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Introduction

1. Antecedents. We begin with a few relevant historical observations.

1.1. Serre’s Proj and Gabriel’s spectrum. The most important early sources
of noncommutative algebraic geometry are the description by Serre of the category of co-
herent sheaves on a projective variety [S] and the introduction by Gabriel of the injective
spectrum of a locally noetherian Grothendieck category. Gabriel assigned, in a canoni-
cal way, to every locally noetherian Grothendieck category a locally ringed space, whose
underlying topological space is the injective spectrum — the set of isomorphism classes of
indecomposable injective objects endowed with Zariski topology. He proved that this as-
signment reconstructs any noetherian scheme uniquely up to isomorphism [Gab, Chapter
6.

Note that the work of Serre appeared several years prior to scheme theory and the
Gabriel’s work around the same time as the first two volumes of EGA.

1.2. First attempts to define noncommutative schemes. There were attempts
(which started around the end of the sixties and continued to be visible for more than
a decade) to initiate noncommutative scheme theory based on a rather straightforward
extension of the Gabriel spectrum to the category of left modules over an arbitrary asso-
ciative unital ring R (its points are those isomorphism classes of indecomposable injective
objects [E] for which the quotient category by the left orthogonal to E has simple objects)
endowed with Zariski topology and a structure sheaf of associative rings determined by the
ring R. Schemes were defined as ringed spaces which are locally affine (see [Gol], [Go2]
and references therein). If R is a commutative ring, then there is a natural embedding of
the prime spectrum of R into the above defined spectrum of the category of R-modules,
which is an isomorphism if the ring R is noetherian (the case considered by Gabriel), but,
not in general. So, the restriction of this concept of a noncommutative scheme to the
commutative case recovers only locally noetherian schemes, which is already an indication
of a certain inadequacy of the spectrum used here. Nevertheless, even under noetherian
hypothesis, this theory did not go beyond the above quoted definition of a scheme (given
in the last section of [Go2]). The declared goal — the creation of a noncommutative version
of local algebra, was never achieved.

Other movements towards noncommutative algebraic geometry (initiated around the
mid-seventies) were based on the prime spectrum of rings endowed with Zariski topology
and a structure sheaf of associative rings whose construction required noetherian hypoth-
esis. This produced a version of an affine noetherian scheme. General noetherian schemes
were defined as locally affine ringed spaces [VOV]. One can show that this version of
noncommutative schemes can be obtained from the previous one by considering only left
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noetherian rings and taking a much coarser version of Zariski topology than the one used
in [Go2]. Note that the prime spectrum of most of noncommutative algebras of interest is
rather poor (e.g. it is trivial in the case of Weyl algebras over fields of zero characteristic).

1.3. Supporting motivations. There was a certain outside interest in the quest of
noncommutative algebraic geometry already at that time, i.e. in the middle of seventies
(see the introduction to [Dix|), which was mostly due to the algebraization of representation
theory (initiated by works of Kirillov, Gelfand and Kirillov, Dixmier, and his school) and
a promise of new insights and possible applications to representation theory of algebraic
groups, enveloping algebras of Lie algebras, and some other algebras of interest.

1.4. D-modules and D-schemes. Then, starting from 1980, Beilinson and Bern-
stein developed a compromise-type noncommutative algebraic geometry — the theory of
D-schemes (which are usual commutative schemes equipped with a subsheaf of the sheaf
of (twisted) differential operators) in order to study representation theory of reductive
algebraic groups. This important development led to a break-through in representation
theory and distracted the curiosity of most working mathematicians from attempts to con-
struct noncommutative scheme theory based on Gabriel’s injective spectrum, or on the
prime spectrum of associative rings.

1.5. The Cohn’s spectrum. There was another approach to noncommutative local
algebra, due to P. Cohn, which is based on the notion of the universal localization. Tech-
nically, the main difference between Cohn’s approach and the other approaches mentioned
above is that instead of dealing with abelian categories of modules over a ring, Cohn’s the-
ory operates with the ezact category of projective modules of finite type (Cohn’s original
formulations use only matrix rings over a given associative unital ring).

It is worth mentioning that Cohn’s philosophy serves as a base for works of Gelfand and
Retakh and their collaborators on birational noncommutative algebra. Recently, Cohn’s
universal localization found applications in topology (see [Loc]).

1.6. Imposing naive geometric spaces. The above mentioned approaches to
noncommutative algebraic geometry insisted on a naive generalization of the standard
pattern of commutative scheme theory: noncommutative versions of schemes were sought
as geometric spaces, and the latter were understood as topological spaces endowed with
a structure sheaf of associative rings. This holds for D-schemes of Beilinson and Bern-
stein and for much more recent Kapranov’s version of formal noncommutative geometry
[Ka], because, by nature, D-schemes, as well as Kapranov’s formal NC schemes, are quasi-
coherent sheaves of associative algebras on commutative schemes. But, an arbitrary left
noetherian associative algebra is not isomorphic to the algebra of global sections of the cor-
responding structure sheaf on Gabriel’s or Cohn’s (or any other) spectrum. It is therefore
not surprising that imposing ringed spaces as the framework for noncommutative algebraic
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geometry and trying to literally mimic the pattern of commutative algebra and algebraic
geometry, led to considerable difficulties already on a very basic level.

1.7. Pseudo-geometry versus geometry. The discovery of quantum groups trig-
gered a flow of new examples supplied mostly by mathematical physics and attributed
to noncommutative geometry, reviving some stagnating areas (e.g. Hopf algebras) and
involving a big number of mathematicians and theoretical physicists fascinated by the
geometric flavor of this suddenly wide open field of research. This rise of the interest
in noncommutative algebraic geometry was marked by the transition from attempts to
build its foundations relying on naive generalizations of geometric spaces to the opposite
extreme — viewing noncommutative algebraic geometry as pseudo-geometry, that is geom-
etry in which spaces are replaced by something else. The transition was greatly influenced
by Connes’ approach to noncommutative differential geometry. On a more advanced stage,
its roots can be found in the pseudo-geometric development of Grothendieck’s algebraic
geometry between the end of the fifties and the beginning of the seventies — going from the
category of geometric (that is locally ringed) spaces to the category Esp of spaces which
are sheaves of sets on the fpqc presite of affine schemes, then expanding to toposes, al-
gebraic spaces and stacks. Note that in commutative algebraic geometry all these notions
and points of view coexisted and complemented each other.

1.8. Points from commutative algebraic geometry. The abandon of the geo-
metric point of view was due not so much to the limitations of Gabriel’s injective spectrum
and shortcomings in the attempts of using it, but, mostly to the fact that the Gabriel’s
spectrum was known to and appreciated by only a few algebraists, while the dominating
paradigm of a point came from commutative algebraic geometry: points of a commutative
scheme are equivalence classes of geometric points, i.e. morphisms from spectra of fields.

A naive noncommutative generalization of this notion is obtained by replacing fields
by skew fields. Thus, the naive points of an affine ’space’ corresponding to an associative
unital ring R are morphisms from R to skew fields, and the equivalence classes of mor-
phisms from R to skew fields are in natural bijective correspondence with completely prime
two-sided ideals of the ring R (i.e. ideals p such that the set R —p is closed under multipli-
cation). Noncommutative rings usually have very few completely prime two-sided ideals
(enveloping algebras of finite-dimensional solvable Lie algebras being among rare worthy
exceptions). One consequence of this other transplantation of a commutative paradigm
into noncommutative setting, was a widely adopted opinion that noncommutative algebraic
geometry is essentially a geometry without points. Such a viewpoint reduces noncommuta-
tive algebraic geometry to the condition of a poor relative of its commutative predecessor:
one cannot count on a noncommutative version of local algebra, in particular, one cannot
count on a local study of spaces and morphisms of spaces, which constitute at least a half
of the content of commutative algebraic geometry. Fortunately, this opinion is wrong.
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2. ’Spaces’ of noncommutative algebraic geometry.

One of the benefits of the pseudo-geometric viewpoint in noncommutative algebraic
geometry is a considerable increase of its range. Roughly, the picture is as follows.

2.1. Spaces and algebras. The duality between compact topological spaces and
commutative unital C*-algebras is a fundamental fact of functional analysis discovered by
.M. Gelfand in the late thirties. A. Connes extended formally this duality to the noncom-
mutative setting identifying 'noncommutative spaces’ with noncommutative C*-algebras.
This eventually led to the creation of noncommutative differential geometry [C1], [C2].
Following the Connes’ example, V. Drinfeld [Dr]| defined the category of noncommutative
affine schemes (he called them 'quantum spaces’) in a similar way, as the category dual to
the category of unital associative algebras, forcing to the noncommutative case the duality

[algebras <« affine schemes]

of commutative algebraic geometry.

2.2. Noncommutative Proj. Noncommutative projective spaces were introduced
(by Manin’s suggestion) via a formal extension of the Serre’s description of the category of
quasi-coherent sheaves on a projective variety [S]: the category of quasi-coherent sheaves
on the projective spectrum of an associative graded algebra R is the quotient category of
the category of graded R-modules by the subcategory of locally finite ones (this approach
was further developed in [V1], [V2], [A2], [AZ], [OW], and in a number of other works).

Thus, a noncommutative projective space X is represented by a category, C'x, which
is regarded as the category of quasi-coherent sheaves on X. This viewpoint is well adapted
to the affine case: for any associative ring R, the category of quasi-coherent sheaves on the
corresponding affine scheme is identified with the category R — mod of left R-modules.

2.3. ’Spaces’ represented by abelian categories. From the prospective of the
above mentioned developments, a point of view which looked plausible at the end of eighties
(and was later, after appearance of [R1] and [R], adopted by most mathematicians working
in the area) is that ’spaces’ of noncommutative algebraic geometry are represented by
abelian categories (thought as their categories of quasi-coherent or coherent sheaves). If
X and Y are ’spaces’ represented by abelian categories, respectively C'x and Cy, then
morphisms from X to Y are isomorphism classes of additive functors Cy — C'x called
1nverse image functors of the morphism they represent.

2.4. ’Spaces’ represented by triangulated categories. Another viewpoint mo-
tivated in the first place by representation theory of reductive algebraic groups, and later
(around 1993) by problems of mathematical physics (— homological mirror symmetry) is
to consider ’spaces’ represented by (enhanced) triangulated categories, which sometimes



can be thought as derived categories of the categories of (quasi-)coherent sheaves on these
‘spaces’.

2.5. ’Spaces’ represented by A-infinity categories. At the end of nineties,
working on deformation theory, M. Kontsevich expanded geometric flavor by considering
‘spaces’ represented by A-infinity categories.

2.6. ’Spaces’ defined by presheaves of sets on the category of noncommu-
tative affine schemes. The category Aff; of affine noncommutative k-schemes is the
category opposite to the category of associative unital k-algebras. Some of the important
examples of noncommutative ’spaces’, such as noncommutative Grassmannians, flag va-
rieties and many others [KR1], [KR2], [KR3], are defined in two steps. The first step is
a construction of a presheaf of sets on Affy (i.e. a functor from the category of unital
associative k-algebras to the category of sets). In commutative algebraic geometry, the
second step is taking the associated sheaf with respect to an appropriate (fpgc or Zariski)
topology on Aff;. In noncommutative geometry, we assign, instead, to every presheaf
of sets on Aff; a fibred category whose fibers are categories of modules over k-algebras
and define the category of quasi-coherent sheaves on this presheaf as the category oppo-
site to the category of cartesian sections of this fibred category [KR4]. The category of
quasi-coherent presheaves represents the ’space’ corresponding to the presheaf of sets.

2.7. Commutative ’spaces’ which “live” in symmetric monoidal categories.
After the formalism of Tannakian categories appeared at the end of the sixties-beginning
of the seventies [Sa], [DeM], and ’super’-mathematics approximately at the same time, the
idea of mathematics (or at least algebra and geometry), which uses general symmetric
monoidal categories, instead of the symmetric monoidal category of vector spaces, became
familiar. In [De], Deligne presented a sketch of a fragment of commutative projective
geometry in symmetric monoidal k-linear abelian categories as a part of his proof of the
characterization of rigid monoidal abelian categories having a fiber functor.

Manin defined the (category of coherent sheaves on the) Proj of a commutative Z -
graded algebra in a symmetric monoidal abelian category endowed with a fiber functor
[M1] using, once again, the Serre’s description of the category of coherent sheaves on a
projective variety as its definition.

2.8. Quantized enveloping algebras and algebraic geometry in braided
monoidal categories. While working (in 1995) on a quantum analog of Beilinson-
Bernstein localization construction, it was discovered that ’spaces’ of noncommutative
algebraic geometry could be something different from just abelian or Grothendieck cate-
gories. In this particular situation, the natural action of the quantized enveloping algebra
of a semisimple Lie algebra on its quantum base affine space becomes differential only if
the whole picture is put into the monoidal category of Z"™-graded modules endowed with
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a braiding determined by the Cartan matrix of the Lie algebra (see [LR2], [LR3], [LRA4]).

This list (which is far from being complete) shows that the range of objects — spaces
and morphisms of spaces, of noncommutative algebraic geometry is considerably larger
than the range of objects of commutative algebraic geometry.

3. Pseudo-geometric start.

The pseudo-geometric noncommutative landscape sketched above is a natural point
of departure, by the simple reason that it includes most examples of interest. Instead of
trying to impose, from the very beginning, general notions of ’spaces’ and morphisms of
‘spaces’, which absorb all the known cases, we approach these notions by studying algebraic
geometry in certain key pseudo-geometric settings, which are simple enough to not to get
lost and, at the same time, sufficient to obtain a rich theory and to see what one should
expect or look for in more sophisticated pseudo-geometries.

3.1. ’Spaces’ represented by categories. In the very first, in a sense the simplest,
setting of this kind, ’spaces’ are represented by svelte (— equivalent to small) categories
and morphisms of ’spaces’ X — Y are isomorphism classes of (inverse image) functors
Cy — Cx between the corresponding categories. This defines the category |Cat|® of
‘spaces’. A morphism of ’spaces’ is called continuous if its inverse image functor has
a right adjoint (called a direct image functor), and it is called flat if, in addition, the
inverse image functor is left exact (i.e. preserves finite limits). A continuous morphism is
called affine if its direct image functor is conservative (i.e. it reflects isomorphisms) and
has a right adjoint. These notions (introduced in [R]) unveil unexpectedly rich algebraic
geometry, more precisely, geometries, living inside of |Cat|®. They appear as follows.

3.2. Continuous monads. Fix a 'space’ S such that the category Cg has cokernels
of pairs of arrows. We consider the category €nd(Cyg) of continuous (i.e. having a right
adjoint) endofunctors of C's. It is a monoidal category with respect to the composition
of functors whose unit object is the identical functor. The monoids in this category are
called continuous monads on Cg. In other words, continuous monads on Cg are pairs
(F, ), where F is a continuous functor Cs — Cg and p is a functor morphism F? — F
such that po Fu = popF and po Fy = idp = ponF for a (unique) morphism Ido, —— F
called the unit of the monad (F, ). A monad morphism (F,pu) — (F’, i) is given by a
functor morphism F —25 F’ such that ¢ o u = y' o oF’ o F and ¢ o 1 is the unit of the
monad (F’, u"). This defines the category 9ton.(S) of continuous monads on Cl.

If Cs = 7Z — mod, then the category Mon,(S5) is naturally equivalent to the category
Rings of associative unital rings. If Cg is the category of quasi-coherent sheaves on a
scheme (X, Oy), then Mon,(.S) is equivalent to the category of quasi-coherent sheaves A
of rings on (X, Oy ) endowed with a morphism Oy — A of sheaves of rings. In particular,
the sheaf of rings of (twisted) differential operators can be regarded as a monad on Cy.
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If Cs is the category of sets, then the category Mon,(.S) is equivalent to the category
of monoids in the usual sense.

3.3. Relative affine ’spaces’. Given a ’'space’ S, we define the category Af fg of

affine S-spaces as the full subcategory of |Cat|®/S whose objects are pairs (X, X ER S)
with f an affine morphism.

3.4. Theorem. The category Affs is anti-equivalent to the category Usss whose
objects are continuous monads on the category Cs and morphisms are conjugacy classes
of monad morphisms.

If Cs = 7Z — mod, then the category Ussg is equivalent to the category whose objects
are associative unital rings and morphisms are conjugacy classes of ring morphisms. If Cg
is the category Sets, then Assg is equivalent to the category whose objects are monoids
and morphisms are conjugacy classes of monoid morphisms. This shows that the choice of
the base ’space’ S influences drastically the rest of the story.

3.5. Locally affine relative ’spaces’. Locally affine S-’spaces’ are defined in
an obvious way, once a notion of a cover (a quasi-pretopology) is fixed. We introduce
several canonical quasi-pretopologies on the category |Cat|®. Their common feature is
the following: if a set of morphisms to X is a cover, then the set of their inverse image
functors is conservative and all inverse image functors are exact in a certain mild way.
If, in addition, morphisms of covers are continuous, X has a finite affine cover, and the
category Cg has finite limits, then this requirement suffices to recover the object X from
the covering data uniquely up to isomorphism (i.e. the category Cx is recovered uniquely
up to equivalence) via 'flat descent’.

3.6. ’Spaces’ determined by presheaves of sets on Aff;. By definition, the
category Aff; of noncommutative affine k-schemes is the category opposite to the category
Algy of associative unital k-algebras; so that presheaves of sets on Aff; are functors
from Alg, to Sets. The presheaves of sets on Aff; appeared in our work with Maxim
Kontsevich, for the first time in order to introduce noncommutative projective spaces. It
was an attempt to imitate the standard commutative approach realizing schemes (and
more general spaces) as sheaves of sets on the category of affine schemes endowed with an
appropriate Grothendieck pretopology. It turned out that it is not clear a priori what an
appropriate pretopology in the noncommutative case is: Zariski pretopology is irrelevant,
because the noncommutative projective 'space’ is not a scheme — it does not have an affine
Zariski cover. Flat affine covers seemed to be as a natural choice, but, they do not form
a pretopology — invariance under the base change fails. Similar story with Grassmannians
and other analogs of commutative constructions. The elucidation of this problem is as
follows. Consider the fibred category Aff; with the base Aff; whose fibers are categories
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of left modules over corresponding algebras. For every presheaf of sets X on Affy, we have

the fibred category AfF /X induced by AfF 1 along the forgetful functor Aff; /X — Affy.
The category Qcoh(X) of quasi-coherent sheaves on the presheaf X is defined as the

category opposite to the category of cartesian sections of the fibred category Aff k. For a
pretopology 7 on Aff) /X, we define the subcategory Qcoh(X, ) of quasi-coherent sheaves
on (Aff,/X, 7).

3.7. Theorem. (a) A pretopology T on Affy is subcanonical (- all representable
presheaves of sets are sheaves) iff Qcoh(X,T) = Qcoh(X) for any presheaf of sets on Affy,
(in other words, ’descent’ pretopologies on Affy, are precisely subcanonical pretopologies).

In this case, Qcoh(X) = Qcoh(X,T) < Qcoh(XT) = Qcoh(X™,7), where X7 is the
sheaf on (Affy,T) associated with the presheaf X and — is a natural full embedding.

(b) If a pretopology T is of effective descent, then the embedding Qcoh(X) < Qcoh(XT)
1 a category equivalence.

This theorem says that, roughly speaking, the category Qcoh(X) of quasi-coherent
presheaves knows itself which pretopologies to choose. It also indicates where one should
look for a correct noncommutative version of the category Esp (of sheaves of sets on the
fpgc site of commutative affine schemes): this should be the category N Esp, of sheaves
of sets on the presite (Affy,7), where 7 is a pretopology of effective descent. From the
minimalistic point of view, the best choice would be the (finest) pretopology of effective
descent. But, there is a more important consideration. The main role of a pretopology is
that it is used for gluing new ’spaces’ (so that the preference given in commutative algebraic
geometry to fpqc pretopology on the category of affine schemes shows the readiness to
consider more general locally affine spaces than schemes).

The pretopology that seems to be the most relevant for Grassmannians (in particular,
for noncommutative projective 'spaces’) and a number of other smooth noncommutative
spaces constructed in [KR5] is the smooth topology introduced in [KR2].

The theorem is quite useful on a pragmatical level. Namely, if X is a sheaf of sets on
(Affy, 7) for an appropriate pretopology of effective descent and X is a presheaf of sets on

P1
Af fi such that its associated sheaf is isomorphic to X, and /R = &l 5 X is an exact
P2

sequence of presheaves with R and 4 representable, then the category Qcoh(X) (hence the
category (Qcoh(X)) is constructively described (uniquely up to equivalence) via the pair

P1 P1
A “XR of k-algebra morphisms representing 9 —X 4. This consideration is used to

P2 P2
describe the categories of quasi-coherent sheaves on noncommutative ’spaces’.

3.8. Noncommutative stacks. There is one more important observation in con-
nection with this theorem: categories which appear in noncommutative algebraic geometry
are categories of quasi-coherent sheaves on noncommutative stacks.
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4. From pseudo-geometry to geometry.

4.0. Spectra. The general expectation is that pseudo-geometric 'spaces’ should have
canonical spectral theories, and a choice of a spectral theory implies a geometric realization
of 'spaces’, which associates with every ’space’ a stack whose base is a topological space
— the spectrum of the ’space’, and fibers at points are local 'spaces’ — their spectrum has
only one closed point, which belongs to the closure of any other point.

An important evidence for this thesis is the spectral theory of ’spaces’ represented by
svelte abelian categories, which was started in the middle of the eighties. Below follows a
brief outline of some of its basic notions and facts. A detailed exposition is in Chapter II
of this monograph.

4.1. Topologizing subcategories and the spectrum Spec(—). A full subcate-
gory of an abelian category C'x is called topologizing if it is closed under finite coproducts
and subquotients. For an object M, we denote by [M] the smallest topologizing subcat-
egory of C'x containing M. One can show that objects of [M] are subquotients of finite
coproducts of copies of M. The spectrum Spec(X) of the ’space’ X consists of all nonzero
[M] such that [L] = [M] for any nonzero subobject L of M. We endow Spec(X) with the
preorder O which is called (with a good reason) the specialization preorder.

If M is a simple object, then the objects of [M] are isomorphic to finite direct sums
of copies of M and [M] is a minimal element of (Spec(X), D). If Cx is the category of
modules over a commutative unital ring R, then the map p — [R/p] is an isomorphism
between the prime spectrum of R with specialization preorder and (Spec(X), D).

4.2. Local ’spaces’. An abelian category Cy (and the ’space’ Y) is called local
if it has the smallest nonzero topologizing subcategory. It follows that this subcategory
coincides with [M] for any of its nonzero objects M; so that it is the smallest element of
Spec(Y). If a local category has a simple object, M, then this smallest category coincides
with [M]. In particular, all simple objects of Cy (if any) are isomorphic one to another.
The category of modules over a commutative ring is local iff the ring is local.

4.3. Serre subcategories and Spec™ (—). A topologizing subcategory of an abelian
category Cx is called thick if it is closed under extensions. For any subcategory T of
Cx, let T~ denote the full subcategory of C'x whose objects are characterized by the
following property: their subquotients have nonzero subobjects from 7. One can show
that (77)~ = 7 and the subcategory 7~ is thick. We call a subcategory T of Cx a
Serre subcategory if T =T .

Let Spec™ (X) denote the set of all Serre subcategories P such that the quotient
category Cx /P is local. One can show that if C'x is a locally noetherian Grothendieck
category (more generally, a Grothendieck category with a Gabriel-Krull dimension), then
Spec™ (X) is isomorphic to the Gabriel spectrum of Cx.
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Let Spec%’l(X ) denote the set of all Serre subcategories of C'x such that the inter-
section P* of all topologizing subcategories properly containing P is not equal to P.

4.4. Theorem. (a) Spec;’' C Spec™ (X).
(b) The map which assigns to a topologizing subcategory Q the union Q of all topolo-
gizing subcategories which do not contain Q is a bijection Spec(X) —— Spec%’l(X).

(c) Let T be a Serre subcategory of Cx and Cx LN Cx /T the localization functor.
(c1) If T 2 [M] € Spec(X), then [q*(M)] € Spec(X/T).
(c2) The map P — q* (P) is a bijection from Spec™ (X/T) onto the subset
{P € Spec (X) | T CP}.
(d) Let {T; | i € J} be a finite set of Serre subcategories such that m Ti = 0. Then
icJ
(d1) Spec™ (X) = | ] Spec™ (X/T;).
ieJ
(d2) An element P of Spec™ (X) belongs to Spec;’" (X) iff P/T; € Specy (X/T;)
whenever T; C P.

The assertion (c) can be extracted from [R, Ch.III]. The last assertion, the most
important one, states that an element of Spec™ (X) belongs to Spec;'(X) (that is it
corresponds to an element of Spec(X)) iff this element belongs to Spec;’' (X) locally.

4.5. The geometric center of a ’space’ and the reconstruction of commu-
tative schemes. Recall that the center of the category Cy is the (commutative) ring
of endomorphisms of its identical functor. If Cy is a category of left modules over an
associative unital ring R, then the center of Cy is naturally isomorphic to the center of R.

We endow the spectrum Spec(X) with Zariski topology (which we do not describe
here). The map Ox which assigns to every open subset W of Spec(X) the center of the

quotient category C'x /Sw, where Sy = ﬂ @, is a presheaf on Spec(X). We denote by

Qew
Ox its associated sheaf. One can show that the stalk of the sheaf Ox at a point Q of the

spectrum is isomorphic to the center of the local category Cx /Q, and the center of a local
category is a local commutative ring. The locally ringed space (Spec(X),Ox) is called
the geometric center (or Zariski geometric center) of the ’space’ X.

One of the consequences of the theorem above is the following reconstruction theorem:

4.6. Theorem. If Cx is the category of quasi-coherent sheaves on a commutative
quasi-compact quasi-separated scheme, then the geometric center (Spec(X),Ox) of the
'space’ X is naturally isomorphic to the scheme. So that any quasi-separated quasi-compact
commutative scheme is canonically reconstructed, uniquely up to isomorphism, from its
category of quasi-coherent sheaves.
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In the case of a noetherian scheme, this theorem recovers Gabriel’s reconstruction
theorem [Gab], because it is easy to show that if C'x is the category of modules over a
commutative noetherian ring, then the injective spectrum of C'x is naturally isomorphic
to the spectrum Spec(X).

4.7. Geometric realization of a noncommutative scheme. Let Cx be an
abelian category with enough objects of finite type. We have a contravariant pseudo-
functor from the category of the Zariski open sets of the spectrum Spec(X) to Cat which

assigns to each open set U of Spec(X) the quotient category Cx /Sy, where Sy = ﬂ @,

Qcu
and to each embedding &/ — V the corresponding localization functor. To this pseudo-

functor, there corresponds (by a standard formalism) a fibred category over the Zariski
topology of Spec(X). The associated stack, §%, is a stack of local categories: its stalk at

each point Q of Spec(X) is equivalent to the local category Cx/ Q.
We regard the stack §% as a geometric realization of the abelian category Cx.
If X is a (noncommutative) scheme, then the stack §% is locally affine.

4.8. Note: the geometric center of noncommutative schemes. Taking the
center of each fiber of the stack §%, we recover the presheaf of commutative rings Oy,
hence the geometric center of the ’space’ X.

Note that the stalks at points of a noncommutative scheme are local abelian categories,
which only in exceptional cases are equivalent to categories of modules over rings. This
explains why imposing that noncommutative schemes should be ringed topological spaces
did not work.

4.9. The spectrum Specg (X). If Cx is the category of quasi-coherent sheaves on a
non-quasi-compact scheme, like, for instance, the flag variety of a Kac-Moody Lie algebra,
or a noncommutative scheme which does not have a finite affine cover (say, the quantum
flag variety of a Kac-Moody Lie algebra, or the corresponding quantum D-scheme), then
the spectrum Spec(X) is insufficient. It should be replaced by the spectrum Spec?(X)
whose elements are coreflective topologizing subcategories of Cx of the form [M]. (i.e.
generated by the object M) such that if L is a nonzero subobject of M, then [L]|. = [M]..

There is a natural map Spec(X) — Spec?(X) which assigns to every Q € Spec(X)
the smallest coreflective subcategory [Q]. containing Q. If the category Cx has enough
objects of finite type, this canonical map is a bijection.

4.10. Theorem. Let {7; | i € J} be a set of coreflective thick subcategories of an

abelian category Cx such that ﬂ T =0; and let Cx Sy Cx /T; be the localization
eJ

functor. The following conditions on a nonzero coreflective topologizing subcategory Q of

Cx are equivalent:
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(a) Q € Spec?(X),
(b) [ui(Q)]. € Spec(X/T;) for every i € J such that Q ¢ T;.

One of the consequences of this theorem is the following reconstruction theorem.

4.11. Theorem. Let Cx be the category of quasi-coherent sheaves on a commutative
scheme X = (X, 0). Suppose that there is an affine cover {U; — X | i € J} of the scheme
X such that all immersions U; — X, i € J, have a direct image functor (say, the scheme
X is quasi-separated). Then the geometric center (Spec(X),Ox) is isomorphic to the
scheme X.

If X = (X,0) is a quasi-compact quasi-separated scheme, then the category Cx
of quasi-coherent sheaves on X has enough objects of finite type, hence the spectrum
Spec?(X) coincides with Spec(X). Thus, the reconstruction theorem for quasi-compact
quasi-separated schemes is a special case of the theorem above.

5. Noncommutative local algebra and representation theory.

A classical problem of representation theory is the construction of (interesting classes
of) irreducible representations. From the point of view of noncommutative algebraic ge-
ometry, this problem is a part of a more natural and more general problem of constructing
objects representing elements of an appropriate spectrum. Likewise, in commutative alge-
braic geometry, the set of maximal ideals of a ring is replaced by its prime spectrum.

On the experimental level, the work on the realizations of points of the spectrum
started at the end of nineteen eighties with constructing realizations of the spectrum of
several ‘small’ algebras which appear in representation theory and mathematical physics,
like the first Weyl and Heisenberg algebras and their quantum analogs, (classical and
quantized) enveloping algebra of sl(2), quantum algebra of functions on SL(2). Some of the
computations are gathered in Chapters IT and IV of the monograph [R]. These examples,
however, are of a special nature — they belong to the class of so called ’hyperbolic’ algebras
or rank 1 [R, Ch.II] (or "hyperbolic monads’ of rank 1 in [R, Ch.IV]) which is particularly
convenient for spectral computations. Algebras of skew differential operators is the only
other class of algebras whose spectrum was effectively computed “by hands”[RS].

5.1. Associated points. Let M be an object of the category C'x. An element Q of
Spec?(X) is called an associated point of M in Spec(X) if M has a nonzero subobject
L such that Q = [L]. and L is right orthogonal to Q). We denote the set of associated
points of M in Spec?(X) by ss.(M).

Associated points have properties analogous to the known properties of associated
points of modules over commutative rings.
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5.2. Induction problem. Let X and Y be 'spaces’ represented by abelian categories,

resp. C'x and Cy, X 4 ¥ a continuous morphism of ’spaces’, Q a point of the spectrum
of X. The induction problem is to find representatives M of the spectrum of X such that
Q is an associated point of f.(M).

If Cx and Cy are categories of quasi-coherent sheaves on commutative schemes, re-

spectively (X, Ox) and (), Oy), and f* is an inverse image functor of a scheme morphism

(¢.€)
(X,0x) R (), Oy), then the induction problem is the problem of the construction of

the correspondence x — ¢~ !(z) inverse to the map of the underlying topological spaces.

It turns out that all previously obtained realizations of spectral points (in particular
those of [R, Ch.IT and Ch.IV]) are specializations of an induction construction, which gives
a solution of the induction problem in the case when f is a locally affine morphism and the
pair (f, Q) satisfies certain additional conditions.

In the case of an affine morphism X g, Y, the induction construction is as follows.
There is a commutative diagram

fo
X%XQ

N o
Y

¢
of affine morphisms, where Xg — Y is the so called stabilizator of the point Q (defined
in Chapter III). Let £o denote the composition of the functor §7 and the functor which

assigns to every object of the category C'x the quotient of this object by its f;* (@)-torsion,
where €0 is the Serre subcategory of C'x corresponding to Q (generated by all objects N
such that Q ¢ [N],).

Let Spec?(X) denote the family of representatives of elements of the Spec?(X), i.e.
objects M such that [M]. = Q € Spec!(X) and M is Q-torsion free. Let Spec(Xo)
denote the family of all objects of Spec?(Xp) such that Q is an associated point of their
image in C'x. If the inverse image functor §; is exact and faithful and certain ’ampleness’
conditions are satisfied, then the functor £o transforms every object of Spec?(Xg) into
an object of the spectrum of the ’space’ X. Moreover, every object of the spectrum of X
whose image in C'x, has an associated point which belongs to SpecCQ(X o) is equivalent to
the image of this associated point by the functor £o. The functor £o maps simple objects
from Spec2(Xg) to simple objects of Cy

The induction construction is purely noncommutative: if the morphism X Ty

. . f . . .
corresponds to a morphism of commutative schemes, then X — X is an isomorphism,
i.e. the construction is trivial. The best results are achieved when the stabilizer is trivial,
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¢
that is Xg —> Y is an isomorphism. In general, the ’size’ of the stabilizer measures
noncommutativity (or commutativity) of the pair (f, Q).

6. Geometry of t-’spaces’.

These are ’spaces’ represented by svelte triangulated Karoubian categories. We denote
by CTx the triangulated category corresponding to the t-’space’ X. Morphisms from X to )
are isomorphism classes of triangle functors C7y — CTx. The pseudo-geometric picture
of t-’spaces’ is more convenient and graceful than in the case of ’spaces’ represented by
abelian categories. The key fact is an analogue of the Beck’s theorem for triangle functors
and resulted from this analogue triangular replacement of flat descent.

6.1. The spectra of a t->space’. We start with the spectrum Spech (%) of a t-
‘space’ X related with exact localizations. It consists of all thick triangulated subcategories
P of the triangulated category TCx such that the intersection P* of all thick triangulated
subcategories properly containing P does not coincide with P. This spectrum is decom-
posed into the disjoint union of two parts. One part, Spec}:’o(%), consists of points P,
which are fat in the sense that the right orthogonal complement to P inside of the sub-
category P* is zero; i.e. P contains a set of generators of the subcategory P*. In the case
when the triangulated category has infinite products or coproducts, P generates the whole
triangulated category: its right orthogonal complement, P, is zero. The complementary
part Speci{l(%), which consists of non-fat points, is the object of our study. We observe

that the spectrum Spec}:’l(%) has a natural counterpart Specy 2(%), which might be re-
garded as the triangulated version of the spectrum Spec(X). The map, which assigns to
a thick subcategory P the intersection P, = P* N Plisa bijection from Spec}z’l(.’{) onto
Spec)lz/ 2(.’f) There are natural notions of supports of objects which are used, among other
things, to define topologies on the spectra, in particular analogs of the Zariski topology.
These spectra have simple local properties, similar to those of the spectrum Spec™ (—).
Namely, if {7; | ¢ € J} is a finite family of thick triangulated subcategories of the triangu-
lated category CTx such that ﬂ T; =0, then Spec}:’l(f{) = U Spec}:’l(%/ﬁ).
ieJ ieJ

Moreover, these spectra heave much better functorial pr(G)perties than the spectra of
‘spaces’ represented by abelian categories. Explicitly, this means that the triangulated
analog of the induction construction outlined above — a spectral version of cohomological
induction, works without additional “ampleness” conditions on the pair (f, Q), unlike its
abelian prototype.

7. A sequence of events. Different parts of this story moved in different directions
dictated mostly by immediate needs of several concrete examples and problems.

The first serious progress was due to the discovery (in the middle of eighties) of the
spectrum Spec(—) of 'spaces’ represented by svelte abelian categories [R, Ch.III) and its
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applications to representations of algebras of mathematical physics (see [R], Chapters II,
IV). At that stage, there was a harmony between pseudo-geometry and geometry: only
'spaces’ represented by abelian (or even Grothendieck) categories were considered and
the spectrum Spec(X) (endowed with a version of Zariski topology) was regarded as the
underlying topological space of X. The monograph [R] marked the end of that period.

Then, in the middle of the nineties, appeared the work on D-modules on noncom-
mutative ’spaces’ with the goal to obtain a quantized version of the Beilinson-Bernstein
localization construction [LR1], [LR2]. The contemplation of the quantum analogues of
the base affine space, flag variety and the quantum D-’spaces’ determined by the action of
quantized enveloping algebra on this ’spaces’ (see [LR2]) led to the notion of a noncom-
mutative scheme [R2], [R3]. This notion is purely categorical and does not use any abelian
(or even additivity) hypothesis. The work on noncommutative projective spaces [KR1]
and noncommutative Grassmannians provoked the study of ’spaces’ defined by presheaves
of sets on the category of noncommutative affine schemes and (formally) smooth ’spaces’
[KR2], considerably extended the use of flat descent turning it into a tool for describing the
categories of quasi-coherent sheaves on noncommutative ’spaces’ [KR3|. This eventually
triggered (actually, required) the introduction of noncommutative stacks [KR4].

As for the geometric part, it continued to develop, for quite a while, only as the
spectral theory of (’spaces’ represented by) abelian categories of [R, Ch.III], [R4], without
any reaction to all these pseudo-geometric developments. It seemed at the time that the
spectrum Spec(—) is an exceptional notion. The absence of a spectral theory of ’spaces’
represented by triangulated categories had been of a particular nuisance, considering the
role triangulated categories play in representation theory and started to play in mathemat-
ical physics. Then spectra of ’spaces’ represented by arbitrary svelte categories — spectra
related with localizations, were discovered. They were easily adjusted to more sophisti-
cated settings; in particular, a satisfactory spectral theory of ’spaces’ represented by svelte
triangulated categories was, finally, found [R6].

Moreover, these several spectra provided enough experimental material to figure out
a general pattern producing spectra — spectral cuisine [R5]. Thanks to this work, geometry
(i.e. spectral theory) almost caught up with pseudo-geometry, at least potentially. Still,
the most important spectrum, Spec(—), continued to resist generalizations. Its straight-
forward version for ’spaces’ represented by exact categories (appeared in [R, Ch.5]) does
not inherit important properties with respect to localizations (explained in Chapter II of
this book).

Note that, from the algebraic point of view, exact categories are much more robust
than abelian categories. For instance, unlike abelian categories, they are stable under tran-
sition to the categories of filtered objects. They also contain the categories of projective
modules over associative rings and, more generally, categories of vector bundles on ringed
spaces (in particular, on schemes), which was the first reason for introducing them in ho-
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mological algebra and K-theory. Important categories of functional analysis (starting from
the category of Banach spaces) are exact. Therefore, studying ’spaces’ represented by ex-
act categories instead of abelian categories should create a bridge towards noncommutative
geometries related to analysis, in particular, to noncommutative differential geometry.

An attempt to understand cycles and K-theory of noncommutative ’spaces’ and schemes
led to a new homological algebra and, as a byproduct, to an important expansion of pseudo-
geometry: 'spaces’ represented by right (or left) exact categories. Right exact categories are
categories endowed with a Grothendieck pretopology whose covers are strict epimorphisms.
In particular, exact categories are a special case of right exact categories. Finally, an ad-
equate extension of the spectrum Spec(—) to ’spaces’ represented by svelte right exact
categories was found [R12]. Considering that every category has a canonical (the finest)
right exact structure, this last development establishes (at least temporarily) a harmony
between pseudo-geometric and geometric parts of noncommutative algebraic geometry and
opens entirely new prospectives.

8. Texts. The above described evolution (which occurred since the appearance of
the monograph [R]) formed a whole cycle of development: first new, important pseudo-
geometric notions and poorly understood pseudo-geometric examples and constructions
emerged during the second half of the nineties; then new notions, facts and insights dis-
covered during the first several years of the twenty first century allowed to fill up gaps
between different, seemingly unrelated pieces of noncommutative pseudo-geometry and
permitted to find the missing geometric parts of the story. The present state of the
subject looks, therefore, appropriate for organizing material scattered among the papers
([KR1]-[KR5], [LR1], [LR2], [R2]-[R8]) and unpublished notes into a coherent exposition of
(certain chapters of ) foundations of noncommutative algebraic geometry. The manuscripts

Noncommutative 'Spaces’ and Stacks
Geometry of Noncommutative ’Spaces’ and Schemes
Homological Algebra of Noncommutative "Spaces’ I

are the parts of the treatise written so far. The first one is mostly based on the papers
[KR1]-[KR5] and the notes of courses on noncommutative algebraic geometry and algebra
given at Kansas State University. It might be called “basics of noncommutative pseudo-
geometry”. Due to the role of pseudo-geometry, results of this manuscript are used, directly
or indirectly, in the rest of the treatise. Therefore, we give a brief outline of its content.
We start with ’spaces’ represented by svelte categories and morphisms of ’spaces’
represented by (their inverse image) functors, and develop the basic theory of locally
affine ’spaces’ and schemes with a stress on flat descent (used as a tool for describing
categories of quasi-coherent sheaves on noncommutative ’spaces’) and the noncommuta-
tive analogs of smooth and étale morphisms etc.. Then we study ’spaces’ determined by
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presheaves of sets on the category Aff; of noncommutative affine schemes over a commu-
tative ring k. We introduce and study Grassmannians, generalized Grassmannians — the
non-commutative analog of Quot schemes, and (generalized) flag varieties. We associate
with presheaves of sets on Aff ringed categories, which give rise to the categories of quasi-
coherent (pre)sheaves of modules. Finally, there are two more aspects that we take into
consideration: constructions of important ’spaces’ and geometries, which “live” in different
monoidal categories. We combine the two aspects together. Namely, the constructions of
‘spaces’ are made inside of geometries living in monoidal categories.

There is no need to explain here details of the third manuscript, but, of course, we
sketch the organization of the second one — the present volume.

10. Content. In order to make the exposition self-contained, the necessary pseudo-
geometric preliminaries are summarized (without proofs) in the first chapter.

Chapter II describes the spectral theory of ’spaces’ represented by abelian categories.

Chapter III studies the functorial properties of spectra and gives some of its applica-
tions to representation theory of (quantized) enveloping algebras.

Chapter IV is dedicated to the geometry of ’spaces’ represented by triangulated cat-
egories. It follows the pattern of the first three chapters. We start with a description of
continuous triangle morphisms, which is a triangulated version of Beck’s theorem. The
purpose of the chapter is to present a triangulated version of the main facts of Chapters
IT and III — the relevant spectra and their functorial properties.

The reader who is interested only in geometry of abelian and triangulated categories
and their applications to algebraic representation theory, can ignore the rest of the book.

In Chapter V, “Spectra related with localizations”, we start to fill up the most obvious
aesthetical gap between the fact that main pseudo-geometric notions (like schemes, for
example) are defined for ’spaces’ represented by arbitrary svelte categories, while there
was no geometric (i.e. spectral) counterpart. Part of material is taken from [R6]. The
spectra we introduced here are directly related to exact localizations. In a sense, we
obtain natural extensions of Gabriel’s spectrum for ’spaces’ represented by arbitrary svelte
categories. Our main spectrum, Spec(—), remains out of reach in this approach.

It turns out that the spectrum Spec(—) can be recovered if we take into consideration
a structure of a right eract category. This is done in Chapter VI, “Geometry of right
exact ’spaces”’, dedicated to spectral theory of ’spaces’represented by svelte right exact
categories. In particular, we extend to right exact ’spaces’ the spectrum Spec(—) and
establish the analogues of the main facts of Chapter II.

Chapter VII is called, for a good reason, “Spectral cuisine for the working mathemati-
cians”. It is based on [R5] (enriched with some more recent observations) and describes
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a general machinery, which produces spectra. All spectra appeared so far here and in [R]
can be obtained using this machine, as well as new spectra.

In order to make the exposition “user friendly”, all spectral constructions and facts
coming from the “Spectral cuisine” which appear in other Chapters are explained inde-
pendently in each case. So that “users” might omit reading Chapter VII.

Acknowledgements. This undertaking was helped very much by the support and hos-
pitality of the Max Planck Institut fiir Mathematik in Bonn (starting from 1993) and the
Institute des Hautes Etudes Scientifiques, Bures-sur-Yvette, France (starting from 1996).
The two years at THES (1996-1998) were priceless for the beginning of the project, as well
as seminars and activities in noncommutative geometry run together with Yuri Ivanovich
Manin at Max Planck Institute in 1998-1999 and in summer of 2001. The National Sci-
ence Foundation supported this research from 2000 until 2006. Summer of 2006 at the
Max Planck Institut, the year 2006-2007 at the Institute des Hautes Etudes Scientifiques
and following it year 2007-2008 at the Max Planck Institut were particularly vital for the
creation of the first parts of the treatise, especially for this volume.

I am grateful to Leo and Maria Rosenberg for helping to improve introductory parts
of this text. My family provided the main motivation to pursue the project.



Chapter 1
Locally Affine 'Spaces’ and Schemes.

In Section 1, we review the first notions of noncommutative algebraic geometry —
preliminaries on ’spaces’ represented by categories, morphisms represented by their inverse
image functors. We recall the notions of continuous, flat and affine morphisms and illustrate
them with a couple of examples. In Section 2, we remind Beck’s theorem characterizing
monadic morphisms and apply it to the study of affine relative schemes. In Section 3, we
introduce the notions of a weakly locally affine morphism and a weak scheme over a ’space’.
Section 4 is dedicated to flat descent which is one of the main tools of noncommutative
algebraic geometry. In Section 5, we sketch several examples of noncommutative schemes
and more general locally affine spaces, which are among illustrations and /or motivations of
constructions of this work. The whole chapter can be regarded as a review of the few facts
of the noncommutative algebraic (or categoric pseudo-)geometry which are used in the rest
of the work. There are practically no proofs. They can be found in the first Chapter of
[KR7] and in [KR3].

1. Noncommutative ’spaces’ represented by categories and morphisms
between them. Continuous, affine and locally affine morphisms.

1.1. Categories and ’spaces’. As usual, Cat, or Caty, denotes the bicategory of
categories, which belong to a fixed universum ${. We call objects of C'at? ’spaces’. For any
‘space’ X, the corresponding category C'x is regarded as the category of quasi-coherent
sheaves on X. For any il-category .4, we denote by |A| the corresponding object of Cat°?
(the underlying ’space’) defined by C|4 = A.

We denote by |Cat|® the category having same objects as C'at®?. Morphisms from
X to Y are isomorphism classes of functors Cy — C'x. For a morphism X IR Y, we

denote by f* any functor Cy — Cx representing f and call it an inverse image functor
of the morphism f. We shall write f = [F] to indicate that f is a morphism having an

inverse image functor F'. The composition of morphisms X Ty and Y % Z is defined
by go f=[f"og].

1.2. Localizations and conservative morphisms. Let Y be an object of |Cat|°
and Y a class of arrows of the category Cy. We denote by ¥~1Y the object of |Cat|® such
that the corresponding category coincides with (the standard realization of) the quotient of
the category Cy by ¥ (cf. [GZ, 1.1]): Cs-1y = £~*Cy. The canonical localization functor

Ps _ . . . . _ P
Cy — ¥~ !'Cy is regarded as an inverse image functor of a morphism, ¥~'Y == Y.
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For any morphism X Ly in |Cat|®, we denote by Y- the family of all arrows s
of the category Cy such that f*(s) is invertible (notice that ¥ ;- does not depend on the
choice of an inverse image functor f*). Thanks to the universal property of localizations, f*
is represented as the composition of the localization functor p} = p;f* : Cy — E;}C’Y

and a uniquely determined functor Z;}C’Y f—‘> Cx. In other words, f = pyo f. for a
uniquely determined morphism X L> ZJZ}Y.

A morphism X i) Y is called conservative if ¥y« consists of isomorphisms, or,
equivalently, p¢ is an isomorphism.

A morphism X I ¥ is called a localization if fc¢ is an isomorphism, i.e. the functor
f& is an equivalence of categories.

Thus, f = py o f. is a unique decomposition of a morphism f into a localization and
a conservative morphism.

1.3. Continuous, flat, and affine morphisms. A morphism is called continuous
if its inverse image functor has a right adjoint (called a direct image functor), and flat
if, in addition, the inverse image functor is left exact (i.e. preserves finite limits). A
continuous morphism is called affine if its direct image functor is conservative (i.e. it
reflects isomorphisms) and has a right adjoint.

1.4. Categoric spectrum of a unital ring. For an associative unital ring R,
we define the categoric spectrum of R as the object Sp(R) of |Cat|® represented by the
category R —mod of left R-modules; i.e. Cgpgr) = R —mod.

Let R -5 S be a unital ring morphism and R—mod % S —mod the functor S®Qgr —.
The canonical right adjoint to ¢* is the pull-back functor ¢, along the ring morphism ¢.
A right adjoint to ¢, is given by

3
S —mod —— R —mod, L+— Hompg(¢.(S),L).

The map

(R -5 5) — (Sp($) - Sp(R))
is a functor
Sp
Rings®® —— |Cat|’
which takes values in the: subcategory of |Cat|® formed by affine morphisms.

The image Sp(R) N Sp(7T) of a ring morphism 7' %5 R is flat (resp. faithful) iff ¢
turns R into a flat (resp. faithful) right 7-module.
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1.4.1. Continuous, flat, and affine morphisms from Sp(S) to Sp(R). Let R

and S be associative unital rings. A morphism Sp(5) 7, Sp(R) with an inverse image
functor f* is continuous iff

[fe2M®r :L— M®®grL (1)
for an (S, R)-bimodule M defined uniquely up to isomorphism. The functor
fx = Homg(M,—=): N — Homg(M, N) (2)

is a direct image of f.

By definition, the morphism f is conservative iff M is faithful as a right R-module,
i.e. the functor M ® gr — is faithful.

The direct image functor (2) is conservative iff M is a generator in the category of left
S-modules, i.e. for any nonzero S-module NN, there exists a nonzero S-module morphism
M — N.

The morphism f is flat iff M is flat as a right R-module.

The functor (2) has a right adjoint, f', iff f. is isomorphic to the tensoring (over S)
by a bimodule. This happens iff M is a projective S-module of finite type. The latter is
equivalent to the condition: the natural functor morphism M% ®g — — Homg(M, —) is
an isomorphism. Here M% = Homg(M, S). In this case, f' ~ Homg(M¥, —).

1.5. Example. Let G be a monoid and R a G-graded unital ring. We define the
'space’ Spg(R) by taking as Csp (r) the category grg R—mod of left G-graded R-modules.

There is a natural functor grg R — mod Py Ry — mod, which assigns to each graded R-
module its zero component ('zero’ is the unit element of the monoid G). The functor ¢,
has a left adjoint, ¢*, which maps every Ro-module M to the graded R-module R ®p, M.
The adjunction arrow Idr,—mod — ¢«¢* is an isomorphism. This means that the functor
¢* is fully faithful, or, equivalently, the functor ¢, is a localization.

The functors ¢, and ¢* are regarded as respectively a direct and an inverse image

functor of a morphism Spg(R) N Sp(Ryp). It follows from the above that the morphism
¢ is affine iff ¢ is an isomorphism (i.e. ¢* is an equivalence of categories).

In fact, if ¢ is affine, the functor ¢, should be conservative. Since ¢, is a localization,
this means, precisely, that ¢, is an equivalence of categories.

1.6. The cone of a non-unital ring. Let Ry be a unital associative ring, and let
R be an associative ring, non-unital in general, in the category of Rp-bimodules; i.e. R
is endowed with an Rp-bimodule morphism R4 ®p, R+ ™ R, satisfying the associativity
condition. Let R = Ry ® R, denote the augmented ring described by this data. Let Tr,
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denote the full subcategory of the category R — mod whose objects are all R-modules
annihilated by R,. Let 7'1{+ be the Serre subcategory (that is a full subcategory closed
by taking subquotients, extensions, and arbitrary direct sums) of the category R — mod
spanned by Tg, .

We define the 'space’ cone of Ry by taking as Ccone(r, ) the quotient category R —

mod/ Tr, - The localization functor R —mod ~s R—mod/ Tg, is an inverse image functor

of a morphism of ’spaces’ Cone(R,) — Sp(R). The functor u* has a (necessarily fully
faithful) right adjoint, i.e. the morphism w is continuous. If Ry is a unital ring, then u
is an isomorphism (see C3.2.1). The composition of the morphism u with the canonical
affine morphism Sp(R) — Sp(Ry) is a continuous morphism Cone(R,) — Sp(Ry). Its
direct image functor is (regarded as) the global sections functor.

1.7. The graded version: Projg. Let G be a monoid and R = Ry ® R, a G-graded
ring with zero component Ry. Then we have the category gr, R — mod of G-graded R-
modules and its full subcategory gr,Tr, = Tr, N gr,R — mod whose objects are graded
modules annihilated by the ideal R, . We define the ’space’ Projg(R) by setting

Cprojg(R) =gr R — mod/grngi.

Here gr, TR_+ is the Serre subcategory of the category gr, R — mod spanned by gr,Tr. .
One can show that gr, TR_+ = gr,R—mod ﬂTR_Jr. Therefore, we have a canonical projection

Cone(R,) - Proj;(R).

The localization functor gr, R — mod — Cpyoj o(Ry) 1s an inverse image functor of a
continuous morphism Projg(R) s Spg(R). The composition Projg(R) 5 Sp(Ry) of
the morphism v with the canonical morphism Spg(R) N Sp(Ro) defines Projg(R) as a

"space’ over Sp(Ryp). Its direct image functor is called the global sections functor.

1.7.1. Example: cone and Proj of a Z-graded ring. Let R = @©,,>0R,, beaZ-
graded ring, Ry = @,>1R,, its "irrelevant’ ideal. Thus, we have the cone of R;, Cone(R.),
and Proj(R) = Proj;(R), and a canonical morphism Cone(R;) — Proj(R).

2. Beck’s Theorem and affine morphisms.

2.1. Beck’s Theorem. Let X i> Y be a continuous morphism in with inverse

image functor f*, direct image functor f,., and adjunction morphisms

Ide, 25 fof* and  f*f. -5 Ide, .
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Let F; denote the monad (Fy, ps) onY, where Fy = f, f* and py = feep f*.

We denote by Fy —mod, or by (F;/Y)—mod the category of F;-modules. Its objects
are pairs (M, &), where M € ObCy and ¢ is a morphism Fy(M) — M such that the
diagram

9 py (M)
Ff(M) —— Fp(M)
Fy(€) l l 3
13
Fp(M) —— M
commutes and {ony(M) = idp;. Morphisms from (M, €) to (M, €) are given by morphisms
M 25 M of the category Cy such that the diagram

Fy(9) —~
Fr(M) —— Fy(M)

¢ | | €
M 2 M

commutes. The composition is defined in a standard way.
We denote by Sp(F/Y) the ’space’ represented by the category of Fs-modules and
call it the categoric spectrum of the monad F.
There is a commutative diagram
Fe
Cx —— (Ff/Y)—mod
N (3)
Cy

Here f* is the canonical functor

and §* is the forgetful functor (F;/Y) — mod — Cy.
The following assertion is one of the versions of Beck’s theorem.

2.1.1. Theorem. Let X i> Y be a continuous morphism.

(a) If the category Cy has cokernels of reflexive pairs of arrows, then the functor
f« has a left adjoint, f*; hence f. is a direct image functor of a continuous morphism
X L sp(F/v).

(b) If, in addition, the functor f. preserves cokernels of reflexive pairs, then the ad-
junction arrow f*f, — Idc, is an isomorphism, i.e. f. is a localization.
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(c) If, in addition to (a) and (b), the functor f. is conservative, then f, is a category
equivalence.

Proof. See [MLM], IV.4.2, or [ML], VI.7. m

2.1.2. Corollary. Let X TS Y be an affine morphism (cf. 1.8). If the category
Cy has cokernels of reflexive pairs of arrows (e.g. Cy is an abelian category), then the

canonical morphism X N Sp(F;/Y) is an isomorphism.

2.1.3. Monadic morphisms. A continuous morphism X i> Y is called monadic
if the functor

Cx — s Fr—mod, M —s (f.(M), fue (M),

is an equivalence of categories.

2.2. Continuous monads and affine morphisms. A functor F'is called continuous
if it has a right adjoint. A monad F = (F,u) on a 'space’ Y (i.e. on the category Cy) is
called continuous if the functor F' is continuous.

2.2.1. Proposition. A monad F = (F,u) on'Y is continuous iff the canonical
morphism Sp(F/Y) Loy s affine.

Proof. A proof in the case of a continuous monad can be found in [KR2, 6.2], or in
[R3, 4.4.1] (see also [R4, 2.2]). m

2.2.2. Corollary. Suppose that the category Cy has cokernels of reflexive pairs of

arrows. A continuous morphism X Tivis affine iff its direct image functor C'x ELN Cy
18 the composition of a category equivalence

Cx — (F¢/Y) —mod

for a continuous monad Fy on'Y and the forgetful functor (F¢/Y) — mod — Cy. The
monad Fy is determined by f uniquely up to isomorphism.

Proof. The conditions of the Beck’s theorem are fulfilled if f is affine, hence f, is the
composition of an equivalence Cx — (F;/Y) —mod for a monad Fy = (f.f*, pus) in Cy
and the forgetful functor (F;/Y) — mod — Cy (see (1)). The functor Fy = f,f* has a
right adjoint f, f', where f'is a right adjoint to f.. The rest follows from 2.2.1. m

2.3. The category of affine schemes over a ’space’ and the category of
monads on this ’space’.
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2.3.1. Proposition. Let
h
X — Y
> g
S

be a commutative diagram in |Cat|®. Suppose Cz has cokernels of reflexive pairs of arrows.
If f and g are affine, then h is affine.

Let Affs denote the full subcategory of the category |Cat|®/S of ’spaces’ over S

whose objects are pairs (X, X ENS ), where f is an affine morphism. On the other hand,
we have the category Mon,(S) of continuous monads on the ’space’ S (i.e. on the category
Cs) and the functor

Mon(S)? —— Affs (1)

which assigns to every continuous monad F the object (Sp(F/S,f), where Sp(F/S) is the
‘space’ represented by the category /' —mod and the morphism § has the forgetful functor
F —mod — Cg as a direct image functor. It follows from 2.3.1 and 2.2.2 that this functor
is essentially full (that is its image is equivalent to the category Af fs).

For every endofunctor Cg % Cg, let |G| denote the set Hom(Idcy, G) of elements of
G. If F = (F,p) is a monad, then the set of elements of F' has a natural monoid structure;
we denote this monoid by |F|. And we denote by |F|* the group of the invertible elements

¢
of the monoid |F|. We say that two monad morphisms F X G are conjugate to each
P

other of ¢ =t -1 -t~ for some t € |G|*.
Let Moni(S) denote the category whose objects are continuous monads on Cg and
morphisms are conjugacy classes of morphisms of monads.

2.3.2. Proposition The functor (1) induces an equivalence between the category
Moni(S) and the category Af fs of affine schemes over S.

2.3.3. Example. Let S = Sp(R) for an associative ring R. Then the category
Mon.(S) of monads on Cs = R — mod is naturally equivalent to the category R\Rings
of associative rings over R. The conjugacy classes of monad morphisms correspond to
conjugacy classes of ring morphisms. Let 2ss denote the category whose objects are
associative rings and morphisms the conjugacy classes of ring morphisms.

One deduces from 2.3.2 the following assertion:

2.3.3.1. Proposition. The category Affs of affine schemes over S = Sp(R) is
naturally equivalent to the category (R\Uss)°P.

3. Noncommutative weakly locally affine ’spaces’ and schemes.
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3.1. Weak covers. We call a family {U; —» X | i € J} of morphisms of ’spaces’ a
weak cover if

— all inverse image functors u} are ezact (i.e. the functors u; preserve finite limits and
colimits),

— the family {u} | ¢ € J} is conservative (i.e. if u}(s) is an isomorphism for all i € J,
then s is an isomorphism).

3.2. Weakly locally affine morphisms of ’spaces’. We call a morphism X N S
of ’spaces’ locally affine if there exists a cover {U; —» X | i € J} of the 'space’ X such
that all the compositions f o u; are affine.

3.2.1. Semi-separated covers and semi-separated locally affine ’spaces’. A
cover {U; — X | i € J} is called semi-separated if each of the morphisms w; is affine.
A locally affine ’space’ with a semi-separated affine cover is called semi-separated.

3.3. Weak schemes over S. Weak schemes over a 'space’ S are locally affine mor-
phisms X — S, which have an affine cover {U; —+ X | i € J} formed by localizatios.
The latter means that each inverse image functor u; is the composition of the localiza-
tion functor Cx — X 'Cx, where Yy = {s € HomCx | uj(s) is invertible}, and an

equivalence of categories X' Cx — Cy,.

3.4. Schemes. A weak scheme X — S with an affine cover {U; —» X | i€ J}is a
scheme if for every i € J, the multiplicative system ¥, is finitely generated.

4. Descent: “covers”, comonads, and gluing.

4.1. Comonads associated with “covers”. Let {U; —» X | i € J} be a family
of continuous morphisms and u the corresponding morphism U = H U; — X with the
icJ
inverse image functor

Cx —— [[Cv. = Cu M — (uj(M)]i € J).
1eJ

It follows that the family of inverse image functors {Cx — Cy, | i € J} is conserva-
tive iff the functor u* is conservative.
Suppose that the category Cx has products of |J| objects. Then the morphism
U= H U; — X is continuous: its direct image functor assigns to every object (Lili € J)
i€J
of the category Cy; = H Cy, the product H u,(L;).
icJ icJ
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The adjunction morphism Idc, s w,u* assigns to each object M of C'x the mor-
phism M — H u,u; (M) determined by adjunction arrows Idc LN U, U
i€J
The adjunction morphism u*u, — Idc,, assigns to each object £ = (L;|i € J) of Cy
the morphism (e, ;(L£)|i € J), where

€u,i(L)

is the composition of the image

u; (pi)
Hu* —>uu «(L;)

JjeJ

€, (Lj;
of the image of the projection p; and the adjunction arrow w!wu,.(L;) Lz L;.

4.2. Beck’s theorem and gluing. Suppose that for each i € J, the category Cy, has
kernels of coreflexive pairs of arrows and the functor u] preserves them. Then the inverse
and direct image functors of the morphism u satisfy the conditions of Beck’s theorem,
hence the category Cx is equivalent to the category of comodules over the comonad G, =
(Gy,0y) = (W u,, unuu,) associated with the choice of inverse and direct image functors
of u together with an adjunction morphism Id¢, Ty

Recall that G,-comodule is a pair (£, (), where L is an object of C; and ¢ a morphism
L — Gy (L) such that €,(L) o =idy and Gy () o = §,(L) o (. Beck’s theorem says that
if the category Cp; has kernels of coreflexive pairs of arrows and the functor u* preserves

and reflects them, then the functor Cx LN (U\Gy) — comod which assigns to each object
M of Cx the G,-comodule (u*(M),d,(M)) is an equivalence of categories.

In terms of our local data — the “cover” {U; —» X | i € J}, a Gy-comodule (£, ¢) is
the data (L;, (;|i € J), where (L;|i € J) = £ and (; is a morphism

Li — ujua (L) = u (] [ u, (L))
jedJ
which equalizes the pair of arrows

u Nu s (L)

wiu, (L Hu :——> Hum*u H (L)) = uiuuua (L)

w? (u.*CJ)
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and such that €, (L) o (; =idp,, i € J.
The exactness of the diagram

Su (L)

¢
L —— GulL) T Gi(L)
Gu(Q)
is equivalent to the exactness of the diagram
u Wu“*(ﬁ)
L; —>u Hu _ Hum*u Hu (1)
j€J *(“‘*CJ) meJ jeJ

for every i € J. If the functors uj preserve products of J objects (or just the products
involved into (1)), then the diagram (1) is isomorphic to the diagram

u;’?u ux (L)

Gi RN
Li —— [JuwuL) - [ wu,-upu,.(L)) (2)
jeJ ul (u;Cj) j,meJ

4.3. Remark. The exactness of the diagram (1) might be viewed as a sort of sheaf
property. This interpretation looks more plausible (or less stretched) when the diagram
(1) is isomorphic to the diagram (2), because uju,«(L;) can be regarded as the section of
L; over the "intersection’ of U; and U; and uju,,.unu,.(Lj) as the section of L; over the
intersection of the elements Uj, Up,, and U; of the “cover”.

4.4. The condition of the continuity of the comonad associated with a
“cover” Suppose that each direct image functor Cy, Y o x, © € J, has a right adjoint,
u}; and let u' denote the functor Cx — Cy = H Cy, which maps every object M to

icJ
(ui(M)|i € J). If the category C'x has coproducts of |J| objects, then the functor u' has
a left adjoint, which maps every object (L;|i € J) of Cy to the coproduct H u, (L
ieJ
Therefore, if the canonical morphism H u,(L;) —— H u,«(L;) is an isomorphism
i€J i

for every object (L;|i € J) of the category Cy, then (and only then) the functor u' is a
right adjoint to the functor u.,.

In particular, u' is a right adjoint to u,, if the category Cx is additive and J is finite.

4.5. Note. If, in addition, the functors u,. are conservative for all 7 € J, then the
functor u, is conservative, and the category Cy, is equivalent to the category of modules
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over the continuous monad F, = (Fy,py), where Fyy = w,u* and py, = u.eu* for an
adjunction morphism u*u, BN de,, .

5. Some motivating examples.

5.1. The base affine ’space’ and the flag variety of a reductive Lie algebra
from the point of view of noncommutative algebraic geometry. Let g be a reduc-
tive Lie algebra over C and U (g) the enveloping algebra of g. Let G be the group of integral

weights of g and G the semigroup of nonnegative integral weights. Let R = EB R,
A€Gy

where R) is the vector space of the (canonical) irreducible finite dimensional representation
with the highest weight A\. The module R is a G, -graded algebra with the multiplication
determined by the projections Ry ® R, — Ry4,, for all \,v € G,. By construction,
the algebra R carries a g-module structure such that the multiplication is a g-module
morphism. It is well known that the algebra R is isomorphic (both as an algebra and a
g-module) to the algebra of regular functions on the base affine space of g. Recall that
the base affine space of g (which is, actually, not affine, but, a quasi-affine variety) is, by
definition, the quotient G/U, where G is a connected simply connected algebraic group
with the Lie algebra g, and U is its maximal unipotent subgroup.

The category Ccone(r) 18 equivalent to the category of quasi-coherent sheaves on the
base affine space Y of the Lie algebra g. The category Cproj,(r) is equivalent to the
category of quasi-coherent sheaves on the flag variety of g.

5.2. The quantized base affine ’space’ and quantized flag variety of a
semisimple Lie algebra. Let now g be a semisimple Lie algebra over a field k of zero
characteristic, and let U,(g) be the quantized enveloping algebra of g. Define the G-graded

algebra R = @ Ry the same way as above. This time, however, the algebra R is not
AEGH

commutative. Following the classical example (and identifying spaces with categories of

quasi-coherent sheaves on them), we call Cone(R) the quantum base affine ’space’ and

Projg(R) the quantum flag variety of the Lie algebra g.

5.2.1. Canonical affine covers of the base affine ’space’ and the flag variety.
Let W be the Weyl group of the Lie algebra g. Fix a w € W. For any A € G, choose
a nonzero w-extremal vector eg , generating the one dimensional vector subspace of Ry

formed by the vectors of the weight wA. Set S, = {k*e),|\ € G4 }. It follows from the
Weyl character formula that e)) AChop € k*eiﬂ&‘ - Hence Sw is a multiplicative set. It
was proved by Joseph [Jo] that S, is a left and right Ore subset in R. The Ore sets

{Sw|w € W} determine a conservative family of affine localizations

Sp(S,'R) BN Cone(R), weW, (4)
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of the quantum base affine ’space’ and a conservative family of affine localizations
Spg(S,,'R) —— Projg(R), we W, (5)

of the quantum flag variety. We claim that the category gr,S,, 'R — mod of G-graded
S, 1 R-modules is naturally equivalent to the category (S, R)g — mod.
In fact, by 1.5, it suffices to verify that the canonical functor

grs Sy, 'R —mod —— (S, 'R)o — mod

which assigns to every graded S, !R-module its zero component is faithful; i.e. the zero
component of every nonzero G-graded S, ! R-module is nonzero. This is, really, the case,
because if z is a nonzero element of the A-component of a G-graded S, !R-module, then
(e2,) 'z is a nonzero element of the zero component of this module.

Thus, we obtain an affine cover

Sp((S;'R)o) —— Projs(R), weW, (6)

of the quantum flag variety Projg(R) of the Lie algebra g.

The covers (4) and (6) are scheme structures on respectively quantum base affine
'space’ and quantum flat variety. One can check that all morphisms of (4) and (6) are
affine, i.e. the covers (4) and (5) are semi-separated.

5.3. Noncommutative Grassmannians. Fix an associative unital k-algebra R.
Let R\ Algx be the category of associative k-algebras over R (i.e. pairs (S, R — S), where
S is a k-algebra and R — S a k-algebra morphism). We call them for convenience R-rings.
We denote by R¢ the k-algebra R ®; R°. Here R° is the algebra opposite to R.

5.3.1. The functor Gr,, . Let M, V be left R-modules. Consider the functor

GTM,V
R\Alg, —— Sets,

which assigns to any R-ring (S, R > S) the set of isomorphism classes of epimorphisms
s*(M) — s*(V) (here s*(M) = S ®gr M) and to any R-ring morphism

s ¢
(SR> S) —— (T,R5T)
Groy v (9)
the map Gr,,, (S,s) ——— Gr,,,(T,t) induced by the inverse image functor

*

¢
S—mod —— T —mod, Nv+—TxgN.
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5.3.2. The functor G,, . Denote by G,, ,, the functor R\Alg;, — Sets, which
assigns to any R-ring (S, R > S) the set of pairs of morphisms s*(V) = s*(M) % s*(V)
such that u o v = ids-(y) and acts naturally on morphisms of R-rings. Suppose that V' is
a projective R-module. Then s*(V) is a projective S-module for any R-ring (S, R > ),

so that the map

Ty (S,8) 1 Gy (S,8) —— Gry, (S,s), (v,u)+— [u],

is surjective. Thus, we have is a functor epimorphism.
M,V
GM,V 7 GTM,V' (1)

5.3.3. Relations. Denote by )R, |, the "functor of relations” G, , Xar, o G

definition, R, ,, is a subfunctor of G,, |, G, |, which assigns to each R-ring, (S, R % 8),
the set of all 4-tuples (u1,v1;u2,v2) € G, x G, such that the epimorphisms uy,us

By

M,V *

are equivalent. The latter means that there exists an isomorphism s*(V) — s*(V) such

that us = ¢ o uq, or, equivalently, ¢~ o uy = uy. Since u; ov; = id, i = 1,2, these

equalities imply that ¢ = up o v1 and ¢~ = w3 o vy. Thus, R, , (S, s) is a subset of all
(u1,v15u2,v2) € Gy, (S, 8) X G, (S, s) satisfying the following relations:

ug = (ugowvy)ouy, up = (u;o0vy)ouy (2)
in addition to the relations describing G, ., (5,s) x G, (S, 5):

up 0V = tdsg v = Uz O Vg (3)

Denote by py, p2 the canonical projections E)%MYV:; G, It follows from the sur-
jectivity of G, , — Gr,,,, that the diagram

P1

s
- M,V
SiM,V e GM,V 7 GTM,V (4)
P2

is exact.

5.3.4. Proposition. If both M and V are projective modules of a finite type, then
the functors G, and R are corepresentable.

Proof. See [KR2, 10.4.3]. m

M,V
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5.3.5. Quasi-coherent presheaves on presheaves of sets. Consider the category
Aff;. of affine k-schemes which we identify with the category of representable functors on
the category Alg; of k-algebras, and the fibred category with the base Aff; whose fibers
are categories of left modules over corresponding algebras. Let X be a presheaf of sets
on Aff;. Then we have a fibred category Aff;/X with the base Aff;/X induced by the
forgetful functor Aff;,/X — Aff;. The category Qcoh(X) of quasi-coherent presheaves

on X is the opposite to the category of cartesian sections of Affy/X.

5.3.6. Quasi-coherent presheaves on Gr,, ,,. Suppose that M and V' are projec-
tive modules of a finite type, hence the functors G, |, and R,,, are corepresentable by
R-rings resp. (&,,,,R—&,,,)and (R,,,,R— R, ). Then the category Qcoh(G,, ., )
(resp. Qcoh(R,, . )) is equivalent to &,, ,, — mod (resp. R,,,, — mod), and the category
Qcoh(Gr,, ,,) of quasi-coherent presheaves on Gr,, , is equivalent to the kernel of the
diagram

*

QCOh(GM,V) _— QCOh(%M,V) (5)

Py

This means that, after identifying categories of quasi-coherent presheaves in (5) with cor-
responding categories of modules, quasi-coherent presheaves on Gr,, |, can be realized as
pairs (L, ¢), where L is a &,, ,-module and ¢ is an isomorphism pj(L) — p5(L). Mor-

phisms (L, ¢) — (N, %) are given by morphisms L 25 N such that the diagram

. p1(9) .
Y2 — pi(V)
o | 2| v
p5(9)

p3(L) —— p5(N)
commutes. The functor

M,V

QCOh(G’/’Myv) B QCOh(GM,V)? (L7 ¢) — L7

is an inverse image functor of the projection G, ., Ty Gr,. . (see 5.3.3(4)).

One can show that the functor T, is an inverse image functor of a faithfully flat
affine morphism 7, ,, from an affine ’space’ Sp(G,,,,) (where G, ,, is a ring representing
the functor G, ,,) to the 'space’ ®rass,, , represented by the category Qcoh(Gr,, ) of
quasi-coherent sheaves on Gr,, .. In our terminology, this means that 7 is an affine
semi-separated cover of &rass,, ,,.

M,V
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5.3.7. Quasi-coherent sheaves on presheaves of sets. Let X be a presheaf of
sets on Affy, Given a (pre)topology 7 on Aff;/X, we define the subcategory Qcoh(X,T)
of quasi-coherent sheaves on (X, T) [KRA4].

5.3.7.1. Theorem ([KR4]). (a) A topology T on Affy is subcanonical (i.e. all
representable presheaves are sheaves) iff Qcoh(X) = Qcoh(X,T) for every presheaf of
sets X on Affy (in other words, ’descent’ topologies on Affy are precisely subcanonical
topologies). In this case, Qcoh(X) = Qcoh(X,T) — Qcoh(XT) = Qcoh(X7,T), where X7
18 the sheaf associated to X and — is a natural full embedding.

(b) If T is a topology of effective descent [KR}] (e.g. the fpqc or smooth topology
[KR2]), then the categories Qcoh(X,T) and Qcoh(XT™) are naturally equivalent.

This theorem says, roughly speaking, that the category Qcoh(X) of quasi-coherent
presheaves knows, which topologies to choose. A topology that seems to be the most
plausible for Grassmannians, in particular, for NP}, is the smooth topology introduced
in [KR2|. It is of effective descent, and the category of quasi-coherent sheaves on NP}
defined in [KR1] is naturally equivalent to the category of quasi-coherent sheaves of the
projective space defined via smooth topology on Affy.



Chapter II
The Spectra of ’Spaces’ Represented by Abelian Categories.

Spectral theory of abelian categories was started by P. Gabriel in early sixties [Gab]
with the introduction of the spectrum of a locally noetherian Grothendieck category. The
elements of the Gabriel’s spectrum are isomorphism classes of indecomposable injectives.
If R is a commutative noetherian ring, then the Gabriel’s spectrum of the category of
R-modules is naturally isomorphic to the prime spectrum of the ring. More generally, the
Gabriel’s spectrum of the category of quasi-coherent sheaves on a noetherian scheme is iso-
morphic to the underlying space of the scheme [Gab, Ch. VI, Theorem 1]. The Gabriel’s
spectrum does not recover, in general, the prime spectrum of a non-noetherian commu-
tative ring, which prevented the extension of this remarkable theorem to non-noetherian
schemes. The central character of this chapter is the spectrum Spec(—), which possesses
the desired property: if Cx is the category of modules over an arbitrary commutative
unital ring R, then Spec(X) is naturally isomorphic to the prime spectrum of R. For an
arbitrary abelian category Cx, isomorphism classes of simple objects of C'x correspond to
closed points of Spec(X). The main purpose is establishing local properties of the spec-
trum Spec(X ), which are needed to study the underlying topological spaces of non-affine
noncommutative schemes, and are crucial for reconstruction problems. These local prop-
erties are also used in computations of the spectra and applications of noncommutative
local algebra and algebraic geometry to representation theory (see Ch. III).

Section 1 contains the necessary preliminaries on topologizing, thick, and Serre sub-
categories. In Section 2, the spectrum Spec(X) is introduced. In Section 3 is dedicated
to local ’spaces’, the spectrum Spec™ (X) (whose points are Serre subcategories such that
the quotient ’space’ is local) and the counterpart Spec% ’1(X ) of the spectrum Spec(X)
— the image of a natural embedding of Spec(X) into Spec™ (X). Section 4 is dedicated
to the pretopology of Serre localizations and the resulting local property of the spectrum
Spec™ (X). In Section 5, we discuss analogous facts for the pretopology of exact local-
izations and the related spectrum. In Section 6, we discuss shortly spectra related with
localizations of abelian categories which are used in Section 7 in formulation of its main
result: the local property of the spectrum Spec(X) in terms of its counterpart Spec% o1 (X).

In Section 8, we introduce the geometric center of a ’space’ related to the spectrum
Spec(X) and use the results of Section 7 to show that if Cx is the category of quasi-
coherent sheaves on a quasi-compact quasi-separated scheme, then the geometric center of
X is isomorphic to the scheme. Section 9 is dedicated to the spectra related to the preorder
of reflective topologizing categories and their local properties. We introduce a pair spectra
— Spec?(X) and Spec; (X), together with a canonical map between them, which turns out
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to be an isomorphism. For an arbitrary abelian category C'x, there is a natural embedding
Spec(X) — Spec’(X). If Cx has enough objects of finite type (for instance, Cx is the
category of quasi-coherent sheaves on a quasi-compact (noncommutative) scheme), then
Spec?(X) and Spec(X) coincide. The main fact of the section is the local property of
the spectrum Spec?(X) (or, ruther, of its counterpart Spec; (X)) with respect to infinite
covers, which we formulate and prove in 9.6. If C'x is the category of quasi-coherent sheaves
on a scheme X, then Spec?(X) endowed with the Zariski topology (which is defined in
terms of topologizing subcategories) is naturally isomorphic to the underlying topological
space of the scheme X, under the condition that X admits an affine cover {U; — X |i € J}
such that each immersion U; < X has a direct image functor. The latter condition holds
if the scheme is quasi-separated.

In Section C1, we relate topologies on spectra with some natural ’topological’ struc-
tures on the monoid of topologizing subcategories. Besides, this appendix contains facts
(mostly borrowed from [R4]), which are used in the main body of the paper, especially in
Sections 9 and 9. Section C2 contains some observations on supports of objects and the
Krull filtrations. In Section C3, we apply the results of Section 9 to compare closed points
of the spectrum Spec™ (X) and Spec(X). Closed points of Spec(X) play a special role
due to their significance for representation theory and algebraic geometry. The spectrum
is usually easier to compute than Spec(X) due to its better functorial properties. We
show that, although Spec™ (X) is, usually, considerably larger than Spec(X), their closed
points are in natural bijective correspondence in many (if not all) cases of interest.

1. Topologizing, thick, and Serre subcategories.

1.1. Topologizing subcategories. A full subcategory T of an abelian category Cx
is called topologizing if it is closed under finite coproducts and subquotients.

A subcategory S of Cx is called coreflective if the inclusion functor S — Cx has a
right adjoint; that is every object of C'x has a biggest subobject, which belongs to S.

We denote by T(X) the preorder (with respect to C) of topologizing subcategories
and by T.(X) the preorder of coreflective topologizing subcategories of C'x.

1.1.1. The Gabriel product and infinitesimal neighborhoods of topologizing
categories. The Gabriel product, S @ T, of the pair of subcategories S, T of C'x is the full
subcategory of C'x spanned by all objects M such that there exists an exact sequence

0O—L—M-—N—70

with L € ObT and N € ObS. It follows that 0 @ T = T = T e 0 for any strictly full
subcategory T. The Gabriel product of two topologizing subcategories is a topologizing
subcategory, and its restriction to topologizing categories is associative; i.e. (T(X),e) is
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a monoid. Similarly, the Gabriel product of coreflective topologizing subcategories is a
coreflective topologizing subcategory, hence T.(X) is a submonoid of (T(X), e).

The n' infinitesimal neighborhood, T"*T1) of a subcategory T is defined by T(®) = 0
and T("tD = T(™) ¢ T for n > 0.

1.2. The preorder > and topologizing subcategories. For any two objects,
M and N, of an abelian category Cx, we write M > N if N is a subquotient of a finite
coproduct of copies of M. For any object M of the category Cx, we denote by [M] the
full subcategory of Cx whose objects are all L € ObCx such that M > L. It follows
that M > N < [N] C [M]. In particular, M and N are equivalent with respect to > (i.e.
M = N = M) iff [M] = [N]. Thus, the preorder ({{M] | M € ObCx},D ) is a canonical
realization of the quotient of (ObCx, ) by the equivalence relation associated with >.

1.2.1. Lemma. (a) For any object M of Cx, the subcategory [M] is the smallest
topologizing subcategory containing M.

(b) The smallest topologizing subcategory spanned by a family of objects S coincides
with U [N], where Ss; denotes the family of all finite coproducts of objects of S.

NeSy

Proof. (a) Since > is a transitive relation, the subcategory [M] is closed with respect
to taking subquotients. If M = M,, i« = 1,2, then M = M & M > M; & Ms, which
shows that [M] is closed under finite coproducts, hence it is topologizing. Clearly, any
topologizing subcategory containing M contains the subcategory [M].

(b) The union U [N] is contained in every topologizing subcategory containing the

NESs
family S. It is closed under taking subquotients, because each [N] has this property. It
is closed under finite coproducts, because if N1, Ny € Sy, and N; = M,;, ¢ = 1,2, then
N1 ® Ny =M S M. u

For any subcategory (or a class of objects) S, we denote by [S] (resp. by [S].) the
smallest topologizing resp. coreflective topologizing) subcategory containing S.

1.2.2. Proposition. Suppose that C'x is an abelian category with small coproducts.
Then a topologizing subcategory of the category Cx is corefiective iff it is closed under small
coproducts. The smallest coreflective topologizing subcategory containing a set of objects S
coincides with U [N], where S is the family of all small coproducts of objects of S.

Nes

Suppose that the category Cx satisfies (AB4), i.e. it has infinite coproducts and the
coproduct of a set of monomorphisms is a monomorphism. Then, for any object M of
Cx, the smallest coreflective topologizing subcategory [M]. spanned by M is generated by
subquotients of coproducts of sets of copies of M.
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Proof. The argument is similar to that of 1.2.1 and left to the reader as an exercise. m

1.3. Thick subcategories. A topologizing subcategory T of the category Cx is
called thick if T ¢ T = T; in other words, T is thick iff it is closed under extensions.

We denote by Th(X) the preorder of thick subcategories of C'x. For a thick subcate-
gory T of Cx, we denote by X/T the quotient 'space’ defined by Cx,r = Cx /T.

1.4. Serre subcategories. We recall the notion of a Serre subcategory of an abelian
category as it is defined in [R, II1.2.3.2]. For a subcategory T of Cx, let T~ denote the full
subcategory of C'x generated by all objects L of C'x such that any nonzero subquotient of
L has a nonzero subobject which belongs to T.

1.4.1. Proposition. Let T be a subcategory of Cx. Then

(a) The subcategory T~ is thick.

(b) (T7)” =T".

(¢) T C T~ iff any subquotient of an object of T is isomorphic to an object of T.

Proof. See [R, 111.2.3.2.1]. m

1.4.2. Remark. It follows from 1.4.1 and the (definition of T~) that, for any
subcategory T of an abelian category C'x, the associated Serre subcategory T~ is the
largest topologizing (or the largest thick) subcategory of C'x such that every its nonzero
object has a nonzero subobject from T.

1.4.3. Definition. A subcategory T of an abelian category Cx is called a Serre
subcategory if T~ = T. We denote by Ge(X) the preorder (with respect to C) of all Serre
subcategories of C'x.

The following characterization of Serre subcategories turns to be quite useful.

1.4.4. Proposition. Let T be a subcategory of an abelian category Cx closed under
taking subquotients. The following conditions are equivalent:

(a) T is a Serre subcategory.

(b) If S is a subcategory of the category Cx , which is closed under subquotients and
is not contained in T, then ST+ #0.

Proof. Recall that T+ is the full subcategory of the category Cx generated by all
objects L of Cx such that Cx (L, M) = 0 for all M € ObT.

(a) = (b). Let T be a subcategory of C'x closed under taking quotients. By the
definition of T~, an object M does not belong to T~ iff it has a nonzero subquotient, L,
which does not have a nonzero subobject from T. Since T is closed under taking quotients,
the latter means precisely that Hom(N, L) = 0 for every N € ObT, i.e. L € ObT+. Thus,
M does not belong to T~ iff it has a nonzero subquotient which belongs to T+.
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(b) = (a). By the condition (b), if an object M does not belong to T, then it has
a nonzero subquotient, which belongs to T+. But, by the observation above, this means
that the object M does not belong to T~. So that T~ C T. The inverse inclusion holds,
because T is closed under taking subquotients (see 1.4.1(c)). m

1.4.5. The property (sup). Recall that X (or the corresponding category Cx)
has the property (sup) if for any ascending chain, €2, of subobjects of an object M, the
supremum of ) exists, and for any subobject L of M, the natural morphism

sup(NNL|Ne€Q)— (supQ)NL

is an isomorphism.

1.4.6. Coreflective thick subcategories and Serre subcategories. Recall that
a full subcategory T of a category C'x is called coreflective if the inclusion functor 7 — Cx
has a right adjoint. In other words, each object of C'x has the largest subobject, which
belongs to 7.

1.4.6.1. Lemma. Any coreflective thick subcategory is a Serre subcategory. If Cx
has the property (sup), then any Serre subcategory of Cx is coreflective.

Proof. See [R, 111.2.4.4]. m

2. The spectrum Spec(X). We denote by Spec(X) the family of all nonzero objects
M of the category C'x such that L > M for any nonzero subobject L of M.

The spectrum Spec(X) of the 'space’ X is the family of topologizing subcategories
{[M] | M € Spec(X)} endowed with the specialization preorder 2.

