

M ′′ is injective and Card(M −M ′′) < α > Card(M ′ − t(M ′′)) (see (b’) above). Then the

restriction of the map L
s
−→ L′ to L ∩M ′′ is injective and both Card(L − L ∩M ′′) and

Card(L′ − s(L ∩M ′′)) are smaller than α. The latter means that s ∈ Σ.
Now it follows from 4.2.1 that Σ is a left exact multiplicative system.
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4.3. Injective objects. Fix a ’space’ X. Let CXs denote the subcategory of CX
formed by all objects of CX and split monomorphisms.

An object E of the category CX is called injective (or strictly injective) if the functor
CX(−, E) : Cop −→ Sets maps strict epimorphisms (of Cop, i.e. strict monomorphisms
of CX) to epimorphisms. We denote by CI(X) the subcategory of CX formed by injective
objects and split monomorphisms (or, what is the same, strict monomorphisms, see 1.2.3.3)
between them. For any object E of the category CX , let ΣE denote the family of all arrows
of CX which the functor CX(−, E) transforms into invertible morphisms.

4.3.1. Proposition. (a) Suppose that the category CX has finite colimits. Then the
map E 7−→ ΣE extends to a functor CopXs −→ S

s
ℓM(X).

(b) If, in addition, CX has kernels of pairs of arrows. Then the map E 7−→ ΣE defines
a functor Cop

I(X) −→ S
s
ℓsM(X).

Proof. (a) Since the category CX has finite colimits, it follows from [GZ, 1.3.4] that
ΣE belongs to SsℓM(X) for every object E.

Let E1
u
−→ E be a split monomorphism; and let L

s
−→M be a morphism of CX such

that CX(s, E) is an isomorphism. Then CX(s, E1) is an isomorphism. In fact, there exists

a morphism E
v
−→ E1 such that v ◦ u = idE1 . Thus, there are two commutative diagrams

CX(M,E)
CX(s,E)
−−−→ CX(L,E) CX(M,E1)

CX(s,E1)
−−−→ CX(L,E1)

CX(M, v)
y

y CX(L, v) CX(M,u)
y

y CX(L, u)

CX(M,E1)
CX(s,E1)
−−−→ CX(L,E1) CX(M,E)

CX(s,E)
−−−→ CX(L,E)

such that the vertical arrows and the upper horizontal arrow of the first diagram are
surjective (hence the remaining arrow, CX(s, E1) is surjective) and the vertical arrows and
the lower horizontal arrow of the second diagram are injective, hence CX(s, E1) is injective.
Therefore, CX(s, E1) is bijective, i.e. s ∈ ΣE1 .

(b) If E is an injective object, then, by 4.2, the localization at ΣE preserves strict
monomorphisms, i.e. ΣE belongs to SsℓsM(X).

4.4. Proposition. Let X
f
−→ Y be a continuous morphism with an inverse im-

age functor f∗ and a direct image functor f∗. Suppose that the functor f∗ maps strict
monomorphisms to strict monomorphisms. Then f∗ maps injective objects to injective
objects.

Proof. If E is an injective object in CY , then the functor CX(f∗(−), E) maps strict
monomorphisms of the category CY to (strict) epimorphisms, because f∗ preserves strict
monomorphisms and, since E is injective, CX(−, E) maps strict monomorphisms to epi-
morphisms. But, CY (−, f∗(E)) ≃ CX(f∗(−), E), hence the assertion.
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4.5. Proposition. (a) Let Σ be a left multiplicative system in CX . Then Σ ⊆ ΣE
for any Σ-torsion free injective object E.

(b) Suppose that for every morphism L −→ M in CX , there exists a fibred coproduct
M

∐
LM and the pair of coprojections M −→

−→ M
∐
LM has a kernel. Then for any

Σ ∈ SsℓsM(X), the image of any injective Σ-torsion free object E in the quotient category
Σ−1CX = CΣ−1X is an injective object.

(c) Let Σ ∈ SsℓsM(X) be a continuous multiplicative system such that Σ−1CX has
a conservative family of injective objects. Then Σ =

⋂
E∈F ΣE, for some family F of

Σ-torsion free injective objects.

