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ON TOPOLOGICAL ENTROPY:
WHEN POSITIVITY IMPLIES +INFINITY

SERGIT KOLYADA AND JULIA SEMIKINA

ABSTRACT. In this paper we study the relations between the properties of the
topological semigroup of all continuous selfmaps S(X) on a compact metric
space X (the topological group H(X) of all homeomorphisms on X) and possi-
ble values of the topological entropy of its elements. In particular, we prove
that topological entropy of a functional envelope on the space of all continuous
selfmaps on Peano continua or on compact metric spaces with continuum many
connected components has only two possible values 0 and +oo.

1. INTRODUCTION AND MAIN RESULTS

Let X be a compact metrizable space and S(X) be the set of all continuous maps
from X into X. Obviously, S(X) is a topological semigroup under composition
and the compact-open topology. Since X is compact then, as is well known, the
compact-open topology coincides with the topology of uniform convergence derived
from a metric p compatible with the topology on X. Moreover, the latter topology
is independent of the choice of the metric o. Another topology on S(X), equivalent
to the two already mentioned, is the topology given by the Hausdorff metric. In fact,
the maps in S(X) have closed graphs and so we can consider a distance between
elements of S(X) defined as the Hausdorff distance (derived from, say, maximum
metric in X x X) of their graphs. We will work with both of them in S(X): the
uniform and the Hausdorff metrics.

By a topological dynamical system we mean a pair (X, f), where X is a
metric (compact) space and f : X — X is a continuous map. The main topic
of our research is to study the relations between the properties of the topologi-
cal semigroup S(X) (the topological group H(X) of all homeomorphisms on X)
and possible values of the topological entropy of its elements (continuous maps
and homeomorphisms, respectively). More precisely, mostly we will consider the
following two questions: 1) when does a compact metric space admit a continuous
map (homeomorphism) with positive topological entropy? 2) when does the exi-
stence of a positive-entropy continuous map on a compact metric space imply the
existence of a +oo-entropy continuous map?

If A is a set in a metric space, by B.[A] or B.[A] we will denote the union of
all open or closed, respectively, balls of radius € > 0 whose centers run over the
elements of A. If A = {a}, we write only a instead of {a}, i.e., B.(a) and B.(a).
Let also dBc(a) := B.(a) \ B:(a).

Recall that the Hausdorff distance dy between two sets A; and As in a metric
space X is given by

dH(Al,AQ) = inf{a >0: EE[AI] > A2 and E&-[AQ] D) Al} .

2010 Mathematics Subject Classification. Primary 37B40; Secondary 54H20, 54H15.
1



2 S. KOLYADA AND JU. SEMIKINA

This is a metric on the family of all bounded, nonempty closed subsets of X. Note
that if X is compact we can apply this metric to (the graphs of) continuous maps
from X to X.

Given a compact metric space (X,d), the set (group) H(X) of all self-
homeomorphisms of X, and the set (semigroup) S(X) of all continuous maps from
X to X, we will consider the following metrics on these sets:

e the metric d, of uniform convergence (for H(X)): du(p,v) =
sup,c x max{d(¢ = (z),v "1 (x)),d(¢(x),¥(z))}. The corresponding space
will be denoted by H,(X).

e the metric dy of uniform convergence: dy(p,1) = sup,cx d(¢(x), ¥ (x)).
The corresponding spaces will be denoted by Hy(X) and Sy(X). Note
that dy(p,) is well defined for any bounded selfmaps of X (in fact, for
any selfmaps of X, since X is bounded).

e the Hausdorff metric dy (derived from the metric dpax((21,¥1), (22,¥2)) =
max{d(z1,22),d(y1,y2)} in X x X) applied to the graphs of maps (we
identify a map and its graph, so we will write dg (¢,%)). The corresponding
spaces will be denoted by Hy (X) and Sg(X).

For any o,9 € H(X) we have dy(p,¢) < dy(p,v) < dy(p,¥) and for any
p, 0 € S(X) we have dy(p,v) < dy(p,v). If X is a compact metric space then
the topologies given by the uniform metric and Hausdorff metric are equivalent in
H(X) and in S(X).