Let 77 denote the topology on Spec(X) associated with the specialization preorder:
the closure of W C Spec(X) consists of all [M] such that [M] C [M’] for some [M'] € W.

2.1. Proposition. (a) Every simple object of the category Cx belongs to Spec(X).
The inclusion Simple(X) — Spec(X) induces an embedding of the set of the isomorphism
classes of simple objects of Cx into the set of closed points of (Spec(X),77).

(b) If every nonzero object of C'x has a simple subquotient, then each closed point of
(Spec(X),T7) is of the form [M] for some simple object M of the category Cx .

Proof. (a) If M is a simple object, then Ob[M] consists of all objects isomorphic to
coproducts of finite number of copies of M. In particular, if M and N are simple objects,
then [M] C [N] iff M ~ N.

(b) If L is a subquotient of M, then [L] C [M]. If [M] is a closed point of Spec(X),
this implies the equality [M] = [L]. m

Notice that the notion of a simple object of an abelian category is selfdual, i.e.
Simple(X) = Simple(X°), where X° is the dual ’space’ defined by Cx. = CF. In
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particular, the map M +— [M] induces an embedding of isomorphism classes of simple
objects of C'x into the intersection Spec(X)[)Spec(X?).

2.1.1. Proposition. If the category Cx has enough objects of finite type, then the
set of closed points of Spec(X) coincides with Spec(X) () Spec(X?).

Proof. Since every nonzero object of C'x has a nonzero subobject of finite type,
Spec(X) consists of [M] such that M is of finite type and belongs to Spec(X). On the
other hand, if M is of finite type and [M] belongs to Spec(X?), then [M]| = [M;], where
M, is a simple quotient of M. Hence the assertion. m

2.2. Supports of objects. For any object M of the category Cx, the support of
M is defined by Supp(M) = {Q € Spec(X) | Q C [M]}. This notion enjoys the usual
properties:

2.2.1. Proposition. (a) If 0 — M' — M — M" — 0, is a short exact
sequence, then

Supp(M) = Supp(M") | Supp(M").

(b) Suppose the category Cx has the property (sup). Then
(b1) If M is the supremum of a filtered system {M; | i € J} of its subobjects, then

Supp(M) = |_J Supp(M;).
i€J

(b2) As a consequence of (a) and (b1), we have

SUPP(@ M;) = U Supp(M;).

ieJ icJ
Proof. (a) Since [M'] C [M] D [M"], we have the inclusion

Supp(M") | J Supp(M") C Supp(M).

In order to show the inverse inclusion, notice that for any object L of the subcategory
[M], there exists an exact sequence 0 — L' — L — L” — 0 such that L’ is an
object of [M'] and L” belongs to [M"]. This follows from the fact that L is a subquotient
of a coproduct M®" of n copies of M the related commutative diagram

0 —s MO — MO — 5 MO &

cart T

O — K — K — K' —— 0 (1)
1

0o —— L — —_ L” —— 0
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whose rows are exact sequences, the upper vertical arrows are monomorphisms, the lower
ones epimorphisms, and the left upper square is cartesian.

Now if [L] € Spec(X) and the object L in the diagram (1) is nonzero, then, by the
definition of the spectrum, [L'] = [L], hence [L] € Supp(M’). If L’ = 0, then the arrow
L — L" is an isomorphism, in particular, [L] = [L"] € Supp(M").

(b1) The inclusion Supp(M) 2 U Supp(M;) is obvious. It follows from the property

i€J
(sup) that if an object L is a nonzero subquotient of M®™ for some n, then it contains a
nonzero subobject, L', which is a subquotient of M; for some i € J. If [L] € Spec(X),
this implies that [L] = [L'] € Supp(M;).

(b2) If J is finite, the assertion follows from (a). If J is infinite, it is a consequence of
(a) and (bl). m

2.3. Topologies on Spec(X). Let = be a class of objects of C'x closed under finite

coproducts. For any set E of objects of =, let V(F) denote the intersection ﬂ Supp(M).

MEE
Then, for any family {F; | ¢ € J} of such sets, we have, evidently,

V(U E) = V(E).

icJ icJ

It follows from the equality Supp(M & N) = Supp(M)|J Supp(N) (see 2.2.1(a)) that

V(E® E)=V(E)UV(E). Here EG EX (M@ N | M € E, N € E}.

This shows that the subsets V(F) of Spec(X), where E runs through subsets of =,
are all closed sets of a topology, 7=, on Spec(X).

2.4. Zariski topology on the spectrum. Notice that the class Z3(X) of objects of
finite type is closed under finite coproducts, hence defines a topology on Spec(X), which
we denote by ;.

2.4.1. Example. Let R be a commutative unital ring and C'x the category R —mod
of R-modules. Then Spec(X) is isomorphic to the prime spectrum Spec(R) of the ring R
and the topology 7; corresponds to the Zariski topology on Spec(R).

2.4.2. Zariski topology. If the category C'x has enough objects of finite type, we
shall call the topology 7; on Spec(X) the Zariski topology.
3. Local ’spaces’ and Spec™ (—).

3.1. Local ’spaces’. A ’space’ X and the representing it abelian category Cx are
called local it C'x has the smallest nonzero topologizing subcategory, Cx,.
It follows that Cx, is the only closed point of Spec(X).
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3.1.1. Proposition. Let X be local, and let the category Cx have simple objects.
Then all simple objects of C'x are isomorphic to each other, and every nonzero object of

Cx, s a finite coproduct of copies of a simple object.

Proof. In fact, if M is a simple object in Cx, then [M] is a closed point of Spec(X).
If X is local, this closed point is unique. Therefore, objects of C'x, are finite coproducts
of copies of M (see the argument of 2.1). m

3.1.2. The residue ’space’ of a local ’space’. Let X be local 'space’ and Cx, the
smallest non-trivial topologizing subcategory of the category C'x. We regard the inclusion
functor C'x, — Cx as an inverse image functor of a morphism of ’spaces’ X — X and
call Xy the residue ’space’ of X.

3.1.3. The residue skew field of a local ’space’. Suppose that X is a local ’space’
such that the category C'x has a simple object, M. We denote by kx the ring Cx (M, M)°
opposite to the ring of endomorphisms of the object M. Since M is simple, kx is a skew
field, which we call the residue skew field of the local ’space’ X. It follows from 3.1.1 that
the residue skew field of X (if any) is defined uniquely up to isomorphism.

It follows that the residue category Cx, of the ’space’” X is naturally equivalent to the
category of finitely dimensional kx-vector spaces.

3.2. Spec™ (X). By definition, Spec™ (X) is formed by all Serre subcategories P of
Cx such that X/P is a local 'space’. It is endowed with the preorder D.

We define the support of an object M of C'x in Spec™ (X) as the set Supp™ (M) of
all P € Spec™ (X), which do not contain M, or, equivalently, the localization of M at P
is nonzero. We leave as an exercise proving the analogue of 2.2.1 for Supp™(—).

We introduce the Zariski topology, 7,”, on Spec™ (X) the same way as the topology
on Spec(X): its closed sets are the intersections of Supp™ (M), where M is an arbitrary
object of finite type.

3.2.1. Indecomposable injectives and Spec™ (—). If C'x is a Grothendieck cat-
egory with Gabriel-Krull dimension (say, C'x is locally noetherian), then the elements of
Spec™ (X) are in bijective correspondence with the set of isomorphism classes of inde-
composable injectives of the category Cx. The bijective correspondence is given by the
map which assigns to every indecomposable injective E of C'x its left orthogonal — the full
subcategory - FE generated by all objects M of Cx such that Cx (M, E) = 0.

In other words, Spec™ (X) is isomorphic to the Gabriel spectrum of the category Cx.

An advantage of Spec™ (X) is that it makes sense for all abelian categories, even
those, which do not have indecomposable injective objects at all. For instance, if C'x is the
category of coherent sheaves on a noetherian scheme, then its Gabriel spectrum is empty,
while Spec™ (X) coincides with Spec(X) and is homeomorphic to the the underlying
topological space of the scheme.
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3.3. Spec(X), Spec;"'(X), and Spec™ (X). For any subcategory P of Cx, we
denote by P! the intersection of all topologizing subcategories of Cx properly containing
P. Let Spec;’ (X) denote the set of all Serre subcategories P of Cx such that Pt P.

3.3.1. Proposition. Specz’l(X) consists of all topologizing subcategories P such
that P < PO\ PL is nonzero.

Proof. 1If P € Spect’ (X), i.e. P is a Serre subcategory of C'x, which is properly
contained in P!, then it follows from 1.4.4 that P¢ # 0.

Suppose now that P is a topologizing subcategory of C'x such that Py # 0. We claim
that then P is a Serre subcategory, i.e. P =P~.

In fact, let S be a topologizing subcategory of Cx, which is not contained in P. Then
P o S contains P! properly and (P ¢ S)(P+ C S. In particular, Py C S. Since Py # 0,
this implies that S is not contained in P~. This (and 1.4.2) shows that P =P . m

For any subcategory Q of the category C'x, we denote by Q the union of all topologiz-
ing subcategories of Cx, which do not contain Q. It is easy to see, that for a pair Q1, Q2
topologizing subcategories, Q1 C Qs iff Q1 C Q2 R

If @ has one object, L, then the subcategory Q is the union of all topologizing sub-

categories of C'x which do not contain L. We shall write (L) instead of [L].

3.3.2. Proposition. (a) Spec;' (X) C Spec™ (X).
(b) For any Q € Spec(X), the subcategory Q is an element of Spec;! (X) and the
map R
Spec(X) —— Spec;'(X), Q+— Q,

18 an isomorphism of preorders.

Proof. (a) If P € Spec;'(X), then P!/P is naturally identified with the smallest
nonzero topologizing subcategory of Cx /P.
(bl) If Q € Spec(X), then Q is a Serre subcategory.

In fact, suppose that 0 #* Q and let M be an object of Q which does not belong
to its subcategory Q. The latter means that Q C [M]. Let Q = [L ] L] for some L € Spec(X).
The inclusion Q@ C [M] means that L is a subquotient of a coproduct of a finite number,

M®" | of copies of M. Since M®" is an object of Q\*, the object L has a nonzero subobject
N, which belongs to O:ie O ¢ [N]. But, since L € Spec(X), the subcategories [N] and
[L] = Q coincide. Contradiction.

(b2) It follows from the definition of ) that, for any subcategory Q, the subcategory
Q" coincides with the intersection of all topologlzlng subcategories of C'x containing Q UQ.
In particular, ) belongs to Spect (X ) whenever Q is a Serre subcategory. Together with
(b1), this shows that the assignment Q — Q induces a map Spec(X) — Spec;" (X).
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(b3) Let P € Spec;' (X). It follows from 3.3.1 that P, # 0. Moreover, by the
argument of 3.3.1, if T is a topologizing subcategory of Cx such that T ¢ P, then Py =
P*APLCT.

(b4) Let P € Spec,"' (X). Every nonzero object of P, = P[P+ belongs to Spec(X).

Let L be a nonzero object of Py and Ly a nonzero subobject of L. Then [L1] C [L].
If [L1] € [L], then it follows from (b3) above that [Li] C P, or, equivalently, L; € ObP.
This contradicts to the assumption that the object L is P-torsion free.

(b5) Let P € Spec{"' (X). Then P = (L) for any nonzero object of P, = Pt PL.

Let L be a nonzero object of P;. Since L does not belong to the Serre subcategory
(L), by (b3), we have the inclusion (L) C P. On the other hand, if (L) & P, then L € ObP
which is not the case. Therefore P = (L).

(b6) The topologizing subcategory [Py] coincides with the subcategory [L] for any
nonzero object L of P.

Clearly [L] C [Py] for any L € ObP;. By (b3), if Py € [L], then [L] C P, hence L = 0.

Since, by (c), every nonzero object of Py belongs to Spec(X), this shows that [Py] is
an element of Spec(X).

(b7) It follows from the argument above that the map

Spec(X) —» Specl(X), QO+ O,

is inverse to the map Spec%’l(X) — Spec(X) which assigns to every P the topologizing
subcategory [Py]. m

3.3.3. The difference between Spec;"' (X) and Spec™ (X). If Cx = R — mod,
where R is a commutative noetherian ring, then the map, which assigns to each prime ideal
p of R the isomorphism class of the injective hull of R/p is an isomorphism between the
Gabriel spectrum of C'x (hence Spec™ (X)) and the prime spectrum of the ring R [Gab].
In this case, Spec;"' (X) = Spec™ (X), i.e. the map Q — Q is an isomorphism between
Spec(X) and Spec™ (X).

If R is a non-noetherian commutative ring, Spec™ (X ) might be much bigger than the
prime spectrum of R, while Spec(X) is naturally isomorphic to Spec(R): the isomorphism
is given by the map, which assigns to a prime ideal p the topologizing subcategory [R/pl;
the inverse map assigns to @ = [M] the annihilator of the module M.

4. The pretopology of Serre localizations and the related spectrum.

4.1. Lemma. Let Cx be an abelian category. For any finite set {T; | i € J} of
topologizing subcategories of Cx, we have the equality ( ﬂ Ti)_ = ﬂ T .
ieJ ieJ



26 Chapter 2

Proof. Clearly ( ﬂ Ti)f C ﬂ T;”. We need to prove the inverse inclusion.
icJ icJ
Let J ={1,2,...,n}. Let M be a nonzero object of ﬂ T, . And let L be any nonzero
icJ
subquotient of the object M. Since M is a nonzero object of 1] , the object L has a
nonzero subobject, Ly, which belongs to 7. Since M is a nonzero object of T, and L, is
a nonzero subquotient of M, the object L; has a nonzero subobject, Lo, which belongs to
T5. Since T contains all subobjects of its objects, Lo € T} (] 7%. Continuing this way, we
obtain a descending chain of nonzero subobjects of L, L, — L,_1 — ... = Ly — L, such
that L; € Ob (| T. This shows that M € ([ T;)". m
1<5<i icJ

4.2. The Gabriel multiplication. The Gabriel product of two subcategories T and
S of an abelian category C'x is the full subcategory T eS of C'x generated by all M € ObC'x
for, which there exists an exact sequence

0O— M —M-—M"—0

with M’ € ObS and M"” € ObT. If T and S are topologizing subcategories, then such is
T e S. This multiplication is associative and has an identity element — the subcategory 0.
Note that a topologizing subcategory T of Cx is thick iff TeT = T.

By Lemma II1.6.2.1 in [R], if T, S are coreflective subcategories of Cx, their Gabriel
product T e S is coreflective too.

4.2.1. Lemma. Let Cx be an abelian category. For any finite set {S, T; | i € J} of
topologizing subcategories of the category Cx, the following equalities hold:

(ﬂE)OS:ﬂTiOS and SO(ﬂTi):mSoTi.

ied ied ied iceJ

Proof. (a) The inclusions (ﬂ T;)eS C m T;eS and Se( ﬂ T;) C ﬂ SeT,; are
icJ icJ icJ icJ
evident. We need to prove the inverse inclusions.
(b) Let M € Ob ﬂ T; e S; i.e. for any ¢ € J, there is a monomorphism f; : M; — M
ieJ
such that M; € ObT; and Cok(f;) € ObS. This gives an exact sequence

0— (\M; — M — ] Cok(f;)
1€J 1€J
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Clearly ﬂ M; € Ob ﬂ T;. Since J is finite, H Cok(f;) € ObS, hence M € Ob( ﬂ T;) e S.
icJ icJ icJ i€

(c) Suppose S e M € Ob ﬂ T;; i.e. for any ¢ € J, there is a monomorphism M; TNy
ieJ
such that M; € ObS and Cok(f;) € ObT;. Since J is finite, sup(M;|i € J) € ObS, and
M/sup(M;li € J) € Ob (| T;, hence M € (| SeT;. u
ieJ ieJ
For any pair S and T of Serre subcategories of the category Cx, the symbol SV T

denotes the minimal Serre subcategory of C'x containing S and 7'. It follows that SVT =
(SeT)™.

4.3. Proposition. Let Cx be an abelian category. For any finite set {T;|i € J} of

Serre subcategories of the category Cx, the equality ( ﬂ Ti) VS = (](TZ Vv S) holds.
i€J i€J

Proof. By Lemma 4.1, (|(T; V. S) = () (T;S)” = ([ |(Ti ¢ S)) . By Lemma 4.2.1,
i€J i€J i€J

(N(@es) =(T)eS) =(T)VS.

i€J i€J i€J
4.4. The pretopology of Serre localizations. We define the quasi-pretopology
of Serre localizations, Te,, on the category |£,2b|° by taking as covers all families of

morphisms {U; 2% X | i € J} such that the corresponding family of inverse image functors

is conservative. We define by T;S the quasi-pretopology on |£:24b|° obtained by taking all
covers of 7¢_ containing a finite subcover.

It follows from Proposition 4.3 that 7‘;3 is a Grothendieck pretopology. We call it the
pretopology of Serre localizations.

4.5. The local property of the spectrum Spec™ (—).

4.5.1. Proposition. Let {U; % X | i € J} be a cover in the pretopology T;S. Then

Spec™ (X) = U Spec™ (U;).
ieJ

Proof. The inclusion U Spec™ (U;) C Spec™ (X) follows from the functoriality of the
ieJ
S-spectrum (see 3.4.1). We need to check the inverse inclusion.
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Let x 5 X be any point of Spec™ (X). Consider cartesian squares

qi
Uux —— U

x X ieJ

Since 7'};5 is a pretopology, the pull-back {U* =5 x | i € J} of the cover {U; % X | i € J} is
a cover. Let P be a quasi-final object of the local category Cx. Since (by the definition of

a cover) the set of inverse image functors {Cy —— Cux | i € J} is conservative, uX*(P) # 0
for some j € J. Since P is the point of the spectrum of x, the object u}” (P) belongs to
the spectrum, hence to the flat spectrum, of U¥. By functoriality of the S-spectrum (cf.

3.4.1), the morphism U 2, U; induces a map Spec™ (U;)* — Spec™ (U;) which sends
the point (u¥*(P)) to a point P; of Spec™ (U;). It follows from the commutativity of (1)
that the image of P; by U; 5 X coincides with x 5 X. u

5. The complete spectrum and the pretopology of exact localizations. Fix a
svelte abelian category C'x. The complete spectrum of the ’space’ X is the preorder (with
respect to the inclusion) Spec'(X) of all thick subcategories P of C'x such that X/P is a
local ’space’. Thus, Spec™ (X) is the intersection of Spec'(X) and the preorder Ge(X)
of Serre subcategories of Cx.

It is immediate that Spec’(X) is functorial with respect to exact localizations: any
morphism U — X whose inverse image functor, u*, is an exact localization induces an
embedding Spec’(U) — Spec'(X), which identifies Spec’(U) with the subset of all
P € Spec' (X) containing Ker(u*).

For any pair S and T of thick subcategories of the category Cx, the symbol S U T
denotes the smallest thick subcategory of C'x containing S and T

5.1. Proposition. Let Cx be an abelian category. Let {T;|i € J} be a finite family

of thick subcategories of the category Cx. Then ( ﬂ Ti) UsS = ﬂ (T; U S) for any thick
icJ icJ

subcategory S.

Proof. The inclusion ( n T, 2) usc ﬂ(ﬂ L.S) is evident. We need to prove the

i€J icJ

inverse inclusion.

(a) Let T be a topologizing subcategory of C'x and 7°° the smallest thick subcategory
spanned by 7. Objects of 7°° are M € ObC'x having a filtration

O=My—M — ... M, =M
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such that M;/M;_1 € ObT for every 1 < i < n.

In fact, by an obvious induction argument, every object M of Cx possessing such a
filtration belongs to the subcategory 7°.

On the other hand, due to the fact that the subcategory 7T is closed under taking
subquotients, the full subcategory of the category Cx generated by objects M having a
filtration as above form a thick subcategory of C'x.

Indeed, a filtration 0 = My — M; < ... < M, = M with subsequent quotients
from 7T induces a filtration with the same property on every subobject and every quotient
object of M. Conversely, let 0 — M’ — M — M"” — 0 be an exact sequence such
that the objects M’ and M” have increasing finite filtrations with subsequent quotients
from 7. Then the pull-back to M the filtration on M" combined with the filtration on its
subobject M’ produces a desired filtration on M.

(b) Let {7; | i € J} be a finite set of topologizing subcategories of C'x. Then

(N7~ =7

icJ icJ

The inclusion ( ﬂ 7;)00 C ﬂ 7.>° is obvious. We need to prove the inverse inclusion.
i€ i€
Ordering elements of J, we assume that J = {1,...,m}. Let M be an object of

. Let 0=My— My < ... M, = M be a filtration such that M;/M;_; is an

(3

IDE

=1

m
object of 77, hence it is an object of m (Tl N 7;00) for every 1 < ¢ < n. In particular,
i=2
M;/M;_4 is an object of T3 N Ty for all 1 < i < n. Taking a filtration of each M;/M; 4
with respect to 75° and pulling it back to a filtration on M;, we obtain a finite increasing
filtration of M such that its consecutive quotients belong to 7; N 7s; etc..

(c) It follows from (a), (b) and 4.2.1 that

NTUS) = (VSeT)™ = ([1SeT)™ = (S ((T)™ =S ([T,

ieJ iceJ i€J ieJ ieJ

hence the assertion. m

5.2. The pretopology of exact localizations. Let |£.2b|° be a category whose
objects are ’spaces’ X with abelian category C'x and morphisms are exact localizations.
We define the quasi-pretopology of exact localizations, T¢,, on the category |£.2b|° by
taking as covers all families of morphisms {U; %% X | i € J} such that the corresponding
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family of inverse image functors is conservative. We define by T;e the quasi-pretopology
on |£.2b|° obtained by taking all covers of T¢, containing a finite subcover.

It follows from Proposition 5.1 that 7';6 is a Grothendieck pretopology. We call it the
pretopology of exact localizations, or simply the pretopology of localizations.

The following assertion is refered to as the local property of the complete spectrum.

5.3. Proposition. Let {U; =% X | i € J} be a cover in the pretopology 7';6. Then

Spec!(X) = U Spec!(U;)

Proof. The argument is similar to that of 4.5.1. Details are left to the reader. m

5.4. Proposition. Let {U; =% X | i € J} be a finite conservative set of eract
localizations. Then Spec™ (X)) C U Spec™ (U;). Here Spec™ (X) and Spec™ (U;), i € J,
icJ
are realized as subsets of the complete spectrum Specl(X).

Proof. Let T; denote the kernel of the localization functor Cx BN Cy,, 1 € J.

The condition that {U; —% X | i € J} is conservative means that ﬂ T; =0. By 4.1,
i€J

ﬂ T, = (m Ti)_ =0, or, equivalently, {(71 5 X | i € J} is a finite cover of X by
icd i€

Serre localizations. Here U; denote the ’space’ X/|T;| (ie. Cyz = Cx/T; ). Since
T; C T, , the localization [71 — X factors through a localization (72 — U, with the
kernel T, /T;. The latter is a Serre subcategory of the quotient category Cx /T;. Therefore,
Spec™ (U;) C Spec™ (U;). By 4.5.1, Spec™ (X) = U Spec™ (U;) C U Spec™ (U;). m

icJ icJ

6. Spectra related with localizations. Let C'x be a svelte abelian category. For
any subcategory S of C'x, we denote by S* the intersection of all thick subcategories of
Cx properly containing S, and by Sy, the intersection St (| S+.

We denote by Spec}zh(X ) the preorder of all thick subcategories P such that the
intersection P of all thick subcategories properly containing P is not equal to P.

We denote by Specg,(X) the intersection Speclgb (X)) Se(X) of Specl%(X) with
the preorder Ge(X) of Serre subcategories of the category Cx.

6.1. Proposition. The following conditions on a topologizing subcategory T of Cx
are equivalent:
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(a) T € Specée(X),

(b) Tey # 0.
In particular, Specg,(X) = {P € Speclgh (X) | Pwy # 0}

Proof. The fact follows from 1.4.4 and the argument is similar to that of 3.3.1. m

6.2. Elementary properties. There are obvious inclusions

SpeclﬂJ (X)2 Specée(X) D Spec™ (X) C Spec'(X) C Spec};b (X).

6.3. Proposition. Let {7; | i € J} be a finite set of thick subcategories of an abelian
category C'x such that ﬂ T; =0. Then

ieJ
Specl%(X) = U Speclﬁ)(Ui) (1)
iceJ
and
Speck,(X) C | Speck. (V). 2)
ieJ

If {T; | i € J} are Serre subcategories, then

Specée(X> = U Spe(:lGe(Ui)' (3)

ieJ

Proof. The arguments establishing the equalities (1) and (3) are similar to the proof
of 4.5.1. The proof of the inclusion (2) follows the argument of 5.4. m

7. Local properties of Spec;’'(X) and Spec(X).

7.1. Proposition. Let {7; | i € J} be a finite set of thick subcategories of the

category Cx such that ﬂ T; = 0. The following conditions on a thick subcategory P of
ieJ
Cx are equivalent: ©
(a) P € Specy (X),
(b) P € Specg, (X) and P/T; € Specy’' (X/T;) for every i € J such that T; C P.
If the category Cx has the property (sup), then the conditions (a) and (b) are equiv-
alent to the condition
(c) Pe Spec}zh(X) and P/T; € Specy (X/T;) for every i € J such that T, C P.
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Proof. (a) = (b). Let P € Specy' (X), and let 7 be a thick subcategory of Cx
contained in P. Then (7 e P'e T)/T is the smallest topologizing subcategory of Cx /T
properly containing P /7T, and the localization functor Cx N Cx/T maps NoNzero
objects of Py =P'N P+ to nonzero objects of (P/T)¢= (P/T)'N(P/T)*.

(b) = (a). Let u; denote the localization functor Cx — CX/T Set Jp = {j €
J | T, € P}. For every i € Jp, we denote by Q; the intersection u} ((P/T) HN Pt
and by Q; the topologizing subcategory [éz] spanned by Q;. By assumption, Q; # 0 for
each i € Jp, hence Q; € P. The latter implies that, for every j € Jp, the topologizing

subcategory [u}(Q;  P)] contains (P/T;)*, or, equivalently, u;_l((P/ﬁ)") CTjeQ;eP.
Therefore,

Q; =u; ))\PLC(TjeQieP) (P =(Tj0Q) (P CT;

which implies the inclusion Q; C 7; ¢ Q; for every (i,j) € Jp x Jp, hence

QC ((TieQ)=Tie () )

ieJp 1EJp

Here the equality is due to the finiteness of Jp.
It follows from the inclusion Q; C 7T; e ( ﬂ Qi) that ﬂ Q,; # 0, because other-

icJp icJp

wise Q; C 7; 0 = 7;, which is impossible, since 7; C P and Q; € P.

There are two cases: J = Jp and J # Jp. Consider each of them.

(i) Let Jp = J. We set Q = ﬂ Q; and claim that Q is an element of Spec(X)

i€Jp

corresponding to P, that is P = (Q).

In fact, let S is a topologizing subcategory of C X which is not contained in P. Then
P is properly contained in S e P and, therefore, u} "(P/T)YH C T, @S eP for each i € J.

This implies that u!  ((P/T)) P+ C T, eSe PP+ C T; eS. Therefore,

O=u (PITHHYPEC((TieS)=(()T:)eS=0eS=38,

ieJ i€J ieJ

which implies that Q = [é] CS.

(i) Consider now the second case: Jp # J, i.e. J© = .J — Jp is non-empty. This case
can be reduced to the first case as follows.

1) Set Cy, = ﬂ T;. Notice that Cy, € P.
jesr
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In fact, if i € JP = J— Jp, then T; ¢ P. Therefore, for every 7 € Jp, the topologizing
subcategory [u}(7; ® P)] contains (P/T;)!, or, equivalently, u} ((77/7;) )C T;eT,eP,
which implies that @j = u;fl (P/THHYNPH C (T, T;) N PL. Thanks to the finiteness
of J¥, we obtain:

QG C(MNTeT)P = (Tie( () 7)) P~ (4)

i€JP ieJP
The inclusion ﬂ 7: CP implies (together with (4)) that éj C 7; € P, which is
ieJP
impossible. So that ﬂ T. € P.
ieJP

2) Since Cy, € P, the intersection Py = Cy, (P is an element of Specée(Vp).

Notice that {T; N Cy, = T; | i € Jp} is a cocover of Vp, i.e. ﬂ ﬁ = 0. It remains to
JjeJp
notice that PO/T € Spec;’ (Vp/’T) for each j € Jp.

In fact, the localization functor Cx — Cx /7, induces an equivalence of Cy,/ 7N;
and the topologizing subcategory (7; e Cy, ¢7;)/T; of Cx/T;. The subcategory Po/T;
of Cy, /T is the preimage of the intersection of the P/7; € Specy’ (X/T) with the
topologizing subcategory (7, e Cy,, ® 7')/73, hence it belongs to Spec,’ (Vp/’T)

3) Thus, the ’space’ Vp, the cocover {T; | i € Jp}, and the point Py = P Cy,, of the
spectrum Specg, (Vp) satisfy the conditions (b) with all 7; being subcategories of Py. By

2) above, Py belongs to the spectrum Spec;’' (Vp), and Py = (éo)yp = (Qo)v,, where
Qp is the smallest topologizing subcategory of (Cy,,, hence) C'x containing éo. Therefore,
Qy is a point of the spectrum Spec?(X) and (Qp)x = P.

Obviously, (b) = (c¢) without additional conditions on the category C'x. Suppose now
that C'x has the property (sup).

(¢) = (b). It follows from (c) that P € Speci(X), i.e. P is a Serre subcategory.

In fact, by C1.4.1, the equality ﬂ T; = 0 implies that ﬂ 7.” = 0. In other words,

icJ ieJ
{7.” | i € J} is a finite cocover, which implies, by the local property of Speclgh(X ), that
7.~ C P for some i € J. Notice that if 7,~ C P, then P/7,~ belongs to Spec;’ (X/'T ).
This follows from the fact that P/7; is, by the condition (c), an element of Spec;’ (X/7;),
and the spectrum Speci’1 is functorial with respect to localizations (see the proof of
(a) = (b) above), in particular, with respect to Cx/T; — Cx /7T, .

Therefore, P/7,” is a Serre subcategory of the quotient category Cx/7;”. Thanks
to the property (sup), the Serre subcategory 7.~ is coreflective. By the argument 9.5(b1),
this implies that P is a Serre subcategory of C'x. m
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7.2. Note. Proposition 7.1 is a stronger statement than [R4, 6.3] in all respects. The
equivalence (a) < (b) is essentially the assertion of [R4, 6.3], but the argument presented
here is valid for arbitrary abelian categories, while the proof of [R4, 6.3] used the property
(sup). The equivalence (a) and (b) to (c) (when Cx has the property (sup)) is a new
observation (which could of be made in [R4]).

7.3. Proposition. Let {7; | i € J} be a finite set of thick subcategories of an abelian

category Cx such that ﬂ Ti =0; and let u} be the localization functor Cx — Cx/T;.
ieJ
The following conditz’onseon a nonzero coreflective topologizing subcategory Q of C'x are
equivalent:
(a) Q € Spec(X),
(b) [ur(Q)] € Spec(X/T;) for every i € J such that Q € T;.
Here [uf(Q)] denote the topologizing subcategory spanned by u}(Q).

Proof. The assertion follows from 7.1. m

7.3.1. Note. The condition (b) of 7.3 can be reformulated as follows:
(b’) For any ¢ € J, either u;(Q) =0, or [u(Q)] € Spec(X/T;).

(2

7.4. Proposition. Let Cx be an abelian category. Let 4 = {U; 5 X | i € J} be a

finite cover of the ’space’ X such that all morphisms U;; = U; NU; RN U; are continuous.
Let P; € Specy’' (U;), and let L; be an object of Spec(U;) such that P; = (L;).

The following conditions are equivalent:

(a) P =u;  (P;) belongs to Specy™ (X); i.e. P = (M) for some object M of Spec(X);

(b) for any j € J such that uj;(Li) # 0, the object u ,«uj;(Li) of Cy, has an associated
point; i.e. it has a subobject L;, which belongs to Spec(U;);

(c) P/Ker(uj) = P; belongs to Spec;' (U;) for all j such that Ker(u}) CP.

Proof. (a)=(c) follows from 3.2(ii) and the functoriality of Spec (hence Spec;’') with
respect to localizations.
(c)=(a) follows from 7.1.

(b)=-(c). Suppose that Ker(uj) C P, or, equivalently, u;;(L;) # 0. Then P; =

P/Ker(u}) is a point of Spec'(U;). Let U; &L Un U; = Ui 2 U; be the canonical
embeddings. Since L; € Spec(U;) and uj;(L;) # 0, it follows that u;(L;) € Spec(Us;).

Let L; be a nonzero subobject of u, . uf;(L;), and L; € Spec(U;). Then u},(L;)
is a nonzero subobject of uj;(L;). Therefore, since uj;(L;) belongs to Spec(Ui;), the
objects u7;(L;) and uj;(L;) are equivalent. Notice that, it follows from P; = (L;) that
Pi/Ker(uj;) = (uj;(Li)). But, Pi/Ker(uj;) = P;/Ker(uj;) = P/Ker(uju}) and, by the
argument above, (uj;(L;)) = (u};(L;)). Together with the fact that L; is an object of
Spec(Uj;), this shows that P; = (L;).



The Spectra of ’Spaces’ Represented by Abelian Categories. 35

(a)=-(b). Suppose that P = u*fl(P-) belongs to Specy”' (X); i.e. P = (M) for some
object M of Spec(X). Let L; be a P-torsion free object of C'x such that u; “(L;) ~ L;. The

relation u} (M) > L; means that there exists a diagram M®" J K-S0 % Lin,
which ¢ is an epimorphism, the arrows j and g are nonzero monomorphisms; in particular,
M > L;. Notice that Ly > M, i.e. M and L; are equivalent. In fact, u}(L;) is a nonzero
subobject of L;. Since the latter belongs to Spec(U;), they are equlvalent Therefore,

uf(Lq) 1s equ1valent to uf(M). The relation u}(Ly) > uj(M) is expressed by a diagram

L@m <— K —> My My M in which ¢ is an epimorphism and j’ and h are nonzero
monomorphlsms Since M € Spec(X), M is equivalent to M, hence the relation Ly > M;
which is explicit in the diagram above, implies that Ly = M. Thus L; € ObSpec(X).

By the functoriality of Spec with respect to exact localizations, u} (L1) = L; belongs to

Spec(Uj). Since L is P-torsion free, the adjunction arrow L; = u] (Ll) — ujiujur (L)
is a monomorphism. On the other hand,
uﬂ*ujz g (Ll) — uﬂ*uzj i (Ll) — uﬂ*uzjuz (L ) = UjixUy ](L ) (5)

where the arrow in the middle is the image of the monomorphism L; — L;. Since all
functors in the diagram (5) are left exact, this arrow is a monomorphism. Altogether gives
the desired monomorphism L; — uji.uj;(L;). =

7.4.1. Proposition. Let Cx be an abelian category and 4 = {U; —» X | i € J}

a finite set of continuous morphisms such that {Cx — Cy, | i € J} is a conservative
family of exact localizations.
(a) The morphisms U;; = U; N U; RN U; are continuous for alli,j € J.
(b) Let L; be an object of Spec(U;); i.e. [L;]. € Spec(U;) and L; is (L;)-torsion free.
The following conditions are equivalent:
(i) L; ~u;(L) for some L € Spec(X);
(ii) for any j € J such that uj;(L;) # 0, the object u,,.uj;(Li) of Cy, has an
associated point; i.e. it has a subobject Lw which belongs to Spec(U )

Proof. The assertion follows from 7.4. m

7.5. Example. Let Cx be the category of quasi-coherent sheaves on a quasi-
compact quasi-separated scheme X = (X,0x). Let {U; — X | i € J} be an affine
cover and Cy, the category of quasi-coherent sheaves on (U;, Oy, ). Then all morphisms
Ui NU; — U, are continuous and the equivalent conditions (a), (b), (c) hold for every
point P; € Spec%’l(Ul-). This reflects the fact that Spec(U;) is naturally identified with
U; and is an open subset of the spectrum Spec(X) ~ Spec,"' (X). It follows from 7.1 that
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Spec;! (X) = U Spec;! (U;). So, Proposition 7.4 becomes trivial in the case of commu-
i€J

tative schemes. It is non-trivial and meaningful in the case of noncommutative schemes,

even in the case of D-schemes.

7.6. Example: simple holonomic D-modules. Let C'x be the category of holo-
nomic D-modules on a smooth quasi-compact scheme X = (X, Ox). Let {U; — X | i € J}
be an affine cover of X, and let Cy;, be the category of holonomic D-modules on the affine
subscheme (U;, Oy, ). Then all morphisms U; N U; — U, are continuous and the equiva-
lent conditions (a), (b), (c¢) hold for every simple object L; of Cy,. The latter is due to
the fact that direct and inverse image functors of open immersions preserve holonomicity.
Thanks to the fact that all holonomic D-modules are of finite length, the ’space’ X (i.e. the
category C'x) has the Gabriel-Krull dimension zero, hence elements of Spec(X) are in a
bijective correspondence with isomorphism classes of holonomic simple objects. Therefore,
it follows from 7.4 and 7.1 that Spec;' (X) = U Spec,;"! (U;). Thus, the problem of the

ieJ
description of simple holonomic modules on a semooth quasi-compact scheme is local: it
can be reduced to the affine case.

Consider, for instance, the cover of the flag variety G/B of a reductive algebraic
connected group G over C (or any other algebraically closed field of zero characteristic) by
translations U,,, w € W, of the big Schubert cell (here, as usual, W denotes the Weyl group
of G). Then for any w € W, the category Cy,, is equivalent to the category A, — mod
of left modules over the Weyl algebra A,,. So the problem of a classification of holonomic
D-modules on G/B is reduced to the problem of classification of holonomic D-modules on
the affine n-dimensional space A™, that is holonomic A,-modules.

7.7. Proposition. Let Cx have the property (sup), and let {T; | i € J} be a

finite set of Serre subcategories of the category Cx such that m T; = 0. Suppose that
ieJ
Spec;’'(X/T;) = Spec™ (X/T;) for all i € J. Then Spec;'(X) = Spec™ (X); i.e. the
map
Spec(X) — Spec™ (X), P+— (P),

18 an isomorphism.
Proof. By 7.1, Spec,}’l(X) coincides with
{P € Spec™ (X) | P/T; € Spec’' (X/T;) if T; C P}.

By 9.5, Spec™ (X) = U Spec™ (X/7;). In particular,
i€J

Spec™ (X) = {P € Spec™ (X) | P/T; € Spec” (X/T;) if T; C P}.
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Hence the assertion. m

7.8. Example. Let Cx be the category of quasi-coherent sheaves on a smooth quasi-
compact scheme X = (X, Oy) of dimension n. Let Cgy be the category of D-modules on
X and Cy — Cx the pull-back functor corresponding to the embedding of the structure
sheaf Oy into the sheaf Dy of differential operators on X. Let 4 = {U; - X | i € J}
be an affine finite cover of X such that each U; is isomorphic to the affine space A™. Then
Spec™ () = U Spec™ (|4, — mod|), where A,, is the n-th Weyl algebra.

icJ

7.8.1. The case of a curve. Suppose n = 1, i.e. X is a curve. Then Speci’l(X)

and Spec™ (X) coincide.

In fact, the equality holds when C'x is the category of left modules over the first Weyl
algebra A;. This follows from the fact that A; has Gabriel-Krull dimension one, hence
Spec™ (X) consists of closed points and one generic point.

In the general case, the equality follows from this and 7.7.

7.8.2. Corollary. Let Cy be the category U(sla) — mody of U(sly)-modules with the
trivial central character. Then Spec™ (2) = Spec(2l).

Proof. The fact is true if the base field is of positive characteristic, because then
U (slz) is finite-dimensional over its center.

Suppose that the base field is of characteristic zero. The category Cy = U(sly) —mody
is equivalent to the category D(P!) of D-modules on the one-dimensional projective space.
The assertion follows from 7.7. m

8. Reconstruction of quasi-compact schemes.

8.1. Geometric center of a ’space’. Let Cx be an abelian category. Fix a topology
7 on Spec(X). The map Ox . which assigns to every open subset W of Spec(X) the center

of the quotient category Cx/Sw, where Sy = m @, is a presheaf on (Spec(X), 7).

Qew
Recall that the center of the category Cy is the (commutative) ring of endomorphisms of

its identical functor. If Cy is a category of left modules over a ring R, then the center of
Cy is naturally isomorphic to the center of R.

We denote by Ox , the associated sheaf. The ringed space ((Spec(X),7),0Ox ;) is
called the geometric center of the ’space’ X. If 7 is the Zariski topology, then we write
simply (Spec(X), Ox) and call this ringed space the Zariski geometric center of X. Recall
that open sets in Zariski topology are sets of the form U(T) = {Q € Spec(X) | Q ¢
T}, where T is an arbitrary bireflective topologizing subcategory of Cx. Recall that
"bireflective’ means that the inclusion functor T < C'x has right and left adjoints.
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8.2. Commutative schemes which can be reconstructed from their cate-
gories of quasi-coherent or coherent sheaves. Let X = (X,Oy) be a ringed topo-

logical space and U = (U, Oy) - (X, Ox) an open immersion. Then the morphism j has
an exact inverse image functor j* and a fully faithful direct image functor j,. This implies
that Ker(j*) is a Serre subcategory of the category Ox — Mod of sheaves of Ox-modules
and the unique functor

Ox — Mod/Ker(;*) —— Oy — Mod

induced by j* is an equivalence of categories [Gab, IIL.5].

Suppose now that X = (X, Oy) is a scheme and Qcohx the category of quasi-coherent
sheaves on X. The inverse image functor j* of the immersion j maps quasi-coherent sheaves
to quasi-coherent sheaves. Let u* denote the functor Qcohx — Qcohy induced by
j*. The functor u*, being the composition of the exact full embedding of QQcohx into
Ox — Mod and the exact functor j*, is exact; hence it is represented as the composition of
an exact localization Qcohx —— Qcohx /Ker(u*) and a uniquely defined exact functor
Qcohx /Ker(u*) —— Qcohy. If the direct image functor j. of the immersion j maps

quasi-coherent sheaves to quasi-coherent sheaves, then it induces a fully faithful functor

Qcohy N Qcohx which is right adjoint to w*. In particular, the canonical functor
Qcohx /Ker(u*) —— Qcohy is an equivalence of categories.

The reconstruction of a scheme X from the category Qcohx of quasi-coherent sheaves
on X is based on the existence of an affine cover {U; — X | i € J} such that the canonical
functors Qcohx /Ker(u}) —— Qcohy,, i € J, are category equivalences. It follows from
the discussion above (or from [GZ, 1.2.5.2]) that this is guaranteed if the inverse image
functor Qcohx —- Qcohy, has a fully faithful right adjoint.

8.2.1. Proposition. Let X = (X,0x) be a quasi-compact scheme such that there
exists an affine cover {U; = X | i € J} such that the canonical functors

Qcohx /Ker(u;) —— Qcohy,, i€ J,

are category equivalences. Then

(a) The scheme X is isomorphic to the Zariski geometric center ((Spec(X),;), Ox)
of the ’space’ X, where Cx = Qcohx, T; is the Zariski topology on X and Ox is the sheaf
of commutative rings defined in 7.4.

(b) For every open immersion U — X such that Qcohx /Ker(u*) — Qcohy is a
category equivalence, Ker(u*) is a Serre subcategory of Qcohx. In particular, Ker(u}) is
a Serre subcategory for all i € J.
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Proof. (a) Set Cy, = Qcohy, and T; = Ker(u}). Since X is quasi-compact, we can
and will assume that J is finite. The condition that {U; — X | i € J} is a cover means
precisely that ﬂ T, = 0.

icJ

(al) Let x be a point of the underlying space X of the scheme X. Let J; be the
defining ideal of the closure Z of the point z and Mj; the quotient sheaf O/Jz. Set
J,={i€J | Mz & ObT;}. We claim that Q, = [Mjz] is an element of Spec(X).

For every i € J,, the object uf(M3z) of the category Cy, belongs to Spec(U;) and
Spec(U;), because Cy, is (equivalent to) the category of modules over a ring. Therefore,
[u(Qz)] = [uf(M3z)] is an element of Spec(U;). By 7.1, Q, € Spec(X).

(a2) Conversely, let Q be an element of Spec(X). Let @ ¢ T, or, equivalently,
7; C Q. By the functoriality of Spec(X) under exact localizations, [uf(Q)] is an element of
Spec(U;). Since U; is affine, Spec(U;) is in bijective correspondence with the underlying
space U; of the subscheme U; = (U;, Oy,); in particular, to the element [u}(Q)] there
corresponds a point z of U; which we identify with its image in X'. Notice that the point
x does not depend on the choice of ¢ € J@ ={j e J|T; € Q} This gives a map
Spec(X) — X which is inverse to the map X — Spec(X) constructed in (al) above.
These maps are homeomorphisms in the case if the cover consists of one element, i.e. the
scheme is affine. The general case follows from the commutative diagrams

Spec(U;) —— U;

| 1 g

Spec(X) —— X, e J.

in which vertical arrows are open immersions and the upper horizontal arrow is a homeo-
morphism; hence the lower horizontal arrow is a homeomorphism.
(a3) The diagrams (5) extend to the commutative diagrams of ringed spaces

(Spec(UZ)7 OUI) ;> <u27 Ouz)

| | 0

(Spec(X),0x) —— (X,0x) i€ J.

in which Spec?(U;), Op,) and (Spec?(X),Ox) are Zariski geometric centra of resp. U;
and X, vertical arrows are open immersions and upper horizontal arrow is an isomorphism.
Therefore the lower horizontal arrow is an isomorphism.

(b) Let x be a point of U;, which we identify with its image in the underlying space X
of the scheme X. Let Q, denote the corresponding element of Spec(X). It follows that
Q, € Ti, or, equivalently, 7; C @m Thus, 7; C ﬂ @m We claim that 7; = ﬂ @m In

TeU; €U,
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fact, if M is an object of Cx — T;, then u} (M) # 0. Since the category Cy, is equivalent to
the category of modules over a ring, every nonzero object of Cy, has a non-empty support.
In particular, there is a point x € U; which belongs to the support of u;(M). The latter
means that u} (M) & Ob(@x/ﬂ), or, what is the same, M ¢ ObQ,.

Since each Q, is a Serre subcategory and the intersection of any family of Serre
subcategories is a Serre subcategory, 7; is a Serre subcategory. m

8.3. Remarks. (i) A comment to the assertion 8.2.1(b): if Cy is a Grothendieck
category and 7 is a Serre subcategory than the localization functor Cy — Cy /T has a
right adjoint.

(ii) The quasi-compactness of the scheme in 8.2.1 is an essential requirement. If
the scheme is not quasi-compact, the spectrum Spec(X) might be not sufficiently big
to reconstruct the underlying space. This was observed by O. Gabber who produced an
example of a scheme which is not isomorphic to the ringed space (Spec(X), Ox) associated
with its category of quasi-coherent sheaves.

9. The spectra related to coreflective topologizing subcategories.

For a svelte abelian category C'x, we denote by T(X) (resp. by Th (X)) the preorder
of all coreflective topologizing (resp. thick) subcategories of Cx.

9.1. The spectra Spec’(X) and Spec;(X). Elements of the spectrum Spec!(X)
are coreflective thick subcategories P such that the intersection P¢ of all coreflective
topologizing subcategories properly containing P contains P properly too. The spectrum
Spec? (X)) is formed by coreflective topologizing subcategories Q of C'x such that the union
¢ é of all coreflective subcategories of C'y which do not contain Q is a coreflective thick Asub—
category. The canonical injective morphism Spec!(X) — Spec!(X) maps Q to °Q. It
follows from the definition of *Q that every coreflective topologizing subcategory properly
containing “Q contains Q, hence the smallest coreflective subcategory [€Q, Q] containing
Q and ‘O coincides with *Q¢. The injectivity of the map Q ——° Qisa consequence of
the following fact which is going to be used more than once.

9.1.1. Lemma. If Q;, Qs are elements of T.(X), then Q1 C Qo zﬁ”@l C <Q,.
Proof. The argument is the same as in 4.1. =

9.1.2. Proposition. Let Cx be an abelian category with the property (sup).
(a) The canonical morphism

Spec?(X) — Spec.(X), Q+— Q, (1)

18 an isomorphism.
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(b) There are natural injective morphisms
Spec(X) — Spec’(X) and Spec;'(X) — Specl(X) (2)

such that the diagram
Spec(X) —— Spec)(X)

| |

Spec;'(X) —— Spec!(X)

commutes.
(c) If Cx has enough objects of finite type, then the morphisms (2) are isomorphisms.

Proof. (a) For every P € Spect(X), the intersection P¢ N Pt is nonzero, because
P is a Serre subcategory. The claim is that the coreflective topologizing subcategory
[P.]c spanned by the subcategory P, = P¢ N P+ belongs to the spectrum Spec? (X) and

—

‘[P.]c = P. The map

—

Spec!(X) — Spec!(X), P+ [Pu]., (3)

is inverse to the map (1) above.

(al) Notice that ([P«]c) = (Ps) because a coreflective topologizing subcategory does
not contain [P, iff it does not contain P,. Therefore, our claim is that (P,) = P.

(a2) If T is a coreflective topologizing subcategory of C'x which is not contained in
P, then P, =P NP-CT.

In fact, if 7 ¢ P, then the coreflective topologizing subcategory 7 e P contains P
properly, hence it contains P°. Notice that every P-torsion free object of 7 e P belongs to
T. In particular, P, C T.

(a3) It follows from (al) that if 7 € T (X) is such that P, € T, then 7 C P. This
means that (P,) C P. On the other hand, P, ,CZ P and P is a Serre subcategory; in
particular, it is coreflective and topologizing; hence the inverse inclusion, P C (Pi).

(a4) Since the map (1) is injective and has a right inverse, P — [P.]., it is bijective.

(b) Thanks to the property (sup), a thick subcategory of the category Cx is core-
flective iff it is a Serre subcategory. In particular, since elements of Spec;’’ (X) are Serre
subcategories, Spec%’l(X) C Th(X). A Serre subcategory P belongs to Spec%’l(X) iff the
intersection P* of topologizing subcategories properly containing P contains P properly.
Therefore, P¢ contains P properly. The map Speci ’1(X ) — Spec;(X) is the inclusion.

Let Q € Spec(X), and let [Q]. be the smallest coreflective topologizing subcategory
of Cx containing Q. Clearly [Q]. ¢ Q, hence @ C ([Q].). On the other hand, if T
is a coreflective topologizing subcategory of Cx such that [Q]c € T, then Q ¢ T, or,



42 Chapter 2

equivalently, 7 C Q. This shows the inverse inclusion, ([Q].) € O. The equality ([Q].) =
@, together with the fact that Q is a Serre subcategory, shows that [Q]. € Spec?(X) for
every Q € Spec(X). The map Spec(X) — Spec?(X) assigns to every element Q of
Spec(X) the coreflective topologizing subcategory [Q], spanned by Q.

(c) Let Q be an object of Spec?(X). One can see that *Q = (M) for every object
M of Q — <Q: the inclusion (M) C°¢ 0 is due to the fact that M € ObQ and the inverse
inclusion holds because M ¢ Ob*Q. This implies that Q = [M], for any object M of

N ~ 1
Q — Q. In particular, @ = [M], for any nonzero object M of QN*‘Q .

Suppose that the category C'x has enough objects of finite type, i.e. every nonzero
object of Cx has a nonzero subobject of finite type. In particular, any nonzero object of

the subcategory QO N C@L has a nonzero subobject L. Since L belongs to QN ‘@l and
is nonzero, [L]. = Q. We claim that L is an object of Spec(X), which implies that the
topologizing subcategory [L] generated by L belongs to Spec(X).

In fact, let NV be a nonzero subobject of L. Then [N]. = Q = [L].. In particular, L is
an object of the coreflective topologizing subcategory of C'x spanned by N. Objects of the
subcategory [N]. are precisely objects of the category C'x which are supremums of their
subobjects from [N]. In particular, L is a supremum of its subobjects from [IN]. Since
subobjects of L which belong to the topologizing subcategory [N] form a filtered system
and L is of finite type, it follows that L is isomorphic to one of its subobjects from [N],
i.e. L € Ob[N]. This proves that L belongs to Spec(X). m

9.2. The spectra Spec'(X) and Speck,(X). Recall that Speck,(X), i = 0,1,
are the spectra of the preorder Ge(X) of Serre subcategories of Cx (see 8.7): points of
Specg,(X) are Serre subcategories P of Cx such that the intersection P* of all Serre
subcategories of C'x properly containing P does not coincide with P; and Spec%e(X )
is formed by Serre subcategories Q such that the union Cég of Serre subcategories not
containing Q is a Serre subcategory.

9.2.1. Proposition. There are natural injective morphisms
Spec'(X) — Specs . (X) i=0,1,

such that the diagram
Spec(X) —— Specd,.(X)

zl l (1)
Spec!(X) —— Speck,(X)
commutes.

Proof. The spectrum Spec.(X) is contained in the spectrum Specg,(X), because
if P¢ # P, then (P¢)~ is the smallest Serre subcategory properly containing P, hence
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P belongs to Specg,(X). The map Spec’(X) — Specy,(X) assigns to every Q €
Spec?(X) the Serre subcategory Q~ spanned by Q (cf. 1.5). m

9.2.2. Extended spectra. Extended spectra are obtained via adjoining to the
original spectra a marked point. In the case of Spec’(X) and Specg,(X), this marked
point might be realized as the zero subcategory. In the case of the spectra Spec% (X)
and Specée(X ), the marked point is realized as the empty subcategory which reflects the
equalities (0) = 0 = (0)s.

Morphisms between the original spectra determine morphisms between the corre-
sponding extended spectra mapping marked points to marked points. In particular, the
commutative diagram (1) extends to the commutative diagram

Spec)(X), —— Spec, (X),

| | (1)

Spec!(X), —— Specg,(X).

9.2.2.1 Proposition. There are natural maps
Speck, (X), — Specﬁ(X)*, i=0,1,
such that the diagram
Spec)(X), —— Spec,(X), —— Spec’(X),

| | Ik ©

Spec!(X), —— Specg.(X), —— Speci(X),
commutes and the compositions of its horizontal arrows are identical morphisms.

Proof. The map Specg,(X), —— Spec.(X), assigns to each P € Specg,(X)
the Serre subcategory (P¢NPL) if P¢ £ P (ie. if P € Spect(X)) and the marked point,
(0) = @, if P¢ = P. The map Specg,(X), —— Spec.(X), is uniquely defined by the
commutativity of the right square in the diagram (2). It follows from the (argument of)
9.1.2 that the composition of the lower horizontal arrows in (2) is the identical map. The
similar fact for the upper horizontal arrows is a consequence of this and the commutativity
of the diagram (2). m

9.3. Functorial properties of Spec.(X) and Spec’(X). For any topologizing
subcategory T of the category Cx, we set

UNT) = {P € Spec!(X) | TC P}

VX (T) = Spec; (X) — U; (T) = {P € Spec.(X) | T £ P}. )
UJ(T) = {Q € Spec(X) | Q¢ [T]c} and

VO(T) = Spec? (X) — U(T) = {Q € Spec(X) | Q C [T]}
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9.3.1. Proposition. Let T be a topologizing subcategory of the category Cx .
(a) The isomorphism

Spec’(X) - Spec!(X), Q+—*Q,
(cf. 9.1.2) induces isomorphisms
UL (T) = U(T) and VO(T) = VI(T). (2)
(b) There are equalities V}(T) = VH(T~) and UNT)=UH{(T"), i=0,1.

[

(c) For every P € VX(T), the intersection P N'T is an element of Specl(|T|), where
Cir) =T, and the map

Vcl(']I‘) — Spec1(|T|)a P—PnNT, (3)

15 an isomorphism. The inverse map is given by P— ﬁ+ (see 7.1).
Similarly, the map Q — QN T induces an isomorphism VO(T) — Spec?(|T|).
(c¥) If T is coreflective, then the inverse isomorphism, Spec(|T|) — VO(T), is
given by the identical map.
(d) The maps P+— P/T~ and Qv+ (T~ eQeT~)/T~ define injective morphisms
Tesp.
UX(T) — Spec(X/T~) and U(T) — Spec!(X/T") (4)
such that the diagram
UNT) —— Spec?(X/T")
| K (5)
UNT) —— Spec!(X/T")
commutes.

Proof. (a) Let Q € U%(T), i.e. Q € Spec?(X) and @ ¢ [T].. This means precisely
that CQA € Spec?(X) and T C°¢ @, i.e. Q is an element of UP(']I‘) if c@ is an element
of UL(T). The isomorphism V2(T) — V!(T) follows from this and the isomorphism
Spec’(X) = Spec!(X).

(b) The equalities V(T) = V(T~) and UX(T) = UX(T~) follow from an observation
that elements of Spec%(X ) are Serre subcategories, and if P is a Serre subcategory, then
T C P iff T~ C P. The other two equalities follow from these isomorphisms (2) above.

(c) Let P € VX(T), i.e. P € Spec,(X) and T ¢ P. The latter implies that [T].eP is a
coreflective topologizing subcategory of C'x properly containing P. Therefore, it contains
P¢, and we have:

P NPLC([T]ceP)NP =[T]. NP+ C[T]..
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In particular, the intersection Op = T NP N PL is nonzero. This implies that (é@ =P
(see the argument 9.1.2(c)). Notice that if S is a coreflective topologizing subcategory of
T, then S coincides with the intersection of T with the smallest coreflective topologizing
subcategory of C'x containing S. Therefore, the union <QT> of coreflective topologizing
subctegories of T which do not contain Or coincides with the intersection <QT> NT. Thus,
(qu>qr =PNT,; in partlcular PNT € Specl(|T|) and the corresponding element of
Spec?(|T)) is [PC NP N In other words, it is obtained from P by applying the
composition of the isomorphism Spec; (X) = Spec?(X ) and the intersection with T, i.e.
the diagram
VO(T) —— Spec(|T|)

| k (6)
VHT) —— Spec,(|T]|)

whose horizontal arrows are given by P —— PNT, commutes. It follows from the argument
above that the map VO(T) — Spec(|T|), Q — QN T, is an isomorphism with the
inverse map which assigns to every element Q' of Spec?(|T|) the coreflective topologizing
subcategory [Q']; in Cx spanned by Q’. Therefore the lower horizontal arrow in (6) is an
isomorphism too.

(c¥*®) If T is coreflective, then every coreflective topologizing subcategory of T is a
coreflective topologizing subcategory of C'x, hence the isomorphism

Spec!(|T|) == VX(T), Q +— [Q'].,

discussed above becomes an identical map.
(d) Let ¢* denote the localization functor Cx — Cx /T™.
If P belongs to UX(T), i.e. T C P C PC, then

(P/T7) = [q"(P9)]c = (T~ o P< o T7)/T~ 2 P/T .

This shows that P/T~ is an element of Spec}(X/T™).

If Q is the image of the element P in UY(T) (see the assertion (a) above), then
the coreflective subcategory [¢*(Q)] = (T~ ¢ Q ¢ T7)/T~ is the image of P/T~ in
Spec’(X/T~). The commutativity of the diagram (5) follows from the definition of its
arrows. m

9.4. The local property of the spectrum Spec!(X).

9.4.1. Proposition. Let {T; | i € J} be a set of Serre subcategories of the category

Cx such that ﬂ Ti = 0; and let uf denote the localization functor Cx — Cx/T;.
ieJ
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1) The followmg conditions on P € Specg,(X) are equivalent:
(a) P e Spec (X),
(b)ﬂ (P/T:)) &€ P, where Jp ={j € J | T; C P}, and if J* = J—Jp # 0,
eJp
then ﬂ T; € P.
jeJP
2) The conditions (a) and (b) imply the condition
(c) P/T; € Spec(X/T;) for each i € Jp.
If J is finite, then the conditions (a) and (b) are equivalent to the condition (c).

Proof. 1) Since P is a Serre subcategory, the condition ﬂ 7.” =0 implies that
ieJ
Jp ={i€ J|T; C P} is not empty.
In fact, if 7; € P for all ¢ € J, then T; « P O P¢, hence P°C ﬂ(ﬂoP). But, by
i€J
C1.2.1, ﬂ(’]’ oP) ﬂ T eP =0eP =P, hence P = P, which contradicts to the
icJ icJ
assumption that P € Spec.(X), i.e. P C P,

2) Notice that if S is a Serre subcategory, and T a subcategory of C'x closed under
taking subquotients, then T ¢ S iff T NS+ # 0, because an object M of Cx does not
belong to & iff it has a nonzero S-torsion free subquotient.

In particular, the condition (b) above can be written as follows:

) () ui (P/T))(\PE#0,and ( () T;)[(\PL#0,if JP =T — Jp #0.
ieJp jeJP

(a) = (b). Let P € Spec!(X), i.e. P # P°.

If i € Jp, that is 7; C P, then uf  ((P/7;)¢) = T; e P o T,.

Since 7; C P, the intersection (7; @ P¢ e T;)(\ P+ coincides with (7; e P°) (P~ .
Therefore

N w (P/T))\PE= ) (TiePH(PL) =

ieJp ieJp (1)
(O @ePYPE = () T oI 2P 1P 0
i€Jp i€Jp
Here we used the equality m T, eP°) = ﬂ e P¢ which is due, by C1.2.1, to the
i€Jp ’LEJP

fact that the subcategory P°¢ is coreflective.
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Notice that if Jp = J, that is 7; C P for all j € J, then ﬂ T; = 0, hence the last in-
i€Jp
clusion in (1) can be replaced by the equality, i.e. the intersection ﬂ u; ((P/T;)¢ ﬂ P+
1€Jp
coincides with P¢ NP+,
Suppose that J7 = J — Jp is non-empty. If j € J7, that is 7; is not contained in P,
then 7; @ P is a coreflective topologizing subcategory properly containing both 7; and P,

hence properly containing P. Therefore P¢ C 7; @ P for all j € JF, or P° C ﬂ (T; o P).

jeJP
Since P is a coreflective subcategory, ﬂ (T;0P) = ﬂ T (see C1.2.1). Thus,
jEJP jeJP
P C( ﬂ 7;) ® P, which implies (actually, is equivalent to) that m T, € P.
jeJP jeJP

(b) = (a). There are two cases: Jp = J and Jp # J.

(1) We start with the first case; i.e. we assume that 7; C P for all i € J. Set Q =
F((P/T ﬂ Pt and Q = [Q]. — the smallest coreflective topologizing subcategory
ieJ

of Cx containing Q. We claim that Q belongs to Spec’(X) and °Q = P. Since, by
condition (b), @ ¢ P, it suffices to show that ‘Q = P.

Let S be a coreflective topologizing subcategory of C X which is not contained in P.
Then P is properly contained in S @ P and, therefore, u} "((P/T7)%) C T; @S @ P for each

i € J. This implies that v’  ((P/T))O\PLC T, eSe Pmﬂ C T; o S. Therefore,

O=u (P/T))YP-S((TieS)=((Ti)e =,
ieJ ieJ ieJ
so that Q = [Q]. C S.

(ii) Consider now the second case: Jp # J, i.e. J¥ = J — Jp is non-empty. This case
can be reduced to the first case as follows.

Set Cy, = ﬂ T;. Since ﬂ T; € P, the intersection Py = Cy,, ()P is an element

jeJP jeJP
of Speck, (Vp). Notice that {T; N Cy, =T; | i € Jp} is a cocover of Vp, i.c. ﬂ 7, = 0.
JEJP
It remains to show that the condition Q = ﬂ u;  ((P/Ti)¢ m P+ #0 implies the anal-

ied
ogous condition for the object Py = Cy,, (P of Specg,(Vp) and the cover {T; | i € Jp};
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that is

Qo= (&  (PYT))(\ P #0.

ieJ
In fact, let w} denote the localization functor Cy, — Cy,,/ 7;. Then
a;fl((n/%y) = u P/T )(\Cvp, and
G (PYT)ONPE=u; (P/T)) [ Cvr [P

Therefore,
N Py VP = Vi (P/TIPH v =2 Cre ()
eJ ieJ

On the other hand, for every ¢ € Jp, there is an inclusion 7;¢C\,, e P D ufl ((P/T:)),
because Cy,, ¢ P, which implies the inclusion u;  ((P/7;)¢) P+ C 7; @ Cy,,. Taking the

intersection, we obtain the inclusion

QC (((TieCy,y) = ([ Ti) e Cuy. (3)

i€Jp ZEJP

Notice that Q is a full subcategory of C'x closed under taking subobjects. In particular,
the equality QﬂCVP = 0 means precisely that every object of Q is Cy,-torsion free.
The latter fact together with the inclusion Q C ( ﬂ T:) # Cy,, (see (3)) implies that

eJp
QC ﬂ T; C P, which contradicts to the fact that Q is a nonzero subcategory of Pt.
i€Jp

This contradiction shows that éﬂ Cy, # 0, hence, by (2),

Qo= ((P/T))[ P+ #0.

ieJ

(iii) Thus, the ’space’ Vp, the cocover {7; | i € Jp}, and the point Py = P\ Cy, of
the spectrum Speck, (Vp) satisfy the conditions (b) with all 7; being subcategories of P.
By (i) above, P, belongs to the spectrum Spec!(Vp), and Py = (é())w, = (Qo)v,, where
Qo is the smallest coreflective topologizing subcategory of Cy,, containing Q. Therefore,
[Qo]. is a point of the spectrum Spec?(X) and (Qg)x = P.
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(b) = (¢). The condition ﬂ 77/ Ti)¢ mPL # 0 implies that the intersection
1€Jp
w ((P)T;)) NP+ is nonzero for every i € Jp. In particular, (P/T;)¢ does not coincide
with P/7;, which means that P/7 belongs to the spectrum Spec’(X/T;).
(¢) = (b) (when J is finite). For every i € Jp, let Q; denote the intersection
u;“il((P/’E)c) NP+ and Q; = [Q;]. — the smallest coreflective topologizing subcategory
of C'x containing Q;. By assumption, Q; # 0 for each ¢ € Jp, hence Q; ,@ P. The

latter implies that, for every j € Jp, the coreﬂectlve topologizing subcategory spanned by
u;(Q; @ P) contains (P/T;)¢, or, equivalently, u} (P/TR)) C T; ® Q;  P. Therefore,

j
é]:U;k P/T ﬂPJ_ T QZ.P ﬂPJ_ T Qz mPJ_ ].Qz
which implies the inclusion Q; C 7, ¢ Q; for every (i,j) € Jp x Jp, hence the inclusion

QC [(TieQ)=Tie([) Q)

ieJp icJp

Here the equality is due to the finiteness of Jp.
It follows from the inclusion Q; C 7T; e ( ﬂ Qi) that ﬂ Q,; # 0, because other-

1€Jp 1€Jp

wise Q; C 7; ¢ 0 = T;, which is impossible, since 7; C P and Q; € P.
If J = Jp, the condition (b) is fulfilled. If J # Jp, we need to check that ﬂ T. € P.

i€JP
In fact, if i € J¥ = J — Jp, then T; ¢ P. Therefore, for every j € Jp, the coreflective

subcategory spanned by u}(7; e P) contains (P/T;)¢, or, equivalently, u} “(P/T;)%) C
T; o Ti ¢ P, which implies that Q; = u} ((P/T;)9)\P* C (T; ¢ i) P*+. Taking the
intersection and using the finiteness of J*, we obtain:

QS (N (TeT)(\PH=(Tie () T) P (4)

i€JP ieJP

The inclusion ﬂ 7: CP implies (together with (4)) that éj C 7; € P, which is
ieJP
impossible. So that ﬂ T.¢P. u
i€JP
9.4.2. Note. The reader had, probably, noticed that some parts of the proof of 9.4.1
are similar to some parts of the argument of 7.1. If one considers only the case of finite
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cocovers, one can follow the argument of 7.1 which is considerably shorter than the proof
above.

9.4.3. Proposition. Let {7; | i € J} be a set of Serre subcategories of the category
Cx such that ﬂ T: = 0; and let u} denote the localization functor Cx — Cx/T;.
The followﬁz{q conditions on a nonzero coreflective topologizing subcategory Q of Cx
are equivalent:
(a) Q € Spec?(X),
(b) [uz(Q)]. € Spec(X/T;) for every i € J such that Q ¢ T;.

Proof. The implication (a) = (b) follows from 9.3.1(d).
b) = (a). Let J.~ denote the set of all i € J such that @ € 7;, or, equivalently,
‘Q

T; C°© @ Notice that J, 5 is non-empty, because Q is nonzero and ﬂ T: = 0.
ieJ
Fix an i € J 5 and set P; = u}‘fl ((uf(Q))). It follows from the formula for P; that

Q ¢ P;. Notice that P; = P; for every j € ‘]cé\'

In fact, replacing Cx by Cx = Cx /(P; NP;) and Py by P, = Pr/(P:NP;), k=1,7,
we can obtain that P; NP} = 0. It follows from 9.3.1 that the condition (b) survives this
operation. By 7.1, the image Q' of Q in C'ys belongs to Spec?(X’). Therefore, P! = Pi,
which implies that P; = P;.

So, we write P instead of P;. For every i € J, &> the subcategory (P/T;)¢ contains
u!(Q), hence its preimage, u;?‘_l((P/ﬁ)‘), contains Q. Since ﬂ uffl((P/ﬂ)c) contains
~ iEJc/Q\
Q, it is not contained in P. Similarly, if J < = J — Jcé\ is non-empty, then O C ﬂ T;,
icJe
hence Q C ﬂ T; € P. Thus, P satisfies the condition (b) of 9.4.1. Therefore, by 9.4.1,
ieJe

P € Spec,(X). Tt remains to show that Q is an element of Spec?(X) corresponding to
P.

It follows from the argument of 9.4.1 that the element of Spec’(X) corresponding

to P is the coreflective topologizing subcategory [Qp]. generated by Qp = QNP+, In

particular, [Qp]. C Q. Let M be an object of the subcategory Q. Since [Qp]. is a

coreflective subcategory of Cx, the object M has the biggest subobject Mp — M with
Mp € Ob[Qp].. Consider the corresponding exact sequence

0— Mp M —s N —0. (5)
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For every i € J, 5, the morphism uj (j) is an isomorphism, because the images of [Qp],

and Q in Cx /7; coincide. This means that the object N in (5) belongs to 7; = Ker(u})

for each i € J. 5. On the other hand, Q C 7, for every v € J - J 5 (by definition of J, §)9

in particular, N € T,, for all v € J — Jc@ Thus, N is an object of ﬂ T, =0,ie. N=0,
icJ

or, equivalently, the arrow Mp —— M in (5) is an isomorphism. This proves the inverse

inclusion, [Qp| 2 Q. =m

9.4.4. Support. For every object M of C'x, we define the support of M in Spec?(X)
by Suppl(M) = {Q € Spec!(X) | Q C [M].}.

9.5. Some consequences.

9.5.1. Proposition. Let {7; | i € J} be a finite set of Serre subcategories of an
abelian category C'x such that ﬂ 7: =0 and Spec!(X/T;) = Spec;’ (X/T;) for every
icJ
i €.J. Then Specl(X)=Spec"(X). In particular, the canonical map

Spec(X) —— Spec?(X), Q+— 9],

s an isomorphism.

Proof. The inclusion Spec;”'(X) C Spec!(X) holds by 9.1.2(b). Let P e
Spec.(X). Then, by the implication (a) = (c) in 9.4.1, P/T; € Spect(X/T;) for
every i € J such that 7; C P. By hypothesis, Speci(X/ﬁ) = Speci’l(X/ﬁ) for all
i € J. Therefore, by the implication (b) = (a) in 7.1, P belongs to Spec;' (X). =

9.5.2. Corollary. Let {T; | i € J} be a finite set of Serre subcategories of an abelian
category C'x such that m T: =0 and for every i € J, the quotient category Cx /T; has
i€J
enough objects of finite type. Then Spec%(X) = Speci’l(X).
In particular, the canonical map Spec(X) — Spec?(X) is an isomorphism.

Proof. Since each quotient category C'x /7; has enough objects of finite type, it follows
from 9.1.2(c) that Spec!(X/T;) = Spec;”' (X/7;) for all i € J. The assertion follows
now from 9.5.1. m

9.5.3. Affine and quasi-affine cocovers. A morphism X T4 ¥ is called affine if

it has a conservative (i.e. reflecting isomorphisms) direct image functor, C'x LN Cy (—a
right adjoint to f*) which has, in turn, a right adjoint. We call a ’space’ X affine over a
ring R, if there is an affine morphism X — Sp(R), where Cgpry = R —mod. A ’space’
X is called affine if it is affine over Z. By [R4, 9.3.3], X is affine iff the category Cx has
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a projective generator of finite type. By a well-known theorem of Gabriel and Mitchell,
the latter condition means precisely that the category Cx is equivalent to the category of
modules over an associative ring.
We call set {T; | i € J} of thick subcategories of the category Cx an affine cocover of
the 'space’ X if ﬂ 7; =0 and X/7; is affine for every i € J.
icJ
9.5.4. Proposition. Let a finite set {T; | i € J} of Serre subcategories of Cx be a

cocover of X (that is ﬂ T: = 0) such that every quotient category Cx /T; has a family of
1€J
generators of finite type. Then Spec%(X) = Speci’l(X).
In particular, Specl(X) = Specy’' (X), if {T; | i € J} is an affine cocover of X.

¢

Proof. In fact, quotients of an object of finite type is an object of finite type. Therefore,
if a category Cy has a family of generators of finite type, then every nonzero object of Cy
has a subobject of finite type. The assertion follows now from 9.5.3. m

9.5.5. Remark. If C'x is a Grothendieck category and S is a Serre subcategory
of Cx, then the localization functor Cx — Cx /S has a right adjoint, hence Cx /S
is Grothendieck category (see [BD, Ch.6]). In particular, all Cx/7; are Grothendieck
categories. One can regard Grothendieck categories with a generator of finite type as a
noncommutative version of a quasi-affine scheme.

Recall that quasi-affine commutative schemes are, by definition, quasi-compact open
subschemes of affine commutative schemes.

9.6. Geometric centers of a ’space’ X associated with Spec!(X).

9.6.1. The geometric center associated with a topology on Spec?(X). Let 7
be a topology on Spec?(X). For every open subset U, let Ox (U) denote the center of the

quotient category Cx /(U), where (U) = ﬂ Q. Recall that the center of the category Cy

Qeu
is the (commutative) ring of the endomorphisms of the identical functor Cy — Cly-.

The correspondence U — Ox(U) is a presheaf of commutative rings on the topo-
logical space (Spec’(X),7). We denote by Ox the associated sheaf. The ringed space
((Spec?(X),7),Ox) is called the geometric center of X associated with (Spec?(X), 7).

9.6.2. Zariski geometric center. A topologizing subcategory T of Cyx is called
a Zariski topologizing subcategory if it is bireflective, i.e. the inclusion functor T — C'x
has right and left adjoints. Subsets U(T) = {Q € Spec’(X) | Q ¢ T}, where T runs
through the preorder ¥,(X) of Zariski topologizing subcategories, are open sets of the
Zariski topology on Spec?(X) (cf. C1.2.4.1). We call the corresponding geometric center
the Zariski geometric center of X.
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9.6.3. The topologies 7. and 7¢ on Spec’(X). The Zariski topology might be
trivial or too coarse in the noncommutative case. For instance, it is trivial if Cx = R—mod,
where the ring R is simple (i.e. it does not have nonzero proper two-sided ideals), like, for
instance, any Weyl algebra. Following C1.7, we introduce other topologies on Spec?(X )
by fixing a set = of coreflective topologizing subcategories of C'x and then taking subsets
UYT) ={Q € Spec(X) | Q¢ T}, T € =, as a base of open sets of a topology 7=.

Taking £ = Spec?(X), we obtain the topology 7. (compare with C1.7.2). Thus the
sets VO(Q) = {Q' € Spec)(X) | @ C Q}, Q € Spec?(X), form a base of closed subsets
of this topology.

The topology 7°¢ is determined by = consisting of the subcategories [M]. spanned
by objects which are locally of finite type. Here ’locally of finite type’ means that the
localization of M at every point Q of Spec?(X) (i.e. its image in the quotient category
Cx/ ‘@) is an object of finite type. It seems that 7¢ is an appropriate version of Zariski
topology for the spectrum Spec?(X ). If C'x has enough objects of locally finite type, then
the topology 7°¢ is finer than the topology 7.

9.7. Proposition. Let C'x be the category of quasi-coherent sheaves on a scheme
X = (X,0). Suppose that there is an affine cover {U; — X | i € J} of the scheme X
such that all immersions U; — X, i € J, have a direct image functor. Then the geometric
center (Spec’(X),Ox) is isomorphic to the scheme X.

Proof. The argument follows the lines of the proof of 8.2.1.

(a) The underlying space X of the scheme X is isomorphic to Spec?(X).

Let {U4 — X | ¢ € J} be an affine cover of the scheme X. For each i € J, we
denote by Cy, the category of quasi-coherent sheaves on the affine scheme (U;, Oy, ) and

by 7; the kernel of the inverse image functor Cx BN Cy,. This inverse image functor
uniquely determines the equivalence of the quotient category Cx/7; and Cy,. The fact

that {U4; — X | i € J} is a cover means precisely that m 7; = 0. The existence of a direct
iceJ

image functor, Cy, Liv Cx, of the embedding U; < X implies that the subcategory 7; is

coreflective: a right adjoint to the inclusion functor 7; — C'x assigns to every object M

of Cx the kernel of the adjunction morphism M — wu)(M).

(al) Let = be a point of the underlying space X of the scheme X. Let Z; be the
defining ideal of the closure Z of the point z and Mjz; the quotient sheaf O/Zz. Set
J,={i € J | Mz &ObT;}. We claim that Q, = [Mjz], is an element of Spec?(X).

For every i € J,, the object uf(Mjz) of the category Cy, belongs to Spec(U;) and
Spec(U;) = Spec?(U;), because Cy, is (equivalent to) the category of modules over a ring.
Therefore, [u(Q,)]c = [uf(Mz)] is an element of Spec?(U;). By 9.4.3, Q. € Spec?(X).

?

(a2) Conversely, let Q be an element of Spec?(X). Let Q ¢ T;, or, equivalently,
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7, C* Q. By 9.4.3, [uf(Q)]. is an element of Spec?(U;). Since U; is affine, Spec?(U;) is
in bijective correspondence with the underlying space U; of the subscheme (U;, Oy, ); in
particular, to the element [u}(Q)]. there corresponds a point x of U; which we identify
with its image in X'. Notice that the point # does not depend on the choice of i € J, 5=
{jedJ|T; C Q). This gives a map Spec’(X) — X which is inverse to the map
X — Spec?(X) constructed in (al) above. These maps are homeomorphisms in the case
if the cover consists of one element, i.e. the scheme is affine. The general case follows from
the commutative diagrams

~

Spec)(U;) ——

|

Spec’(X) ——

(6)

L Ny

, 1€ J.

in which vertical arrows are open immersions and the upper horizontal arrow is a homeo-
morphism; hence the lower horizontal arrow is a homeomorphism.
(b) The diagrams (6) extend to the commutative diagrams of ringed spaces

(Spec (Ui), Ou,) ——  (Us, Oy,)
(7)
(Spec’(X),0x) —— (X,0) i€
in which Spec?(U;), Op,) and (Spec?(X),Ox) are Zariski geometric centra of resp. U;

and X, vertical arrows are open immersions and upper horizontal arrow is an isomorphism.
Therefore the lower horizontal arrow is an isomorphism. m
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Complementary facts.

C1. The noncommutative cosite of topologizing subcategories and topolo-
gies on spectra.

C1.1. The noncommutative finite cosite of topologizing subcategories. We
regard topologizing subcategories of an abelian category Cx as ’closed sets’ of a ’finite
topology’ 7';( defined as follows. We call a set of inclusions {T < T; | i € J} of topologizing

subcategories a cocover if there exists a finite subset Jy of J such that ﬂ T, =T.
1€Jo

Two of the three standard properties of cocovers follow immediately:

(a) T 2 Tisa cocover;

(b) the composition of cocovers is a cocover: if {T — T, | i € J} is a cocover and
{T; — Ty; | j € Ji} is a cocover for every ¢ € J, then {T — T;; | i € J, j € J;} is a
cocover.

The third standard property — the invariance under the base change, acquires the
following form:

(¢)If {T — T, | i € J}is a cocover, then, for any S € T(X), both {TeS — T;eS|i € J}
and {SeT — SeT,; | i € J} are cocovers.

The property (c) follows from [R4, 4.2.1]. Its proof is also contained in the argument
of C1.2.3(b) below.

We call the triple (T(X), e; T)f() the noncommutative finite cosite of topologizing sub-
categories of C'x.

C1.1.1. Note. One can define a finer topological structure on T(X) by taking as

cocovers all sets of inclusions {T < T, | ¢ € J} such that ﬂ T; =T. The family 7x of
ieJ

such cocovers satisfies the conditions (a) and (b) above, but fails, in general, the invariance

with respect to a base change. The situation improves when one considers instead of all

topologizing subcategories coreflective or reflective topologizing categories. This is made

precise below.

C1.2. Coreflective and reflective topologizing categories. Let T (X) (resp.
T¢(X)) denote the preorder of all coreflective (resp. reflective) topologizing subcategories of
the category Cx. Recall that a subcategory B of Cx is called coreflective (resp. reflective) if
the inclusion functor B < C'x has a right (resp. left) adjoint. By [R, I111.6.2.1], both T (X)
and T¢(X) are monoidal subcategories of the monoidal category (preorder) (¥(X),e). We
shall use the same notation — T)f(, for the restrictions of the topological structure T)f( defined
in C1.1 to T(X) and to T(X).

Notice that (T.(X),e;7k) is naturally anti-isomorphic to (T¢(X°),e;7k.).
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The term ’anti-isomorphic’ refers to the monoidal structure (S e T)? = T° ¢ S°, where
S° denotes the subcategory of Cx. = C¥ corresponding to the subcategory S of C'x.

C1.2.1. Lemma. Suppose that C'x is an abelian category with supremums of sets of
subobjects (for instance, if Cx has infinite coproducts). Then
(a) The intersection of any set of reflective topologizing subcategories is a reflective
topologizing subcategory.
(b) ( ﬂ T;) oS = ﬂ (T; ®S) for any set {T; | i € J} of topologizing subcategories
ieJ ieJ
and any coreflective subcategory S.

Proof. (a) See [R, 111.6.2.2].

(b) The inclusion ( m T;) eS C ﬂ (T; ®S) is obvious. On the other hand, let M be
ieJ ieJ
an object of the subcategory (](’]I“Z e S); that is, for every i € J, there exists an exact
icJ
sequence 0 — M; — M —€> L; — 0 such that M; € ObS and L; € ObT;. Since S
is a coreflective subcategory, the supremum M of the set of subobjects {M; | i € J} is
an object of S. The canonical epimorphism M — M /M factors through M — L; for
each i € J. Therefore, the object M /M, being a quotient of the object L;, belongs to the

subcategory T; for each ¢ € J, hence it belongs to ﬂ T;,. m
i€J

C1.2.2. Corollary. Let Cx be an abelian category with infinums of sets of quotient
objects (i.e. the dual category Cxo = CY has mazimums of sets of subobjects). Then

(a) The intersection of any set of coreflective topologizing subcategories is a coreflective
topologizing subcategory.

(b) Se ( ﬂ ']I'Z-) = ﬂ(S o T,) for any set {T; | i € J} of topologizing subcategories

icJ icJ

and any reflective subcategory S.

Proof. The assertion is dual to the assertion of C1.2.1. m

C1.2.3. Corollary. Let Cx be an abelian category with supremums of sets of subob-
jects and infinums of sets of quotient objects. Then

(a) The intersection of any set of reflective (resp. coreflective) topologizing subcate-
gories is a reflective (resp. coreflective) topologizing subcategory.

(b) If S is a reflective and U a coreflective topologizing subcategory of Cx, then

Se([\T:i)=()(SeT:) and ([)T;)eU=()(Tiel)
ieJ ieJ ieJ ieJ

for any set {T; | i € J} of topologizing subcategories.
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C1.2.3.1. Note. The conditions on C'x in C1.2.3 hold if the category Cx has infinite
products and coproducts. In particular, they hold for any Grothendieck category, or the
category of quasi-coherent sheaves on an arbitrary scheme.

C1.2.4. Interpretations. Let 7x denote the family of cocovers on T(X) in the sense
of C1.1.1; that is {T < T; | i € J} is a cocover iff the intersection of all T; coincides with
T. Corollary C1.2.3 can be spelled as follows:

If the category C'x has supremums of sets of subobjects and infinums of sets of quo-
tient objects, then 7x induces the structure of a right cosite on the monoid (T (X),e)
of coreflective topologizing subcategories and the structure of a left cosite on the monoid
(TE(X),e) of reflective topologizing subcategories.

C1.2.4.1. Zariski cosite. We denote by T,(X) the intersection T (X)) T (X).
Objects of T;(X) — bireflective topologizing subcategories of C'x, are interpreted as Zariski
closed subspaces. By this reason, we shall call them sometimes Zariski topologizing sub-
categories. Under conditions of C1.2.3 (i.e. if Cx and Cx. have supremums of sets
of subobjects), (T,(X),®;7x) is a two-sided cosite. The latter means that for any set
{S, T; | i € J} of Zariski topologizing subcategories, the intersection ﬂ T; is a Zariski

ieJ
topologizing subcategory and )

Se((\Ti)=()(SeT), (()T:)eS=[)(T;eS). (1)

iceJ icJ iceJ icJ

We call (T;(X), e;7x) the noncommutative Zariski finite cosite of the ’space’ X. One
of the reasons for these interpretaions comes from the following example.

C1.2.5. Example. Let C'x = R — mod for an associative ring R. For every two-
sided ideal v in R, let T, denote the full subcategory of R — mod whose objects are
modules annihilated by the ideal o. By [R, I11.6.4.1], the map o — T,, is an isomorphism
of the preorder (I(R), D) of two-sided ideals of the ring R onto (T¢(X),C). Moreover,
T,eTg = T,p for any pair of two-sided ideals o, 8. This means that the map a —— T, is
an isomorphism of monoidal categories (preorders), where the monoidal structure on I(R)
is the multiplication of ideals.

It follows from this description that every reflective topologizing subcategory of C'x =
R — mod is coreflective, that is T¢(X) = T,(X).