Proof. (a) Let Σ be a left multiplicative system and E a Σ-torsion free injective object.

The claim is that for any arrow L
s
−→M in Σ, the map

CX(M,E)
CX(s,E)
−−−→ CX(L,E), f 7−→ f ◦ s, (1)

is bijective. In fact, let L
f
−→ E be an arbitrary morphism. Since s ∈ Σ and Σ is a left

multiplicative system, there exists a commutative diagram

M
f ′

−−−→ M ′

s
x

x t

L
f

−−−→ E

with t ∈ Σ. Since E is Σ-torsion free, the arrow E
t
−→ M ′ is a strict monomorphism.

Every strict monomorphism from an injective object splits, i.e. there exists a morphism

M ′ g
−→ E such that g ◦ t = idE . Therefore (g ◦ f ′) ◦ s = g ◦ t ◦ f = f . This proves

the surjectivity of the map (1). Suppose now that M
p1
−→
−→
p2

E is a pair of arrows such that

p1 ◦ s = p2 ◦ s. Since Σ is a left multiplicative system and s ∈ Σ, there exists an arrow
E

u
−→ N in Σ such that u ◦ p1 = u ◦ p2. The arrow u is a (strict) monomorphism, because

E is Σ-torsion free, hence p1 = p2. This shows that the map (1) is injective.
(b) Let q∗ be the localization functor CX −→ Σ−1CX . Consider a diagram

q∗(E)
f
←− q∗(L)

j′

−→ q∗(M) (1)

such that j′ is a strict monomorphism. Since Σ is a left multiplicative system, the diagram
(1) corresponds to the diagram

E
s
−→ K

f ′

←− L
j′′

−→M ′ t
←−M. (2)
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Here s, t ∈ Σ and f = q∗(s)−1q∗(f ′) and q∗(j′) = q∗(t)−1q∗(j′′). Since E is Σ-torsion
free, the arrow s is a strict monomorphism. It is a split monomorphism, because E

is injective; i.e. there exists an arrow K
h
−→ E such that hs = idE . In particular,

g∗(h) = g∗(s)−1. Thus, f = q∗(v), where v = hf ′ : L −→ E. Consider the decomposition

of the arrow L
j′′

−→ M ′ into L
u′

−→ L′ j
−→ M ′, where L′ j

−→ M ′ is the kernel of the pair

M ′
p1
−→
−→
p2

M ′
∐

L

M ′. Since q∗(j′) = q∗(t)−1q∗(j′′) is a strict monomorphism, q∗(j′′) is a strict

monomorphism. The localization functor q∗ is right exact [GZ, I.3.1]; in particular, the
diagram

q∗
(
L

j′′

−→M ′
p1
−→
−→
p2

M ′
∐

L

M ′
)

is isomorphic to

q∗(L)
q∗(j′′)
−−−→ q∗(M ′) −−−→−−−→ q∗(M ′)

∐

q∗(L)

q∗(M ′). (3)

Since q∗(j′′) is a strict monomorphism, the diagram (3) is exact. By hypothesis, q∗ maps
strict monomorphisms to strict monomorphisms, hence the diagram

q∗(L′)
q∗(j)
−−−→ q∗(M ′)

q∗(p1)

−−−→
−−−→
q∗(p2)

q∗(M ′)
∐

q∗(L)

q∗(M ′). (3′)

is exact too. By the universal property of kernels, this implies that q∗(L)
q∗(u′)
−−−→ q∗(L′)

is an isomorphism. Since Σ is saturated, u′ ∈ Σ. Therefore, there exists a commutative
diagram

L
v

−−−→ E

u′
y

y u′′

L′
v

−−−→ E′

with u′′ ∈ Σ. Since E is Σ-torsion free and injective, there exists E′ w
−→ E such that wu′′ =

idE . Thus, we obtain a diagram E
v′

←− L′ j
−→ M ′ in which j is a strict monomorphism.

