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SINGULARITY ANALYSIS AND INTEGRABILITY

OF A BURGERS-TYPE SYSTEM BY FOURSOV

SERGEI SAKOVICH

Abstract. We apply the Painlevé test for integrability of partial differential
equations to a system of two coupled Burgers-type equations found by Foursov,

which was recently shown by Sergyeyev to possess infinitely many commuting
local generalized symmetries without any recursion operator. The Painlevé
analysis easily detects that this is a typical C-integrable system in the Calogero
sense and rediscovers its linearizing transformation.

1. Introduction

The system of two coupled Burgers-type equations

wt = wxx + 8wwx + (2− 4α)zzx,

zt = (1− 2α)zxx − 4αzwx + (4− 8α)wzx − (4 + 8α)w2z − (2− 4α)z3,
(1)

where α is a parameter, was discovered by Foursov [1] as a nonlinear system which
possesses generalized symmetries of orders three through at least eight but appar-
ently has no recursion operator for a generic value of α. Foursov [1] noted that
two systems equivalent to the cases α = 0 and α = 1 of (1) had already appeared
in [2] and [3], respectively, and found a recursion operator for the system (1) with
α = 1/2. Very recently, Sergyeyev [4] proved that the system (1) does possess an
infinite commutative algebra of local generalized symmetries but the existence of
a recursion operator—of a reasonably “standard” form—for a generic value of α is
disallowed by the structure of symmetries. Sergyeyev [4] found that the algebra of
generalized symmetries of (1) is generated by a nonlocal two-term recursion relation
rather than a recursion operator.

In the present paper, we find it interesting to see what the Painlevé test for
integrability, in its formulation for partial differential equations [5, 6, 7], can tell
about the integrability of this unusual system (1) with α 6= 1/2, which possesses
infinitely many higher symmetries without any recursion operator. The Painlevé
test easily detects that this is a typical C-integrable system, in the terminology of
Calogero [8]. In Section 2, we show that the singularity analysis of the Burgers-type
system (1) naturally suggests to introduce the new dependent variable s(x, t),

s = z2, (2)

to improve the dominant behavior of solutions. The system (1) in the variables w
and s passes the Painlevé test for integrability successfully: positions of resonances
are integer in all branches, and there are no nontrivial compatibility conditions at
the resonances. In Section 3, we show that the truncation of singular expansions
straightforwardly produces the transformation

w =
φx
4φ
, s =

a2

(4− 8α)φ
(3)

to the new dependent variables φ(x, t) and a(x, t) satisfying the triangular linear
system

at = (1− 2α)axx, φt = φxx + a2. (4)
1
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This linearizing transformation was found in an inverse form in [9] and used in a
form close to (2)–(3) in [4]. Section 4 contains concluding remarks.

2. Singularity analysis

First of all, let us note that the cases α = 1/2 and α 6= 1/2 of the system (1)
are essentially different, at least because the total order of the system’s equations
is different in these cases, and the general solution of this two-dimensional system
contains different numbers of arbitrary functions of one variable in these cases, three
and four, respectively. When α = 1/2, the system (1) is the triangular system

wt = wxx + 8wwx, zt = −2zwx − 8w2z, (5)

where the first equation is the linearizable Burgers equation possessing the Painlevé
property [5], whereas the second equation simply defines a function z(x, t) by the
relation z = f(x) exp

∫ (

−2wx − 8w2
)

dt, with f(x) being arbitrary, for any solution
w(x, t) of the Burgers equation. Thus, integrability of this case is trivial.