One can see that ﬂ To, = Ta,, where o, = sup(e;li € J). Thus, the cotopology

ieJ
Tx on T¢(X) = F;(X) induces a (noncommutative) Zariski topology on I(R): the set of
inclusions of two-sided ideals {a; — « | i € J} is a cover if a = sup(«;|i € Jp).
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The invariance with respect to base change in I(R) is expressed by the equalities
Bsup(ay| i € J) =sup(Ba;| i € J) and sup(way| i€ J)B =sup(a;8] i€ J)

for any set of two-sided ideals {3, «; | i € J}. One can deduce directly from these equalities
the base change invariance on T;(X) (in the case when Cx = R — mod). In fact, we have

()(Ta:  Ts) = [ ) Tais = Toup(eipl ics) = Tsup(a] icn)p =
ieJ ieJ
P]Fsup(om icJ)® T,B = ( ﬂ Tai) d Tﬁ

ieJ

Similar calculation shows that ﬂ (TgoTs,) =Tse( m Ta,)-
icJ icJ
C1.2.6. Example: reflective topologizing subcategories of the category
of quasi-coherent sheaves on a scheme. Let C'x be the category Qcohx of quasi-
coherent sheaves on a scheme X = (X, Ox). Then elements of T¢(X) are in one to one
correspondence with quasi-coherent ideals of the structure sheaf Oy, or, equivalently, with
closed subschemes of the scheme X.

C1.3. Example: coreflective topologizing subcategories of an affine ’space’.
Let Cx be the category R — mod of left modules over an associative ring R. We denote
by I;(R) the set of left ideals of R.

Recall that a set § of left ideals of R is called a topologizing filter if it is closed under
finite intersections, contains with every left ideal m left ideals (m: r) ={a € R | ar € m}
for all » € R and all left ideals containing m.

Topologizing filters of left ideals form a monoidal category (a preorder) with respect
to the Gabriel multiplication defined as follows.

Fodb = U Fo{m}, where Fo{m}={nelh(R)| (n:r)eFforal recm}.

med

There is a natural bijective correspondence between topologizing filters of left ideals
and coreflective topologizing subcategories of the category R —mod. Namely, to each core-
flective topologizing subcategory T of R — mod, there corresponds the filter 1 formed by
annihilators of elements of modules from T. The inverse map assigns to each topologizing
filter § the full subcategory Tz whose objects are all R-modules M such that each element
of M is annihilated by some left ideal from §. These maps are mutually inverse isomor-
phisms between the monoidal preorder (T§,(R), o) of topologizing filters of left ideals of
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the ring R and the monoidal preorder (¥.(X), ) of coreflective topologizing subcategories
of Cx = R — maod.

To every left ideal m in R, one can assign the smallest topologizing filter [m] containing
m. It is easy to see that [m] consists of all left ideals n which contain (m: z) = {r € R|rzx C
m} for some finite set = of elements of R. The corresponding coreflective topologizing
subcategory is formed by all R-modules M such that every element of M is annihilated by
the left ideal (m : x) for some finite set = of elements of R.

Notice that if m is a two-sided ideal, then m C (m : z) for any  C R. In this case the
filter [m] consists of all left ideals of R containing m and the corresponding topologizing
subcategory coincides with the subcategory T,, whose objects are modules annihilated by
m (see C1.2.1). If @ and § are two-sided ideals, then [a] o [5] = [af]. This shows that the
map I(R) — TF¢(R), a — [a] is an embedding of monoidal preorders.

Thus, we have a commutative diagram of morphisms of monoidal preorders

(I(R)7) - (SSZ(R%O)

| K

(T(X),8) ——  (Tc(X),0)

where the lower horizontal arrow is the inclusion functor and C'x = R — mod.

C1.4. The cosites of thick and Serre subcategories. Consider the preorder
Th(X) of thick subcategories and the preorder Ge(X) of Serre subcategories of the category
Cx together with cocovers induced from T(X).

C1.4.1. Proposition. (a) TH(X) and Se(X) are Grothendieck precosites.

(b) The map T(X) — TH(X) which assigns to every topologizing subcategory T the
thick subcategory T generated by T is a morphism from the noncommutative precosite
(T(X),e) of topologizing subcategories to the Grothendick precosite THh(X) of thick subcat-
egories of Cx.

(¢) The map T(X) — Se(X), T —— T, is a morphism from the noncommutative
precosite (£(X), o) to the Grothendick precosite Ge(X) of Serre subcategories.

Proof. For any pair of topologizing subcategories S and T, the thick subcategory
(SeT)> generated by SeT coincides with the coproduct S®UT of the thick subcategories
S°° and T generated respectively by S and T.

Similarly, (S e T)~ coincides with the coproduct S~ V T~ of Serre subcategories gen-
erated respectively by S and T.

In other words, the maps

T(X) — TH(X), T— T, and T(X) — Se(X), T+— T, (1)
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are morphisms of monoidal preorders resp.
(T(X),8) — (TH(X),1) and (T(X),e) — (Se(X), V).

It remains to verify that the maps (1) transfer cocovers to cocovers, or, equivalently,
for any finite set {T; | i € J} of topologizing subcategories of Cx, there are equalities

()™ =T and () =T

icJ ieJ ieJ ieJ

The first equality is proven in [R4, 4.6.1] and the second equality is the assertion [R4, 4.1].
Altogether proves (b) and (c). The assertion (a) is a consequence of (b) and (c).
In fact, for any finite set {S, T, | i € J} of thick subcategories, we have by (b)

NTuS)=SeT)®=([SeT)" = (Se (7)) =SU (7).

ieJ ieJ ieJ i€J ieJ

Similarly, if {S, T, | i € J} are Serre subcategories, then it follows from (c) that

N(TVS) =((SeT) = ([1SeT) =(Se((\T) =8V ([T,

ieJ ieJ ieJ ieJ ieJ
hence the assertion. m

C1.5. Monoidal subcategories of (T(X),e) and topologies on spectra. Any
full monoidal subcategory & of (T(X),e) closed under arbitrary intersections defines a
topology 7e on Spec!(X) (hence on Spec(X)) by taking VO(T) = {P € Spec?(X) | P C
T} (resp. V(T) = {P € Spec(X) | P C T}), T € &, as the set of closed subsets.

The map & — 7 is a surjective map from the family of full monoidal subcategories
of (3(X),e) closed under arbitrary intersections onto the set of topologies on Spec!(X)
which are coarser than the topology 70 corresponding to T(X).

C1.6. Coarse Zariski topology. Suppose that the category C'x has supremums of
sets of subobjects (for instance, C'x has infinite coproducts). Then, by [R, I111.6.2.2], the
intersection of any set of reflective topologizing subcategories is a reflective topologizing
subcategory. Taking as & the subcategory T¢(X) of reflective topologizing subcategories,
we obtain the coarse Zariski topology on Spec? (X) which we denote by 7'30. Its restriction
to Spec(X) will be denoted by ;.

C1.6.1. Proposition. Suppose Cx has the property (sup) and a generator of finite
type. Then the topological space (Spec(X),T;) is quasi-compact.
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Proof. See [R, I11.6.5.2.1]. m

C1.6.2. Example. Example C1.2.6 shows that if C'x is the category of quasi-
coherent sheaves on a (commutative) scheme X, then the elements of T¢(X) are categories
of quasi-coherent sheaves on closed subschemes of X. Suppose that the scheme X is quasi-
compact and quasi-separated (more generally, quasi-compact and the embeddings of every
point has a direct image functor). Then Spec(X) is the set of points of the underlying
space of the scheme X and closed sets of the Zariski topology on Spec(X) are spectra of
closed subschemes. So that the Zariski topology on Spec(X) coincides with the Zariski
topology in the conventional sense.

C1.6.3. Example: Zariski topology on an affine noncommutative scheme.
Let Cx = R — mod for an associative unital ring R. It follows from C1.6.1 that the
topological space (Spec(X), 7;) is quasi-compact.

This fact is a special case of a much stronger assertion: the open subset U of the space
(Spec(X), 7;) is quasi-compact iff Y = U(T,) = Spec(X)—V (T, ) for a finitely generated
two-sided ideal « of the ring R (cf. C1.2.1).

Two different proofs of this theorem can be found in [R]: 1.5.6 and I11.6.5.3.1. One of
its consequences is that quasi-compact open sets form a base of the Zariski topology on
Spec(X). In fact, every two-sided ideal « is the supremum of a set {a; | i € J} of its
two-sided subideals, so that U(T,,) = U(sup(Ty, | i € J)) = U U(T,,) (see C1.2.1).

ieJ

C1.6.4. Note. Unlike the commutative case, the Zariski topology is trivial or too
coarse in many important examples of noncommutative affine schemes. It follows from the
previous discussion that if Cx = R—mod, then the Zariski topology on Spec(X) is trivial
iff R is a simple ring (i.e. it does not have non-trivial two-sided ideals). In particular,
the Zariski topology on Spec(X) is trivial if Cx is the category of D-modules on the
affine space A™, because the algebra A,, of differential operators on A" is simple. It is not
sufficiently rich in the case when C'x is the category of representations of a semisimple Lie
algebra over a field of characteristic zero.

C1.7. Some other canonical topologies. A way to define a topology on Spec?(X)
(and on Spec(X)) is to single out a class of topologizing subcategories, =, of Cx, take
the smallest monoidal subcategory &= of (T(X), e) which contains = and is closed under
arbitrary intersections (which are products in (T(X), C)) and obtain this way the topology
74_. This is the same as taking the smallest topology on Spec)(X) for which the sets

VtO_(T), T € =, are closed.

—_

C1.7.1. The topology 7*. For instance, taking as = the class of all topologiz-
ing subcategories [M], where M is an object of finite type, we obtain a topology 7* on
Spec(X) which in the case when Cy is the category of modules over a commutative ring
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(more generally, the category of quasi-coherent sheaves on a quasi-compact quasi-separated
scheme; see C1.2.6 above) coincides with the Zariski topology. It is drastically different in
most of noncommutative cases. For any simple ring R (in particular, for any Weyl algebra
A,), the Zariski topology is trivial, while the topology 7* separates distinct points of the
spectrum in Kolmogorov’s sense, i.e. (Spec(X),7*) is a Kolmogorov’s space.

C1.7.2. The topology 7,. We take as = the set Spec(X) and denote the corre-
sponding topology on Spec(X) by 7s. This means that finite unions of sets V(P) form a
base of the closed sets of the topology 7.

Notice that if the category C'x has enough objects of finite type (i.e. every nonzero
object of C'x has a nonzero subobject of finite type), then the topology 75 is coarser than
the topology 7*. In fact, in this case every element P of Spec(X) is of the form [M] for
some object M of finite type.

C1.8. Functorialities.

C1.8.1. Proposition. Let C'x and Cy be abelian categories, and let X TV bea
continuous morphism such that adjunction arrows f*f. BN Idc, and Idc, SN fof*

are monomorphisms. Then the map T —— [f*_l(T)] defines a morphism of monoids
T(f)

(T(X),0) —— (2(Y), o).

Proof. (a) Let X LY bea morphism such that f* is semi-exact; i.e. f* maps any
exact sequence M’ —» M — M" to an exact sequence (for instance, f* is right, or left
exact). Then f* (T)e f* (S)C f* (TeS) for any pair T, S of subcategories of Cx.
In particular, [f* ()] e[f* (S)] C[f* (TeS).

In fact, if M — M — M" is an exact sequence with f*(M') € ObS and f*(M") €
ObT, then f*(M) € ObT oS, because the sequence f*(M') — f*(M) — f*(M") is
exact, due to the semi-exactness of the functor f*.

(al) Notice that the inverse image functor of a continuous morphism is right exact,
hence semi-exact.

(b) In order to prove the inverse inclusion, [f*  (T) e [f* (S)] 2 [f* (TeS)], it
suffices to show that [f*  (T)] e [f* (S)] 2 f* (TeS).

Let f*(M) € ObT oS; i.e. there is an exact sequence L' — f*(M) — L” with
L' € ObS and L" € ObT. Consider the commutative diagram

(L) —— AWM —— (L)
(L) | erf (M) | | ern
rr — fr (M) — L”
Since € is a monomorphism and €f f*(M) is a strict epimorphism (coretraction), ey f*(M)
is an isomorphism. The monomorphness of €;(L’) and e¢(L") imply that f*f.(L") € ObS
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and f*f.(L"”) € ObT. Thus, we have an exact sequence f,(L') — f.f*(M) — f.(L")
with f.(L') € Obf* ' (S) and f.(L") € Obf* ' (T), hence f,f*(M) € Obf*  (T)e f* ' (S).
If the adjunction morphism M — f, f*(M) is a monoarrow, the object M belongs to the
subcategory [f* (T) e f* (S)] =[f* (T)]e[f* (S)]. m

C1.8.2. Note. The conditions of C1.8.1 hold if Cy is a coreflective full subcategory
of Cx and f* is the inclusion functor Cy — Cx. In this case, the adjunction arrow
lde, SN f«f* is an isomorphism, and the second adjunction arrow, f*f. BN doy, is
a monomorphism.

C2. Supports and specializations. Krull filtrations.

C2.1. Support in Spec(X). Let M be an object of an abelian category Cx. The
support of M in Spec(X) is the set Supp(M) of all [P] € Spec(X) such that M > P, or,
equivalently, [P] C [M].

C2.2. Supports in Spec'(X) and in Spec™ (X). The support of an object M of
Cx in Spec'(X) is the set Supp' (M) of all P € Spec’(X) such that M & ObP.
The support of M in the S-spectrum is the set

Supp™ (M) = Supp' (M) (| Spec™ (X) = Supp' (M) () &Se(X).

C2.3. Lemma. Let M be an object of Cx.
(a) The following conditions are equivalent:
(a1) P € Supp*(M);
(a2) M = L for some nonzero object L of P® — P.
(b) The following conditions are equivalent:
(b1) P € Supp~ (M);
(b2) M = L for some nonzero object L of Pg = P® NP+,

Proof. Let Cx -2 Cx/p be the localization functor at P € Spec’(X).

(al)=(a2). The condition P € Supp™ (M) means precisely that ¢} (M) # 0. On the
other hand, ¢5(L’) is a quasi-final object of C'x/p for every nonzero object L' of P® — P.
Therefore, g5 (M) = gp(L’). The latter means that there exists a diagram

YL LNy SNy 5 9)

such that Ker(j’) and Cok(s) are objects of P, ¢ is an epimorphism and s is a monomor-
phism. Replacing K’ by K = K/Ker(j’) and L’ by the cokernel of the composition
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17

Ker(i') — K’ == L", we obtain the diagram M®" <~ K -5 L in which j is a
monomorphism and ¢ is an epimorphism; i.e. M > L. Since ¢5 (L) is isomorphic to ¢5(L’)
and L’ is an object of P® — P, the object L belongs to P® — P too.
(a2)=(al) & (b2)=-(b1). If M = L and L ¢ ObP, then M ¢ ObP, i.e. P € Supp*(X).
(b1)=>(b2). If P € Supp™ (M) and L’ is a nonzero object of P® NP+, then ¢p (M) -
¢» (L") which is expressed by the diagram (9). Since this time L’ is a P-torsion object, the

e//

composition of Ker(j') — K’ — L" is zero. Therefore, replacing K’ by K = K'/Ker(j’),

we obtain a diagram M®" J K 5 [ < I/ in which j is a monomorphism and ¢’ is an
epimorphism. So that M = L”, where L” is a subobject of an object of P® NP~ hence
L" belongs to P® NP+, m

C2.4. Proposition. Let Py, Py be elements of Spec™ (X). Then the following
conditions are equivalent:

(CL) 7)2 g Pl ;

(b) for every monzero object My of P N Pi-, there erists a nonzero object My of
772® NPy such that My = M.

(c) There exists a nonzero object My of P¥ N'Pi- with the following property: for any
nonzero subobject L1 of My, there is an object My of 732® N PQJ‘ such that L1 = M.

Proof. (a)=(b). If P, C Py and M; is a nonzero object of P N Pi-), then Py €
Supp~(M;). By C2.3(b), there exists an object My of Py NP3~ such that M; = M.

(b)=-(a). Suppose that P, € P;; and let N be an object of P, — P;. In particular,
Py € Supp~(N). By C2.3(b), there exists a nonzero object M; of P N Pi such that
N = M,. By condition (b), M; = M, for some nonzero object My of Py NP5 which
implies that N > Ms. The latter is impossible, because N € ObPy and Ms ¢ ObPs.
Therefore Py C P;.

Obviously, (b)=(c).

(c)=(a). Replacing X by X/(P; NPs) and the objects M; and M, by their images
in Cx/(p,np,), We can assume that Py NPy = 0. Suppose that Py # 0. Then Py is a local
subcategory. If P; = 0, then Cx is local too, and nonzero objects of PP NP = 0 are
precisely quasi-final objects of C'x. Since Py # 0, it contains 0%; in particular, M; € ObPs.
This contradicts to the condition (c) according to which M; = M, for some Mo € Py NPy

Suppose now that both P; and P, are nonzero, hence both of them are local. There
exists a quasi-final object Lo of Py and a monomorphism Ly — M; such that M; /Ly €
ObP;. By condition (c), there exists a nonzero object M of Py NPs- such that Ly = Mo.
Since Ly € Py, we run into a contradiction again. Altogether shows that P, = 0. m

C2.5. The Krull filtration of Spec™ (X) and the associated filtration of X.
Fix an abelian category Cx. For every cardinal «, we define a subset &, (X)) of Spec™ (X)
as follows.
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S, (X) =0;

if « is not a limit cardinal, then &_ (X)) consists of all P € Spec™ (X) such that any
P’ € Spec™ (X) properly contained in P belongs to &, _;(X);

if o is a limit cardinal, then & (X) = U S, (X)

B<a

It follows from this definition (borrowed from [R, VI.6.3]) that & (X) consists of all
closed points of Spec™ (X).

We denote by &, (X) the union of all & (X). The filtration {& (X)} determines a
filtration

CXO‘—>CX1‘—>...CXa‘—>... (5)

of the category Cx (or the ’space’ X) by taking as Cx_ the full subcategory of Cx
generated by objects M such that Supp™ (M) C &, (X). Recall that Supp™ (M) = {P €
Spec™ (X) | M ¢ ObP}. In particular, C'x, is the full subcategory of C'x generated by all
M € ObCx such that Supp= (M) C S (X).

It follows from the general properties of supports that C'x_ is a Serre subcategory
of Cx and Spec™ (X,) is naturally identified with & (X); in particular, Spec™ (X,,) is
identified with & (X).

C2.6. The Krull dimension. For every element P of Spec™ (X,,), there is the
biggest cardinal, ht~ (P), among all the cardinals « such that P ¢ &, (X). The cardinal
ht~ (P) is called the hight of P ([R, VI.6.3]).

The Krull dimension of X is the supremum of all ht—(P), where P runs through
Spec™ (X,) (in [R] it is called the flat dimension).

An object M of Cx is said to have a Krull dimension if it belongs to the subcategory
Cx, . Finally, the ’space’ X (or the category Cx) has a Krull dimension if X = X, (that
is Cx = Cx_) and every nonzero object of C'x has a nonempty support, i.e. Cx, = O.

C2.7. The Krull dimension and the Gabriel-Krull dimension. We recall the
notion of the Gabriel filtration of an abelian category as it is defined in [R, 6.6]. Let Cx
be an abelian category. The Gabriel filtration of X assigns to every cardinal a a Serre
subcategory C'y,— of Cx which is constructed as follows:

Set fo =0.

If ais not a limit cardinal, then C x- 1s the smallest Serre subcategory of C'x con-
taining all objects M such that the localization qh_1(M) of M at CX; . has a finite

length.
If B is a limit cardinal, then C’Xg is the smallest Serre subcategory containing all
subcategories C - for a < f.

Let Cy - denote the smallest Serre subcategory containing all the subcategories C’ -
It follows that the quotient category C e has no simple objects.
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An object M is said to have the Gabriel-Krull dimension (3, if £ is the smallest cardinal
such that M belongs to C' .
8

The ’space’ X has a Gabriel-Krull dimension if X = X .

Every locally noetherian abelian category (e.g. the category of quasi-coherent sheaves
on a noetherian scheme, or the category of left modules over a left noetherian associative
algebra) has a Gabriel-Krull dimension.

It is argued in [R, VI.6] that if X has a Gabriel-Krull dimension, then the filtration
(5) coincides with the Gabriel filtration of the category Cx. In particular, X has a Krull
dimension: X = X, = X . Thus, the Krull dimension is an extension of the Gabriel-Krull
dimension to a wider class of ’spaces’.

C2.8. A description of Spec, (X,,). The filtration {&_ (X)} of Spec™ (X) induces,
via the isomorphism Spec, (X) > Spec™ (X) (defined in 6.4), a filtration {&(X)} of
the spectrum Spec, (X). We call it the Krull filtration of Spec, (X).

C2.8.1. Proposition. The spectrum Spec, (X,) of X, is naturally isomorphic to
USpecN(Xa/Xa_l), and Spec™ (X,,) is isomorphic to USpec_(Xa/Xa_l), where «

runs through non-limit cardinals. These isomorphisms are compatible with the isomor-
phisms Spec (X,,) — Spec™ (X,,) and Spec, (Xo/X0-1) — Spec™ (Xo/X0-1).

Proof. More precisely,

Spec,, (X.,) = J(&1(X) - &%, (X)),

«

where « runs though non-limit cardinals, and for every non-limit cardinal «, there is a
natural isomorphism
&7 (X) — &2, (X) = Spec,(Xa/Xa 1), (6)

The isomorphism (6) is given by the map &} (X) — T(X/X,—1) which assigns to
every element Pg of & (X) the smallest topologizing subcategory [q},_;(Pg)] of Cx/x, ,
spanned by the image of Pg.

Let P € Spec™ (X,,), i.e. P € G,(X) for some a. Consider all cardinals 8 such that
Cx, € P. Since P is a Serre subcategory, the smallest Serre subcategory spanned by all
Cx,
Spec,, (X) is an element of 7 (X) — &

a—1

coincides with Cx,_, for a non-limit cardinal a. The image Pg = P® NP+ of P in
(X). m

C2.9. The Krull filtrations and equivalences of categories.
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C2.9.1. Proposition. Let Cx and Cy be abelian categories. Any category equiva-
lence Cx N Cy induces equivalences Cx, O Cy,, for all cardinals o. In particular, ©

. . O,
induces a category equivalence Cx, — Cly,

Proof. The argument is by (transfinite) induction. The assertion is, obviously, true
for « = 0. It is also true for « = 1: if P is a closed point of Spec™ (X), then [O(P)] is a
closed point of Spec™ (V).

Suppose now that © induces equivalences Cx_ e, Cy,, for all cardinals o < 3. We

claim that then it induces a category equivalence Cx, % Cy,.

(a) If B is a limit cardinal, then it follows from the definition of the filtration (cf.
C2.5), that Cx, = ( U C’Xa)_. By the induction hypothesis, © induces a category

a<p
equivalence U Cx, — U Cy, . It is easy to show that if © induces an equivalence
a<f a<fp

between a subcategory T of C'x and a subcategory S of Cy, then © induces an equivalence
T~ — S™. In particular, © induces a category equivalence from Cx, = ( U C Xa)_ to

a<f
Cy, = ( U Cy.)

a<f
(b) Suppose now that /3 is not a limit cardinal. By the induction hypothesis, © in-

duces a category equivalence Cx,_, — Cy,_,; hence © induces an equivalence between
51 ~

quotient categories Cx/x, , — Cy,y,_,. The equivalence ©3_; induces an equiva-

lence Cix/x,_1), — C(y/vs_,),- Notice that C'x, is the preimage of C(x/x,_,), in Cx.

©p

Similarly for Cy,. Therefore © induces a functor Cx, —— Cy, and its quasi-inverse,
©5

©*, induces a functor Cy, —— Cx,. Since O is an equivalence, O is an equivalence

with a quasi-inverse ©%. m

C2.9.2. Proposition. Any category equivalence Cx -, Cy induces isomorphisms

S,(X)=6,(Y) and SJ(X) = &2(Y)

«

for all cardinals o. In particular, © induces an isomorphisms

G, (X) =5 65(Y) and SX(X) = &X(Y).

w
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Proof. The assertion follows from C2.9.1 and from the fact that the natural isomor-
phisms
S, (X) ~Spec™ (X,), 62(X)~Spec,(X,)

(0% [e%

are compatible with category equivalences for all cardinals «. In particular, we have
commutative diagrams

6, (X)  ——  G(Y) &5(X)  —— &L(Y)
Zl ll and Zl l?
Spec (X,) —— Spec (Y,) Spec,,(X,) —— Spec,(Y,)

Details are left to the reader. m

C2.9.3. Corollary. Let Cx be an abelian category and Cx N Cx an autoequiva-
lence.

(a) If P € Spec™ (X,,), then ©(P) CP < [O(P)] =P < P C [O(P)].

(b) If Pg € Specy (X)), then O(Pg) C Pg < [O(Pg)) = Pa < Pe C [O(Pg)).

(a) If P € Spec(X,,), then ©(P) CP < [O(P) =P < P C [O(P)].

Here [©(P)] and [©(Pg)) coincide with strictly full subcategories of Cx generated by
resp. O(P) and O(Pg).

Proof. (a) (i) Let ©(P) CP. If P € [O(P)], hen bt~ ([©(P)]) < ht~(P). By C2.9.1,
this implies that ht~ ([©0*O(P)]) < ht~ ([O(P )]) t~(P). But, since ©* is a quasi-inverse
to ©, [0*O(P)] = P. Therefore P = [O(P)].

(ii) The implication P C [O(P)] = [O(P)] = P follows from (i), because the inclusion
P C [O(P)] is equivalent to the inclusion ©*(P) C P.

(b) The assertion (b) follows from (a) and the observation that the isomorphism
Spec™ (X) — Spec,(X) (cf. 6.4) is compatible with the actions of auto-equivalences
on resp. Spec” (X) and Spec,,(X).

(c) The assertion (c) follows from (b) and an observation that the canonical embedding

Spec(X) — Spec,(X), P+—PnN <77)L

is compatible with the actions of auto-equivalences on resp. Spec(X) and Spec, (X).
Details are left to the reader. m
C3. Local properties of spectra and closed points.

C3.1. Closed points of spectra and Gabriel-Krull dimension. If X has a
Gabriel-Krull dimension, then the set Speci’'(X); of the closed points of Spec;'(X)
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coincides with the set Spec™ (X); of the closed points of Spec™ (X). Since in this case
Spec™ (X) = Specg, (X), the spectra Speck,(X), Spec™ (X), and Spec;’’ (X) have the
same sets of closed points.

C3.2. Lemma. Suppose that every nonzero object of C'x has a non-empty support
in Spec(X) (for instance, Cx has enough objects of finite type; cf. C2.1). Then for any
closed point P in Spec%’l(X) and for any thick subcategory T of Cx such that T C P, the
subcategory P/T of Cx /T is a closed point in Specy’ (X/T).

Proof. By 3.2(ii), P = Q for a uniquely determined by this equality element Q of
Spec(X), which is a closed point in Spec(X), since P is a closed point in Spec;’' (X).
We claim that image [¢*(Q)] of Q is T(X/T) is a closed point of Spec(X/T).

In fact, let Q' be a nonzero topologizing subcategory of C'x /T contained in [¢*(Q)].
This means that the preimage Q" = ¢* (Q') of Q" in Cx is a topologizing subcategory of
Cx which does not contain T and is contained in ¢* ([¢*(Q)]). By 5.1.1, ¢*  ([¢*(Q)]) =
Te QeT. Any object M of the subcategory T e Q @ T can be described by the diagram

M{ «—— 0
o — My — M ——s My —— 0 (1)

M —— 0

which incorporates two short exact sequences such that the objects M{ and Ms, belong to
T, and M7 € ObQ. One can see from this description that M is an object of Te Qe T —T
iff M| is an object of @ — T. It follows from the diagram (1) that M; € Ob|M]. Since
T 2 Q" C TeQeT, the topologizing subcategory Q" N Q is not contained in T. In
particular, it is nonzero. Let M be a nonzero element of Q" N Q. By hypothesis, Supp(M )
is non-empty; i.e. there exists an element Q of Spec(X) such that 0 C [M]. Thus, we
have inclusions Q C [M] € Q"N Q C Q. Since Q is a closed point of Spec(X), the
inclusion O C Q implies that QO = Q. Therefore the inclusions above can be replaced by
equalities. In particular, Q"N Q = Q, that is @ C Q" which means that Q' coincides with
[¢"(Q)] = (TeQeT)/T. m

C3.2.1. Corollary. Suppose that every nonzero object of Cx has a non-empty
support in Spec(X). Then every closed point of Speci’l(X) is a closed point of Spec’(X).

Proof. Let P be a closed point of Spec;’' (X); and let P; be an element of Spec’(X)
such that P, C P. By 3.2, P/P; is a closed point of Spec{’' (X/P;). But, X/P; is
a local ’space’, hence it has a unique closed point — 0. This shows that P/P; = 0, i.e.
P=Pi. =
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C3.3. Proposition. Suppose that Cx is an abelian category with the property (sup).

Let {T; | i € J} be a finite set of Serre subcategories of Cx such that ﬂ T; =0. Then
i€J
(a) A point P of Spec™ (X) is closed iff P/T; is a closed point of Spec™ (X/T;) for
every i € J such that T; C P.
(b) Suppose that every nonzero object of C'x has a nonzero support m Spec(X). Then
a point P of Specy! (X) is closed iff P/T; is a closed point of Specy (X/T;) for every
1 € J such that T; C P.

Proof. (a) If P € Spec™ (X), then P/T; € Spec™ (X/T;) for all i such that 7, C P.
And if P is a closed point, then P/7T; is a closed point.

In fact, if 7; C P, then P/T; is an element of Spec’ (X/7;); and P/T; is a Serre subcat-
egory of Cx /T; (due to the reflectivity of the Serre subcategory 7; which is a consequence
of the property (sup)). Therefore, it belongs to Spec™ (X/7;). If P’ € Spec™ (X/T;)
and P’ C P, then the preimage P” of P’ in Cx is a Serre subcategory which belongs
to Spec™ (X) and is contained in P. Thus, if P is a closed point of Spec™ (X/7;), then
P"” =P, hence P’ = P/T,.

(al) Conversely, let P/T; be closed for all i € J such that 7; C P. Then we claim that
P is closed. If the number Card(J) = 1, then the statement is true by a trivial reason. In
the general case, let P’ be an element of Spec™ (X) such that P/ C P. And let J P" denote
the set {i € J | T; € P’}. Since J is finite, by 9.3, there exists ¢ € J such that 7; C P’.

Therefore Card(J%") < Card(J). By (the end of the argument of) C1.4.1(c) (or [R4, 4.2]),

=(OTvP =TvP) = (] (TVP)

i€J i€J icJP’

So that {7/ = (T; VP")/P’, i € JP'} is a set of Serre subcategories of ' Cx /P" whose
intersection is zero. The point P = P /P’ of Spec™ (X/P') is such that that P/7; is a closed
point of Spec™ (X/(7;VP') for all i € JP' such that 7, C P. Since Card(JP') < Card(J),
by induction hypothesis, P is a closed point of X/P’. The latter ’space’ being local, this
means that P = 0, or, equivalently, P = 73’

(b) If P is a closed point of Spec;’ (X), then, by C3.2, P/T; is a closed point of
Spec;" (X/T;) for every i € J such that T CP.

Conversely, suppose that P € Spect (X ) is such that P/7; is a closed point of the
spectrum Spec;’' (X/7;) if T; € P. Let P’ be an element of Spec;’' (X) such that P’ C P.
By 9. 3 there exists ¢ € J such that 7; C P’; in particular, 7; C P. Since P’/7; is a point of
Spec;'(X/T;) and P/T; is a closed point, the inclusion P’/7; € P/T; implies that P’/7;
and P/7; coincide. Therefore, P’ = P. m
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C3.3.1. Corollary. Suppose that Cx is an abelian category with the property (sup).

Let {T; | i € J} be a finite set of Serre subcategories such that ﬂ T; =0 and for every
i€J

i € J, any element of Spec™ (X/7T;) contains a closed point of Spec™ (X/7T;). Then every

element of Spec™ (X) contains a closed point of Spec™ (X).

Proof. Let P € Spec™ (X). Since ﬂ Ti =0, there exists Jp ={i € J | T; C P}
i€J

is non-empty. Fix an i € Jp. By hypothesis, P; C P, where P;/7T; is a closed point of
Spec™ (X/T;). If Jp, = {i}, then, by C3.3(a), P; is a closed point of Spec™ (X). If Jp,
contains more than one element, we take j € Jp, — {i} and repeat the argument replacing
P by P;; and so on. Since J is finite, the process stabilizes. As a result, we find an element
P’ of Spec™ (X) such that P* C P and P’/7; is a closed point of Spec™ (X/7; for every
j € Jp,. By C3.3(a), the latter means that P’ is a closed point of Spec™ (X). m

C3.3.2. Corollary. Suppose that Cx is an abelian category with the property (sup).
Let {T; | i € J} be a finite set of Serre subcategories such that ﬂ T; =0 and for every
icJ
i € J, the set Spec; (X/T;)1 of the closed points of Specy (X/T;) contains the set
Spec™ (X/T;)1 of the closed points of Spec™ (X/T;). Then Spec™ (X); C Spec;” (X);.
Suppose that, in addition, one of the following conditions holds:
(a) For all i € J, every element of Spec™ (X/T;) contains a closed point.
(b) Every nonzero object of Cx has a non-empty support in Spec(X).
Then Spec™ (X); and Spec;” (X); coincide.

Proof. Let P be a closed point of Spec™ (X). By C3.3, P/7; is a closed point of
Spec™ (X/T;) for alli € Jp = {j € J | T; C P}. By hypothesis, P/7; is a closed point of
Spec{' (X/T;) for all i € Jp. By 7.1, P € Spec;’' (X). Since P is a closed point of the
space Spec™ (X), it is, definitely, a closed point of its subspace Speci ’1(X ). This shows
the inclusion Spec™ (X); C Specy” (X);.

(a) Let P € Spec;’(X). Since P is an element of Spec™ (X), by €3.3.1, P D P/,
where P’ is a closed point of Spec™ (X). By C3.3(a), for everyi € Jpr ={j € J | T; C P},
the quotient subcategory P’/7T; is a closed point of Spec™ (X/7;), hence, by hypothesis, it
belongs to Spec{"' (X/T;). By 7.1, the latter implies that P’ belongs to Spec;’' (X). Since
it P’ is a closed point of Spec™ (X)), it is a closed point of Spec;™! (X).

(b) If every nonzero object of C'x has a non-empty support, then, by C3.2.1, we have
the inverse inclusion: Spec;'(X); C Spec™ (X);. m

C3.4. Proposition. Let Cx be an abelian category and {T; | i € J} a finite set of

thick subcategories such that ﬂ Ti = 0. Suppose that each category Cx 7, has enough ob-
ieJ
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jects of finite type. Then closed points of Spec(X) are in a natural bijective correspondence
with the isomorphism classes of simple objects of C'x.

Proof. Let u} denote the localization functor Cx — Cx/7;. Let M be an object of

Spec(X) such that [M] be a closed point of Spec(X). Since ﬂ T; =0, thereisani e J
i€J

such that M ¢ T;. Therefore, [uf(M)] is a closed point of Spec(X/7;). Since the category

Cx,1; = Cx/T; has enough objects of finite type, all closed points of Spec(X/7;) corre-

spond to simple objects. In particular, v} (M) is the direct sum of a finite number of copies

of a simple object u} (L), and there is a monomorphism «} (L) — u} (M ). This monomor-

phism is described by a diagram L <>~ L’ ' M such that uf(s) is an isomorphism and
Ker(j') belongs to 7;. Since the object M is T;-torsion free, the object L; = L'/Ker(j)
is T;-torsion free too. It follows that w}(L;) is isomorphic to «}(L). In particular, L; is a
nonzero subobject of M. Since M € Spec(X), the object L; also belongs to Spec(X) and
[L;] = [M]. So, we replace M by L;. Repeating this procedure consecutively for all j € J
such that M does not belong to 7;, we replace M by its subobject, N such that for any
J € J, the object uj(N) is either zero, or simple. Since N belongs to Spec(X), it follows

that for every nonzero monomorphism N’ I N , its image u}(h) is an isomorphism for

every ¢ € J. The condition ﬂ 7; =0 means that the family of localization functors
ieJ

{Cx RNyo /Ti | i € J} is conservative; hence h is an isomorphism. This shows that NV is

a simple object. Therefore, M is isomorphic to the coproduct of a finite number of copies
of N. m

The following proposition is a refinement of 1.6.2.

C3.5. Proposition. Suppose that Cx is an abelian category with the property (sup).

Let {T; | i € J} be a finite set of Serre subcategories of Cx such that ﬂ T: =0, and for
every i € J, the category Cx 7, has enough objects of finite type. TheanJ

(a) The intersection Spec(X) [ Spec(X?°) coincides with the set Spec(X )y of closed
points of Spec(X), and closed points of Spec(X) are of the form [M], where M runs
through simple objects of Cx .

(b) Closed points of Spec™ (X)) are in bijective correspondence with the isomorphism
classes of simple objects of C'x .

Proof. (a) By C3.4, closed points of Spec(X) are of the form [M], where M runs
through simple objects of C'x. Since simple objects of Cx and CY¥ = Cxo are the same,
the set Spec(X); of closed points of Spec(X) is contained in Spec(X) N Spec(X?).
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(al) Let & denote the finite cover {U; = X/T; —= X | i € J} associated with
{Ti | i € J}. And let Spec};' (8l) = {P € TH(X) | P/T; € Spec,' (U;) if T; C P}. By 7.1,

the natural map Speci ’l(X ) — Spec}p’l(ﬂ) is an isomorphism. This isomorphism and

the embedding Spec;"' (X°) — Spec}p’l(ilo) induce an injective map
Spec{! (X) m Spec{! (X°) —— Spec;};1 (L0) m Spec;’l(uo), (2)

where

Specsl,_;l(il) ﬂ Spec;’l(ﬂ") =
{P € Spec™ (X) | P/T; € Spec;* (U;) ﬂ Spec; (U?) if T; C P;}.

Since each category Cy, = Cx/T;, i € J, has enough objects of finite type, it follows
from 1.6.2 and the isomorphism Spec(U;) <= Spec;"' (U;) (see 3.2(ii)) that the intersec-
tion Spec;’ (U;) (N Spec;”! (U?) coincides with the set of closed points of Spec;’' (U;) and
these closed points are in bijective correspondence with isomorphism classes of simple ob-
jects of the category Cy,. It follows now from (the argument of) C3.4 and the isomorphism
Spec(X) = Spec;” (X) (see 3.2(ii)) that the map (2) above is bijective.

(b) Notice that the conditions of this proposition imply the conditions (a) and (b) of
C3.3.2. In particular, by C3.3.2, the spectra Spec™ (X) and Spec%’l(X) have the same
closed points. The assertion follows this fact and from (a) above. m

C3.6. Semilocal ’spaces’.

C3.6.1. Proposition. Suppose that there is a finite subset {P; | i € J} of Spec™ (X)

such that m P;i=0. Then P € Spec™ (X) is a closed point iff it is a closed point of
i€J
Spec%’l(X), i.e. it is of the form P = (L) for an object L of Spec(X).
The set of closed points of Spec™ (X) coincides with the set of minimal elements of
{Pi | 1€ J},

Proof. Let P be a closed point of Spec™ (X)). By 9.3, the set Jp ={i € J | P; C P}
is not empty. Since P is a minimal element of Spec™ (X)), the set Jp consists of all i € J
such that P; = P. Thus, P/P; is the zero subcategory of Cx /P; which is the only closed
point of the local space X/P; = X/P. By 7.1, P is an element of Spec;’' (X). Since
Spec;"' (X) is a subset of the spectrum Spec™ (X) and P is a closed point of the latter,
it is a closed point of Spec%’l(X).

This argument shows that the set of closed points of Spec™ (X) is a subset of the set
of minimal elements of {P; | i € J}, and that it is a subset of closed point of Spec;' (X).

Notice that every minimal element of {P; | i € J} is a closed point of Spec™ (X).
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In fact, let P; be a minimal element of the set {P; | i € J}, and let P’ € Spec™ (X)
be a subcategory of P;. The set Jp, = {i € J | P, C P’} is non-empty, and P,,, C P’ C P;
for every m € Jp/. Since P; is a minimal element, this implies that P,, = P’ = P;.

Let P € Spec;'(X). The set Jp = {i € J | P; C P} is not empty. Let P; be a
minimal element of {P; | j € Jp}. Then, by the argument above, P; is a closed point of
Spec™ (X), hence it is a closed point of Spec{!(X) which is contained in P. Thus, if P
is a closed point of Spec;’’ (X), then P; = P. m

C3.6.2. Corollary. Let C'x be an abelian category. The following conditions are
equivalent:

(a) There is a finite subset {P; | i € J} of Spec™ (X) such that m P; = 0.

i€J

(b) The set Spec™ (X)1 of closed points of Spec™ (X) is finite, and the intersection

ﬂ P s zero.
PeSpec™ (X)1

(c) The set Spec™ (X); is finite, and the support in Spec™ (X) of any nonzero object
of Cx contains a closed point.

(d) The set Spec;’' (X)1 of closed points of Spec,’ (X) is finite, and the support in
Spec(X) of every nonzero object of Cx contains a closed point.

Proof. Obviously, (b) = (a). The implication (a) = (b) follows from C3.6.1.
(b) < (¢). If m P = 0, then for every nonzero object M of Cx, there
PeSpec™ (X)1
exists a closed point P of Spec™ (X) such that M ¢ ObP, which means precisely that
P € Supp~ (M). Conversely, if every nonzero object of Cx has an element of Spec™ (X);
in its support, then ﬂ P =0.
PeSpec™ (X)1
(d) = (a). The support in Spec(X) of a nonzero object M contains a point Q, that
is @ C [M], means precisely that [M] ¢ Q, or, equivalently, M ¢ 0b0. By 3.2(ii), Q is a
closed point of Spec(X) iff Qe Spec;! (X);. Therefore, the condition (d) implies that
N P=o
PESpeci’l(X)l
The implication (a) = (b) follows from C3.6.1. m

C3.6.3. Definition. Let C'x be an abelian category. We call the ’space’ X semi-local
if the equivalent conditions of C3.6.2 hold.



Chapter 111
Spectra, Associated Points, and Representations.

Associated points. Each of the spectra gives rise to the corresponding notion of
associated points. Let M be an object of the category Cx. An element Q of Spec(X)
is called an associated point of M, if @ = [L] for a nonzero subobject L of M which is
O-torsion free (that is L does not have nonzero subobjects which belong to @; equivalently,
L is right orthogonal to Q) We denote the set of associated points of M by ss(M).

The set Ass— (M) of associated points in Spec™ (X) of the object M consists of all
P € Spec™ (X) such that the localization Mp of M at P has a closed associated point;
that is Mp has a nonzero subobject which belongs to the smallest topologizing subcategory
of Cx/P. If Cx /P has simple objects (which is the case when Cx is locally noetherian,
or, more generally, has a Gabriel-Krull dimension), then the condition means precisely
that Mp has a nonzero socle. If C'x is the category of coherent sheaves on a noetherian
scheme, then this notion coincides with the Grothendieck’s notion of associated points
(prime cycles) of a coherent sheaf.

Associated points in Spec?(X) are defined similarly to those in Spec(X), and the set
of associated points of an object M is denoted by 2ss.(M). The reader can now easily
figure out what is the set 2ss_ (M) of associated points of M in Spec, (X).

The natural embeddings

Spec(X) —— Spec’(X)

| l 0

Spec™ (X) —— Spec, (X)

~—

induce the corresponding embeddings of the associated points

Ass(M) —— Ass (M)

l l

Ass™ (M) —— Uss; (M)

All four types of associated points have properties analogous to the known properties
of associated points of modules over commutative rings (see C3).
Induction problem. Let X and X be ’spaces’ represented by abelian categories,

resp. Cx and Cx, X i> X a continuous morphism of ’spaces’, P a point of the spectrum
of X. The induction problem is to find representatives M of the spectrum of X such that
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P is an associated point of f.(M). Here by the spectrum of a ’space’ X we understand
usually Spec!(X) or Spec(X) and sometimes one the remaining two spectra, Spec; (X)
or Spec™ (X), more precisely, their ’dual’ versions, Spec® (X) and Spec_(X) — natural
extensions of respectively Spec?(X) and Spec(X) introduced in 2.9.4.

This Chapter is concentrated around a (spectral version of the induction) construction
which gives a solution of this problem in the case when f is a locally affine morphism and
the pair (f,P) satisfies certain additional conditions. We explain first its special case which
can be formulated without preliminaries.

A special case of the construction. Let A and B be associative unital k-algebras,
Cx = B—mod, Cx = A—mod, and the morphism X 4 X is induced by a k-algebra mor-
phism A -2+ B. Fix a simple A-module P. Let Bp denote the class of all A-subbimodules
N of B which are flat as right A-modules and such that N ®4 P is isomorphic to a direct
sum of copies of P. We call the supremum, Bp, of the family Bp the stabilizer of P in
B. Pick a simple Bp-module M whose restriction to A is isomorphic to the direct sum of
copies of P. The B-module B ®p, M has the largest B-submodule, tp(B ®p, M), whose
restriction to A does not have any subquotients isomorphic to P. We denote by £p(M)
the quotient module B ®p, M/tp(B ®p, M). Under certain additional conditions, the
(multi-valued in general) map P —— £p(M) produces simple B-modules.

An effect of noncommutativity. Notice that the above construction is useless if
the algebras are commutative, because in this case, the stabilizer Bp coincides with the
whole algebra B. In general, the size of Bp over A can be regarded as a measure of
the noncommutativity of the data (A — B, P). In the best, noncommutative, case, the
stabilizer Bp coincides with the image of A which makes the construction look particularly
familiar: SP(M) ~B®y M/tp(B XA M)

The insufficiency of the special case. With rare exceptions, most of isomorphism
classes of simple B-modules cannot be reached this way. But, under certain finiteness
conditions, all isomorphism classes of simple B-modules, more generally, all points of
the spectrum of X (where Cx = B — mod), can be realized if we allow P run through
representatives of all, not necessarily closed points of the spectrum of the 'space’ X, where
Cx = A — mod. The construction in this case becomes more subtle.

Besides, it is important to consider a non-affine version of this construction in order
to include into the picture D-modules on (quantized and classical) flag varieties and other
(commutative and noncommutative) schemes. Therefore, algebras are replaced by ’spaces’
represented by abelian categories and morphisms of algebras by locally affine morphisms
of ’spaces’. The meaning of the last words is explained above.

Reduction to the affine case and gluing. It follows from the results of [R7] that
if a locally affine morphism X L X admits a finite affine cover {U; X5 % | i€ J}, then
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the problem can be split into solving it for each affine morphism Uj; % X and checking
certain glueing conditions (explained in Section 7). If the spectrum is Spec?(X), then the
same holds for arbitrary infinite covers as well.

The construction. A natural setting consists of an abelian category C'y endowed
with an action of a svelte monoidal category £ on Cx given by a monoidal functor ® with
values in exact continuous (i.e. having a right adjoint) endofunctors of C'x. If Cx has
small limits and colimits (say, it is a Grothendieck category), then the forgetful functor
s« from the category Cy of ®-modules to the category C'x is a direct image functor of an
affine morphism, 2 X , hence (by Beck’s theorem) the category Cy can be replaced by
the category of modules over the monad F,, associated with (the inverse and direct image
functors of) ¢ and functor ¢, by the forgetful functor F, — mod — Cx.

To each point P of the spectrum of X, there corresponds its stabilizer which is the full
monoidal subcategory £y of £ (defined in 2.1.1). The category Cy,, of modules over the

(induced by EIS) action (f(p) of g('p) is equivalent to the category of modules over a monad
‘7:9%’ which is also called the stabilizer of P. Thus, we have a commutative diagram

fz
Ql—>91"p

N Pp
X

of affine morphisms. Let £p denote the composition of the functor f7, and the functor which
assigns to every object of the category Cy the quotient of this object by its ! (73)-torsion,
where P is the Serre subcategory of C'x corresponding to P.

Let Spec?(2) denote the family of all objects M such that [M]. = Q is an element
of the spectrum Spec?(A) and M is ¢Q-torsion free. In other words, objects of Spec?(A)
are representatives of elements of the spectrum. Let Spec? (Ap) denote the family of all
objects of Spec?(2p) such that P is an associated point of their image in Cx. If the
functor f7 is exact and faithful and the action ® satisfies certain ’ampleness’ conditions,
then the functor £p transforms every object of Spec? (p) into an object of the spectrum
of the ’space’ 2. Moreover, every object of the spectrum of 2 whose image in Cy,, has an
associated point which belongs to Spec? (p) is equivalent to the image of this associated
point by the functor £5. The functor £» maps simple objects from Spec? (Up) to simple
objects of Cy (see Theorem 2.2 for details).

Finiteness conditions. In the construction above, given a representative M of a
point B of the spectrum of A such that ¢. (M) has an associated point P, one needs certain
finiteness conditions which guarantee that 8 can be obtained via the construction; i.e.
that it coincides with [£p (V)] for some object V of Specl’Ap. The most straightforward
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finiteness conditions say that P is an associated point of p.(M) of finite multiplicity.
The latter means that the local category Cx /P has simple objects and the localization
of v, (M) at P has a finite socle. The length of this socle is called the multiplicity of the
associated point P in u.(M). This finiteness condition works for the spectra Spec™ (—)
and Spec_ (—) and, in certain cases, for Spec(—) and Spec?(—).

Holonomic objects. Given a continuous morphism I e X , we call an object M
of the category Cy holonomic over X if each nonzero subquotient of ¢, (M) has associated
points in Spec, (X) and all these associated points are of finite multiplicity.

If C'x is the category of quasi-coherent sheaves on a smooth scheme X and Cy is the
category of D-modules on X', then holonomic objects are precisely holonomic D-modules.

If Cx is the category of quasi-coherent sheaves on the quantum flag variety of a
semisimple Lie algebra g and Cg is the category of quasi-coherent U,(g)-modules on X
(cf. [LR2]), then holonomic objects are called holonomic quantum D-modules.

All simple holonomic objects can be obtained via the described above construction
(i.e. by applying the functors £p). Thanks to their functorial properties, the description
of holonomic objects is directly reduced to their description on elements of any affine cover.

The first two sections contain preliminaries. Section 1 provides a short dictionary
for 'spaces’ and morphisms of 'spaces’. We remind the notions of continuous, affine, and
flat morphisms of ’spaces’ and basic facts about them needed in the main body of the
text. Section 2 gives a short sketch of spectral theory of ’spaces’ represented by abelian
categories and related notions and facts.

Sections 3 and 4 are dedicated to the mentioned above construction of points of the
spectrum Spec? (). We conclude Section 4 with the reduction to the case when Cx is
an element of Spec?(X); i.e. Cx is the generic point of X. This reduction is useful for
analyzing special cases. Two of them are considered in Section 3. The first one is when the
functor F, = ¢, ™ is isomorphic to a direct sum of auto-equivalences. The second case
is when the functor Fi, differential and exact. The functor F, being differential implies
that F,, (as well as every its subquotient) preserves each Serre subcategory of Cx. In
combination with the exactness, this implies that F, is compatible with localization at
any Serre subcategory. In each of these two cases, we are able to obtain a much more
detailed picture and in the first case a convenient variant of Theorem 2.2.

Curiously, both cases (which are, in a sense, perpendicular to each other) appear in
the example of the Weyl algebra A,,. Recall that A,, is the k-algebra generated by x;, y;
subject to the relations [z;,y;] = di;, [zi,2;] =0 = [y;,y;] for all 1 <4, 5 < n.

Taking as C'x the category of modules over the polynomial algebra k[y| = k[y1, ..., ynl,
and Cy = A, —mod, we obtain a differential monad on X with F, = A, Q[ —.

Taking as C'x the category of modules over the polynomial algebra k[¢] = k[¢1, ..., &n],
where §; = z;y;, 1 <1i < n, we obtain the functor F, = A, ®j[¢) — which is a direct sum
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of auto-equivalences of the category k[£] — mod.
This is discussed in more detail in Section C1 of “Complementary facts”.

One of the main tools of studying spectra is the localization at appropriate Serre sub-
categories. The localization simplifies considerably the picture, so that in many cases it is
not difficult to compute the spectrum of the quotient ’space’. But, unlike the commutative
case, in general, not all points of the spectrum of the quotient ’space’ corresponding to
an ’open’ subspace are localizations of points of the 'space’ we started with. All we can
say is that these points come from the counterpart Spec’ (X) of the spectrum Spec, (X)
(introduced in 2.9). Notice that Spec, (—) and, therefore, Spec’ (—), are functorial with
respect to localizations at Serre subcategories. These are some of the reasons why we need
an analog of Theorem 2.2 for Spec’ (X) which is given in Section 4.

In Section 5, we remind local properties of the spectra which allow to construct ele-
ments of the spectra in the case of locally affine morphisms and simplify their construction
in affine cases. We illustrate the general constructions of this work by a rough sketch of
their applications to D-modules on classical and quantum flag varieties. In the classical
case, the local properties of the spectra allow to reduce the study D-modules on the flag
variety to the study of modules over the Weyl algebra A,,, where n is the dimension of the
flag variety. Following the philosophy of this work, we study the spectrum of the affine
scheme Sp(A,,) via hyperbolic coordinates, k[{] — A, mentioned above. Some details
of this study are provided in “Complementary facts”. It is worth to mention that Weyl
algebras play also a crucial role in the representation theory of nilpotent Lie algebras:
if g is a finite-dimensional nilpotent Lie algebra over an algebraically closed field of zero
characteristic, then the set of primitive ideals of its universal enveloping algebra U(g) is
parameterized by the orbits of adjoint action on the dual space g*; and for any primitive
ideal J, the quotient algebra U(g)/J is isomorphic to the Weyl algebra A,,.

In “Complementary facts”, besides of a fragment of the spectral theory of Weyl al-
gebras obtained via their hyperbolic structure (sketched in Section C1), there are some
remarks, in Section C2, about application of our induction machinery to natural sub-
algebras of the enveloping algebras and their quantum analogs. Thus, we observe that
highest weight modules are recovered by applying our induction functor together with
Harish-Chandra homomorphism to Cartan subalgebras. Similarly in the case of quantized
enveloping algebras. More curious possibilities appear if we use upper triangular part
instead. Section C3 is dedicated to associated points and produces a noncommutative
version of the classical facts of commutative algebra. Section C4 contains facts on affine
morphisms and differential monads, both play a big role in the main body of the text.

1. Actions of monoidal categories, stabilizers of points, induction functors.

1.1. Actions and continuous actions of monoidal categories. Let & =
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(€,,L,a;¢,t) be a svelte monoidal category with the product ®, the unit object I, the

associativity constraint a, and natural isomorphisms I ® Idg Lo de = Ide ® 1.

An action of the monoidal category £ on a svelte category Cx is a monoidal func-
tor & = (¥, ¢, ) from & to the monoidal category End(Cx) = (End(Cx),o,Idc,) of
endofunctors of the category Cx. Recall that here ® is a functor &€ — End(Cx), ¢ a
functorial morphism ®(V) o ®(W) — ®(V © W), and ¢9 a morphism from Idc, (- the
unit object of Evnd(C’X)) to ®(I) — the image of the unit object of €. These morphisms
are related via the commutative diagrams

a)oamoaz) L swewjesz) L swow)ez)

id | 2| @(ay2)
2V)oy = Py woez

V)0 BW) 0 B(Z) s aW)erW o) 7 B(VeW) e 2)

(1)

sV oaM 2 o) M smoan)

b, | id | | 6.0 @)
(L) ®(xy,)
dVoel) +— oV) — (I0V)
for all V,W, Z € ObE.

An action & -2 E\/nd(CX) will be called continuous if ® takes values in the full

monoidal subcategory End.(Cx) = (End.(Cx),o,Idc,) of Evnd(C’X) generated by all
continuous endofunctors of the category Cx.

1.1.1. Example: actions of the trivial monoidal category and monads. Let Ee
be the trivial monoidal category; i.e. the category consisting of one object and one (hence
identical) morphism. The category of actions of &, on the category Cx is isomorphic to
the category Mon(Cx ) of monads on the category Cy.

In fact, each action ® = (@, ¢, ¢o) is determined by the image, F' = ®(I), of the
unique (unit) object of the category £, and the morphism F o F’ %, F. The fact that
® is a monoidal functor, means precisely that ¢ is associative, i.e. ¢ o F'¢p = ¢ o ¢F, and
Ide, 2% F is the unit of F = &(I): ¢ o Fyy = idp = d o oF.

The map ® — Fz = (®(I), ¢) extends naturally to an isomorphism from the category

of actions of & on Cx and the category of monads on Cx. This isomorphism induces an
isomorphism between the category of continuous actions of & on C'x and the category of
continuous monads on C'x.
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1.2. Modules over an action and the associated monad. Fix a continuous
action ® = (@, ¢, ¢g) of a svelte monoidal category £ = (£, ®,1,a) on the category Cx.
The forgetful functor

(®/X) — mod BRAN Cx

preserves small limits. Suppose that the category Cx is small-complete (i.e. it has small
limits). Since the categories C'x and & are svelte, this implies, by Freyd adjoint functor
theorem, the existence of a left adjoint, ¢*, to ¢.. The functor ¢. is exact and conservative.
Therefore, by Beck’s theorem, the category (®/X) — mod is equivalent to the category of
modules over a monad, F, = (Fy, 1,), where F,, = ¢,¢*. More precisely, the forgetful
functor ¢, is equivalent to the forgetful functor F, — mod — Cx.

Notice that the latter implies that the category (®/X) — mod is small-complete too.

Assume in addition that the category C'x has small colimits. It follows from the fact
that the functor ® takes values in the category of continuous endofunctors of C'x that the
functor ¢, preserves small colimits, hence it has a right adjoint, ¢'. The latter is equivalent
to the fact that the monad F, is continuous.

1.3. Colimits of actions. Identifying the category (&) /X)) —mod of ®-modules with
the category (F,/X)—mod, we can take as ¢* the functor which assigns to every object V'
of the category Cx the F,-module F, (V) = (F,(V), 11,(V)). On the other hand, ¢*(V)

o | | £ (V) N
is an (®/X)-module; that is we have an action ®(—) o F,,(V) —— F (V) of £ on F,(V)

which is functorial in V. Taking the composition of this action with the morphism

B(-) = B(—) o Idey 5 B(~) 0 (V)

(where 7, is an adjunction arrow), we obtain a cone ®(—) e F,. Note that monads on
Cx can be identified with constant monoidal functors from & to Eﬁ/d(C’ x). One can see
that the cone ®(—) —% F, is a morphism of monoidal functors d— Fo.

Let MF (6’N , g ) denote the category of monoidal functors from & to a monoidal category
& and Mon(Cx) the category of monads on C'x. Let J% denote the embedding

Mon(Cx) — MF(E, End(Cx))

which assigns to every monoid on C'x the corresponding constant monoidal functor; and
let Jx« be functor which assigns to each monoidal functor ® from & to End(Cx) the
monad F,. The map which assigns to every monoidal functor ® from £ to End(Cx) the

morphism o 1% F, is an adjunction arrow Id AN xxJx- The other adjunction arrow
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is the identical morphism. This means that the monad F, corresponding to a monoidal
functor ® = (P, ¢) is the colimit of this monoidal functor.

1.4. Colimits of continuous actions. Suppose now that the category C'x has small
limits and colimits. Let MF. (€, End(Cx)) denote the full subcategory of MF(E, End(Cx))

whose objects are continuous actions of £ on the category C'x. And let 9Mon (Cx ) denote
the category of continuous monads on C'x. The embedding

Mon(Cx) —s M(E, Bnd(Cx))

induces an embedding

Tk o
Mon(Cx) —— MF. (&, End(Cx)).

Since the monad F, corresponding to the continuous action P is continuous, the right
adjoint Jx« to J% induces a right adjoint

MF(E, End(Cx)) ——s Monc(Cx)

to the functor J% which assigns to every continous action P = (®, ¢) of the monoidal

category £ on the category Cx its colimit — a continuous monad F, = (F,, ).
It follows from the fact that functor ® takes values in the category of continuous
endofunctors, that the functor F, = ¢.¢" is the colimit of ®.

_ 1.5. Functorialities. These correspondences are functorial in the following sense: if
&’ is another svelte monoidal category and

~ 2 ~

g —— &

¥y 5
End.(Cx)

is a quasi-commutative diagram of monoidal functors, then the monoidal functor ¥ induces

~ For ~
a pull-back functor (®/X) — mod —— (®'/X) — mod such that the diagram

(®/X) — mod L (®'/X) — mod

AN @, (1)
Cx
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commutes. If the category C'x is small-complete, then, by the argument above, the functors

~ . ~ @

(®/X) — mod BN Cx and (®'/X) — mod —— Cx are equivalent to the forgetful
functors, respectively (F,/X) —mod — Cx and (F,/X) — mod — Cx.
P

The functor f, corresponds to the restriction functor F, —mod —— F, — mod

along a monad morphism F- N Fo. In particular, the functor f. has a left adjoint, §*.

Thus, the diagram (1) is equivalent to the diagram of canonical direct image functors of

the commutative diagram

Sp(v)
Sp(F,/X) —— Sp(Fy/X)
N Y (2)
X

corresponding to a monad morphism F- LN F,. Notice that the monads F, and F,
being colimits of monoidal functors, are defined uniquely up to isomorphism. By the
universal property of colimits, the monad morphism 1 is determined uniquely, once the
monads F, and F, are fixed. Therefore, the map which assigns to the diagram (1) the

monad morphism F N F, is a functor, I'x,, from the category Act.(Cx) of continuous
actions of (svelte) monoidal categories on the category Cx to the category Mon(Cx) of
monads on Cx. The functor I'x, has a right adjoint, Iy, which assigns to each monad
F = (F,pn) on Cx the forgetful strict monoidal functor

— I (F) ——
End.(Cx)/F —— End.(Cx).

Suppose that, in addition, the category Cx is small-cocomplete. Then the monads
F, and F,s are continuous, or, equivalently, all morphisms of the diagram (2) are affine.
The category End.(Cx)/F has a canonical final object — the pair (F,idg), which implies
that the adjunction arrow I'x, o I”X — Id is an isomorphism, or, what is the same, the
functor I'y is fully faithful; i.e. T'x, is equivalent to a localization functor.

The functor I'x, has a left adjoint (forcibly fully faithful), I'},, which assigns to every

monad F on Cx the monoidal functor from the trivial monoidal category to E}LJdC(C’ x)
sending the unique object to F' (cf. 1.1.1).

1.5.1. Example: the stabilizer of a set of subcategories. Let B be a set of
full subcategories of the category Cx; and let £z be the full subcategory of the category
& generated by all objects L such that ®(L)(A) C A for each A € B. It follows that &g

is a monoidal subcategory of £ and the restriction ®5 of the monoidal functor ® to the
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subcategory &g is a continuous action of éN’B on C'x. Thus, we have the category of 53—

~ FB« ~
modules and the restriction functor (®/X) — mod =, (®Pp/X) — mod corresponding
to the embedding £g — £.

~ Pr*
If the category Cx is small-complete, then the functor (®g/X) — mod 2, Oy s
equivalent to the forgetful functor .7-"% — mod — Cx for a monad .7-"% on Cx and we
obtain the commutative diagram

Sp(F,/X) —2 Sp(F,. /X)
0\ . P (3)

. . P
corresponding to a monad morphism F, —5 Fo.
If, in addition, the category Cx is small-cocomplete, then the monads F, and F,
are continuous and, therefore, all morphisms in the commutative diagram (3) are affine.

1.6. Stabilizers of points and related functors. We fix a svelte abelian category
C'x together with a continuous action of a svelte monoidal category € = (£,®,1,a) on Cx
given by a monoidal functor ® = (@, ¢, ¢g) from £ to the monoidal category @EC(C x) of
continuous ezact additive endofunctors of C'x. We shall assume that the category C'x has
small limits and colimits.

1.6.1. The stabilizer of a point of the spectrum. Fix a point P of Spec?(X).
We shall write (P) for pair {P, P}, where P is the corresponding to P Serre subcategory.

We define the stabilizer of the point P as the stabilizer £p) of the pair (P) = {P,P}.
We have a commutative diagram of affine morphisms

fp
%l =Sp(F,/X) —— Sp(}-@P/X):le
e\ Pp (1)
X

where f,, = Sp(¢,,) for a monad morphism F, Ve, Fo.

1.6.2. The functor £p. Fix an element P of Spec’(X). We denote by £p the

*

composition of the functors Cy, T Cy and

\

Cy LN Co, M +— M/tors _,

" (73>(M)'
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Notice that since P is a Serre subcategory of Cx and ¢, has a right adjoint, the
preimage o, }(P) of P is a Serre subcategory of Cy. Thanks to the property (sup), every
Serre subcategory, S, of Cy is coreflective, i.e. the inclusion functor S < Cy has a right
adjoint, torsg : Cyqy — S which assigns to every object M its S-torsion. In particular,

torsw,l(ﬁ)(M) is well defined for all M € ObCly.

1.6.2.1. Proposition. Let P € Spec?(X) be such that an inverse image functor £

of the morphism 2 f—P> Ap is exact. Then the functor £p is exact.

Proof. The functor £p is the composition of two right exact functors, {5 and ¥, , hence
it is right exact. It remains to verify that £p maps monomorphisms to monomorphisms.

Let K —5 M be a monomorphism in Cyq,,. Consider the commutative diagram

) 0 g
e | | e (1)

£p ()
er(K) 20 epn)

and its image by the localization Cy -, Co /ey 1(73) Since, by hypothesis, the func-

tor f5 is exact and the localization functor ¢* is exact, ¢*fp(K) —— ¢*fp(M) is a

monomorphism. The arrows ¢*§5(K) & ¢*Lp(K) and ¢*fp(M) M ¢ Lp(M) are
isomorphisms. Therefore ¢*£p(K) q*£—>P(j) q*£p (M) is a monomorphism. Since the object
£p(K) is Ker(q*)-torsion free, £p(K) Sp—())> £p(M) is a monomorphism. m

1.6.3. Remark. The notion of the stabilizer of a point, the definition of the functor

£p, and Proposition 1.6.2.1 make sense if Spec?(X) is replaced by any of the remained
spectra considered here: Spec(X), Spec_(X), Spec® (X), or Spec(X).

We need the following assertion which is of independent interest.

1.7. Proposition. Let Cy be an abelian category and Cy <— Cy a functor having

a right adjoint, g.; and let Idc,, s g.g* be an adjunction arrow.

n(M)
(a) If the functor g* is exact, then the adjunction morphism M —— g.g*(M) is a

monomorphism for every M € Spec(Y') such that g* (M) # 0.
(b) Suppose that the category Cy satisfies (AB4), i.e. it has small coproducts and the
coproduct of a set of monomorphisms is a monomorphism. If the functor g* is exact and g,
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n(M)
has a right adjoint, then M — g.g*(M) is a monomorphism for every M € Spec?(Y)

such that g* (M) # 0.

Proof. (al) Let M be an arbitrary object of Cy, and let K 4 M be the kernel of

n(M)
the adjunction morphism M —— g.g*(M). Consider the commutative diagram

—  9:9"(K)

j l l 9+9*(i)
n(M)
—  g:g" (M)

Since ¢g* is exact, the functor g.g* is left exact, in particular g.¢*(j) is a monomorphism.

Therefore, the equality g.g*(j) o n(K) = n(M) oj = 0 implies that n(K) = 0.

(a2) Suppose now that M belongs to Spec(Y). If K # 0, then K = M, i.e. there
exists a diagram K®m <L L —%5 M in which the left arrow is an epimorphism and the
right arrow is a monomorphism. Consider the associated commutative diagram

Kon L s M
n(Kem) | n(L) | | (o) @)

9+9" () g+9" (e)
9:9*(K®") +——  g.g*(L) —— g.9"(M)

By (al), the left vertical arrow in (2) is zero. Since L —— K®" is a monomorphism and
the functor g.g* is, thanks to the exactness of g, left exact, g.g*(7) is a monomorphism.
Therefore, the equality g.g*(y) on(L)(= n(K®")o~) = 0 implies that (L) = 0. Then the
commutativity of the right square of (2) yields the equality n(M) oe = 0. Since ¢ is an
epimorphism, it follows that n(M) = 0. But, the equality n(M) = 0 means precisely that
the object M belongs to the kernel of the functor g*, i.e. g*(M) = 0.

(b) Suppose that Cy satisfies (AB4) and the functor g, has a right adjoint.

By definition, an object M belongs to Spec?(Y) iff M is contained in the subcategory
[N]. for any its nonzero subobject N. Since Cy satisfies (AB4), each object of [N].
is a subquotients of the coproduct of a set of copies of the object N. In particular, if
K = Ker(n(M)) is nonzero, there is a diagram K®/ <~ I -5 M, for some, infinite in
general, set J, whose left (resp. right) arrow is a monomorphism (resp. an epimorphism).
Thus, if K # 0, we have a commutative diagram

id
J N J L — M
n(K)® | n(K®7) | n(L) | | nn) ()
~ g«9" (7) g+9" (¢)

99 (K)¥ —— g (K¥) +——  gg"(L) —— g.g*(M)
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in which the lower left horizontal arrow is an isomorphism and the lower right horizontal
arrow is an epimorphisms. Both observations follow from the fact that, since g, has a right
adjoint, the composition g.g* has a right adjoint, hence it preserves arbitrary colimits.

It follows from the commutativity of the diagram (3) and the equality n(K) = 0
established in (al) above, that n(K®”) = 0. Repeating the argument (a2), we obtain the
equality g*(M) =0. m

1.7.1. Corollary. Let Cy be an abelian category, Cy -— Cyz a functor having a

right adjoint, g., and Idc, SN g«9* an adjunction arrow.

(M)
(a) If the functor g* is exact and faithful, then M A 9+9" (M) is a monomorphism

for every M € Spec(Y').
(b) If the category Cy satisfies (AB4), the functor g. has a right adjoint, and the

n(M)
functor g* is exact and faithful, then the adjunction morphism M —— g.g*(M) is a

monomorphism for every M € Spec?(Y).

Proof. Since the functor ¢* is faithful, g*(M) # 0 for any nonzero object M, in
particular, for any M € Spec?(Y). The assertion follows from 1.7. m

1.8. Proposition. Let P be an element of Spec?(X) such that the inverse image

functor f5 of the morphism 2 f—7)> Ap is exact and faithful. Let Idgy tr, fo«Lp be the
composition of the adjunction arrow Idy — §,«fp and the epimorphism §,.fp — f,+Lp.

The morphism
rp (M)
M ——§,,.Lp(M) (3)

is a monomorphism for every M € Spec(™Up) such that P € Supp(pl (M)).

Proof. Let Ky M, M denote the kernel of the morphism (3). The functor §,. pre-

M
serves colimits. By 1.7.1, the adjunction morphism M I(—Q fpifp (M) is a monomorphism

for every M € Spec(Ap). Therefore ¢, .(Kpr) is an object of P. Since M belongs to the
spectrum, if K # 0, then M € [Kj/]c. The functor ¢, is exact and preserves small col-
imits. Since for any object L, the subcategory [L]. is obtained from L by taking arbitrary
small colimits and subobjects, ¢,«([L]c) C [¢p«(L)]c. In particular, ¢, (M) is an object
of [pr«(Kpr)]e. The latter implies that ¢, . (M) is also an object of the subcategory P;
that is P & Supp(p,«(M)). m

2. Realization of points.

2.1. Assumptions and notations. We fix a Grothendieck category Cx together
with a continuous action of a svelte monoidal category & = (£,®,1,a) on Cx given by
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a monoidal functor ® = (®, ¢, ¢y) from & to the full monoidal subcategory @z/cc(CX) of

%(C’ x) generated by continuous ezact endofunctors of C'x. Being a Grothendieck cate-
gory, C'x has small limits and colimits, which guarantees that continuous actions of svelte
monoidal categories on C'x have colimits, and these colimits are continuous monads.

In particular, there is a (determined uniquely up to isomorphism) continuous monad

Fo = (Fy, pty) and a universal morphism (or universal cone) LN F, whose pull-back

’Y@p* ~
functor (F,/X) —mod —— (®/X) — mod is an equivalence between the category of
$-modules and the category of F,-modules (see 1.3). The morphism ~, gives rise to a

- U, ~ ~
monoidal functor & —— €& (Cx)/F, so that ® is the composition of ¥, and the

forgetful (strict) monoidal functor E’Evgc(CX)/]ip L E‘i\}/:c(CX).

In what follows, the monoidal category & can be identified with its image in the strict
monoidal category @;C(CX )/F,. So, we assume, for convenience, that £ is a monoidal
subcategory of &C(C’X) /F, and ® is the restriction to & of the forgetful functor Jx.

2.1.1. Spec” (2p) and Spec’ (2). Fix a point P of Spec’(X). Let g'(p) = 5{7» 7
be the stabilizer of the point P, i.e. the full subcategory of g generated by all (U, U 5 F o)
such that U(P) C P and U(P) C P. Let Cb(p) be the restriction of ® to S(p) and F,  the
corresponding monad — the colimit of (‘D(p) (cf. 1.5.1). By 1.6.1, we have a commutatlve
diagram of affine morphisms

A = Sp(F,/X) 75 Sp(F /X) =
N e 1)

. . P
corresponding to a monad morphism Fo, —2 F,, where the ’space’ Ap and the monad
FQ% (or, more precisely, the monad morphism 1) are called stabilizers of the point P.

We denote by Spec? (le) all objects P of Spec?(Ap) such that P € Ass(¢* (]3)), and

we set Spec” (Ap) = {[P Pl. | P e Specl (Ap)}.
Objects of Specl (2[) are all M € Spec () such that the object {7 (M) has an asso-

ciated point from Spec” (Ap). We set Spec” () = {[M]. | M € SpecF (2A)}.
2.2. Theorem. Let P € Spec!(X) be such that the inverse image functor i of the

morphism 2 f—7D> Ap is exact and faithful, and the following condition holds:

(*) Let P € Spec®(X) be representative of P and M a subobject of p*(P) such that
P € Supp(p«(M)). There exists (U',v) € ObEpy and a subobject P' of P such that the
image of U'(P") in Fy,(P) = @« (P) is a subobject of p.(M) whose support contains P.
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£
Then the functor Cy., =, Cy induces a morphism

£
Spec (p) —— Spec? (2). (1)

with the following properties:

(o) Every [M] € Spec? (1) such that the image f* (M) of M in Cy, has an associated
point from Spec?(%lp) belongs to the image of the map (1).

(B) The functor £p maps simple objects from Specl (Up) to simple objects of Cy.

Proof. (a) Let P be an object of SpecP (Ap); i.e. P is an object of Spec®(2Ap) and
there exists a monomorphism P — % (P), where P is an object of Spec?(X) such that

P = [P].. The claim is that £5(P) is an object of Specl (A); i.e. £p(P) € [M’], for any

nonzero subobject M’ of £p(P).

~

(i) Consider the composition P —— go*f}‘;(ﬁ) of the monomorphism P — ¢~ (P) and
_ ¢hn(P) ~ ~
the mi)rphism @ (P) SN O fpefp(P) = wufp(P). By 1.7.1, the adjunction morphism

~ n(P) ~
P —— f,«fp(P) is a monomorphism. Therefore its image by the exact functor ¢7 is a

~

monomorphism, which implies that P LN go*f;‘;(ﬁ) is a monomorphism.

In particular, the corresponding morphism ¢*(P) — % (P) is nonzero.
(ii) Consider the cartesian square

h
P1 g P

| | n(P) 2)
px(0 ~
o) T g e (P)

The functor ¢, being (left) exact, maps (2) to a cartesian square

() o en(B)
| | exn(P) (3)
o (P) T ()

It follows from the commutative diagram

P —— (P
n(P) | | een(P) (4)

" ©x(b) xS
Pxp*(P) ——  @ufp(P)
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and the universal property of cartesian squares (applied to the square (3)) that there exists
a unique morphism P -2 @ (P1) such that the diagram

P e, (h) ~
— @i (P) —— @i (P)

P
(P | | | epn(P) (5)
pup™(P) —— 00" (P) ——  @.fp(P)
p e, (h) ~
commutes and the composition of P —— ¢ (P1) —— ¢ (P) coincides with the
monomorphism P — @ (ﬁ) we started with. This shows, among other things, that the

canonical morphism P —2 ¢* (P1) is a monomorphism and the morphism Py Ly Pis

nonzero. Since P belongs to Spec?(Ap), the image, ]31, of the morphism P, Iy Pis
equivalent to P, i.e. [P1]c = [P].. By 1.6.2.1, this implies that [£p(P)]c = [£p(P)]..

The decomposition of the morphism P; I, P into an epimorphism P; i) ]51 and
a monomorphism P; — P induces the corresponding decomposition of (the right square
of) the diagram (5):

) or (h) _ _
P —— pi(P) —— pL(P) e ¢ (P) N
N (P) l J l ©rn(Pr) l ern(P)  (5)
id px(01)

0" (P)  —— " (P) ——  @ufe(P)  ——  pufp(P)

Therefore, one can, replacing the object P by ]31, assume that the morphism P; I p

is an epimorphism. We keep this assumption for the rest of the proof.
o]

(iii) The fact that P, ", Pis an epimorphism implies that the morphism ©*(P) —
f5(P) (defined in (i)) is an epimorphism.
Indeed, the diagram (2) is equivalent (via adjunction) to the commutative diagram

»(h) ~
Py T (P

| | id

P*(P) —— §(P)

The upper horizontal arrow is an epimorphism, because the functor 3 is right exact (as
any functor having a right adjoint). Therefore ¢*(P) —— 5 (P) is an epimorphism.
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(iii’**) One can arrive to the above conclusions via a shorter argument taking into
. . . ® . .
consideration that the morphism functor 2p —2 X is continuous.

Indeed, let ¢ (P) 2, P be the morphism of Cy,, corresponding to the monomor-

phism P — ¢_.(P). Since the morphism v’ is nonzero and P belongs to Spec?(Ap), the
image of v’ is an object of Spec(2p) and is equivalent to P. Thanks to 1.6.2.1, we can (and
will) assume (replacing P by the image of v) that v’ is an epimorphism. Since the functor

(o) ~
f is right exact, f5p% (P) A 5 (P) is anNepimorphism. Notice that ¢ >~ fpe.
Thus, we have an epimorphism ¢*(P) — 5 (P).
(iv) We denote by ¢*(P) — £p(P) the composition of ¢*(P) — f&(P) and the epi-

morphism f;;(]g) — £p(P). Let M’ — £p(P) be a nonzero monomorphism. Consider
the cartesian square

o'(P) —— p(P)
il D (6)
M — M
and define the morphisms Py, —» f* (M) and Py — f* (M') via the cartesian squares
r, (e) e -
fr(M) —— FL(M') —— §.(£p(P))

I [ I &

/ s/

~ ~ J ~
P M B P M’ —_— P
It follows from 1.8 that the right vertical arrow in the diagram (7) is a monomorphism.
Therefore, by a well-known property of cartesian squares, the remaining vertical arrows
are monomorphisms too.
Since f% is an exact functor, §7 (j) is a monomorphism and §7 (¢) is an epimorphism.

Therefore, ﬁM e—l> ﬁM/ is an epimorphism and ﬁM/ ]—/> Pisa monomorphism.

(v) We claim that Py # 0.

Notice that P € Supp(¢p.(M')), because M’ is a nonzero subobject of £5(P), in par-
ticular it does not belong to the Serre subcategory 4,0;1(73). Since there is an epimorphism
M — M’ (see (6) above) and ¢, is an exact functor, P € Supp(p«(M)).

By the condition (*), there exists (U’,0) € £y and a subobject P" of P such that
U'(P') — F,(P) factors through ¢, (M) and the support of its image contains P. It

follows from the construction that U’(P’) is a subobject of ¢ (P) and ¢.(M). Therefore,
P € Supp(p;, (Prr)) which, in turn, implies that Py # 0.
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(vi) Consider the following commutative diagram

fp(Pryr) —— M
(

(i) | | (4)

fo(P) —— £p(P)

corresponding to the right square of (7). Since M’ I 27:(13) is a monomorphism, the
morphism f;}(ﬁM/) — M’ in (4) factors through £p(Pyy) — M’. Thus, (4) induces a
commutative diagram
p(Pa) —— M’
ep(in) N
L£p(P)

By 1.6.2.1, the arrow £p(Pa) A £p(P) is a monomorphism, and £5(') = j o .
Therefore Sp(PM/) 5 M'is a monomorphism. In particular, SP(PM/) [M'].. Since
Py is a nonzero subobJect of P and P belongs to Spec? (2Ap), these objects are equivalent,
that is [Par]e = [Ple. By 1.6.2.1, the functor £p is exact, which implies that £p(P) €
£p(Pyr) (see the argument of 1.8). Therefore £p(P) € [M]..

(b) By Proposition 1.6.2.1, the functor £p is exact. Therefore, by the argument of
1.8, the subcategory [£p(M)]. depends only on the subcategory [M]..

(c) The inverse map. Let M € SpecF (2A); i.e. M is an object of Spec?(2), and
there exists a monomorphism P —s f* (M) such that P € Ass(¢7, (P)) and P belongs to
Spec?(Ap). Note that the object M is o 1(P)-torsion free.

In fact, suppose that M has a nonzero subobject N which belongs to ¢ 1(73) Since

M € Spec(2), M € [N]. which implies that p.(M) € ObP. The latter contradicts to the
fact that a representative of the subcategory P is a subobject of ¢, (M).

Since the object M is ¢, 1(73) torsion free, the canonical morphism f;‘,(~) — M
factors through a morphism £p (P N) — M. Due to the fact that M belongs to the spectrum
and the natural morphism £p(P) — M is nonzero, M € [£p(P)].. To prove that
£p5(P) € [M]., it suffices to show that the morphism Ep(ﬁ) — M is a monomorphism.

Consider the exact sequence 0 — K —5 £p(P) — M. It follows that the in-

tersection of 7 (K) i> f;(Sp(ﬁ)) with the subobject P — f;(S'p(ﬁ)) is zero.
By the argument (v) above, this implies that K = 0. Therefore, the natural morphism
£p(P) — M is a monomorphism.

(d) It remains to prove the last assertion of the theorem: if Pisa simple object of the

category Cy,, such that P € Ass(¢7, (]5), then 279(]3) is a simple object of the category 2.
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In fact, let K —» £5(P) be a nonzero monomorphism. By (v) above, the pull-back
of monomorphisms 7 (K) — §7 (£p(P P)) «— P is nonzero. Since P is simple, it follows
that the morphism P — §7 (£p(P)) factors through 7 (K) — 7 (£p(P P)). Therefore

the identical morphism £p(P) — £p(P) factors through K RN £5(P) which shows that
K - £p(P) is an isomorphism. =

2.2.1. The case of the trivial stabilizer. Suppose that the point P of the spectrum
Spec!(X) has the trivial stabilizer. That is if (U,U — F,) is an object of the stabilizer
of P, then U is a subfunctor of the identical functor. In this case, the condition (*) in 2.2
is equivalent to the condition

(1) If a subobject M of ¢*(P) is such that P = [P], € Supp(¢«(M)), then P is an
associated point of ¢, (M).

Evidently, the condition (1) holds if Supp(p.@*(P)) = Ass(p.p*(P)).

The latter equality holds if the functor F,, = p.¢* is differential (cf. C4.2, C4.3) and
P = [P]. is a closed point. In this case, Supp(p.p*(P)) = {P} = Ass(p.p*(P)).

The condition (}) also holds if P is a closed point and the functor F, is a coproduct
of auto-equivalences.

2.3. A reduction. Once a point P of Spec’(X) is fixed, one can avoid dealing
with the irrelevant parts of the categories C'x and CY proceeding as follows. We define
the ’space’ Xp by Cx, = P. If Cx is the category of quasi-coherent sheaves on a scheme,
then P corresponds to a point of the underlying space of this scheme and the category
Cx, = P is naturally equiva,lent to the category of quasi-coherent sheaves on the closure
of the point P. Thus, the ’space’ Xp can be regarded as the Closure of the point P in X.

The inclusion functor Cx,, H Cx has a right adjoint C'x s o x, which assigns to
every object of Cx its P-torsion. Let 2 tr, Xp denote the composition of the morphisms

j . . o )
A 25 X and X 2 Xp. The morphism u,,, being a composition of two continuous mor-
phisms, is continuous. Its direct image functor is not, in general, right exact, because the

functor C'x 7 o X, is not necessarily right exact. Notice that the functor j,. preserves

supremums of objects; in particular, it preserves infinite coproducts. Since ., >~ j,« © ¥«

and ¢, preserves arbitrary colimits, the functor ., also preserves infinite coproducts.
We replace the category Cy, by its full subcategory C’Q[;) generated by all F, -

modules (M, £) such that M is an object of Cx,, = P. The inclusion functor C’g[;) ’_73> Ca,

has a right adjoint, ?7:*7 induced by the functor Cx Iry Cx,. We define the functor

Cy fi) Cm;? as the composition of the pull-back functor Cy h Cq,, and the functor
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ip . . . .
Ca,, — Cq_. Thus, we obtain a quasi-commutative diagram
P

TN (1)

interpreted as the diagram of direct image functors of the morphisms of the commutative

diagram
u

2 —P> Xp
i N\ /‘;p
0,

Let Ep denote the restriction of the functor £p to the subcategory 2A’%. The exactness

of the functor CQ[/P Ly Cy, depends now on the exactness of a left adjoint, Af/;;, to the

fpx T - .
functor Cy 2= Cy, . The exactness of fp is a much weaker requirement than the exactness

of a right adjoint {3 to the pull-back functor Cy @ Cq,, imposed in 2.2.

These considerations will be used in the following Sections.

3. Important special cases. Finiteness conditions.

3.1. In most of applications we have in mind (in particular, those mentioned in this
work), the monad F, = (F,, f,) belongs to one of the following two classes:

(a) The functor F, is a direct sum of a family of auto-equivalences of the category
Cx.

(b) The monad F, (i.e. the functor F,) is differential.

Below we consider each of these cases and give the corresponding specializations of
Theorem 2.2.