Therefore, there exists a morphism E
g
−→M ′ such that gj = v′. But, then γf = j′, where

γ = q∗(t)−1q∗(g) (see notations above).
(c) Fix Σ ∈ SsℓsM(X) such that Σ−1CX = CΣ−1X has a conservative family, F, of

injective objects, i.e. {CΣ−1X(−, E) | E ∈ F} is a conservative family of functors. Fix a
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direct image functor CΣ−1X

q
Σ∗

−→ CX of the localization Σ−1X
q
Σ−→ X. Since the localization

functor CX
q∗
Σ−→ CΣ−1X maps strict monomorphisms to strict monomorphisms, the functor

qΣ∗ maps injective objects to Σ-torsion free injective objects (see 4.4). By the (a), we have

the inclusion Σ ⊆
⋂

E∈F

Σq
Σ∗(E). The inverse inclusion follows from the conservativity of the

family {CΣ−1X(−, E) | E ∈ F}.

4.6. Example. Suppose that CX is an abelian category with injective hulls (e.g.
CX is a Grothendieck category). Then the conditions of 4.5 hold. Moreover, every closed
multiplicative system Σ is the intersection of the systems ΣE , where E runs through a
family of Σ-torsion free injective objects.

In fact, closed multiplicative systems are in bijective correspondence with coreflective
thick subcategories, Σ 7−→ TΣ, where ObTΣ = {M ∈ ObCX | (0 −→ M) ∈ Σ}. If E is an
injective object, then TΣE = ⊥E, i.e. ObTΣE = {M ∈ ObCX | CX(M,E) = 0}. Notice
that ΣT-torsion free objects are precisely T-torsion free objects, i.e. objects which have no
nonzero subobjects from T.

Fix a coreflective thick subcategory T and denote by q∗
T

the localization functor
CX −→ CX/T, Let M be a nonzero T-torsion free object. If M −→ E is an essential
monomorphism, then E is T-torsion free object too. Let F be a family of T-torsion free
objects such that {q∗

T
(M) | M ∈ F} generates the quotient category CX/T = CX/T, i.e.

{q∗
T
(M) | M ∈ F}⊥ = 0. For each M ∈ F we chose an injective hull E(M) of M . It follows

from 4.5(a) that ΣT ⊆
⋂

M∈F

ΣE(M), or, equivalently, T ⊆
⋂

M∈F

⊥E(M). We leave verifying

the inverse inclusion to the reader.

Suppose that CX is a Grothendieck category. Then every closed multiplicative system,
Σ, is flat and the corresponding quotient category CΣ−1X , is a Grothendieck category too.

In particular, it has a set of generators, F. By the argument above, Σ =
⋂

M∈F

ΣE(M) = ΣEF
,

where EF =
∏

M∈F

E(M). Here we use the fact that injective hulls and small products exist

in a Grothendieck category [BD, 6.3.1, 6.3.2]. Thus, we have recovered a well known
assertion: every Serre subcategory of a Grothendieck category is of the form ⊥E for some
injective object E.

4.7. Example. The conditions of 4.5 hold if CX is an elementary (Lawvere-Tierney)
topos, in particular if CX is a Grothendieck topos. In fact, by a Lawvere-Tierney theorem
[J, 1.26], in a topos, all partial maps are representable. This means that for any object M ,

there exists a monomorphism M
ηM
−→ M̃ such that any diagram L

j
←− L′ f

−→ M with a
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monomorphic left arrow is uniquely completed to a commutative square

L′
f

−−−→ M

j
y

y ηM

L
f̃

−−−→ M̃

(1)

It follows from the uniqueness of f̃ in (1) that the map M 7−→ M̃ defines a functor

CX
IX−→ CX and η = {ηM | M ∈ ObCX} is a functor morphism IdCX −→ IX . Moreover,

for every object M , the object IX(M) = M̃ is injective [J, 1.27].

Note that IX(
∏

i∈I

Mi) ≃
∏

i∈I

IX(Mi) provided the product
∏

i∈I

Mi exists, and if Y
f
−→

X is a geometric morphism (that is f is continuous and f∗ is (left) exact), then there is a
functor isomorphism f∗IY ≃ IXf∗.