In the generic case of the Burgers-type system (1) with α 6= 1/2, we substitute
into (1) the expansions

w = w0(t)φ
σ + · · ·+ wr(t)φ

σ+r + · · · ,

z = z0(t)φ
τ + · · ·+ zr(t)φ

τ+r + · · · ,
(6)

where φx(x, t) = 1, in order to determine the dominant behavior of solutions near
a movable non-characteristic manifold φ(x, t) = 0 and the corresponding positions
of resonances. In this way, we obtain the following four branches, omitting the
ones corresponding to the Taylor expansions governed by the Cauchy–Kovalevskaya
theorem:

σ = τ = −1, w0 =
1

2
, z0 = ±

√

1

4α− 2
, r = −2,−1, 1, 2; (7)

σ = τ = −1, w0 = 1, z0 = ±

√

3

2α− 1
, r = −4,−3,−1, 2; (8)

σ = −1, τ = −
1

2
, w0 =

1

4
, ∀z0(t), r = −1, 0, 1, 2; (9)

σ = −1, τ =
1

2
, w0 =

1

4
, ∀z0(t), r = −1,−1, 0, 2. (10)

We see that the system (1) does not possess the Painlevé property because of the
non-integer values of τ in the branches (9) and (10). Nevertheless, the positions of
resonances are integer in all branches, and we can improve the dominant behavior
of solutions by a simple power-type transformation of the dependent variable z, like
we did for the Golubchik–Sokolov system in [10]. We introduce the new dependent
variable s given by (2), and this brings the Burgers-type system (1) into the form

wt = wxx + 8wwx + (1− 2α)sx,

sst = (1− 2α)ssxx −
1

2
(1− 2α)s2x − 8αs2wx + (4− 8α)wssx

− (8 + 16α)w2s2 − (4− 8α)s3.

(11)

This form is hardly simpler than the original one, but the studied system (1) in
this form (11) will pass the Painlevé test.

We substitute into (11) the expansions

w = w0(t)φ
σ + · · ·+ wr(t)φ

σ+r + · · · ,

s = s0(t)φ
ρ + · · ·+ sr(t)φ

ρ+r + · · · ,
(12)
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with φx(x, t) = 1, and find the following four branches:

σ = −1, ρ = −2, w0 =
1

2
, s0 =

1

4α− 2
, r = −2,−1, 1, 2; (13)

σ = −1, ρ = −2, w0 = 1, s0 =
3

2α− 1
, r = −4,−3,−1, 2; (14)

σ = ρ = −1, w0 =
1

4
, ∀s0(t), r = −1, 0, 1, 2; (15)

σ = −1, ρ = 1, w0 =
1

4
, ∀s0(t), r = −1,−1, 0, 2. (16)

Now the exponents of the dominant behavior of solutions, as well as the positions
of resonances, are integer in all branches.

The next step of the Painlevé analysis is to derive from (11) and (12) the recursion
relations for the coefficients wn and sn (n = 0, 1, 2, . . . ) and then to check the
compatibility conditions arising at the resonances. Omitting tedious computational
details of this, we give here only the result. The compatibility conditions turn out
to be satisfied identically at the resonances of all branches (13)–(16), hence there
is no need to introduce logarithmic terms into the expansions (12) representing
solutions of the system (11). The function ψ(t) in φ = x + ψ(t) remains arbitrary
in all branches. Also the following functions remain arbitrary: s1(t), and either
s2(t) if α = 1 or w2(t) if α 6= 1, in the branch (13); either s2(t) if α = 3/2 or
w2(t) if α 6= 3/2, in the branch (14); s0(t), s1(t) and w2(t) in the branch (15); and
s0(t) and w2(t) in the branch (16). The generic branch is (15): the expansions (12)
contain four arbitrary functions of one variable in this case, thus representing the
general solution of the system (11).

Consequently, the Burgers-type system (1) in its equivalent form (11) has passed
the Painlevé test for integrability.

3. Truncation technique

There is a strong empirical evidence that any nonlinear differential equation
which passed the Painlevé test must be integrable. The test itself, however, does
not tell whether the equation is C-integrable (solvable by quadratures or exactly
linearizable) or S-integrable (solvable by an inverse scattering transform technique).
Often some additional information on integrability of the studied equation, such
as its linearizing transformation, Lax pair, Bäcklund transformation, etc., can be
obtained by truncation of the Laurent-type expansion representing the equation’s
general solution [5, 11, 12, 13, 14, 15, 16, 17].