3.2. The case of a direct sum of auto-equivalences. Let Cx be an abelian
category, and let F, = (Fy, j1,) a monad on Cy such that F, = @5 0o, where 0, are
auto-equivalences of the category C'x. We denote by 2 the ’space’ Sp(F,/X) and by ¢
the canonical morphism 2 — X. We take as € the full monoidal subcategory of monoidal
category €r.(Cy)/F, generated by the coprojections 0, —= F,, a € J.

We are going to use the reduction described in 2.3; hence we assume for the rest of
this section that the category C'x has the property (sup).
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Fix an element P of Spec?(X ). Following the pattern of 2.3, we obtain a quasi-
commutative diagram of functors

T NG (1)

Here Cx, = P, and CQ[/ = Sp(Fp/Xp), where Fp is a monad on Cx, induced by
the monad F,_. In other words, CQ(/ is the full subcategory of the category Cg, of
Fp,,-modules whose objects are modules (M, €) such that M € ObP.

3.2.0. The Krull filtration of Spec?(X) and the associated filtration of X.
Fix an abelian category Cx. For every cardinal o, we define a subset &, (X) of Spec?(X)
as follows.

So(X) = 0;

if v is not a limit cardinal, then &,(X) consists of all P € Spec!(X) such that any
P’ € Spec?(X) properly contained in 73 belongs to Ga 1(X);

if @ is a limit cardinal, then &, U Gs(X

B<a
It follows from this definition (borrowed from [R, VI1.6.3]) that &1 (X) consists of all

closed points of Spec?(X).
We denote by &,,(X) the union of all &,(X). The filtration {S&,(X)} determines a
filtration
OXO‘—>CX1‘%...CXOL‘—>... (5)

of the category Cx (or the ’space’ X) by taking as Cx_ the full subcategory of Cx
generated by objects M such that Supp?(M) C &,(X). Recall that Supp?(M) = {P €
Spec?(X) | M ¢ ObP}. In particular, C'y_ is the full subcategory of C'x generated by all
M € ObCx such that Supp?(M) C &, (X).

It follows from the general properties of supports that C'x_ is a Serre subcategory
of Cx and Spec’(X,) is naturally identified with &, (X); in particular, Spec?(X,) is
identified with &,,(X).

3.2.0.1. Proposition. For each cardinal o, the subset S, (X) of the spectrum is
stable under all auto-equivalences of the category Cx. Let P € &,(X). If 6 is an auto-
equivalence of the category Cx , such that 6(P) C P, then 6(P) = P.

Proof. The assertion is true for P € &4(X), because any auto-equivalence maps
spectral objects to spectral objects. So, if P is a closed point and §(P) C P, then P = 6(P).
Suppose now that the fact is true if P € G, for any v < a. The claim is that it holds
for any P € G,. In fact, it holds by a trivial reason if « is a limit cardinal. Let o be a not
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a limit cardinal, P € &,(X), and (P) C P. If O(P) # P, then, by definition of &,(X),
the element 0(P) belongs to S,_1(X). But then, by induction hypothesis, P € &,_1(X),
hence §(P) =P. m

3.2.1. Proposition. (a) Under the conditions above, the functor Cgy @ Car,  has

a left adjoint; and the functor C’m;) e Cx, has a left adjoint which is faithfully flat.
(b) Suppose that P belongs to &,,(X). Then the functor §3 is faithful.

Proof. (a) Set Jp ={a € J |0, €Fp}={aecJ]|b,(P)C P} and denote by Fp the
endofunctor on Cx, = P (cf. 2.3) induced by P 2 Lo

. The multiplication F> — F,
induces a multiplication F3 27 Fpoon Fp.

acdp ®
In fact, the monad structure on F, is determined by the compositions

Fa,
Onols — 50, o fB0cd 2)

of the embedding 0,003 — F,oF,, the multiplication Fi,o F, SN F,, and the projection
g (M)
F, — 0,. Let o, € Jp # 0. Then the morphism 0,65(M) AN 05(M) is zero for

every object M of the subcategory P.

(i) Suppose first that M is a representative of P. Assume that ug 5(M) # 0. Since
0, is an auto-equivalence and M € Spec?(X), the object ,(M) belongs to Spec?(X)
too. Therefore, the existence of a nonzero morphism 6,63(M) — 6,(M) implies that the
subcategory [0,03(M )] contains 6,(M). Since 6,604 stabilizes P = [M],, it follows that
0, (M) belongs to [M]., which means precisely that 6, stabilizes P. This, in turn, implies
that 8, stabilizes P. In fact, 6, not stabilizing P means that there exists N € ObCx
such that M & [N]., but, M € [0,(N)].. Since 6, is an auto-equivalence, it preserves
the relation M ¢ [N],, that is 0,(M) & [0,(N)].. But, this contradicts to the fact that
0,(M) € [M]. and [M], C [0,(N)]..

(ii) Suppose now that M is an arbitrary object of P. Let L be a representative of P.
Then there exists a diagram L®/ <— K — M whose the left arrow is a monomorphism
and the right arrow is an epimorphism. Thus, we have a commutative diagram

QQQB(L@J) < 0a95<K) e Qaeﬁ(M)

| | |

0,(L%) G, (K) ——  0,(M)

whose left (resp. right) horizontal arrows are monomorphisms (resp. epimorphisms) and
vertical arrows are values of the functor morphism pg 5 on the objects respectively L% K
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and M. Suppose that o, 8 € Jp, but o € Jp. Since [L®’]. = [L], and, by hypothesis,
[L]. = P, it follows from (i) that the left vertical arrow in the diagram above is the zero
morphism; in particular, the composition of the central vertical arrow,

o

Ma,ﬁ(K)
0,03(K) —— 0,(K),

and the monomorphism 0,(K) — 0,(L®7) is zero, hence g, 5(K) = 0. This, in turn,
implies that the composition of the epimorphism 6,03(K) — 0,03(M) and the left

te,p (M)
vertical arrow, 6,03(M) BN 05(M), is zero which means that ug, 5(M) = 0.

(iii) Set Jp = J — Jp and F¥ = GaﬁeJy, 0s. Then F, = Fp @ F. It follows from
the above argument that the compostition of F7 — FJ Loy F, with the projection
F, BN FY is zero. Therefore the composition of F3 — Fg LN F, factors through

the embedding Fp < F,, i.e. there exists a unique morphism F3 P, Fp such that the
diagram
2 e
F2 —"s Fp

l l

2 He
Fo —— F,

Mo, p
commutes. Thus, the morphisms {0,035 —— 0, | a, 8,0 € Jp} determine an associative

multiplication F% te, Fp on Fp.

(al) The forgetful functor §p —mod 75 ¢ xp = P has aleft adjoint, ¢7,, which assigns
to every object M of the category Cx,, the pair (Fp(M), 1), where 1 is the obvious action

of g(p) on Fp(M). It follows that Fp = (Fp, u,) is the monad associated with the pair
o7, ¢ of adjoint functors. Since the functor ¢ is exact and conservative, the category

((E'p /Xp) — mod is naturally equivalent to the category Fp — mogiv of Fp-modules.

*

(a2) The latter implies the existence of a left adjoint, Cg[/p RN Cy, to the functor

P
Cy —— Cyy, (defined in 2.3).

In fact, identifying the category C’Q[;) with Fp — mod, we take as %‘, the functor
Fo®Fp : (Fp/Xp) —mod —— (Fy/X) — mod. (3)
(b) If o, B € Jp and o € Jp, then

(o (M)
05l (M) —— 05(M) (4)
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is zero for every M € Ob[P]..

Suppose first that M is a representative of P. Since P € &,(X), the inclusion
[0s(M)]. C [M], implies, by 3.2.0.1, the equality [0g(M)]. = [M].. If the morphism (4) is
nonzero, then [0,(M)]c D [05-0a(M)]. 2 [05(M)]. 2 [M]. But, [0,(M)]. 2 [M]. & [M]. =
[05(M)]., which means that o € Jp.

If M is an arbitrary object of P, the argument is the same as the argument (ii) above.

(b1) The argument similar to that of (iii) shows that the multiplication F Loy F,

induces a morphism F¥ Fp RGN F¥ which is a structure of a right (Fp, up)-module on Fy.
(b2) If follows that, as (Fp, up)-module, F,, is the direct sum of F}¥ and Fp. Therefore,
for every Fp-module (M, ¢),

fp*f’)]k?(M;é-) = FLP ®.7:7: (M7£) = (F’]\D/ ®.7:7> (M7£)) S¥ (Ma g)v
which immediately implies that {3 is a faithful functor. m

The corresponding version of Theorem 2.2 is as follows.

3.2.2. Theorem. Suppose that the category Cx has the property (sup). Let F, =
@aew O, where O, are auto-equivalences of the category Cx, and let § = {0, | o € J}.

Suppose that an element P of S, (X) is such that the functor Cg[;) f# Cy is exact
and the following condition holds:

(*) If P is a representative of P and M is a subobject of ¢*(P) such that P €
Supp(p«(M)), then there exists a subobject P’ of P and o € J such that 0,(P’) is a
subobject of w«(M) and [P'] C [0, (P")]..

Then

c 5
(a) The composition Car, SN Cs, of the functors C’g[;) SN Cy, and

4

Co —— Co, M +— M/torsw,l(,ﬁ)(M),
mduces a morphism
P o £ P
Spec? () —— Spec? (2). (5)

with the following property:

Every [M]. € Spec?(2) such that the image f* (M) of M in Cq,, has an associated
point from Spec’ (Ap) belongs to the image of the map (1).

(b) The functor Lp maps simple objects to simple objects.

Proof. The condition (*) is the specialization of the condition (*) in 2.2. Thus, the
assertion is a consequence of 3.2.1 and Theorem 2.2. m
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3.2.3. Proposition. Suppose that the category Cx has the property (sup). Each of
the following conditions on a point P of S,,(X) implies the condition (*) in 3.2.2:
(a) the stabilizer of P is trivial;

(b) the local category Cx /P has simple objects.

Proof. (i) Set Jp = {a| [0o(P)] = P} and J¥ = J—Jp. Let M — ©*(P) be such that
P € Supp(p«(M)). We denote by M’ the kernel of the composition of the monomorphism
©«(M) < F,(P) and the projection F,,(P) = @, ;0a(P) onto @ ;» 0o (P). It follows
that M' is a subobject of @, ¢ ;. 0o (P). Since Supp(D ¢ ;7 0o (P)) = Uqe 7 Supp(a(P))
does not contain the point P, and Supp(p.(M)) = Supp(M’)|J Supp(M"), where M"" de-
notes the image of . (M) in @, ;» 0 (P), the condition P € Supp(p.(M)) is equivalent
to that P € Supp(M'). In particular, M’ # 0.

(ii) Suppose that Cx/ P has simple objects. Replacing P with an appropriate sub-
object, we can and will assume that the image q73(P) of Pin Cx /7/5 is a simple object.
This implies that the image of Fy,(P) (which coincides with the image of ¢ s, 0a(F))

in Cx/ P is semisimple. Therefore, the image of M’ in Cx / P is isomorphic to the image
of @, c70a(P) for some subset 7 of Jp. This means that there exists a diagram

M < N - P ba(P) (6)

in Cx such that ¢(s) and ¢5(t) are monomorphisms. Since M’ and €D,z 0a(P) are

P-torsion free objects, the object N in the diagram (6) can and will be chosen P-torsion
free. The latter means that the morphisms s and ¢ are monomorphisms. Since qﬁ(t) is an
isomorphism and the localization functor is exact, the intersection P/ = N () 0,(P) (i.e.

the pull-back of the monomorphism N — @.cz0a(P) and the coprojection 8, (P) —
@D.cz 0a(P)) is nonzero for every a € Z. Setting P’ = 01 (P)), we obtain a subobject of
the object P satisfying the condition (*) of 3.2.2. m

3.2.4. Corollary. Suppose that the category Cx has the property (sup). Let F, =
EBQEQ‘ On, where O, are auto-equivalences of the category Cx, and let § = {0, | o € J}.

Suppose that an element P of &,,(X) is such that the functor C’m;) f—P> Cy s exact

and the quotient category C’X/73 has simple objects. Then
L b
(a) The composition OQ[;) N Cy, of the functors Cg)l;) T, Cy, and

0\

Cy LN Coy, M +— M/tors _,

o1 @) (M):
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mduces a morphism

1

Spec” () —> Spec” (). (5)

with the following property:
Every [M] € Spec(2() such that the image §5,(M) of M in Cy, has an associated

point from Spec’ (Ap) belongs to the image of the map (1).
(b) The functor Lp maps simple objects to simple objects.

Proof. The assertion follows from 3.2.2 and 3.2.3. =

3.2.5. Proposition. Suppose that the category Cx has the property (sup). Let
F, = @aes 0, where 8, are auto-equivalences of the category Cx .

Suppose that an element P of &,(X) has a trivial stabilizer; i.e. [0,(P)] = P iff
a = 0 (here 8y = Idcy ). Then for every representative P of P, the object Lp(P) =
©*(P)/tors _1(p)(P) belongs to Spec?(A). If P is simple, then Lp(P) is a simple object.

Proof. We adopt the notations of the part (i) of the argument of 3.2.3. Thanks to
the property (sup), there exists a finite subset I of Jp such that the intersection M =
M N (D,c; ba (P)) is nonzero. Since [0, (P)]. = P for every o € I, the object M belongs

to Spec?(X) and [M]. = P.
The assertion follows now from the observation 2.2.1 and Theorem 2.2. =

3.3. Differential actions. For an abelian svelte category Cx, we denote by
Der.(Cx) the full subcategory of the category End(Cx) generated by all continuous exact
differential endofunctors. Since the composition of differential endofunctors is a di/f\fgrential
endofunctor, Dex.(Cx) is a full monoidal subcategory of the monoidal category End(Cx).

We call an action ® = (@, ¢, ¢g) of a svelte monoidal category £ = (&,,1,a;¢,¢) on
Cx differential if the functor ® takes values in the subcategory Der (Cx).

We assume until the end of the section that Cx is a Grothendieck category. This
implies that C'x has small limits and colimits. Therefore, every continuous action ® of a
svelte monoidal category &£ has a colimit, F, = (F,,, it,,), which is a continuous monad. As

in 2.1, we replace the monoidal category & by its image in @zc(C’ x)/F, (determined by the
universal cone ® —% F, ) and identify the monoidal functor ® with the composition of the

inclusion functor & —» (’E;(Cx)/]: and the forgetful functor E’EE(C’X)/JE — E‘i\i((]x)
If the action @ is differential, then € is identified with a monoidal subcategory of
x)/F, and the action & with the restriction to € of the forgetful monoidal functor

Der(C

Der(Cx)/F, — Dex(Cx). In this case, the monad F, = (F,, u,) (that is the functor
F, «p*) is differential (see C4.2, C4.3). Or, in other words, the affine morphism
A

= ¢
= Sp(F,/X) -2 X is differential.
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For every P € Spec?(X), we have a commutative diagram of affine morphisms

Pp
™ =8Sp(F,/X) —— Sp(Fy,/X) =Ap
N W ep
X

. . P
corresponding to a monad morphism ]:wp —2 F,, where the 'space’ Ap and the monad
‘7:9% (more precisely, the monad morphism v,) are stabilizers of the point P (see 2.1.1).

Therefore we have a well defined functor Cy, Lr, Cy, which is the composition of

Cap f—P> Cy, and the functor

\

Cy LN Cy, M +— M/tors _,

n (73>(M)'

Following the pattern of 2.3, consider the commutative diagram

2A —P) Xp
N e (1)
X,

associated with

fz
Ql—>91"p

N Pp
X

Notice that the composition %‘; of the inclusion functor Cys — Cy, and the functor

Cap Iz, Cy is a left adjoint to the functor Cy Tesy Ca, -

3.3.1. Lemma. The functors u’, and ﬁﬁ; take values in the full subcategory Cyp-)
of the category Cq formed by all F,-modules (M,§) such that M € ObP~.

Proof. Recall that P~ is the smallest Serre subcategory containing P.

The assertion is due to the fact that every differential endofunctor of the category C'x
preserves every Serre subcategory of C'x ([LR1]). A more detailed argument is as follows.

(a) The subcategory Cyp-| coincides with the preimage, ¢ L(P~) of a Serre subcat-
egory. Therefore it is a Serre subcategory, because the functor ¢, preserves small colimits.

(b) The functor u}, is a restriction of the functor Cx LN Cy, L— (F,(L), ny(L)),
to the subcategory Cx, = P. By hypothesis, the monad F, = (F, ) (i.e. the functor
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F, = @.¢*) is differential, hence F,(L) is an object of P~ for every L € ObP~, in
particular, for every L € ObP.

*

(c) It follows from the construction of the functor Cy, 7 Cq that for every 3-
module M = (M, €) (- an object of the category Cq, ), there is an F,-module epimorphism
©* (M) = (Fo(M), pp(M)) — §5(M). Since, by (c), ¢*(M) is an object of the Serre
subcategory Cyp-], its quotient object (M) belongs to the subcategory Cypp- too. m

The diagram (1) can be decomposed into a commutative diagram

u

AP ] ——  Xp

jpT ) T% (2)

p ,

Consider now the category Cyq,. Its objects are pairs (M, €), where M is an object of
the category P and £ is an action of the differential monad Fy,, — the stabilizer of P.

3.3.2. Proposition. Let Cy, be the full subcategory of the category Cg[;) formed by
all (M, €) such that M € ObP. Then Cy, is a Serre subcategory of Cy;, and Spec(Ap) =
Spec(Yp) 11 Specl (A). In particular, Spec(2)p) = Spec(Vp) [ Spect (2A}).

Proof (a) Let (M, ) be an object of Spec(%). Then either the object M is P_torsion
free, or M € Ob7/5, or, equivalently, (M, &) € ObCly.,.

In fact, let M — denote the P-torsion of M. Any differential endofunctor of a category
preserves all Serre subcategorles of this category (see C4.3.3). Since objects of the monoidal
category 6' in particular objects of its subcategory 5(7;), are pairs (U, U — F,), where U
is a differential endofunctor, the P-torsion M= of M is a submodule of the Fp,, -module
(M,€). Since (M, &) belongs to the spectrum, either Mz = 0, or [(Mz, )] 2 [(M, ).
Here ¢’ denotes the induced F, -module structure. Thanks to the exactness of the forgetful
functor ¢, ., the latter implies that [MA] [M]., hence M € Ob73, Le. M = M.

(b) Let (M,&) belong to Spec(Ql’ ) Spec(yp) y (a), this implies that M is an
object of the subcategory PﬂPL formed by P-torsion free obJects of the P. It follows
that M has a nonzero subobject, L — M, with L € ObPﬂPL. Pick a representative,

P’, of P. The inclusion L € ObP means that [P'] D [L]c. The fact that L ¢ ObP means
precisely that [L]. D [P’].. Every nonzero subobject L’ of L has the same properties:
[P']c D [L']¢ 2 [P']¢. Therefore [L'] O [L].. This shows that L belongs to the spectrum
Spec?(X) and [L], = [P'] = P.
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The argument above shows that every nonzero object M of P Plisa representative
of the point P. In particular, Ass(M) = {P}. =

Now we shall make some observations related to the diagram (2) and the construction
of the functor Lp.
Recall that an object M of the category Cyx is called P-primary if Ass(M) = {P}.

3.3.3. Proposition. Let Tp denote the preimage cp*_l(ﬁ) of the Serre subcategory P
of Cx in Cy; and let Tp denote the preimage in Cyip-) of the subcategory PN Cx, (cf.
the diagram (2)).

(a) An object M = (M,§) of Cy = (F,/X) — mod is Tp-torsion free iff the object
©.(M) = M is P-torsion free.

(b) The image in Cx, of every Tp-torsion free object of Coyjp-y is P-primary.

Proof. (a) Let M = (M, §) be an (F,/X)-module, and let Mz denote the P-torsion of
the object M. Since F, = (F,,, 11,,), where F, is a differential functor, and all differential
functors preserve Serre subcategories, the action Fi, (M) £, M induces an action, &', of
F, on the subobject M. Clearly, (Mﬁ’ ¢') belongs to the Serre subcategory Tp.

(b) By definition, Cyp-1 is a full subcategory of Cg generated by F,-modules (M, &)
such that M € ObP~. Therefore, by (a), an object (M,&) of Cyp- is Tp-torsion free
iff M is an object of P~ ﬂf)l If M is nonzero, it contains (by the definition of P~)
a nonzero subobject L which belongs to PﬂﬁL. But, nonzero objects of PﬂﬁL are
precisely all the representatives of P (see the part (b) of the argument of 3.3.2). This
shows that P € Ass(M).

Suppose N < M is a subobject of M such that N € Spec(X). Then N has a nonzero

subobject L which belongs to Pﬂﬁl. Therefore [N], = [L] = P; i.e. P is the only
element of Ass(M). m

3.3.4. Proposition. For every object M of Spec?(A[P~]), its image in Cx, either
belongs to P, or is P-primary.

Proof. Let M = (M, &) belong to Spec(2(). By the argument of 3.3.3, the ﬁ-torsion,
M,I;, of the object M has a structure, £ of a submodule of M. Therefore, if M73 # 0, then
[(Mz,&)]e 2 [(M,&)]c which implies that M = Mz (see the part (a) of the argument of
3.3.2). If Mz =0, then, by 3.3.3(b), the object M is P-primary. m

3.3.5. Proposition. The functor C’g[;? Lr, Cy takes values in the full subcategory

of Cy generated by F,-modules (M, &) such that M is an object of the category P~ ﬂﬁl
In particular, M 1is either zero, or P-primary.
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Proof. Recall that the functor Cy, 2 Cy is the composition of a left adjoint,

Cap 275 Oy, the forgetful functor Co -2 Cor,, and the functor

\

P
Cy — Cy, M +— M/tors¢:1(73)(

M). (3)
By 3.3.3(a), the functor (3) takes values in the full subcategory of Cgy generated by
all F,-modules (M, &) such that M is a P-torsion free object of Cx.

The functor Cg[;) £, Cy is the composition of the functor Cy, L7, Cy and the
inclusion functor CQ[;) — Cq,,; that is Lp is the composition of the three functors

i» Yp

CQUP ;CQLP 7 CQ[ > CQ[

The composition of the first two functors takes values (thanks to the fact that F, is
differential) in the subcategory Coyp-] = ¢, ' (P~). Therefore the functor Lp takes values

in the preimage in Cy of the subcategory P~ ﬂ73 C (Cx, which is the full subcategory of
Cy formed by all F,-modules (M, &) such that M is an object of P~ (P. In particular,
M is either zero, or P-primary. m

3.3.6. Localization. All exact differential endofunctors are compatible with localiza-
tions at Serre subcategories and induce exact differential endofunctors on the corresponding
quotient categories (cf. C4.3.3). These endofunctors on quotient categories inherit ezact-
ness properties (like compatibility with limits or colimits of a certain class of diagrams, or
having a right adjoint) of the initial endofunctors (see [KR2]). Thus, localization at any
Serre subcategory S of the category Cx will transform our data (differential continuous
monad (Fy, jt,) and the family of exact continuous differential subfunctors of F,) to the
same sort of data on Cx/s. Taking an element P of the spectrum of X/S, we obtain a
relative version of the commutative diagram (1):

u

7)*
CQ[/S// —_— C(X/g),,,

75 (4)

N* *
5 P

Casy,

where S” = ¢ 1(S) and S’ = go}k;l(S). The category Cy s here is naturally identified
with the category Fs-modules, where Fg is the monad on Cx/s uniquely determined by
the monad F, = (F, 1,)-
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Applying this observation to the Serre subcategory P and the unique closed point of

the quotient local category C'. P e replace X by the local ’space’ X/ P and obtain (using

the decomposition (2) in 3.3.1) the diagram
7 P
=\ 5 ()

in which X% is the residue ’space’ of X at the point P, C’g(;) is the category of §—modules

(L, E), where L is an object of the residue category C’X;;, Ca,.[p-] is the category of ]-"7/5—

modules (M, &), where M is an object of the smallest nonzero Serre subcategory of C x/P

If the local category C' has simple objects (which is always the case if X has a

X/P
Gabriel-Krull dimension) and Cx has infinite coproducts, then the residue category is
equivalent to the category of vector spaces over the residue field &, of the point P.

4. Computing Spec_(X).

4.1. The construction. We assume the setting of 2.1. That is we fix a Grothendieck
category C'x endowed with an action ® of a svelte monoidal category g taking values in the
monoidal category (’E}:C(C’ x) of exact continuous endofunctors of C'x. As in 2.1, we identify
the monoidal category £ with its image in QEgC(C’ x)/ .7-},, where the continuous monad F, =

(F,, 1ty) is the colimit of the monoidal functor g2 C%;C(C’X). With this identification, ®
becomes the restriction to £ of the forgetful monoidal functor € (Cx)/F, — € (Cx).
Fix an element P of Spec’ (X). Applying the pattern of 2.1.1 to P, we obtain the

stabilizer of P which is, by definition, the stabilizer g('p) of the pair (P) = {P, 7/5}, and the
commutative diagram of affine morphisms

Sp(F,/X) =% —" Ap = Sp(F,_/X)

e\ L ep (1)
X

. . P
corresponding to a monad morphism ]ﬂpp -2 F,, where the space’ 2p and the monad
.7-1% (or, more precisely, the monad morphism ) are called stabilizers of the point P.
4.2. Spec’ (Ap)p and Spec’ (A)p. For an element P of Spec’ (X), we denote by

Spect (Ap)p the family of all objects P of Spect (Ap) such that P € Ass(p? (P)). We
denote by Spec’ (p)p the correponding subset of Spec® (2Ap).
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Similarly, Spect (2)p will denote the family of all objects M of Spec® () such that
P is an associated point of ¢, (M), and denote by Spec’ (2)p the corresponding subset
of the spectrum Spec® (2).

4.3. Theorem. Let P € Spec_(X) be such that the inverse image functor {5 of the

morphism 2 f—7?> Ap is exact and faithful, and the following conditions hold:

(*) If P is a representative of P and M is a subobject of ¢*(P) such that P €
Supp(p«(M)), then there exists (U’',0) € Fp and a subobject P’ of P such that the image
of U'(P") in Fu(P) = ps*(P) is a subobject of p.(M) whose support contains P.

£
Then the functor Cy, i Cy induces a surjective morphism

e
Spec® (Ap)p —— Spec (A)p. (1)

The functor £p maps simple objects to simple objects.
Proof. The argument is similar to the proof of 2.2. Details are left to the reader. m
4.4. Finiteness conditions.

4.4.1. Associated points of finite multiplicity. Let M be an object of C'x, and
let P € Spec’ (X) be an associated point of M; i.e. M has a nonzero subobject which
belongs to P =PNPL We say that the associated point P has a finite multiplicity if
the P® /P-torsion of M belongs to Spec(X/P).

If the quotient category Cx/ P has simple objects, then the 73c® / P-torsion of the

image of M in Cx/ P coincides with its socle. The point P is of finite multiplicity in M
iff this socle is of finite length. The latter is called the multiplicity of P in M.

4.4.2. Points of the spectrum finite over a point. Let A -2 X be an affine
morphism and P a point of Spec_ (X). It is not guaranteed, in general, that Specy(2p)
is nonempty. We denote by Spec%f(Ql) the preorder of all M € Spect (2() such that P is
an associated point of ¢, (M) of finite multiplicity.

4.4.2.1. Proposition. Suppose that P € Spec_ (X) is such that the category Cx /P
has simple objects. Then for every M € Spec%’f@[), the object f..(M) has a subobject

P which belongs to Speck (Ap). For any such object ]5, the corresponding element of
Spec, (Ap) is an associated point of f..(M) of finite multiplicity, and P is an associated
point of P of finite multiplicity.

Proof. Consider the set 2p of all subobjects L of f_.(M) such that ¢,.(L) is a

representative of P. Those of them with the smallest rank of ¢, (L) belong to Spec? (p).
Details and the remaining observations are left to the reader. m
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4.5. Holonomic objects.

4.5.1. Definition. Let % -5 X be a continuous morphism. We call an object M
of the category Cy holonomic over X (or, more precisely, p-holonomic), if each nonzero
subquotient of ¢, (M) has associated points in Spec’ (X) and all these associated points
are of finite multiplicity.

If C'x is the category of quasi-coherent sheaves on a smooth scheme X and Cy is the
category of D-modules on X', then holonomic objects are precisely holonomic D-modules.

In the case C'x is the category of quasi-coherent sheaves on the quantum flag variety
of a semisimple Lie algebra g and Cy is the category of quasi-coherent U,(g)-modules on
X (cf. [LR2]), then holonomic objects are called holonomic quantum D-modules.

It follows from 4.4.2.1 that all holonomic objects over X which belong to Spect ()
are obtained via the construction of this work. Thanks to their functorial properties, the
description of holonomic objects is directly reduced to their description on elements of an
affine cover.

5. Local properties of spectra. Applications to D-modules on classical and
quantum flag varieties.

5.1. Proposition. Let {7; | i € J} be a set of coreflective thick subcategories of

an abelian category Cx such that m T: =0; and let u; denote the localization functor
i€J
Cx — Cx/Ti. The following conditions on a nonzero coreflective topologizing subcategory
Q of Cx are equivalent:
(a) Q € Spec?(X),
(b) [ui(Q)]. € SpecY(X/T;) for every i € J such that Q ¢ T;.

Proof. See [R7, 10.4.3]. m

5.1.1. Note. The condition (b) of 5.1 can be reformulated as follows:
(b’) For any i € J, either u}(Q) = 0, or [u(Q)]. € Spec?(X/T).

7
5.2. Proposition. Let Cx be an abelian category and 4 = {U; = X | i € J} a set

of continuous morphisms such that {Cx BN Cu, | i € J} is a conservative family of exact
localizations.
(a) The morphisms U;; = U; N U; 29 U, are continuous foralli,j e J.
(b) Let L; be an object of Spec®(U;); i.e. [Li). € Spec(U;) and L; is (L;)-torsion
free. The following conditions are equivalent:
(i) L; ~ u;(L) for some L € Spec?(X);
(ii) for any j € J such that uj;(L;) # 0, the object u, .uj;(Li) of Cy, has an
associated point; i.e. it has a subobject L;; which belongs to Spec?(U;).
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Proof. The assertion follows from 5.1 (the argument is similar to that of [R7, 9.7.1]. m

5.2.1. Note. If the cover 4 = {U; - X | i € J} in 5.2 is finite, then Spec®(—) and
Spec’(—) can be replaced by resp. Spec(—) and Spec(—).

5.2.2. Examples. (a) If Cx is the category of quasi-coherent sheaves on a quasi-
separated scheme X and each U; is the category of quasi-coherent sheaves on an open
subscheme of X, then the gluing conditions of 5.2 hold for any L; € Spec?(U;); i.e. the
spectrum Spec?(X) is naturally identified with U Spec (U;).

ieJ

(b) Similarly, if C'x is the category of holoenomic modules over a sheaf of twisted

differential operators on a smooth scheme X, and {U; =% X | i € J} is a cover of X

corresponding to an open Zariski cover of X', then U Spec?(Ui).
ieJ
This is due to functoriality of sheaves of holonomic modules with respect to direct
and inverse image functors of open immersions and the fact that holonomic modules are

of finite length (hence they have associated closed points).

5.3. Proposition. Let Cx be an abelian category and 4 = {U; —% X |i € J} a

finite set of morphisms of ’spaces’ whose inverse image functors, {Cx S Cu, | i € J},
form a conservative family of exact localizations, and Ker(u}) is a coreflective subcategory
for every i € J. Then Spec™ (X) = U Spec™ (U;) and Spec, (X) = U Spec, (U;).
ied i€J
Proof. The first equality is proven in [R7, 9.5]. The argument for the second equality
is similar to the proof of [R7, 9.5]. m

5.3.1. Proposition. Let Cx be an abelian category and 4 = {U; = X | i€ J} a

. . . . U, .
set of continuous morphisms whose inverse image functors, {Cx — Cy, | i € J}, form

a conservative family of exact localizations. Suppose that Spec, (X) = U Spec; (U;)
i€J

(e.g. J is finite) and Cy, is a Grothendieck category with a Gabriel-Krull dimension (for

instance, U; is locally noetherian; say U; ~ Sp(A;) for a left noetherian ring) for each

i € J. Then Spec; (X) is isomorphic to the set of isomorphism classes of indecomposable

injective objects of the category Cx.

Proof. Each (isomorphism class of ) indecomposable injective E of C'x corresponds to
the element +E of Spec (X). Since direct image functors Cy, - C'x of morphisms u;
are right adjoints to exact functors, they map (indecomposable) injective objects to (resp.
indecomposable) injective objects. For every ’space’ Y such that Cy is a Grothendieck
category with a Gabriel-Krull dimension (in particular, for each U;), the isomorphism
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classes of indecomposable injective objects are in bijective correspondence with elements
of Spec, (V). m

5.4. Towards some applications. The assertions above allow to apply the results
of the previous sections to locally affine morphisms; i.e. morphisms of ’spaces’ 2 I e
endowed with a set Yl = {U; = X | i € J} of morphisms such that {Cx —» Cy, | i € J}
is a conservative family of exact localizations whose kernels are coreflective subcategories
of Cy, and for every ¢ € J, the compositions f o u; is an affine morphism.

A slightly more general setting we are interested in consists of a family of commutative
diagrams

u;

U, — X
i | |7 (1)
U — X ielJ

where {Cx —% Cy, | i € J} and {Cx —= Cy, | i € J} are conservative families of exact
localizations with coreflective kernels and morphisms i1; i> U; are locally affine for all

1 € J. Even when the morphism 2 Ty X s affine, the propositions 5.1 — 5.3.1 help to
simplify the problem by using appropriate covers. In the examples below, the morphisms
f and f; are affine. We start with differential morphisms.

5.4.1. Affine differential morphisms. Let X 4 X be a differential affine mor-
phism whose inverse image functor is exact. This means that the ’space’ X is naturally
isomorphic to Sp(Fj/X), where F; = (F}, i) is the monad associated with f, and the
functor Fj = f.f* is exact, differential, and has a right adjoint.

Let U % X be a flat (i.e. continuous and exact) localization, and let C'x N Cx
be an exact differential functor. Then there exists a unique exact differential functor

Cy fuo, Cy such that u* o F' = Fy ou*. The functor Fy; is naturally isomorphic to the
composition u* Fu,. If the functor F is continuous, i.e. it has a right adjoint, F', then the
functor Fy is continuous too: the composition F['] = uw*F'u, is a right adjoint to Fy.

Let 4 = {U; =% X | i € J} be a set of continuous morphisms whose inverse image

functors {Cx = Cy, | i € J} form a conservative family of exact localizations. Then it

follows from the discussion above and C4.1 that the differential affine morphism X Ty x
gives rise to a uniquely determined commutative diagram (1) in which all morphisms f;
are affine and differential.

5.4.2. Quasi-coherent sheaves of rings. Let X = (X,Ox) be a commutative
scheme such that the embedding of each point of A into A has a direct image functor
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(e.g. X is quasi-separated). This condition implies that the scheme X can be canonically
reconstructed (is naturally isomorphic to the geometric center of) the category Cx =
Qcohy of quasi-coherent sheaves on X. Let Ay be a quasi-coherent sheaf of associative
unital rings on X and C% the category of quasi-coherent sheaves of Ax-modules. Let

Ox A x be a morphism of sheaves of rings. The morphism 1) gives rise to an affine

morphism X T X of 'spaces’. Fix an affine cover {U; —» X | i € J} of X. Then we have
a commutative diagram

<

|

g —
fi
Ui —

X
|1 M
X i € J,

)

where U; = Sp(Ox(U;)), U; = Sp(Ax(U;)), f; is the affine morphism corresponding to

P (Us) ~
the ring morphism Oy (U;) —— Ax(U;), and the morphisms u; and u; have restriction

functors to the open subset U; as inverse image functors. Since u] and u} are localization
functors, the commutative diagram (1) shows that X is a (noncommutative in general)

scheme, {8l; — X | i € J} its affine cover, and X 5 X is a scheme morphism.

Fix ¢ € J and pick a point x of the open set ;. To the point z, there corresponds an
element P! of Spec(U;) = Spec? (U;). Since U; is a Zariski open subset of the commutative
scheme X, the point P! is the image of a uniquely determined point P, of X.

Y (Us)
We assume that the ring morphism Ox (U;) —— Ax(Y;) is flat; i.e. the functor

fi = Ax(Usi) ®o ;) — from Cy, to Cy, is exact. The stabilizer of the point Pi can be
identified with the subring Ap: of the ring Ax(U;) which contains the image of Ox (U;)
and such that the induced morphism Ox (U;) — Ap: (- the corestriction of ¥(U;)) is flat.

5.4.2.1. Finiteness conditions. Let C’x;s denote the full subcategory of the cate-
gory Cx generated by all objects M of C'x such that x is an associated point of f,.(M) of
finite multiplicity (or, what is the same, P, is an associated point of f,(M) of finite multi-
plicity). It follows from generalities on associated points (see C3.2) that the subcategory
Cx;c is closed under extensions. It follows from 4.4.2.1 and 4.3 that every object M of the
subcategory C'xf}v has an associated point of the form £p_(V'), where V is an element of

the spectrum of the stabilizer Sp(Ap; ) of the point P! whose image in C'x is an element
of Spec(X) representing the point P.. Therefore, if M is the point of the Spec_(4l;), then
M is equivalent to £pi (V).

5.4.2.2. Example. Let now X = (X, Ox) be a smooth scheme over Spec(k); and let
Ax be the sheaf of algebras of twisted differential operators on X'. Then Spec; (X)) Cxz,
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consists of all semisimple holonomic A x-modules whose simple components are isomorphic
to each other.

5.4.3. Remark. Given a cover { = {U; - X | i € J}, Proposition 5.2 suggests
a way of constructing points of Spec?(%) starting from a point P of Spec?(X), taking
its image in Spec?(U;) for some U; containing P (i.e. u!(P) # 0) and an object M,
of Spec?(4;) such that its image in Cy, has u}(P) as an associated point. Notice that
the object M, can be obtained via our induction procedure applied to some other affine
morphism, U; 2 §L;, and a point Q; of Spec?(;). All we need to know is that the image
of M; in Cy, has an associated point of the form u*(P) for some P € Spec’(X). Thus,

the gluing data related to this approach is described by the diagram

)

g, Ty M
i | |7 (3)
U —s X iel

where {Cx —5 Cy, | i € J} and {Cx — Cy, | i € J} are conservative families of

continuous exact localizations and the morphisms J; nARTP Ty U; are affine for all 7 € J.

5.4.4. Example: D-modules on flag varieties. Let g be a semisimple Lie algebra
over an algebraically closed field of zero characteristic, G a connected simply connected
algebraic group whose Lie algebra is isomorphic to g. Let B be a Borel subgroup of G, and
W its Weyl group. The sheaf D /5 of algebras of differential operators on G /B defines a
noncommutative scheme X /5 represented by the category of D-modules on G//B, together

with the affine morphism X¢ /5 T x a /B corresponding to the morphism Og /5 — Dg/5
of sheaves of rings. Here X¢,5 denotes the ’space’ corresponding to the scheme G/B, i.e.
Cxg, s 18 the category of quasi-coherent sheaves on G /B. By Beilinson-Bernstein theorem,
the category Cx, , = Dg/s — mod of D-modules on the flag variety G /B is equivalent to
the category U,(g) — mod of U(g)-modules with the trivial central character.

Consider the canonical affine cover {U,, —+ G/B | w € W} of the flag variety by the
translations of the big cell. Each open subscheme U, is isomorphic to the affine space A”™.
Therefore, for all w € W, the algebra Dg/5(Uy) is isomorphic to the Weyl algebra A,,.
Thus we have commutative diagrams of ’spaces’

/I/L/w ~7_U
Sp(An)  ——  th — Xeys

S »

Sp(T(A)) —— Uy —— Xagm weW,
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where left horizontal arrows are isomorphisms, ¢, is a morphism corresponding to the
embedding of the algebra k[y| = I'(A,,) of polynomials in n variables to the Weyl algebra.
By 5.2, the construction of points of Spec?(%g/lg) is reduced to
(i) the construction of points of Spec’(il,) = Spec(il,) ~ Spec(Sp(4,)),
(ii) verifying the gluing conditions of 5.2(b).
As it is observed in 5.2.2(b), the gluing conditions hold automatically if we study
holonomic D-modules. We look at the first, most important, problem.

5.4.4.1. The standard approach. The diagram (1) invites to apply the developed
here induction machinery to the morphism ¢,, corresponding to the standard embedding
kly] — A,. It follows from 3.3.1 that for every closed irreducible subvariety V of A™ (- a
point of the spectrum of k[y]), the functor £y, produces A,-modules supported in V. If the
subvariety V is smooth, then the stabilizer of V' in A,, coincides with the ring of differential
operators on V. In this case, it follows from the Kashiwara’s theorem, that the induction
functor establishes an equivalence between the category Dy, — mod of D-modules on V and
the full subcategory A,, — mody, of the category A, — mod whose objects are A,,-modules
supported on V.

5.4.4.2. Hyperbolic coordinates. They are given by the k-algebra embedding

k&) = k&, .-, &) N A, which maps each indeterminate &; to the product z;y;. The
main advantage of this choice is that only a countable number of points of Spec(k[¢]) have
a nontrivial stabilizer, and their stabilizer can be easily described and taken into account.

Thus, we extend the diagram (1) to the diagram

W Y W
Sp(k[g]) A — Sp(An) — y —— :{G/B

S g

Yuw U
Sp(F(An)) —_— v, —— XG/B w e W,

and use the morphism J = Sp(v) for constructing elements of the spectrum of Sp(A4,,).
5.5. Quantized D-modules on quantum flag varieties.

5.5.1. The cone of a non-unital ring. Let Ry be a unital associative ring and
R, an associative (non-unital in general) ring in the category of Rg-bimodules; i.e. R, is
endowed with an Rg-bimodule morphism R, ®r, R; — R, satisfying the associativity
condition. We denote by R the augmented unital ring Ry @ Ry and by Tz, the full
subcategory of R — mod whose objects are all R-modules annihilated by R, .

We define the ’space’ cone of Ry by taking as Ccone(r,) the quotient category
R — mod/ TR_+ of R — mod by the Serre subcategory spanned by Tr,. The localization
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functor R — mod ~+ R — mod/ TR_+ is an inverse image functor of a morphism of ’spaces’

Cone(Ry) — Sp(R). The functor u* has a (necessarily fully faithful) right adjoint, i.e.
the morphism w is continuous. If R, is a unital ring, then u is an isomorphism (see
[KR2, C3.2.1]). The composition of the morphism u with the canonical affine morphism
Sp(R) — Sp(Rp) is a continuous morphism Cone(R;) — Sp(Ry). Its direct image
functor is (regarded as) the global sections functor.

5.5.2. The graded version: Projg. Let G be a monoid and R = Ry ® Ry a G-
graded ring with zero component Ry. Then we have the category grg R —mod of G-graded
R-modules and its full subcategory grg7Tr, = Tr, NgrgR —mod whose objects are graded
modules annihilated by the ideal R,. We define the ’space’ Projg(R) by setting

Cprojg(R) =grgR — mod/grgTP;.

Here ngTI_—;_ is the Serre subcategory of the category grgR — mod spanned by grg7Tr., .

One can show that grng,{Jr = grgR—mod ﬂTRjr. Therefore, we have a canonical projection

Cone(R,) - Proj;(R).

The localization functor grg R — mod — Cpyoj o(Ry) 1s an inverse image functor of a
continuous morphism Projg(R) s Spg(R). The composition Projg(R) — Sp(Ry) of

the morphism v with the canonical morphism Spg(R) N Sp(Ry) defines Projg(R) as a
"space’ over Sp(Rp). Its direct image functor is called the global sections functor.

5.5.2.1. Standard example: cone and Proj of a Z,-graded ring. Let R =
P,.~o Rn be a Z -graded ring, Ry its ’irrelevant’ ideal. Thus, we have Cone(R, ),
Proj(R) = Proj;(R), and the canonical morphism Cone(R;) — Proj(R).

5.5.3. The category of D-modules on the flag variety of a reductive Lie
algebra. Let g be a reductive Lie algebra over C and U(g) the enveloping algebra of g.
Let G be the group of integral weights of g and G, the semigroup of nonnegative integral
weights. Let R = @©xecg, Ry, where Ry is the vector space of the (canonical) irreducible
finite dimensional representation with the highest weight A\. The module R is a G-graded
algebra with the multiplication determined by the projections Ry ® R, — R4, for all
A v € Gy, It is well known that the algebra R is isomorphic to the algebra of regular
functions on the base affine space of g. Recall that G/U, where G is a connected simply
connected algebraic group with the Lie algebra g, and U is its maximal unipotent subgroup.

5.5.3.1. Base affine space and flag variety. The category Ccone(r) 18 equivalent
to the category of quasi-coherent sheaves on the base affine space Y of the Lie algebra g.
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The category Projg(R) is equivalent to the category of quasi-coherent sheaves on the
flag variety of g.

5.5.3.2. D-modules on the flag variety. Consider the cross-product U(g)#R
associated with the Hopf action of U(g) on R. This is a G-graded algebra (with the grading
induced by the grading of the algebra R). One can show that the category Cpyoj S(U(9)#R)
is equivalent to the category D — modg /s of D-modules on the flag variety of the Lie
algebra g. In other words, the ’space’ represented by the category of D-modules on the
flag variety is isomorphic to Proj(U(g)#R).

5.5.4. The quantum base affine ’space’ and quantum flag variety of a
semisimple Lie algebra. Let now g be a semisimple Lie algebra over a field k of zero
characteristic, and let U,(g) be the quantized enveloping algebra of g. Define the G-graded
algebra R = P AEG, R, the same way as above, i.e. R, is a simple finite-dimensional
module with the highest weight A\. This time, however, the algebra R is not commutative.
If g = sla, then R is isomorphic to the algebra ky[z,y] = k{x,y)/(xy — vyzx) for an ap-
propriate v. Following the classical example (and representing ’spaces’ by the categories
of quasi-coherent sheaves on them), we call Cone(fR) the quantum base affine ’space’ and
Projg(R) the quantum flag variety of the Lie algebra g. We call % the algebra of functions
on the quantum base affine ’space’.

5.5.4.1. Canonical affine covers of the quantum base affine ’space’ and the

quantum flag variety. Let W be the Weyl group of the Lie algebra g. Fix a w € W.

For any A € G, choose a nonzero w-extremal vector e;}) y generating the one dimensional

vector subspace of Ry formed by the vectors of the weight w\. Set S, = {k*e} |\ € G4 }.
Atp

w(A4p)’
multiplicative set. It was proved by Joseph [Jo| that S, is a left and right Ore subset in

M. The Ore sets {S,|w € W} determine a conservative family of affine localizations

It follows from the Weyl character formula that eijAefw € k¥e Hence S, is a

Sp(S,'R) —— Cone(R), we W, (4)
of the quantum base affine ’space’ and a conservative family of affine localizations
Spg(S;'R) — Projg(R), we W, (5)

of the quantum flag variety. Here Spg(S,, 19R) is the ’space’ represented by the category
grg S, 'R — mod of G-graded grgS,,'M-modules.

We claim that the category grgS, R —mod is naturally equivalent to (S, 9R)o —mod.
By 1.5, it suffices to verify that the canonical functor grgS,'R — mod — S, 1R)o —
mod which assigns to every graded S, '%R-module its zero component is faithful; i.e. the
zero component of every nonzero G-graded S, 'R-module is nonzero. This is, really, the
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case, because if z is a nonzero element of A\-component of a G-graded S '9-module, then
(e2,) !z is a nonzero element of the zero component of this module.
This shows that for every w € W, the morphism Spg(S,'R) —— Projg(R) is

isomorphic to the morphism Sp((S,9R)o) ™, Pro jg(9). The morphism u,, form an
affine cover

Sp((S,' %)) —— Projg(R), weW (6)
of the quantum flag variety Projg(9) turning it into a noncommutative scheme.

5.5.5. The quantum flag D-variety. Similar to 5.5.3.2, we consider the cross-
product U, (g)#R, where R is the algebra of functions on the quantum base affine ’space’
defined in 5.5.4, with G-grading induced by the G-grading of $R. We call the ’space’
Proj(U,(g)#MR) the quantum flag D-variety. The objects of the category representing
Projg (U, (g)#MR) are called quantum D-modules on the quantum flag variety Projg(R).

The natural algebra morphism & — U, (g)#R induces an affine morphism

Proj(U, (g)#R) —— Proj(R).

As every affine morphism, the morphism § is isomorphic to the natural morphism

Sp(F;/Projg (%)) — — Projg (%)

for a monad F;. The monad F;j can be chosen canonically: it is uniquely determined by the
action of U,(g) on the category grgfR — mod of G-graded R-modules, because this action
is compatible with the localization grg?® —mod — Projg(R).

Moreover, the action of U,(g) on grgR — mod becomes differential in an appropriate
sense (explained in [LR1] and [LR2]). This implies, among other things, that the action of
U,(g) on grgR —mod is compatible with localizations at the Ore sets S, for each w € W.
So that the cover of Projg(fR) described in 5.5.4.1(6) induces a cover

Sp((S, ! (Uy(0)#9)0) — Projg(Uq(g)#R), weW (7)

of the 'space’ Proj(U,(g)#R) such that the diagram

Sp((Sz (U (0)#9R))0) — s Projg (U, (9)#R)

2(0)
| j 8)

Uy

Sp((S;*R)o) —_— Projg(R) weW
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whose all four arrows are affine morphisms, commutes. In particular, the cover (7) turns
the 'space’ Projg (U, (g)#9R) into a noncommutative separated scheme.
5.5.6. The global sections functor. For any G-graded k-algebra R, there is a

.
canonical continuous morphism Projg(R) —— Sp(Ro) whose direct image functor is

qx
the composition of the right adjoint Cprojry — gr¢gR — mod to the localization

*

q
functor grgR — mod —— Cprojr) and the functor

grgR — mod L Ry — mod

which assigns to every G-graded R-module M its zero component endowed with the action
of the zero component Ry of the algebra R. We call the direct image functor v, = p.q. of
the morphism ~ the global sections functor.

Thus, if R is the algebra of functions on the quantum (or classical) flag variety of the
Lie algebra g, then Rg = k. If R = U(g)#R, then Ry = U(g); and the diagram

Projg (Uq(g)#R) SN Sp(U(g))
a l )
Projg () ——  Sp(k)

(where the right vertical arrow corresponds to the k-algebra structure on U(g)) commutes.

By [LR2] (see also [T]), the morphism Projg (U, (g)#R) SN Sp(U,(g)) is affine and
its direct image function establishes an equivalence between the category Cpyo; o (Uq(0)#9R)
of quantum D-modules on the flag variety and the full subcategory U,(g), —mod of U,(g)-
modules with the trivial central character. Thus, we can replace the diagram (9) with the
commutative diagram

Yo
Projg(Us(g)#R) —— Sp(Uq(9),)
f j | (10)
Proj;(R) — Sp(k)
whose upper horizontal arrow is an isomorphism.Therefore, it induces isomorphisms be-
tween the corresponding spectra of these 'spaces’. In particular, the direct image functor

7ps« of the morphism ~, maps Spec? (PrOJg( 1(9)#R)) to SpecO(Sp(U (9),)) and this map
induces an isomorphism from Spec?(Projg(U,(g)#9R)) onto Spec?(Sp(U,(g),))-
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5.6. The twisted version. Fix a central character x of the quantized enveloping al-
gebra Uq(g) and consider the twisted cross-product U, (g)#,R. We call Projg (U, (g)#R)
the quantum D, -variety, or the quantum twisted D-variety. The constructions of 5.5 can be
repeated literally for the twisted D-varieties and summarized in the commutative diagrams

Sp<<s;1<Uf<g>#m>>o> " Projg(U, l( DHR) SP(UI(Q)X)
Sp((S219R)o) e Proj, (M) T Sp(k) wew

1)
It follows from [LR2| (and [T]) that if x is regular, anti-dominant, then 7, is an
isomorphism. In this case, computing the spectra of the twisted flag D-variety is the same
as the computing the corresponding spectra of the affine scheme Sp(U,(g)y)-
As to the studying the spectra of the ﬂag D, -variety, it is reduced to the study
of the spectra of elements of the cover, Sp((S,'(U,(g)#R))o), w € W. The spectra of
Sp((S, ' (U,(g)#R))o) can be studied via the afﬁne morphism

Sp((Sy" (Uq(8)#R))o) — SP((Sy, ' R)o), (2)

or, possibly, using a different affine morphism

Sp((S5 L (Uy()#9))0) — Sp(Au). (3)

5.7. Remarks.

5.7.1. These constructions for the usual enveloping algebras. If the quantized
enveloping algebra U,(g) is replaced by the enveloping algebra U(g) and the algebra R of
functions on the quantum base affine ’space’ by the algebra R of functions on the base affine
space, then the constructions of 5.5 and 5.6 become another, purely algebraic, description
of D-modules on a flag variety, the related canonical covers of the flag variety, and the
corresponding (twisted) D-scheme. In particular, the algebra (S, 'R) is isomorphic to
the polynomial algebra k[y] = k[y1, ..., yn] — the coordinate algebra of the affine space A™,
and (St (U(g)#R))o is, therefore, isomorphic to the Weyl algebra A,, for all w € W.

A sensible choice of the algebra A,, in (3) is the polynomial algebra K[E] = k[&q, ..., &)

and the morphism (3) is induced by the algebra morphism k[¢] N A,, which maps each
indeterminate &; to the product x;y; — hyperbolic coordinates (see 5.4.4.2). Why this choice
is sensible is shown in Section C1 (see also [R, Chapters II and IV]).

5.7.2. Quantum hyperbolic coordinates. In the quantum case, the algebras
S—1R), of functions on the quantum translations of the big cell are rather complicated
w
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noncommutative algebras, if g is a simple Lie algebra of the rank higher than one. Finding
their own spectra is already a problem, so that the standard method, i.e. using the mor-
phism (2) for the construction (induction) of the points of the spectra of (S, (U, (g)#R))o
becomes unpractical. Amazingly, the second method, the induction along hyperbolic coor-
dinates, survives. That is one can take as the algebra A,, in (3) the algebra of polynomials

k&) = k&, ..., &, and a morphism

KlE] 2 (S22 (U (0)#R))o (4)

which is a part of the hyperbolic structure. In the classical limit (i.e. after factorization by
the ideal generated by (¢ — 1)), the algebra (S, '(U,(g)#3R))o becomes the Weyl algebra

A,, and the morphism (4) turns into the canonical morphism k[¢] N A,, (see 5.4.4.2).

In the case when the Cartan matrix of the Lie algebra g is of the type (A) or (C) and
w is the longest element of the Weyl group, the construction of the hyperbolic structure
on the algebra (S, !(U,(g)#R))o, in particular the morphism (4), can be deduced from
[Ha]. The construction is written explicitly (for a more general case) in [R, IV.C2.7].

The existence of the deformations (4) of the canonical map k[¢] s A, (more precisely,
of its composition with the isomorphism A4,, — (S, 1(U(g)#9:R))o) implies that not only
the highest weight simple U,(g)-modules are deformations of the highest weight simple
U(g)-modules (which is a well known result of G. Lusztig [L]), but also that ’almost all’
representations of the quantized enveloping algebra U,(g) parameterized by the points
P of Spec(k[€]) via the maps (4) and related functors £p (hence these representations
belong to the spectrum of the noncommutative ’space’ Sp(U,(g))) are deformations of
the representations of the enveloping algebra U(g) parameterized by the same points of

Spec(k[€]) via the maps k[€] s A, = (S, Y (U(g)#R))o and the functors £p determined
by the ring morphism 1.

Note that the hyperbolic algebra structure works more or less the same way in all
cases, so that the piece of spectral theory of (S, (U,(g)#R))o (hence of U,(g)) related to
the morphism (4) is produced approximately the same way as the piece of spectral theory

of the Weyl algebra A,, related to hyperbolic coordinates k[£] N A,,. For the material
supporting the latter assertion, we refer to the section C1 of this paper (see below) and
Chapters II and IV of the monograph [R].

5.7.3. Hyperbolic coordinates and holonomic objects. One can show that all
simple A,-modules obtained via the functor £p corresponding to the algebra morphism

k[€] N A,,, where P runs through the closed points of Spec(k[{]), are holonomic. This
follows from the Roos criterium of the holonomicity, the formulas for the functors £p in
hyperbolic case, and the fact that the closed points of Spec(k[£]) have the trivial stabilizer
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(see C1 below). Each simple holonomic module on an element of the cover (- a translation
of the big cell) determines a simple holonomic D-module on the flag variety.
Similar facts hold in the quantum case for the algebra morphisms (4).
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Complementary facts.
C1. Weyl and Heisenberg algebras.

The studying the spectra of universal enveloping algebra U(g) of a reductive Lie
algebras over algebraically closed fields of zero characteristic is reduced (via the passage
to the categories of quasi-coherent modules over sheaves of twisted differential operators
on flag variety and using the standard cover of the latter by translations of the big cell) to
studying modules over Weyl algebras (see 5.4.4).

Weyl algebras play also a crucial role in representation theory of nilpotent Lie algebras:
if g is a finite-dimensional nilpotent Lie algebra over an algebraically closed field of zero
characteristic, then the set of primitive ideals of its universal enveloping algebra U(g) is
parameterized by the orbits of adjoint action on the dual space g*; and for any primitive
ideal J, quotient algebra U(g)/J is isomorphic to the Weyl algebra A,,.

Recall that the Weyl algebra A,, is a k-algebra generated by z;, y; subject to the
relations
[zi,y;] = 0i5, (i, zj] =0=[y;,y;] foralll <i,j<n. (3)

We assume that k is a field of zero characteristic.

C1.1. The standard realization. Let now C'x be the category of modules over the
polynomial algebra kly] = k[y1,...,yn], and Cy = A, —mod ~*y C'x the pull-back functor
corresponding to the embedding k[y] < A,,. Then Cy = F, — mod, where F, = (Fy,, i)
is a differential monad on X;ie. F, = A, ®y[y — is a differential functor.

Fix a point P of Spec’(X) and consider the related commutative diagram (see (2) in
3.3)

Capp-) — Cxp
£ N > (4)
Cau,

Let Vp denote the Zariski closed irreducible subspace of Spec(k[y]) corresponding to
P. The category Cq, is equivalent to the category D(Vp) —mod of modules over the ring
D(Vp) of differential operators on the subvariety (corresponding to) Vp. The category
Cyp-] is the category of A,-modules whose support is contained in Vp. If the subvariety

7
Vp is smooth, then, by a Kashiwara’s theorem, the functor Cyp-; RN C’m;? in (4) is an
equivalence of categories.

Thus, the problem of finding the part of the spectrum of 2 corresponding to the point
P such that Vp is a smooth subvariety, is reduced to the problem of classifying points of
the spectrum of D-modules on the subvariety Vp. If P is not a generic point, we reduce the
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dimension. The price to pay is studying D-modules on a possibly much more complicated
variety.

Since we study only D-modules related to the point P, we can localize at P and
consider, together with the diagram (4), the diagram

u

Coy, p-] —— Cxr,
N S (5)
P

s
Cary,

Here X7 is the residue ’space’ of X at the point P; 091;; is the category of %—modules

(L,&), where L is an object of the residue category Cxr, and Cy [p-) is the category of
Fz-modules (M, &), where M is an object of the residue Serre subcategory (which is by
definition the smallest nonzero Serre subcategory) of C',. /B (cf. 3.3.6).

In the case of studying Spec_(X), the diagram (4) can be replaced by (5).

The residue category C' X7, in (5) is equivalent to the category of vector spaces over the
residue field k£, of the point P. The category C’g[rp is equivalent to the category of modules
over the ring of differential operators on the subvariety Vp with rational coefficients. The
category Cy [p-] is equivalent to the category of modules with support in the subvariety
Vp over the algebra of differential operators with coefficients in the residue field k..

If P is a generic point, then Vp = Spec(kly]), Coypp-1] = Cy, = Cu, the residue field
is the field k(y) of rational functions in y = (y1,...,yn).

Depending on the point P the algebras of differential operators with coefficients from
the residue field £, , hence the categories of modules over them, might be quite complicated.

k

P

C1.2. The hyperbolic structure. Let Cx be the category of modules over the
polynomial algebra R = k[q, ..., §,], where & = x;y;, 1 <i <n,. Wetake Cy = A,, —mod
and consider the morphism A —% X corresponding to the embedding k[¢] < A,. So
the category Cy = A, — mod is realized as the category of modules over the monad
Fo = (Fyp, pbp) on Cx, where F, = A, Q@ —.

The algebra A,, is a free right R-module of rank Z". Explicitly,

A, = @ x5y*R (6)

s,tEZ’_f_7 s-t=0

n __ .51 s — 1.
Here x" = z7'...z7r and st =, ., siti.

The left R-module structure and the rest of multiplication are given by

rxSyt = xSyt9t~3(r) forallr € R;

vy = &i,  Yiri = 191_1(@‘) =& — 1, (7)
(@i, yj] = [zi,25] = [yi,y;] =0 forall 1<i,j<n,i#j
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Here ¥ = 97' o ... 09" and ¥J; is an automorphism of the algebra R determined by
V(&) =& + 0;5, where §;; is the Kronecker symbol.

It follows from this description that the functor F, = A, ®r — is a direct sum of
automorphisms of the category Cx = R—mod; namely, F,, = @ ¥%. The multiplication
is defined by

SEZ™

. €0
9;00; ~% 9,9, ifi#j, and 97 o9 ——s 9P for all i,

where {n m = td if n and m are both non-positive or both nonnegative. For n > m > 1,
the morphisms ffly)_m and E(_n’m are defined by

6 = Gy 00T and €8 = €O o0 GO T (®)

Here &; is the endomorphism of the identical functor which assigns to every object N of
Cx (- an R-module) the action of the element & on N.

C1.3. The non-degenerate part of the spectrum. Points P of the spectrum of
C'x are in bijective correspondence with irreducible Zariski closed subspaces Vp of Spec(R).
The point P has a non-trivial stabilizer iff the subvariety Vp is stable by the transformation
67" ... 0", where at least one of the integers m; is nonzero. This shows that, generally,
a point of Spec’(X) has a trivial stabilizer.

C1.3.1. The descrlptlon If a point P of Spec (X) has a trivial stabilizer, then
the functor f}, coincides with ¢* : N —— (F,(N), uu(N)). Let M = R/p, p € Spec(R),

A(M)
be a representative of P. Then M —— M is either zero or a monomorphism for any

endomorphism A of Ide, . In particular, either &97 (M) is a monomorphism for all n, or
&V (M) = 0 for some unique n (see 8.1.3). The latter means that ; — n annihilates the
R-module M; i.e. & — n is an element of the prime ideal p.

If £97 (M) is a monomorphism for all n and all ¢, then one can show that the ¢, ((M))-
torsion the F,-module ¢*(M) = (F,(M), py(M)) is zero. Therefore, by 2.2, ¢*(M) is an
object of Spec(2l). The general case is as follows. We set

Vi (M) = € 9(M) ifn; >0, and Vin,(M)= @D 07"(M) ifn; <O0.

m<n; m>n;

Let Zj; denote the set of all pairs (i,n;) such that &9;* (M) = 0, or, equivalently,
& — n; belongs to the prime ideal p. We set

VIM)=0 ifEy =0, and V(M)= P Via (M) ifZy #0.

(i,ni)EEM
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The F,-submodule V(M) of ¢*(M) = (Fpo(M), prp(M)) generated by V(M) coin-
cides with the ¢! ({M))-torsion of p*(M). So, the quotient F,-module ¢*(M)/V (M) is
isomorphic to £p(M). By 3.2.2, £p(R/p) belongs to Spec(2).

C1.3.2. Note. We denote by Spec,, o(X) the subset of all points with trivial sta-
bilizer and by Spec, o(R) the corresponding subset of Spec(R). Let Pi, P2 be points of
Spec,, ((X), and let p1, pa be the corresponding prime ideals — the elements of Spec, o(R).
Set M; = R/p;, i = 1,2. It follows from the construction in C1.3.1 that if P; C Ps, or,
equivalently, po C pq, then there is an epimorphism Lp, (M) — Lp,(Ms). In particular,
the point [Lp,(M2)] is a specialization of [Lp, (M7)].

C1.4. The degenerate part of the spectrum. For an clement P of Spec’(X),
we set Gp = {t € Z" | 9*(P) = P}. This is a subgroup of Z" which we assume here to be
nonzero, hence it is isomorphic to Z™ for some positive integer m. Let {t; | 1 <i < m}
be free generators of Gp. The category Cy, is isomorphic to the category Rp — mod of
left modules over the hyperbolic algebra Rp corresponding to the data {51 = Yt 5; =
E(t;) | 1 <i<m}. Here &(t;) = H &;(tij), where t;; is the j-th component of t;, and

1<j<n

&(w)=1 ifv=0,
&)= ] €)= ] (¢+s) ifvr>0, and

0<s<v 0<s<v (9)

) =05 (—v) [ -9 ifv<o.

1<s<—v

That is Rp is generated by the algebra R and by the indeterminates z;, y; subject to
the relations

Tir = 0("Ts, 17 = §i0i(r),
T =& UiE =07 HE); (10)
[Z:,95] = [T4,%5] = [45,y;] =0 forall re R, and 1 <4,j < m such that i # j.

The functor Cy h Cyq, corresponds to the algebra morphism Rp — A, which is
identical on R and maps z; to a:tjyt; and 7; to z% ytj, 1 <7 < m. Here tj and t; are
elements of Z'} uniquely defined by the conditions: t; = th—t;, t7-t; =0.

The category Cqu, is naturally equivalent to the category Rp/(p) — mod. Here p is
the prime ideal in R corresponding to the point P and (p) denote the two-sided ideal in
Rp generated by p.
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The points of Spec (2p) are identified with those points of Spec(’;) which survive
the localization at P. The latter is given by the localization of the algebra R at p. Thus,
Spec” (2p) is identified with a subset of the spectrum of 2%, (cf. 3.3.6). The category
Cq, is naturally equivalent to the category modules over the algebra kpl(@i, T; 1 52)] of
skew Laurent polynomials in (z; | 1 < ¢ < m) with coefficients in the residue field kp of
the point P which can be identified with the residue field K(R/p) of the prime ideal p.

Here we used the fact that the elements é, 1 <4 < m, do not belong to the ideal p.

Indeed, it follows from the formulas (9) that if & € p, then there is s such that
£+t €pand ty, #0. Since 9% (p) = p, the element 9% (&) = & + £t;, belongs to the
ideal p for any ¢ € Z. But, since char(k) = 0, this is impossible.

C1.4.1. The points of the spectrum over the generic point. Since char(k) =0,
the only Z"-invariant point of Spec? (X) is the generic point Py corresponding to the zero
ideal of the k-algebra R = k[1,...,&,].

The categories Cy, Cop , and CQ[/ coincide, and the localization at Py provides an

embedding Specp (2A) — Spec(A*) = Spec(%lt ). The Category Cg[r here is equivalent
to the category of modules over the algebra k(&1 .. fn)[xl I s +t1.0,...,0,] of skew
Laurent polynomials in z1,...,x, with coefﬁcients in the field k(&1,...,&,) of rational
functions in &, ...,&,.

C1.5. Heisenberg algebras. Recall that the Heisenberg algebra H,, (— the envelop-
ing algebra of the Heisenberg Lie algebra) is an associative k-algebra generated by z;, v;,
and z subject to the relations

[zi,y;] = 6ij2, @i, 2] = [xi,25] = 0= [y;,y;] = [yi,2] foralll<ij<n. (1)

Let R = k[z,&1,...,&,]. The Heisenberg algebra H,, is a free right R-module with
the basis formed by x°y*, where s € Z7 > t are such that s-t = Zlgign sit; = 0,

x5 =zt .. xi (see C1.2):

Hn = @ Xsth (2)

s tGZ , s:t=0
The multiplication is given by
rxSyt = Xsytﬁ‘t_s(r) for all r € R;
Ty =&, Yir; = 79;1(51') =& — 2, (3)

Here ¥ = 97* o... 0¥ and ¥;, 1 < i < n, are automorphisms of the algebra R defined
by 9i(&;) = & + dijz, Vi(2) = 2
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The spectral picture corresponding to the embedding R — H,, is recovered the same
way (and in the same degree) as the spectrum of the Weyl algebra A, regarded as a
hyperbolic algebra over the ring of polynomials. We leave details to the reader.

C2. Remarks on enveloping algebras.

C2.1. The Harish-Chandra homomorphism and the highest weight simple
modules. Let g be a semisimple Lie algebra over a field k£ of zero characteristic. Fix its
Cartan subalgebra . We take Cx = U(h) — mod, Cy = U(g) — mod, and the functor
Coy 25 C'x corresponding to the embedding U(h) — Ul(g).

We consider the canonical grading U(g) = @ U(g)a defined by the adjoint action of

AEQ
gon U(g) (cf. [D, 7.4]). The subalgebra U(g)o is the centralizer of U(h) in U(g).

Let P be a point of Spec?(X) = Spec(X), and p the corresponding prime ideal of
U(h). The category Cy, is equivalent to the category of modules over the Qp-graded
subalgebra U(g), = @ U(g)x, where Qp is the subgroup of Q stabilizing P (i.e. the

AEQp
ideal p). In particular, the centralizer U(g)o of U(h) stabilizes the subcategory P =

U(h)/p — mod for every point P. For most of points P, the subgroup Qp is trivial, hence
the category Cy, is naturally equivalent to the category U(g)o — mod. In particular, Cy,
is equivalent to U(g)o — mod for all closed points P of Spec?(X) = Spec(X).

Set Cy, = U(g)o — mod. The Harish-Chandra homomorphism U(g)o LN U(h)

induces a full embedding C'x oy Cyq, which identifies the category C'x with a coreflective
topologizing subcategory of Cy,. Therefore, the embedding ¢, . determines an embedding
Spec(X) — Spec(y). So that every element P of Spec(X) is identified with the
corresponding element of Spec? (Ap).

Let M = U(h)/p. Then the composition of the embedding

Cx =U(h) —mod —— U(g)g — mod = Cy,,

with the functor £p assigns to M the highest weight module corresponding to the ideal p.

C2.1.1. Example. If g = sly, then U(g) is generated by indeterminates x, y, z
subject to the relations

[m,y] =z [xvz] = ax, [yaz] = —ay, (1)

where « is a nonzero element of the base field k. Thus, U(h) = k[z], U(g)o = k[z,£], and
the Harish-Chandra homomorphism k[z, {] — k|[z] assigns to every polynomial f(z,&) the
element f(z,0) of k[z]. The corresponding map Spec(U(h)) — Spec(U(g)o) assigns to
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any prime ideal p in k[z] the prime ideal (p,§). If P is a closed point (i.e. p is a maximal
ideal), then U(g)o is the stabilizer of P in the sense that Cy, is equivalent to the category
U(g)o —mod = k[z,{] —mod. The functor f is isomorphic to U(g) ®y(g), — The functor
L£p assigns to the simple U(g)o-module M = U(g)o/(p,&) ~ U(h)/p the corresponding
Verma module U(g)/(p,y) = @ ™M, if p # (# —n/2) for any nonnegative integer n.
m>0

If p = (2 — n/2) for some nonnegative integer n (there is only one such integer n),

then the module M = k[z]/(z — n/2) is one-dimensional and £p (M) = @ ™M has
0<m<n

dimension n + 1 over the field k. In particular, if n = 0, then £p(M) is the unique
one-dimensional representation of U(sls).

Set R = k[z,&] = U(g)o- The relations (1) are equivalent to the relations

zy=2¢& yr=0"¢); ar=0(r)z, ry=yd(r) (2)

for all r € R. Here 6 is the automorphism of the algebra R is defined by 6(f)(z,£) = f(z+
a, &+ z+a). In terminology of [R, Ch.II], (2) is the representation of U(sls2) as a hyperbolic
ring over R. We take Cx = R — mod, Cy = U(sly) — mod and the functor Cy RANYoM
corresponding to the embedding R — U (sl2). Application the functors £p gives a fairly
complete description of the rest of the picture. Closed points of Spec(X) ~ Spec(R) have
trivial stabilizer, and the functor £p for such point P coincides with the induction functor.
By 2.2, £p maps a simple module R/p representing P to a simple U(sly)-module. If P
is a curve, then [£p(R/p)] is a noncommutative curve in Spec(2). If P is the generic
point, then we localize at the multiplicative set of nonzero elements of R and reduce the
problem to the description of simple modules over a skew polynomial ring k(z,&)[x, 6]
which is a Eucledian domain. Therefore, its simple modules correspond to irreducible
(skew) polynomials. See [R, I1.4.3] for details.

If g has a higher rank (starting from g = sl3), then U(g)o is a rather complicated
noncommutative subalgebra of U(g). In particular, it is not clear how to approach to the
description of Spec’ (2p).

C2.1.2. Remark. Similar facts on the connection of the Harish-Chandra homomor-
phism and highest weight simple modules hold for quantized enveloping algebras U,(g) in
the case when ¢ is not a root of one [XT]. Also, Uy,(sl2) has a hyperbolic structure over the
ring R = k[z, 271, €] which allows to get a description to the spectrum of 2 = Sp(U,(sl)
(see [R,11.4.2]).

C3. Associated points and primary decomposition.
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C3.1. Associated points. Fix an abelian category C'x. For every M € ObC'x, the
set Ass(M) of associated points of M can be described as the set of all Q € Spec?(X)

such that there exists a nonzero monomorphism L < M with L from O N°¢ @L.
We define ss;"' (M) as the set of all P € Th(X) such that there exists a nonzero
monomorphism L < M with L from Pt NP+, It follows that Ass;"' (M) C Specy (X).

We define Ass— (M) as the set of all P € THh(X) such that there exists a nonzero
monomorphism L < M with L from Pg = P® N PL.

It follows that 2Ass— (M) C Spec™ (X).

We denote by Ass®!(M) the set of elements Pg of Spec_(X) such that there is a
nonzero subobject L < M with L € ObPg.

Finally, Asse(M) is the set of all P € Th(X) such that there exists a nonzero
monomorphism L < M with L from P, = P*NP~+. In particular, Asse (M) C Specé’;(X).

We denote by les%; (M) the set whose elements are P, = P* N P+ of Spec%;(X)
such that M has a nonzero subobject which belongs to Px.

It follows from these definitions that the commutative diagram

a B
Spec’(X) —— Spec (X) —— Spec01(X)

| ] i »

Spec;'(X) —— Spec (X) —— Speclgé(X)
(see C2.6(5)) induces for any object M of the category C'x a commutative diagram

Ass(M) —— Ass®Y(M) —— Qlﬁﬁ%;(M)

| | K 2)

Ass (M) ——  Ass (M) ——  Asse(M)

whose horizontal arrows are embeddings and the vertical arrows are isomorphisms.
It follows that

Assy ' (M) = Ass™ ﬂ Spec;’! = Ass e (M) ﬂ Spec;!(X) and

_ _ (3)
Ass™ (M) = 2[555}) ﬂ Spec™ (

C3.2. Remarks. (a) If X has a Gabriel-Krull dimension, then, by [R6, 8.7.1], the
inclusion map Spec™ (X) — Specé{; in the diagram (1) is an isomorphism, hence the
right horizontal arrows in the diagrams (1) and (2) are isomorphisms.
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(b) The correspondence M +—— Assa (M) is studied in [R6, 10.8-10.10], where it is
shown that 2Asse (M) enjoys all general properties of associated points in the context of
commutative algebra. Similar facts hold for the map M —— Ass%1(M).

Here we sketch the facts about M —— 2ss(M) imitating [R6, 10.8-10.10] whenever
it is possible to do.

C3.3. Proposition. (a) For any exact sequence

0— M — M — M"—0,

Uss(M') C Ass(M) C Ass(M') | Ass(M”).

(b) Suppose X has the property (sup). Let an object M of Cx be a supremum of an
ascending family, Z, of its subobjects. Then

Ass(M U Ass(M').
M/ex

(c) For every object M of Cx, any exact localization, Y -5 X, induces an injective
map Ass(M) NUz(Ker(u*)) — Ass(u*(M)). Here U= (S) ={T € T(X) | T £ S}.
(d) If M belongs to Spec?(X), then Ass(M) = {[M]}.

Proof. (a) The inclusion Ass(M’) C Ass(M) follows from definitions.

Let P € Ass(M), i.e. there exists a nonzero subobject, L, of M such that [L] = P.
Suppose L' = LN M’ # 0. Then L’ is a nonzero subobject of M’ and L. The latter implies
that [L'] = [L] = P, hence P € Ass(M’). If L’ = 0, then the composition of L — M and
the canonical epimorphism M — M” is a monomorphism, hence P € ss(M"). This
proves the inclusion Ass(M) C Ass(M') | Ass(M" )

(b) It follows from (a) that the inclusion Ass(M U Ass(M') holds without any
M/GH
additional conditions on X.
Let P € Ass(M), i.e. M has a nonzero subobject L such that [L] = P. Since X
has the property (sup), L N M’ # 0 for some M’ € Z. Therefore 73 € Ass(M') (see the

argument in (a) above). This verifies the inverse inclusion, 2ss(M U Ass(M').
M'€E

(c) Let u* be an inverse image functor of Y —= X. Set Ker(u*) = S. The claim is
that the injective map Uz (X) — TH(Y), P — P/S, induces a (forcibly injective) map
QLSS(M) N Z/[g() (S) — Qlﬁﬁ(u* (M))

Let P € Ass(M) NUz(S), that is P € S, and there exists a nonzero subobject L of
M such that [L] = P. Since P € S, the object L is S-torsion free. Therefore, u*(L) is a
nonzero subobject of u*(M) which belongs to Spec?(X).
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(d) The assertion follows from the definition of Spec?(X). m
C3.4. Corollary. (i) For any finite set, {M; | i € J}, of objects of Cx,

91552(@ M;) U Ass¢ (M,

ieJ ieJ

If X has the property (sup), then the finiteness condition can be dropped.
(ii) Let {L; | i € J} be a finite set of subobjects of an object M such that ﬂ L; =0.
ieJ
Then
Usso(M/(() Li)) € | Asse(M/L;).

i€J ieJ

Proof. (i) For a finite set {M; | i € J}, the assertion follows from C3.3(a). The infinite
case is a consequence of C3.3(b).
(ii) The assertion follows from (i) and C3.3(a) applied to the canonical monomorphism

M/((\Li) — EPM/L;.

1€J ieJ

C3.5. Corollary. The full subcategory, C'xo , of the category Cx whose objects,
Ass

M, have no associated points, Asse(M) =0, is closed under extensions, taking subobjects,
and colimits of filtered diagrams of monoarrows.

Proof. The assertion is a consequence of C3.3(a) and (b). m

C3.6. Proposition. Let Y — X be an exact localization such that S = Ker(u*)
18 a coreflective subcategory of the category C'x. Let P € Spec%’l(X) and S CP. Let M
be an object of Cx such that Ass(L) # O for any nonzero subobject, L, of M. Then the
following conditions are equivalent:

(a) Ass " (M) = {P};

(b) Uss,' (u*(M)) = {P/S} and M is S-torsion free.

Proof. (a)=(b). Let tsM denote the S-torsion of M. If tsM # 0, then, by hypothesis,
Ass(ts M) # 0, i.e. Ass(tsM) = {P}. The latter means that tsM has a nonzero subobject
L such that to (L) = P; in particular, L is P-, hence S-torsion free, which contradicts to
that L is a nonzero object of the subcategory S.

Since M is S-torsion free, it follows from C3.3(c) that Ass;' (u*(M)) = {P/S}.

(b)=-(a). There is a subobject N of M such that (u*(N)) = P/S. By hypothesis,
since N # 0, Ass(N) # (); i.e. there exists a subobject L < N such that [L] € Spec?(X).
Since L is P-torsion free, it follows that P = (L). m
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C3.7. Proposition. Suppose X has the property (sup). Let M € ObCx, and let ®
be a subset of Ass(M). Then there exists a subobject L — M such that

Ass(M/L) =Ass(M) — P  and Uss(L) = P. (4)

Proof. (a) Let D¢ be the set of subobjects, M’, of M such that Ass(M’) C ®. The
set D¢ is not empty, because it contains the zero subobject. It follows from C3.3(b) that
supZ € Dg for every filtered subset = of Dg. Therefore, by Zorn’s lemma, there exists
a maximal element (subobject), L, in ©4. We claim that the subobject L satisfies the
conditions (4). Thanks to C3.3(a), it suffices to show that Ass(M /L) C Ass(M) — P.

(b) Let P € Ass(M /L), i.e. M/L has a subobject, N — M /L such that P = [N].
Consider the short exact sequence

0—L—N=M>xp,;, N— N —0. (5)

associated with N —s M/L. By (3.3(a), Ass(N) C Ass(L)|JAss(N). By C3.3(d),
Ass(N) = {P}. Since L is a maximal element of D¢ and a proper subobject of N,
the latter does not belong to ®g. Therefore P € Ass(N) — P. m

C3.8. Primary decomposition.

C3.8.1. Definition. Let M be an object of an abelian category Cx. We call a
subobject N of M primary, or P-primary, if Ass(M /N) consists of one element, P.

C3.8.2. Proposition. Let {N; | i € J} be a finite set of P-primary subobjects of an
object M of an abelian category Cx. Then m N; is a P-primary subobject of M.
ieJ
Proof. The fact follows from C3.4(ii). m

C3.8.3. Definition. Let N be a subobject of an object M of the category Cx. A
primary decomposition of N — M is a finite set, {N; | i € J}, of primary subobjects of
M such that N is a subobject of ﬂ N; and ﬁsﬁ(ﬂ N;/N) =10.

icJ icJ
C3.8.3.1. Note. It follows from this definition and C3.4(ii) that if a subobject N of

M has a primary decomposition, then 2ss(M /N) is a subset of {P; | i € J}, in particular,
Ass(M /N is finite. Here Ass(M/N;) = {P;}.

C3.8.4. Proposition. Let N be a subobject of an object M such that Ass(M/N) is
finite. Then there exists a primary decomposition, {Np | P € Ass(M/N)}, such that Np
is P-primary for every P € Ass(M/N).
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Proof. Replacing M by M /N, we can and will assume that N = 0. By C3.7, for
every P € Ass(M ), there exists a subobject Np of M such that Ass(M/Np) = {P} and
Ass(Np) = Ass(M) — {P}. Set My = ﬂ Np. For each P € Uss(M), we have the

PeAss(M)
inclusion Ass(My) C Ass(Np), hence Ass(My) = (. =

C3.8.5. Definition. Let NV be a subobject of an object M such that Ass(M/N) is
finite. Let {N; | ¢ € J} be a primary decomposition of N in M with Ass(M/N; = {P;}.
The primary decompsition {N; | i € J} is called reduced if

(a) for any i € J, Ass( ﬂ N;/ ﬂ N;) # 0; in particular, the intersection ﬂ N;

BEYE j€J T3
is not a subobject of N;;

(b) if i # j, then P; # P;.

C3.8.5.1. Note. Starting with an arbitrary primary decomposition, one can obtain a
reduced primary decomposition as follows. Let {IV; | ¢ € J} be any primary decomposition
of N — M with Ass(M/N;) = {P;}, i € J. Set & = {P; | i € J}. Let Jy is a minimal
element of the set of subsets, I, of J such that {N; | i € I} is a primary decomposition.
Clearly, {N; | i € Jo} satisfies the condition (a). For each P € ®, let Np = m N;. By

Pi=P
(C3.8.2, Np < M is P-primary. Since ﬂ Np = ﬂ N;, the set of subobjects {Np | P € &}

Pcd icJ
is a reduced primary decomposition of N < M.

C3.8.6. Proposition. Let N be a subobject of an object M such that Ass(M/N) is
finite. Let {N; | i € J} be a primary decomposition of N in M with Ass(M/N;) = {P;}.
(i) The following conditions are equivalent:
(a) The decomposition {N; | i € J} is reduced.
(b) AllP; belong to Ass(M/N) and P; # Pj; if i # j.
(ii) If the equivalent conditions (a), (b) are fulfilled, then

Ass(M/N)={P; | i€ J} and
Ass(N;/N)={P; | jeJ, j#i} forall i€ J

Proof. (a)=(b). Let {N; | i € J} be a reduced primary decomposition. By C3.8.3.1,
Ass(M/N) is a subset of {P; | i € J}. Set N = ﬂ N;. We can and will assume that
J2j#1
N = ﬂ N; = N, N N;. Since the decomposition {N; | i € J} is reduced, Ass(N,Y /N) # 0.
JjeJ
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Because N, /N is isomorphic to the subobject sup(N,’, N;)/N; of M /N;, this implies that
Ass(N,'/N) = {P;}, whence the inverse inclusion: {P; | i € J} C Ass(M/N).

(b)=>(a). If the condition (b) holds, {N; | j € J—{i}} cannot be a primary decomposi-
tion, because this would imply that P; ¢ 2Ass(M/N). Therefore the primary decomposition
{N; | i€ J} of N — M is reduced.

The equality Ass(M/N) = {P; | i € J} is already established. It remains to show that
for any i € J, Ass(N;/N) ={P; | j € J, j #i}. Applying C3.3(a) to the exact sequence

0 — N;/N — M/N — M/N; — 0,
we obtain inclusions
Ass(N;/N) C Ass(M/N) C Ass(N;/N) Ules(M/Ni) = Ass(N; /N) U{Pi}'
This and the equality Ass(M/N) = {P; | j € J} imply that
{P;jljeJ—{i}} CAss(N;/N) C{P; | j € J}

On the other hand, since N = m (N; N'Nj), we have an inclusion
jeJ—{i}

ss(N;/N) C | ] Ass(N;/(N: N N;)).
jeJ—{i}

But, N;/(NN;NN;) is isomorphic to the subobject sup(N;, N;)/N; of the object M /N, hence
Ass(N;/(N; N N;)) C Ass(M/N;) = {P;}. This gives the inverse inclusion: Ass(N;/N) C
{PiliceJ—{i}} =

C3.8.7. Corollary. Let {N; | i € J} be a primary decomposition of a subobject N

of an object M. Then Card(Ass(M/N)) < Card(J). The decomposition {N; | i € J} is
reduced iff Card(2ss(M/N)) = Card(J).