Let Σ be a flat multiplicative system in CX . Set Y = Σ−1X and denote by q
the canonical morphism Y −→ X. The quotient category CY = Σ−1CX is a topos

too. Let F be a family of generators in CY . Then
⋂

M∈F

ΣIY (M) = Iso(CY ). Therefore

Σ =
⋂

M∈F

Σq∗IY (M) =
⋂

M∈F

ΣIXq∗(M).

Suppose now that CX is a Grothendieck topos. Then CY = Σ−1CX is a Grothendieck
topos. In particular, CY has small products and a set of generators, F. Therefore

Σ =
⋂

M∈F

ΣIXq∗(M) = ΣIX(MF), where MF =
∏

M∈F

q∗(M) ≃ q∗
( ∏

M∈F

M
)
.

4.8. Note. The examples 4.6 and 4.7 suggest that abelian categories with injec-
tive hulls might be regarded as abelian versions of elementary toposes, and Grothendieck
categories are abelian analogs of Grothendieck toposes.

4.9. Example. Let CE = Sets (like in 4.2.2). Then all objects of CE are injective
(and projective). Fix an object E of CE . If E is a one-element set, or the empty set, then
ΣE = HomCE . If Card(E) ≥ 2, then ΣE = Iso(CE).

Evidently, the empty set and one-element sets are the only indecomposable injective
objects.

Let Σ ⊆ HomCE . By definition, an object M of CE is Σ-torsion free if every mor-
phism M −→ M ′ which belongs to Σ is a monomorphism. Suppose Σ is a saturated left
multiplicative system, i.e. it coincides either with Σα or with Σα∗ for some infinite cardinal
number α (cf. 4.2.2). Then a set M is Σ-torsion free iff Card(M) ≤ 1; that is, again,
either M = ∅, or M is a one-element set.
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It follows from the definitions of Σα and Σα∗ that objects of CE having a morphism to
a Σ-torsion free object are precisely sets N such that Card(N) < α. This shows that the
only closed saturated left multiplicative systems on CE are Iso(CE) and HomCE . Since,
by [R6, 5.2.2], every continuous saturated left multiplicative system is closed, there are no
non-trivial continuous saturated left multiplicative systems either.

4.10. The injective spectrum and the Gabriel spectrum.

4.10.1. Relatively maximal objects. Fix a functor G
F
−→ H. We call an object

x of G relatively maximal, or F -maximal, if F transforms any arrow x −→ y into an
isomorphism. We denote by Max(G, F ) the full subcategory of G generated by relatively
maximal objects.

4.10.2. Injective spectrum. Suppose that the category CX has colimits of finite
diagrams. Let F be the functor

Cop
I(X) −→ S

s
ℓsM(X), E 7−→ ΣE

(see 4.3.1). We denoteMax(Cop
I(X), F ) by ISpec(X). It follows that the objects of ISpec(X)

are injective objects E such that ΣE = ΣE1 for every nontrivial split monomorphism
E1 −→ E. We denote by ISpec(X) the full subcategory of the SsℓsM(X) generated by
the image of ISpec(X) and call it the injective spectrum of X.

4.10.2.1. Note. The injective spectrum is introduced in [R, 6.5], in a slightly different
way, in the case when CX is an abelian category.

4.10.3. The Gabriel’s spectrum. Recall that an object, E, of the category CX is

indecomposable if every nontrivial idempotent E
p
−→ E is idE (see 1.2.3.3).

We denote by ÎSpec(X) the groupoidMin(CI(X)) formed by indecomposable injec-

tive objects and their isomorphisms. It follows that ÎSpec(X) ⊆ ISpec(X).

The Gabriel’s spectrum is the full subpreorder, ÎSpec(X), of the preorder SsℓsM(X)
spanned by multiplicative systems ΣE , where E runs through indecomposable injective
objects of CX . In particular, the Gabriel’s spectrum is contained in the injective spectrum:
ÎSpec(X) ⊆ ISpec(X).