In particular, a subset of H(X) (of S(X)) is compact in H,(X) (in Sy (X)) if and
only if it is compact in Hy(X) (in Sg(X)). In general the two metrics are not uni-
formly equivalent (two maps which are close to each other in the Hausdorff metric,
may have a large distance in the uniform metric). Of course, on compact subsets
of H(X) (of S(X)) they are uniformly equivalent. Therefore H,(X) (Sy(X)) is
compact if and only if Hy(X) (Sg(X), respectively) is compact. Finally, recall
that the space H,(X) (Sy(X)) is complete, but in general not totally bounded and
the space Hy(X) (Sp(X)) is totally bounded but in general not complete and so
in general none of them is compact.

Nevertheless, the compactness of the S(X) and H(X) is not a very strict condi-
tion and takes place quite often, because both of them may be very small. Recall
that a topological space X is said to be rigid, if the full topological homeomorphism
group H(X) is the identity. De Groot and Wille in [4] showed the existence of rigid
plane locally connected one-dimensional continua (Peano curves). Later Cook in
[3] constructed examples of (two) metric rigid continua such that: 1) the space of
all continuous maps S(X) (the full topological transformation semigroup) consists
only of the constant maps and the identity; 2) the space of all homeomorphisms
H(X) (the full topological transformation group) is topologically equivalent to the
Cantor set. But it is still an open problem what can we say about the topological
structure of the compact full topological homeomorphism group H(X) and of the
compact full topological homeomorphism group S(X) (see the conjecture below).

Recall that a topological group is called profinite group if it is Hausdorff,
compact, and totally disconnected. Gartside and Glyn (|6]) have established that
every metric profinite group is the full homeomorphism group of a continuum.
Recently Hofmann and Morris in [8] proved that a compact full homeomorphism
group of a Tychonoff space is a profinite topological group. But the following
conjecture is still open (see [9] for details):
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Conjecture 1. Let G be a compact group. Then the following conditions are
equivalent:

(1) There is a compact connected space X such that G = H(X).
(2) There is a compact space X such that G = H(X).
(3) G is profinite.

If (X, f) is a dynamical system given by a compact metric space X and a conti-
nuous map f : X — X then the functional envelope of (X, f) is the dynamical
system (S(X), Fy) whose phase space is the space of all continuous selfmaps of X
with the compact-open topology (considered as a metric space with the uniform
metric or with the Hausdorff metric applied to the graphs of maps) and the map
Fp: S(X) — S(X) is defined by Ff(¢) = f o for any ¢ € S(X). This notion is
one of the main in this paper and was first introduced in [1].

Note that the functional envelope of a system always contains an isometric copy
of the original system — from this the name ‘functional envelope’ comes.

If X is a compact metric space and f : X — X is continuous, then the map
Fy : ¢+ f o is uniformly continuous as a map Sy(X) — Sy(X), as well as a
map Sy (X) — Su(X) (see [1] for details). Hence the topological entropy (by the
Bowen-Dinaburg definition, see Section 2) of (S(X),Fy) is well-defined for these
metrics on S(X). Since the functional envelope of a system always contains a copy
of the original system, namely the constant mappings, we have h(Fy) > h(f). The
same inequality for the topological entropy of the functional envelope (H(X), Fy)
(i.e. the map Ff(p) = foy for a fixed f € H(X) and any ¢ € H(X)) is not clear,
and we do not know the answer in general.

Thus, if we denote the topological entropies of the systems (Sy(X),Fy) and
(Su(X), Fy) by hy(Fy) and hg(Fy), respectively, then hy (Fy) > hu(Fy).

Theorem A. Let X be a compact metric space. If S(X) is compact, then for
any f € S(X) topological entropy of (X, f) and topological entropy the functional
envelope (S(X), Fy) is zero. If H(X) is compact, then for any f € H(X) topological
entropy of (X, f) is also zero.

We will use here the term ‘continuum’ in two distinct meanings: the
nondenumerable set of real numbers (set theory) and a nonempty, compact, metri-
zable, connected space (topology). A locally connected continuum is often called a
Peano continuum.