Proof. Following the procedure described in C3.8.5.1, one can obtain, starting from

{N; | i € J}, areduced primary decomposition, {N; | j € I} such that Card(I) < Card(J).
The rest follows from C3.8.6. m

For any object M of the category Cx, let (M) denote the set of reduced primary
decompositions of 0 — M. By C3.8.6, each element of ©,(M) is aset, {Np | P € Ass(M )}

of subobjects of M such that Ass(M/Np) = {P} and Uss( ﬂ Np) = 0.
PeUAss(M)
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C3.8.8. Proposition. Let {Np | P € Ass(M)} and {Np | P € Ass(M)} be two

elements of ©,(M), and let ® be a subset of Ass(M). Then {Np | P € &} U{Np | P €
Ass(M) — @} is an element of D, (M).

Proof. Set Ny = (| Np and Ny = (] Np. Since 2ss(M/Np) = {P} and
Ped PecAss(M)—P
Ass(M/Np) = {P} for all P € Ass(M), it suffices to verify (thanks to C3.8.6) that
Ass(Ng Ny ) = 0.
By C3.8.6(ii), Ass(Np) = ™Uss(M) — {P}, in particular, P ¢ Ass(Np). There-
fore, every element of ® does not belong to 2Ass(Ng), i.e. ®()Ass(Ng) = 0. Similarly,
(Ass(M) — &) (N Ass(NY) = 0. Thus, Ass(Ng (\Ny) C &N (Ass(M) —®) = 0.

C4. Monads and localizations. Differential monads.

C4.1. Localizations compatible with monadic morphisms. Fix a monadic mor-

phism X 1 Z and a Serre localization U —% Z (i.e. Cz SN Cy is the localization at a
Serre subcategory) compatible with f. Here compatible means that the functor Fy = f, f*

maps Y- Lt {s € HomCyz | u*(s) € Iso(Cy)} to X,«; or, equivalently, there exists a

functor Cy RiLA Cy such that u* o Fy = Fyou®. Thanks to the universal property of local-
izations, the functor Fy is determined uniquely by the latter equality. The monad structure

F2 sl — Iy induces a monad structure Fy; LA Fy, hence we obtain a monad Fyy = (Fy, p).

*

The localization functor v* induces a functor (Fy/Z)—mod s (Fu/U)—mod which

maps an F p-module (M, F(M) 5 M) to the Fy-module (u* (M), Fyu*( S) *(
It is easy to see that w* is (isomorphic to) an exact localization and K er( *) is
generated by all F-modules (M, &) with M € ObKer(u*).

Suppose now that the localization ¢ is continuous, and let u, is its direct image functor.
Fyey
The equality Fyy o u™ = u* o Fy implies an isomorphism u*Fru, = Fyu*u. AN Fy,

where €, is an adjunction isomorphism u*u, — Idc, . The compatibility of F'; with the

U P}nu
localization functor u* means precisely that the morphism v*Fy —— u*Fyu,u®, where

7y 1s an adjunction arrow Idc, — w,u”, is an isomorphism. This isomorphism allows to
write the multiplication g on u* Fru, as the composition of the isomorphism

wr gy
(u*Ffu*)2 = (W Fruu™)Fru, — u*Ffu* and w Ffu* — u Fyu,.

One can show that f is a monad structure on u*Fyu, and the canonical isomorphism
u*Fyu, — Fy described above is a monad isomorphism (u*Fyus, 1) = (Fu, ).
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One of the consequences of this isomorphism is a description of a canonical right

*

adjoint u, to the localization functor F; — mod BN Fu — mod.
In fact, let § denote the monad (u*Fruy, ). Every morphism u*Fru, (M) s M

determines via adjunction (and is determined by) a morphism F(u.(M)) N ux(M).
If £ is an (u*Fyuy, p)-module structure, then ¢ is an Fp-module structure. This defines

a functor §y — mod N Fr —mod. The functor u, is a right adjoint to the func-

tor Fy — mod N Su — mod which maps an Fy-module (M, () to the §y-module
(u*(M), (), where ¢, is the composition of the isomorphism u* Fru,u* (M) = w*Fy(M)

®

(9 e
and u* Fy(M) —— u*(M). One can verify that the adjunction morphisms u*u, —= Id¢,,

and Idc, Ay et give rise to the adjunction morphisms w*u, — Idgz, _moa and
Idr; —moa — uxu*. In particular, u*u, — Idg, moq is an isomorphism, which shows
that u* is a localization. It follows from this description that the diagram

Su — mod u—> Fy —mod

fue | | £

U

Cu — Oz
quasi-commutes. Here the vertical arrows are forgetful functors.

C4.1.1. Lemma. Let U - X be a continuous morphism such that u* is a localiza-
tion, and Cx N Cx is a functor compatible with the localization u*. If the functor F is

continuous, then the induced endofunctor Cy —% Cy is continuous.

Proof. Let ' be a right adjoint to the functor F and Idc, 1 F'F, FF' % Ide,
adjunction arrows. By the argument above, the functor Fy uniquely determined by the
equality Fiy o u™ = u* o F', is naturally isomorphic to v*Fu,, and the compatibility of F
with the localization u* (i.e. the existence of Fy; is equivalent to that the natural morphism

u* Fney
u*F —— u* Fu,u* is an isomorphism. Here 7, is the adjunction arrow Idc, — u.u*.

The claim is that the functor u*F'u, is a right adjoint to u* Fu, (hence to Fy/).
In fact, there are natural morphisms

(w* Fuy)(u*F'uy) = (u* Fuyu®) (F'u,) = u*FFu, W, Ide,

and
6;1 . U UL . ol u*F!nuFu* . ol I
lde, — v'uy — v F'Fu, —— u Fuu F
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One can check that their respective compositions produce a pair of adjunction morphisms.
Details are left to the reader. m

C4.2. Infinitesimal neighborhoods of the diagonal. Differential calculus.
Fix a monoidal category A~ = (A,®,1,a). Here 1 denotes the unit object and a the
associativity constraint. In order to simplify the exposition, we assume that the category
A is quasi-abelian (i.e. it is additive and every morphism has a kernel and cokernel) and
that the functor M ® — : L — M ® L preserves small colimits.

Fix a full monoidal subcategory T of A closed with respect to colimits taken in A.
The pair (A~,T) is the initial data for differential calculus.

Objects of the n** neighborhood T 1 of the subcategory T are called T-differential
objects of order < n. In particular, zero objects are the only T-differential objects of the
order —1, and T consists of T-differential objects of order < 0. Sometimes we shall loosely
call the subcategory T the ’diagonal’.

C4.2.1. Proposition. The category T def ﬂ T™ of T-differential objects is a
n>1
monoidal subcategory of A™.

Proof. See [RL1]. m

C4.2.2. Corollary. The category T whose objects are colimits of objects of the
category T(*) is a monoidal subcategory of A™.

Proof. The assertion follows from C4.2.1 and the assumption that the functors M ® :
L+— M ® L, M € ObA, preserve colimits. m

C4.2.3. The smallest diagonal. We denote the smallest ’diagonal’ (i.e. the
monoidal subcategory of A™ closed with respect to colimits (taken in A) and generated
by the identity object 1) by A 4~.

C4.3. Differential functors and differential monads.

C4.3.1. Differential functors and (co)monads. Let A~ be the monoidal category
¢nd.(Cy) of right exact endofunctors of an abelian category C'x and T = A 4~ the smallest

diagonal of A~. Objects of the subcategory T(®) = Affi) are called differential functors.
A monad (F,pu) (resp. a comonad (G,0d) is called differential if the endofunctor F
(resp. G) is differential.

C4.3.2. Differential bimodules. Let R be an associative unital ring and A~
the monoidal category of R-bimodules: A~ = R — bimod™~ = (R — bimod,®pr, R). In

this case the smallest diagonal is the full subcategory of R — bimod whose objects are all

central bimodules, i.e. bimodules M generated by their center C(M) o {z € M| rz =

zr for all r € R}. The corresponding differential objects are called differential bimodules.
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Note that the monoidal category of differential bimodules is equivalent to the monoidal
category of differential endofunctors C'x — C'x, where Cx = R — mod.

C4.3.3. Proposition. (a) Let Cx be an abelian category and Cx N Cx a dif-
ferential endofunctor. Then every thick subcategory T of the category C'x is F'-stable, i.e.
F(T) CT.

(b) If, in addition, the functor F is exact, then there exists a unique endofunctor Fr
of the quotient category Cxr such that Froq’ = q; o F. Here q, is the localization functor
Cx — Cxyr. The functor Fr is exact and differential.

(c) If the differential functor F is exact and continuous (i.e. it has a right adjoint),

then for every continuous exact localization Cx S, Cx/t, the induced endofunctor Fr of
Cx/r 1s continuous.

Proof. (a) If F belongs to the diagonal, then F(S) C S for every full subcategory of
Cx closed under coproducts and quotients (taken in C'x). In particular, every topologizing
(hence every thick) subcategory of Cx is F-stable.

In general, an endofunctor F' is differential iff it has an increasing filtration, F_; =
0 — Fy — ... — F, = F such that all quotients F;/F;_1, 0 < ¢ < n, belong to the
diagonal. In particular, for every object M of a thick subcategory T, there is a filtration
0— Fo(M) — ... F,(M) = F(M) such that all quotients F;(M)/F;_1(M), 0 <i <n,
belong to T. Therefore, F'(M) is an object of T.

(b) If a functor F' stabilizes a thick subcategory T and is exact, then it determines a
unique endofunctor Fr of the quotient category Cx,r such that g3 o F' = Fr o g. Since
the functor ¢f o F' is exact, it follows from [GZ, 1.1.4] that the functor Fr is exact.

(c) If Fy is a right adjoint to the endofunctor F' and ¢.. is a right adjoint to the

localization functor Cy —= Cx/r. The checking (or reading [KR2, C2.1]) is left to the
reader. m



Chapter IV
Geometry of ’Spaces’ Represented by Triangulated Categories.

This Chapter contains a sketch of the beginning of one of the simplest forms of derived
noncommutative geometry. Here ’spaces’ are represented by svelte triangulated categories
(we call them ¢-’spaces’) and morphisms by isomorphism classes of triangle functors. We
start with pseudo-geometry following pattern of Chapter 1, that is we consider continuous
morphisms and look for a triangulated version of Beck’s theorem (which plays a central
role for studying ’spaces’ represented by ordinary categories, incorporating both affine
schemes and, in the dual context, descent theory). The triangulated picture, turns to
be much easier: the triangulated version of Beck’s theorem on descent side states that
every continuous morphism is the composition of a comonadic morphism and a continuous
localization. In particular, any faithfully flat (in triangle sense) morphism is comonadic.

The geometric picture looks even better. There are two spectra, Spec}l’l(.’{) and

Spec}c/ 2(3&‘) which are triangulated analogs of the spectra respectively Spec%’l(%) and

Spec(X). There is a natural bijective map Spec§/2(.”£) — Spec}z’l(%). But, unlike the
bijection Spec(X) — Spec,” (X) of I1.3.3.2, this map does not preserve the specialization
preorder O. The specialization preorder on Spec}l’l(%) is what we expect from specializa-

tion. So that the preorder (Spec}:’l(%), D) is regarded as the ”principal” spectrum of the
t-"space’ X. On the other hand, the points of the spectrum Speci/ 2(%) are closed with
respect to the topology determined by the specialization preorder, or a natural version of
Zariski topology on Spec}:/ 2(.’{) This gives certain technical advantages (which are not

used here) and curious interpretations.

1. Preliminaries on triangulated categories.

1.0. Z-Categories. Recall that a Z-category is a category endowed with an action
of Z, where 7Z is regarded as a monoidal category: objects are elements and the tensor
product is given by addition. In other words, a Z-category is a category Cy with an auto-
equivalence 0y and an associativity isomorphism 0y o (fx 0fx) — (0x 0 fx) o Ox satisfying
the usual cocycle conditions.

1.1. The category of triangulated categories. Triangulated k-linear categories
are triples (Cx, 0x;Trx), where (Cx,0x) is an additive k-linear Z-category, and Try a full
subcategory of the category of diagrams of the form

L—>M-—N —0x(L).
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The objects of the subcategory Tty are called triangles. They satisfy to well known
axioms due to Verdier [Vel]. We denote a triangulated category (Cx,0x;%tx) by CTx.

A triangle k-linear functor from a triangulated k-linear category CTx = (Cx, 0x; Ttx)
to a triangulated k-linear category CTy = (Cy,0y;%ry) is a pair (F,¢), where F is a
k-linear functor Cx — Cg and ¢ a functor isomorphism fy o F' — F' o 0y such that for
any triangle £L — M — N — 0x(L) of CZx, the diagram

F(L) — F(M) — F(N) — 0y (F(L)),

where F(N) — 0y (F(L)) is the composition of F(N — 6x(L)) and the isomorphism

Fox(L) S 09 (F(L)), is a triangle of the triangulated category CTy.

We denote by Tr€at; the category whose objects are svelte triangulated categories
and morphisms are triangle functors between them.

1.3. Multiplicative systems in triangulated categories. Fix a triangulated
category CTx = (Cx,7; Trx). A multiplicative system X of (X, ) is said to be compatible
with triangulation if for any pair of triangles (L, M, N, u,v,w) and (L', M', N’ v/, v', w’)
and any commutative diagram

L — M

where s and s’ are elements of X, there exists a morphism N 'y N’ which belongs to X
and such that (s,s’,t) is a morphism of triangles.

We shall use same notations: SM(X) (resp. S*M(X)) for the preorder of multiplica-
tive (resp. saturated multiplicative) systems of the tr-’space’ X. The dualization functor
X — X° induces an isomorphism of preorders

SM(X) = SM(X°) and S*M(X) = STM(X°).

1.4. Triangulated subcategories. Recall that a full subcategory, T, of the category
Cy is called a triangulated subcategory if it is stable by translations, and has a triangulated
structure such that the inclusion functor T — C'x is exact.

Let T be a full subcategory of C'yx stable by translations. The subcategory T admits
a triangulated structure which makes it a triangulated subcategory of C7x iff for any

morphism L Ly M of T, there exists a triangle (L, M, N, f, g, h) such that N € ObT.
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1.4.1. Definitions. (1) A full triangulated subcategory, T, of C7x is called saturated
(in [Ve2)), if every direct summand (in Cx) of an object of T belongs to T.

(2) A full triangulated subcategory, T, of CTx is called thick (in [Vel] and everywhere
else), if every triangle (L, M, N, u,v,w) such that N € ObT and L —%+ M factors through
an object of T, belongs to T (that is L and M are objects of T).

These two notions are equivalent: A full triangulated subcategory of a triangulated
category s thick iff it is saturated.

1.5. Triangulated subcategories and multiplicative systems. For any full
triangulated subcategory, T, of the triangulated category C7x, let X1 denote the family of
all morphisms L — M of CTx such that there exists a triangle (L, M, N,u,v,w), where
N is an object of T.

1.5.1. Proposition [Ve2, 2.1.8]. For any full triangulated subcategory of a trian-
gulated category CTx, the family Yt is a multiplicative system. The system Y is saturated
iff the subcategory T is thick.

For any multiplicative system ¥ in the triangulated category C7Tx, let Ty denote the
full subcategory of CTx generated by objects N contained in a triangle (L, M, N, u,v, w)
such that L — M belongs to X.

1.6. Proposition [Vel, 2.1]. The map ¥ —— Ty, is an isomorphism of the preorder
S*M(X) of saturated multiplicative systems of a triangulated category CTx onto the pre-
order Tht(X) of thick triangulated subcategories of CTx. The inverse isomorphism is given
by the map T — Y.

1.6.1. Corollary. The intersection of any set of saturated multiplicative systems of
a triangulated category is a saturated multiplicative system.

Proof. The assertion follows from an easily checked fact that the intersection of any
set of thick triangulated subcategories of a triangulated category is a thick triangulated
subcategory. m

The following proposition (which is a part of [Ve2, 2.3.1]) is a convenient reference for
the rest of this section.

1.7. Proposition. Let B and A be full triangulated subcategories of a triangulated
category CTx such that B C A.

(a) The canonical functor A/B — CTx/B is fully faithful and injective on objects.
The image of this functor is qj3(A), where g is the canonical functor CTx — CTx/B.

The subcategory A is thick iff the subcategory qi5(A) is thick.

(b) The map A — qi(.A) is an isomorphism of the preorder of strictly full triangulated
subcategories of CTx containing the kernel, Bt of the functor ¢} onto the preorder of strictly
full triangular subcategories of CTx /B.
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(¢) The canonical functor CTx/A — (CTx/B)/(A/B) is an isomorphism of triangu-
lated categories.

1.7.1. Corollary. Let B and A be full triangulated subcategories of a triangulated
category CTx such that B C A. Let B be the thick envelope of B in CTx. Then B*N A is
the thick envelope of B in A.

Proof. Consider the commutative diagram

Bt —— CTx —— CTx/B

T T T

BYy — A —— A/B

with exact rows. By 1.7(a), the functor A/B——C7Tx /B is faithful. Therefore, the kernel,
BY, of the localization functor A — A/B, which is the thick envelope of B in A, coincides
with B'NA. =

1.8. Preliminaries on orthogonality. For any subcategory B of C7%, the left
orthogonal, ~B, of B is the full subcategory of CTx generated by all objects N such that
CTx (N, M) = 0 for all M € ObB. The right orthogonal of B is defined dually and is denoted
by Bt. Its objects are B-torsion free objects of CTx. If B is a triangulated subcategory,
then Bt and B are thick triangulated subcategories.

1.8.1. Proposition [Ve2, 2.3.3]. Let B be a full triangulated subcategory of a

triangulated category CTx and CTx q—B> CTx/B the canonical localization functor.
(a) For every object M of CTx, the following conditions are equivalent:

(i) The object M is q};-free.

(i) The object M is left closed for ¥g, i.e. CTx(s, M) is an isomorphism for every
s € ¥p. Here X is the multiplicative system corresponding to B (cf. 1.5).

(i4i) Every morphism M —> N with s € ¥ admits a retraction.

(iv) The object M is B-torsion free, that is for every L € ObB, CTx(L, M) = 0.

(v) For every N € ObCTx, the map

CTx(N, M) — CTx/B(q,(N), q,(M))

1$ an 1somorphism.

(b) The full subcategory L(qs) of CTx generated by g -free objects is a thick triangu-
lated subcategory.

(c) The composition of the inclusion functor CTr(,) — CTx and the localization

functor CTx q—6> CTx/B is a fully faithful functor injective on objects.
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(d) Let CTxry (qs.) be the full subcategory of the quotient triangulated category CTx/B
generated by all objects M such that the functor CTx/B(q},(—), M) is representable. The
subcategory CTzey (qs.) 18 triangulated and strictly full. If infinite coproducts or products
exist in CTx, then CTzey (qs.) 15 thick.

(e) The localization functor q;, induces an equivalence of categories

CTr(g,) — CTxex(gs.)-

(f) An object N of CTx belongs to the preimage, CTyr(q,) = qgil(CTgtx(qg*)), of the

subcategory CTzey (q5.) ilf there exists a morphism N s M such that M is qy.-free and
q,(s) is invertible.
(9) The inclusion functor C72;(q5) — C'ng(qB) has a left adjoint.

Proof. See [Ve2, 2.3.3]. =

1.8.2. Corollary [Vel, 6-3]. Let T be a thick triangulated subcategory of the
triangulated category CTx. The full subcategory of CTx generated by objects which are left
closed for S, is the right orthogonal, T+, of the subcategory T.

Proof. The fact follows from the equivalence of (ii) and (iv) in 1.8.1. m

1.8.3. Proposition [Vel, 6-5]. Let T be a thick triangulated subcategory of CTx,
and let

T % ¢Tx &5 CTx)T

be the inclusion and localization functors. The following properties are equivalent:
(a) The functor i has a right adjoint.
(b) The functor ¢} has a right adjoint.

1.9. The category of t-’spaces’. If CTx = (Cx,0x;%rx) is a svelte Karoubian
(that is the category C%x is Karoubian) k-linear triangulated category, we say that it

represents a t-’space’ X. A morphism X BN ) from a t-’space’ X to a t-’space’ ) is an
isomorphism class of triangle functors from C7Ty to CTx. A representative of a morphism
f will be called an inverse image functor of j and denoted, usually, by §*. The composition
f o g is, by definition, the isomorphism class of the composition g* o f* of inverse image
functors of respectively g and f. This defines the category Espz, of t-’spaces’.

2. Triangulated categories and Frobenius Z-categories.

We need some facts about abelianization of triangulated categories.
For any k-linear category Cx, we denote by My (X) the abelian category of presheaves
of k-modules on Cx and by Cx the full subcategory of My (X) generated by all presheaves



142 Chapter 4

of k-modules which have a left resolution formed by representable presheaves. Since Cx,

contains all representable presheaves, the Yoneda functor C'y Dz, M (X) factors through
the embedding Cx, — My(X). We denote by $x the corestriction Cx — Cx, of

the Yoneda functor. Every k-linear functor Cx £, Cy induces a right exact functor
Cx, RN Cy, such that the diagram

F
Cx—>CY

hxl l hy (1)

F,
CX e Cya

a

commutes. The functor F is determined uniquely up to isomorphism.
If Cy is a Z-category, then the categories M (X) and Cx_ inherit a Z-action such that

the functors hx and $Hx become Z-functors. It follows that for every Z-functor C'x N Cy,
the functor C'x, £> Cy, is a Z-functor.

2.1. Frobenius abelian Z-categories. An exact k-linear Z-category is called a
Frobenius category if it has enough projective and injective obects and its projective and
injective objects coincide. In this chapter, we are interested only in abelian Frobenius
categories. We denote by §zC€at; the category whose objects are svelte Frobenius k-
linear abelian Z-categories and morphisms are exact k-linear functors which map projective
objects to projective objects.

2.2. Theorem. (a) For any triangulated k-linear category C¥x = (Cx,0x;%Ttx), the
category Cx, 1s a Frobenius abelian k-linear Z-category. If the category Cx is Karoubian,

then the canonical functor Cx REEN Cx, tnduces an equivalence between the category Cx
and the full subcategory of Cx, generated by its projective objects.

(b) The correspondence CTx —— Cx, extends to a fully faithful functor from the
category Te€aty to the category Fzaty.

Proof. The assertion is equivalent to a part of Theorem 3.2.1 in [Ve2|. m

3. Localizations, continuous morphisms, and (co)monadic morphisms.

3.1. Localizations and conservative morphisms. Let X g, 7) be a morphism

of t-"spaces’. Its inverse image functor Cy I, Cx is a composition of the localization at
the thick subcategory Ker(f*) and a faithful triangle functor. In other words, we have a
canonical decomposition f = psof, where p is the localization functor Cy — Cy /Ker(f*)
and fF is a faithful triangle functor determined (uniquely once §* is fixed, hence) uniquely
up to isomorphism.
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We call a morphism of t-’spaces’ X g, ) a localization if §. is an isomorphism, or,
equivalently, if its inverse image functor is a category equivalence.

3.2. Continuous morphisms. We call a morphism X 7, ) of t-"spaces’ continuous
if its inverse image functor, * has a right adjoint, §., and this right adjoint is a triangle
functor.

3.2.1. Proposition. The following conditions are equivalent:

(a) A morphism X SN Q) of t-’spaces’ is continuous.

*

fa
(b) The functor Cx, —— Cy, 1is an exact functor and has a right adjoint.

Fax
(¢) The functor Cy, —— Cx, is an exact functor and has a left adjoint.

Proof. (a) = (b). Let X SN 2) be a continuous morphism of t-’spaces’; that is its
inverse image functor {* has a right adjoint, f., which is a triangle functor. Then {4, is a
right adjoint to the functor f; and it maps injective objects to injective objects. Since the
category Cy, has enough injective objects, the latter implies that the functor §} is exact.

*

(b) = (a). Conversely, if the functor Cx, L Cy, is exact and has a right adjoint,
fax, then the latter maps injective objects to injective objects. Since injective objects
in Cx, and Cy, coincide with projective objects and the categories Cx, and Cy, are
Karoubian, the embeddings Cx — Cx, and Cy — Cy, induce equivalences between
the category Cx (resp. Cy) and the full subcategory of the category Cx, (resp. Cy,)

generated by projective objects. Therefore, the functor fq. induces a functor Cy LN Cx
which is a right adjoint to f*.

The implications (a) < (c) follow by duality. m

3.3. Monads and comonads in triangulated categories. Let TCx = (Cx,0x,%tx)
be a triangulated category. A monad on TCx (or a monad on the corresponding t-’space’ X)
is a monad F = (F, 1) on the category Cx such that F is a triangle functor and F? 2y Fis
a morphism of triangle functors. Dually, a comonad on TCx (or X) is a comonad G = (G, 6)

such that G is a triangle functor on ¥Cx and G O ?isa morphism of triangle functors.
The category (F/X) — mod of F-modules has a structure of triangulated category

induced by the forgetful functor (F/X) — mod BEN Cx.
The following assertion is the triangulated version of Beck’s theorem.

3.4. Proposition. Let TCx and €Cq be Karoubian triangulated categories and

fr fa
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a pair of adjoint triangle functors with adjunction morphisms
Ffe L Idse, and Idse, ~% fof*.

(a) The canonical functor

*

TCy f—> Gy — Comod = (X\Gy) — Comod, M — (f*(M), f*ns(M)), (1)

s a localization functor. It is a category equivalence iff the functor f* is faithful.
(b) Dually, the canonical functor

TCx LN Fi—mod = (Ff/Y) —mod, L—s (fo(L), fre;(L)), (2)

1$ a localization. It is a category equivalence iff the functor f. is faithful.

Here Gy = (Gy,07) = (f*fo, fnpfs) and Fy = (Fy,pup) = (fof", fuep f*) are respec-
tively the comonad and the monad associated with the pair of adjoint functors f*, f..

Proof. Tt suffices to prove (a), because the two assertions are dual to each other.
Let Cx, denote the abelianization of the triangulated category TCx. Any triangle func-

tor TCx — %Cy gives rise to an exact Z-functor Cx, RN Cy), between the corresponding
abelian Z-categories which maps injective objects to injective objects. In particular, we
have a pair of adjoint exact Z-functors

fa Jax

CQJ —a> C;{a S CQJG

a

which map injective objects to injective objects. Thus, we have the canonical functor

T

Cy, —— (X.\Gs,) — Comod.

Since both adjoint functors, f; and fg. are exact functors between abelian categories, it
follows from Beck’s theorem that A]E’c‘l is a localization functor. If the functor f* is faithful,
then the functor f; is faithful. This follows from the fact that every object M of the
category Cx, is a quotient object of an object N of Cx and a subobject of an object

L of TCx. Therefore, the composition N Ly L of the epimorphism N — M and a
monomorphism M — L is nonzero iff M is nonzero. Since the functor f* is faithful,
f*(B) # 0 whenever M # 0, which, in turn, implies that (M) # 0 if M # 0.
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Since the functor Cy, i) Cx, is exact and the category Cy), is abelian, the faithfulness
of fr is equivalent to its conservativeness. The fact that f; is conservative implies that
is conservative too. Therefore, being a localization functor, §;, is a category equivalence. m

3.5. Continuous and (co)monadic morphisms of t-spaces. Let X N 2) be a
continuous morphism of t-’spaces’. We call it comonadic if the canonical functor

TCy LN Gy — Comod = (X\Gy) — Comod, M v+ (f*(M), f*ns(M)), (1)

is a category equivalence. Dually, f is called a monadic morphism if

TCx —" Fp—mod = (F1/9) —~mod, L (fu(L), fue (L)), 2)

is a category equivalence.

By 3.4, a continuous morphism X SN 9) is comonadic (resp. monadic) iff its inverse
(resp. direct) image functor is faithful.

3.5.1. Decomposition. One can show that if X N ) is a continuous morphism,
then both localization p; and the 'faithful’ component f. in the decomposition § = p; o f.
(see 3.1) are continuous morphisms. It follows from 3.4 that every continuous morphism of
t-’spaces’ is a unique composition of a continuous localization and a comonadic morphism.

4. Presite of localizations.

4.1. Proposition. Let TCx be a svelte triangulated category and {T; | i € J} a finite
family of thick triangulated subcategories of TCx. Then

() T)us=((T:uS)

icJ ieJ
for any thick triangulated subcategory S.

Proof. Let Cx, denote the abelianization of the triangulated category 7Cx. For a
triangulated subcategory 7 of TCx, let T® denote the smallest thick Z-subcategory of Cx
generated by the image of T in Cx,.

(a) If T is a thick triangulated subcategory of TCx, then T = T*(Cx.

In fact, objects of the subcategory 7® are arbitrary subquotients of objects of 7. Let
M be an object of Cx which is a subquotient of an object N of Cx_, i.e. there exists a

diagram N —+ K — M in which j is a monomorphism and ¢ is an epimorphism. Since
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M is a projective object, the epimorphism e splits, i.e. there exists a morphism M BNy ‘e
such that eoh = idps. Since M is an injective object of Cx_, the monomorphism joh splits.
If the object NV belongs to the subcategory 7T, then M is also an object of T, because thick
subcategories contain all direct summands of all their objects.

(b) The equality (SUT)* = S* U T* holds for any pair S, T of thick triangulated
subcategories of 7TCx.

In fact, the squares

Cx ——  Cx/T Cx, —— Cx, /T
| | and | |
Cx/s Em— Cx/(SUT) Cxa/S“ Em— C}ja/(SaUTa)

are cocartesian and the abelianization functor transforms cocartesian squares into cocarte-
sian squares, which implies that the unique functor

Cx,/(S*UT?) —— Cx, /(SUT)"

is a category equivalence.
(¢) The equality m T = (ﬂ ']I'Z-)a holds for any finite family {T; | ¢ € J} of thick
icJ i€J
triangulated subcategories of TCx.

Replacing TCx by TCx/T and T; by T;/T, where T = m T;, we reduce the assertion
i€J
to the case ﬂ T; = 0. In this case, the claim is ﬂ TY = 0. The equality ﬂ T; = 0 means
icJ icJ icJ
precisely that the triangle functor

ieJ

induced by the localization functors {7Cx — TCx/7; | i € J} is faithful. But, then its
abelianization,

Cx, — ] Cx./T"

icJ

is a faithful functor, i.e. its kernel, the intersection ﬂ T?, equals to zero.
ieJ
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(d) Tt follows from (a), (b) and (c) that

(N THUS = THUSH[Cx = (((TF LS Cx =

ieJ ieJ icJ
(TFusH(Cx) = (T uS).
ieJ ieJ

for any finite family {S, 7; | i € J} of thick triangulated subcategories of TCx. m

4.2. Presite of exact localizations. Let Qispét denote the subcategory of the
category €sp<, of t-’spaces’ whose objects are t-’spaces’ and morphisms are localizations
(i.e. their inverse image functors are compositions of localization functors and category

equivalences). We call a set {tl; =% X | i € J} of morphisms of Espg,_ a cover of the
t-’space’ X if there is a finite subset J of J such that the family of inverse image functors

{TCx —5 TCy, | i € J} is conservative. We denote the set of all such covers of X by TH(X).
4.2.1. Proposition. The covers defined above form a pretopology, %5, on Esps,.

Proof. The morphisms of the subcategory Esp%  are determined, uniquely up to
isomorphism, by the kernel of their inverse image functors. A family of inverse image

functors {TCx 2y TCy, | © € J} is conservative iff the intersection of kernels of these
inverse image functors is zero. The assertion follows now from 4.1. m

5. The spectra of t-’spaces’.

Fix a svelte triangulated category C¥x = (Cx,0x,%rx). We denote by Tht(X) the
preorder (with respect to the inclusion) of all thick triangulated subcategories of CTy.
Recall that a full triangulated subcategory of CTy is called thick if it contains all direct
summands of its objects.

5.1. Specy(X) and its decompositions. For any triangulated subcategory T of
C%x, let T* denote the intersection of all thick triangulated subcategories of CTyx which
contain 7 properly. And let 7, be the intersection of 7* and the subcategory 7+ — the
right orthogonal to 7. Recall that 7+ is the full subcategory of CZx generated by all
objects N such that CTx (N, M) = 0 for all M € ObT. It follows that 7 is a triangulated
subcategory of CTx (for any subcategory 7 which is stable by the translation functor).

We denote by Specy(X) the subpreorder of Tht(¥) formed by all thick triangulated
subcategories P for which P* # P. We have a decomposition

Specy(X) = Specy' (¥) | [ Specg”(¥)
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of Specy(X) into a disjoint union of
Specy' (X) = {P € Tht(X) | P, #0} and
Specy’ (%) = {P € Specy(%X) | P, =0},

5.2. £-Local triangulated categories and Spec;l(%). We call a triangulated
category CTyg L-local if it has the smallest nonzero thick triangulated subcategory.

5.2.1. Proposition. Let P € Spec}:’l(%). Then

(a) P =1P,.

(b) The triangulated category P+ is £-local and P, is its smallest nonzero thick tri-
angulated subcategory.

Proof. (a) The condition P, # 0 implies, obviously, that P* contains P properly, i.e.
P is an object of Specg(¥)

The inclusion P, C P+ is equivalent to the inclusion P C+ P,. If the (thick triangu-
lated) subcategory 1P, contains P properly, then ~P, /P is a nonzero thick triangulated
subcategory of CTx/P, hence it contains the image, 75*, of the subcategory P,. This
means that for every L € ObP,, there exists an object, M, of +P, and an isomorphism

¢p (M) — g5(L). The latter is determined by a diagram M 'y K «> L whose both
arrows belong to ¥p. Since L is an object of P, it follows from the equivalence of (iii)

and (iv) in 1.8.1 that the morphism K <— L admits a retraction, K - L. Let M Ny
be the composition s” o s’. Since the morphism ¢ belongs to Yp, there exists a triangle

M %5 L — N such that N € ObP. In particular, N € Ob-P,. Thus, we have a triangle,

M-5L-—N , such that M and N are objects of the thick subcategory +P,. Therefore,
L is an object of +P,, which cannot happen, unless L = 0. Thus, P, cannot contain P
properly, i.e. P =+P,.

(b) Let T be a nonzero thick triangulated subcategory of P+. Then the image, ¢} (T),
in the quotient category C7x /P is nonzero, hence its thick envelope contains the subcat-
egory P*/P. In particular, it contains the image of the subcategory P,. Since objects of
the thick envelope of ¢} (T) are direct summands of objects of g5 (T), this means that for
every object L of P,, there exists an object M of T such that ¢} (L) is a direct summand
of ¢5(M). Since both objects, L and M, belong to the subcategory P+ and, by 1.8.1(c)
(and 1.8.1(i) < (iv)), the restriction of the localization functor ¢} to the subcategory P+
is a fully faithful functor, it follows that L is a direct summand of M. Since T is a thick
subcategory of C7x, it contains all direct summands of its objects. Thus P, C T. m

5.2.1.1. Corollary. Let P be a thick triangulated subcategory of CTx such that the
intersection P, = P NP* is nonzero. Then P is closed under all colimits which exist in
CTx, in particular, P is closed under all coproducts which exist in CTx.
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Proof. In fact, by 5.2.1, P = +P,; and the left orthogonal to any subcategory is closed
under arbitrary colimits which exist in CTx. m

5.2.2. Proposition. Suppose that infinite coproducts or products exist in CTx. Let P
be a thick triangulated subcategory of CTx. Then the following properties of are equivalent:

(i) P, = P+ NP* is nonzero, i.e. P € Spec}:’l(%);

(ii) P belongs to Specs(X) and the composition of the inclusion P, — CTx and

*

the localization functor CTx LN CTx/P induces an equivalence of triangulated categories
P, — P*/P.
(iii) P belongs to Specgy(X) and the inclusion functor P < P* has a right adjoint.
(iv) P belongs to Specs(X) and P is nonzero.

Proof. The implications (iii) < (ii) = (i) = (iv) < (i4i) hold by obvious reasons
(see 3.1(a)). The implication (éii) = (i) follows from 1.8.3 (see also 1.8.2). Thus, (iii) <
(ii) = (i) = (iv) without any additional hypothesis on CTx. The existence of infinite
coproducts or products is needed for the implication

(iv) = (#1). Fix an object P of Speca(X). By 1.8.1(e) (see also 1.8.1(i) < (iv)),
the composition of the localization functor g7 with the inclusion functor PL — CTx
induces an equivalence of the triangulated categories P+ — CTzex(gp.)- Here CTey (gp.)
is the full subcategory of the quotient category C7x /P generated by all objects M such
that the functor CTx /P(qp(—), M) is representable. By 1.8.1(d), if infinite coproducts, or
infinite products exist in CTx, then CTs, (45, is a thick triangulated subcategory of the
£-local triangulated category CTx/P. If P+ # 0, then (and only then) the subcategory
CTs¢x (gp.) is nonzero, hence it contains the (smallest non-trivial thick) subcategory P*/P
which implies that C7g (q.) is an £-local triangulated category having P*/P as the
smallest nonzero thick subcategory. This, in turn, implies that P, = P+ N P* is nonzero
and, moreover, the localization ¢}, induces an equivalence between P, and P*/P. m

5.2.3. Corollary. Suppose that infinite coproducts or products exist in CTx. Then
Spec}:’o(%) consists of all P € Specg(X) such that P* # P and P+ = 0.

5.2.4. Remark. Loosely, 5.2.3 says that the elements of Spec}l’o(%) can be regarded
as ”fat” points — they generate (in a weak sense) the whole category CTx.

The local properties of Specy(X) and Specé’l(%) are described by the following
proposition:

5.2.5. Proposition. (a) Let {7; | i € J} be a finite set of thick subcategories of a

triangulated category TCx such that ﬂ Ti=0. Then
ieJ

Specy (%) = | Specy(X/T:) (1)

iceJ
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(b) Suppose that ~(T) = T; for alli € J. Then

Specg’ (X) = | Specy’ (%/T)) (2)

i€J

Proof. (a) The inclusion U Specy(X/T;) C Specy(X) follows from the functoriality
ieJ
of Specs(—) with respect to localizations. Let P € Specs(X¥). By 4.1,

P

() uP =T uP) (3)

ieJ icJ

which implies that 7; C P for some ¢ € J. In fact, if 7; € P for all ¢ € J, then T; LUP

contains properly P; for all ¢ € J, hence the intersection ﬂ (T; UP) contains properly P,
icJ
which contradicts to (3). This proves the inverse inclusion, that is the equality (1).
(b) The inclusion U Specé’l(% /Ti) C Spec}:’l(%) follows from the functoriality of
ieJ
Spec}:’l(—) with respect to localizations at thick subcategories 7 such that +(7+) = T.
The inverse inclusion follows from (a). m

5.3. The spectrum Spec;/z(%). Let Spec§/2(%) denote the full subpreorder of

Tht(X) whose objects are thick triangulated subcategories Q such that +Q belongs to
Spec};(%) and every thick triangulated subcategory of CTx properly containing +Q con-
tains Q; i.e. +QV Q is the smallest thick triangulated subcategory of CTx properly
containing L0.

5.3.1. Proposition. (a) The map Q — +Q induces a bijective map

Spec}:/Q(%) — Spec}l’l(%). (1)

(b) If Q is an object of Spec}:/Q(f{), then Q is a minimal nonzero thick triangulated
subcategory of CTx.
(¢) Suppose that CTyx has infinite coproducts or products. Then the following properties
of a thick triangulated subcategory Q are equivalent:
(i) Q belongs to Spec/lg/Q(%);
(ii) Q is a minimal nonzero thick triangulated subcategory of CTx such that +Q
belongs to Specy(X).
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Proof. (a) Let Q be an object of Spec;/Q(.%‘). This means that +Q belongs to
Spec}lg(}:) and (+Q)* = +QV Q. Since Q is contained in the intersection

Q= NY =Yt n(tevQ)

and Q # 0, the subcategory - Q belongs to Spec/lg’l(%).
By 3.1(b), the triangulated category (+Q)+ is £-local and Q; is its smallest nonzero
thick triangulated subcategory. Therefore, Q1 = Q. Thus, the composition of the map

Speck/*(X) — Speck!(X), Q+— 10, (1)

with the map P — P, = P-NP* is identical. It follows from 3.1 that the correspondence
P —— P, defines a map

Spec}:’l(f{) — Specgz(%). (2)

The argument above shows that the map (2) is inverse to the map (1).

(b) If Q is an object of SpecL/Q(f{), then, by (a), Q is the smallest thick triangulated
subcategory of the £-local category (+Q)*; in particular, Q is a minimal nonzero thick
triangulated subcategory of CTx.

(c¢) Suppose that CTx has infinite coproducts or products. Let Q be a thick tri-
angulated subcategory of CTx such that +Q belongs to Specy(X). Then (+Q)* con-
tains a nonzero subcategory Q, hence it is nonzero. By 3.3(iv), this is equivalent to that
Q1 = (+Q)1t N (+Q)* is nonzero. By 3.1(b), Q; is the smallest thick triangulated subcate-
gory of the £-local triangulated category (+Q)+. In particular, Q; C Q. If Q is a minimal
nonzero thick triangulated subcategory of C7x, then the inclusion Q; C Q implies that Q
coincides with Q;. The assertion follows now from (a). m

5.3.2. Corollary. (a) If Q is an object of Spec;/z(%), then Q@ = [M]¢ for any
nonzero object M of Q.
(b) The following properties of an object M of the category CTx are equivalent:
(i) The thick envelope, [M], of M belongs to Spec)lg/2(3€).
(ii) + M belongs to Specs(X), and if T is a thick triangulated subcategory of CTx
properly containing M, then M € ObT.
(iii) [M]¢ is a minimal nonzero thick subcategory, and ~M belongs to Specs(X).
(c) The equivalent conditions (i), (ii), or (iii) imply the following property:
(iv) - M belongs to Spec}lg(%), and every nonzero thick triangulated subcategory of
(- M)* contains M.

(d) If infinite coproducts or products exist in CTx, then (iv) is equivalent to the prop-
erties (i), (i), and (iii).
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Proof. (a) The assertion follows from the minimality of Q (see 5.3.1(b)).

(b) (i) = (ii). Let Q be an object of Spec}:/Q(%); and let M be a nonzero object of
Q. Since Q = [M]; and *M = L[M]y, the subcategory - M coincides with +Q. Since Q
belongs to Spec/lg/ 2(%), L+ QVQ is the smallest thick subcategory of CTx properly containing
L Q. Tt contains the object M.

(ii) = (i). The conditions (ii) mean that - M V [M] is the smallest thick triangulated
subcategory of CTx properly containing ~M = +[M];.

The implications (i¢) < (7i7) follow from 1.7.

(c) (iii) = (iv). Let Q = [M];. Tt follows from 1.7(ii) that (*M)L = (£ Q)+ is an
L-local triangulated category and Q = [M]; is its smallest nonzero thick subcategory.
Clearly M € ObQ.

(d) The implication (iv) = (iii) follows from 1.7(c). m

5.3.3. Corollary. Let TCx be a triangulated category with small coproducts or
products. Then Specy'(X) = {P € Speci(X) | (P1) = P}.

Proof. The inclusion Specy'(X) C {P € Speci(X) | “(P+) = P} holds without
any conditions on the triangulated category 7Cx and follows from 5.3.1, because if P is
an element of Specgy’ (X) and @ = P* NP+, then P C L(PL) CLQ =P,

If the triangulated category 7Cx has infinite products or coproducts, then, by 5.2.2,
Spec)lz’o(%) consists of all P € Specy(X) such that P+ = 0, i.e. L (P+) = TCx. In
particular, -(P+) £ P. =

5.4. Flat spectra. Let Ge(X) denote the family of all thick triangulated subcate-

gories of the triangulated category CTx which satisfy equivalent conditions of 1.8.3. We
define the complete flat spectrum of X, Spec%g(%), by setting

Spec%g(f{) = Spec, (X) ﬂ Se(X). (1)

We define the flat specti"um of X as a full subpreorder, Spec(f)g(%), of Tht(X) whose
objects are all P such that P € Spec%g(%)}.
It follows from these definitions that the map P —— P defines an injective morphism
Spec?/g(%) — Spec%g(.’f). (2)
Let Spec,})é2 (X) denote the full subpreorder of Speci./ 2
such that +Q belongs to Ge(X).

(X) whose objects are all Q

5.4.2. Proposition. (a) The map
THH(X) — THH(X), Q1 Q,
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mduces an isomorphism
Spec;f(%) o Spec%g(%). (3)

(b) Spec(f)g(%) — Speci (%) ﬂSpec%éQ(%). The canonical morphism (2) is the com-
position of the inclusion Specgg(%) — Spec;é2 (X) and the isomorphism (3).

Proof. Notice that Spec%g(%) C Specé’l(%). This follows from 1.8.3 and the defini-
tions of these spectra. Now the assertion becomes a consequence of 5,3.1. m

5.4.3. Proposition. (a) If Q is an object of Spec;ég(%), then Q = [M]¢ (hence
+Q =+ M) for any nonzero object M of Q.
(b) The following properties of an object M of the category CTx are equivalent:
(i) The thick envelope, [M]¢, of M belongs to Specflf(%).
(ii) - M belongs to Spec%g(%), and if T is a thick triangulated subcategory of CTx
properly containing M, then M € ObT.
(iii) [M)¢ is a minimal nonzero thick subcategory, and M belongs to Spec%g(.’f).

(iv) M is a nonzero object which belongs to every nonzero thick triangulated sub-
category of (* M) and such that the inclusion functor ~M — CTx has a right adjoint.

Proof. (a) The assertion is a consequence of the minimality of Q (see 5.3.1(b)).

(b) The implications (i) < (ii) < (iii) = (iv) follow from the corresponding implica-
tions of 5.3.2.

(iv) = (ii). By 1.6.3, the inclusion functor *M — CTx has a right adjoint iff
the localization functor CTx — CTx/*M has a right adjoint. The latter implies that
the quotient category CTx/-M is equivalent to the triangulated category (+M)L. The
condition that M is contained in every nonzero thick triangulated subcategory of (+M )=+
means that (fM)+ is £-local and [M] is its smallest thick triangulated subcategory.
Therefore, + M belongs to Spec%s(%), and [M]¢ is a minimal nonzero thick triangulated
subcategory of CTx. m

5.5. Supports and Zariski topology.

5.5.1. Supports. For any object M of the category Cx, the support of M in
Specg(X) is defined by Supph(M) = {P € Specy(X) | M ¢ ObP}. Tt follows that
Supps (L & M) = Supps (L) Supph(M).

5.5.2. Topologies on Spec};(X) and Spec)lg’l(X). We follow the pattern of 11.2.3
and I1.2.4. Let = be a class of objects of C'x closed under finite coproducts. For any set F

of objects of Xi, let V§(F) denote the intersection ﬂ Supps(M). Then, for any family
MeE
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{E; | i € 3} of such sets, we have, evidently,

Ve(lJ Ei) =[] Ve(E).

ieJ ieJ

It follows from the equality Supps(M @& N) = Supps (M) Supps(N) (see 2.2.1(a))

that VL(E @ E) = VL(E) VL(E). Here E© E < (M@ N | M€ E, N € E}.

This shows that the subsets V&(E) of Specs(X), where E runs through subsets of
Z, are all closed sets of a topology, 71, on the spectrum Spec}:(%).

We denote by Té’l the induced topology on Spec}:’l(%) and by T;g the induced topol-
ogy on Spec%g.

5.5.3. Compact topology. The class Z.(X) of compact objects of the category
Cx is closed under finite coproducts, hence it defines a topology on Specé(%), which we
denote by 7. and call the compact topology.

Restricting the compact topology to Spec}l’l(%) or to Spec%g(%), we obtain the com-
pact topology on these spectra.

5.5.4. Zariski topology on Spec}:’l(%). We define the Zariski topology on the

spectrum Speci’l(%) by taking as a base of closed sets the supports of compact objects

and closures (i.e. the sets of all specializations) of points of Spec}:’l(%).
If the category Cx is generated by compact objects, then the Zariski topology coincides
with the compact topology ..

5.5.5. Zariski topology on Speclg/2(%). It is important to realize that the topolo-

gies we define are determined in the first place by the choice of a preorder on the set of
thick subcategories (or topologizing subcategories in the case of abelian categories). And
so far, the preorder was always the inverse inclusion.

Following these pattern, for any object M of a svelte triangulated category C%x, we
define the support of M in Spec}:m(%) as the set of all Q € Spec}:m(%) such that the
smallest thick triangulated subcategory [M]. containing M contains also Q.

We define the Zariski topology on Spec}:/ 2 (X) by taking supports of compact objects

and the finite subsets of Spec}:/ 2(.’{) as a base of its closed sets.

It follows from this definition of Zariski topology and 5.2.1(b) that all points of the
spectrum Spec;/ 2(%) are closed; that is Zariski topology on Specy 2(%) is a T4 -topology.
The bijective map

Speck/?(X) =+ Speck’ (%) (4)

is continuous, but, usually, not a homeomorphism.
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5.5.6. Remark. Suppose that C'x is the heart of a t-structure on C¥%x. Then we
have a commutative diagram

Spec(X) —— Spec‘}:/2(3€)

| k (5)

Spec{'(X) —— Spec}:’l(%)

where horizontal arrows are embeddings and vertical arrows are canonical bijections. Thus,
the Zariski topology on Spec}:/ 2 (X) induces a Tj-topology on the spectrum Spec(X) of
the ’space’ represented by the abelian category C'x, which, obviously, differs from Zariski

topology on Spec(X), unless Spec(X) is of zero Krull dimension.

5.6. A geometric realization of a triangulated category. We assign to a
Karoubian triangulated category €Cx having a set of compact generators the contravariant
pseudo-functor from the category of Zariski open subsets of the spectrum Specz’l(%) to
the category of svelte triangulated categories. The associated stack is the stack of local
triangulated categories.

5.7. The geometric center. We define the center of a svelte triangulated category
TCy = (Cy), By, Try) as the subring O () of the center 3(Cx) of the category Cy) formed
by g-invariant endomorphisms of the identical functor of Cy. One can show that the ring
O*(9) is local if the triangulated category TCy is local.

Let TCx be a Karoubian triangulated category with a set of compact generators and
I{?‘;’e the corresponding stack of local triangulated categories (cf. 5.6). Assigning to each
fiber of the stack ‘ES& its center, we obtain a presheaf of commutative rings on the spectrum
Spec}:’l(%) endowed with the Zariski topology. The associated sheaf, (9%, is a sheaf of
local rings. We call the locally ringed topological space (Specé’l(%), O%) the geometric
centrum of the triangulated category TCx.

5.7.1. Note. Similarly to the abelian case, one can define the reduced geometric
centrum of TCx. Details of this construction are left to the reader.

5.8. On the spectra of a monoidal triangulated category.

5.8.1. A remark on spectral cuisine. There are certain rather simple general
pattern of producing spectra starting from a preorder (they are outlined in Chapter VII).
Here, these pattern are applied to the preorder Tht(X) of thick triangulated subcategories
of the triangulated category C¥x.

5.8.2. Application to monoidal triangulated categories. Suppose that a trian-
gulated category TCx has a structure of a monoidal category. Then, replacing the preorder
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of thick subcategories with the preorder of those thick subcategories which are ideals of
TCx and mimicking the definitions of Specg(X) and Specé’l(%), we obtain the spectra
respectively Specb@(%) and Spec}:”1® (X). If the monoidal category ¥Cx is symmetric,
then Spec}:@(%) coincides with the spectrum introduced by P. Balmer in different terms,
as a straightforward imitation of the notion of a prime ideal of a commutative ring.

However, triangulated categories associated with noncommutative ’spaces’ of interest
do not have any symmetric monoidal structure. A typical example is the monoidal category
of continuous (that is having a right adjoint) endofunctors of a category Cx.

6. Functorialities.

6.1. Induction. Let X — ) be a continuous morphism of t-’spaces’. For every

point Q of the spectrum Spec}:/ 2(2)), we have a commutative diagram

*

q
Cx » Crp0)

i | Fo | | T (1)

Qo jQ* A

in which the horizontal are locaization functors. The localization functors q7, and q* have

fox
} CxQ,f*

right adjoint functors; the functor j,. is a right adjoint to the full embedding o* / 0 =

j ~
Q> C’@ 5 (hence it is a localization functor); the functor f,. is the lozalization functor

at the class of all arrows which the composition j,« o f,« maps to isomorphisms.
All functors of the right square of (1) have a left adjoint and both vertical arrows are
conservative functor. Therefore, by 3.4 (or 3.5), the diagram is isomorphic to the diagram

*

Fon
Cx q—> .ng—mod SN F~ —mod

To
Al for | | Fe- @)

*

q Jo*

Q Q S« /A
G — Gy T 9/e=0¢
where .7-}Q and '7:?@ are monads on the triangulated categories respectively C’@ /5 and Q

and §,«, ?Q* the corresponding forgetful functors.

6.1.1. The stabilizer of a morphism at a point. The ’space’ Xg;, over Q is
called the stabilizer of the morphism f at the point Q of the spectrum. We also call the

monad ]-"/f\ the stabilizer of the morphism § at the point Q.
Q
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6.1.2. The related maps of the spectra. The diagram (1) gives rise to the
diagram
Specl/? 1/2 “1/A
pecy (Xo4) —— Specg (X/f.(Q))

| | 3)

{Q} e SpecL/Q(X)

in which the upper horizontal and the right vertical arrows are embeddings.
Thus, to each point Q of the spectrum Spec}:/ 2(@), it is assigned a canonical em-
bedding of the spectrum of the stabilizer Xg 5, of the morphism § at the point Q into the

spectrum Specy2 (X) of the t-’space’” X.

6.2. The covariant functoriality. Let X 7, 2) be a continuous morphism of

t-’spaces’. For every point P of the spectrum Spec)lg/Q(%), the set Ass(f.(L)) does not
depend on the choice of a nonzero object L of the category P. Therefore, we denote this
set by Ass(f.(P)). The correspondence

Spec)lz/z(.’f) — QSpeclﬂ/Q(@), P — Ass(f.(P)) (4)

expresses the covariant functoriality of the spectrum.

6.3. Dual notions. From the general nonsense point of view, the dual notions have

the same rights. Thus, given a continuous morphism X N ) of t-'spaces’, we have a
(contravariant) correspondence

Spect/?(9) —— 25Pee "X 0 Ass(7(Q)). (5)

Similarly, for any point P of Speclg/ 2(%), we have the dual version of the diagram (1):

*

q fP*

CSD B C@/f*_l(ﬁ) — C@P’f*

ll M| | 7 (6)
a5 i PN

Cy — C.o —— P/P=P

x/P

in which the right square is cartesian (in pseudo-functorial sense), its upper and lower
horizontal arrows are localization functors having left adjoints, and its right vertical arrows
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are conservative functors having right adjoints. The latter implies, by Beck’s theorem for
triangulated categories (see 3.4), that the diagram (5) is isomorphic to the diagram

~, e

q
Cy —— Gj, —comod SN Q?P — comod

Ml i | 7 (7)

*

Cx —s Cy/p L, P P=7P

which is the dual version of the diagram (2) in 6.1.
The diagram (5) gives rise to the diagram

Specy*(Vp) — Specy (/i (P))

{P} e Specy ()

in which the upper horizontal and the right vertical arrows are embeddings.
6.4. Multiplicities and finiteness conditions.

6.4.1. Multiplicities. Let %) be a t-’space’. For any object L of the category
Cy and any point Q of the spectrum Spec}z/Q(@)., we denote by m, (L; Q) the image of
the Q-torsion of the object L in the K-group K¢(Q). We call the element m, (L; Q) the
multiplicity of the object L at the point Q. The map which assigns to any object L of Cy
its multiplicity function, @ — u,, (L; @), induces a group homomorphism

My
Ko(TCy) — ] Ko(Q). (9)
QeSpecy/* (D)

6.4.2. Locally finite objects. It follows that, for every L € ObCy), the support

Supp(m,, (L, —)) of the function Q —— m,, (L; Q) (that is the set of Q € Specyz(ﬁj) such
that m,, (L; Q) is nonzero) is contained in Ass(L). We call an object L of the category Cy
locally finite if Supp(m,, (L, —)) coincides with 2Ass(L). In other words, every associated
point of the object L appears with a finite non-trivial multiplicity.

6.4.3. Relatively locally finite objects. Let X N )) be a continuous morphism
of t-’spaces’. To every object L of the category Cy and every point Q of Speciﬁ@)), we
assign the multiplicity m,, (f«(L); @) of the object f.(L) at the point Q.

We call an object L of the category Cx locally finite over %) (or, more explicitly,

f-finite), if its direct image, f.(L), is a locally finite object in Cy.



Chapter V
Spectra Related with Localizations.

This Chapter can be regarded as an introduction to basic spectra associated with exact
localizations of general ’spaces’, i.e. 'spaces’ represented by arbitrary categories regarded as
categories of quasi-coherent sheaves. Section 1 contains preliminaries on localizations and
multiplicative systems. In Section 2, we introduce the spectrum of exact localizations, or,
shortly, the £-spectrum, of a ’space’ and discuss its functorial properties. In Section 3, we
define £-local 'spaces’ and show that the localization at a 'point’ of the £-spectrum is an £-
local ’space’. In Section 4, we introduce the complete £-spectrum and show its functoriality
with respect to exact localizations. In Section 5, we define the closed spectrum (resp. the
complete closed spectrum) and the flat spectrum (resp. the complete flat spectrum) of a
‘space’. In Section 6, we extend the notions of the spectra to the case of categories with
an action of a monoidal category. This material, important by itself, is used further only
in the simplest case of so called Z-categories, in order to give a background to spectral
theory of triangulated categories.

1. Preliminaries on localizations.

1.1. Multiplicative systems. A family of arrows X of a category Cx is called a
left multiplicative system if it has the following properties:
(S1) ¥ is closed under composition and contains all identical arrows of Cx.

(SL2) Every diagram M’ <>~ M 7, L, where s € X, can be completed to a commu-
tative square

M’LL’

where s’ € X.

7
(SL3) If M =X N is a pair of arrows such that f os = go s for some s € 3, then

there exists a morphism N —— N’ of ¥ such that to f = tog.

A family X C HomC'x is a right multiplicative system if it has dual properties. Finally,
Y is called a multiplicative system if it is both right and left multiplicative.

We denote by SMy(X) (resp. by SM (X)) the family of all left (resp. right) mul-
tiplicative systems in C'x. We denote by SM(X) the family SMy(X) ([ SM,(X) of all
multiplicative systems in Cx.
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We regard SMy(X), SM.(X), and SM(X) as preorders with respect to C.
1.1.1. Saturation. Let ¥ be a family of morphisms of the category Cx. Let g,

*

be the localization morphism ©7'X — X and Cx q—2> Csy-1x = X~ 1Cx its canonical
inverse image functor.

The family ¥* = %, of all arrows of Cx which ¢ transfers into isomorphisms (cf.
1.2) is called the saturation of ¥.. A family of arrows ¥ is called saturated if it coincides
with its saturation.

1.1.2. Generalities on saturated families of arrows. It follows from the universal
property of localizations, that for any morphism Y I x , the family > ¢ of all arrows of C'x
which f* transforms to isomorphisms (see 1.2) is saturated. In particular, the saturation
of any family of arrows is saturated.

Any set, {Y; Jx | i € J}, of morphisms of ’spaces’ defines uniquely a morphism

f . . .
Y= H Y, — X with an inverse image
icJ

f*
Cx —— Cy = HCYi
€]

uniquely determined by a choice of inverse images, C'x f—> Cy,, of morphisms f;, i € J.
Evidently, ¢ = ﬂ >, This shows that the intersection of any set of saturated families
1=yl
of morphisms is saturated.
1.1.3. Saturation of multiplicative systems. If X is a left multiplicative system,
then its saturation, X°, consists of all morphisms I — M which can be inserted in a
commutative diagram of the form

L—M

s| v |t

w1

V—— W

where s,t € ¥ (see [GZ, 1.1.3.5]).

It follows from this description that the saturation of a (left and right) multiplicative
system 3 coincides with all arrows s € HomC'x such that there exist morphisms u and v
such that uos € ¥ 3 sow.

1.1.3.1. Proposition. The saturation of a (left and right) multiplicative system is a
multiplicative system.
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Proof. Let ¥ be a multiplicative system. It suffices to show that the saturation, 3°,
of ¥ has the properties (SL2) and (SL3).

Let M —s M’ be an element of X% ie. there exist morphisms M’ — M” and
N - M such that uos € £ 3 sov. And let M L Lbean arbitrary morphism.

uos

By the property (SL3), the diagram M" <— M I I can be inserted in a commuta-
tive diagram

uosl ls’ (1)

1 J'ou ’
M —— L

which proves (SL2).
f
Let M’ —=X L is a pair of arrows such that f os = gos. In particular, fo (sob) =
g

go(sov). Since sov € X, there exists (by the property (SL3)) a morphism L L of
such that to f =tog. m

1.1.3.2. Note. The analogous assertion is not true, in general, for left (or right)
multiplicative systems. It is true, however, if the category Cx has finite colimits (finite
limits in the case of right multiplicative systems); see 1.2.1(b) and 1.2.2 below.

1.1.4. Notations. We denote by S*M,(X) (resp. by S* M (X)) the family of all
saturated left (resp. right) multiplicative systems in C'x.

We denote by S*M(X) the family of all saturated (left and right) multiplicative
systems in Cx; that is STM(X) = SIM(X) NS M (X).

We regard S*M(X), S*M,(X), and S*M(X) as preorders with respect to C.

It follows from 1.1.3.1 that the saturation, > —— ¥* induces a functor
SM(X) — S*M(X)

which is left adjoint to the inclusion functor S*M(X) — SM(X).
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1.2. Left exact, right exact, and exact morphisms. A morphism X Ty
is called right exact (resp. left exact, resp exact), if its inverse image functor preserves
colimits (resp. limits, resp. both limits and colimits) of arbitrary finite diagrams.

The following assertion is a reformulation of Propositions 1.3.1 and 1.3.4 in [GZ].

1.2.1. Proposition. (a) Let ¥ be a left multiplicative system in Cx. Then the
canonical morphism Y1 X 22 X s right exact.
(b) Let f = py o fc be the canonical decomposition of a morphism X LY into a

conservative morphism X i> EJIIY and a localization Z;lY 2y, Suppose Cy has
finite limits (resp. finite colimits). Then f is left exact (resp. right exact) iff the family of
arrows X5 is a left (resp. right) multiplicative system. In this case both the localization py
and the conservative morphism f. are left (resp. right) exact.

In particular, if the category Cy has limits and colimits of finite diagrams, then f
is exact iff both the localization py and the conservative component f. are exact. The
exactness of py is equivalent to that ¥y € STM(X).

1.2.2. Corollary. Suppose the category Cx has finite colimits. Then the saturation
map, ¥ — X° induces a functor SMy(X) — S*My(X) which is left adjoint to the
corresponding inclusion functor S*My(X) — SMy(X).

1.2.3. Corollary. Suppose Cx has finite colimits. Then the intersection of any set
of saturated left multiplicative systems is a saturated left multiplicative system.

1.3. Continuous morphisms and flat morphisms. A morphism f of |Cat|°, or
Cat®P, is called continuous if its inverse image functor has a right adjoint, f., which is
called a direct image functor of f.

A morphism f is called flat if it is exact and continuous.

One can show that a morphism f is continuous iff both the localization p; and the
conservative component f. are continuous.

2. The £-spectrum.

Fix a ’space’ X. Recall that S*M(X) denote the preorder (with resp. to C) of
all saturated (left and right) multiplicative systems of the category Cx. The preorder
S*M(X) has the initial object — the family Iso(Cx) of all isomorphisms of Cx. Let
S*M*(X) denote S*M(X) — {Iso(Cx)}.

For any ¥ C HomC'x, denote by 5 the union of all saturated multiplicative systems
of Cx which do not contain . It follows that if 31 C Y5, then ¥y C ;. Notice that
if 331 and 33 are saturated multiplicative systems, then the inverse implication holds, i.e.
Y1 C Yy iff ¥y C 3.
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2.1. Definition. The £-spectrum, Spec%(X ), of X consists of all saturated multi-

plicative systems X such that 5 is a saturated multiplicative system.
In other words, elements of Spec% (X), are saturated multiplicative systems ¥ such

that there exists the biggest saturated multiplicative system, i, which does not contain
. In particular, Spec%(X) C S*M*(X).
2.1.1. Note. If Cx is a groupoid, then S*M*(X) is empty, hence Speca(X) = 0.

2.1.2. Specialization preorder. We call the preorder, D, on S*M(X) the special-
ization preorder: X is a specialization of ¥/ if ¥ C Y.

It follows that if ¥, ¥/ are elements of Spec% (X), then ¥ is a specialication of ¥’ iff
the saturated multiplicative system Sisa specialization of .

2.2. Functorial properties of the £-spectrum. Let £,&sp denote the subcategory
of |Cat|® formed by exact localizations (cf. 1.2). Since identical morphisms are exact
localizations, ObL.Esp = Ob|Cat|®. Let PO, denote the category of preorders with
initial objects; its morphisms are morphisms of preorders mapping initial objects to initial
objects.

2.2.1. Lemma. The map X — S*M(X) gives a rise to a contravariant functor
S M, : £.C5p°P —— PO,
and to a covariant functor

SM : £.Esp — POM,.

Proof. Let X — Y be an exact localization and Cy u—) Cx its inverse image functor.
Set ¥, = Xy« = {s € HomCy | u*(s) € IsoCx }. The functor v* induces a map

S M, (u)
SSM(Y) ——M s m(x)

which assigns to a family ¥ € S*M(Y') the minimal saturated multiplicative system con-
taining v*(X), and a map

S* M(u)
STM(X) —— M ss (Y

which sends any saturated multiplicative system Y’ to its preimage, ut (X'). Notice that
S M, (u)oS* M(u) is the identical map. This shows that S* M, (u) and S M(u) induce an
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isomorphism between S*M(X) and the preorder S* My (V) of saturated multiplicative
systems of Cy containing 3,. Notice that the map S*M,(u) can be represented as the
composition of the map

SMY) — SMy, (Y), E—XVE,,

and the restriction of S*M,(u) to S*Myx, (Y) (the inverse to S*M(u)). It is easy to see
that both maps, u — S*M,(u) and v — S*M(u) are functorial. m

2.2.2. Extended £-spectrum. For any ’space’ X, set Spech, (X) = Specx(X) U
{*x}, where xx = I'so(Cx). We call Specy, (X) the extended spectrum of X. Notice that
Iso(Cx) = (. Thus, the added trivial multiplicative system xx can be viewed as oo (with
respect to the specialization preorder D).

2.2.3. Proposition. Any ezact localization X — Y induces a morphism of extended
spectra Spec, (Y) — Spect, (X). This correspondence defines a contravariant functor,
Spec%*, from the category £.€sp to the category POTO, of preorders with initial objects.

Proof. Fix an inverse image functor, Cy NS x, of the morphism u. The map
S*M,(u) : SM(Y) —— S*M(X)

(cf. 2.2.1) induces a morphism of spectra Spec%, (Y) — Specy, (X).

In fact, let Xp € Spec%Y and Xp ¢ 3,,. Then 3, C f]p. By (the argument of) 2.2.1,
the map S° M, (u) induces an isomorphism between S°* M (X)) and the preorder S* My (V)
of saturated multiplicative systems of Cy containing >,. In particular, the image, f]’P,
of & p is a saturated multiplicative system. It follows that i’P is the biggest saturated
multiplicative system in Cx which does not contain the image, ¥, of the saturated
multiplicative system ¥, V Xp. In fact, if ¥ ¢ ¥’ for some saturated multiplicative
system Y/, then ¥p is not contained in the saturated multiplicative system ¥ = u*  (X).

Therefore > C D p, hence the assertion. m

2.2.4. Remarks. (a) For any S € SM(X), let Ug(S) denote { € Spec(X) | = ¢
S} It follows that Us(S) = {T € Spec(X) | S C S}.

The argument of 2.2.3 proves that any exact localization, X — Y, induces an injec-
tive map Ug(X,) — SpeclY.

S* M(u)
(b) In general, the map S*M(X) —— S*M(Y) corresponding to an exact local-

ization X — Y does not induce a map Specy, (X) — Specg, (V).
For any exact localization U —— X, set Speca(U; X) = {X € SpecX(X) | ¥, C ¥}.
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2.2.5. Proposition. Let {U; *% X | i € J} be a conservative set of exact localizations.
Then Speca(X) = U Spec (U;; X).
ieJ

Proof. By hypothesis the family of localization functors, {C'x S Cu, | i€ J}, is
conservative, i.e. [),c; Xy, = I50(Cx). Therefore, for every > € Spec(X), there exists
i € J such that ¥ € %, Wthh means precisely that >, C S and the i image of ¥V ¥, in
S*M(U;) belongs to Spech(U;) (see 2.2.3 and 2.2.4(a )) hence the assertion. m

3. £-Local ’spaces’ and the spectrum Specy(X).

We call a ’space” X £-local (here £- stands for ’localization’), if S*M*(X) has the
smallest element, or, equivalently, the intersection, XX, of all non-trivial saturated multi-
plicative systems is a non-trivial saturated multiplicative system.

3.1. Proposition. The following conditions on a ’space’ X are equivalent:

(a) The ’space’ X is £-local.

(b) The family of arrows ¥~ = ﬂ > belongs to Speca(X).
DESTM*(X)

(c) The spectrum Specx(X) has an element, ', such that ¥’ = Iso(Cx).

Proof. (a) = (b) & (a) = (c): If X is £-local and ¥ is a saturated multiplicative
system, then ¥X ¢ 3 iff ¥ ¢ S*M*(X), that is if ¥ = I'so(Cx).

(b) = (a) follows from definitions: if ¥% € Speca(X), then X € S M*(X), hence
X is £-local. -

(¢) = (a): Let ¥ € Speci(X) be such that ¥ = Iso(Cx). Then ¥’ € S*M*(X)
and Y’ is contained in any non-trivial saturated multiplicative system, i.e. ¥’ = X¥. m

3.2. Proposition. For any ¥ € Spec%(X), the ’space’ S-1X 4s £-local.

Proof. The localization functor Cx ar, f]*lCX induces an isomorphism between
the preorder of (non-trivial) saturated multiplicative systems of Cg | = ¥ "1Cx and

saturated multiplicative systems of Cxy which contain 5 properly. Since every saturated
multiplicative system which contains 3 properly contains 3 as well, the preorder of satu-
rated multiplicative systems properly containing S coincides with the preorder of saturated
multiplicative systems containing SV X. Therefore the image of £V ¥ in SEM( “1X) s
the smallest element of SSM*(£71X). m

4. The complete £-spectrum.

For any ’space’ X, we define its complete £-spectrum, Spec}:(X ), as follows. Ele-
ments of SpecE(X ) are saturated multiplicative systems, ., of C'x such that the ’space’
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of fractions ¥;'X is £local. In other words, elements of Specg(X) are saturated mul-
tiplicative systems, 3., such that the intersection of all saturated multiplicative systems
properly containing >, is a saturated multiplicative system which contains >, properly
too. We consider Specs(X) together with the preorder C. By 3.2, there is a morphism
Specl(X) — Speck(X) defined by ¥ — 3.

4.1. Proposition. The map X — Specs(X) extends to a functor, Specy, from
the category £.€sp to the category POO of preorders.

S* M(u) _
Proof. The map S*M(X) —— S*M(Y), ¥ +— u* 1(E), corresponding to an

exact localization X —— Y induces a map Specg(X) — Speca(Y).
Indeed, ¥ 71X ~ S*M(u)(X)~1Y, so that S*M(u)(X)"Y is £-local if 371X is £-
local, hence the assertion. m

4.2. Note. For any ’space’ X,
Specy(X) = U Speca(X71X) = U Spech (271 X).
YeSTM(X) YeSpec}, (X)
Here Specs(X'X) is identified with its image in Specy(X).

4.3. The extended complete £-spectrum. For any ’space’ X, set Specy, (X) =
Speci(X) U {xx}, where xx = Iso(Cx). We call Specy,(X) the extended complete
L-spectrum of X.

4.3.1. Proposition. The map X —— Spec}; (X)) gives rise to a contravariant functor
1Sp : £:.Es5pP —— PO,

and to a covariant functor
aSp : L.Csp — PO,
to the category PO, of preorders with initial objects.

Proof. The functor ,Sp: £.Esp —— POrd, is the unique extension of the functor
Specy : £.Esp —— PO of 4.1.
Let X — Y be an exact localization. We define the map

“Sp(u) : Specy(Y) — Speca(X)

as follows. Let ¥, € Specy(Y). If £, C %, then *Sp(u)(X,) is the minimal saturated
multiplicative system containing u*(X,). By transitivity of localizations, *Sp(u)(3;) €
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Specgy(X). If &, € ¥, then *Sp(u) maps %, to the trivial family, xx = Iso(Cx). It is
easy to check that the map u ——® Sp(u) is functorial. m

4.4. Remark. The dualization functor, X —— X¢, establishes an isomorphism
between the preorder of left (saturated) multiplicative systems on X and right (saturated)
multiplicative systems on X°. This isomorphism induces an isomorphism of preorders of
(saturated) multiplicative systems:

SM(X) =5 SM(X°) and S*M(X) = SM(X). (1)

In particular, a ’space’ X is £-local iff its dual, X is £-local.
Thus, the isomorphism S*M(X) — S*M(X?) induces isomorphisms of spectra

Specs(X) — Specy(X°) and Speca(X) —» Spech(X°). (2)

as well as the extended versions of these spectra.

The spectra Spect (X) and Speci(X) are too large, which is one of the reasons why
the duality (2) takes place. In the next section, we single out smaller spectra inside of
Specs(X) and Specy(X).

5. Closed spectra and flat spectra.

5.1. X-Torsion free objects. Let ¥ C HomCyx. We say that an object, M, of
the category Cx is X-torsion free if every morphism M —'s N which belongs to X is a
monomorphism. We denote by Cx,, the full subcategory of the category C'x whose objects
are Y-torsion free.

5.1.1. Lemma. Let ¥ C HomC'x be such that for every diagram L+ L% M,
where s € X and g is a monomorphism, there exists a commutative diagram

s | K )

LLM

where t € ¥ (e.g. ¥ is a left multiplicative system,).
Then any subobject of a X-free object is X-free.

Proof. Let L -2 M be a monomorphism, and L —— La morphism of 3. Then there
exists a commutative diagram (1) in which ¢ € 3. If M is ¥-torsion free, then M Ly Mis
a monomorphism. Thus ¢ o g is a monomorphism. It follows from the equality tog =gos
that s is a monomorphism, hence the assertion. m



168 Chapter 5

5.2. Closed families of morphisms and closed spectra. Let ¥ C Hom(C.
We say that ¥ is closed, or right closed, if for every M € ObCx, there exists a morphism
M — M of ¥ such that M € ObCxs,.

5.2.1. Proposition. Let > C HomC'x be a left saturated multiplicative system such

that the canonical morphism L1 X T2 X s continuous; and let ¢ and gy« be resp. its
wverse and direct image functors. Then the following conditions on an object M of Cx
are equivalent:
(i) M is X-torsion free.
s (M)
(ii) An adjunction morphism M ——— qy.q%(M) is a monomorphism.

*

q
Proof. Let ¥ be a saturated multiplicative system and Cx — Cy-1x = X~ 'Cx a
localization functor at X. If the family X is flat, the functor ¢} has a right adjoint, ¢y «. For

s (M)
every M € ObC'x, the adjunction arrow, M b q+qL (M), belongs to X. In particular,

if M is a X-torsion free object, then the adjunction morphism 7 (M) is a monomorphism.
Let M - N be a morphism from Y. Then the upper horizontal arrow in the
commutative diagram

U5+ 4y, (5)
Uiy (M)  ——  qoiqy(N)
ns (M) | [ ()
M — N

is an isomorphism. If 7, (M) is a monomorphism, then 1, (N) o s = q..q}(s) o n. (M)
is a monomorphism. Therefore s is a monomorphism. This shows that the object M is
Y-torsion free. m

5.2.2. Corollary. Let ¥ be a left saturated multiplicative system such that the

. . q . . .
canonical morphism Y1 X —= X is continuous. Then ¥ is closed.

s (M)
Proof. For every M € ObC'x, the adjunction arrow, M = q5+q% (M) belongs to

. IfM = q5+q% (M), then the adjunction arrow 7, (M) is an isomorphism, in particular
it is a monomorphism. m

5.2.3. Closed spectra. We denote by €5° M (X) the preorder of all closed saturated
multiplicative systems on X. The complete closed spectrum, Specé(X ), is defined by

Specg (X) = €S*M(X) () Specy(X);
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that is elements of Specé(X ) are closed saturated multiplicative systems, 3, such that
Y71 X is £-local. R
We call Spec(X) = {2 € Speca(X) | ¥ € Specg(X)} the closed spectrum of X.

5.3. Continuous localizations and flat spectra. Let ¥ C HomC'x. Recall that
an object M of Cx is called left closed for X if Cx (s, M) is a bijection for each morphism
s of ¥ [GZ, 1.4].

5.3.1. Lemma. (a) Let ¥ C HomCx, and let M be an object of Cx such that

Cx(s,M) is a surjection for each morphism s of ¥. Then every morphism M Ly N
which belongs to ¥ is a retraction (i.e. wot = idy; for some morphism w). In particular,
M s X-torsion free.

(b) Suppose for any diagram L <> L -2 M such that s € Y., there exists a commu-
tative diagram
L
|

M
|t )
-~ 7

L—>M

!
e

where t € ¥ (e.g. ¥ is a left multiplicative system). Then Cx (s, M) is a surjection for

each morphism s of ¥ iff every morphism M L5 N which belongs to X is a retraction.

Proof. (a) It M Sy Nisa morphism of ¥, then the map
CX(N7M)—>CX(M7M)7 f'—)fot,

is surjective. In particular, there exists a morphism N — M such that w ot = idy;.
(b) Suppose that the object M is such that every morphism M — N which belongs
to ¥ is a retraction. Then Cx (s, M) is surjective for any morphism L — L of X.

In fact, let L Ly Mbean arbitrary morphism. By hypothesis, there is a commutative
diagram (1), where t € X. By condition, ¢ is a retraction, i.e. there exists a morphism

M -5 M such that uwot = idy. Then (uo f)os = uo (to f) = f. This shows the
surjectivity of Cx (s, M). m

5.3.2. Proposition. Suppose that ¥ C HomC'x is a left multiplicative system. Then
the following conditions on an object M of Cx are equivalent:

(a) M is left closed for 3;

(b) Cx (s, M) is surjective for any s € ¥;

(c) any morphism M — N which belongs to ¥ is a retraction.
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Proof. The implications (b) < (c) follow from 5.3.1(b). The implication (a) = (b)
holds by definition. The implication (b) = (a) is proved in [GZ, 1.4.1.1]. m

5.3.3. Localizations and continuous localizations. Let X —/5 Y be a morphism

with an inverse image functor Cy AR Cx. An object N of Cy is called f-free over an
object M of Cx, if there exists a morphism f*(N) —— M such that for any morphism

f*(L) =% M there exists a unique morphism L — N satisfying v = u o f*(7). In other
words, (N, f*(N) — M) is a final object of the category f*/M, or, what is the same, the
object N represents the functor Cx (f*(—), M) : Cy¥ — Sets. We denote by Cr sy the
full subcategory of the category Cy generated by f-free objects.

Let Cp(y,) denote the full subcategory of C'x generated by all M' € ObCx such that the
functor Cx (f*(—), M) : Cy¥ — Sets is representable. A choice for each M € ObCxp s, )
of an object, f.(M), of the subcategory Cps) representing the functor Cx (f*(—), M)
extends uniquely to a functor D(f.) — Cy taking values in Cr(s). Let Cyy,) denote

1

f* (D(f+)). The morphism f is continuous iff D(f.) = X and, therefore, R(f.) =Y.

5.3.3.1. Proposition. Suppose that > C HomCx s a left multiplicative system.

And let Y1X 25 X be the localization morphism. Then
a) Cp 18 the Jull subcategory of Cx generated by all objects which are lejt close
C’(qz)'hfll b f C' d by all obj hich left closed
for 3.
(b) The subcategory Cﬁ)“(qg) is generated by all M € ObC'x such that there exists a

morphism M — N, where N is left closed for ¥ and qs,(s) 1is invertible.
(¢) The composition of the inclusion Cﬁ(qz) — C'x and the canonical localization

*

q
functor Cx —= X~ Cx is a fully faithful functor injective on objects. This functor induces
an isomorphism D(qy) —— L(qy).

(d) The inclusion functor Cr(qy) Ier, C(q,) has a left adjoint, qy-

Proof. (a) Let Y Ly X be a morphism, M an object of Cy such that the functor
C(f*(—=), M) is representable. Then any object, N, representing C f*(—), M) is, obviously,
left closed for ¥ = {s € HomCx | f*(s) € Iso(Cy)}.

If f = q,,, then the converse is true: if N € ObCx is left closed for ¥, then it follows
from the universal property of the localization at 3 that the object N represents the functor
Cr-1x (g5 (=), a5 (V).

(b) By definition, the subcategory ng(qz) is generated by all M € ObCx such that
the functor Cs,-1x(¢%(—), ¢% (M)) is representable by some object, N, of the category Cx.

In particular, there exists a canonical morphism M LN corresponding to the identical
arrow g (M) — g% (M). It follows that ¢ () is an isomorphism.
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®

(¢) The canonical localization functor Cx q—2> Cs;-1x is identical on objects, hence
the composition of ¢ with the inclusion functor Cﬁ(qz) — ('x is injective on ob-
jects. For any M € ObCf(, ) and any L € ObCx, we have a functorial isomorphism
Cs-1x(qi(L),q (M) ~ CX?L,M). In particular, the composition of the embedding
Cﬁ(qz) — Cx with ¢} is a fully faithful functor.

(d) By (b), for any M € ObCs(y, ), there exists a morphism M LN N, where N is
left closed for . It follows from 5.3.2 that the object N here is defined uniquely up to
isomorphism. A choice of N for every M € ObC’m(qE) defines a functor, ¢, from Cfﬁ(qz)
to Cﬁ(qz)' This functor is a left adjoint to the inclusion functor Cﬁ(qz) — C%(qz)' (]

One of the corollaries of 5.3.3.1 is the following fact:

5.3.3.2. Proposition [GZ, 1.4.1]. Suppose that ¥ C HomC'x is a left multiplicative
system. Then the following conditions are equivalent:

(a) The canonical morphism Y1 X 25 X is continuous.
(b) For every object M of the category Cx, there exists an object M left closed for ¥
and a morphism M —> M such that q.(s) is invertible.

5.3.4. Continuous and flat multiplicative systems. We call ¥ C HomCx

continuous if it is a left multiplicative system and the canonical morphism Y~ !X RN e
is continuous. It follows from [GZ, 1.1.3] that if ¥ is continuous, then the saturation of 3
is a left multiplicative system, hence it is continuous. We denote by £¢,(X) the preorder
of all continuous left saturated multiplicative systems and by £¢(X) the preorder of all
continuous saturated multiplicative systems, i.e. £c(X) = Lep(X) NS M(X).

We will call continuous saturated multiplicative systems flat.

5.3.5. The flat spectra Spec?L.(X) and Spec%g(X). The elements of the flat

complete £-spectrum Spec%g (X) are flat multiplicative systems ¥ such that the ’space’ of
fractions £ 71X is £-local.
We call Spec%g(X) the complete flat £-spectrum of X.

The flat £-spectrum, Spec?g(X), of the ’space’ X is defined by setting
Spec?S(X) — {Z e Specx(X) | T € Spec%Q(X)}.
It follows that
Spec?E(X) C Spec2(X) and Spec%g(X) C Specg(X).

We leave to the reader the definition of the extended versions of these spectra.
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5.3.6. Another description of flat localizations and Spec%g(X). Fix a ’space’
X. Consider the preorder f£(X) of all strictly full subcategories Cy of C'x such that the

inclusion functor Cy b Cx has an exact left adjoint C'x oy, Cy. These functors are

regarded as resp. direct and inverse image functors of a strictly full embeddingY cLi> X. The
map which assigns to every such subcategory the family of arrows X,. = L}il(l so(Cy))
is an isomorphism of the preorder (f£(X),2) onto the preorder (£¢(X), <) of continuous
saturated multiplicative systems.

Thus, the flat spectrum Spec%g (X) can be identified with the preorder of all strictly

full embeddings ¥ < X such that Y is a local ’space’ and (3 is an exact functor.

5.4. The spectrum Specll?[(X). Objects of Spec;lg[(X) are continuous saturated
multiplicative systems > in C'x such that there exists the smallest continuous saturated
multiplicative system properly containing 3.

Let §£*(X) denote the set f£(X)—{idx } of all proper strictly full embeddings. Thanks
to the isomorphism (£¢(X),C) = (F£(X), D) (cf. 5.3.6), elements of Specg(X) can be

identified with strictly full embeddings Y Z) X such that ¢§ is an exact functor and the
preorder (f£*(Y'), C) of proper strictly full embeddings into Y has the biggest element.

6. Actions of monoidal categories and their spectra.

We fix a monoidal category é’\r} = (Cr,0,a;1,¢1,¢¢). Here Cp x Crp 9, Cr is
a monoidal structure ("tensor product’); a is an associativity constraint, i.e. a functor
isomorphism
©o(®xIde,) — ®o(Ide, X ®)

satisfying certain natural compatibility conditions; 1 denotes the unit object,
10— 2% Ide, &~ — o1
are canonical isomorphisms.

6.1. Actions. Let X be a ’space’. Fix an action, Cr x Cx BUAN Cx, of the monoidal
category Cr = (Cr,®, 1) on the category C'x. The functor v* induces a functor

Cr RN End(Cx), ar— Ty,

where End(Cx) denote the category functors Cx — Cx, and I',(M) = ~v*(a, M). The
functor v* being an ’action’ means precisely that I' is a monoidal functor, i.e. for any
a,b € ObCp, there are natural morphisms

¢a,
Tpoly — s Tuep and Dy = Ide,
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related in a natural way between themselves and with associativity constraint on CA';

A pair (Cx,~*), where v* is a é;—action, is called a @—category. We call a pair
(X,~v*)a CA’;— 'space’. A morphism (more precisely, a 1-morphism) between two CA’;-’spaces’,
(X,~v*) — (Y,7%), is given by a pair (F,¢), where F is a functor Cy L Cx such that

the diagram

Idx F
CrxCy —— CrxCx
v l l 7+
F
Cy E— CYX

quasi-commutes, and ¢ is a functor isomorphism ~* o (Id x F) = F o v* satisfying a
standard cocycle condition. The composition of morphisms is defined naturally.