4.10.3.1. Note. The Gabriel’s spectrum is introduced in [Gab] for a (locally noethe-
rian) abelian category. Its elements are defined as isomorphism classes of indecomposable
injective objects. The preorder inherited from SsM(X) is opposite to the specialization
preorder.

4.11. Injective spectrum of an abelian category. Fix an abelian category CX .
Let E ∈ ObCX , and let ⊥E be the full subcategory of the category CX generated by all
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objects M which are left orthogonal to E, i.e. CX(M,E) = 0. If E1 is a subobject of the
object E, then ⊥E ⊆ ⊥E1.

If E is an injective object, then ⊥E is a Serre subcategory of the category CX and the
map E 7−→ ⊥E is a functor J(X)op −→ Se(X). In particular, the spectrum ISpec(X)
can be identified with the subpreorder of the preorder Se(X) of Serre subcategories of CX
generated by the image of the map ISpec(X) −→ Se(X), E 7−→ ⊥E.

4.11.1. Proposition. Let CX be an abelian category with the property (sup).
(a) If every object of CX has an injective hull, then Spec1(Se(X)) ⊆ ISpec(X). In

particular, Spec1Se(X) ⊆ ISpec(X).
(b) If CX has a Gabriel-Krull dimension, then

Spec1Se(X) = Spec1(Se(X)) = ISpec(X) = ÎSpec(X).

Proof. (a) Let P be an object of Spec1(Se(X)), i.e. there exists the smallest Serre
subcategory, Ps, properly containing P. Let M ∈ ObPs − ObP. Since, thanks to the
property (sup), every Serre subcategory of CX , in particular P, is coreflective, we can
and will assume that M is P-torsion free. Let E(M) be an injective hull of the object
M . Then E(M) is P-torsion free, because M is P-torsion free, hence P ⊆ ⊥E(M).
Notice that ⊥E(M) cannot contain P properly, because if P 6= ⊥E(M), then ⊥E(M),
being a Serre subcategory, would contain Ps, in particular, it would contain the object M
which is not the case. This verifies the inclusion Spec1(Se(X)) ⊆ ISpec(X). By 2.4.1,
Spec1Se(X) ⊆ Spec1(Se(X)), hence Spec1Se(X) ⊆ ISpec(X).

(b) If CX has a Gabriel-Krull dimension, then, by [R6, 7.9.1], Spec1s(X) = Spec−(X)

and by [R, 6.6.1.1, 6.6.1.2], Spec−(X) = ISpec(X) = ÎSpec(X). The assertion follows
now from the inclusions Spec−(X) ⊆ Spec1Se(X) ⊆ Spec1(Se(X)) ⊆ ISpec(X).
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Glossary of notations

Chapter I

|Cat|o the category of ’spaces’, 1.2
Σ−1Y the ’space’ represented by the quotient category Σ−1CY , 1.2
ΣF the class of arrows which the functor F maps to isomorphisms, 1.2
Sp(R) the categoric spectrum of a ring R, 1.4
SpG(R) the ’space’ represented by the category of G-graded R-modules, 1.5
Cone(R+) the cone of a non-unital ring, 1.6
ProjG the Proj of G-graded rings, 1.7
Sp(Ff/Y ) the categoric spectrum of the monad Ff on a ’space’ Y , 2.1
AffX the category of affine schemes over X, 2.3.1
Monc(X) the category of continuous monads of a ’space’ X, 2.3.1
|F| the monoid of elements of a monad F , 2.3.1
|F|∗ the group of invertible elements of the monoid |F|, 2.3.1
Monrc(X) 2.3.1
Sw = {k∗eλwλ|λ ∈ G+} the Ore set corresponding to an element of the Weyl group, 5.2.1
Gr

M,V
Grassmannien presheaf, 5.3.1

Qcoh(X) the category of quasi-coherent presheaves on a presheaf of sets X, 5.3.5
Qcoh(X, τ) the category of quasi-coherent sheaves on a presheaf of sets (X, τ), 5.3.7