It is well known that the topological entropy of a generic homeomorphism (conti-
nuous map) on a compact manifold with or without boundary the dimension of
which is greater then one and the topological entropy of a generic continuous map
on the interval is +oo (see [20] and [2] for details). In general we do not know
when a compact metric space admits a continuous map (homeomorphism) with
positive topological entropy and when this implies the existence of a continuous
map (homeomorphism) with 400 topological entropy. Nevertheless we have the
following

Theorem B. Let X be a compact metric space with a nontrivial Peano subconti-
nuum or with continuum many connected components. Then X admits a continuous
map with infinite topological entropy, i.e. there exists a continuous map f: X — X
with h(f) = +oo.

Some examples of computing the topological entropy of the functional envelope
(S(X), Fy) can be found in [1] and in all of them the topological entropy takes one
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of the values {0, +oc}. This observation gives rise to the following conjecture from
[11].

Conjecture 2. Let (X, f) be a topological dynamical system and (S(X),Fy) its
functional envelope. Then the only possible values of h(Fy) are 0 and +o0.

First progress on this conjecture was done by Matviichuk in [13], who consi-
dered the case of the compact interval. He proved that zero topological entropy of
the system (I, f), where f is a continuous selfmap of the interval I, implies zero
topological entropy of its functional envelope (Sg (), Fy) (and it was known that
positivity of topological entropy of (I, f) implies infinite entropy of (Sg (1), Fy)).
We describe a method of proving this conjecture for certain class of spaces, in
particular it works in the case of an interval and the Cantor set.

Theorem C. Let X be one of the following compact metric spaces: a Peano conti-
nuum or a space with continuum many connected components. Let f be a continuous
selfmap of X. Then the only possible values of h(Fy) are 0 and +oco.

Acknowledgements. We thank E. Bilokopytov, Y. Gutman, M. Matviichuk, D.
Radchenko, L. Snoha and E. Tymchatyn for useful remarks and discussions. The
first author was supported by Max-Planck-Institut fiir Mathematik (Bonn); he
acknowledges the hospitality of the Institute. The second author was supported by
Bonn International Graduate School in Mathematics.

2. COMPACT HOMEOMORPHISM GROUPS AND CONTINUOUS SELFMAP
SEMIGROUPS

Recall the Bowen-Dinaburg definition of topological entropy (see [18]). Let (Z, o)
be a metric space and f : Z — Z be uniformly continuous. For any integer n > 1
the function

on(z,y) = max o(f(x), /' (y))

defines a metric on Z equivalent with p.

Fix an integer n > 0 and € > 0 and let K be a compact set in Z. A subset £ C K
is called (n, f, e)-separated, if for any two distinct points z,y € E, g, (z,y) > . We
say that a subset F' C Z (n, f,e)-spans the set K, if for every point 2 € K there
exists a point y € F such that g,(x,y) < e. Note that since K is compact, E is
finite and F' may be infinite, but a finite subset that still spans K exists.

Denote by sep(n, f,e; K) the maximal cardinality of a (n, f,e)-separated set in
K, and by span(n, f,e; K) the minimal cardinality of a set which (n, f,e)-spans K.

For every € > 0 and n > 0 it holds

span(n, f,e; K) < sep(n, f,&; K) < span(n, f,£/2; K) .
The topological entropy h(f, K) on a compact set K C Z, is defined by

1 1
h(f, K) := lim limsup — log sep(n, f,e; K) = lim lim sup — log span(n, f,&; K).

e=0 posco N e=20 pooo M

Then the topological entropy h(f) of a map f: Z — Z is defined by
ho(f) = h(f) :=sup{n(f,K): K C Z and K is compact} .

If span®(n, f,e; K) denotes the minimal cardinality of subsets of the compact
set K which (n,f,e)-span K then spanf(n,f,e;K) < sep(n,f,e;K) <
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span® (n, f,e/2; K) and h(f,K) = lim._,olimsup,_,, & logspan®(n, f,&; K) (see
18]).