6.1.1. Note. In the language of ’spaces’, the monoidal structure, Cr x Cp 9, Cr,
can be regarded as an inverse image of a morphism (a coaction) T'— T[] T, and the

action v* as an inverse image functor of a morphism X 2T [1X.

6.1.2. Actions of a monoid. Z-categories. Any monoid, G, might be regarded as
a discrete category with the monoidal structure given by multiplication. This defines an
isomorphism between the category of monoids and the category of discrete ’small’ monoidal
categories which allows to define actions of monoids on categories. Thus, a G-category is a
pair (Cx,~*), where v* is a monoidal functor from G to the monoidal category €nd(Cy)
of functors Cx — Cx. If G is a group, the functor v takes values in the monoidal
subcategory Pic(X) of €nd(Cx) formed by invertible functors and isomorphisms between
them. The group Z is of particular interest because triangulated categories, categories of
graded modules, and the category of quasi-coherent sheaves on (noncommutative) Proj are
Z-categories.

6.2. A graded category associated with an action. Suppose the category Cr is
‘small’. For any pair of objects, L, M, of the category C'x and an object a of the category
Cr, set C?(—(L,M) = Cx(L,”}/*(CL, M)) = Cx(L,Fa(M)). If N € ObCx and b € ObCr,
then we define a map

C% (L, M) x CX (M, N) —— C{**(L,N) (1)
as the composition of the maps

Ox (L, Tu(M)) x Ox(M,Ty(N)) —— Cx(L,Ta(M)) x Cx(Ca(M),Ts o Ty(N))

|

Cx(L,Fa(M)) X OX(Fa(M)7Fa®b(N))=
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¢a,b
where the vertical arrow is induced by the functor morphism I'y o'y —— [',op, and

the composition map
Cx (L, Ta(M)) x Cx (Ta(M),Tags(N)) — Cx (L, Taep(N)) = C*(L, N)

This defines an enriched category, C(x y+), with the same objects as C'x; morphisms

between objects are Cf?p—graded sets. To every morphism, (X,v*) — (Y,7*), of Cr-
actions, there corresponds a morphism, C(x ) — C(ny“*)v of enriched categories.

6.2.1. The case of ’spaces’ over a monoid. Let G be a monoid and (X,~v*) a G-
'space’ such that Cx is a k-linear category for for some commutative ring k. Then C(x ,«)
gives rise to an enriched category over the monoidal category of G-graded k-modules. In
particular, a Z-'space’ defines an enriched category of the monoidal category of Z-graded
k-modules.

6.3. Stable saturated multiplicative systems. Let S°M(X,~*) denote the
family of saturated multiplicative systems in C'x which are invariant with respect to the
action of Cp. It follows from the universal property of localizations that for every X €
S*M(X,v*)*, the 'space’ of fractions, ¥~1 X, inherits a Cp-action uniquely defined by the

condition that the canonical morphism 71X B X isa morphism of actions.

6.3.1. Proposition. (a) If ¥ isa CA’;/p—stable multiplicative system, then its satura-

tion, ¥° is a Cr-stable multiplicative system too.
(b) If ¥1 and 3o are Crp-stable saturated multiplicative systems, then the smallest

saturated multiplicative system, 1 V 2o, spanned by Y1 and Yo is CA’;-stable. .
(c) Suppose Cx has finite colimits. Then the intersection of any set of Cp-stable

saturated left multiplicative systems is a Cp-stable saturated left multiplicative system.

Proof. (a) The saturation, 3¢, of a multiplicative system ¥ consists of all morphisms s
of Cx such that uos € ¥ 3 sow for some morphisms v and v (see 1.3.3). If ¥ is Cr-stable,
then

Lo(u)oTy(s) =Ta(uos) € X3 Ty(sov)=T4(s)ol(v)

for all a € ObCr (cf. 6.1 for notations); hence I',(s) € X for all a € ObCrr.

(b) We need several steps.

(i) Let ¥; and X5 be two left multiplicative systems, and let ¥; LI X5 denote the
smallest family of arrows closed under composition and containing 3; and 5. We claim
that 31 LI Y5 is a left multiplicative system.

The family 3, LI ¥y consists of all possible compositions of arrows of 3 [ ¥2. Since
Y1 and Y9 are closed under composition and contain all identical morphisms, a generic
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element, s, of X1 LI X5 can be represented as a composition
My 2% Ly 25 My 22 0 25 L, M, (2)

where s; € X1 and t; € Yo, 1 =1,...,n.

Let s be an element of 3 LY, given by the composition (2), and let My N M be an
arbitrary morphism. By the property (SL2) (see 1.3), there exists a commutative square

S1

My —_— Ly
f l l g1
M, —— I

where s/ € %;. Applying the property (SL2) to the pair of morphisms L} <2~ L, L,
we complete it to a commutative diagram

t
L —1> My

gll lfl

t
L} — M

where t] € ¥5. Continuing this process, we obtain a commutative diagram

t n tn
My s% L4 SN M, i> - ; L, — M,
fl lgl Jfl gnl lfn
3/1 t/1 3/2 s; t'n
M — L —_— M/ —_— L. L, — M)

where s, € ¥1 and ¢} € 3o, i = 1,...,n. Thus, ¥; U X5 has the property (SL2). It remains
to verify the property (SL3) (see 1.3).

s
Let s be an element of 31 LIY, presented as the composition (2). And let M,, —X N

be a pair of arrows such that f os = gos. This equality can be presented as
(fothpospo..oty)os; =(got,o08,0...0t1)0s].
By the property (SL3), there exists an element s} € ¥; such that

sio(fotposyo..ot;)=si0(got,0s,0...0t1). (3)
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Applying (SL3) to the equality (3) presented in the form
(sjofot,os,0...08)0t; =(sjogot,o0s,0..083)0ty,
we find an element t| € 35 such that
tio(siofot,os,0...08) =t o(sjogot,o0s,0..0s3).
By an induction argument, we obtain the equality
(t, os o...otios))of=(t osl o..0t)jos])og,

where s, € ¥7 and ¢} € 39, i =1,...,n.

(ii) It follows from the description of ¥; LI Y5 in (i) that if X1 and X5 are CA’;—stable,
then > L X5 is @—stable too.

(iii) The smallest saturated multiplicative system, 3 V 3o, spanned by ¥; and o
is, evidently, the saturation of ¥; U X5. By (ii), the left multiplicative system ¥; U X5 is
@—stable. Therefore, by (a), its saturation, ¥, V X, is @—stable.

(c) The assertion follows from 1.4.3. m

6.4. Spectra. Clearly, the trivial multiplicative system, Iso(Cx), is CTp—inva,riant, ie.
Iso(Cx) € S*M(X,~v*). Let S*M(X,~*)* denote the family S*M(X,~v*) — {Iso(Cx)}
of non-trivial @—invariant saturated multiplicative systems.

All notions and facts considered so far in this work are extended to ’spaces’ with
an action of a monoidal category Cr = (Cr,®,1) by simply replacing S*M(X)* by
S*M(X,~*)* and inserting » Cp-invariant” whenever it is required.

Thus, £-local CT_F—’spa,ces’ are those @—’spaees’ (X,~*) for which the intersection of
all ¥ € S*M(X,~v*)* belongs to S*M(X,~v*)*.

The complete £-spectrum, Specs(X,~v*), of a C/;;p—’space’ (X,~*) consists of all ¥ €
S*M(X,~*)* such that the Cr-'space’ of fractions (X71X,5*) is £-local. In other words,

there exists the smallest C'p-invariant saturated multiplicative system, ¥*, properly con-
taining .. -
The £-spectrum, Speca(X,v*), of a Cp-"space’ (X, ~*) is formed by ¥ € S*M(X, )

such that there exists the biggest C'r-invariant saturated multiplicative system, ¥, which
does not contain X.

6.4.1. Proposition. The map > — S is an injective morphism from Spec% (X,~*)
to Specs(X,7").
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Proof. Let ¥ € Specx(X,7*). By 6.3.1(b), £V S is the smallest Cp-invariant

saturated multiplicative system which containsAE and 5. If Yi1is a @—invariant saturated
multiplicative system which properly contains ¥, then it contains 3 too, hence it contains
TV Therefore, ¥V S is the smallest CT invariant saturated multiplicative system which
properly contains E in particular, S e Specg (X, 7).

Injectivity of the map ¥ —— 5 follows from that Y1 C ¥y iff 21 C 22 n
The definitions of the remaining spectra are even more straightforward.

6.4.2. Closed spectra and flat spectra. Elements of the closed complete £-
spectrum, Specé(X, ~*), are those ¥ € Spec}:(X, ~*) which are closed in the sense of 5.2.

The closed £-spectrum, Specg:(X, ~*), consists of all ¥ € Spec%(X, ~*) such that S is
closed.

The flat complete £-spectrum, SpecfS(X 7*), is formed by ¥ € Specs(X,~*) such
that the localization ¥~1X — X is continuous (i.e. it has a direct image functor).

The flat £-spectrum, Specfg(X,y ), is formed by ¥ € Spec%(X,~*) such that 5
belongs to Specfl/g(X, ¥).

6.4.2.1. Note. For any ¥ € S*M(X,~*), the full subcategory of the category

Cx generated by objects which are left closed for ¥ (cf. 5.3) is Cr-stable. But, the
full subcategory of C'x whose objects are X-torsion free objects of C'x is not, in general,
Cr-stable.

6.5. Locally trivial actions and spectra.

6.5.1. Proposition. Let (X,7*) be a éT—’space’ such that there exists a family
{¥; | 1 € J} of saturated stable multiplicative systems with the following properties:
(a) ﬂ Y, = Iso(Cx);
ieJ B
(b) every ¥ € SEM(X) containing some of ¥; is Cp-stable.
Then the canonical map

~

Speca(X) — Specs(X), T — %,

takes values in Specs(X,v*).

Proof. Let U; denote the ’space’ Zi_lX and wu; the canonical morphism U; — X,
1 € J. Since each ¥; is stable, the action v* induces a éT—action, v; on U;. The condition
(a) means that the family of localizations {U; = X | i € J} is conservative. By 2.2.5,
Spec(X) = |U,c; Specy (U;; X), where Spec(Ui; X) = {E € Spec(X) | 8., C S
The condition (b) means that for every i € J, all ¥ € S M(U;) are Cp-stable. In
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particular, Spec%(Ui,ﬁ) = Spec%(Ui) foAr every i € J. This implies that forA every
Y e Spec%(X), the multiplicative system Y is Cp-stable. Thus, the map ¥ —— X is an
embedding Spec%(X) — Specs(X,7*). =



Chapter VI
Geometry of Right Exact 'Spaces’.

In this chapter, we extend the spectrum Spec(X) to ’spaces’ represented by svelte
right exact categories with weak equivalences. We call them right exact ’spaces’ with weak
equivalences, or, simply, right exact ’spaces’. By definition, a right exact category with
weak equivalences is a triple (C'x, €x, Wx ), where Cx is a category, €x is a class of strict
epimorphisms which forms a pretopology on C'x and Wx is a subpretopology of €x. In
other words, the class €x and its subclass Wx contain all isomorphisms of C'x and are
closed under composition and pull-backs. Every exact category (in particular, any abelian
category) is identified with a right exact category with trivial (that is consisting only of
isomorphisms) class of weak equivalences, whose deflations are admissible epimorphisms.
Right exact categories with the trivial class of weak equivalences came into life as a (half of
the) base for a version of homological algebra developed in [R13] (and outlined in [R11]).

One of the motivations behind choosing right exact 'spaces’ as a setting for spectral
theory comes from the fact that they form a natural (although not the most general) do-
main for K-theory. Grothendieck introduced K-theory for studying cycles on commutative
schemes. Having K-groups of right exact ’spaces’ already defined [R13], [R11], the next
question is what are cycles in this case. Other motivations are of a more pragmatical
nature. Abelian categories are too restrictive even for commutative algebraic geometry.
Already extending the spectral picture to ’spaces’ represented by exact categories (which
are a special case of right exact categories) considerably increases the area of potential
applications, because, for instance, the category of Banach vector spaces has a natural
exact structure. This exact structure coincides with the finest right exact structure, which
exists on any category.

The spectral theory of (’spaces’ represented by) abelian categories (sketched in Chap-
ter II) is based on the notions of topologizing, thick and Serre subcategories and some
of their basic properties. A starting observation behind the content of this chapter was
that a subcategory of an abelian category can be replaced by the class of epimorphisms
whose kernels are objects of this subcategory. So that the idea was to describe classes of
epimorphisms corresponding to topologizing, thick and Serre subcategories, and then use
this description for right exact categories. The realization of this program turned out to
be way more subtle than it looked in the beginning.

We start, in Section 1, with preliminaries (borrowed from [R11]) on kernels of arrows
in categories with initial objects and then continue with right exact categories with weak
equivalences. An important new notion which appears here is that of stable class of de-
flations. In Section 2, we introduce topologizing, thick and Serre systems of deflations
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and establish their main properties, which in abelian case turn into the known properties
of respectively topologizing, thick and Serre subcategories (discussed in Chapter II). In
Section 3, we define the spectra of a right exact ’space’ (X, €x) with weak equivalences
related with topologizing, thick and Serre systems of deflations. In particular, we define
the spectrum Spec,(X, €x) which, in the case of abelian category Cx with the standard
exact structure, is naturally isomorphic to the spectrum Spec(X).

In Section 4, we sketch an alternative version of spectral theory based on the notions
of semitopologizing and strongly closed (— a replacement of Serre) systems. This theory re-
quires less conditions on the right exact categories and, therefore, is much more universal.
In general, the spectra of ’spaces’ differ from those defined in Section 3. Both spectral the-
ories coincide in the abelian case. In Section 5, we introduce strongly ‘exact’ functor and,
in particular, strongly ’exact’ localizations, and establish their basic properties. In Section
6, we study functorial properties of the spectra with respect to strongly ’exact’ localiza-
tions. We establish the so called locality theorems for the spectrum Spec,(X, €x) and its
semitopological analog Spec,, (X, €x ), which is one of the most important properties of
these spectra. In Section 7, the main notions and facts of the work are specialized for right
exact categories with initial objects. In particular, we obtain a spectral theory of ’spaces’
represented by exact categories and, in the abelian case, recover main constructions and
facts of Chapter II. We conclude with a couple of examples of illustrative nature.

‘Complementary facts’ are dedicated to properties of kernels of morphisms.

1. Preliminaries on right exact categories.

1.1. Kernels of arrows.

Let C'x be a category with an initial object, x. For a morphism M L) N we define
the kernel of f as the upper horizontal arrow in a cartesian square

Ker(f) —>E(f)

f’l cart l f
N

x —

when the latter exists.
Cokernels of morphisms are defined dually, via a cocartesian square

(f)

N 22 Cok(f)
fT cocart T I
M — Y

where y is a final object of Cx.
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If C'x is a pointed category (i.e. its initial objects are final), then the notion of the
s

. : . t(f) . .
kernel is equivalent to the usual one: the diagram Ker(f) —— M . N is exact.

f
N c(f)
Dually, the cokernel of f makes the diagram M { N —— Cok(f) exact.
0

1.1.1. Lemma. Let C'x be a category with an initial object x.

(a) Let a morphism M LN of Cx have a kernel. The canonical morphism
e(f)

Ker(f) —— M is a monomorphism, if the umque arrow © -5 N is a monomorphism.

(b) If M Ty Nisa monomorphism, then © —% M is the kernel of f.
Proof. The pull-backs of monomorphisms are monomorphisms. =

1.2. Corollary. Let Cx be a category with an initial object x. The following condi-

tions are equivalent:

t(f)
(a) If M Ly N has a kernel, then the canonical arrow Ker(f) —— M is a

monomorphism.

(b) The unique arrow x MM s a monomorphism for any M € ObCx.

Proof. (a) = (b), because, by 1.1(b), the unique morphism x My M s the kernel of
the identical morphism M — M. The implication (b) = (a) follows from 1.1.1(a). m

1.3. Note. The converse assertion is not true in general: a morphism might have
a trivial kernel without being a monomorphism. It is easy to produce an example in the
category of pointed sets.

1.4. Examples.

1.4.1. Kernels of morphisms of unital k-algebras. Let C'x be the category Alg
of associative unital k-algebras. The category C'x has an initial object — the k-algebra k.
For any k-algebra morphism A — B, we have a commutative square

A L

ey) | ?

()
ko K(p) ——

where K () denote the kernel of the morphism ¢ in the category of non-unital k-algebras
and the morphism €(p) is determined by the inclusion K(¢) — A and the k-algebra
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structure K — A. This square is cartesian. In fact, if

is a commutative square of k-algebra morphisms, then C is an augmented algebra: C' =
k@ K (1). Since the restriction of ¢ oy to K(v) is zero, it factors uniquely through K ().

Therefore, there is a unique k-algebra morphism C = k & K (v) K er(p) =k @ K(p)
such that v = €(p) o 5 and 1 = €(p) o .

This shows that each (unital) k-algebra morphism A —+ B has a canonical kernel
Ker(p) equal to the augmented k-algebra corresponding to the ideal K (¢p).

t(e)
It follows from the description of the kernel Ker(¢) —— A that it is a monomor-
phism iff the k-algebra structure &k — A is a monomorphism.

Notice that cokernels of morphisms are not defined in Algy, because this category
does not have final objects.

1.4.2. Kernels and cokernels of maps of sets. Since the only initial object of the
category Sets is the empty set () and there are no morphisms from a non-empty set to (), the

kernel of any map X — Y is ) — X. The cokernel of a map X i> Y is the projection

(f)
y Y/f(X), where Y/ f(X) is the set obtained from Y by the contraction of f(X)

into a point. So that ¢(f) is an isomorphism iff either X = (), or f(X) is a one-point set.

1.4.3. Presheaves of sets. Let Cx be a svelte category and C'% the category of
non-trivial presheaves of sets on C'x (that is we exclude the trivial presheaf which assigns
to every object of C'x the empty set). The category C% has a final object which is the
constant presheaf with values in a one-element set. If C'x has a final object, y, then
y = Cx(—,y) is a final object of the category C%. Since C% has small colimits, it has
cokernels of arbitrary morphisms which are computed object-wise, that is using 1.4.2.

If the category Cx has an initial object, z, then the presheaf = = Cx(—,x) is an
initial object of the category C%. In this case, the category C% has kernels of all its

morphisms (because C% has limits) and the Yoneda functor C'x N C% preserves kernels.
Notice that the initial object of C% is not isomorphic to its final object unless the
category C'x is pointed, i.e. initial objects of C'x are its final objects.

1.5. Some properties of kernels. See Appendix 1.
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1.6. A construction. For a class of arrows S of a category Cx, we denote by S*
the class of all arrows s of C'x such that some pull-back of s belongs to S.

1.6.1. Proposition. Fiz a category Cx .
(a) U T = ( U 7})A for any set {T; | i € T} of classes of arrows of Cx.
ieJ ieJ
(b) SCS" and S" = (SM)" for any class of arrows S of the category Cx.
(c) Suppose that the category Cx quasi-filtered in the sense that any diagram of the
form L — M <— N 1in the category Cx can be completed to a commutative square

T lj
N ——— M

(for instance, Cx is a category with fibred products, or Cx has initial objects).

(i) Let S be a class of arrows of Cx stable under arbitrary pull-backs. Then the class
S” is stable under pull-backs.

(ii) Suppose that S is stable under pull-backs and satisfies the following condition:
(#) If in the commutative diagram

with cartesian square toj = idy and morphisms t and s belong to S, then tos € S.
Then the class S” is multiplicative (that is closed under composition).
Proof. (a)&(b). The equality U 7? =( U ﬁ)x, the inclusion S C S* and the
~ o i€J i€J
equality S" = (S")" are obvious.
(i) Let L —25 M be a morphism of S* and

L
f’ l cart l f
L
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a cartesian square. Since s € 8", there exists a cartesian square

g — M

¢’ l cart l )
L — M

with t € §. By condition, there exists a commutative square

_ s _
m — M

ful l f

¢

m — M

Set p =fo 5 = ¢ of and consider the cartesian square

g L om
gp’l cart lgp (1)
L — % M

¢ 5 m ¢ 5
@ l cart l b A]El cart l §'

I 4% M and £ —— (2)
f’ l cart l f s l cart l 10)

L 2 M L — M

Since the class S is stable under pull-backs and £ s om belongs to S, 1t follows from the
upper cartesian square of the right diagram (2) that the morphism cm belongs to S.

The upper cartesian square of the left diagram (2) shows that the pull-back L =5 M of
the morphism L — M belongs to the class S*.
(ii) Let L — M and M 5 N be morphisms of S”; i.e. there exist cartesian squares

~ 5 —~ t
I — M M — N
§ l cart J f and g l cart J g
t
L —» M M —» N
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whose upper horizontal arrows belong to §. By hypothesis, there exists a commutative
square

7
m — M
g//J/ lg/
—~ f
M — M
which gives rise to a pair of diagrams
— s ¥
Mm — M g — M
@ l cart lg” ¢ l cart lgp
~ 5 —~ t
I —» M  and M ——s N (3)
§ l cart l f g l cart l g
t
L —» M M —— N

with cartesian squares, where ¢ = tof. The latter equality implies the existence of a
unique arrow M —— M such that v o j = idgy.
Notice that in the diagram

Mot o

jl cart lj

g s e 5 (4)
&J cart l¢ cart Jzﬁzgow

L 2 M —5 N

built of cartesian squares, we can take M = 9t and & = 3.

In fact, it follows from the equality ¢ oj = §o ¢”, universal property of cartesian
squares (and the fact that composition of cartesian squares is a cartesian square) that the
cartesian square

M o
boi| | oo
L — M
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is isomorphic to the cartesian square
m m
i o ¢’ l cart l fog”
L M

In particular, M — 9 is an arrow of S. Applying the condition (#) to the subdiagram

M — m
j cart lj

e e oo

of the diagram (3), we obtain that the composition ¢ o belongs to S. Since the

square
~ you

o] e |
[0) cart Y
I tos N

(derived from the lower two squares of (3)) is cartesian, this means that tos € S*. =

1.6.2. Remarks. (a) It follows that a class of arrows S satisfying the condition (#)
of 1.6.1 is multiplicative, that is closed under composition.

(b) It follows from the argument of 1.6.1(ii) that it suffices to require in the condition
(#) that the object IC runs through a cofinal class of objects 8. The word cofinal means
that for any M € ObC'x, there is an arrow X — M with K € R.

Thus, if C'x is a category with an initial object, g, then the condition (#) of 1.6.1 can
be replaced by the following condition:

(#) If a morphism £ — M is such that canonical arrow Ker(s) — t belongs to S
and M —% ¢ is from S, then the composition M Los, ¢ is a morphism of S.

Notice that if S is a class of arrows of C'x stable under pull-backs along morphisms
from initial objects (in particular, morphisms of S have kernels), then the class S” consists
of all arrows M —— £ such that the canonical morphism Ker(s) — r (~ the pull-back
of s along the unique arrow r — £) belongs to S.
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(c) Let R be a cofinal class of objects of the category Cx. Suppose that a functor
Cx £, Cy is such that pull-backs of retracts X — M from

Sp Y {s € HomCyx | F(s) € Iso(Cy)}

with K € K along arrows from Z; belong to X . Then the system X satisfies the
condition (#).
In fact, if the condition above holds and

is a commutative diagram with cartesian square such that t oj = idx- and morphisms t
and § belong to X, then j is a retract from Xz and, therefore, both vertical arrows and
upper horizontal arrow of the diagram

~ F(s)
F(£) —— F(K)

are invertible. Therefore F'(s) is invertible, i.e. s € ¥p. In particular, tos € Xp.

(¢”) Suppose that the category C'x has an initial object r and a functor C'x oy
preserves pull-backs along the morphisms from  (for instance, Cy has initial objects too
and F preserves kernels of arrows). Then the system X satisfies the condition (#’) above.

If the categories C'x, Cy and the functor F' are additive and all morphisms of Cx
have kernels, then

[F' preserves pull-backs of retracts] < [F' preserves kernels] < [F' is left exact].

1.6.3. Morphisms with a trivial kernel. Let I'so(Cx) denote the class of all iso-
morphisms of a category Cx. We call elements of Iso(Cx )" morphisms with trivial kernel.
It follows from the observation 1.6.2(b) that if C'x is a category with initial objects, then
Is0(Cx)" = {s € HomCx | Ker(s) is an initial object}. If the category Cx is additive,
then the class Iso(Cx)" coincides with the class of all monomorphisms of the category
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Cx. There are many non-additive categories having this property. One of them is the
category Algy of unital associative k-algebras (see 1.4.1).

1.7. Proposition. Suppose that C'x is a quasi-filtered category, i.e. any diagram of
the form L — M <— N in the category Cx can be completed to a commutative square
(say, Cx has initial objects). Then

(Ns)y=Ns!

icJ i€J
for any finite set {S; | i € J} of classes of arrows of C'x which are stable under pull-backs.

Proof. Evidently, (m Si)" C ﬂ S for any set {S; | i € J} of classes of arrows of
icJ i€J

the category Cx. The claim is that the inverse inclusion holds when .J is finite and each
§; is stable under pull-backs. B

In fact, let J = {1,2,...,n}, and let s € ﬂ 8. Then a pull-back, s1, of s belongs

ieJ
to S1. Since, by 1.6.1, each of the classes S;' is closed under pull-backs. So that s; is an
element of SN ( ﬂ S/'). By a standard induction argument, ( ﬂ S = m S’
2<i<n 2<i<n icJ
Therefore, there is a pull-back, s; of s; which belongs to m S;. By hypothesis, &3
2<i<n

is stable under pull-backs, in particular, §; € m S;. Since §; is a pull-back of s, this

1<i<n
proves the desired inverse inclusion (ﬂ Si)" D ﬂ S m
icJ icJ

1.8. The dual construction. For a class S of arrows of a category Cx, we denote
by S* the class of all arrows s of C'x such that some push-forward of s belongs to S. The
dual versions of the facts above are left to the reader.

We shall call the arrows of Iso(Cx)* morphisms with trivial cokernel. It the category
Cx is additive, I'so(Cx)™ coincides with the class of all epimorphisms of C'x (see 1.6.3).
In this case, the intersection I'so(Cx )" N Iso(Cx)* consists of all bimorphisms of C'x.

1.9. Right exact ’spaces’ with weak equivalences.

Right exact categories and ’spaces’ (they represent) were introduced in [R13]. Here
we need a slightly more flexible structure — right exact categories with weak equivalences.

1.9.1. Right exact categories and ’exact’ functors. A right exact category is
a pair (Cx,€x), where Cx is a category and €x is a Grothendieck pretopology on Cx
whose covers are strict epimorphisms called (after P. Gabriel) deflations.
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1.9.2. Right exact categories and ’spaces’ with weak equivalences. We call
this way triples (Cx, €x,Wx), where (Cx, €x) is a right exact category and (Cx, Wx)
is an exact subcategory of (Cx,€x) (i.e. Wx is a subpretopology of €x). We call arrows
of Wx weak equivalences. For convenience, we denote the pair (€x, Wyx) by €x and write
(Cx, €x) instead of (Cx,€x, Wx). An ’exact’ functor from (Cx,€x) to (Cy, ¢y) is an

F
‘exact’ functor (Cx, €x) —— (Cy, €y ) such that F(Wx) C Wy.

1.9.3. Examples. Fix a right exact category (Cx,€x).

(a) The smallest class of weak equivalences is Wx = Iso(Cx) — the class of all iso-
morphisms of the category Cx.

(b) An example essential for this work is

Wy = 2 ¥ Iso(Cx)" N €y

In other words, the class Wx consists of deflations with trivial kernels (see 1.6.3). If
the category Cy is additive, then, as it is observed in 1.6.3, the class Iso(Cx)" consists
of all monomorphisms of Cx. Since deflations are strict epimorphisms, it follows that
QE?( = Iso(Cx); i.e. weak equivalences are isomorphisms in this case. There are many
natural examples of non-additive categories having this property.

(c¢) One of them is the category Algy of unital associative k-algebras with strict epi-
morphisms as deflations. In fact, a k-algebra morphism has a trivial kernel iff its kernel as
a k-module morphism is trivial (see 1.4.1). So that algebra morphisms with trivial kernels
are monomorphisms.

1.10. Stable classes of deflations. Fix a right exact category (Cx, €x). We call a
class of deflations S of (Cx, €x) stable if it is closed under pull-backs and S = €x NS".

1.10.1. Proposition. Let (Cx,€x) be a right exact category such that the category
Cx is quasi-filtered, i.e. any pair of arrows L — M <— N can be completed to a
commutative square (for instance, C'x has initial objects, or it has fiber products). Then,

(a) For any class S of arrows of the category Cx which is closed under pull-backs, the
intersection €x NS” is a stable class.

(b) The union and the intersection of any set of stable classes are stable classes.

Proof. (a) It follows from 1.7 and the equality S = (S™)”" (see 1.6.1) that
Ex N(Ex NS =eEx N (Ey N(SH) =eEx NS~
Since the category Cx is quasi-filtered, by 1.6.1, the class S* inherits from S the

stability under pull-backs. Therefore, the intersection €x N S” is stable under pull-backs
too.
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(bl) By 1.6.1(a U S;) U SZ-X for any {S; | i € J} of classes of arrows of the

icJ iceJ
category C'x. Therefore, if all classes §; are stable, then

Usi=JexnsH=exn(|Js)"

icJ ieJ i€J

(b2) For any set {S; | i € J} of classes of arrows of the category Cx, there is an obvious

inclusion (m Si)" C ﬂ SP. 1 {S; | i € J} is a family of stable classes of deflations, then
ieJ ieJ
the inclusion above implies that

NS cexn(S) cexn(N8)=NE€xns}) =5

icJ iceJ icJ icJ ieJ

In particular, ﬂ S;i=€ExnN ( ﬂ S,-)x, which means, by definition, that the intersection
icJ icJ
ﬂ S; 1s a stable class. m

iceJ

1.10.2. Proposition. Let (Cx,€x) = (Cx,€x, Wx) be a right exact category with
a class of weak equivalences containing all deflations with trivial kernels and o left divisible
class of deflations: sot € Ex > t implies that s € Ex. Then every class S of deflations
of (Cx, €x) which is closed under pull-backs and push-forwards (we assume that arbitrary
push-forwards of arrows of S exist) and coincides with Wx o S is stable.

Proof. Let £ — M be an arrow of 8" N Ex; that is there exists a cartesian square

S

g — M
f'l cart lf (5)
L —s M

whose upper horizontal arrow belongs to S. Taking a push-forward of s along the morphism
f', we obtain a decomposition of this diagram into a commutative diagram

g = m
f’l (co)cart l f1 (6)
L —s M —5 M
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with a cocartesian square and the morphism us uniquely determined by the equalities
usou; =u, ugof; = f. Notice that the square in the diagram (6) is also cartesian, because

the square (5) is cartesian. By hypothesis, the arrow £ M belongs to S and the arrow

Uy is a deflation. Taking a pull-back of the deflation uy along the morphism 91 N M, we
obtain a further decomposition of the diagram (5) into the diagram

51 52
s M — m

£
’ l o)cart l cart Jf (7)
L

u%1/\/l—>/\/l

whose both squares are cartesian and s = 5 0 §1. A morphism K M gives rise to the
diagram

Aoy
Kis) ——  Klss) — K
Ell cart l ¢ cart l 59001 (8)
g s m 5 o
/ (co)cart l f1 cart l f
L - M —5 M

built of cartesian squares. Here the arrow K E—/> K(s2) is uniquely determined by the
equalities A\s, o ¥ = id,_, £ o ¥ = v. The upper cartesian square (with the identical left
vertical arrow) is due to the fact that the square in the diagram (6) is cartesian. All
horizontal arrows of the diagram (8) are deflations, because u; and uy are deflations and

each of the remaining arrows is a pull-back of either 1y, or us. In particular, K(s) LN K(s2)
is a deflation. The fact that t = ¢ o A\, is a strict epimorphism implies that € is a strict
epimorphism. On the other hand, ¥ is a monomorphism, due to the equality As, o = id,;
hence ¢ is an isomorphism. Therefore, As, is an isomorphism. The latter means that the
arrow M 2 M belongs to €Y = Iso(Cx)" N €x, i.e. it is a deflation with a trivial
kernel. By hypothesis all deflations with a trivial kernel are weak equivalences. Thus, our
arbitrary element u of S" N €y is the composition uy o 1y, where 1; € S and us € Wy.
Since Wx oS = 8§, the arrow u belongs to S. =

1.10.3. Right exact categories with stable classes of weak equivalences. We
are particularly interested in the right exact categories (C'x, €x) with a stable class weak
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equivalences Wx, that is Wx = W)K( N Ex. Since any class of weak equivalences contains
all isomorphisms of the category Cx, the smallest stable class coincides with the class
Qfg‘)( = Iso(Cx)" N Ex of all deflations with trivial kernels.

1.11. Coimages of morphisms and deflations with trivial kernels.

1.11.1. Coimages of morphisms. Fix a category C'x with an initial object z. Let

f . . .
M —— N be an arrow which has a kernel, i.e. we have a cartesian square

e(f)
Ker(f) ——
I’ l cart l f
x Z—N> N
e(f)
with which one can associate a pair of arrows Ker(f) —< M, where Oy is the composition
Of

of the projection f’ and the unique morphism x My M. Since g ~N = foip, the morphism
e(f)
f equalizes the pair Ker(f) —=X M. If the cokernel of this pair of arrows exists, it will

Of
be called the coimage of f and denoted by Coim(f), or. loosely, M /Ker(f).

Let M -1 N be a morphism such that Ker(f) and Coim(f) exist. Then f is the

by
composition of the canonical strict epimorphism M —— Coim(f) and a uniquely defined

j
morphism Coim(f) TN

1.11.1.1. Lemma. Let M -1+ N be a morphism such that Ker(f) and Coim(f)
exist. There is a natural isomorphism Ker(f) — Ker(ps) and the kernel of the morphism

j
Coim(f) Ty N s trivial.

Proof. The outer square of the commutative diagram

/7

Ker(f) —— x — T
{?(f)l cart l l (1)
M Coim(f) J—f> L

is cartesian. Therefore, its left square is cartesian which implies, by A.3, that Ker(py) is
isomorphic to Ker(f'). But, Ker(f') ~ Ker(f). m

1.11.2. Right exact categories with coimages of deflations.
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1.11.2.1. Proposition. Let (Cx,&x) be a right exact category and €S the class
of deflations which are isomorphic to their coimage. The class €% s closed under
composition and contains all isomorphisms of the category Cx .

Proof. Consider the commutative diagram

~ f g’
Ker(f) —— Ker(gf) —— Ker(9) —— =

where f and g belong to €% and the morphism L 2y equalizes the pair of arrows

e(gf)
Ker(gf) —= L. It follows from the left square of the diagram (2) that ¢ equalizes the
Ogf
e(f)
pair of arrows Ker(f) —2 L. Since, by hypothesis, L Iy Misan equalizer of this pair
0y
of arrows, there is a unique morphism M %y such that ¢ = 740 f. Since ¢ equalizes

e(gf)
the pair Ker(gf) — L, it follows from the commutativity of the central square of (2)
Ogf

that 4 equalizes the composition of the morphism Ker(gf) 1 K er(g) and the pair

t(g)
of arrows Ker(g) —X M. Since Ker(gf) N Ker(g) is a pull-back of a deflation,
0g
it is a deflation, in particular, it is a strict epimorphism. Therefore, the cokernel of this
€(g)
composition is the cokernel of the pair Ker(g) —= M. Since M 25 N is an equalizer of

Og
A
the latter pair, there exists a unique morphism N =% V such that Yo = Ay 0 g.
Thus, ¢ = (A ©74) © (go f). Since go f is an epimorphism, a morhism £ such that

t(gf)
¢ =&o(go f)is unique. Therefore, go f is a cokernel of the pair Ker(gf) —X L. m

Ogf
1.11.2.2. Corollary. Let (Cx,&x) be a right exact category such that every its
deflation has a coimage which is also a deflation and the system of deflations €x is left
divisible, i.e. if a composition t oy of two arrows is a deflation, then t is a deflation.
Then Ex = GS’B{ o &% and for every deflation, this decomposition is defined uniquely up to
1somorphism.
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Proof. 1t follows from 1.11.1.1, 1.11.2.1 and the imposed conditions that every deflation
¢ is the composition ¢ o t, where t coincides with its coimage and ¢ is a morphism with a
trivial kernel. Since, by hypothesis, €x is left divisible, ¢ is a deflation. m

1.11.3. Proposition. Let M — N be a deflation from ¢S. Any cartesian square

—~ t
M — N
i |5
5
M — L
such that s and t are epimorphisms having kernels and s is isomorphic to its cotmage s a
cocartesian square.

Proof. In fact, let

—~

M—t>/\/

dl | &

&1
M — £

be a commutative square. It follows from the commutative diagram

(1) —~ t
Ker(t) — M —— N

| al | &

t(s) &1
Ker(s) — M —— £

and the fact that the morphism t (hence &; o t) equalizes the pair Ker(t) — M, that
O¢
t(s)
ML e equalizes the pair Ker(s) —< M. Therefore, since, by hypothesis, s is the

Os

cokernel of this pair of arrows £ = 51 o s for a uniquely determined morphism £ BN
So that we have:

Got=Eof =&osof =(&of)ot
Since t is an epimorphism, the equality &; ot = (El of) ot implies that & = 51 of. m

1.11.3.1. Corollary. Let M —» N be a deflation from ¢S. Then any cartesian

square
M — N
dl |7
M — ¢
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1S a cocartesian square.
Proof. The fact follows from 1.11.3. m
1.11.3.2. Note. Suppose that the conditions of 1.11.2.2 hold. Let

M — N
f'l cart lf (3)

M%L‘

be a cartesian square and M — £ is a deflation. By 1.11.3, s = ¢, o 5., where s. € (G
and eg € QS?(. To this decomposition, there corresponds a decomposition

et t te

M — N — N
f'l (co)cart lft cart lf (4)

M = e g

of the square (3) into two cartesian squares. Since the class ¢% of deflations with trivial
kernel is stable under pull-backs, the horizontal arrows of the right square belong to QE?(,
in particular, they are weak equivalences. By 1.11.3, the left square of (4) is both cartesian
and cocartesian.

2. Topologizing, thick and Serre systems.

2.0. Assumptions. Fix a right exact category with weak equivalences (Cx, €x) =
(Cx,€x,Wx). Below is the list of assumptions which appear (not necessarily simultane-
ously) in different assertions of this work.

(a) The category Cx is quasi-filtered, i.e. every pair of arrows L — M <— N can
be completed to a commutative square. ~

(b) The class of weak equivalences is stable, i.e. Wx = W5 N €x, and has two more
properties:

(bl) If s o t € Wx and both s and t are deflations, then s € Wx > t.

(b2) The class Wy is invariant under push-forwards along deflations; that is for any

pair L +— N =5 M of deflations with w € Wy, there is a cocartesian square

N
el cocart le’
L
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with both horizontal arrows from Wx.
The class Ex of deflations is left divisible in the sense that
(c)ifte €x o s0t, thens € Ex,
and weakly right divisible in the following sense:
(d) if s € €x D50t then t € W} o Ex.

(e) There is a multiplicative class © x of arrows of the category C'x which includes all
deflations and Wy and a map which assigns to every s € D y a decomposition § = 74 o ¢,
where ¢, is a strict epimorphism, such that v, € W5 and es € €x, whenever s € Ex oWy

A more detailed version of this condition is obtained by adding to (e) the following;:

(€’) There is a multiplicative subclass €x of the class of strict epimorphisms of the
category C'x and a multiplicative subclass 2 x of Wg\( such that e; € £x and v, € Wx for
all s € D x; and the arrows A € Wx and t € Ex in the decomposition Aot are determined
uniquely up to isomorphism. In particular, e is isomorphic to s for all s € £x and ¢ ~ t
for all t € Wx.

2.0.1. Comments. (a) The condition (a) holds automatically if the category Cx
has initial objects, or if it has fiber products.

(b) Every stable class Wy of weak equivalences contains the class €% of deflations
with trivial kernel. The class €5 satisfies the condition (b1) and, if there exist push-
forwards of deflations with trivial kernels along deflations with trivial kernels, it satisfies
the condition (b2) as well.

(c) The largest class €5 of deflations of the category Cx (which consists of all strict
epimorphisms such that their arbitrary pull-backs exist and are strict epimorphisms) sat-
isfies the condition (c¢). This follows from two observations:

(i) if s o t is a strict epimorphism, then s is a strict epimorphism;

(ii) if there exist arbitrary pull-backs of the composition s o t and of the morphism ft,
then there are arbitrary pull-backs of the morphism s.

(d)&(e’) Suppose that the class of all strict epimorphisms of the category Cx is stable

under pull-backs and, for every morphlsm M L5 N of the category C'x, there exists a
c2(f)

kernel pair Kery(f) = M xx M { M and the cokernel M —— Coima(f) of

P2

the pair (p1, p2) which we call 2-coimage of the morphism f.

Suppose that the class W5 contains all monomorphisms.

(d) Then the largest class of deflations €5} (which coincides with the class of all strict
epimorphisms) satisfies the conditions (d) by a trivial reason, because, under the conditions
above, every morphism f is the composition j(f) o co(f) of a strict epimorphism, ¢5(f), and
a monomorphism; and, by hypothesis, W% contains all monomorphisms.

(el) By the same reason, the class €% satisfies the condition (e’) with £x = €§ and
with 20 x equal to the class of all monomorphisms of the category Cx.
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Notice that W% contains all monomorphisms automatically, if the category Cx has
initial objects, because it contains all morphisms with a trivial kernel and monomorphisms
have trivial kernels.

(d1) Actually, we need a weaker condition instead of 2.0(d) which is as follows. Let

t
L —— NLM

521 cart l sh

be a diagram whose square is cartesian and formed by deflations and the compositions
590t and s, ot are deflations. Then t € W)A( oCx.

(e2) Suppose that the category Cx has initial objects and kernels and coimages of
all morphisms. Then every morphism f§ is the composition j; o p; of its coimage, p; and
a morphism j;. The latter belongs to I so(Cx)", hence it belongs to W5 . Thus, if the
coimage of any deflation is a deflation, then it follows from (the argument of) 1.11.2.1
and from 1.11.2.2 that the condition (e’) holds if we take as £x the class of all strict
epimorphisms which coincide with their coimage and as Qx the class of all morphisms
with trivial kernel.

2.0.2. Examples. (i) Suppose that the category Cx is additive. Then the class
Is0(Cx)" of all morphisms with a trivial kernel coincides with the class of all monomor-
phisms of the category C'x and a morphism has a kernel iff it has a 2-kernel. It follows
also that the coimage of a morphism is the same as its image. Thus, if the class €% of all
strict epimorphisms of the category Cx is closed under pull-backs, then (Cx, €%, Iso(Cx))
satisfies all the conditions of 2.0.

(ii) Let C'x be the category Algy of associative unital k-algebras (see 1.4.1). Then,
similarly to the additive case, the class of all strict epimorphism is stable under base change,
the class of morphisms with trivial kernel coincides with the class of monomorphisms of
the category Cx (see 1.9.3(c)) and (Cx, €%, [so(Cx)) satisfies all the conditions of 2.0.

2.1. Systems. We call a class of arrows S of Cx a system in (Cx, €x) if
(a) S is closed under pull-backs,
(b) WX OSOWX =S 2 Wx,
We denote the set of systems in (Cx,€x) by &(X, €x) and regard it as a preorder
with respect to the inclusion. The smallest system, Wy, will be referred as trivial.
We denote by & (X, €x) the subpreorder of &(X, €x) formed by stable systems of
deflations, i.e. systems S such that S = €x NS".

2.1.1. Proposition. The set &(X, €x) of systems and the set &"(X, €x) of stable
systems in (Cx, €x) are closed under compositions and arbitrary unions and intersections.
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Proof. The inclusion 7 C Wy oT o Wx holds for any class of arrows T of the category
Cx. If {S; | i € J} is a set of systems, then

WXQﬂ&QWXO(ﬂsi)OWXQH&

icJ iceJ ieJ

and, evidently,

Wx €S CWxo(|JS)oWwx=JWxoSiowx) =[S
eJ eJ eJ eJ

The fact that each §; is invariant under base change implies that U S; and ﬂ S; have
icJ icJ
the same property. Therefore U S; and ﬂ S; are systems.
icJ icJ

The similar assertion for stable systems follows from 1.10.1(b). m

2.2. Right and left divisible systems. We call a system S in (Cx,€x) right
(resp. left) divisible if s € S (resp. t € S) whenever tos € S.

We say that a system S is right (resp. left) divisible in €x if s € S (resp. t € S)
whenever tos € S and s € €x.

It follows that the class of right (resp. left) divisible systems is stable under arbitrary
unions and intersections. Similarly for systems which are right (resp. left) divisible in €x.

2.2.1. Proposition. Suppose that the category Cx has pull-backs. Then, for any
right (resp. left) divisible system S, the system S" is right (resp. left) divisible.
If the system S is left divisible in €x, then 8" is left divisible in Ex.

Proof. (a) In fact, let M — N be an arrow from S”, that is its pull-back along some

arrow L N N belongs to S. Let u = tos. Then, since pull-backs exist in C'x, we have
the decomposition

— ~ t
M 25 K — ¢
f’l cart l cart l f (1)
t
M 2 K — N
of the pull-back of u along f into cartesian squares. So, if S is right (resp. left) divisible,
then s € S (resp. t € S), hence s € S" (resp. t € S").

(b) Suppose now that § is a system which is left divisible in €x, that isifu = tos € S
and s is a deflations, then t € §. Consider a pull-back of such u which belongs to & and
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consider its decomposition described by the diagram (1)N above. Since, by hypothesis, s is
a deflation, the arrow s in (1) is a deflation. Therefore, t € S which implies that t € S*. =

2.3. Orthogonal complements. For a class of arrows Y containing Wx, we define
the orthogonal complement ¥+ of ¥ as the union of all right divisible systems S such that
SNY = Wx. In other words, X1 is the largest right divisible system having the trivial
intersection with 3.

2.3.1. Proposition. Let (Cx,€x) be a quasi-filtered right exact category with a
stable class of weak equivalences; and let S be a class of deflations of (Cx,€x) closed
under pull-backs. If the category Cx has pull-backs, then (St)" = S+.

Proof. 1t follows from 1.6.1 and 1.7 that
SN(SH Cexn(S ' N(SHN =ex N (SNSH = ex N W},

By hypothesis, the system of weak equivalences is stable, that is €x N W)K( = Wx.
Since St is right divisible and the category C'x has pull-backs, it follows from 2.2.1
that the system (S1)”" is right divisible. Therefore, S* = (S+)". m

2.3.2. Example. Let Cx be a category with an initial object r and kernels of
morphisms. For a strict subcategory 7 of the category C'x containing initial objects, we
set

Y7 ={s € HomCx | Ker(s) € ObT}.

It follows from the general properties of kernels that ¥ is stable under base change.
Suppose that the kernel of any morphism M — N of C'x with M € ObT belongs to
the subcategory 7. Then Y7 is a right divisible system.
This observation follows from the commutative diagram

3(5) s t
Ker(s) —— N — M — L

J ) E(E)T cart T T (1)
Ker(s) & Ker(ts) ; Ker(t) —— ¢

with the cartesian central square.

Suppose that Wy = €5 — the class of all deflations with trivial kernels (cf. 1.9.3(b)).

Let § = €x 1 def Y7 N&x. One can see that the orthogonal complement S+ to S coincides

with X1, where T is the full subcategory of Cx determined by

OVT = {M € ObCx | Ker(M — N') & ObT — {initial objects} for any arrow M — N'}.
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In the case of an abelian category C'x, this description means that ObT consists of all
T-torsion free objects of the category Cx.

2.4. Topologizing systems of deflations.

2.4.1. Conventions. We assume that (Cx,€x) = (Cx, Ex, Wx) is a svelte right
exact category with a stable class of weak equivalences satisfying the condition 2.0(e); that
is there exists a a multiplicative class ® x of arrows of the category C'x which includes all
deflations and Wy and a map which assigns to every s € D x a decomposition § = 7, o ¢,
where ¢, is a strict epimorphism, such that v, € W)A( and e¢; € Ex, whenever s € Ex OW)A(.

In some cases (like 2.4.4 below), we need a stronger assumption 2.0(e’).

2.4.2. Left topologizing and right topologizing and topologizing systems
of deflations. We call a system S of deflations of (Cx, &x) left topologizing (resp. right
topologizing, resp. topologizing) if it is left divisible (resp. right divisible, resp. divisible)
in €x and the following conditions hold:

(a) If all arrows of a cartesian or a cocartesian square belong to S, then the composition
of the consequent arrows of this square belongs to S.

(b) The system S is closed under push-forwards.

(c) For any s € S o W)X(, the deflation ¢s in the decomposition s = 75 o ¢5 belongs to
the system S. In particular, So Wy C W5 0 S.

2.4.3. Proposition. Suppose that the class of deflations of (Cx,€x) is left divis-
ible and the class of weak equivalences stable. Then every left topologizing (resp. right
topologizing, resp. topologizing) system is stable.

Proof. Since the class of weak equivalences is stable, it contains the class (’ES@( of
deflations with a trivial kernel. By definition, every (left or/and right) topologizing system
is closed under push-forwards and composition with weak equivalences. Therefore, the
assertion follows from 1.10.2. m

We denote the preorder (with respect to the inclusion) of all left topologizing systems
of (Cx,€x) by T,(X,Ex) and the preorder of topologizing systems by T(X, Ex).

It follows that the class Wx of weak equivalences is the smallest topologizing system.

One can see that T,(X,€x) and T(X,Ex) are closed under arbitrary intersections
and filtered (with respect to the inclusion) unions.

2.4.4. Proposition. Let (Cx,€x) = (Cx,€x, Wx) be a right evact category with
weak equivalences and left divisible system of deflations (see 2.0(c)). Suppose that the
condition 2.0(e’) holds. Then

(a) The composition of left topologizing systems is a left topologizing system.
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(b) Suppose that the class Wx of weak equivalences is stable (the condition 2.0(b))
and the class €x of deflations is weakly right divisible (the condition 2.0(d)). Then the
class T(X,Ex) of topologizing systems is closed under composition.

Proof. (a) Let S, T be left topologizing systems of deflations. By 2.1.1, the compo-
sition of two systems is a system. In particular, 7 oS is a system. Since a push-forward
of a composition of two arrows is the composition of the corresponding push-forwards, the
system 7 oS is closed under push-forwards.

The system 7 o S o WY is preserved by the map u — e,,.

In fact, let u=tosow, wheret€ 7T, s €S, and v € W;_} Then

u=to (75m o esm) = Ytysw0 © (etfysm o esm)a

where e, € T and esn € S, because the systems 7 and S are left topologizing, and

Yivew € Wx C Wy. By the condition 2.0(e’), the representation of a morphism as a
product yoe of v € Wx and ¢ € Ex is unique up to isomorphism. In particular, the
aITOWS €¢y, . O tgp € 7 0 S and e, are isomorphic.

It remains to show that the system 7 o S is left divisible in €x. Let

N 25
w |t (4)
M 2 m
be a commutative square whose all arrows are deflations with s € S and t € 7. Since S is

closed under push-forwards, the diagram (4) is decomposed into the diagram

S

N — L
t l cocart l t/ (5)
s A

M — M — N

with a cocartesian square, where M —— 91 is an element of S and the morphism Mt A
is uniquely determined by the equalities Aos = v and Aot’ = t. Since t’ and t are deflations,
t € T, and the system T is left divisible in €y, it follows that A € 7. So, b = Aos € T oS,
which shows that the system 7 o S is left divisible in €x.

(b) Suppose now that the systems 7 and S are topologizing (that is left topologizing
and divisible) and the conditions 2.0(b) and 2.0(d) hold. The claim is that these conditions
imply that the system 7 o S is right divisible (hence divisible) in €.
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In fact, consider again the commutative square (4). This time, we decompose it by
taking pullback of the arrow t € 7 along M 25 N; that is we consider the diagram

= 55
N — m =
t cart t (6)
[ o |
M — N

with cartesian square and morphism A —» m uniquely determined by the equalities
(s 07 =5 and to v = u. Since & and s are deflations, it follows from the condition 2.0(b)
that v = 1o o e, where tv € W% and e, is a deflation. Thus, u = (?o ) o e,. Since, by
hypothesis, the system of deflations €x is left divisible and u € €x, it follows from this
equality that totv is a deflation. On the other hand, it belongs to €x N (T o W% ) and,

since T is a topologizing system, T o W)X( - W)X( oT (see 2.4.2(c)). Therefore,
ExN(ToWy) CexN(WyoT)C(ExNWR)oT =WxoT =T,

because the class of weak equivalences Wx is, by hypothesis, stable, i.e. Wx = Wy N€Ex.
Altogether shows that totw e T. The class of deflations € being left divisible, the
fact that s = & oy = (& o tv) o e, implies that & o w is a deflation. Since s € S and
the system S is right divisible, it follows from the equality s = ({; o ) o ¢, that e, € S.
Therefore, u = (tow)oe, € T oS.
This shows that the system 7 o S is right divisible. Since, by (a) above, 7 o S is left
topologizing, it is topologizing. m

2.4.5. Proposition. (a) Let {S; | i € J} be a finite family of systems of deflations
which are right divisible in €x (that is if tos € S; and s € €x, then s € §). Suppose that
the class Wx of weak equivalences is stable and the condition 2.0(d1) holds. Then

(N(To8)=To(()S)

icJ icJ

for any topologizing system T .

(b) Let {S; | i € J} be a finite family of systems which are left divisible in €x (that is
ifsoec S; and e € Ex, then s € §). Suppose that T is a system of deflations such that
for any pair £ +— M LN of arrows of T, there exists a cocartesian square

M%

L
tl cocart l?

5/

N — N
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with tos € T. Then

N(SioT)=([)Si) o

ieJ ieJ

Proof. The inclusions

NSioT) 2 (()S:)oT and (Y(ToS)2To([)S)

ieJ iedJ ied ied

hold for class of arrows 7 and any family of classes of arrows {S; | i € J}. The claim is
that the inverse inclusions hold under respective conditions (a) and (b).
(a) Let v be an element of ﬂ (T 0S;), that isu=1t;0s;, wheres; € S;, t; € T and i
i€J
runs through J. So that for any 7,5 € J, we have a commutative square

M M
g T

&
Mj—>N

which is decomposed into the diagram

M — o M,

/
tj l cart l t;

t .

MJ—J>./\/’

with a cartesian square, where the morphism M —5 91 is uniquely determined by the
equalities t; oy =s; and t; oy = s5;. Since 5; and s; are deflations, it follows from the
condition 2.0(d1) that v = tv o¢, where ¢ € €x and w € Wy. Set u; = t; ot and
u; = t;- ot. Since §; = u; oe, 5; = u; oe and the classes S; and S; are right divisible
in €x, the deflation ¢ belongs to S; N S;. The composition t = t; o t; belongs to 7 and
t; ou; = tow is a deflation which belongs to 7 o W%. But, by the argument 2.4.4(b),
Ex N (T o W%) = T. Thus, the element u = t; o 5; equals to the composition (tow) o e,
where ¢ € §; N S; and tow € 7. This proves the inclusion ﬂ(To S;))CTo ( ﬂ SZ-) in
the case when |J| = 2. By an induction argument, it follows Zfii an arbitrary ﬁnilteeJJ :
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(b) Suppose now that the conditions (b) hold. Let u be an element of (W(SZ oT),
i€J
that is u = 5; o t;, where 5; € S, t; € 7 and ¢ runs through J. Thus, for any i,j € J, we
have a commutative square

J
M, —5 N

which is decomposed into the diagram

t;
t; l cocart l t

t; A
M, —= £ SN

with a cocartesian square, where the morphism £ 2 N s uniquely determined by the
equalities A oAfj =s; and Aot =s,. Since At/j and t; are deflations and, by hypothesis, the
classes S; and S; are left divisible in €x, the morphism A belongs to §; N S;. On the other
hand, the composition Ij o t; belongs to 7, because T is a topologizing system and both
t; and t; are its elements. Thus, s;0¢; = Ao (E ot;) =s; ot;. The rest of the proof is the
standard induction argument. m

2.4.6. Proposition. Suppose that (Cx, Ex,Wx) is such that W)K( o&x = HomC'x,
the class Wx of weak equivalences is stable and the condition 2.0(d1) holds. Then

NTes)=Te(8)
ieJ ieJ
for any topologizing system T and any finite set {S; | i € J} of classes of morphisms which
are right divisible in Ex .
Proof. The argument is similar to that of 2.4.5(a). Details are left to the reader. m

2.5. Thick systems of deflations. We call a system of deflations S of (Cx, €x)
thick if it is left and right divisible in €x, closed under compositions and stable. We denote
by (X, €x) the preorder (with respect to the inclusion) of thick systems of (Cx, €x).

It follows that Wx is the smallest thick system of (Cx, ¢ Xx)-

2.5.1. Example. Suppose that C'x has an initial object, r. Let 7 be a strictly full
subcategory of C'x containing initial objects and

S=¢xrY¥yvrneyx={secc€y|Ker(s) € ObT}
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(see 2.3.2). Suppose that the kernel of any deflation M —— N with M € ObT belongs to
the subcategory 7. Then it follows from the diagram 2.3.2(1) that the system S = €x 1 is
right divisible in €x. Notice that the cartesian square (2) gives rise to a cartesian square

Ker(tos’') —— Ker(t)

l cart l (3)

Ker(s) — r

with all arrows in €x 7. The condition of 2.4.2 holds iff for each cartesian square (2) with
arrows from €x 7, the composition Ker(tos’) — 1 of consecutive arrows of (3) belongs
to €x 7. Notice that the object (Ker(tos’), Ker(tos’) — r) of the category Cx/r is the
product of (Ker(s), Ker(s) — r) and (Ker(t), Ker(t) — r).

2.5.2. Proposition. Suppose that each deflation has a coimage which is also a
deflation, every morphism to an initial object is a deflations, and the class of deflations
Ex s left divisible.

(a) The system Ex 1 is topologising iff the subcategory T /r is closed under finite
products (taken in Cx /) and for any deflation M —— N with M € ObT /x, both Ker(e)
and N are objects of T /.

(b) The system Ex 1 is thick iff for any deflation M —» N such that N has arrows

to initial objects, M is an object of the subcategory T then and only then the objects N
and Ker(e) belong to T.

Proof. The argument for (a) follows from the discussion above. The proof of (b) uses
the commutative diagram 2.3.2(1). Details are left to the reader. m

2.5.3. The case of a pointed category. If r is also a final object of C'x, then the
categories C'x /r and Cx are naturally isomorphic and, therefore, K(to s’) is isomorphic
to the product of Ker(t) and Ker(s).

2.5.4. Topologizing and thick subcategories of exact and abelian categories.
It follows that if (Cx, €x) is an exact category, then €x 1 is a topologizing system iff the
subcategory 7T is closed under finite products and admissible subquotients. In particular, if
(Cx, €x) is an abelian category, then €x 7 is a topologizing system iff 7 is a topologizing
subcategory of C'x in the sense of Gabriel.

It follows from 2.5.2 that any thick subcategory of an exact category (Cx, €x) is
topologizing. If (Cx, €x) is abelian, then thick categories are thick in the usual sense.

2.6. Serre systems.

Fix a svelte right exact category with weak equivalences (Cx, €x) = (Cx, €x, Wx).
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2.6.1. The closure. For a class S of deflations of (Cx,€x), let Rs denote the
set of all systems of deflations ¥ divisible in €x such that any non-trivial right divisible
subsystem ¥’ of ¥ has a non-trivial intersection with S (that is SN¥' —)Wx is non-empty).
We denote by S~ the union of all ¥ € Rs and call it the closure of S.

2.6.2. Proposition. (a) S~ belongs to Rs (hence it is the largest element of Rs).

(b) (§7)" =§".

(c) The system S~ is closed under the composition.

(d) Suppose that the class Wx of weak equivalences is stable. Then the system S~ is
stable, that is S = Ex N (S7)".

Proof. (a) Since divisible systems are closed under arbitrary unions, S~ is a divisible
system. Let ¥ be a non-trivial right divisible subsystem of S~. Then there exists ¥’ € Rg
such that ¥’ N X is a non-trivial right divisible system. Since it is a subsystem of ¥/ and
Y € Rs, the intersection ¥’ N X NS is non-trivial. In particular, ¥ NS is non-trivial.

(b) It follows from the argument (a) that s = Rs-; hence (§7)” =S~

(c) Let ¥ be a non-trivial right divisible in €x system contained in S~ o S~. Let
t, s be elements of S~ such that tos € ¥ — Wx. Since X is right divisible, it contains
s. Suppose that s is non-trivial, that is s ¢ Wx. Take any right divisible subsystem of X
containing element s and denote by X its intersection with S~. Thus, X is a non-trivial
right divisible subsystem of S~ N Y, hence it has a non-trivial intersection with S. If
s € Wy, then ¥ contains tos, and we apply the argument above to tos itself. This shows
that S~ oS~ € §s, or, equivalently, ST oS~ =87,

(d) It follows from the definition of S~ that it coincides with the union of all divisible
systems of deflations 7 such that 7 NS+ = Wx. One can consider only stable systems T,
because, by 2.3.1,

(ExNTHNSt =ex (T N(SHY) = ex N (TNSH" = Ex NW = Wx.
It follows from 1.6.1 that the union of stable systems is a stable system, hence S~ is a

stable system. m

2.6.2.1. Note. One can see that Wy = Wx. In fact, W5 coincides with HomCx,
whence the equality 7 N Wy = Wx for a system T means precisely that 7 = Wx.

2.6.3. Serre systems of deflations. We call a class S of deflations of (Cx, €x) a
Serre system of deflations if S~ = S. We denote by Ge(X, €x) the preorder (with respect
to the inclusion) of all Serre systems of deflations of (Cx, €x).

It follows from this definition and 2.6.2 that Serre systems of deflations are thick.

2.6.4. Proposition. Let (Cx,Ex) be a svelte right exact category.
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(a) The intersection of any family of Serre systems of deflations of (Cx,€x) is a
Serre system.

(b) Let {S; | i € J} be a finite set of right divisible systems of deflations of (Cx, €x).

Then () S; = ([)S:)~

ieJ iceJ

Proof. (a) Let {¥; | j € J} be a set of Serre systems of deflations of (Cx, €x). Let
S be a divisible system of deflations such that every non-trivial right divisible subsystem

G of § has a non-trivial intersection with ﬂ 2. In particular, & N X; is non-trivial for
jej

every j € J. Since X; = X7 for all j € J, it follows that S C ¥; for all j € J; that is
S C (1) E;. This shows that [ %; = ([ ;)"

JjE€T JETJ JjET

(b) Let {S; | i € J} be a set of right divisible systems of deflations of (C'x, €x). Then,
evidently, ﬂ S 2 ( ﬂ SZ»)_. If J is finite, then the inverse inclusion holds.

icJ icJ

Since, by (a) above, ﬂ S; is a Serre system of deflations, it suffices to show that any

ieJ
non-trivial right divisible subsystem of ﬂ S; has a non-trivial intersection with ﬂ S;.
ieJ ieJ
Let J = {1,2,...,n}, and let T be a non-trivial right divisible subsystem of ﬂ S; .
ieJ

In particular, 7 is a non-trivial right divisible subsystem of &; . Therefore, 7 NS is a
non-trivial right divisible subsystem of m S; . By a standard induction argument, this

2<i<n
implies that (7 NSp) N ﬂ S =T7nN ( ﬂ SZ-) is a non-trivial right divisible system.
2<z<n i€
Therefore, T C ( ﬂ S;) . In particular, ﬂ S C( ﬂ Si) .m
icJ ieJ ieJ

2.6.5. The lattice of Serre systems. Fix a svelte right exact category (Cx, €x).
For any pair 31, 35 of Serre systems of deflations, we denote by 7 V35 the smallest Serre
system containing 1 and Y.

2.6.5.1. Proposition. Let {S; | i € J} be a finite set of Serre systems of deflations

of (Cx,€x). Then XV ( ﬂ Si) = ﬂ(E V' S;) for any Serre system of deflations X.
ieJ ieJ
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Proof. There are the equalities

NEVS)=[)Eus) =([)Eus)) =({([)S)uz) =([)S) VE

icJ icJ icJ icJ icJ
Here the second equality follows from 2.6.4. m

2.7. Serre subcategories of a right exact category with initial objects.
Suppose that the category C'x has an initial object, r and all morphisms to r are deflations.
Let S be a class of deflations of (Cx, €x). We denote by Ts the full subcategory of the
category Cx generated by all M € ObCx having the following property: for any pair

of deflations M ——» L —> r such that t is non-trivial (i.e. t & Wx), there exists a
decomposition t = 1o s, where u and s are deflations and s is a non-trivial element of S.
We denote by Ts the full subcategory of C'x generated by all M € ObCx such that for

any pair of deflations M — L LI ¢ the object Ker(u) belongs to the subcategory 'fg
It follows from the definition of 7s that if M is an object of Ts and M —— L LN r
are deflations, then L € Ob7gs.
In fact, let L — N LI ¢ be deflations. Then we have a commutative diagram

/ Au
Ker(uoe) — Ker(u) ——

r
J cart l cart l
N

M BN L — — I
in which all horizontal arrows are deflations and Ker(u o ¢) is an object of Ts. Therefore,
Ker(u) € ObTs, which implies that L € ObT7s.

By 2.3.2, the latter property implies that X7 is a left divisible system.

2.7.1. Proposition. Let (Cx,€x) be a right exact category with an initial object ¢
and the class of weak equivalences coinciding with ¢Y ={ec &y | Ker(e) ~1}.
If S is a class of deflations of (Cx, Ex) closed under pull-backs, then X1, =S~

Proof. (a) The system Y7, belongs to Rs; in particular, X7, C S™.

In fact, let M Y5 N be an element of Y7, — Wx. By condition, this means that
Ker(t) is non-trivial (i.e. it is not an initial) object of the subcategory Ts. Therefore, the
canonical morphism Ker(t) —% ¢ is the composition of a non-trivial arrow Ker(t) — L
of § and a deflation L — r. This shows that any right divisible system containing the

arrow M —— N has a non-trivial morphism from &; hence X7, € S™.
(b) It remains to show that S~ C X7..
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Suppose this is not true, and let M —» L be an arrow from S~ which does not
belong to ¥7.; that is Ker(s) is not an object of Ts, which means that the canonical
deflation Ker(s) — r factors through a deflation Ker(s) — N such that Ker(v) ELN r
is a composition of two deflations, Ker(v) — L and £ —Y 1, where t is non-trivial and
S-torsion free in the sense that if t =t oy and v € S, then v € Wx. Since S~ is a left
divisible system of deflations, the deflation £ LN ¢ belongs to S~

Consider the smallest right divisible system generated by the morphism L LN o It

consists of all deflations M —s A such that there is a deflation ' -2 A and a cartesian

square
t

L —— 1
T cart T
fooe
M — N
Since the composition of cartesian squares is a cartesian square, we have a decomposition
id
L —— M —— L L —— L
t l cart  toe l cart t of t l l t
id
r —— N —— 1 o —— ¢

and a decomposition

Y e t
L — Ker(n) —— ¢ — 1

L
l cart l cart l of l cart l

1o tooe

M s N 2N M — N

If M — N is a non-trivial element of S , then, since (by hypothesis, Ker(e) is non-

trivial and) Ker(¢) ~ Ker(¢), the arrow L — Ker(iv) is a non-trivial element of S, which

contradicts to the condition on I — I =

2.8. Coreflective systems and Serre systems. Let (Cx,€x) be a right exact
category with weak equivalences and S a class of its deflations containing Wx. We call the
class S coreflective if every deflation M —— L is the composition of an arrow M — N
of S and a deflation N = L such that any other decomposition M S Lofe
with t € S factors through M =% N X% L. The latter means that there exists a deflation

9N — N such that s, =votand u= v, 0 v. Since t is an epimorphism, the first equality
implies that v is uniquely defined.
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2.8.1. Proposition. FEvery coreflective system of deflations which is stable under
base change and closed under compositions is a Serre system.

Proof. In fact, each deflation M — L has the biggest decomposition M == N 2% L,

where 5, € S. Since § is closed under composition, v, has only a trivial decomposition.
Therefore, S =S5. =

3. The spectra related with topologizing, thick and Serre systems.

Fix a svelte right exact category with a stable class of weak equivalences (Cx, Cx) =
(Cx,€x, Wx). Recall that T(X, €x) denotes the preorder of all topologizing systems of
deflations of (Cx,€x), Ge(X,€x) the preorder of all Serre systems and (X, €x)
the preorder of all thick systems of (Cx,€x). We denote by Mz (X, Ex) (resp. by
Gex (X, €x)) the subpreorder of all thick (resp. Serre) topologizing systems. That is

mg(X,éx)Zm(X,éx)ﬂS(X,éx) and GQT(X,éx)ZGQ(X,éx)ﬂT(X,éx).

3.1. The support in topologizing systems. For any class S of the deflations
of (Cx,&x) containing the class Wy of weak equivalences, we denote by Supps(S) the
subpreorder of T(X, €x) formed by all topologizing systems which do not contain S, and
call it the support of S in topologizing systems.

We denote by S the union of all systems of Suppz(S). It follows that the inclusion

81 - 82 implies that 81 - 82 If S, is topologizing, then the inverse implication holds: if
S, C Sy, then S; C S, (because, if Sy ¢ Sa, then Sy C Sy, but, Sy Q 82 Let [S] denote
the smallest topologizing system contalmng S. Tt is clear that S = [S]

Finally, notice that if S 2 & ¢ S, then S C & C S, that is 81 S.

The system S is the largest element of Suppz(S) whenever S is topologizing. The
following assertion provides sufficient conditions for this occurrence.

3.1.1. Lemma. Let (Cx,€x) = (Cx, Ex, Wx) be a svelte right ezact category with
a stable class of weak equivalences (condition 2.0(b)) and with a left divisible a weakly
right divisible class €x of deflations (conditions 2.0(c) and 2.0(d)). Suppose also that the

condition 2.0(e’) holds. If S is a class of deflations such that the system S is multiplicative,
then S is topologizing.

Proof. Let Ty, T2 be topologizing systems from the support of S. If Sis multiplicative,
then 71 0 7o € S. By 2.4.4, the system 77 o 73 is tqpologizing and it contains 7; and 7s.
This shows that the support of S is filtered, hence S is a topologizing system. m

3.2. The spectrum Spec (X, €x). The elements of the spectrum Spec(X, €x)

are all topologizing systems S such that S is a Serre system, i.e. § = §7. We endow
Spec (X, €x) with the preorder D called (with a good reason) the specialization preorder.
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3.3. The spectra Spec%(X, ¢x) and Spec%’l(X, €x). For any system S of de-
flations of (Cx,€x), let S* denote the intersection of all topologizing systems properly
containing S. We denote by Spec; (X, €x) the preorder (with respect to D) of all thick
topologizing systems of deflations ¥ such that ¥* # ¥ and set

Spec;! (X, €x) = Spec! (X, Ex) ﬂGe(X, Ex).
Thus, the spectrum Spec; (X, €x) is the disjoint union of

Spec{' (X, €x) = {2 e T(X,€x) | X =" C ¥} and
Spec; *(X,€x) = {Z e M(X,Ex) | L #T* C ¥}

3.4. Proposition. Suppose that (Cx,€x) = (Cx,Ex, Wx) is a svelte right exact
category with a stable class of weak equivalences (condition 2.0(b)) and with a left divisible
a weakly right divisible class €x of deflations (conditions 2.0(c) and 2.0(d)). Then there
18 a natural isomorphism

Spec;! (X, Ex) = Spec,(X, €x).

Proof. Consider the map which assigns to each ¥ € Spec%’l(X, €x) the union ¥, of
all right divisible in €x subsystems of >* which have trivial intersection with . Notice
that, since X is a Serre system, the right divisible system ¥, is a non-trivial. The claim
is that the topologizing system [¥,] spanned by X, (which is a topologizing subsystem of
the topologizing system X*) is an element of the spectrum Spec,(X, €x).

(i) Observe that ¥ C i\*, because the system X is topologizing and the equality
Y. NY = Wx combined with the non-triviality of the system X, implies that ¥, ¢ X.

(ii) On the other hand, if & is a topologizing system of deflations which is not
contained in the system ¥, then ¥, C S.

In fact, suppose that S ¢ X. Then, by 2.4.4(b), the composition SoX is a topologizing
system properly containing .. Therefore,

Y, C(SoL)NTtCSo(ZNEh) =SoWx =S8.

In other words, if S is a topologizing system which does not contain ¥, then & C ..
This proves the inverse inclusion, ¥, C Y., hence the equality X~ = X = X,. As it is

observed in 3.2, &, = [¥.]; so that [¥,] is an element of the spectrum Spec,(X, €x).
Thus, we obtained a map

Spec;! (X, Ex) —— Spec,(X,€x), X r— [T,]. (1)
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Let now S € Spec,(X, €x), that is S is a topologizing system such that S is a Serre
system. Since, by 2.6.2(c), any Serre system is multiplicative, it follows from 3.1.1 that
the system S is topologizing. If ¥ is a topologizing system properly containing S , then X
contains §. This shows that §* coincides with the smallest topologizing system contalmng
S US; in particular, S~ = =8 #* S*, i.e. S is an element of the spectrum Spect (X Ex).
One can see that the map

Spec (X, Ex) — Spec;" (X, €x), Sr— S,

is inverse to the map (1). m

3.5. Remark. It follows from the argument of 3.4 that the map
Y +— %, X eSpec (X, Ex),

gives a canonical realization of Spec,(X, €x) as the preorder of systems of deflations S
which are characterized by the following properties:

(a) S is a Serre system and S NS = Wy;

(b) if a system T of deflations is such that T=8and TN& =Wy, then T C 8.

Notice that that for every such system S, the corresponding Serre system S coincides
with the union S of all topologizing systems of deflations ¥ such that SN = Wx.

3.6. Local right exact ’spaces’ and categories with weak equivalences. Let
(Cx, €x) = (Cx, €x, Wx) be a svelte right exact category with weak equivalences. We call
(Cx,€x) (and the right ezact ’space’ (X, Eyx) it represents) local if there is the smallest
non-trivial topologizing system, or, equivalently, the intersection W% of all non-trivial
topologizing systems of (Cx, €x) is non-trivial.

It follows that a right exact ’space’ (X, €x) is local iff the spectrum Spec,(X, €x)
has a unique closed point, and this closed point belongs to the support of any non-trivial
divisible system of (Cx, €x).

3.7. The spectrum Spec (X €x). The elements of this spectrum are all Serre
systems Y such that the intersection X* of all thick systems of deflations of (Cx,€x)

properly containing ¥ is not equal to ¥. Equivalently, Specilv}l(X , €x) consists of all Serre

systems > such that X, ©f v 1 2L is non-trivial. As all other spectra, the spectrum

Spec(m (X, €x) is endowed with the specialization preorder D.
One of the most essential properties of the spectrum Specéj}1 (X, &x) is the following.
3.7.1. Proposition. Let (X, €x) be a right ezact ’space’ and X € Specéﬁl(X, Cx).
For any finite family {S; | i € J} of right divisible in €x systems of deflations, S; € ¥ for
ali€Jiff (S ¢

1€Y
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Proof. By 2.6.4, (S =([)8:), and by 2.6.5.1, SV ([)87)=[)(EVS;).

ieJ ieJ eJ ieJ
Therefore,
Sv(()S) =)Evs)). (2)
eJ eJ

If S; ¢ ¥ for all ¢ € J, then each of the strongly closed systems S;” V ¥ contains
>} properly. Since ¥ is an element of the spectrum Spec;’c1 (X, €x), the intersection of

S; VX, i€ J, contains in ¥ properly. Then it follows from the equality (5) that the

intersection ﬂ S; is not contained in . m
eJ

Since the spectrum Spec;” (X, €x) is contained in Specéﬁl(X, €x), the elements of
Spec%’l(X, ¢x) have the property described in 3.7.1.

4. Semitopologizing systems and the related spectral theory.

The topological systems defined in 2.4 might be inconvenient in some situations, be-
cause they require invariance of deflations under push-forwards, which is not necessarily
available in right exact, or even exact categories. There is a different setting based on the
notion of a semitopological system,which does not require push-forwards and still recovers
the abelian theory. It is sketched below.

4.0. Conventions. We fix a svelte right exact category with a stable class of weak
equivalences (Cx, €x) = (Cx, €x, Wx) such that Wx o Wy = W5. We assume that the
category C'x has fiber products.

4.1. Strongly stable, cartesian complete and semitopologizing systems.
(i) A class S of deflations of (Cx,€x) will be called strongly stable if it is invariant
under pull-backs, stable (that is S = €x NS") and, in addition,

S=¢ExN(SoWy). (1)

(ii) We call a class of deflations S cartesian complete if, for any cartesian square with
arrows in S, the composition of two consecutive arrows belongs to S.

(iii) We call a system of deflations right semitopologizing (resp. left semitopologizing)
if it is cartesian complete, strongly stable, and right (resp. left) divisible in €x.

We say that a system semitopologizing if it is both left and right semitopologizing.

4.1.1. Topologizing and semitopologizing systems. Suppose that the class €x
of deflations is left divisible in the following sense: if tos € Ex 3> s, then t € Ex. Then every
left (resp. right) topologizing system of deflations is left (resp. right) semitopologizing.
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In fact, any left (resp. right) topologizing system is, by definition, cartesian complete
and, by 2.4.3 (or 1.10.2), stable. If 7 is a left (or/and right) topologizing system, then
T oWy CWy oT (see 2.4.2(c)), so that

TCexN(ToWy) CexnNWhoT)=(ExNWR)oT =WxoT =T,

whence T = Ex N (T o W;) Here the first equality is due to the left divisibility of €x
and the second one to the stability of Wx.

4.1.2. About cartesian completeness. Let C'x have an initial object, ¢, and let
T be a full subcategory of the category Cx /r. Consider the system St of all deflations s
of (Cx, €x) such that (Ker(s), Ker(s) — ) is an object of T. The class of arrows Sr is
cartesian complete iff T is a category with finite products.

This follows from the observation that to every cartesian square

5/

m — M
t cart l t (2)
L —— N

there corresponds a cartesian square

Ker(sot) —— Ker(t)

| |

Ker(s) —— r

obtained via pulling back the square (2) along the unique arrow ¢ — N.

4.1.3. Proposition. (a) Let S be a system of deflations satisfying the equality
S =€ExN(SoWy). Then the stable envelope €x N S™ of the system S has this property;
that is the class €x NS is strongly stable.

(b) The family of strongly stable classes of deflations is closed under arbitrary inter-
sections and unions.

(¢) The family of cartesian complete classes of deflations is closed under arbitrary
intersections and filtered (with respect to the inclusion) unions. Similarly for left or/and
right semitopologizing systems.

Proof. (a) Since, by hypothesis, the category Cx has fiber products, for any pair of
classes of arrows S, T, there is an obvious inclusion §" o 7" C (S o 7")". In particular,
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Sho W)K( C (So VV)X()x Therefore, for any system S such that S = €x N (So W)K(), we
obtain the following:

Ex NS  CExN((ExNSEN)oWy) CExN(S o Wy) C ExN(SoWR) =
Ex N(ELN(SoWR)) =ExN(ExN(SoWR) = €Ex NS,

(b) Let {7; | i € J} be a set of classes of arrows such that 7; = €x N (7; o W)R() for all
¢ € J. Then

N7 cexn((NT)eWs) Cexn(NTows) = Exn(Towi) =T

icJ icJ icJ icJ icJ

Similarly,

UTcexn(UT)ows) =exn(UTiows) =JExn(Towi) =JT

ieJ ieJ iedJ iedJ ied

By 2.1, the class of (right or/and left) stable systems is closed under arbitrary inter-
sections and unions.
(c) The assertion follows from (b). m

4.1.4. Proposition. (a) For any system of deflations T, the intersection
Ex N(ToWy)"

is the smallest strongly stable system containing T .

(b) If the system T s cartesian complete, then the smallest strongly stable system
containing T is cartesian complete.

(c) Suppose that the condition 2.0(d) holds. Then, for any right divisible system of
deflations T, the smallest strongly stable system containing T is right divisible.

In particular, if T is a right divisible and cartesian complete system, then its strongly
stable envelope €x N (T o )/V)A()K 1s a right semitopological system.

Proof. (a) By 1.6.1(ii), if a system S satisfies the equality S = €x N (_SOSX), then the
class of arrows 8" is multiplicative. In particular, the class of arrows Wy is closed under
composition. So that, for any system S, we have

Ex N(SoWy) C ExN((Ex N(SoWy))oWy) C

Ex N((SoWy)oWy) = Ex N(SoWy),
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which shows that the system 7 = €x N(SoWY ) satisfies the equality T = Ex N (T o Wy).
Evidently, 7 is the smallest system containing & and satisfying this equality.

By 4.1.2(a), the system €x N7T" is the smallest strongly stable system containing 7.
Notice that

Ex NT" =Ex N(Ex N(SoWy)" =€x N (5 N(SoWR)") = Ex N (SoWg)"

hence the assertion. -
(bl) If a class of deflations T is cartesian complete, then €x N (7 o W% ) has this
property.
_ In fact, for any pair of arrows t; otw; € €x, i = 1,2, such that t;, € 7 and w,; €
Wy, i = 1,2, we have diagram

oy ty
g — — L
0, l cart ), cart l o

t)

Y cart l t

o2 to

built out of cartesian squares. So that
(1 o101) 0 (85 o wh) = (b o th) o (W] o 1Y) € Ex N (T o W),

because, by hypothesis, T is cartesian complete and W)K( oWy = W)K(
(c) Consider a commutative square

o

L —— M
511 lf
£ L m

where t € T, to € Wy, and totv, s; and so are deflations. The square is decomposed into

the diagram

f ~ o2
L —— g —

M
191 l cart l t
om

52
g —
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with cartesian square such that §s o f = w and t; o f = s1. By the condition 2.0(d), the
latter equality implies that § = v, o e, where ¢ is a deflation and to; € W§< It follows from
the fact that o = (tvyotvy) oe € Wx and ¢ is a deflation that o otw; € Wx and ¢ € Wx.
Therefore, 1 = t; o (v o¢), where t; € T and v o¢ € W)X( "

4.2. Strongly thick systems. We call a system of deflations S strongly thick if it
is divisible in €, stable, and S o S* = S”.

We denote by M (X, €x) the preorder (with respect to the inclusion) of all strongly
thick systems of (C'x, €x). It follows from our assumptions (see 4.0) that the class Wx of
weak equivalences is the smallest element of M, (X, €x).

4.2.1. Observations. (a) Thanks to the existence of fiber products in Cx, for any
class of arrows S which is invariant under pull-backs, the inclusion SoS" C S” is equivalent
to the multiplicativity of S”, that is the inclusion S” o 8" C S”.

In particular, a system S is strongly thick iff it is stable and S* o S = S”.

(b) Every strongly thick system of deflation S is multiplicative, because

SoSCeExN(SoSN)=¢xnS =S.
(c) Every strongly thick system S is semitopologizing, because it is multiplicative and
ExN(SoWR)CExN(So8") =€ExNS" =S8.

(d) A stable, divisible in €x system of deflations S is strongly thick, when it satisfies
the condition

(#) If in the commutative diagram

L —s K
i’ l cart lj (3)
L 25 M — K

with cartesian square toj = idys and morphisms t and § belong to S, then tos € S.
Indeed, if the condition (#) holds, then, by 1.6.1(ii), the class S* is multiplicative.
(e) Evidently, the class of deflations €x is strongly thick iff €x o €% = €%.

(f) Tt follows from 4.1.2 that the preorder 9s(X, Ex) of strongly thick systems is
closed under arbitrary intersections and filtered unions.

4.2.2. Note. One can see that the condition (#) from 4.2.1(d) holds for €x, if the
class €x is left divisible, because (tos)oj =§ € Ex (see the diagram (3) above).
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In general, the condition (#) provides an effective tool for finding if a system is stable
or not. The following assertion shows that in most of cases of interest the condition (#)
is a criterium.

4.2.3. Proposition. Suppose that the class €x of deflations satisfies the condition
(#) (say, it is left divisible). Let S be a stable class of deflations invariant under pull-backs.
Then the following conditions are equivalent:

(a) 8" 0 S* C S,

(b) S satisfies the condition (#).

Proof. (a) = (b). The morphism tos in the condition (#) belongs to the intersection
of SoS” and €y due to the fact that the arrows § and t in the condition (#) are deflations
and €x satisfies (#). Therefore, if the condition (b) holds and S is stable, tos belongs to
S'N Ex =S8.

The implication (b) = (a) follows from 1.6.1(ii). m

4.2.4. Proposition. Suppose that €§( C W)K( o Ex. Then a strongly stable divisible
in Ex system of deflations S is strongly thick iff it is multiplicative. ~
In other words, a thick system S is strongly thick iff S = €x N (S o Wy).

Proof. By 4.2.1(b), any strongly thick system is multiplicative.

The claim is that any multiplicative strongly stable right divisible in €x class of
deflations satisfies the condition (#).

In fact, the inclusion €5 C WY o €x allows to replace the diagram in (#) by the
diagram

~ s o
L — K — K
i l cart ljl cart l j (4)
51 o t
L — My —m M — K
with cartesian squares, where wo§; =3, wos; =5, 51 € €x, and v € W5.

Since the system of deflations €x is left divisible in €y, the morphism tv is a deflation
(hence it belongs to Wx thanks to the stabiligy of Wx ). The composition totw is a deflation,
because, by hypothesis, the system of deflations satisfies (#) and both tv and t are deflations
(look at the diagram (3) ignoring its left square). The equality €x N (SoW5) = S implies
that toto € S. Since the system S is right divisible in €x, the arrow s belongs to S,

whence 51 € €x NS" = S (thanks to the stability of S). Finally, the multiplicativity of S
implies that tos = (tow)os; € S. m

4.2.5. Note. For any class of arrows S invariant under pull-backs and such that
Wx oS = S, there is the inclusion Wy oS € S§”. In particular, Wy o €x C €Y. Therefore,
the inclusion G% C WS\( o Ex used in 4.2.4 is equivalent to the equality @% = W)A( oCx.
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The equality (’E§( = W)K( o €x holds when €x coincides with the class of all strict
epimorphisms of the category C, in Cx, there exist 2-coimages of arbitrary arrows (see
2.0.1(d)&(e)), and W5 contains all monomorphisms of C'x (say, Cx has initial objects).