Chapter II

T(X) the preorder of topologizing subcategories of CX , 1.1
T(X) the preorder of coreflective topologizing subcategories of CX , 1.1
S • T the Gabriel product of subcategories, 1.1.1
T(n+1) he nth infinitesimal neighborhood of a subcategory T, 1.1.1
≻ a preorder among objects, 1.2
[S] the smallest topologizing subcategory containing S, 1.2.1
T − the Serre subcategory corresponding to a subcategory T , 1.4
Se(X) the preorder of Serre subcategories of CX , 1.4.3
T⊥ the right orthogonal to the subcategory T, 1.4.4
Spec(X) the spectrum of a ’space’ X, 2
Supp(M) = {Q ∈ Spec(X) | Q ⊆ [M ]} the support of M in Spec(X), 2.2
τz Zariski topology on Spec(X), 2.4
Spec(X) 3.2
Spec1,1t (X) 3.3
Pt the intersection of topologizing subcategories properly containing P, 3.3
Pt = P

t ∩ P⊥ 3.3.1
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Q̂ the union of all topologizing subcategories, which do not contain Q, 3.3.1

〈L〉 = [̂L] 3.3.1
S ∨ T the minimal Serre subcategory of CX containing S and T , 4.2.1
τLs

the pretopology of Serre localizations, 4.4
Spec1(X) the complete spectrum of X, 5
S ⊔ T the smallest thick subcategory of CX containing S and T , 5
T ∞ the smallest thick subcategory containing T , 5.1
τ fLe pretopology of exact localizations, 5.2

Spec1Th(X) 6

Spec1Se(X) 6
Spec0t (X) the counterpart of Spec1t (X), 7.1
OX −Mod the category of sheaves of OX -modules on a ringed space (X ,OX ), 8.2
QcohX the category of quasi-coherent sheaves on X = (X ,OX ), 8.2
Spec1c(X) 9.1
Pc the intersection of coreflective topologizing subcategories properly containing P, 9.1
Spec0c(X) 9.1
cQ̂ the union of all coreflective subcategories of CX which do not contain Q, 9.1
[Q]c the smallest coreflective topologizing subcategory containing Q, 9.1
P∗ = Pc ∩ P⊥ 9.1.2
Specic(X)⋆ and SpeciSe(X)⋆, i = 0, 1, extended spectra, 9.2.2
U1
c (T) = {P ∈ Spec1c(X) | T ⊆ P} 9.3

V 1
c (T) = Spec1c(X)− U1

c (T) = {P ∈ Spec1c(X) | T * P} 9.3
U0
c (T) = {Q ∈ Spec0c(X) | Q * [T]c} 9.3

V 0
c (T) = Spec0c(X)− U0

c (T) = {Q ∈ Spec0c(X) | Q ⊆ [T]c} 9.3
τc, τ

c topologies on the spectrum Spec0c(X), 9.6.3
Tc(X) the preorder of reflective topologizing subcategories of CX , C1.2
Tz(X) = Tc(X)

⋂
Tc(X) bireflective topologizing subcategories of CX , C1.2.4.1

τ∗ a topology on Spec(X), C1.7.1
τs the topology on Spec(X) generated by Spec(X), C1.7.2
Spec0,0t (X) = Spec0t (X)− Spec(X) C2.1.1
U1
t (T) = {P ∈ Spec1t (X) | T ⊆ P} C2.2

U0
t (T) = {Q ∈ Spec0t (X) | Q * T} C2.2

Supp1(M) = {P ∈ Spec1(X) | M 6∈ ObP} the support of M in Spec1(X), C3.2
Supp−(M) = Supp1(M)

⋂
Spec−(X) the support of M in Spec−(X), C3.2

Chapter III

Ẽnd(CX) = (End(CX), ◦, IdCX ) the monoidal category of endofunctors of CX , 1.1

MF(Ẽ , Ẽ ′) the category of monoidal functors from Ẽ to Ẽ ′, 1.3
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SpecPc (AP) and SpecPc (A) 2.1.1
Dexc(CX) the subcategory of continuous exact differential endofunctors, 3.3
Ass(M) the set of associated points of M , C3.1
Ass1,1t (M) C3.1
Ass−t (M) C3.1