Let us apply the truncation technique to the system (11). We make the trun-
cation in the generic branch (15) which corresponds to the general solution. In
what follows, the simplifying reduction φ = x + ψ(t), wn = wn(t) and sn = sn(t)
(n = 0, 1, . . . ) is not used. We substitute the truncated expansions

w =
w0(x, t)

φ(x, t)
+ w1(x, t), s =

s0(x, t)

φ(x, t)
+ s1(x, t) (17)

to the coupled equations (11), equate to zero the sums of terms with equal degrees
of φ, and in this way obtain the definitions

w0 =
φx
4
, s0 =

φt − φxx − 8w1φx
4− 8α

(18)

for the coefficients w0 and s0, as well as a system of four nonlinear partial differ-
ential equations for three functions, w1(x, t), s1(x, t) and φ(x, t). Two of the four
equations of that system are the same initial equations (11) with w and s replaced
by w1 and s1, respectively, which means that the obtained system and the relations
(17) and (18) constitute a so-called Painlevé–Bäcklund transformation relating a
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solution (w1, s1) of (11) with a solution (w, s) of (11). The other two equations of
the obtained system are fourth-order polynomial partial differential equations—let
us simply denote them as E1 and E2 because it is easy to obtain them by computer
algebra tools but not so easy to put them onto a printed page—which involve the
functions w1, s1 and φ and contain, respectively, 55 and 110 terms.

Fortunately, there is no need to study the obtained complicated system of four
nonlinear equations for compatibility in its full form. Instead, let us see what will
happen if we take w1 = 0 and s1 = 0, which means that we apply the obtained
Painlevé–Bäcklund transformation to the trivial zero solution of the system (11).
The reason to do so consists in the following empirically observed difference between
C-integrable equations and S-integrable equations, which, as far as we know, has
never been formulated explicitly in the literature. A Painlevé–Bäcklund transfor-
mation of a C-integrable equation, being applied to a single trivial solution of the
equation, produces the whole general solution of the equation at once. Examples
of this are the Burgers equation [5] and the Liouville equation in its polynomial
form uuxy = uxuy + u3 [12]. On the contrary, numerous examples in the literature
show that a Painlevé–Bäcklund transformation of a S-integrable equation, being
applied to a single trivial solution of the equation, produces only a class of special
solutions of the equation, usually a rational solution or a one-soliton solution with
some arbitrary parameters.

Taking w1 = 0 and s1 = 0, we find that the equation we denoted as E1 is satisfied
identically, whereas the equation we denoted as E2 is reduced to

(φt − φxx)(φt − φxx)t +
1

2
(1− 2α)(φt − φxx)

2
x

− (1− 2α)(φt − φxx)(φt − φxx)xx = 0.
(19)

The general solution of this fourth-order equation contains four arbitrary functions
of one variable, which is exactly the degree of arbitrariness of the general solution
of the system (11). For this reason, we conclude that the system (11) must be C-
integrable. Now it only remains to notice that, if we introduce the new dependent
variable a(x, t) such that

φt − φxx = a2, (20)

the equation (19) becomes linear:

at = (1− 2α)axx. (21)

Finally, combining the relations (17), (18), (20), (21) and w1 = s1 = 0, we obtain
the exact linearization (3) and (4) for the system (11).

4. Conclusion

In the present paper, we used the Painlevé test for integrability of partial differ-
ential equations to study the integrability of a system of two coupled Burgers-type
equations discovered by Foursov, which possesses an unusual algebra of generalized
symmetries as was shown by Sergyeyev. The Painlevé analysis easily detected that
the studied Burgers-type system is a typical C-integrable system in the Calogero
sense and rediscovered its linearizing transformation. As a by-product, we obtained
a new example confirming the empirically observed difference between the Painlevé–
Bäcklund transformations of C-integrable equations and S-integrable equations. In
our opinion, the Painlevé test deserves to be used more widely to search for new in-
tegrable nonlinear equations, because with its help one can discover new equations
possessing such new properties which look unusual from the point of view of other
integrability tests.
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