Indeed, in this case W)K( o €x (hence (’3§() coincides with HomCx.
4.3. Strongly closed systems.

4.3.1. The strong closure. For a class of deflations S of (Cx, €x), let R denote
the set of all systems 7T divisible in €x such that 7 = €x N (T oWy ) and T NS+ = Wx.
We denote by ST the union of all 7 € R%.

The construction S — ST has the properties similar to those of the closure S — S™.

4.3.2. Proposition. (a) For any class of deflations S, the system ST belongs to RT
(hence it is the largest element of RS ).

(b) (SH =S,

(c) The system ST is closed under the composition.

(d) The system ST is stable (hence strongly stable), that is ST = &x N (ST,

Proof. (a) The assertion follows from 4.1.2(b).

(b) It follows that R € RE. On the other hand, S e RS- Hence the equality.

(c) The argument is similar to that of 2.6.2(c).

(d) If T € Mg, then the associated stable system, €x N 7", belongs to RE.

In fact, by 4.1.2(a), the system ¢x N 7" is strongly stable. On the other hand, the
equality S+ = (S1)" implies that

(ExNTHNSt =ex NT N (SH = ex N (TNSH = ex N Wy = Wx.

This shows that €x N 7" belongs to RE. In particular, €x N (ST)" belongs to R, which
implies the stability of ST. m

4.3.3. Observations. (a) One can see that ST is the largest divisible in €x strongly
stable subsystem of S™. So that S~ =81 iff €xN(SToW%)=8".

It follows from 4.1.1 that if the class of deflations €x is left divisible (in the sense of
4.1.1) and S~ is a topological system, then S~ = ST.

In particular, S~ = ST in the case of an abelian category (Cx, €x).

(b) Since, by hypothesis, the class Wx of weak equivalences is strongly stable and, by
2.6.2.1, Wy = Wy, it follows that Wx = Wh.

4.3.4. Proposition. Let {S; | i € J} be a finite set of right divisible in €x systems
of deflations of (Cx,€x). Then ﬂ S,L-T = ( ﬂ Si)T.

iedJ ieJ
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Proof. The argument is similar to the proof of 2.6.4(b). m

4.3.5. Strongly closed systems of deflations. We call a class S of deflations of
(Cx,€x) a strongly closed system if S = ST. Strongly closed systems of (Cx, €x) form a
preorder with respect to the inclusion, which we denote by Ges (X, Ex).

By 4.3.2, strongly closed systems are strongly stable and multiplicative; and, by defi-
nition, they are divisible in € x. Therefore, every strongly closed system is semitopological.

4.3.6. Proposition. (a) The intersection of any set of strongly closed systems of
deflations of (Cx, €x) is a strongly closed system.

(b) Suppose that € = Wy o Ex. Then every strongly closed system of deflations is
strongly thick.

Proof. (a) The argument is similar to that of 2.6.4(a).
(b) The assertion follows from the multiplicativity of strongly closed systems (see
4.3.2(c)) and 4.2.4. =

4.3.7. The lattice of strongly closed systems. Fix a svelte right exact category
(Cx,€x). For any pair 3, Y5 of strongly closed systems of deflations, we denote by
Y1 L Yo the smallest strongly closed system containing 1 and Xs.

4.3.7.1. Proposition. Let {S; | i € J} be a finite set of strongly closed systems of

deflations of (Cx,€x). Then 3 U ( ﬂ S,-) = ﬂ (XU S;) for any strongly closed system of
icJ ieJ
deflations 3.

Proof. There are the equalities

ﬂ(ZuSZ-):ﬂ(EUSi)T:(ﬂ(ZUS =(([8) yus)' =((s:)u

icJ ieJ i€J ieJ ieJ

Here the second equality follows from 2.6.4. =

4.4. Spectra. For every class of deflations S, we denote by S°! the intersection of all
semitopologizing systems properly containing S and by S*°¢ the intersection of all strongly
stable thick systems properly containing the class S.

We denote by Speci:'(X,€x) the preorder (with respect to D) formed by those

strongly closed systems of deflations 3 for which >°¢ # 3, or, equivalently, the intersection
Yse def srsc N X+ is a non-trivial system of deﬂatlons

Similarly, we define the spectrum Spec (X €x) as the preorder formed by all
strongly closed systems ¥ for which £°' # X, or, what is the same, the system of de-

flations
def

Yo = 2ttt
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is non-trivial. It follows from the definitions that the spectrum Spec;,’t1 (X,Ex) is a
subpreorder of the spectrum Speci}(1 (X, €x).

The following useful fact is a direct analog uf 3.7.1.

4.4.1. Proposition. Let ¥ € Specl: (X, Ex). For any finite family {S; | i € 3} of
right divisible in €x systems of deflations, S; € ¥ for all i € J iff ﬂ S ¢ %
1€y
Proof. The argument below is similar to the proof of 3.7.1.
By 434, (8/ = ((S)", andby 4.3.7.1, SU((S]) = [(EUS]). Therefore,
icJ icJ icJ ieJ

su((s) =NEush. (5)

iceJ icJ

If S, ¢ ¥ for all i € J, then each of the strongly closed systems Sj LI 3 contains
>} properly. Since X is an element of the spectrum Spec;’c1 (X, Ex), the intersection of
SiT LY, ¢ € J, contains in 3 properly. Then it follows from the equality (5) that the
intersection ﬂ S; is not contained in . m

ieJ
5. Strongly ’exact’ functors and localizations.

5.0. Strongly ’exact’ functors. Let (Cx,€x) = (Cx, €x, Wx) and (Cy, &y, Wy')
be right exact categories with weak equivalences. Recall that an ’exact’ functor from
(Cy, €y) to (Cx, €x) is given by a functor Cy: — C'x which maps deflations to deflations,
weak equivalences to weak equivalences and preserves pull-backs of deflations.

We say that an ’exact’ functor (Cy, €y) N (Cx, €x) is strongly ‘ezact’if any carte-
sian square

M — N
5’l cart Js
M N

whose left vertical arrow is a deflation can be completed by a pull-back of this deflation

¢ —~
— M —
cart s l cart

m\
N o—N
2 %ZE
o

3 f
s M N
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such that F' maps the outer cartesian square

~ Jo£ -

L — N
s l cart l 5
§of
L — N

to a cartesian square.

In particular, any functor Cy iNYo x which maps deflations to deflations and pre-
serves cartesian squares having at least one deflation among its arrows is strongly ’exact’.

5.0.1. Strong ’exactness’ and preserving kernels. This seemingly technical
notion has a transparent meaning in the case the category Cx has initial objects and
morphisms to initial objects are deflations. In this case,

an ‘ezact’ functor (Cy, €y) N (Cx, €x) is strongly exact iff the functor Cy L ox
preserves kernels of arrows.

5.1. Proposition. Let (Cx, €x) N (Cy, €y) be a strongly ‘exact’ functor.
(a) F(S™) C F(S)" for any class of deflations S of the category Cx.
In particular, F(W5) C F(Wx)* C Wy and F(€%) C F(€x)" C €.
(b) The map T —— Ex N F~Y(T) transfers stable, strongly stable, thick and semi-
topologizing systems of deflations to systems of deflations of the same kind.
(¢) Suppose that one of the following conditions holds:
(i) If in the commutative diagram

~ s
L — K
i J cart lj
t
L — M — K
in Cx or Cy the square is cartesian, toj = idy and morphisms t and s are deflations,
then the composition tos is a deflation.
(ii) €% = W5 o Ex.
Then the map T — Ex N F~Y(T) preserves strongly thick systems.

Proof. (a) The inclusions follow from definitions. -
(b1) Suppose that T is a class of arrows of Cy satisfying 7 = €y N (T o Wy). Then

F(€xN(Ex NFYT)) o W) C & NF(FHT)) o W}) C
Ey N(ToFIWL)) C &y N(ToW)) =T,
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which implies the inclusion
Ex N((Ex NF Y (T))oW}) C ExNFYT).
Since the inverse inclusion holds (for any class of arrows 7'), we obtain the equality
ExN((Ex NFYT))oW}) =€x NFYT).

(b2) Similarly with the stability: if 7 = &y N T", then

F(&x N (Ex NFHT)) = F(ex N (€5 N (FYT))") =
FExN(FY(T)) CeynF(F Y T) ) Ce&nNT =T,

which implies the inclusions
ExNF YT Cexn(ExnNF Y TH CexnFY(T)

equivalent to the stability of the class €x N F~1(T).
(b3) The fact that the map 7 —— €x N F~!(T) respects strong stability implies,
obviously, that it maps semitopologizing systems to semitopologizing systems.
(c1) Suppose that the class of deflations €x satisfies the condition (i). Let S be a
stable class of deflations of (Cy, €y ) invariant under pull-backs and satisfying the condition
(#) If in the commutative diagram

L — K
i’ l cart lj (1)
L 2% M — K

with cartesian square toj = idy and morphisms t and s belong to S, then tos € S.

Then the class €x N F~1(S) satisfies this condition.

In fact, let (1) be a diagram whose square is cartesian and s and t are arrows from
¢x N F~1(8S). Since the functor F is strongly ’exact’ and the arrow s in the diagram (1)
is a deflation, there exists a pull-back of § along some arrow £ —5 K such that F maps
the pull-back of £ — M along & =% M to a pull-back of F(s) along F(jo~).

By hypothesis, the class of deflations €x satisfies the condition (#). So that the
composition tos is a deflation. Taking a pull-back of the deflation tos along the morphism
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& -1 K, we obtain the diagram

built of cartesian squares, where the morphism K A oo is uniquely determined by the
equalities 7/ o A = jo~y and to A = idg. Since the functor F is ’exact’ and the arrows t and
t o s are deflations, F' preserves pull-backs of this arrows which implies that it maps the
lower two cartesian squares of the diagram (2) to cartesian squares. Since, by construction,
F preserves the pull-back of the arrow £ —— M along the morphism v o A = j o 7, it
follows that F' maps the upper square of (2) to a cartesian square as well. By the condition
(#), F(tos) = F(t)o F(5) € S, that is tos € F~1(S) N €x. Since, by hypothesis, the
class S is stable and to § is a pull-back of the deflation to s, it follows from the assertion
(b) that tos € F~1(S) N €x.

(c2) Suppose that the condition (i) holds, that is the both classes of deflations, €x
and €y, satisfy the condition (#). The fact that €y satisfies (#) implies, by 4.2.3, that
any class S of deflations of (Cy, €y ) invariant under pull-backs and such that S is mul-
tiplicative satisfies the condition (#). If, in addition, the class S is stable, then, by (c1)
above, the class €x NF~1(8S) satisfies the condition (#), which implies the multiplicativity
of the class (€x NF~1(S))". Since, by (b), the map T +—— €x NFEF~!(T) preserves strongly
stable systems, we obtain that it preserves strongly thick systems.

(c3) If €% = Wy o €x, then, by 4.2.4, a strongly stable divisible in €x system is
strongly thick iff it is multiplicative. Evidently, the 7+ €x N F~1(T) maps multiplica-
tive systems to multiplicative systems. Therefore, it maps strongly stable multiplicative
systems (in particular, strongly thick systems) to strongly thick systems. m

5.2. Proposition. Let (Cy,€y) L (Cz,€z) be a strongly ‘exact’ functor. Set
QSY,F =YXrNEy = {5 € Cy ‘ F(E) S ISO(Cz)}.

(a) Suppose that the class of deflations €y satisfies the condition (i) of 5.1. Then the
class (€y )" is multiplicative.

(b) If all deflations of (Cz,€z) having a trivial kernel are isomorphisms, then €y, g
is a stable class, that is €y p = (Cyp)" N Cy.

Proof. (a) It suffices to show that if £ = M and M 4 N are morphisms of Cx
such that s € GQ,’F and t € €y p, then tos € G?,’F. Since s € @%F and the functor F' is
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strongly ’exact’, there is a cartesian square

S

[ |
i’ cart j (3)
L —5 M

such that § € €y p and the functor F' maps it to a cartesian square. Taking pull-back of

LN along the morphism K BNV , we obtain a diagram

Pk
B’J cart lﬁ

e oo Yk (4)
”y”l cart l”y’ cart l’y:tOJ

L 2 M 5k

built of cartesian squares with the arrow C i> 2N uniquely determined by the equalities
tof =idg, v o B =j (and with 4" o 8’ equal to the left vertical arrow j’ in the cartesian

square (3)). Since M L Kisa deflation, the functor F', being ’exact’, maps the right
cartesian square of the diagram (4) to a cartesian square. In particular, t € €y p. By
construction, F' transfers the square (3) to a cartesian square, which implies that it maps
the upper square of the diagram (4) to a cartesian square. The equality to 8 = idx
together with the fact that F(t) is an isomorphism, implies that F'(3) is an isomorphism.
Therefore, F'(’) is an isomorphism. Since s € €y p by construction, we obtain that F'(s) is
an isomorphism. So that F'(to§) is an isomorphism. By hypothesis, the class of deflations
€y satisfies the condition (i) of 5.1, which implies that to 5 is a deflation. Since to5 is a
pull-back of to s, the latter belongs to QE; P

_ F _
(b) For any strongly ’exact’ functor (Cy,€&y) —— (Cz,&€z) and any class of
deflations S of (Cy, €y ), we have, by 5.1(a), the inclusions

F(S8") C (F(S))" and F(S"N¢€&y) C (F(S))"N¢&y.
So that if S C €y p = {s€ €y | F(s) € Iso(Cz)}, then F(S" N &y) is contained in the

class €3 déf_[ s0(Cz)" N €&z of deflations with a trivial kernel. Therefore, if €2 = I'so(Cy),
then S C "N €&y C XN Ey = €y p, hence €y r is a stable class of deflations. m



226 Chapter 6

5.3. ’Exact’ and strongly ’exact’ localizations. An ’exact’ (resp. strongly

*

‘exact’) functor (Cy, €y) SN (Cx,€x) will be called an ‘ezact’ (resp. strongly ‘ezact’)

localization, if Cy LENYg) x is alocalization and the essential image of €y (resp. the essential
image of Wy ) coincides with €x (resp. with Wx).

5.3.1. Note. Since Cy SENYe: x 1s a localization functor, it is determined by the class

of arrows ot
Y+ = {5 € HomCy | q*(s) € Iso(Cx)}.

The fact that (Cy, €y ) N (Cx,€x) is a ’exact’ localization means that the class of

deflations €y 4~ def Y4+ N €y is invariant under pull-backs.

5.4. Strongly ’exact’ saturation. Every strongly ’exact’ functor

_ F _
(Cy, ny) E— (Cz, sz)
factors through a strongly ’exact’ localization (Cy, €y) LN (Cx,€x) uniquely deter-
mined by the equality ¥q- = Xp. This implies that for any class of arrows S of a right
exact category (Cy, &y ), there exists the smallest strongly ’exact’ localization q% which
maps all arrows of S to isomorphisms.

In fact, we consider the family Zs of all strongly ’exact’ functors from (Cy, €y)
which map all arrows of S to isomorphisms. Since the category Cy is svelte, the family
{¥Fr | F € Es} is a set. Therefore, there is a subset Eg of ZEg such that {¥p | F €
Es} = {Zr | F € Zs}. The set of ’exact’ functors Eg defines an ‘exact’ functor ® to the
product of the corresponding right exact categories. Evidently, Yo, = ﬂ Y.

FeEs

We denote Xgx = Xag by S and call it the strongly ’exact’ saturation of S.

5.5. Saturated multiplicative classes of deflations. We call a class of deflations
S of a right exact category with weak equivalences (Cx, €x) saturated if SN Ex = S.

It follows that, for any class of deflations S, the intersection S N &x is the smallest
saturated class of deflations containing S.

Since the localization at S is an ’exact’ functor, in particular it maps deflations to
deflations, the class S is left and right divisible in @y in the sense that if soe € S and ¢
is a deflation, then both s and ¢ are elements of S. In particular, the system of deflations
SN Ex is divisible in €Ex.

5.5.1. Proposition. (a) Suppose that the class of deflations €x satisfies the condi-
tion (i) of 5.1. Then, for any saturated system S of deflations of (Cx,€&x), the class S"
18 multiplicative.
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(b) If the system S is stable (that is S =_JS'x NE&x ), then deflations with trivial kernel
of the quotient right exact category (Cs-1x,€s5-1x) are isomorphisms.

Proof. (a) Let (Cx,€x) IR (Cz,€z) be the localization at the saturation S of S.
Since, by definition of S, the functor q* is strongly ’exact’, it follows from 5.2 that the
system S” is multiplicative.

(b) Let M = N be a deflation of (C, €5) with a trivial kernel. The latter means
that there exists a cartesian square

M — N
f’l cart lf (1)
M S N

whose upper horizontal arrow is an isomorphism. Since ¢* is an ’exact’ localization functor,
every arrow of €z is isomorphic to the image of an arrow of €y, there is a deflation

M —5 9N and an arrow 9 —25 9N such that the pair of arrows q*(9 — N & N) is

isomorphic to the pair of arrows M — N J N Therefore, the functor q* maps the
cartesian square

— 5 ~
m — N
o4 l cart l ) (2)
S
m — N
to a square isomorphic to the cartesian square (1). In particular, s is a deflation which
q* maps to an isomorphism; that is s € S. Since, by hypothesis, S is stable, the lower

horizontal arrow of (2), 9 —25 M, belongs to S too. Therefore, the arrow M — N in the
diagram (1) is an isomorphism. m

5.6. Stable saturated classes. For a svelte right exact category with weak equiv-
alences (Cx,€x) = (Cx,€x, Wx), we denote by M;(X, Ex) the preorder (with respect
to the inclusion) formed by stable saturated classes of deflations of (Cx,€x) and by

M (X, Ex) the (isomorphic to M, (X, €x)) preorder formed by the strongly ’exact’ satu-
rations {S | S € M (X, Ex)} of these classes.

It follows that every stable saturated class of deflations containing the class Wx of
weak equivalences is thick. Notice that, since any saturated class of deflations is stable
and contains all isomorphisms, each element of M, (X, ¢ x ) automatically contains Wy, if
the latter consists of deflations with trivial kernels.
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6. Functorial properties of spectra.

6.1. Proposition. Let (Cx,€x) — (Cu, €y) be an ‘exact’ localization having
the following properties:

(1) Sy C (S N Ex)A,

(2) Xy is closed under push-forwards of deflations along arrows of ¥y« ,

(3) If M = L <~ N are deflations such that the arrows u*(¢) = u*(t) o ¢ for some

isomorphism ¢, then there exists a pull-back M-S LN of these arrows along some
morphism L — L and a commutative diagram

S

m — M
I

/]

~ t ~

N —— L

¢

where s, s’ are arrows of Xy« and s is a deflation.
Let %2 be a system of deflations containing €x N Xy«. Then for any strongly stable
system T of deflations of (Cx, €x), there is the equality

TASE =ex Nu (W(TNSH)]) NS, (2)

Proof. The inclusion T C u*  ([u*(¥')]) for any class of arrows T’ imply, in partic-
ular, that

TNt cexn (@ (WEnshH) Nzt (3)

The claim is that the inverse inclusion holds.

In fact, let £ £, M be an element of Ex ﬂu*_l([u*(iﬂEL)]) N YL, This means
that ¢ € €x N Y1 and there exists an isomorphism u*(§) ~ u*(t) for some t € TN X+,
This isomorphism is represented by a diagram

3
—

9

~ Th—D

lﬁ

2

Q

L
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whose vertical arrows belong to ¥~ and, in addition, the upper vertical arrows, ¢ and -~
are deflations. Using the fact that £ and t are deflations, we can form two cartesian squares

é‘ ’
L — M g oM
WT cart T y and %4 l cart l ~'
¢ t
g — M L —— M

whose vertical arrows belong to ¥, and, besides, all arrows of the left square are deflations.

The arrow & —— M’ belongs to TN T4, because t € TN XL and both T and T+
are base change invariant. One can see that the arrows u*(¢’) and u*(t’') are isomorphic.

By hypothesis, there exists a pull-back e M <& 1 of these two arrows along some
morphism M’ — M’ and an isomorphism between them which can be represented by a
commutative diagram

S
53// \

33 ~
o | € ()

~ t —~

g — M
whose upper horizontal and left vertical arrows belong to ¥, and both horizontal and the
right vertical arrows are deflations. In particular, there exists a kernel pair

Kerg(s):EHE ; .

5,6

of the morphism £ — £. Since s is a deflation, there exists a cocartesian square
~ s

g — £
5/ l cocart Js”

2’—e>9ﬁ’

whose arrows belong to X,-. It is easy to see that the arrow £ —— 9 is the cokernel of
the pair
5/p1

Kery(s) g

s/ po

It follows from the commutativity of the diagram (4) that ¥ = toe and £ = o s”
for a uniquely determined morphism 9% —— M’. Since ' € T and the system ¥ is left
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divisible in €y, the morphism t belongs to €. This shows that an appropriate pull-back
of the morphism £ belongs to T o ¥+, that is £ € (T o X«)". So that we obtained the

inclusion w* ([u*(T)]) C (T o Ty+)* which implies the inclusion
exn W (@) NIt CexN((Ton,)) NSt (5)
By 2.3.1, ¥+ = (X+)”. Therefore, we have

ExN(ToNy ) )NEt=ExN(ToZ,) " N(ZH)" =
Ex N((ToTw)NEH =Ex N((To Ty ) NEH)N,

Since ¥+ is right divisible,
(ToXy )N+ =T o (Ty- NEH)NEE (6)
By hypothesis, X, C (X4« N €x)". Therefore,
S NYEC (B NEx) NIt Y Nyt C(ZnshH =wg. (7)
The last inclusion, $"N X+ C (ENE+)?, is due to the fact that if s is an element of the
intersection £ N X+, then some pull-back of 5 is an element of ¥ N X+ = Wy.
Applying the inclusion X, N X+ C W% from (7) to (6), we obtain the inclusion
(Top)NEL C (ToWi) Nt (8)
It follows from (8) that
(To X)) NTH C (ToWi)NTh. (9)

Combining all above (starting with (5)) and using the stability of T and the equality
Ex N (T oWy) =T, we obtain

exn W (@) NSt CexnN(Towy) net =
Ex NEXN(ToW) ' NEt =Exn(Ex N(ToWy)) nxt =
(ExNTHNEZt=Tnxt

whence the equality (2). m
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6.2. Proposition. Let (Cx,€x) LN (Cy,€y) be a strongly ’evact’ localization
satisfying the conditions (1)- (3) of 6.1 and such that €x N Xy« is a stable system.

Then, for any Q € Spec YX,€x) such that Xy- N Ex C Q, the system [u*(Q)]
belongs to the spectrum Spec’: (U Cy). If Q € Speci’t1 (X, Ex), then [u*(Q)] belongs to
the spectrum Spect (U, €y).

Proof. Q € Specl'(X,€x) and €xNEy- C Q. Let T be a strongly stable thick system
of deflations of (Cy, @U) properly containing [u*(Q)]. Since €y = [u*(€x)], this means

precisely that u*_l(T) contains Q properly, hence it contains Q°¢. So that [u*(Q*¢)] C T
On the other hand, [u*(Q)] C [u*(Q°°)], because, by 6.1,

Exnu' (WQNob)Nnot =9not =Wy,

while

¢x N u*_l([u*(gsc N QL)]) N QL 0% N QL d:ef O..

and, since Q € Spec1 1(X @X) the system Q. is non-trivial.
Same argument (with T a semitopological system) shows that [u*(Q)] € Specl, (U, &)
for any Q € Speck!(X,€x). m

6.3. Covers. We call a set {(U;, &y,) —= (U, &y) | i € J} of ’exact’ localizations

a cover of (X, &x) if &x N ( ﬂ Zu;«) = Wx. Below we consider only covers which have
i€J
finite subcovers whose elements satisfy the conditions of 6.1.

6.4. Proposition. Let 8 = {(U;, €y,) 2 (X, €x) | i € J} be a cover of the
right exact ’space’ (X,Ex) by strongly ‘exact’ localizations which has a finite subcover
U= {(U;, Ey,) = (X, €x) | i € I} with the following properties:

(1) Xyr C (Byr NEX)",

(2) Yy: s closed under push-forwards of deflations along arrows of Xy,

(3) If M — L & N are deflations such that the arrows uf(e) = uf(t) o ¢ for some

isomorphism ¢, then there exists a pull-back M-S LN of these arrows along some
morphism L — L and a commutative diagram

where s, s are arrows of Xy and s is a deflation.
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Then the following conditions on a Serre system ¥ of deflations of (Cx,€x) are
equivalent:

(a) ¥ € Specltl(X Ey),

(b) © € Spec;' (X, €x) and [u}(X)] € Specy; (Ui, €y,) whenever Ex N Yur C 3.

Proof. The implication (a) = (b) follows from 6.2.

(b) = (a). Fix a finite subcover 45 = {(U;, &y,) —= (X, €x) | i € I} of the cover
4 Set Tg = {j € T | €xu: € X} Let ¥ be an element of Specflv’Tl(X €x) such that
[u*(2)] € Specy’! (U, €y, for every i € Jx. The claim is that ¥ € Spec;” (X, €x).

For every i € Jx, we denote by S; the intersection €x N uf - ([ur (X)]*) N et

Recall that ¥+ is the largest right divisible system having the trivial intersection with
Y (cf. 2.2). Since ¥ is a Serre system of deflations, the right divisible system of deflations
g‘i is non-trivial, and :S’VZ g 3. By 4.4.1, this implies that S = ﬂ gl is not contained in

i€Ts

3. Since S C ¥+, this means precisely that S is a non-trivial system.

We consider each of the two cases: Jy = J and Jy # J

(i) Suppose that Jg = J. Set S = ﬂ S;. The claim is that (S) = ¥ which im-

i€Js

plies that ¥ € Spec '(X,€x). The equality <§> = Y means precisely that if T is a
semitopologizing system of deflations of (X, €x) such that S ¢ %, then ¥ C 3.

Since S C ¥1, the fact S ¢ ¥ is equivalent to S TNt

It follows from 6.1 that

TASt =¢xNu (W(TNSH) NSt and

I . - (2)
S=8nxt=¢xnu (SNt
for every i € J. The equality (2) implies that if & ¢ TN X+, then [uf(S)] € [u (%)]. But,
then [uf(T)] C [u ()], whence T C ul (W} (D)) N€x = .
(ii) Suppose now that Jyx # J. Set 3 = J — Jy and €% = ﬂ €x,u:. Since, by the
1€J™
definition of J*, Qfx,u;« gz Y. for all i € 3%, it follows from 4.4.1 that QE§( g Y.
Set =8N ¢%. The claim is that (&) = X. B
Indeed, if T is a semitopologizing system of deflations of (X, €x) such that & ¢ ¥,
then it follows from the argument (i) above that [uf(S)] € [uf(%)] for some ¢ € J. Notice
that this i belongs to Jsx, because & C €%, hence u} (&) C Iso(Cy,) C [uf(%)] for every
i € J%. Therefore, the end of the argument of (i) applies. m

Similar fact (but, with additional assumptions) holds for the spectrum Spec;' (X, €x).
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6.5. Proposition. Let (Cx,€x) = (Cx,&x, Wx) be _a svelte Tight exact category
with a stable class of weak equivalences (that is Wx = Wy N €x) and a left divisible
and weakly right divisible class of deflations (conditions 2.0(c) and 2.0(d)). Let {4 =

{(U;, €y,) =5 (X, Ex) | i € J} be a cover of the right exact space’ (X, Ex) by strongly
‘exact’ localizations which has a finite subcover Y = {(U;, €y,) —= (X, Ex) | i € I} with
the following properties:

(1) Eu;‘ g (Zuj N eX)X;

(2) Yyr s closed under push-forwards of deflations along arrows of Xy,

(38) If M - L “— N are deflations such that the arrows u’(e) = uf(t) o ¢ for some

isomorphism ¢, then there erists a pull-back M-S L& N of these arrows along some
morphism L — L and a commutative diagram

m — M

s | @

i1 —_—

~ t ~

N —— L

where s, §' are arrows of Yy and s is a deflation.

(4) The functors u; preserve push-forwards of deflations.

Then the following conditions on a Serre system ¥ of deflations of (Cx,€x) are
equivalent:

(a) ¥ € Spect! (X, Ex),

(b) ¥ € Specéﬁl(X, ¢x) and [uf ()] € Specy’ (U;, €y,) whenever Ex N Yur C XL

Proof. The argument is similar to that of 6.4. Details are left to the reader. m

6.6. Comments about the conditions on localizations. In the assertions of
this section, we consider strongly ’exact’ localizations (Cx,€x) — (Cy,€y) such that
Y+ N Ex is stable and the following properties hold:

(1) By C (B N Ex)A,

(2) Xy is closed under push-forwards of deflations along arrows of 3,

(3) If M —%5 £ <~ A are deflations such that u*(¢) = u*(t) o ¢ for some isomorphism

¢, then there exists a pull-back M -5 £ <% N of these arrows along some morphism
L — L and a commutative diagram

m o M
5/l l?
N
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where s, s are arrows of X« and s is a deflation.

(1) The condition (1) in combination with the stability of €x ,+ = X~ N €x implies
that the system of deflations €x , is saturated (cf. 5.5).

(2) The condition (2) holds if ¥« is closed under taking cokernels of pairs of arrows

t
M X N such that u*(t;) = u*(t2) (see the argument of 6.1).

tg
The condition (2) holds, if the functor u* preserves push-forwards of deflations.

(3) It follows from the condition (1) that there exists a pull-back M — £ S N of

the deflations M — £ «— N\ along some morphism £ —> L such that the isomorphism
¢ is described by a diagram

N —— L
whose upper horizontal and left vertical arrows belong to ¥,«, which the functor u* trans-
forms to a commutative diagram. The condition (3) holds for sure if the category Cyx is
pointed (or, more generally, C'x has initial objects and, for any object of Cx, there is at
most one morphism to an initial object): it suffices to take a pull-back of the square above
along the unique arrow r — € from an initial ob ject.

Notice that the conditions (1), (2), (3) stand finite intersections. So that one talk
about covers and the corresponding pretopology. We shall not go into details of this here.

7. Spectra of right exact ’spaces’ over a point.

We start with ’spaces’ represented by right exact categories with stable class of weak
equivalences and initial objects and gather together different facts and observations scat-
tered in the previous sections.

7.0. Right exact ’spaces’ over a point. A “point”, x, is represented by the trivial
right exact category, that is the category Cx with only one (hence identical) arrow.

A right exact ’space’ over a point x is a pair ((X, €x),7), where v is a continuous
morphism (X, €x) — x. Right exact ’spaces’ over the point x form a category in a
standard way: morphisms from ((X,€x),7) to (Y,€y),7) are given by morphisms of
‘spaces’ X 14 ¥ whose inverse image functor f* is an ’exact’ functor from (Cy, ¢y) to

*

(CX7 éX) and such that ﬁ [¢) f =, which means that f* o a* ~ y*

Recall that continuous means that an inverse image functor Cyx 2 Cx of the mor-
phism v has a right adjoint. One can see that this condition means precisely that v* maps
the unique object of the category Cyx to an initial object of the category Cx. It follows
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that morphisms of right exact ’spaces’ over a point are precisely those morphisms of right
exact 'spaces’ whose inverse image functor preserves initial objects.

7.0.1. Conventions. We fix a right exact 'space’ ((X, €x),y) over a point x together
with an inverse image functor the morphism ~. The latter means that we fix an initial
object r of the category Cx. We assume that (Cx, €x) has a stable class of weak equiv-
alences and that all split epimorphisms of the category Cx are deflations. In particular,
every morphism to an initial object is a deflation.

Since in a general right exact category deflations are not invariant under push-forwards,
we look at the version of the spectral theory based on the notion of a semitopological system
(see Sections 4 and 5). Fix an initial object ¢ of the category Cx.

7.1. Stable systems of deflations and subcategories of C'x /r. Following general
pattern, we consider the correspondence which assigns to any class of deflations S of
(Cx, €x) the full subcategory Ts of the category Cx /r whose objects are pairs (M, M = 1)
with s € §. In other words, Ts is generated by the kernels of arrows of S. Here by a

kernel of a morphism M T N we understand the pair (Ker(f), Ker(f) — r) (— an object
of Cx /r), where Ker(e) — r is the canonical morphism.
The stability of a class S of deflations of (Cx, €x) means that

S= {5 € Ex | Ker(s) € TS}.

The correspondence S — Tgs establishes an isomorphism between the preorder of stable
systems invariant under pull-backs and the preorder formed by strictly full subcategories
of the category Cx /r containing kernels of weak equivalences; in particular, they contain
initial objects. The inverse maps assigns to a strictly full subcategory 7 of the category
Cx /x the class €% of all deflations s such that Ker(s) € T.

Given a strictly full subcategory 7T of the category Cx /r, let ﬁ; denote the class of
all arrows of C'y which have a kernel from 7. By definition, €% = ¢&x N &%. It follows
that (€7)" = &%. So that if S is a stable system of deflations, then S* = &3¢, i.e. S"
consists of all arrows of C'x whose kernel exists and belongs to Ts.

7.2. Cartesian closedness and divisibility. A stable system S of deflations of
(Cx, €x) is cartesian closed iff the corresponding full subcategory Ts of the category Cx /x
is closed under finite products (taken in Cx /r).

A system S is left divisible iff for any M € ObTs and any deflation M — N (in
Cx/t), the object N belongs to Ts. A system S is right divisible if for any object M of

Ts, the kernel of any deflation M — N belongs to Ts.

7.3. Strong stability. The class W)K( contains all morphisms with trivial kernel,
in particular, all monomorphisms. Therefore, the condition S = €x N (S o Wy ) (which
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makes a difference between the strong stability and stability) implies that the subcategory
Ts is closed under taking arbitrary (not only “admissible”) subobjects. If morphisms
with trivial kernel are isomorphisms and all weak equivalences are isomorphisms, then
the system S is strongly stable iff the corresponding subcategory is closed under taking
arbitrary subobjects.

7.4. Semitopologizing systems and strongly topologizing subcategories.
Summarizing all above, one can see that the map § —— Ts induces an isomorphism be-
tween the preorder of semitopologizing systems of deflations of (C'x, €x) and the preorder
of full subcategories 7 of C'x which are closed under finite products and subobjects (taken

in C'x) and such that for any deflation M —= N with M € ObT, the object A" belongs
to T. We call such subcategories strongly topologizing.

7.4.1. Note. We use here strongly topologizing, because the name “topologizing
subcategories” was given (years ago) to the most straightforward generalization of this
notion for exact categories [R, Ch.5]. We recall it for completeness: a subcategory 7T of

an exact category is called topologizing if it is closed under finite products and for any
deflation M —— N with M € ObT, both N and Ker(e) are objects of the subcategory T

7.5. Thick systems and thick subcategories. A system S of deflations of
(Cx,€x) is thick iff the corresponding subcategory Ts is thick in the most expected,
ordinary sense: if M —= N is a deflation in Cy /x, then M is an object of Ts iff both
N and Ker(e) are objects of Ts. In other words, the subcategory Ts is topologizing and
closed under extensions.

7.6. Strongly thick systems and strongly thick subcategories. A system of
deflations S is strongly thick iff the corresponding subcategory Ts is strongly topologizing
and closed under extensions; or, what is the same, strongly topologizing and thick.

7.7. Orthogonal complements. We call objects of the subcategory Ty, trivial.
If Wx consists of arrows with trivial kernel, then objects of Ty, are pairs (V,V — ),
where V' runs through initial objects of Cx (i.e. V — ¢ is an isomorphism).

Let T be a strictly full subcategory of the category Cx /r containing Ty, . We denote
by T+ the full subcategory of the category Cx generated by all objects M of Cx such
that the kernel of a deflation M — N belongs to T iff it is trivial. It follows that, for any

€
stable system of deflations S, its orthogonal complement S+ contains ﬁq)r(s and is contained
€
in ﬁ)T(S [U{morphisms of C'x without kernel}.

€
In particular, if the category Cx has kernels of all morphisms, then S+ = ﬁ;rf .

7.8. Serre systems of deflations and Serre subcategories of Cx /r. For any
subcategory T of the category C'x /t, let 7~ denote the full subcategory of C'x /r generated
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by all objects M having the following property: if M —— A is a non-trivial deflation (that

is Ker(e) is non-trivial), then there exists a non-trivial deflation Ker(e) S (in Cx /x)
with Ker(§) € ObT. We call a subcategory T of Cx/r a Serre subcategory if T =T .
There is the equality (€x,7)” = Ex 7-.
In particular, a system of deflations S of ¥ of deflations of (C'x, €x) is a Serre system
iff it is stable and Ts = Tg. This establishes an isomorphism between the preorders of
Serre systems of deflations of (C'x, €x) and Serre subcategories of Cx /x.

7.9. Strongly closed systems of deflations and strongly closed subcategories
of Cx /x. For any subcategory 7T of the category Cx /x, let 7T denote the full subcategory
of Cx /r generated by objects M € T~ such that for any morphism L — M from Wy,
the object L belongs to T .

We call a subcategory T of Cx /x strongly closed if T = T1.

It follows from 7.8 and the observation 4.3.3(a) that (€x 7)" = €x 7. In particular,

a system of deflations S is strongly closed iff it is stable and Tg = ’]T:FS.

7.10. Strongly ’exact’ functors. An ’exact’ functor (Cx, €x) N (Cy, €y) is
strongly ‘exact’ iff it maps cartesian squares of the form

Ker(f) —— ¢t

l cart l (1)

M —f>/\/

to cartesian squares. If F' maps initial objects to initial objects, this condition means that
F preserves kernels of arrows. Since localizations map initial objects to initial objecs, an
‘exact’ localization is strongly ’exact’ iff it preserves kernels.

7.10.1. Remark. Since morphisms to initial objects in C'x are deflations, it follows
from the diagram (1) that, for a strongly ’exact’ functor (Cx, €x) N (Cy, €y), the class
of arrows X = {5 € HomCx | F(s) is invertible} is contained in (X N €x)" = €% p iff
all arrows of X have kernels. So that, in the case when all arrows of the category Cx
have kernels, X p C @%7 r for any strongly ’exact’ functor F'.

7.10.2. Kernels of strongly ’exact’ functors. Suppose that a strongly ’exact’
functor (Cx, €x) N (Cy, €y) maps initial objects to initial objects. Then F induces a

_ F, _
functor (CXI’ @XF) — (Oyn, @y‘)), where CXx = CX/?: Cy‘) = Cy/lj, H = F(;)
One can see that the subcategory Te, . coincides with the kernel of the functor

Cx/r i> Cy /v, and the latter is naturally equivalent to the full subcategory of kernel of
the functor F' generated by all objects N of Ker(F') having a morphism to .
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We denote the kernel of the functor F, by Ket(F).

7.10.3. Covers by strongly ’exact’ localizations. Elements of the covers we con-
sider here are morphisms (U, €) — (X, €x) whose inverse image functors are strongly
‘exact’ localizations such that all arrows of ¥« have kernels and the intersection €y ,» =
Ex N Yy« is a stable system of deflations. We call a set

{(Ui, €p,) =5 (X, €x) | i €T}

of such morphisms a cover of the right exact 'space’ (X, @X) if ExnN ( ﬂ Eu;) = Wy, or,

i€J
equivalently, m Te, .~ = Twy. Taking into consideration the discussion and notation of
ieJ '
7.10.2, we can rewrite the latter equality as ﬂ RKer(uf) = Ty, . If the class Wx consists

ieJ
of deflations with a trivial kernel (which is a standard choice), then the trivial subcategory
Tyy, is trivial in the usual sense: all its objects are initial.

7.11. The spectra. For every subcategory T of the category Cx /r, we denote by
T™* the intersection of all strongly thick subcategories of C'x /r which contain properly the
subcategory 7. We denote by 7, the intersection 7* N 7T+,

We denote by Specgé(X ,€x) the preorder (with respect to the inverse inclusion)
formed by all strongly closed subcategories T of the category Cx /¢ for which T* # T, or,
equivalently, the subcategory 7T, is non-trivial.

Similarly, we denote by 7* the intersection of all strongly topologizing subcategories
of Cx /x properly containing 7 and set 7, = 7* N T+. We denote by Specglg(X, Ex) the
subpreorder of Specglc(X ,€x) formed by those strongly closed subcategories 7 of the
category Cx /r for which T* # T, or, equivalently, 7 is a non-trivial subcategory of C'x /r.

7.11.1. Proposition. The map S — Ts induces isomorphisms

Specl' (X, €x) = Specgé(X, ¢x)
Specy;! (X, €x) =+ Specgs (X, Ex)

(2)

between the spectra defined in terms of systems of deflations (4.4) and the spectra defined
i terms of strongly closed subcategories.

Proof. The assertion follows from the sketched above dictionary between the stable
systems of deflations of different kind and the subcategories of the category Cx /r. m

7.11.2. Proposition. Let & = {(U;, €y,) 25 (X, €x) | i € J} be a cover of the
right exact 'space’ (X,€x) by strongly ’exact’ localizations which has a finite subcover
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U= {(Us, &y,) =5 (X, €Ex) | i € T} such that, for every i € J, the subcategory Ker(u?) of
Cx /r is invariant under push-forwards of deflations (which holds if Kev(u}) is invariant
under cokernels of pairs of arrows).

Then the following conditions on a strongly closed subcategory P of the category Cx /x
are equivalent:

(a) P € Specg‘lz(X, €x),

(b) P € Specge (X, Ex) and [ui(P)] € Specgk (Us, €y,) whenever Ker(u}) C P.

Proof. The claim is that the assertion follows from 6.4.

If fact, since, by the definition of covers, the arrows of X+ have kernels for all 7 € J,
the condition (1) of 6.4 holds: X+ C (Zyx N €x)" foralli€ J (see 7.10.1).

It follows from isomorphisms of 7.11.1 that one can, replacing the category Cx by
Cx /r, assume that the category is pointed. Therefore, the condition (3) holds (see 6.6(3)).

Finally, the invariance of the subcategories Ker(u}) under push-forwards of deflations
is what remains of the condition (2) of 6.4. m
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8. Special cases, some examples.

8.1. The abelian case. Let (Cx,€x) be an abelian category; that is Cx is an
abelian category, deflations are arbitrary epimorphisms and weak equivalences are isomor-
phisms. Then (as it was already mentioned in the text) semitopological classes of deflations
become topological and, therefore, the spectral theories outlined in Sections 3 and 4 coin-
cide. To every class S of epimorphisms of the category Cx, we assign a full subcategory
Ts of C'x whose objects are kernels of morphisms from S. The correspondence S —— T'g
induces isomorphisms between the preorder of topological systems of deflations and the
preorder (with respect to the inclusion) of topological subcategories of the category Cx
in the sense of Gabriel (— full subcategories of C'x closed under taking subquotients and
finite products). Similarly, S — Tgs induces an isomorphism between the preorder of
thick (resp. Serre) systems and the preorder of thick (resp. Serre) subcategories of C'x.

Strongly ’exact’ functors between abelian categories are the same as ’exact’ functors

and the latter are just exact functors in the usual sense. For any exact functor C'x N Cy,
the class of arrows X p = {s € HomCx | F(s) is an isomorphism} satisfies all the conditions
which appear in the main assertions of Section 6 (and are discussed in 6.6).

It follows from this isomorphisms and coincidences that the results of this Chapter
(translated into the language of topological, thick and Serre subcategories) recover all
essential facts of Chapter II.

8.2. Spectra of ’spaces’ represented by exact categories. Suppose that
(Cx,€x) is an exact category. In this case, weak equivalences are isomorphisms and
deflations are called sometimes admissible epimorphisms. Since, for a general exact cate-
gory, deflations are not invariant under push-forwards, we look at the version of the spectral
theory based on the notion of a semitopological system (see Sections 4 and 5).

Following general pattern, we consider the correspondence which assigns to any class
of deflations S the full subcategory Ts of the category C'x generated by all objects M such
that morphism from M to the zero object belongs to S.

Notice that, since the category C'x is additive and weak equivalences are isomorphisms,
the class W% consists of all monomorphisms of the category Cx. Therefore, a system S
of deflations of (Cx, &x) is strongly stable iff the subcategory Ts is closed under taking
arbitrary subobjects (cf. 7.3).

The map § — Ts induces an isomorphism between the preorder of semitopologizing
systems of deflations of (Cx, €x) and the preorder of strongly topologizing subcategories
T of Cx which are full subcategories of C'x closed under finite products and subobjects
(taken in Cx) and such that for any deflation M —— N with M € ObT, the object N
belongs to 7 (see 7.4).

8.3. A note about the spectral theory of the category of algebras. Let
Cx be the category Alg, of associative unital algebras over a commutative unital ring £,
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deflations are strict (that is surjective) epimorphisms of algebras and weak equivalences
are isomorphisms. The k-algebra k is the canonical initial object of the category Alg, and
the category Algy/k is isomorphic to the category of augmented algebras. The category
Algy/k of augmented k-algebras is naturally equivalent to the category Alg; of non-unital

k-algebras. The equivalence is given by the functor Alg; LT Algy/k which assigns to a
non-unital k-algebra R the augmented algebra (@R, k®R — k). Its quasi-inverse functor
maps an augmented algebra (A, £4) to its augmentation ideal Ker(£4).

We have a commutative diagram of functors

*

Algl N Algy [k BN Algy,
71| 1| % 7] 0

Id Id
k—mod —— k—mod —— k—mod

where Afv* is the forgetful functor, Af* its left adjoint which assigns to every k-module V' the
irrelevant ideal TkZl(V) = @V‘mn of the tensor algebra T3 (V') of the module V; j; is
n>1
the canonical forgetful functor and the functor f* assigns to each k-module V the tensor
algebra Ty (V') with the canonical augmentation and f, is the forgetful functor.
By 7.11.1, the spectral theory outlined here requires only the category Algy/k of
augmented k-algebras. There is another pair of adjoint functors

k—mod = Algy/k, 2)

p*

where the functor ¢, assigns to each k-module V' the k-algebra k &V with V-V = 0. Its

left adjoint functor, ¢*, assigns to every augmented k-algebra (A, A 4 k) the k-module
Ker(€a)/Ker(£4)?. The composition ¢* o p, is the identical functor, which means that
@« is a fully faithful functor and, therefore, ¢* is a localization functor. The functor
4 is ’exact’ and induces a natural equivalence between the category k& — mod and the
topologizing subcategory Ty of the category Algy/k whose objects are those augmented
algebras (A, A 4 k) for which Ker(€4)? = 0. Thus, the spectrum of the ’space’ Sp(k)
(which is isomorphic to Spec(k) — the prime spectrum of k, is embedded into Specg}z(Xg).
The picture looks slightly simpler in terms of the category CQ%( = Alg; of non-unital
k-algebras. Namely, the pair of adjoint functors (2) corresponds to the functors

k —mod Wﬁ Algs, (2))

~*
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where v, assigns to each k-module V' the same k-module with the zero multiplication and

the functor v* maps each non-unital k-algebra A to the k-module A/A%. The kernel of

the localization functor v* is the full subcategory Cy; = Alg,fC of the category Alg; = CQ%(
X

whose objects are so-called firm algebras A defined by the equality A% = A (evidently,
every unital algebra is firm). One can show that the spectrum Specg}z@l}(, Eo1. ) is the

disjoint union of the image of the prime spectrum of k and the spectrum Specgé(%&, ém; )
of the right exact ’space’ represented by the subcategory of firm k-algebras.

8.3.1. Generalizations. Let Cx = (Cx,®,I) be a monoidal category with 'tensor’
product ® and the unit object I. We assume that Cx is a pointed category with countable
colimits preserved by 'tensor product; and tensoring any object by a zero object produces a
zero object. Besides, Cx is endowed with a right exact structure €x with weak equivalences
Wx such that all split epimorphisms of C'x are deflations, both respected by the ’tensor’
product ®. The latter means that a ® 3 is a deflation (resp. a weak equivalence), if a and
B are deflations (resp. weak equivalences).

Let Cy, denote the category Alggx of algebras in the Cx (in classical sources, like
[ML], the objects of Alggx are called monoids). Thanks to the existence of countable
coproducts and the compatibility of ’tensor’ product with them, the forgetful functor

Cay BN, x has a left adjoint, {* which assigns to every object V' of the monoidal category

Cy its tensor algebra (T(V), py), where T(V) = @VQ” and the multiplication py is
n>0

given by the canonical isomorphisms VO" @ VO™ =~y yOn+m  Here yeo Ly

The category of algebras has a natural initial object — the 'unit’ algebra I. We denote
the category Alggx /I of augmented algebras by C’Qg{ .

If the category Cx is additive, then the category of augmented algebras is naturally
equivalent to the category Alg~ of non-unital algebras.

Like in the case of k- algebras we have a commutative diagram of functors
3%
ng( —  Cay

Pl i1 | 5. 3)
Cx  —4s ek

where j% is the functor which forgets augmentation.

We define deflations on the category Cg, of algebras by setting €, = f.1(€x)
and weak equivalences by Wy, = f;1(Wx). The right exact structure on the category
of augmented algebras induced via the forgetful functor j%, so that Coyr = f-1(&x) and

Wan = f-t(Wx) (see the diagram (3)).
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There is also the embedding Cx BN C'Q%( , which assigns to every object V of Cx
the algebra (1@ V, uY,), where p, is the multiplication trivial on V. This embedding has

5

a left adjoint, Cy, L C’gg( , which maps every augmented algebra (A, A t4 I) to the
object Ker(£4)/(Ker(€4)?. Notice that the object Ker(£4) exists because £4 is a split
epimorphism, hence a deflation.

The embedding Cx BN CQ%( induces an embedding of the spectrum Specglg(X ,€x)

) ) 5 : 1,1 5 ) ) 7
of the ’space’ (X, QEX) into the spectrum Specgs (2, €y ) of the ’space (2@(,@39@{)
represented by the right exact category of augmented algebras.

8.3.2. Example. Let R be an associative unital k-algebra and Cx the monoidal
category of R-bimodules endowed with the standard exact structure. Algebras in this
monoidal category are associative unital k-algebras A endowed with an algebra morphism
R %4 A. Tn other words, the category of algebras is isomorphic to the category R\ Algy
of k-algebras over R. Augmented algebras are triples (¢4, A,&4), where A 4 R s
the left inverse to ©4, that is £4 o ¥4 = idgr. The right exact structure on the cate-
gory of (augmented) algebras over R is standard: deflations are surjective morphisms and

weak equivalences are isomorphisms. We have the natural embedding of the spectrum
Specglg(X, ¢x) of the ’space’ (X, €x) represented by the category of R-bimodules into
the spectrum Specglg(gl}(, @Q%( ) of the ’space’ (AL, @Qg( ) represented by the right exact
category of augmented algebras. The complement to the image of Specglf(X , Ex) is the
spectrum of the ’subspace’ (ng(, @Qlf ) of the right exact ’space’ (2, @Qg( ) represented by
X

the subcategory of all augmented rings (14, A, £4) such that Ker(£4)? = Ker(£4). These
augmented algebras correspond to the firm non-unital k-algebras over the algebra R.

Complements: some properties of kernels.

C.1. Proposition. Let M Sy Nbea morphism of Cx which has a kernel pair,
M xny M jl M. Then the morphism f has a kernel iff p1 has a kernel, and these two

p2
kernels are naturally isomorphic to each other.

Proof. Suppose that f has a kernel, i.e. there is a cartesian square

Ker(f) —>E(f)

f’l cqrt l f (1)

N
x — N
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Then we have the commutative diagram

Y P2
Ker(f) —— MxyM —— M

f l pll cart l f (2)

f
x —_— M — N

which is due to the commutativity of (1) and the fact that the unique morphism x ANy N

factors through the morphism M i> N. The morphism ~ is uniquely determined by
the equality ps o v = €(f). The fact that the square (1) is cartesian and the equalities
p2oy =¥(f) and iy = f oip imply that the left square of the diagram (2) is cartesian,
ie. Ker(f) N Xy M is the kernel of the morphism p;.

Conversely, if p; has a kernel, then we have a diagram

t(p1) p2
Ker(py)) —— MxyM — M

P} l cart pll cart l f

; f
T Z—M> M — N

which consists of two cartesian squares. Therefore the square
e(f)
Ker(py) —— M
p&l cart l f
N

iN
€T E

with ¢(f) = p2 o €(p1) is cartesian. m

C.2. Remarks. (a) Needless to say that the picture obtained in (the argument of)

/

-
C.1 is symmetric, i.e. there is an isomorphism Ker(p;) — Ker(py) which is an arrow in
the commutative diagram

t(p1) P1
Ker(py) —— MxyM —— M

o |2 Tl | id,

t(p2) P2
Ker(ps) —— MxyM —— M
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(b) Let a morphism M L N have a kernel pair, M x M — M, and a kernel. Then,

pz

t(p1)
by C.1, there exists a kernel of pl, so that we have a morphism Ker(p;) —— M xy M
and the diagonal morphism M —> M xn M. Since the left square of the commutative
diagram

’

p
r —— Ker(p) — s

l cart c(pl)l l

Ay P1
M — MxyM — M

is cartesian and compositions of the horizontal arrows are identical morphisms, it follows
that its left square is cartesian too. Loosely, one can say that the intersection of Ker(p;)
with the diagonal of M x 5 M is zero. If there exists a coproduct Ker(py) ][ M, then the

t(p1)
pair of morphisms Ker(p;) N M NM <— M determine a morphism

Ker(py) [[M —— M xy M.

If the category C'x is additive, then this morphism is an isomorphism, or, what is the
same, Ker(f)[[M ~ M xy M. In general, it is rarely the case, as the reader can find
out looking at the examples of 1.4.

C.3. Proposition. Let

N
g l cart l g (3)

f
M — N
be a cartesian square. Then Ker(f) exists iff K er(f) exists, and they are naturally iso-
morphic to each other.

C.4. The kernel of a composition and related facts. Fix a category C'x with
an initial object z.

C.4.1. The kernel of a composition. Let L Ly M and M %5 N be morphisms
such that there exist kernels of ¢ and g o f. Then the argument similar to that of C.3
shows that we have a commutative diagram

/

Ker(gf) L Ker(g) g—>

t(gf) l cart J t(g) cart l iN (1)
N

f
L — M L>
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whose both squares are cartesian and all morphisms are uniquely determined by f, ¢g and
the (unique up to isomorphism) choice of the objects Ker(g) and Ker(gf).
Conversely, if there is a commutative diagram

’

K — Ker(g) LA

tl cart l{%(g) liN
f

L — M 25 N

whose left square is cartesian, then its left vertical arrow, K N L, is the kernel of the

. gof
composition L —— N.

C.4.2. Remarks. (a) It follows from C.3 that the kernel of L Ly M exists iff

f
the kernel of Ker(gf) —— Ker(g) exists and they are isomorphic to each other. More
precisely, we have a commutative diagram

~ f g
Ker(f) —— Ker(gf) —— Ker(g) —— =

Zl t(gf) l cart l t(g) cart l in
t(f) f 9
Ker(f) —— L — M — N
whose left vertical arrow is an isomorphism.
(b) Suppose that (Cx, €x) is a right exact category (with an initial object x). If the
morphism f above is a deflation, then it follows from this observation that the canonical

f
morphism Ker(gf) —— Ker(g) is a deflation too. In this case, Ker(f) exists, and we
have a commutative diagram

~ f
Ker(f) —— Ker(gf) —— Ker(g)

zl t(gf) l cart l t(g)

t(f) f
Ker(f) —— L — M

whose rows are conflations.
The following observations is useful (and are used) for analysing diagrams.

C.4.3. Proposition.(a) Let M - N be a morphism with a trivial kernel. Then

a morphism L i> M has a kernel iff the composition g o f has a kernel, and these two
kernels are naturally isomorphic one to another.
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(b) Let

¢
M — N
be a commutative square such that the kernels of the arrows f and ¢ exist and the kernel

of g is trivial. Then the kernel of the composition ¢ o~y is isomorphic to the kernel of the
morphism f, and the left square of the commutative diagram

~ £(f) f
Ker(f) —— Ker(¢y) —— L — M

| o s

¢(¢) ~ 4
Ker(¢) —— M —— N

18 cartesian.

Proof. (a) Since the kernel of ¢ is trivial, the diagram C.4.1(1) specializes to the
diagram

Ker(gf) L x & x
tof) | cart | H) | i
Ll om 2y N

with cartesian squares. The left cartesian square of this diagram is the definition of Ker(f).
The assertion follows from C.4.1.

(b) Since the kernel of ¢ is trivial, it follows from (a) that Ker(f) is naturally isomor-
phic to the kernel of g o f = ¢ o y. The assertion follows now from C.4.1. m

C.4.4. Corollary. Let Cx be a category with an initial object x. Let L Ly M bea

t(g)
strict epimorphism and M -2+ N a morphism such that Ker(g) —— M exists and is a
monomorphism. Then the composition g o f is a trivial morphism iff g is trivial.

C.4.4.1. Note. The following example shows that the requirement ” Ker(g) — M
is a monomorphism” in C.4.4 cannot be omitted.

Let C'x be the category Alg; of associative unital k-algebras, and let m be an ideal
of the ring k£ such that the epimorphism k& — k/m does not split. Then the identical
morphism k/m — k/m is non-trivial, while its composition with the projection k& — k/m
is a trivial morphism.



Chapter VII
Spectral Cuisine for the Working Mathematicians.

The main construction is presented in Section 1. Roughly, it runs as follows. With
any category, £, we associate two spectra, Spec”($)) and GSpec'(£). These spectra are
subcategories of . And, by construction, there is a natural functor Gpeco (H) — 9

(different from the inclusion functor). Given a functor & L %, we define (in 1.6) two
spectra, Gpec’(6, F) and Spec' (&, F), of the pair (&, F) as pullbacks of Gpec”(§)) and
Gpec' () along F. If § is a preorder (which is the case of our main examples), then
there exists a canonical morphism Gpec®(6, F) — GSpec’ (6, F). In particular, there is
a canonical morphism Gpec’(§) — Spect(9).

Taking as F' the inclusion map of the preorder of Serre subcategories to the preorder
of topologizing subcategories of an abelian category, we recover the spectrum Spec(X) of
Chapter II. If §) is the preorder of saturated multiplicative systems of a category (resp.
triangulated category) and F' is the identical functor, we recover the basic spectra of an
arbitrary category (resp. triangulated category). These and some other applications of
the general construction are sketched in Section 2.

Spectra considered in Section 2 are related with saturated (left and right) multiplica-
tive systems, or what is the same, with exact (i.e. preserving finite limits and colimits)
localizations. In the case of an abelian or triangulated category, they correspond to thick
subcategories. There are categories with only trivial saturated multiplicative systems. A
fundamental example is the category Sets of sets which belong to a given universe. It has
no non-trivial right multiplicative systems, but has plenty of saturated left multiplicative
systems. The latter are in bijective correspondence with right exact (— preserving colimits)
localizations. In Section 3 we apply the pattern of Section 1 to the preorder of saturated
left multiplicative systems of a category and obtain, as a result, left versions of the spectra
discussed in Section 2 (and in Chapter II).

In Section 4, we look at injective objects and related localizations and spectra, in par-
ticular, the Gabriel’s spectrum. Injective objects play important role not only in abelian
(Grothendieck) categories, but also in a large class of non-additive categories which in-
cludes toposes. Therefore, the exposition here is not restricted to abelian or even additive
categories. We define a left exact multiplicative system as a saturated left multiplicative
systems such that the corresponding localization functor preserves strict monomorphisms.
In the case of abelian categories, left exact multiplicative systems are precisely saturated
(left and right) multiplicative systems. On the other hand, in the case of the category
Sets, every saturated left system is left exact, but, as it is mentioned above, there are no
non-trivial right saturated multiplicative systems.
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To any injective object E of a category C, there corresponds a left exact multiplica-
tive system X g which consists of all arrows s such that Home (s, E) is an isomorphism.
Injective spectra, in particular (the non-additive version of) the Gabriel’s spectrum, are
obtained by applying to this correspondence the general formalism of Section 1.

It is worth to mention that left exact multiplicative systems are usually more impor-
tant, at least from spectral prospective, than injective objects. For instance, if C' is the
category Sets' of non-empty sets, then there are only trivial left multiplicative systems
of the form Y p. In particular, injective spectra are trivial. On the other hand, the pre-
order of left exact multiplicative systems is isomorphic to the order of infinite cardinals.
Both spectra, Gpeco and Gpecl, of this preorder are naturally isomorphic to the order of
non-limit infinite cardinals.

The purpose of this Chapter is to explain what stands behind the known constructions
of spectra and give a couple of curious examples. There is no attempt to make the list
of applications and examples complete (i.e. include all applications which seem to be
important ones) and, with more reason, no attempt to impose choices. The reader might

make a different choice of the functor & N $ and use the ’spectral cuisine’ of Section 1
to produce other spectra which could be appropriate for something.

1. General pattern.

Fix a category $). Let $y denote the full subcategory of £ whose objects are initial
objects of $. Thus, §)g is either empty, or a groupoid. Let $' denote the full subcategory
of $ defined by ObH' = Obs$H) — ObSH.

1.1. Definition. We call § local if the category $! has an initial object.
1.1.1. Note. It follows that if § is local, than § has initial objects, i.e. $9 # 0.

1.1.2. Example. The preorder {z — y} is local, since $! has only one object, v,
and one morphism, id,,.

1.1.3. Example. Let R be an associative commutative unital ring, and let I R denote
the set of its ideals. The preorder (IR, D) is local iff the ring R is local, i.e. there exists a
maximal ideal in R which contains all other proper ideals.

1.2. The spectrum Gpec' (). We denote by Spec'($) the full subcategory of the
category $) generated by all x € Ob$) such that the category x\$) is local. We call Gpec? ()
the local spectrum of $).

In other words, an object x of § belongs to Gpecl(ﬁ) iff there exists an object x* of

$ and an arrow x —% z* such that 7, is not an isomorphism and if z N y is not an

isomorphism, then there exists a unique arrow z* N y such that f = fov,. The morphism
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x % x* (in particular, the object 2*) is determined by these conditions uniquely up to
isomorphism.

1.2.1. Note. It follows from this definition and 1.1.1 that $ is local iff it has initial
objects and they belong to Spec’($).

1.2.1.1. Example. Let ) = Sets. The category Sets has one initial object — (). It
is local: every one element set is an initial object of the category Sets!. Notice that the
spectrum Gpec' (Sets') is empty. Therefore Gpec’(Sets) consists of one point which is the
initial object 0.

1.2.2. Maximal proper objects and Spec'($)). We call an object z of the category
$ proper if there exists an arrow x — y which is not an isomorphism. We call a proper
object, x, mazimal if any two proper morphisms, y; — z LN Y2, are isomorphic; that is
there exists an isomorphism y; — y» such that ¢ = u o s.

We denote by Maz($)) the full subcategory of §) generated by maximal proper objects.
It follows that Max($)) is a groupoid which is connected iff all maximal proper objects
are isomorphic to each other.

If for every proper object, y, there is an arrow from y to a maximal proper object,
then the groupoid Max($)) is connected iff $H°P is a local category.

1.2.2.1. Proposition. Maz($) C Spec' ($).

Proof. In fact, if z is an object of Max (%)), then the category z\$ is equivalent to
the preorder {x — y}, hence it is local (cf. 1.1.2). m

1.2.2.2. Example. If §) is the preorder (I; R, C) of left ideals of an associative unital
ring R, then Max($) coincides with the set Maz,R of left maximal ideals of R regarded
as a discrete category. The category Max,R is connected iff R has only one left maximal
ideal, . Notice that in this case the left ideal i is two-sided, because for every r € R — pu,
the ideal (u:7r) = {a € R | ar € pu} is a maximal left ideal, hence it coincides with pu.

1.2.3. Minimal proper objects. We call x € Ob$) a minimal proper object of the
category §) if = is a maximal proper object of $H°P. We denote by Min($) the full sub-
category of $) generated by minimal proper objects. By definition, Min($)) is isomorphic
to Maz($H°P). In particular, Min($)) is a groupoid which is connected iff § is a local
category. By 1.2.2.1, Min() C Gpec’(5H°P).

1.2.3.1. Example. Let Cx be a category with an initial object, and let Coy(x)
be the subcategory of Cx formed by all monoarrows of Cx. Then Min(Con(x)) is the
groupoid of all simple objects of the category C'x. Isomorphism classes of simple objects
can be regarded as a naive spectrum of Cx.
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The groupoid Min(Con(x)) is connected (that is the category Con(x) is local) iff the
category C'x has a unique, up to isomorphism, simple object.

1.2.3.2. Note. A useful version of 1.2.3.1 is obtained by taking instead of Coy(x)
the subcategory Cop, (x) generated by all strict monomorphisms of the category Cx.
Recall that a monomorphism L My M is called strict if every arrow L' — M which
g1
equalizes all pairs of arrows M —X N equalized by h is represented as the composition of
92
h and an arrow L' — L uniquely determined by this property. If an arrow L s M s
such that there exists a fibred coproduct M [[, M, then h is a strict monomorphism iff
1
the canonical diagram L M X MJ[, M is exact.

T2

The groupoid Min(Coy, (x)) is generated by objects which are simple in a ”strict”
sense. For instance, if C'x is the category of continuous representations of a topological
algebra in topological vector spaces, objects of Min(Coy, (x)) are topologically irreducible
representations of this algebra.

1.2.3.3. Example: injectives and the Gabriel’s spectrum. Let Cx be a cate-
gory with finite limits. An object E of the category Cx is called injective if the functor
Cx(—,FE) : C¥ — Sets preserves strict epimorphisms (in other words, Cx (j, E) is a
surjective map for any strict monomorphism j). We denote by C5(x) the subcategory of
Cx formed by injective objects and strict monomorphisms (see 1.2.3.2) If follows that if £

is an injective object, than any strict monomorphism E —2+ M is a split monomorphism;
i.e. hog=1idg for some M I E.

We call an arrow in C'x a zero morphism if it factors through an initial object (if any).

We call an injective object E of the category Cx indecomposable if the only nonzero
idempotent £ — FE is the identical morphism. Equivalently, any strict monomorphism
FE, — E with FE; injective and non-initial, is an isomorphism.

Objects of the groupoid Min(Cyx)) are precisely indecomposable injective objects
of the full subcategory C% of the category Cx formed by non-initial objects. Isomorphism
classes of indecomposable injective objects are points of the Gabriel’s spectrum.

1.2.4. Functorial properties. Let i> 5:3 be a functor. For any x € Ob$), the

functor F' induces a functor x\$ RENy A (z)\$. Suppose that the functor F is such that Fj,
is an equivalence of categories. Then F induces a functor Gpec' () — Spec' (9).
A typical example is the functor

NS L5 A0, (1S v) — (2,2 Do),

corresponding to a morphism z 7, y, or the canonical functor y\$H — 9.
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1.3. Supports. For any x € ObS), we denote by Suppg(x) the full subcategory of $
generated by all y € Ob$) such that H(x,y) = 0. We call Guppg(x) the support of x in 9.

1.3.1. Proposition. (a) For any two objects, x and y, of the category $, there exists
an arrow = —y iff Guppg(r) C Suppg(y).

(b) Let {x; | i € J} be a set of objects of $ such that there ezists a coproduct, sz
icJ

Suppg ([ 2:) = | Suppg (). (1)

icJ ieJ

Then

Proof. (a) If there exists a morphism z — y and $(z,z) = (), then, obviously,
9(y,z) =0, hence Suppg (x) C Suppy(y).

If H(z,y) = 0, ie. y € Suppg(x), then, since y ¢ ObSuppg(y), the inclusion
Supp e (x) € Suppg(y) does not hold.

(b) Since Sﬁ(H T, 2) HYJ(mi, 2), it follows that Sﬁ(H z;, z) = 0 iff H(x;,2) =0 for

icJ icJ icJ

some i € J, whence the equality (1). m

1.3.2. Support in Gpec’(H). For any z € Obf), we denote the intersection
Suppg () N Gpec' () by 6511]3]:1515 (z) and call it the support of = in Gpec'($). Evidently,
1.3.1(b) is still true if Guppg(z) is replaced by Suppg (z), as well as a half of 1.3.1(a): if
H(z,y) is not empty, then Gupp%(x) C Gupp%(y).

1.4. The spectrum Spec’ ().

We denote by Spec’ ($)) the full subcategory of $) generated by =z € Ob$) such that
Suppg () is not empty and has a final object, .

1.4.1. Proposition. Let ) be local. Then initial objects of H' belong to Gpeco(ﬁ).

Proof. Let $o be the full subcategory (groupoid) of § generated by all initial objects
of $. If z is an initial object of the category $', then Gupp () coincides with .

In fact, suppose that there is an arrow, x N y, for some y € ObfH). Since y is an
initial object of the category $), there exists a unique morphism y —— z. By the universal
property of y, the composition y 9, y is the identical morphism. Since z is an initial
object of the category $', the composition x 97, 2 is the identical morphism too. This

means that the morphism z N y is an isomorphism which contradicts to the fact that x
is not an initial object of the category $.
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Thus, $o is a subcategory of Suppg(x). Since for every z € ObHt = Ob$H) — ObSH,
there is a (unique) morphism x — z, the subcategory Suppg(x) is contained in $o; i.e.
Suppg () = No.

Since g is a connected groupoid, every object of )¢ is final. m

1.4.2.1. Example. The spectrum Gpeco(Sets) coincides with the subcategory Sets?
of all non-empty sets, because the support of any non-empty set consists of only 0.

1.4.2. Proposition. The full subcategory, Gpeco(f))o, generated by initial objects of
GSpec? () coincides with be the full subcategory $H1 = (H')o of the category $ generated by
initial objects of the subcategory $'.

Proof. By definition, the subcategory Guppg (x) (cf. 1.4) is not empty for every object
z of Spec’ ($)). Therefore initial objects of the category $ do not belong to Spec! (), i.e.
Gpeco(ﬁ) is contained in the subcategory $'. In particular, the subcategory Gpeco(ﬁ)o
of initial objects of Gpec’($)) is contained in $H; = (H')g. The converse inclusion is a
consequence of 1.4.1. m

1.4.3. Corollary. Let |Gpec' ()| denote the set of isomorphism classes of objects of
Gpec' (9). Then

obspec'(9) = |  {yl e —y) =2 2 O0bSpec’(@\H)o}. (1)
z€|Gpect(H)]

In particular,

ObGpec! () C U {y| (y,x = y) =2, z€ ObGpec’(z\9)}. (2)
z€[Spect (H)]

Here 2 is a final object of the category Supp,,\(2) (cf. 1.4).
Proof. The formula (1) follows from 1.4.2 applied to the category z\$. m

1.4.4. Lemma. A choice for every x € ObSpec’(9) of a final object, T, of the
category Supp e (x) extends to a functor Spec’(H) LEN 9.

Proof. 1In fact, if z,y € OprecO(Sﬁ), and there is a morphism = — y, then
Supp(x) € Suppg(y). Therefore there exists a unique morphism z — 7/. =

1.4.5. Remark. Notice that the functor Gpeco(ﬁ) ﬁ) 9 is faithful iff  is a
preorder, i.e. for any pair of objects, z, y, of §, there is at most one morphism z — y.
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1.4.6. Proposition. Suppose the category $ is a preorder with finite coproducts
(i.e. supremums of pairs of objects). Then the functor Gpec®($)) BAN $) takes values in

0
Gpect(9), i.e. it induces a functor Spec’ () SREEN Gpec' (9).

Proof. For any z € ObSpec’($), the final object, Z, of the category Suppg () belongs
to Spec' (59). More explicitly, we claim that the canonical coprojection, & — x LI Z, is an
initial object of the category (Z\$)!.

In fact, let 7 - y be a morphism. Then one of two things happens: either y €
ObG&upp g (x), or not. If y € ObSupypg (), then, since 7 is a final object of the category
Suppg (), there is a unique morphism y Iy %, Tt follows from the universal property of
T that hog = id~. By hypothesis, $) is a preorder, in particular, h is a monomorphism.
Therefore, h is an isomorphism inverse to g.

If y ¢ ObSuppg (), then there exists an arrow x — y which, together with z sy,
determines (and is determined by) a morphism (z UZ,Z — 2 UZ) — (y,Z - y). Since $
is a preorder, this is all we need. =

1.4.6.1. Example. Let $) be a category with initial objects and such that $(z,y) # 0
for every x € Ob$ and H(y,z) = () if y is not an initial object and z is an initial object.
Then Guppg () = Ho for any = € Ob$Ht. Therefore, Gpeco ($) coincides with $Ht. If § is a
preorder, then, under conditions, ' is a connected groupoid, hence Gpecl(ﬁ) = $Ho and

O
the functor Spec’(H) N Gpec'($)) is a category equivalence.
What might happen if $ is not a preorder is illustrated by the following.

1.4.6.2. Example. If $§ = Sets, then, by 1.2.1.1, Gpec' () = {0,idy} and by
14.2.1, Spec’(£) = Sets' — the category of all non-empty sets. There is only one functor
Gpec’ (H) — Spec' ().

1.4.7. Proposition. Suppose that the category $ is a preorder with coproducts. Then

ObGpec' () = U {y| (y,x = y) =2, z€ ObGpec’(z\9)}. (3)
z€[Spect (H)]

Proof. The assertion follows from 1.4.6 and 1.4.3(2). m

1.4.8. Support in Spec’($). For any object x of the category ), we denote by
Gupp% (z) the preimage of Guppg(z) by the functor Gpec’(H) — 6, 2 — 2, (cf. 1.4.4)
and call it the support of x in Spec® ($)). This means that Gupp%(a:) is a full subcategory
of $ whose objects are all objects z of Gpec’ () such that $(z,2) = 0, or, equivalently,
Supp(z) € Guppg(z). By 1.3.1, the latter means precisely that there exists a morphism
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z — x. Thus, Gupp%(x) is a full subcategory of $ generated by all objects z of Gpec®($)
such that z — =x.

1.4.9. Proposition. (a) The map x — Guppy(z) is functorial: if there exists an
arrow x — y, then Guppy (z) C Suppy (y).

(b) Let {x; | i € J} be a set of objects of $ such that there exists a coproduct, sz
ieJ

Supp$ ([ =) = | Supp? (). (1)

iceJ ieJ

Then

Proof. (a) The assertion follows from the fact that
ObSupps (z) = {z € ObSpec’(9) | H(z,z) # 0}

(see the discussion in 1.4.8).
(b) An object z of Gpec®($)) belongs to Gupp%(Hxi) iff ﬁ(Hmi,E) = (). Since
ieJ ieJ
ﬁ(Hmi,E) = Hﬁ(:ci,’z\), this occurs iff $(z;,2) =0 for some i € J. m

eJ ieJ

1.5. Topologies and spectra.

1.5.1. Generalities on topologies. Let 7 be a topology on $H°P, i.e. 7 is a function
which assigns to every object x of $) a set, 7(z), of subfunctors of the functor $H(x,—)
(called the refinements of x) satisfying the following conditions:

(a) for every arrow z EN y of § and every R € 7(x), the fibre product, R’, of

R— 6(z,—) "L 5y, -) belongs o 7(y);
(b) If R € 7(x) and FE is a subfunctor of $)(x, —) such that Ef € 7(y) for any f € R(y)
and any y, then E € 7(x).

1.5.1.1. Cocovers. A family of arrows & = {x =% x; | i € J} generates a subfunctor,
R~, of $(z, —) defined as follows: R~(y) consists of all arrows x — y which factor through

% x; for some i € J. The family 7 = {z & x; | i € J} is called a cocover (or a cover in
$H°P) for the topology 7 if R~ € 7(x).

1.5.1.2. Sheaves. Subcanonical topologies. A functor £ i) Sets (viewed as
a presheaf of sets on H°P) is called a sheaf (on (9P, 7)) if for every x € ObS) and any
refinement R of z, the map F(z) — Hom(R, F') induced by the embedding R — H(x, —)
and the Yoneda isomorphism F(x) ~ Hom($)(x,—), F'), is a bijection.
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The topology 7 on $H°P is called subcanonical if every representable presheaf, i.e. a
functor of the form $H(x, —), = € Ob$, is a sheaf.

1.5.1.3. Cosieves. It is convenient sometimes to describe topologies on $°? in terms
of cosieves. Recall that a cosieve in a category A is a full subcategory, B, of A such that
for every x € ObB, all arrows © — y belong to B.

Let x be an object of the category $). There is a one-to-one correspondence between
cosieves of the category z\$) and subfunctors of the functor $)(z,—). Namely, an object

(y,x 5 y) of #\$ belongs to the cosieve R corresponding to a subfunctor R of §(z, —) iff

the morphism z LN y is an element of R(y).

Thus, a topology, 7, on °P can be described as a function which assigns to each object
of $ a non-empty family of cosieves of the category x\$), which are also called refinements
of x, satisfying the conditions reflecting properties (a) and (b) of 1.5.1.

One can see that a topology 7 on $)°7 is subcanonical iff for every x € Ob$) each
refinement of x is a terminal cone. In other words, for every refinement R of x, the limit

of the canonical functor R — $), (y,z LN y) — vy, is isomorphic to x.

1.5.1.4. Pretopologies on $H°P. A pretopology on $H°P is a function, 7, which assigns
to each object = of $) a family, 7., of sets of arrows {z — x; | i € J} (in $) having the
following properties:

(a) for every z € Ob$), {id,} € 7u;

(b)if {x = a; | i€ J} €1, and {z; = x5 | j € Ji} € 7, for every i € J, then
{r =z lied je i} ey

(c) for any ¥ = {&x — =z; | i € J} € 7, and any morphism x N y, there exists
g={y 3 y; | 7 € I} € 7, such that the morphism ¢ can be lifted to a morphism z LN 7.

The latter means that for every j € I, the composition of x 2, y and y — y; factors
through x — x; for some 7 € J.
Elements of 7, are called cocovers of x. Arrows which belong to cocovers are inter-
preted as closed subsets. The corresponding arrows in $°P are viewed as open subsets.
Every pretopology determines a topology obtained by taking cosieves (or subfunctors
of representable functors) associated with cocovers.

1.5.2. Proposition. Suppose that T is a subcanonical topology on $H°P; and let
T={x % x;|icJ} bea cocover for . Then

Gpect (z\$H) = UGpec zi\9).

eJ

Here Gpec' (2;\$) is identified with its image in x\$) via the morphism x =% x;.
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Proof. Let an object z = (z,z I, z) belong to Gpec'(z\$). By definition, this
means that the subcategory (Z\(x\$))! has an initial object. Notice that the category
2\(z\$) is isomorphic to the category z\$. Thus, the category (2\$)! has an initial

object, (z*, z 4 z*). By condition, £ is not an isomorphism.
Let R~ be a refinement of x associated with the cocover 7 = {z x| 4i€ J}; and

let Rfj; be the corresponding refinement of the object z. Notice that there exists y € Ob$)
and an element z % y of Rg(y) such that (y,z 5 y) & Ob(2\H)!.

In fact, if such element would not exist, then, since (z*, z 4 2*) is an initial object
of (2\9)?, every element z 5 y of R;(y) factors through z 5 z*, and this factorization is
unique. Since the topology 7 is subcanonical, (z,id,) is an initial object of the sieve ﬁfiv

associated with Rj? Therefore, there exists a unique morphism (z*,§) — (z,id,). But,
this cannot happen (see the argument of 1.4.6).
Thus, there exists an element z % y of Rf;(y) such that (y,z % y) ¢ Ob(2\9)*, or,

what is the same, the arrow z % y is an isomorphism. By the definition of Ri, there exists
X
a commutative diagram

ui | | g ()

fa
T, —— Yy

for some ¢ € J. Since the arrow g in (4) is an isomorphism, it follows from (4) that

x b factors through the element 2 % z; of the cocover Z. Therefore, the object (z,f) of
Gpect (2\$) is the image of an object (z, gf;) of Gpec' (x;\H); hence the assertion. m

For any = € Ob$), let U, () denote the full subcategory of §) generated by all y € Ob$)
such that $)(y,z) = 0. Thus, Us () coincides with (Supp s (m))Op.

1.5.3. Proposition. Let x € Ob$ be such that for any z € ObS), there exists a
coproduct, x U z. Then the map z — (x U z,x — x U 2) defines a functor

Spec®(9) (Us (x) — Spec®(2\$).

Proof. For any y € Ob$), we set f*(y) = (yUz,x — yUzx). The map y — f*(y) extends

to a functor, $ AN x\$, which is left adjoint to the functor z\$ ELN 9, (v, —v) = .
Let z be an object of the subcategory Gpec’ () (Us(x), and let Z be a final ob-
ject of the category Guppe(z). Since z € Obly(x), ie. $H(z,2) = 0, there exists a
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unique morphism = — z. We claim that the (Z,2 — 2) is a final object of the category
Supp,\ g (f*(2))-

In fact, 2\H(f*(2), (y,z — y)) ~ N(z,y) which shows that (y,z — y) is an ob-
ject of Gupp,\ o(f*(2)) iff y is an object of Guppg(2). Therefore, (z,z — Z) belongs to
Supp,\ 5 (f*(2)) and, moreover, is a final object of this category. m

1.5.4. Corollary. Let x — y be a morphism of § such that for any other morphism,
x > z, there exists a fibred coproduct, y Uy z. Then the functor

P\H 5 2\H, (2D z2)— (2,05 2),

has a left adjoint, u*; and u* induces a functor

Spec” (2\9) [\ Un\s (v, u) —— Spec”(y\H).

Proof. The fact is a consequence of 1.5.3 applied to the category z\$). m

1.5.5. Proposition. Let x = {x =% z; | i € J} be a set of arrows such that
the cone v —> éx is terminal (i.e. x = liméx) and for any arrow xr — vy, there
exist fibred coproducts x; Uy y. If $ is a preorder, then the image of the canonical map
Gpec (2\$H) — Spec’ (2\H) is contained in the union of images of Gpec®(x;\$), i € J,
in Gpec' (x\9).

Proof. By 1.5.4, there are natural functors
Spec’ (£\9) (| Un\s (1, us) —— Spec’ (2;\5)

Therefore, it suffices to show that for any object (z,&) of Gpec®(2\$), there exists i € J
such that there are no morphisms from (z,&) to (z;,u;).

Suppose that for each i € J, there is an arrow (z,&) — (z;,u;). Since $) is a preorder,
these arrows determine a cone z —» Ex. By hypothesis, x = lim ﬁx, hence there exists a
morphism (z,§) — (z,id,). Since (z,id,) is an initial object of the category x\$), this
means that for any object of x\$ there is an arrow from (z,¢) to this object, which cannot
happen, because (z,¢) belongs to Gpec’(x\$). Thus, there exists i € J such that there
are no morphisms from (z,€) to (x;,u;). m

1.5.6. The spectrum of a precosite. Let 7 be a pretopology on $H°P. We call the
pair (9, 7) a precosite. Let $), denote the subcategory of $) formed by arrows which belong
to some cocovers. For every x € ObS$), we denote by 7, the induced pretopology on $H°P /x =
(2\$)°P. We denote by Spec’ (x\$, ) the full subcategory of z\$ generated by the images
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of Gpec®(y\H) for all arrows = — y of the subcategory $,. We call Gpec®(z\$H, 7,.) the
spectrum of the precosite (x\$), 7).

Thus, if the category $ has an initial object, we obtain the spectrum, Gpeco(ﬁ, T),
of the precosite ($), 7). If, in addition, all arrows of the subcategory ), are isomorphisms
(for instance, the pretopology 7 is discrete), then Gpec’($),7) coincides with Gpec”($)).

1.5.6.1. Proposition. Suppose that H, = $H and $ is a preorder with finite coprod-
ucts and an initial object. Then Gpec” (), 7) is isomorphic to Gpec' ().

Proof. The assertion is a consequence of 1.4.6. m

1.5.6.2. Proposition. To any morphism, x — y, of the subcategory $., there cor-
responds an inclusion Spec® (y\$), Ty) C Spec®(2\H, 72), i.e. the map v — Spec®(2\H, )
extends to a functor HP — Cat.

Proof. The fact follows from definitions. m

1.6. Relative spectra.

Let & = § be a functor. We define the relative spectra, Gpec' (&, F) and Spec’ (&, F),
via cartesian squares

O F
Gpec (B, F) —— ® Spec (B, F) —"y
7l l lF and el l lF (1)
0% 9q
Gpec'(H) —— 9 Gpec’(H) ——

(in the bicategorical sense, i.e. the squares quasi-commute), where Gpec’(£) U, $H is
the canonical functor of 1.4.4.

Explicitly, objects of the category Gpec' (&, F) are triples (2, z; ¢), where z is an object
of Gpec' (H), = € ObB, and ¢ is an isomorphism z —~ F(z). Morphisms from (z, z; ¢) to

(z/,2'; ¢') are given by pairs of arrows, z - 2z’ and z Iy 2 such that the diagram

z —>g 2
o | 2| o
F(h)
F(z) —— z')

7TF 1
commutes. The projections Gpec'(§) < Spec' (&, F) 9%, & in the left diagram (1) are
defined by 7f'(z,2;¢) =z and 6L(z,2;¢) = x.
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Similarly, objects of the category Gpec’ (&, F) are triples (z, z; 1), where z is an object
of Gpec®($), = € Ob®, and ¥ is an isomorphism V¢ (2) — F(z).

1.6.1. Proposition. Leti be 0 or 1. The map (&, F) — Gpec' (B, F) extends to
a pseudo-functor Gpec' : Cat/$H — Cat.

Proof. The assertion follows from the universal property of cartesian squares. m

1.6.2. Proposition. Suppose $) is a preorder with finite coproducts. Then for every

F . .
functor & — §), there is a canonical functor

Y, F
Gpec’(®, F) n Gpec' (&, F). (2)

The family {9(e )y | (8, F) € ObCat/$H} is a morphism of pseudo-functors,

9
Gpec’ —— Gpec’, (3)

Proof. Since $) is a preorder with finite coproducts, the functor Gpeco(ﬁ) 19—y’> K3}
takes values in Gpec' (), hence it factors through the embedding Spec'(H) — H (see
1.4.6). By the universal property of cartesian squares, there exists a unique functor (2)
such that 6} o (e ry = 9r and 7f o ¥ r)y = 7§ (see the diagram (2)).

It is useful to have an explicit description of the functor (2) in terms of the descriptions
of Gpec’ (&, F) and Gpec’ (&, F) given above. The functor V(s,r) maps an object (2, ;%)
of Gpec?(®, F) to the object (¥g(2), x;9) of Gpec' (&, F).