Chapter IV

CTX = (CX, γ;TrX) triangulated category representing a t-’space’ X, 1.1
TrCatk the category of triangulated k-linear categories, 1.1
SsM(X)) the preorder of saturated multiplicative systems of the t-’space’ X, 1.3
Tht(X) the preorder of thick triangulated subcategories of CTX, 1.6
EspTr the category of t-’spaces’, 1.9
FZCatk the category of svelte Frobenius k-linear abelian Z-categories, 2.1
CXa

the abelianization of the triangulated category T CX, 2.2
T a the smallest thick subcategory of CXa

generated by the image of T in CXa
, 4.1

P⋆ the intersection of all thick triangulated subcategories properly containing P, 5.1
Spec1L(X) = {P ∈ Tht(X) | P 6= P⋆} 5.1
Spec1,1L (X) = Spec1L(X)− Spec1,1L (X) 5.1

Spec1,1L (X) = {P ∈ Tht(X) | P⋆ = P
⋆ ∩ P⊥ 6= 0} 5.1

P⋆ = P
⊥ ∩ P⋆ 5.2.2

Spec
1/2
L (X) 5.3

Supp1L(M) the support of M in Spec1L(X), 5.5.1

Supp1,1L (M) = Supp1L(M)
⋂
Spec1,1L (X) the support of M in Spec1,1L (X), 5.5.1

V1
L(E) =

⋂

M∈E

Supp1L(M) 5,5,2

V1,1
L (E) the intersection

⋂

M∈E

Supp1,1L (M), 5.5.2

τz the compact topology on Spec1L(X), 5.5.3
XQ,f∗ the stabilizer of the morphism f at the point Q of the spectrum, 6.1.1

Chapter V

SsMℓ(X) the family of all saturated left multiplicative systems in CX , 1.3.4
SsMr(X) the family of all saturated right multiplicative systems in CX , 1.3.4
SsM(X) = SsMr(X) ∩ SsMℓ(X) 1.3.4

Σ̂ the union of all saturated multiplicative systems of CX which do not contain Σ, 2
Spec0L(X) = {Σ ∈ SsM(X) | Σ̂ ∈ SsM(X)} 2.1
Spec1L(X) 4
CSsM(X) the preorder of closed saturated multiplicative systems on X, 5.2, 5.2.3
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Spec1C(X) = CSsM(X)
⋂
Spec1L(X) the complete closed spectrum of X, 5.2.3

Spec0C(X) = {Σ ∈ Spec0L(X) | Σ̂ ∈ Spec1C(X)} the closed spectrum of X, 5.2.3
Spec1fL(X) the complete flat L-spectrum of X, 5.3.5

Spec0fL(X) = {Σ ∈ Spec0L(X) | Σ̂ ∈ Spec1fL(X)} 5.3.5

Chapter VI

S⊼ the class of all arrows having a pull-back in S, 1.6
(CX , ĒX) = (CX ,EX ,WX) a right exact category with weak equivalences, 1.9.2

E⊛
X

def
= Iso(CX)⊼ ∩ EX deflations with trivial kernels, 1.9.3

Coim(f) the coimage of a morphism f , 1.11.1
Ec
X the class of deflations which are isomorphic to their coimage, 1.11.2.1

S(X, ĒX) the preorder of systems, 2.1
S⊼(X, ĒX) the subpreorder of S(X, ĒX) formed by stable systems of deflations, 2.1
Tℓ(X, ĒX) the preorder of left toplogizing systems, 2.4.3
T(X, ĒX) the preorder of toplogizing systems, 2.4.3

EX,T
def
= ΣT ∩ EX = {s ∈ EX | Ker(s) ∈ ObT } 2.5.1

Σ1 ∨ Σ2 the smallest Serre system containing Σ1 and Σ2, 2.6.5
M(X, ĒX) the preorder of all thick systems of (CX , ĒX), 3
MT(X, ĒX) = M(X, ĒX) ∩ T(X, ĒX , 3
SeT(X, ĒX) = Se(X, ĒX) ∩ T(X, ĒX), 3
SuppT(S) the subpreorder of topologizing systems, which do not contain S, 3.1