It follows from this description that ¥ = {¥(s r) | (&, F) € ObCat/$H} is a morphism
of pseudo-functors. m

1.7. The strict support and the spectrum Gpec($).
We fix a category $ with an initial object r. For any pair of objects y, z of $, we

shall write y N z = ¢ if any diagram y < w — z factors through y <— ¢ — z; that is there
exists a morphism w — ¢ such that the diagram

— w — 2z
id l l id
—  — =z

L/

commutes.

1.7.1. Observations. (a) It follows that y Nz = ¢ if y is an initial object.
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(b) Recall that a morphism y — z is called trivial if it factors through an initial
object. If y Nz = r, then there are no non-trivial arrows between y and z.

(b’) In particular, if all arrows of §) are monomorphisms (say, ) is a preorder), then
y N z = implies that either y is an initial object, or H(y, z) = 0.

(c) If all arrows of $ are monomorphisms, then y «— w — z factors through y < r — 2
iff the object w is trivial.

1.7.2. The strict support. For any x € Obf), we denote by Guppg (v) the full
subcategory of §) generated by all y € Ob$) such that y Nz = . We call the subcategory
Suppg, (v) the strict support of x.

It follows that Gupp () is a strictly full subcategory of §) containing all initial objects.
In particular, Guppy () is non-empty for all objects x (unlike the support SGuppg(z) of
1.3 which might be empty for some objects x).

Notice that if = is an initial object, then Guppy (z) = 9.

We denote the final object of Gupp§ () (if any) by 7.

1.7.2.1. Note. It follows from 1.7.1(b’) that if all arrows of §) are monomorphisms,
then Guppg (z) C Guppg(x) for all € ObSH;. If both a final object & of Guppy (z) and a
final object T of Guppg(x) exist, then there is a unique arrow & — Z. This arrow is an
isomorphism if xt Nx = .

1.7.2.2. Lemma. The map x — Guppg (v) is a contravariant functor: if x — y,
then Gupp} (y) € Suppg ().

1.7.3. The closure. For an object x of ), let {x}~ denote the full subcategory of £
generated by all objects y such that if z — y is a non-trivial morphism, then z Nz # .

It follows from this definition that, for any object z of ), the subcategory {z}~
contains the full subcategory $o generated by all initial objects of ), and if x is an initial
object, then {z}~ coincides with 9. It follows from 1.7.1(b) that = is an object of {x}~.

We denote the final object of {z}~ (if any) by z~.

1.7.4. Proposition. Let $ be a preorder with initial objects.

(a) If there exists a morphism x — vy, then {x}~ C {y}~.

(b) Let x € ObS$) be such that = exists. Then (z7)~ ~x~.

(c) Let x € Ob$) be such that the final object T of Guppy(x) ewists. Then T~ = I.

Proof. (a) Suppose that an object 2’ belongs to {2}, that is for any non-trivial arrow
z — 2’ there exists a diagram x <— w — z, where w is not an initial object. But then we
have the diagram y < w — z (thanks to the arrow x — y), hence 2z’ € Ob{y}~.

(b) By definition, Ob{z~}~ consists of all objects y of $ such that if z — y is a
non-trivial arrow, then z N x~ # r. The latter means that there exists a pair of arrows
z <~ w — x~ with non-trivial w. Since x~ is an object of {x}~, the intersection w N z
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is non-trivial; i.e. there exists a diagram w < v — x with non-initial v. Composing it
with z «— w, we obtain the diagram z <— v — x. Therefore, y € Ob{x}~. This proves the
inclusion {7}~ C {z}~. The inverse inclusion follows from the existence of the morphism
x — x~ (because x € Ob{z}~ and x~ is a final object of {x}~) and (a) above.

(c) Let z be an object of §) such that there exists a final object, Z, of Guppg (z). Let
y be an object of {#}~, that is for any non-trivial morphism z — y, the intersection z N &
is non-trivial. The claim is that y belongs to Guppg (), i.e. yNz =1.

Suppose that, on the contrary, y Nz is non-trivial; i.e. there is a diagram y <+ z —
with non-initial z. Then z N & is non-trivial, that is there exists a diagram z < w — &
with a non-initial w. Composing with z — x, we obtain a diagram x < w — &, which
contradicts to the fact that xtNZ =p1. =

1.7.5. Note. For any subset B of objects of §, set Guppg (B) dof ﬂ Guppf (x). For
xeB
a subcategory B of §), we set Guppg (B) def Suppg (OHB).
One can see that {z}~ = Guppf (Suppy (x)) for any = € ObS.

1.8. The relative version. Fix a functor & L 9.

1.8.1. Relative closure. For any z € ObS), we define the closure {x} of z in & via
the cartesian square

{z}tp — ©
cart lF
{z}- — 9

In other words, {z}% is the preimage of {z}~ in &.

1.8.1.1. Example. Let Cx be a svelte abelian category and ) the preorder (with
resp. to the inclusion) of its strictly full subcategories closed under taking subobjects, &
the preorder of strictly full subcategories of C'x closed under taking subquotients, F' the
inclusion functor & < ). Then for each subcategory & € §), the subcategory S~ exists
and coincides with the Serre envelope of the subcategory §. Objects of S~ are all objects
M of C'x whose nonzero subquotients have nonzero subobjects from §. Thus, S7 is a
Serre (in particular, thick) subcategory of Cx.

1.8.1.2. Example: the closure in Serre subcategories. Let $ be as above, &
the preorder Ge(X) of Serre subcategories of C'x, and F' the inclusion functor. Although
{8} % is, usually, not the same as in the previous setting, the final object is the same — the
Serre envelope S~ of the subcategory S.
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1.8.2. The relative strict support. Similarly, the relative strict support of x € Ob$H
is defined via the cartesian square

Supf'(z) ——

(G}
l cart lF
Suppi(z) —— 9

i.e. objects of Gup’'(z) are all y € Ob® such that F(y) Nz = 1.

1.8.2.1. Example. Consider the setting of 1.8.1.2; that is ) the preorder of strictly
full subcategories of a svelte abelian category Cx which are closed under taking subob-
jects, & is the preorder Ge(X) of Serre subcategories of C'x, and F' the inclusion functor.
The subpreorder Gup’(z) has a final object iff the smallest topologizing subcategory [x]
spanned by x belongs to the spectrum Spec(X).

There is a relative version of 1.7.4 which looks as follows.

1.8.3. Proposition. Let §) be a preorder with initial objects and & N 9 a functor.

(a) If x, y are objects of $ and there exists a morphism x — y, then {x}n C {y} 5.

(b) Suppose that the closure {x}5 of an object x of $ in & has a final object, x~.
Then the closure {F(x~)}~ of F(x™) in & has a final object which is isomorphic to x~.

(c) Let x € Ob$) be such that the support Supf (z) of z in & has a final object, .
The object & is a final object of the relative closure of F(&).

Proof. (a) The assertion follows from 1.7.4(a) and the definition of the relative support.
(b) and (c). The arguments are adaptations of the corresponding arguments of 1.7.4.
Details are left to the reader. m

1.9. The spectra.

Fix a preorder $ with an initial object r. Recall that $; denote the full subcategory
of $ generated by non-initial objects.

1.9.1. The spectrum Gpec($)). Recall that the spectrum Gpec®(§) is a full sub-
category of $) whose objects are those x € Ob$); for which Guppg(x) has a final object,
Z. We denote by Gpec” ($) the full subcategory of Gpec($)) generated by all x such that
x N T =g. Consider the functor

¢
Gpec’ () N 9, xT+—7T,

and the class Xy, of all arrows of Gpec” () which ¢ transforms into isomorphisms.
We define the spectrum Gpec($)) as the localization E;; SpecY (9).
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1.9.2. The ’strict’ spectrum Gpecs($). We denote by Gpec) () the full subcat-
egory of § generated by all z € Ob$); such that Gupp(z) has a final object, Z. Let

Specy ($) & $) be the functor which assigns to every object x of GpecY () the final
object Z of the strict support Guppy () of z. We denote by Gpecs(§) the quotient category
E;; Gpec(H) and call it the strict spectrum of $).

It follows from 1.7.2.1 that the embedding Gpec¥ ($)) C Gpec ($) induces a functor
Gpec(H) — Gpecs ().

1.9.3. The spectrum Gpe($)). We denote by Sp($) the full subcategory of £,
generated by objects  such that if y — = is an arrow of $)1, then Guppf (y) = Suppg ().

The spectrum Gpe($)) is defined as the localization of Gp($) at the class X, of all
arrows which the functor

Gp(H) — 29, = — Guppl, (z),

maps to isomorphisms. Here 29 denotes the preorder (with respect to the inclusion) of all
strictly full subcategories of .

1.9.4. The relative versions. Fix a functor & i) $. Then we have the relative
spectrum Gpec(®, F') defined via the canonical cartesian square

Gpec(B,F) —— &

| cart | F

Gpec(H) &

Similarly, the spectrum Gpecs (&, F') is defined by the cartesian square

Gpecs (B, F) —— &
cart lF

)
Gpecs(H) —— 9
Finally, the relative spectrum Gpe(®, F') is defined via the cartesian square

Gpe(&, F) —— 2°

l cart l oF

Spe(H) 2 29

where 2f' is the induced by the functor F morphism from the preorder of strictly full
subcategories of & to the preorder of strictly full subcategories of $.
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1.9.5. Examples. (a) Let $ be the preorder of full subcategories of a svelte abelian
category C'x closed under taking subobjects, & is preorder Ge(X) of Serre subcategories of
Cx, and F the inclusion functor. Then each of the three spectra, Gpec(®, F'), Gpecs (8, F),
and Gpe(®, F'), is naturally isomorphic to the spectrum Spec(X) of the ’space’ X.

The isomorphism Gpec(®, F') — Spec(X) assigns to every element of Gpec(&, F)
the smallest topologizing subcategory [z] containing a representative x of this element.

Notice that there is the biggest representative of the class equal (therefore) to the
union of all its representatives. If z is the biggest representative, (or any other represen-
tative which is closed under coproducts), then the smallest topologizing subcategory [z]
containing x is generated by all possible quotients of objects of x.

Same map gives isomorphisms Gpecs (B, F') — Spec(X) <— Gpe(&, F).

(b) Let $ be the preorder of full coreflective subcategories of C'x closed under taking
subobjects, & is preorder Th.(X) of thick coreflective subcategories of C'x, and F' the in-
clusion functor. Then each of the three spectra, Gpec(®, F'), Gpecs (8, F'), and Gpe(&, F),
is naturally isomorphic to the spectrum Spec?(X) of the ’space’ X.

In the case of Gpec(®B, F'), the isomorphism in question assigns to every element of
Gpec(®, F') the smallest coreflective topologizing subcategory of Cx containing a repre-
sentative of this element. Similarly for Gpecs(®, F) and Gpe(®8, F).

1.10. Complementary facts: relative support and associated points.

1.10.1. Relative support. Fix a functor & N . For an x € ObB, we call
Gupp (F(x)) the support of x in $, or the relative support of x.

1.10.2. Weakly associated points. For any x € Ob®, we denote by Ass%é F)(a;)

the full subcategory of Gpecl(.ﬁ) generated by all objects z for which there exists T — x
such that z € Ob&upp (F (7)) and there is an arrow F(Z) — 2*. As before, (2,2 — 2*)
denotes an initial object of (2\$)!.

It follows from this definition that Ass%& ) (x) is a subcategory of the relative support,
Supp (F(x)), of the object w.

We call objects of Ass%QS’F)(a:) weakly associated points of x in (&, F).

If I is the identical functor $ — £, we shall write Assg (x) instead of Ass(y 1, (%)
and call objects of this category weakly associated points of x. It follows that objects of
Assg (x) are z € ObGpec' () such that there exist arrows z* +— Z — 2 and z belongs
to Gupp (7).

1.10.3. Associated points. Fix a functor & N $. For an object = of &, we denote
by 9(55%(,5’ () the full subcategory of Gpec' () generated by all objects z such that there
exists * € Ob® having the following properties:

(a) there exist arrows T — x and F(T) — 2*;
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(b) if there exists an arrow y — ¥, then $(F(y),z2) = 0.
We call objects of 2(55%6’1:)(90) associated points of the object z in (&, F).

It follows from the condition (b) that z belongs to Gupp (F(z)). Together with the
condition (a), this means that les%ﬁ,F)(x) C Ass%ﬁ’F)(x).

If ' is the identical functor $ — §, we shall write ssg () instead of 2[55%5’ rds) ().

It follows that objects of les}j (z) are z € ObGpec' (§) for which there exists a pair of
arrows z* «— r — = with z such that there is no diagram of the form z «+— y — .

1.10.4. Associated points and weakly associated points in Gpeco(f)). We
define 2(55(()67 Fy (), Tesp. Ass(()é’ (@), as full subcategories of §) generated by all z €
ObGpec ($) such that Z is an object of lesz(leip) (z), resp. an object of Ass%&F)(a:).

Consider the following two properties:

(supl) If z € ObS) is the supremum of a filtered system, {x; | i € J}, of its subobjects,
then for any morphism x — x, there exists a cofinal subset I C J such that for every i € I,
there exists a fibre product, T; = T X, z;, and the canonical arrow colim(z;|i € I) — T
is an isomorphism.

(sup2) If x € ObS) is the supremum of a filtered system, {x; | 7 € J}, of its subobjects,
then for any morphism x — =z, there exists a diagram =z <— y — x; for some i € J.

1.10.5. Proposition. (a) If x = colim(z; | i € J), then

U Ass%&F) (z;) C Ass%&F) () and U Qlﬁs%&F)(:Bi) C les%@F)(x).
icJ icJ

(b) Let x € ObS) be the supremum of a filtered system, {z; | i € J}, of its subobjects.
(i) If $ is a preorder with the property (supl) and F preserves colimits of filtered
systems, then

Ass%&F)(a:) = U Ass%&F)(xi).
ieJ

(ii) Suppose & possesses the property (sup2). Then

9[55%05,1?)(37) = U les%ﬁ’F)(:cz-).
ieJ

Proof. (a) Let z € ObAss%Q5 F)(l'i), that is z belongs to Gpec' () and there exists a
pair of arrows, 2z* «— F(z;) and Z; — x;, such that z € Ob&upp (F(Z;)). Since there
is an arrow z; — x, same z; serves for x. Therefore Ass%Q5 ) (z;) C Ass%q5 (@) for all

i € J. Similar argument shows the inclusion U 9155%@, (i) C 2[55%05, 7 (7).
ieJ
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(b)(i) Suppose that (&, F) possesses the property (supl). Let z be an object of
Ass%(,5 r)(@); i.e. z belongs to Gpec' () and there exists a pair of arrows, z* «— F(T)
and T —> x, such that z € ObGuppﬁ( (x)). By the property (supl), a fibre product
T; = T X, x; exists for ¢ € I, where I is a cofinal subset of J, and the canonical arrow
colim(z;|i € I) — Z is an isomorphism. If for every ¢ € I, there is an arrow F(z;) — z,
then there is an arrow F'(z) — z, that is z does non belong to Guppg (F (7)), which
contradicts to the hypothesis. Thus, z € ObGupp (F(2;)) for some ¢ € I, which means
that z is an object of Ass%&F) (x4).

(ii) Let now (&, F') have the property (sup2). Let z be an object of 9155%@,17)@); ie.
2z belongs to Gpec' (£) and there exists a pair of arrows, z* «— F(Z) and T — z, such
that if H(F(y),z) # 0, then &(y,z) = (. By the property (sup2), for some i € J, there
exists a pair of arrows T <— 7; — x;. It follows that if H(F(y), z) # 0, then &(y,z;) = 0,
hence z belongs to 2[55%6’1;) (z;). m

1.10.6. Example: supports and associated points of a family of arrows. Fix
a svelte category C'x. Let $) be the preorder S* M(X) of saturated multiplicative systems
of Cx. Let & be the preorder (with respect to the inclusion) of non-empty families of

arrows of the category C'x, and let & N $ be the functor which assigns to each family S
the intersection, [S],, of all saturated multiplicative systems containing S.

The support, Supp(F'(S)), of a family of arrows S in = S*M(X) consists of all
saturated multiplicative systems 3 which do not contain S.

Weakly associated points of S are saturated multiplicative systems 3 such that there
exists S C S which is not contained in 3, but is contained in ¥*. Here ¥* is the intersection
of all saturated multiplicative systems of C'x properly containing ..

Thus, the preorder Asss )(S) of weakly associated points of a family of arrows S
coincides with the preorder Assge(S) of weakly associated points of S defined in [R6, 9.4.2].

Notice that in this case, associated points and weakly associated points of S coincide.

In fact, by definition 1.10.3, associated points of S are saturated multiplicative systems
¥ having the following property: there exists a non-empty subfamily, 7', of S such that
T'NX = 0. Let ¥ be a weakly associated point of S, i.e. there exists S C S such that
¥ 2 S C ¥*. The family T'= S — X is non-empty, and T'N X = (). This means, precisely,
that X is an associated point of S.

1.10.7. Supports and associated points of objects. Let &, § and F' be same
as in 1.10.6; i.e. & is a preorder of families of arrows of a category Cx, $) is the preorder
S*M(X) of saturated multiplicative systems of C'x, and F' maps every family S to the

smallest saturated multiplicative system containing S. Fix a functor Cy L Cx. The
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functor ¢* determines, for every M € ObCly, a functor Cy /M Py Cx /¢*(M). The map

ObCy — &, M — ¢3,(0b(Cy /M),

defines a functor Cy 2. Let Cy E) £ denote the composition of the functor ® with
the functor F'. The functor T, provides the notions of the support, weakly associated
points and associated points in £ = S*M(X) of any object M of the category Cy.

The support of an object M consists of all saturated multiplicative systems ¥ such

that ¢*(&) ¢ 3 for some arrow L Y
A saturated multiplicative system Y of C'x is a weakly associated point of an object
M of the category Cy iff there exists a morphism L — M such that ¢*(Cy (N, L)) C X*

for all N € ObCy and ¢*(§) ¢ ¥ for some arrow M’ M.
Finally, > is an associated point of M iff there exists a morphism L — M such that

Y & ¢*(&) € X* for every arrow N Ny

1.10.8. A canonical setting. Let C'y denote the subcategory of C'x formed by all
non-initial objects of C'x and strict monomorphisms; and let ¢* be the inclusion functor
Cy — Cx. Applying the construction of 1.10.7, we obtain non-trivial notions of the sup-
port and weakly associated and associated points of any non-initial object of the category
Cx.

1.10.8.1. The case of an abelian category. If Cx is an abelian category, these
notions are equivalent to those introduced in [R6, 9.4, 10.8]. The equivalence is given by
the isomorphism between the preorder S M(X) of saturated multiplicative systems and
the preorder Th(X) of thick subcategories of the category Cx. By definition, a saturated
system X7 corresponding to a thick subcategory T belongs to the support of an object
M of Cx iff there exists a monomorphism N —2+ M which does not belong to Y. This
means, precisely, that Cok(g) does not belong to the subcategory T. Thus, Xt belongs to
the support of M iff M does not belong to T.

A multiplicative system X is a weakly associated point of an object M if there exists
a subobject N of M such that all monoarrows L — N belong to X7 = X+, but some
of them do not belong 1. This means that N is an object of the subcategory T* which
does not belong to T. Here T* is the intersection of all thick subcategories of C'x properly
containing T.

A multiplicative system Y7 is an associated point of an object M if there is nonzero
subobject N of M such that every nonzero monoarrow L. — N belongs to X1+ and does
not belong . This means that the subobject N belongs to T* and is T-torsion free.

1.10.8.2. The direct description. Fix an abelian category Cx. Let & be the
subcategory Con+(x) of Cx formed by all nonzero monomorphisms and all nonzero objects



Spectral Cuisine for the Working Mathematicians. 269

of Cx. Let $ be the preorder Th(X) of thick subcategories of the category Cx. The

functor & — $) assigns to every object M of the category Cop+(x) the smallest thick
subcategory, [M]s, containing M.

The support, Gupp(F(M)), of the object M in H = THh(X) consists of all thick
subcategories T such that F(M) = [M]s € T, or, equivalently, M ¢ ObT.

A thick subcategory T is a weakly associated point of a nonzero object M iff there
exists a subobject M of M which belongs to ObT* — ObT.

A thick subcategory T is an associated point of a nonzero object M iff there exists a
nonzero subobject M of M which belongs to T* and is T-torsion free.

Thus the preorder Ass%@ #y(M) coincides with the preorder Assgy (M) of weakly

associated points of M in the sense of [R6, 10.1]. The preorder 2[55%6 F)(M) coincides
with the preorder 2Assk (M) introduced in [R6, 10.8].

2. Applications: spectra of ’spaces’.
2.1. The spectra of exact localizations.

Let Cx be a svelte category. We take as §) the preorder S* M(X) of saturated multi-
plicative systems of C'x and set

Specs(X) = Gpec' (S*M(X)) and Spech(X) = Spec’(S*M(X)).
Since S*M(X) is a preorder, there exists a canonical injective morphism
Specl(X) — Spech(X), L+ %

(cf. 1.4.6). Notice that the support, Guppgs pq(x)(X), of X consists of all saturated multi-

plicative systems of C'x which do not contain X, and its final object, i, is the union of all
multiplicative systems which belong to the support of X.

2.2. Closed spectra and flat spectra.
The closed spectra of a ’space’” X are relative spectra corresponding to the inclu-

Je(X)
sion functor, €S5°* M (X) = S*M(X), where €S*M(X) is the preorder of all closed

saturated multiplicative systems of C'x (cf. 2.0.5). Thus,
Specs(X) = Gpec’ (€S* M(X),Je(X)), i=0,1.

Similarly, the flat spectra of X are relative spectra of (£¢(X),Je(X)), where £e(X)
is the preorder of all flat saturated multiplicative systems of C'x (cf. 2.0.6) and Je(X) is
the inclusion functor £¢(X) — S*M(X). Thus,

Specis(X) = Gpec’(Le(X), Je(X)), i=0,1.
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2.3. Spectra of ’spaces’ represented by abelian categories.
Fix a ’space’ X such that C'x is an abelian category.

2.3.1. Thick spectra. We take as §) the preorder Th(X) of thick subcategories of
Cx and set _ ‘
Spect, (X) = Gpec’(TH(X)), i=0,1.

Since the preorder Th(X) is naturally isomorphic to the preorder S* M (X)) of saturated
multiplicative systems, the isomorphism Th(X) = S*M(X) induces isomorphisms

Spec’fﬂ) (X) = Spech(X), i=0,1

such that the diagram N
Spec%b (X) —— Speca(X)

| l

Spec}:b (X) —— Speca(X)
commutes. Here the vertical arrows are canonical embeddings of 1.4.6.

2.3.2. Representatives of Spec%b(X). Let Con(x) denote the subcategory of Cx
formed by all monomorphisms of Cx. The map which assigns to each object, M, of
the category Cx the smallest thick subcategory, [M],, containing M defines a functor

Con(x) 5%, Th(X). We denote by Specd, (X) the preimage, §y'(Specq,(X)), of the
spectrum Spec%h(X). An object M of Specy,(X) is regarded as a representative of the

object [M]e of Spec%h(X).
It follows from [R6, 7.1.1] that the functor

Specdy(X) —— Specqy(X), M +— [M],, (1)

is surjective. Namely, if P is an object of Spec%b (X), then P = [M], for any M €
ObP — ObP. Here P is the union of all thick subcategories of C'x which do not contain P.

2.3.3. Closed and flat spectra. Let €Zh(X) be the preorder of coreflective thick
subcategories of the category Cx, and Je<(X) the inclusion functor €Th(X) — TH(X).
Recall that a full subcategory T of Cx is corefiective if the inclusion functor T — Cx
has a right adjoint. In other words, every object of C'x has the biggest subobject which
belongs to T.

The coreflective spectra of X are defined by

Specgyy (X) = Spec’ (€TH(X), Jex (X)), i=0,1.
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By [R6, 7.2.1], the isomorphism Th(X) = S*M(X) induces an isomorphism of the
preorder €¥h(X) and the preorder €S° M(X) of closed saturated multiplicative systems.
Therefore, Spec’@b (X)) is isomorphic to the closed spectrum, Specé(X ) defined in 2.2.

Let Th.(X) denote the preorder of all thick subcategories T such that the localization
functor Cx — Cx /T has a right adjoint. And let J.(X) denote the inclusion functor
The(X) — TH(X). Since the preorder Th(X) is isomorphic to the preorder £c¢(X) of flat
saturated systems of C'x (cf. 2.2), the spectrum

Speck; (X) = Gpec'(Th,(X), 3.(X))

is isomorphic to the corresponding flat spectrum Specég (X)) defined in 2.2. Here i =0, 1.

2.3.4. Relative Serre spectrum. Fix an abelian category Cx. Let Ge(X) be the
preorder of Serre subcategories of C'x and Jg(X) the inclusion functor Ge(X) — Th(X).
The Serre spectra, or, shortly, S-spectra of X are defined by

Specs, (X) = Gpec'(Ge(X), Jsc (X)), i=0,1.
Since Th(X) C €TH(X) C Se(X), there are inclusions of spectra,
Speci%c(X) C Speci@%(X) C Speck, (X), i=0,1.
By 2.3.4.1, if Cx is a category with the property (sup), then €%h(X) = Ge(X), in

particular the spectra Specg,(X) and Specg,(X) coincide. If Cx is a Grothendieck
category, then Th (X) = €TH(X) = Se(X), hence in this case,

Spec%bc(X) = Speci@%(X) = Spec, (X), i=0,1.

2.3.4.3. The category Specl(X). We denote by Spec?(X) the full subcategory of
the category Cop(x) generated by nonzero objects M such that M € Ob[N], if there exists
a nonzero arrow N — M (see [R6, 7.3.4]). By [R6, 7.3.5], Spec?(X) C SpecX,(X).

It is easy to see that a nonzero object M belongs to Spec?(X) iff [L]s = [M]s for any
nonzero subobject L of M.

2.3.4.4. Proposition. The image, Spec’(X), of the map
Specg(X) — Spec%h(X), M — [M],, (2)

contains Specg% (X). If the category Cx has the property (sup), then the image of (2)
coincides with SpecgmJ (X).
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Proof. Let P is an object of Specg% (X); i.e. P is an object of Spec%b (X) such
that the thick subcategory P is coreflective. Let M € ObP — ObP. Since P is coreflective,
M has a ‘P-torsion, t73M . Replacing M by the quotient M/ tﬁM , we can assume that
M is P-torsion free. Since P = (M), it follows from [R6, 7.3.6] that M is an object of
Spec?(X) such that [M]s = P.

By [R6, 7.3.5], the subcategory (M), is a Serre subcategory for every object M of
Spec?(X). If the category Cx has the property (sup), then, by [R6, 7.3.8], every Serre
subcategory of C'x is coreflective. m

2.3.5. Spectra related to topologizing subcategories. Let T(X) denote the
preorder of all topologizing subcategories of the category Cx. Let J% denote the inclusion
functor TH(X) — T(X).

Thus, we have two spectra associated to this functor,

Speci(X) = Gpec’(TH(X),J%), i=0,1.

and a canonical morphism from one to another, Spec(X) — Spec; (X).

2.3.5.1. Proposition. (a) There is a natural map Spec; (X) — Speclgb (X).
(b) The functor T(X) — TH(X) which assigns to every topologizing subcategory T the
smallest thick subcategory, T, containing T, induces a functor Spec (X) — Spec%h (X).

Proof. (a) The category Speci (X) is defined by the cartesian square

Speci (X) —— Th(X)

Gpec' (T(X)) —— FT(X)

in which the right vertical arrow and the lower horizontal arrow are inclusions (see 1.6).
It follows from this description (or from the explicit description of relative spectra in 1.6)
that objects of Spec%(X ) are naturally identified with thick subcategories, P, which are
objects of Gpec' (T(X)). The latter means that that there exists the smallest topologizing
subcategory, P!, properly containing P. Therefore, the smallest thick subcategory, [P,
containing P' is the smallest thick subcategory properly containing P, hence P belongs to
Specl% (X).
(b) The spectrum Spec}(X) is defined by the cartesian square

Spec?(X) — THh(X)

Gpec?(T(X)) —— FT(X)
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(see 1.6). By definition, objects of Gpec’(T(X)) are topologizing subcategories, P, such
that Suppz(x)(P) has a final object. This means, precisely, that the union, 73t, of all
topologizing subcategories which do not contain P is a topologizing subcategory. The
lower horizontal arrow of the diagram (1) maps an element P to P*.

It follows that objects of Spec?(X ) can be identified with topologizing subcategories,
P, such that Pt is a thick subcategory. Therefore, Pt is a final object of the support
Suppey(x)(Ps), where P is the smallest thick subcategory containing P. This implies
that the map

Spec)(X) — TH(X), P +— P.,

takes values in Spec%h (X), hence the assertion. m

2.3.5.2. Representatives of Spec?(X). Let Con(x) denote the subcategory of Cx
formed by all monomorphisms of C'x. The map which assigns to each object, M, of the
category C'x the smallest topologizing subcategory, [M], containing M defines a functor

Con(x) Sx, T(X). We denote by Spec?(X) the preimage, §5' (Specy (X)), of the spectrum
Spec?(X). An object M of Spec?(X) is regarded as a representative of the object [M] of
Spec?(X).

2.3.5.3. Proposition. The functor
Spec?(X) — Spec)(X), M +— [M],

18 surjective.

Proof. Let P be an object of Spec?(X). For any M € ObP — ObP', the union, (M),
of all topologizing subcategories of C'x which do not contain the object M coincides with

Pt. In fact, (M) C P*, because M € ObP; and Pt C (M), because M ¢ ObP".
It remains to notice that [M] = P. Clearly [M ] C P. The inverse inclusion, P C [M],
holds because if P ¢ [M], then [M] C (M) which is impossible by the definition of (M). =

2.3.6. Closed spectra defined by topologizing subcategories. Let J5% be the
inclusion functor €Th(X) — T(X). This functor creates two spectra,

Speck,(X) = Gpec’ (€TH(X),I%), i=0,1.

and a canonical morphism from one to another, Specy(X) — Specg,(X).

2.3.6.1. The spectrum Spec(X). We denote by Spec(X) the full subcategory of
the category Con(x) generated by nonzero objects M such that M € Ob[N] if there exists
a nonzero morphism N — M.
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Since [N] C [N]e for every object N, it follows that Spec(X) C Spec?(X). In partic-
ular, Spec(X) C Spec (X).

It is easy to see that a nonzero object M belongs to Spec(X) iff [L] = [M] for every
nonzero subobject L of M. In other words, the functor

Conxy — T(X), M+ [M],

maps every nonzero (mono)morphism L — M to the (identical) isomorphism.

2.3.6.2. Proposition. The image Spec(X) of the map
Spec(X) — Spec{(X), M — [M], (1)
contains Specy,(X). If the category Cx has the property (sup), then the image of (1)
coincides with Specg(X).

Proof. Let P is an object of Specy(X); i.e. P is an object of Spec?(X) such that

Pt is a coreflective thick subcategory. Let M € ObP — ObP*. Since P! is coreflective,

M has a ﬁ"—torsion, tﬁtM . Replacing M by the quotient M/ tﬁtM , we assume that M is

Pt-torsion free. Since P! is the union, (M), of all topologizing subcategories of C'x which
do not contain M, it follows that M is an object of Spec(X) such that [M] = P.

Since (M) is thick, it coincides with (M),. In particular, it is (by [R6, 7.3.5]) a Serre
subcategory. If the category Cx has the property (sup), then, by [R6, 7.3.8], every Serre
subcategory of C'x is coreflective. m

2.4. Spectra defined by Serre subcategories.

Let $) be the preorder Ge(X) of all Serre subcategories of the category Cx. Thus, we
have two spectra and an embedding:

Gpec®(Ge(X)) —— Gpect (Se(X)).

2.4.1. Proposition. There are natural functors
Specs,(X) —— Gpec’(Ge(X)), i=0,1,
such that the diagram

Specl . (X) —— Gpec’(Ge(X))

|

Specg, (X) —— Gpec'(Se(X))
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commutes.

Proof. The functor Specg,(X) —— Gpec' (Se(X)) is the inclusion. The functor
Specd,(X) —— Gpec’(Ge(X)) assigns to each object P of Speck,(X) the Serre sub-
category P~. m

2.5. Spectra defined by closed cosubspaces.

Let €T(X) denote the preorder of all coreflective topologizing subcategories of the
category C'x. Let J¢ denote the inclusion functor €Xh(X) — €T(X).
Thus, we have two spectra associated to this functor,

Spec(X) = &pec’ (TH(X),J¥), i=0,1

and a canonical morphism from one to another, Spec?(X) — Spec; (X).
If the category Cx has the property (sup), then the preorder €Th(X) of coreflective
thick subcategories coincides with the preorder Ge(X) of Serre subcategories.

2.5.1. Proposition. Suppose that the category Cx has the property (sup).
(a) There is a natural map Spect(X) — Gpec' (Ge(X).
(b) The functor

CT(X) — Ge(X), T+—T7,

(see 2.4) induces a functor Spec’(X) — Gpec’ (Ge(X).
Proof. The argument is similar to that of 2.3.5.1. Details are left to the reader. m

2.5.2. The spectrum Spec!(X). We denote by Spec!(X) the full subcategory of
the category Con(x) generated by nonzero objects M such that M € Ob[N]. if there exists
a nonzero morphism N — M. Here [N]. denotes the smallest coreflective topologizing
subcategory of C'x containing the object N.

Since [N], C [N]~ for every object N, it follows that Spec?(X) C Spec)(X). In
particular, Spec(X) C Speck, (X).

2.5.2.1. Remarks. (a) It is easy to show that a nonzero object M belongs to
Spec?(X) iff [L]. = [M], for every nonzero subobject L of M. In other words, the functor
Cm(x) — Q:S(X), M+— [M]c,

maps every nonzero (mono)morphism L — M to the (identical) isomorphism.
(b) Suppose the category Cx has infinite coproducts. Then one can show that, for
any object M € ObC'x, objects of the subcategory [M], are subquotients of a coproduct of
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a set of copies of M, while objects of the subcategory [M] are subquotients of a coproduct
of a finite set of copies of M.

Thus, a nonzero object M belongs to Spec?(X) iff M is a subquotient of a coproduct
of a set of copies of any of its nonzero subobjects. And a nonzero object M’ belongs to
Spec(X) iff M’ is a subquotient of a coproduct of a finite set of copies of any of its nonzero
subobjects.

2.5.3. Proposition. Suppose that the category Cx has the property (sup). Then the
map
Spec?(X) — Spec)(X), M +— [M],, (1)

18 surjective.

Proof. Let P is an object of Spec?(X ); i.e. P is a coreflective topologizing subcategory
such that the union, 73“, of all coreflective topologizing subcategories of Cx which do not
contain P is a Serre subcategory. Let M € ObP — ObP“.ASince Pt is coreflective, we
can and will assume M that M is P-torsion free. Since P! is the union, (M), of all

topologizing subcategories of C'x which do not contain M, it follows that M is an object
of Spec?(X) such that [M], =P. m

Recall that an object M of a category Cx is of finite type if the functor Cx (M, —)
preserves colimits of filtered systems of monomorphisms. If the category Cx has the
property (sup), then M is of finite type iff the following condition holds: if M is the
supremum of a family, §, of its subobjects, then M is the supremum of a finite subfamily
of §. If Cx is the category of modules over some associative ring, then its objects of finite
type are finitely generated modules.

2.5.4. Proposition. Suppose that the category Cx has the property (sup) and every
nonzero object of Cx has a nonzero subobject of finite type. Then Spec’(X) = Spec(X).

Proof. The inclusion Spec(X) C Spec?(X) holds without any additional hypothesis.
The inverse inclusion is a consequence of the following observations.

(a) Thanks to the property (sup), the smallest coreflective subcategory spanned by
a topologizing subcategory, T, is generated by objects which are supremums of objects of
T. In particular, for any object N of the category Cx, objects of the subcategory [N],
are supremums (of a filtered family) of their subobjects which belong to [N]. This implies
that every object of finite type of the category [N]. belongs to [N].

(b) Let P be an object of Spec’(X). By 2.5.3, P = [M], for some object M of
Spec?(X). Suppose that M is of finite type. Then M belongs to Spec(X).

In fact, M belongs to the subcategory [N]. for any nonzero subobject N of M. By (a),
since M is of finite type, it belongs to [N]. This means that M is an object of Spec(X).
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(c) Since [M]. = [L]. for any nonzero subobject, L, of M, and, by hypothesis, M has
a nonzero subobject of finite type, we can choose M to be of finite type. m

2.5.4.1. Corollary. If Cx is the category of left (or right) modules over an associa-
tive unital ring, then Spec’(X) = Spec(X).
2.6. Spectra of ’spaces’ represented by triangulated categories.

2.6.1. The spectra of exact localizations. Let CTy = (Cx, ;D) be a triangulated
category. Let Tht(X) denote the preorder of all thick triangulated subcategories of CTx.
Following the standard procedure, we associate with the preorder Tht(X) two spectra of
the ’space’ X represented by the triangulated category C7Tx

Spec%ht(%) = Gpec’ (THt(X)), i=0,1.
and a canonical morphism from one to another,

Specl,,(X) — Specky,(¥) (1)
which assigns to every object P of Spec%ht(%) the union, ﬁ“, of all thick triangulated
subcategories of CTx which do not contain the subcategory P.

2.6.2. Flat spectra. Let Ge¢(X) denote the family of all thick triangulated categories
T of Cx such that the localization functor C'x q—T> Cx /T has a right adjoint, ...

The flat spectra of X are relative spectra

Speclf'g(%) = Gpec'(Ge(X),Js), i=0,1,

corresponding to the inclusion functor Ge(X) e, Tht(X). The morphism (1) induces
a canonical morphism ' ‘
Speciq(X) — Specjo(X). (2)

Let Spec;)é2 (X) denote the full subpreorder of Tht(X) whose objects are thick trian-
gulated subcategories Q such that - Q belongs to Spec%g (X) and every thick triangulated

subcategory of CTx properly containing +Q contains Q; i.e. ~QV Q is the smallest thick
triangulated subcategory of C7Tx properly containing +Q. Here +Q is the left orthogonal
to Q, i.e. the full subcategory of CTx generated by all objects L such that C7x(L, M) =0
for every M € ObQ.

3. The left spectra.
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There are ’spaces’ with only trivial saturated multiplicative systems. They might be
called simple in the same sense as a ring with only trivial two-sided ideals is called simple.
If X is such a ’space’, then Specs(X) = {Iso(Cx)} and Spech(X) = {HomCx}. Tt
follows that all other spectra introduced above (closed, flat, etc.) are one-element sets too.
Some of simple ’spaces’ have quite meaningful left spectra. The latter are associated with
the preorder of saturated left multiplicative systems.

A fundamental example of a simple 'space’ is the ’space’ represented by the category
Sets = Setsg of sets which belong to a given universe 4.

3.1. Basic left spectra. Let X be a 'space’. We take as §) the preorder S* M, (X)
of saturated left multiplicative systems on Cx and set

Specy ((X) = Spec’ (S*M,(X)), i=0,1.

By 1.4.6, there exists a canonical injective map

~

Spec%!(X) — Spec};ye(X), Y 2.

3.1.1. The spectrum Spec};yg(X) and left local quotient ’spaces’. We call a
'space’ Y left local if the preorder (S°My(Y),C) is local, i.e. there is the smallest non-
trivial saturated left multiplicative system on Cy. It follows that Spec}u (X) is formed
by all ¥ € 8 M,(X) such that the quotient ’space’ X1 X is left local.

3.2. Closed left spectra. Let €5°M;(X) denote the preorder of all closed saturated
left multiplicative systems on Cx (cf. 2.0.5). They give rise to the spectra

Speclf',e(X) = Gpec' (€S My(X)), i=0,1.
and the relative spectra
Spec o(X) = Gpec’ (€S My(X), Je ), i=0,1,

where J¢ ¢ denotes the embedding €S* M (X) — S*M,(X).
They are related by canonical injective maps

Spec?}e(X) > Spec%’g(X),

Specgz’g(X) — Specleyg(X)
(see 1.4.6 and 1.6.2).
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3.3. Continuous left multiplicative systems and continuous left spectra. A
left multiplicative system Y in C'x is called continuous if the corresponding localization
functor Cx — £~ 'Cx has a right adjoint.

Let £¢¢(X) denote the preorder of continuous saturated left multiplicative systems.
By [R6, 5.2.1, 5.2.2], every continuous saturated left multiplicative system is closed, i.e.
SCZ(X) g Q:SSMZ(X).

Let J. ¢ denote the embedding £co(X) — S*M,(X). This data provides us with the
continuous left spectra

Specig,,e(X) = Gpec’ (Ler(X)), i=0,1.
and the relative continuous left spectra
Specég,Z(X) = Gpec’ (Lcp(X),Je), =01,
together with the canonical injective maps
Spec%[’g(X) — Specéw(X),
Spec(f)z:,e(X) - SPeC,}Q,AX)

3.3.1. Another realization of continuous localizations and continuous left
spectra. Fix a ’space’ X. Consider the preorder §£,(X) of all strictly full subcategories

Cy of Cx such that the inclusion functor Cy LL> Cx has a left adjoint C'x RN Cy . These
functors are regarded as resp. direct and inverse image functors of a continuous strictly

full embedding Y <L1>1X . The map which assigns to every such subcategory the family
of arrows ¥,: = 15, (Iso(Cy)) is an isomorphism of the preorder (f£,(X),2) onto the
preorder (£c¢/(X), C) of continuous saturated left multiplicative systems.

Thus, the continuous left spectrum Spec%Q(X ) can be identified with the preorder of

all continuous strictly full embeddings Y <L1> X such that Y is a left local ’space’.
Let f£;(X) denote the set f€(X) — {idx} of all proper continuous strictly full em-
beddings. Thanks to the isomorphism (£¢(X), <) = (f£(X), D) elements of Specéw(X)

can be identified with continuous strictly full embeddings Y fﬁ> X such that the preorder
(F£(Y), Q) of proper strictly full continuous embeddings into Y has the biggest element.

3.4. The left spectra of Sets. Let £ denote the 'space’ represented by the category
Sets = Setsg of sets which belong to a fixed universe 4, i.e. C¢ = Sets.

The preorder §° M, (€) of right saturated multiplicative systems on Sets is trivial: it
consists only of Iso(Cg) and HomCg. In particular, the preorder S*M(E) of saturated
multiplicative systems on Sets is trivial.
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For an infinite cardinal number «, let ¥, denote the family of all maps M Iy N (—
morphisms of C¢) such that

(a) M #0if N #0,

(b) Card(N — f(M)) < «,

(¢) There exists a subset M’ of M such that Card(M — M') < a and the restriction
of the map f to M’ is injective.

Let Y. denote the family of all maps M TN satisfying (b) and (c) only. So that
Yo C Yax. Explicitly, Yo = X0 J{0 — N | Card(N) < a}.

Both Y, and ¥, are saturated left multiplicative systems on Sets. Moreover, every
saturated left multiplicative system on Sets is either ¥, or X, for a suitable infinite
cardinal « (see [GZ], 1.2.5f) and 1.3.5).

Let &p(4l) denote the order of non-limit cardinals which belong to the universe il.

3.4.1. Proposition. (a) Let a be an infinite cardinal number. Then the following
conditions are equivalent:

(i) v is a non-limit cardinal,

(ii) X4 belongs to Spec%’e(é’).

0
(b) The map o — X defines an isomorphism of preorders Sp(il) Spec%vg(é').
(c) If o is a non-limit infinite cardinal, then ¥,_1. belongs to Spec};ye(c‘:). The map

1
o — Yq_1. defines an isomorphism of preorders Sp(i) - Spec}ll(ﬁ) such that the
diagram

SR g (1)

0e(E)
commutes. In particular, the canonical preorder morphism Spec%’g(é') —_— Specél(c‘:)

s an 1somorphism.

Proof. (a) Fix an infinite cardinal number «.

(i)=(ii). Let « be a non-limit cardinal. Then the union, S, of all elements of the
support of ¥, (that is the union of all saturated left multiplicative system on Cg which do
not contain ¥,) coincides with ¥, _1,. This shows that ¥, is an element of Speco&g &€).

(ii)=>(i). If o is a limit cardinal, then S, = | J . 2 | J 3 = Zq. This shows that
B<a B<a
the support, Gupp(X,), of ¥, does not have the final object, i.e. the left multiplicative
system X, does not belong to Spec%’g ().
(b) Let o be any cardinal of a set from . The support of X, consists of all X5 and

all ¥, with v < . Thus Sor = HomCe: U{0 — N | Card(N) <=, v < a}, where Cg1
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is the full subcategory of Cg¢ formed by all non-empty sets. It follows from this description
that ¥, is not closed under composition, hence the support of 3. does not have the final
object, i.e. the left multiplicative system X, does not belong to Spec%j(é’ ). Since every
saturated left multiplicative system on Sets is either Y, or ¥, this proves that the map
a — Y, is an isomorphism Gp(U) — Spec%’e (€).

(c) Let o be an infinite non-limit cardinal number. That ¥,_1,. is an element of
Specbe(é') follows, together with the commutativity of the diagram (1), from the fact
that ¥,_1. is the final object of the support of ¥, (see the argument (i)=-(ii) above) and
1.4.6. Clearly the map

1

Sp(l) —— Speck ((£), ar— Ta_1., (2)

is a morphism of preorders. It remains to show that this map is bijective.

In fact, for any pair of infinite cardinal numbers g and v such that g < v, the system
Y3 is contained properly in ¥, and in ¥g,. On the other hand, ¥3 = ¥, (] £.. Therefore
>3 does not belong to Spechg (&) for any infinite cardinal number 3. Therefore elements
of Spec/lgyg(é') are systems g, for some 5. Suppose X3, belongs to Spec}w(é’), i.e. there
exists the smallest system %%, in S*M,(€) properly containing ¥g.. Since g, is not
contained in ¥, for any o, the system Y%, should coincide with X, for some a. But,
Yge © Xy iff B < v. Therefore, 8 < o and there are no intermediate cardinal numbers,
i.e. « is a non-limit cardinal number and f =a —1. =

3.4.2. Other spectra. Let ¥ C HomCg. By definition, and object M of Cg¢ is
Y-torsion free if every morphism M — M’ which belongs to ¥ is a monomorphism.
Suppose X is ¥, or X, for some infinite cardinal number «. Then a set M is Y-torsion
free iff Card(M) < 1 (that is either M = (), or M is a one-element set). It follows from the
definitions of ¥, and X, that objects of C¢ having a morphism to a -torsion free object
are precisely sets N such that Card(N) < «. This shows that the only closed saturated
left multiplicative systems on Cg¢ are Iso(Cg¢) and HomCg. Since, by [R6, 5.2.2], every
continuous saturated left multiplicative system is closed, there are no non-trivial continuous
saturated left multiplicative systems either. Therefore, Spec?l = Spec%w = {HomC¢}
and Spec%’g = Spec%u = {Is0(C¢)} (see notations in 3.2 and 3.3).

The relative continuous and closed left spectra (cf. 3.2, 3.3) are empty.

3.4.3. Sets without empty set. Let Cei = Sets{, where (in accordance with
notations in Section 1), Sets{ is the full subcategory of Setsy formed by non-empty sets
which belong to the universe 4. It follows that the preorder S*M,(E') of saturated
right multiplicative systems on Setsy is trivial and the set STM,(E') of saturated left
multiplicative systems consists of all systems X! = ¥, | HomCg1, where a runs through
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infinite cardinal numbers (notice that . [| HomCg: = X for any ). There is a following
analogue of 3.4.1:

3.4.4. Proposition. (a) Let o be an infinite cardinal number. Then the following
conditions are equivalent:

(i) a is a non-limit cardinal,

(ii) L belongs to Spec?g’g(é’l).

0
(b) The map o — XL defines an isomorphism of preorders Gp (k) AN Spec%,g(é'l).
(c) If o is a mon-limit infinite cardinal, then XL, belongs to Specé’g(gl). The map

1
o — XL | defines an isomorphism of preorders Gp(U) Specb,g(é'l) such that the
diagram
0 ) 0c(EY) 1 1
Specg ,(£') —— Specg ,(£Y)
v

0 y\ /( I/l (1)
Sp(U)
: : : 0 o1y %8 1 (ely .
commutes. In particular, the canonical morphism Specg ,(€°) —— Specg ,(£") is an
1somorphism.

Proof. The assertion follows from 3.4.1. Details are left to the reader. m

0e(EY)
The canonical map Spec%J(Sl) A Spec}m(é’l) (of 1.4.6) assigns to each

1

element X! of Spec%7£(8 1) the system X Notice that the inverse map assigns to

a—1-

each element ¥ of Spec/lgl(&' 1) the smallest saturated left multiplicative system properly
containing ..

3.5. Example: finite sets. Let Cg; be the category Set; of finite sets. There are
no non-trivial left or right multiplicative systems on Setss; so that the ’space’ & can be
viewed as an analog of a 'point” — the spectrum of a field.

4. Left exact multiplicative systems and injective spectra.
4.1. Left exact multiplicative systems. Fix a ’space’ X. We call a saturated

left multiplicative system Y left exact if the localization functor Cx EN Y10y =Cx-1x
maps strict monomorphisms to strict monomorphisms. Let S;, M (X)) denote the preorder
of all left exact multiplicative systems.

If C'x is an abelian category, then every left exact multiplicative system is a right
multiplicative system, i.e. S; M(X) = S*M(X).

4.2. Proposition. Suppose that the category Cx has finite colimits and kernels of

pairs of arrows. Let Cx EAN Cy be a right exact functor (i.e. it preserves finite colimits)
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which maps strict monomorphisms to strict monomorphisms, and let ¥ = Y = {s €
HomCyx | f*(s) € Iso(Cx)}. Then both functors, p; and g}, in the canonical decomposi-
tion f* = piq; (here q} s the localization functor Cx — Y- 1Cx and p} is a conservative
functor) are right exact and map strict monomorphisms to strict monomorphisms. In par-

ticular, ¥ € S;M(X).

Proof. (a) By [GZ, 1.3.4], the functors ¢} and p} are right exact and ¥ = Xy« belongs
to S{M(X). It remains to show that q}’z and p}i map strict monomorphisms to strict
monomorphisms.

(b) Let L RN M%Ml = MT]][, M be an exact diagram. We claim that its image
by the localization func?or g} is exact too.
In fact, let a morphism ¢} (V) i/> q3(M) equalize the pair g} (M p:>>1M1) Since X
P
is a left multiplicative system, there exist arrows N e M &M suCthhat s € X and
g = q}‘é(s)*lq;‘é (g9), and there exist commutative diagrams

Dpi
M — M
S J{ J{ S;
P; ,
M — N; 1=1,2,
with s1, s9 € X. By the same reason, there exists a commutative diagram

M1 i) Nl
SQJ/ J sh
N, —— NI

with s§ € 3. Since the system ¥ is saturated and the arrows s, so, s, belong to X, the
remaining arrow, s}, belongs to ¥ too. Thus, we obtain a commutative diagram

P1

L - M — M
P2
s | | ¢ (1)
g 1
N 2% M — NI
b2

where s and ¢t = shs; are arrows from ¥ and ¢; = s,pl. It follows from the definition of

N —£ M’ and the commutativity of the diagram (1) that q3($19) = q}(¢29). Since ¥
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is saturated, this means precisely that there exists an arrow N, —— M} in ¥ such that
(up)g = (ugo)g. Set ¢) = uep;, i = 1,2, and let L' - M’ denote the kernel of the

4l
./ T
pair of arrows M’ _/>M{’. Then we have the diagram L' = M'——= M| > M}, where
28 2

M{ = M']],, M’, m,m, are coprojections, and ¢ is a morphism uniquely determined by
the equalities om; = ¢}, ¢ = 1,2. Combining these decompositions with (1), we obtain a
commutative diagram

L —s M — M

t
— M

¢ | s | K 2)

g’ i’ o
N — ! —s M T M — M/

Here N -1 L’ I M’ is the unique decomposition of the morphism N -2+ M’ and
the arrow L —> L’ is uniquely determined by the commutativity of the diagram (2) and
the fact that L' - M’ is the kernel of the pair of arrows M’ _>M Applying the

O'TF2
localization functor qf to (2) and using that arrows s,¢,u,c belong to ¥, we obtain a
commutative diagram

L) —— M) T qi(M)

ai(s) | | | (3)

. q7(g") . a7 (") . ; i}
GN) —— GL) —— GM) I gi(M)

Since two of the three vertical arrows in (3) are isomorphisms and the diagrams

and
*(T/ q;(j') * N — % /
g (L) —— qp(M") 3 q5(M7)
are exact, the third one, ¢} (s'), is an isomorphism, or, equivalently, s’ € .. This shows that

/ P1
any morphism ¢} (V) AN (M) which equalizes the pair ¢} (M le) factors uniquely
P2
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through the kernel of this pair. Notice that our argument shows the existence of this
kernel.

(c) Let g3(L) <, q;(M’) be a morphism in ¥~'Cx and L MM morphisms
such that s € ¥ and ¢ = q}(s)_lq} (&) (cf. (b) above). Consider the cokernel diagram

p]_

£
L — s M ;Ml MHM

of the morphism L S, M. Since the localization functor q} preserves finite colimits, the
diagram
P1

(L;M 5 My = MHM

is isomorphic to the cokernel diagram of the morphism ¢} (L) LN qp(M’). Let L' RV

p1 .

denote the kernel of the pair of arrows M —X M, and let L s I/ 5 M be the
P2

canonical decomposition of L S M.

N q3(M’) is a strict monomorphism

iff t € X, hence the morphism & is isomorphic to ¢3(L') M q(M). Therefore p}(&') is

It follows from the construction that ¢}(L)

7 (0)
isomorphic to p} (q;’é(L’) A q;'Z(M)) = f*(L) — O) f*(M). By hypothesis, the functor f*
preserves strict monomorphisms, hence p’}(f’ ) is a strict monomorphism. m

The following assertion is suggested by (the part (b) of) the argument of 4.2.

4.2.1. Proposition. Suppose the category C'x has kernels of pairs of arrows and for
any arrow L — M, there exists a push-forward M [, M. Then the following conditions
on a left saturated multiplicative system ¥ are equivalent:

(a) X is left exact.

(b) If in the commutative diagram

L ——» M T M=M[[,M
| ] 1 )
i 4’1
s
L/ M/ - M//
2
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the rows are exact and the vertical arrows s and t belong to X, then the left vertical arrow
belongs to X too.

Proof. (a)=(b). The diagram (4) gives rise to the commutative diagram

P
! t

L /)~ M — M, — M
p2
s’l s l J u l id g (5)
LI ) M, _ M{ g M/I

2

where M| = M'[[,, M', M T M s uniquely determined by om; = ¢;, i = 1,2;
and M; —% M/ is uniquely defined by the left square in (5) (due to the functoriality of

coproducts). Applying the localization functor Cx <, Y ~1Cx to the diagram (5), we
obtain the diagram

r@ o con T2 con
¢(s) | 0 (s) | o | ] (6)
i L

(L) —— (M) —— ¢ (M)

where 0/ = ¢*(t)"1¢*(0). Since the system ¥ is left exact, the functor ¢* maps the diagrams

L — M—_XM; and L' — M’'”_2XMj to exact diagrams. Therefore the commutative
square
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It follows from the universal property of kernels that gq*(s’) = idy« (1), hence o is a strict

epimorphism. On the other hand, the equality jo = q*(s)” 3 (together with the fact that

37 is a monomorphism) implies that ¢ is a monomorphism; hence it is an isomorphism.
(b)=(a). The argument is a repetition of the part (b) of the argument of 4.2. Details

are left to the reader. m

4.2.2. Example: left multiplicative systems in Sets. Let Cg¢ = Sets. Then
S My(E) = S5 Mys(E), i.e. every saturated left multiplicative system on Sets is left exact.
In fact, S*M,(E) consists of systems ¥, and X,., where « is an infinite cardinal
(which belongs to a given universe). Recall that X, = 3, J{0 — N | Card(N) < o}

and ¥, is the family of all maps M LN (— morphisms of C¢) such that

(a) M #0if N #0,

(b) Card(N — f(M)) < «,

(c) There exists a subset M’ of M such that Card(M — M') < a and the restriction
of the map f to M’ is injective (see 3.4).

Notice that the conditions (b) and (c) (defining ) are equivalent to the following
condition which explains the meaning of ¥, and is more convenient for our purposes:

(b’) There exists a subset M’ of M such that the restriction of the map f to M’ is
injective and Card(M — M') < a > Card(N — f(M")).

Let X be ¥, or ¥,,.. Consider a commutative square

L — s M

ST

L —

in C'¢ = Sets whose horizontal arrows are monomorphisms and the right vertical arrow,
M %5 M’ belongs to . Then L —>5 L’ belongs to % too.

Suppose first that M = (. Then L = (. If ¥ = X, then L' = M’ = (). In particular,
L =5 L’ belongs to ¥.

If M =0 and ¥ = X, then Card(M’) < a. Since L’ I M s an injective map,
and Card(L') < Card(M') < a. Therefore L —+ L' belongs to Yqs..

Suppose now that M # () and L and L’ are subsets of resp. M and M’. The map
M —L5 M’ belongs to ¥ iff there exists a subset M" of M such that the restriction of ¢ to
M" is injective and Card(M — M") < a > Card(M’ —t(M")) (see (b’) above). Then the
restriction of the map L -+ L' to L N M" is injective and both Card(L — L N M") and
Card(L' — s(LN M")) are smaller than . The latter means that s € X.

Now it follows from 4.2.1 that X is a left exact multiplicative system.
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4.3. Injective objects. Fix a ’space’ X. Let Cx, denote the subcategory of Cx
formed by all objects of C'x and split monomorphisms.

An object E of the category Cx is called injective (or strictly injective) if the functor
Cx(—,F) : C°? — Sets maps strict epimorphisms (of C°P, i.e. strict monomorphisms
of Cx) to epimorphisms. We denote by C'5(x) the subcategory of C'x formed by injective
objects and split monomorphisms (or, what is the same, strict monomorphisms, see 1.2.3.3)
between them. For any object E of the category Cx, let ¥ denote the family of all arrows
of C'x which the functor Cx (—, F') transforms into invertible morphisms.

4.3.1. Proposition. (a) Suppose that the category Cx has finite colimits. Then the
map E +— Xg extends to a functor CF — S;M(X).

(b) If, in addition, Cx has kernels of pairs of arrows. Then the map E — Y defines
a functor C§]€X) — S;M(X).

Proof. (a) Since the category C'x has finite colimits, it follows from [GZ, 1.3.4] that
Y g belongs to S M(X) for every object E.

Let E1 — E be a split monomorphism; and let L —= M be a morphism of C'x such
that C'x (s, F) is an isomorphism. Then Cx (s, E1) is an isomorphism. In fact, there exists

a morphism £ —25 F; such that vou = id g, - Thus, there are two commutative diagrams

Cx (s,E) Cx (s,E1)

Cx(M, E) E— Cx(L,E) Cx(M, El) E— Cx(L,E1>
OX(Mav) l l Ox(L,U) CX(Ma U) J{ l OX(L7U)
Cx(s,E1) Cx(s,E)

Cx(M,El) E— Cx(L,El) C)((M,E) _— Cx(L,E)

such that the vertical arrows and the upper horizontal arrow of the first diagram are
surjective (hence the remaining arrow, C'x (s, F) is surjective) and the vertical arrows and
the lower horizontal arrow of the second diagram are injective, hence Cx (s, F1) is injective.
Therefore, Cx (s, E1) is bijective, i.e. s € X, .

(b) If E is an injective object, then, by 4.2, the localization at ¥ preserves strict
monomorphisms, i.e. ¥ belongs to S;.M(X). m

4.4. Proposition. Let X T4 ¥ be a continuous morphism with an inverse im-

age functor f* and a direct image functor f.. Suppose that the functor f* maps strict
monomorphisms to strict monomorphisms. Then f. maps injective objects to injective
objects.

Proof. If E is an injective object in Cy, then the functor Cx(f*(—), E) maps strict
monomorphisms of the category Cy to (strict) epimorphisms, because f* preserves strict
monomorphisms and, since E is injective, C'x (—, ') maps strict monomorphisms to epi-

morphisms. But, Cy (—, f«(F)) ~ Cx(f*(—), E), hence the assertion. m
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4.5. Proposition. (a) Let ¥ be a left multiplicative system in Cx. Then ¥ C Xp
for any X-torsion free injective object E.

(b) Suppose that for every morphism L — M in Cx, there exists a fibred coproduct
MTI;, M and the pair of coprojections M —= M]], M has a kernel. Then for any
X e S M(X), the image of any injective X-torsion free object E in the quotient category
Y 1Cx = Cx-1x is an injective object.

(c) Let ¥ € 8§ M(X) be a continuous multiplicative system such that X~'Cx has
a conservative family of injective objects. Then ¥ = ﬂEeS g, for some family § of
Y.-torsion free injective objects.

Proof. (a) Let ¥ be a left multiplicative system and F a -torsion free injective object.
The claim is that for any arrow L — M in ¥, the map

Cx(s,E)
Cx(M,E) I CX(LaE)a f'—>fOS, (1)

is bijective. In fact, let L s Ebean arbitrary morphism. Since s € X and X is a left
multiplicative system, there exists a commutative diagram

’

M — M
ST Tt

f
L — F

with ¢t € ¥. Since F is Y-torsion free, the arrow F Ly M’ is a strict monomorphism.

Every strict monomorphism from an injective object splits, i.e. there exists a morphism

M’ 25 E such that g ot = idg. Therefore (go f')os = goto f = f. This proves
P1

the surjectivity of the map (1). Suppose now that M —< F is a pair of arrows such that

P2
p1os = pyos. Since X is a left multiplicative system and s € X, there exists an arrow

E % N in ¥ such that wop; = wo py. The arrow u is a (strict) monomorphism, because
E is Y-torsion free, hence p; = ps. This shows that the map (1) is injective.
(b) Let ¢* be the localization functor Cxy — X~*Cx. Consider a diagram

¢*(B) < ¢ (L) 25 ¢* (M) (1)

such that j’ is a strict monomorphism. Since ¥ is a left multiplicative system, the diagram
(1) corresponds to the diagram

E-Srd 2w 2)
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Here s,t € ¥ and f = ¢*(s)"t¢*(f’) and ¢*(j') = ¢*(t)"1¢*(j”). Since E is ¥-torsion
free, the arrow s is a strict monomorphism. It is a split monomorphism, because FE

is injective; i.e. there exists an arrow K . E such that hs = tdg. In particular,
g (h) = g*(s )_1 Thus f=q" (v ) where v = hf’ : L — E. Consider the decomposition

of the arrow L s M’ into L -5 L/ M’', where L' s M’ is the kernel of the pair
M jM’ HM’. Since ¢*(i') = ¢*(t)"1q*(i") is a strict monomorphism, ¢*(j”") is a strict
P2 L

monomorphism. The localization functor ¢* is right exact [GZ, 1.3.1]; in particular, the
diagram
¢ (L5 M = [12)
P2 L

is isomorphic to

@ L5 gary = o) I ¢ o). 3)
q* (L)

Since ¢*(j”’) is a strict monomorphism, the diagram (3) is exact. By hypothesis, ¢* maps
strict monomorphisms to strict monomorphisms, hence the diagram

q (Pl)

q" (i)
(L) — ¢ (M) — ¢ (M) ] o (3"
q (pz) ¢* (L)

q" (u')
is exact too. By the universal property of kernels, this implies that ¢*(L) —— ¢*(L/)

is an isomorphism. Since X is saturated, v’ € X. Therefore, there exists a commutative
diagram

v
L' —— F
with v” € X. Since FE is YX-torsion free and 1nJectlve there exists E/ — F such that wu”

idg. Thus, we obtain a diagram F H L' - M’ in which j is a strict monomorphlsm
Therefore, there exists a morphism E -2 M’ such that gj = v’. But, then ~f = j/, where
v = q*(t)"1q*(g) (see notations above).

(c) Fix ¥ € 8§, M(X) such that ¥7'Cx = Cg-1x has a conservative family, §, of
injective objects, i.e. {Csx-1x(—, FE) | E € §} is a conservative family of functors. Fix a
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direct image functor C's;-1 x = o x of the localization X1 X 22, X Since the localization

q
functor Cx — Cy;—1 y maps strict monomorphisms to strict monomorphisms, the functor
s« maps injective objects to X-torsion free injective objects (see 4.4). By the (a), we have

the inclusion ¥ C ﬂ qu*( E)- The inverse inclusion follows from the conservativity of the

Eeg
famlly {Cz—lx(—,E) | E e -&'} | |

4.6. Example. Suppose that Cx is an abelian category with injective hulls (e.g.
Cx is a Grothendieck category). Then the conditions of 4.5 hold. Moreover, every closed
multiplicative system X is the intersection of the systems X g, where E runs through a
family of YX-torsion free injective objects.

In fact, closed multiplicative systems are in bijective correspondence with coreflective
thick subcategories, ¥ — Ty, where ObTy, = {M € ObCx | (0 — M) € ¥}. If E is an
injective object, then Ty, = +E, i.e. ObTx, = {M € ObCx | Cx(M,E) = 0}. Notice
that Yr-torsion free objects are precisely T-torsion free objects, i.e. objects which have no
nonzero subobjects from T.

Fix a coreflective thick subcategory T and denote by g¢r the localization functor
Cx — Cx/T, Let M be a nonzero T-torsion free object. If M — FE is an essential
monomorphism, then F is T-torsion free object too. Let § be a family of T-torsion free
objects such that {¢7(M) | M € §} generates the quotient category Cx /T = Cx/r, i.e.
{gz(M) | M € §}+ = 0. For each M € § we chose an injective hull E(M) of M. It follows
from 4.5(a) that 3¢ C ﬂ Y E(m), or, equivalently, T C ﬂ LE(M). We leave verifying

MEeF MeF
the inverse inclusion to the reader.

Suppose that C'x is a Grothendieck category. Then every closed multiplicative system,
3., is flat and the corresponding quotient category Csx,-1x, is a Grothendieck category too.
In particular, it has a set of generators, §. By the argument above, > = ﬂ YEm) = XE;,

Meg
where Fz = H E(M). Here we use the fact that injective hulls and small products exist

MeF
in a Grothendieck category [BD, 6.3.1, 6.3.2]. Thus, we have recovered a well known

assertion: every Serre subcategory of a Grothendieck category is of the form - FE for some
injective object F.

4.7. Example. The conditions of 4.5 hold if Cx is an elementary (Lawvere-Tierney)
topos, in particular if C'x is a Grothendieck topos. In fact, by a Lawvere-Tierney theorem
[J, 1.26], in a topos, all partial maps are representable. This means that for any object M,

there exists a monomorphism M % M such that any diagram L I Ly M with a
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monomorphic left arrow is uniquely completed to a commutative square
f
L —
i

M
lnM (1)
f —
L — M

It follows from the uniqueness of f in (1) that the map M — M defines a functor

Cx x, Cx and n = {na | M € ObCx} is a functor morphism Idc, — Jx. Moreover,
for every object M, the object Jx (M) = M is injective [J, 1.27].

Note that ’JX(H M;) ~ H Jx (M;) provided the product H M; exists, and if YV N
icl icl icl
X is a geometric morphism (that is f is continuous and f* is (left) exact), then there is a
functor isomorphism f,Jy ~ Jx f..

Let ¥ be a flat multiplicative system in Cx. Set Y = Y 71X and denote by ¢
the canonical morphism ¥ — X. The quotient category Cy = Y7 !Cx is a topos
too. Let § be a family of generators in Cy. Then ﬂ Y3, (m) = 1s0(Cy). Therefore

Meg

L= ) Zeovon = [ Saxen)-
MEeF MeF

Suppose now that Cx is a Grothendieck topos. Then Cy = ¥~ 'CYx is a Grothendieck
topos. In particular, C'y has small products and a set of generators, §. Therefore

2= () Zaxq.n) = Sy (rg), where My = ] a.(M) ~q.( [] M).
Meg Meg Meg

4.8. Note. The examples 4.6 and 4.7 suggest that abelian categories with injec-
tive hulls might be regarded as abelian versions of elementary toposes, and Grothendieck
categories are abelian analogs of Grothendieck toposes.

4.9. Example. Let Cg = Sets (like in 4.2.2). Then all objects of C¢ are injective
(and projective). Fix an object E of C¢. If E is a one-element set, or the empty set, then
Ygp = HomCg. If Card(E) > 2, then X5 = Iso(Cg).

Evidently, the empty set and one-element sets are the only indecomposable injective
objects.

Let ¥ C HomCg. By definition, an object M of C¢ is X-torsion free if every mor-
phism M — M’ which belongs to ¥ is a monomorphism. Suppose X is a saturated left
multiplicative system, i.e. it coincides either with ¥, or with X, for some infinite cardinal
number « (cf. 4.2.2). Then a set M is X-torsion free iff Card(M) < 1; that is, again,
either M = (), or M is a one-element set.
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It follows from the definitions of ¥, and 4 that objects of C'¢ having a morphism to
a Y-torsion free object are precisely sets N such that Card(N) < a. This shows that the
only closed saturated left multiplicative systems on Cg are Iso(Cg¢) and HomCg. Since,
by [R6, 5.2.2], every continuous saturated left multiplicative system is closed, there are no
non-trivial continuous saturated left multiplicative systems either.

4.10. The injective spectrum and the Gabriel spectrum.

4.10.1. Relatively maximal objects. Fix a functor & N . We call an object
x of & relatively maximal, or F-mazximal, if F transforms any arrow x — y into an
isomorphism. We denote by Mar(&, F) the full subcategory of & generated by relatively
maximal objects.

4.10.2. Injective spectrum. Suppose that the category C'x has colimits of finite
diagrams. Let F' be the functor

Cng) - SESM(X)a E— EE

(see 4.3.1). We denote Max(CTly), I) by 1Spec(X). It follows that the objects of I.Spec(X)

are injective objects E such that ¥y = Xpg, for every nontrivial split monomorphism
E, — E. We denote by ISpec(X) the full subcategory of the S;.M(X) generated by

the image of I.Spec(X) and call it the injective spectrum of X.

4.10.2.1. Note. The injective spectrum is introduced in [R, 6.5], in a slightly different
way, in the case when C'x is an abelian category.

4.10.3. The Gabriel’s spectrum. Recall that an object, E, of the category Cx is
indecomposable if every nontrivial idempotent E P Fisidg (see 1.2.3.3).

We denote by 2 Spec(X) the groupoid Min(Cy(x)) formed by indecomposable injec-
tive objects and their isomorphisms. It follows that I.Spec(X) C ISpec(X).

The Gabriel’s spectrum is the full subpreorder, /I\Spec(X ), of the preorder S M (X)
spanned by multiplicative systems g, where E runs through indecomposable injective

objects of C'x. In particular, the Gabriel’s spectrum is contained in the injective spectrum:
ISpec(X) C ISpec(X).

4.10.3.1. Note. The Gabriel’s spectrum is introduced in [Gab] for a (locally noethe-
rian) abelian category. Its elements are defined as isomorphism classes of indecomposable
injective objects. The preorder inherited from S*M(X) is opposite to the specialization
preorder.

4.11. Injective spectrum of an abelian category. Fix an abelian category Cx.
Let E € ObCx, and let - E be the full subcategory of the category C'x generated by all
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objects M which are left orthogonal to E, i.e. Cx(M,E) = 0. If E; is a subobject of the
object E, then LECLE,.

If E is an injective object, then - F is a Serre subcategory of the category C'x and the
map E —— 1 E is a functor J(X)°? — Se(X). In particular, the spectrum ISpec(X)
can be identified with the subpreorder of the preorder Ge(X) of Serre subcategories of Cx
generated by the image of the map ISpec(X) — Ge(X), E+—— LE.

4.11.1. Proposition. Let C'x be an abelian category with the property (sup).

(a) If every object of Cx has an injective hull, then Gpec' (Se(X)) C ISpec(X). In
particular, Specg,(X) C ISpec(X).

(b) If Cx has a Gabriel-Krull dimension, then

Specg, (X) = Gpec' (Se(X)) = ISpec(X) = ISpec(X).

Proof. (a) Let P be an object of Gpec'(Se(X)), i.e. there exists the smallest Serre
subcategory, P*, properly containing P. Let M € ObP® — ObP. Since, thanks to the
property (sup), every Serre subcategory of Cx, in particular P, is coreflective, we can
and will assume that M is P-torsion free. Let E(M) be an injective hull of the object
M. Then E(M) is P-torsion free, because M is P-torsion free, hence P C +E(M).
Notice that - E(M) cannot contain P properly, because if P # ~E(M), then ~E(M),
being a Serre subcategory, would contain P?, in particular, it would contain the object M
which is not the case. This verifies the inclusion Gpec' (Ge(X)) C ISpec(X). By 2.4.1,
Specs,(X) C Gpec' (Ge(X)), hence Specg,(X) C ISpec(X).

(b) If Cx has a Gabriel-Krull dimension, then, by [R6, 7.9.1], Spec.(X) = Spec™ (X)
and by [R, 6.6.1.1, 6.6.1.2], Spec™ (X) = ISpec(X) = TSpeC(X). The assertion follows
now from the inclusions Spec™ (X) C Specg, (X) C Spec' (Se(X)) C ISpec(X). m
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Glossary of notations

Chapter I

|Cat|® the category of ’spaces’, 1.2

Y-y the ’space’ represented by the quotient category ¥ ~1Cy-, 1.2

Y the class of arrows which the functor F' maps to isomorphisms, 1.2

Sp(R) the categoric spectrum of a ring R, 1.4

Spg(R) the ’space’ represented by the category of G-graded R-modules, 1.5
Cone(R;) the cone of a non-unital ring, 1.6

Projg the Proj of G-graded rings, 1.7

Sp(Ff/Y) the categoric spectrum of the monad F; on a ’space’ Y, 2.1

Affx the category of affine schemes over X, 2.3.1

Mon(X) the category of continuous monads of a ’space’ X, 2.3.1

| F] the monoid of elements of a monad F, 2.3.1

| F|* the group of invertible elements of the monoid |F|, 2.3.1

Mont(X)  2.3.1

Sw = {k*e)\|A € Gy}  the Ore set corresponding to an element of the Weyl group, 5.2.1
Gr,,,  Grassmannien presheaf, 5.3.1

Qcoh(X) the category of quasi-coherent presheaves on a presheaf of sets X, 5.3.5
Qcoh(X,T) the category of quasi-coherent sheaves on a presheaf of sets (X, 7), 5.3.7

Chapter I1

T(X) the preorder of topologizing subcategories of C'x, 1.1

T(X) the preorder of coreflective topologizing subcategories of Cx, 1.1
SeT the Gabriel product of subcategories, 1.1.1

T(+1)  he n** infinitesimal neighborhood of a subcategory T, 1.1.1

> a preorder among objects, 1.2

[S]  the smallest topologizing subcategory containing S, 1.2.1

T~  the Serre subcategory corresponding to a subcategory 7, 1.4

Ge(X)  the preorder of Serre subcategories of C'x, 1.4.3

T+  the right orthogonal to the subcategory T, 1.4.4

Spec(X) the spectrum of a 'space’ X, 2

Supp(M) ={Q € Spec(X) | @ C [M]} the support of M in Spec(X), 2.2
T,  Zariski topology on Spec(X), 2.4

Spec(X) 3.2

Spec;' (X) 3.3

P! the intersection of topologizing subcategories properly containing P, 3.3
Pe=P'NnPL 331
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QO the union of all topologizing subcategories, which do not contain Q, 3.3.1

(LY =1[L] 3.3.1

SVT the minimal Serre subcategory of C'x containing S and T, 4.2.1
Tg,  the pretopology of Serre localizations, 4.4

Spec'(X) the complete spectrum of X, 5

SUT the smallest thick subcategory of C'x containing S and T, 5
T°°  the smallest thick subcategory containing 7, 5.1

TL pretopology of exact localizations, 5.2

Specl% (X) 6
Specs,.(X) 6
Spec?(X) the counterpart of Speci (X), 7.1

Ox — Mod  the category of sheaves of Oxy-modules on a ringed space (X,0x), 8

Qcohx  the category of quasi-coherent sheaves on X = (X,Oy), 8.2
Specl(X) 9.1
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P¢  the intersection of coreflective topologizing subcategories properly containing P, 9.1

Spec?(X) 9.1

¢Q  the union of all coreflective subcategories of C'x which do not contain O, 9.1
[Q]c the smallest coreflective topologizing subcategory containing Q, 9.1

P.=PNP- 9.1.2

Specc(X) and Specée(X)*, t=0,1, extended spectra, 9.2.2
()—{PGSpec( )| TCPH 93

VX(T) = Spec(X) — Ul( )—{PGSpec (X)|TZP} 93

(T)Z{QGSpec )| Q¢ I[T 9.3

VO(T) = Spec((X) — U2(T) = {Q E Spec!(X) | Q C [T]} 9.3

7., T topologies on the spectrum SpecO(X), 9.6.3

T¢(X) the preorder of reflective topologizing subcategories of C'x, C1.2
T(X) =F(X)NF(X) bireflective topologizing subcategories of C'x, C1.2.4.1

*

T a topology on Spec(X), C1.7.1

Ts  the topology on Spec(X) generated by Spec(X), C1.7.2
Spec?(X) = Spec,c (X)—Spec(X) C21.1

UL(T )—{PeSpect( )| TCPE C22

U(T )—{QGSpect ) | QZ T C22

Supp' (M) = {P € Spec'(X) | M ¢ ObP}  the support of M in Spec’(X
Supp™ (M) = Supp' (M) (Spec™ (X) the support of M in Spec™ (X), C3.2

Chapter III

End(CX) (End(Cx),0,Idc,) the monoidal category of endofunctors of Cx, 1.1

MF (5 & ) the category of monoidal functors from Eto &, 1.3
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Spec” (2p) and Spec” (A)  2.1.1

Der(Cx)  the subcategory of continuous exact differential endofunctors, 3.3
Ass(M)  the set of associated points of M, C3.1

Ass (M) C3.1

Ass, (M) C3.1

Chapter IV

CTx = (Cx,v;%rx) triangulated category representing a t-'space’ X, 1.1
Tr€aty,  the category of triangulated k-linear categories, 1.1
S*M(X)) the preorder of saturated multiplicative systems of the t-’space’ X, 1.3
Tht(X) the preorder of thick triangulated subcategories of CTx, 1.6
Espg,.  the category of t-"spaces’, 1.9
Sz€at,  the category of svelte Frobenius k-linear abelian Z-categories, 2.1
Cx, the abelianization of the triangulated category 7Cx, 2.2
T  the smallest thick subcategory of Cx_ generated by the image of 7 in Cx_, 4.1
P*  the intersection of all thick triangulated subcategories properly containing P, 5.1
Speca(X) = {P c THt(X) | P #P*} 5.1
Spec}:’l(%) — Specy (X) — Spec}:’l(%) 5.1
Specy' (X) = {P € Tht(X) | P, =P*NPL#0} 5.1
P.=P-NnP* 522
Specz/Q(}.‘) 5.3
Supps (M)  the support of M in Specy(X), 5.5.1
Suppi{l(M) = Supps (M) N Spec}lg’l(%) the support of M in Spec}l’l(%), 5.5.1
VUE) = () Suppe(M) 552

MeE
V}:’l(E) the intersection ﬂ Supp}:’l(M), 5.5.2

MCE

7;  the compact topology on Specy (%), 5.5.3
Xog,;. the stabilizer of the morphism § at the point @ of the spectrum, 6.1.1

Chapter V

S*My(X)  the family of all saturated left multiplicative systems in C'x, 1.3.4

S* M. (X) the family of all saturated right multiplicative systems in Cx, 1.3.4
STM(X)=8"M(X)NS*My(X) 1.34

S the union of all saturated multiplicative systems of Cx which do not contain ¥, 2
SpecX(X) ={Z € SM(X) | T € S M(X)} 2.1

Speci(X) 4

CS*M(X)  the preorder of closed saturated multiplicative systems on X, 5.2, 5.2.3
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Spece(X) = €S*M(X) (N Specs(X)  the complete closed spectrum of X, 5.2.3
SpecQ(X) = {¥ € Spec(X) | ¥ € Specg(X)}  the closed spectrum of X, 5.2.3
SpecfS(X) the complete flat £-spectrum of X, 5.3.5

(

Spec?E X) ={% € Spec(X) | e Specéﬂ(X)} 5.3.5

Chapter VI

Sh the class of all arrows having a pull-back in S, 1.6
(Cx,€x)=(Cx,€x,Wx) aright exact category with weak equivalences, 1.9.2

(G dof Iso(Cx)" N €&x deflations with trivial kernels, 1.9.3

Coim(f) the coimage of a morphism f, 1.11.1

¢S  the class of deflations which are isomorphic to their coimage, 1.11.2.1
S(X,€x) the preorder of systems, 2.1

G"(X,€x) the subpreorder of &(X, ¢y) formed by stable systems of deflations, 2.1
T¢(X,Ex) the preorder of left toplogizing systems, 2.4.3

T(X,Ex) the preorder of toplogizing systems, 2.4.3

Cxr ¥ Srney ={se ey | Ker(s) € ObT} 251

31 V Xy the smallest Serre system containing »; and 5, 2.6.5

9N (X, Ex) the preorder of all thick systems of (Cx, €x), 3

gﬁfz(X, éx) = SJT(X, éx) N ‘I(X, éX, 3

62‘{()(, éx) = GQ(X, éx) N ‘Z(X, éx), 3

Supp<(S)  the subpreorder of topologizing systems, which do not contain S, 3.1
S the union of all systems of Supp=(S), 3.1

Spec,(X,€x) formed by topologizing systems S such that S=8,32

S* the intersection of all topologizing systems properly containing S, 3.3
Spect (X Cx)={Ze€3I(X,¢x) | T=X" CX*}, 33

Spec (X, Ex) = {S € M (X, Ex) | T £X* C 5}, 33

Specm (X, €x) is formed by Serre systems ¥ such that X, Ly Nyt s non-trivial, 3.7

M, (X,Ex)  the preorder of all strongly thick systems of (Cx, €x), 4.2

% = {systems T divisible in €x | T = Ex N (T o Wy), TNSE+ =Wx}, 4.3.1
ST the union of all T € R, 4.3.1
S°t  the intersection of all semitopologizing systems properly containing S, 4.4

S*¢  the intersection of all strongly stable thick systems properly containing S, 4.4

y, o zsc Nt 4.4

Specli'(X, €x) = {strongly closed systems of deflations ¥ | ¥, is non-trivial}, 4,4
Specit (X, €x) is formed by strongly closed systems X for which ¥5 £ 3, 4.4

Chapter VII
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Gpecl(ﬁ) the local spectrum of §, 1.2

Mazx($) the full subcategory of $ generated by maximal proper objects, 1.2.2
Guppe(x)  the support of z in $, 1.3

Gpec?($) is generated by z € Ob$ such that Supp (x) has a final object, 1.4

6upp% ()  the support of z in Gpec®($), 1.4.8

Us(x)  the full subcategory of $ generated by y € ObS) such that $H(y,z) =0, 1.5.2, 1.5.3

Gpec' (3, F) and Gpec® (&, F)  the spectra corresponding to a functor & , 9, 1.6
Guppg (v)  the strict support of x, A1.2

Sup?(z)  the relative strict support of z, A2.2

GpecV($H)  the full subcategory of Gpec($)) is generated by all z such that xtNZ =, A3.1
Gpec($H)  the spectrum of §, A3.1

Gpecs($H)  the strict spectrum of §), A3.2

Gpec(B, F) and Gpecs (B, F')  relative spectra, A3.4

ASS%es,F)(I) weakly associated points, C.2

mﬁg%ﬁf) () associated points, C.3
Spec ((X) = Gpec’ (S°My(X)), i = 0,2, left spectra, 3.2
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local
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"spaces’, 11.3.1
local property of the spectra, 11.4.5, 7, 9.4
local right exact 'spaces’, VI.3.6
localizations, 1.1.2
localizations at points, 11.3.2
locally finite objects, 11.9.6.3, IV.6.4.2
locally noetherian categories, 11.3.2.1
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affine, 1.1.3

conservative, 1.1.2

continuous, I.1.3
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flat, 1.1.3

locally affine, 1.3.2

monadic, 1.2.1.3

quasi-affine, 11.1.3

with a trivial kernel, VI.1.6.3
multiplicative system, 1.3.4, IV.1.3, 1.5.1,
1.6.1, V.1.1
noncommutative Grassmannians, 1.5.3
orthogonal complement, VI.2.3
pretopology

of exact localizations, I11.5.2

of Serre localizations, 11.4.4
prime spectrum, 11.2.4.1, 3.3.3, VI.8.3
quantum

base affine ’space’, 1.5.2

flag variety 1.5.2.1, 111.4.5.1, 5.5.4

hyperbolic coordinates, I11.5.7.2
quasi-affine

cocovers, 11.9.5.3

schemes, 11.9.5.5
quasi-coherent

presheaves, 1.5.3.5,

on Grassmannians, 1.5.3.6
sheaves, 1.5.1, 5.2
on presheaves of sets, 1.5.3.7

quasi-final objects, 11.4.5.1
relative spectra, VII.1.6
relative support, VII.C.1
residue ’space’

of a local ’space’, 11.3.1.2

at a point of the spectrum,
residue skew field of a local ’space’, 11.3.1.3
right exact categories, VI.1.9.1

with weak equivalences, VI.1.9.2

with stable class of weak equivalences,
1.10.3
right exact ’spaces’ over a point, VI.7.0
saturated multiplicative systems, V.1.1.3
schemes, 1.3.4
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semitopologizing systems, VI.4.1
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objects, VI.2.7
Serre localizations, 1.4, 4.4
Serre systems of deflations, VI.2.6.2, 2.6.3
skew Laurent polynomials, I11.C1.4, C1.4.1
skew polynomials, I11.C2.1.1
sober space, 11.C2.2.2, C2.2.3, C2.3.2
spectra

related with localizations, 11.6

related to coreflective topologizing sub-
categories, 11.9, 9.1, 9.4, VII.2.3.5

related with topologizing, thick and
Serre systems, VI.3
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IV.5.8.2
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thick systems of deflations, VI.2.5
thick triangulated subcategories, I1V.1.4.1,
1.5.1,1.7,1.7.1, 1.8.1, 1.8.2, 1.8.3, 4.1, 5.1,
5.2
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