Ŝ the union of all systems of SuppT(S), 3.1

Spect(X, ĒX) formed by topologizing systems S such that Ŝ = Ŝ−, 3.2
S∗ the intersection of all topologizing systems properly containing S, 3.3
Spec1,1t (X, ĒX) = {Σ ∈ T(X, ĒX) | Σ = Σ− ( Σ∗}, 3.3
Spec1,0t (X, ĒX) = {Σ ∈MT(X, ĒX) | Σ 6= Σ∗ ⊆ Σ−}, 3.3

Spec1,1M (X, ĒX) is formed by Serre systems Σ such that Σ⋆
def
= Σ⋆ ∩ Σ⊥ is non-trivial, 3.7

Ms(X, ĒX) the preorder of all strongly thick systems of (CX , ĒX), 4.2

Rs
S = {systems T divisible in EX | T = EX ∩ (T ◦W⊼

X), T ∩ S⊥ =WX}, 4.3.1
S† the union of all T ∈ Rs

S , 4.3.1
Sst the intersection of all semitopologizing systems properly containing S, 4.4
Ssc the intersection of all strongly stable thick systems properly containing S, 4.4

Σsc
def
= Σsc ∩ Σ⊥, 4.4

Spec1,1sc (X, ĒX) = {strongly closed systems of deflations Σ | Σsc is non-trivial}, 4,4
Spec1,1st (X, ĒX) is formed by strongly closed systems Σ for which Σst 6= Σ, 4.4

Chapter VII
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Spec1(H) the local spectrum of H, 1.2
Max(H) the full subcategory of H generated by maximal proper objects, 1.2.2
SuppH(x) the support of x in H, 1.3
Spec0(H) is generated by x ∈ ObH such that SuppH(x) has a final object, 1.4
Supp0H(x) the support of x in Spec0(H), 1.4.8
UH(x) the full subcategory of H generated by y ∈ ObH such that H(y, x) = ∅, 1.5.2, 1.5.3

Spec1(G, F ) and Spec0(G, F ) the spectra corresponding to a functor G
F
−→ H, 1.6

SuppsH(x) the strict support of x, A1.2
SupF (x) the relative strict support of x, A2.2
Spec∨(H) the full subcategory of Spec(H) is generated by all x such that x∩ x̂ = x, A3.1
Spec(H) the spectrum of H, A3.1
Specs(H) the strict spectrum of H, A3.2
Spec(G, F ) and Specs(G, F ) relative spectra, A3.4
Ass1(G,F )(x) weakly associated points, C.2

Ass1(G,F )(x) associated points, C.3

SpeciL,ℓ(X) = Speci(SsMℓ(X)), i = 0, 2, left spectra, 3.2
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7.4.1, IV.6.4.2 VII.C.3
base affine ’space’ of a reductive Lie alge-
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Beck’s Theorem, I.2.1.1, IV.3.4, 6.3
cartesian complete systems, VI.4.1
categoric spectrum
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of a monad, I.2.1

closed spectra, VII.2.2
closure, VII.A1.3
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coimage of a morphism, VI.1.11.1
cokernels of morphisms, VI.1
comonad associated with a cover, I.4.4
completely prime ideals, I.1.6
complete spectrum, III.5, 5.3, 5.4
cone of a non-unital ring, I.1.6
continuous monads, I.2.2
coreflective systems, VI.2.8
covers, I.3.1

by strongly ’exact’
localizations, VI.7.10.3

descent, I.4
direct image functor, I.1.3
exact localizations, II.5, 5.2, 7.4.1
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geometric center
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global sections functor, I.1.6, 1.7
Grothendieck category, II.3.2.1, 8.3, 9.5.5,
C1.2.3.1
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hyperbolic
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infinitesimal neighborhood of a topologiz-
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local
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’spaces’, II.3.1
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