For uniformly equivalent metrics o1 and g2 we have h,, (X, f) = h,, (X, f), and
if o1 is stronger than gq, then hy, (X, f) > ho, (X, f) (see [18]).

We know that if X is compact, then the map F¢ : ¢ — f o ¢ is uniformly conti-
nuous on both the spaces Sy(X) and Sy (X), and so we can study its topological
entropy. Recall that dy(¢1, p2) > d(p1,@2) for all p1, s € S(X) and that these
two metrics are equivalent on S(X), hence uniformly equivalent on compact subsets
of S(X).

A system (X, f) is called wuniformly rigid if f™ converges uniformly to idx
for some n; — oco. The w-limit set of x € X, denoted by ws(x), is the set of
accumulation points of the forward orbit {f(z), f(z), ..., f"(x),...}. The identity
map X — X will be denoted by idx.

Proof of Theorem A. Recall that Sy(X) is compact if and only if Sy(X) is
compact. So, let us prove the theorem for S(X) = Sy(X). Since space Sy(X)
is compact, by the Ascoli theorem (see [15], Chapter 7 in [10]) Sy (X) is an equi-
continuous family of maps on X. It means that for every € > 0 there is a § > 0 such
that for all z,y € X with d(x,y) < § and all p € Sy(X) we have d(p(z), p(y)) < .

In particular, if dy(¢1,92) < 0, @1,92 € Sy(X), then for every g € Sy(X) it
holds dy(g o ¢1,9 0 p2) < €. Hence the map Fy is equicontinuous on the space
Su(X) (ie., the family {FY, FJ?, -, I, ...} is equicontinuous).

If a set is (n, Fy,e)-separated, then it cannot contains points from Sy (X) on a
distance less than a corresponding §. Since Sy (X) is compact, the cardinalities
of such sets are bounded above by some constant depending only on § (in fact
depending on €): sep (n, Fy,e) < C(e). It follows

N 1 - 1
h(Fy) = Ehin hzn_ilip - log sep (n, Fy,e) < g% h?—iip - logC(g) = 0.
Therefore 0 = hy (F) > huy(F) > h(f).

As we mentioned before the case of a functional envelope (H (X), Fy) if f € H(X)
is a bit more complicated. Formally there is no direct relation between topological
entropies h(F) and h(f) in this case. If H(X) is compact, then topological entropy
of a functional envelope (H(X), Fy) is zero (the proof is the same as for the case
(S(X), Fy)).

Since H(X) is compact, the w-limit set wr, (idx) is nonempty. From Corollary
4.19 in [1] it follows that (X, f) is uniformly rigid and therefore topological entropy
h(f)=0. O

3. THEOREM C FOR THE INTERVAL AND THE CANTOR SET

If Z is a compact metric space and T : Z — Z is a continuous map, let 22 denote
the space of closed subsets of Z provided with the Hausdorff metric. It is well
known that 27 is also a compact metric space, and there is a naturally induced
action of T on 2%, defined by T(A) = {T(z)|x € A}. Recall that a quasi-factor of
the dynamical system (Z,T) is a (closed) T-invariant subset of 2.

Let (X,g) and (Y, f) be dynamical systems, where X and Y are compact metric
spaces, g € S(X), f € S(Y). Consider the product system (X xY, gx f). Of course,
the map g x f may be applied also to any subset of X x Y, in particular to graphs
of continuous maps X — Y. Denote by gr(¢) the graph of a map ¢ € C(X,Y),
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ie, gr(y) == {(z,y) € X xY :y = p(x)}. The set Gr(X,Y) := {gr(¢) : ¢ €
C(X,Y)} of the graphs of all continuous maps from X to Y is a subset of 2X*Y,
When g is a homeomorphism then one of the quasi-factors of the dynamical system
(X xY,g x f) is the dynamical system (Gr(X,Y), g x f). In particular, if X =Y,
g is the identity map on X and we will make no distinction between maps and
their graphs, then the system we get is the functional envelope (S(X), Fy), where
Fr(p) = fop. So, formally the functional envelope (S(X), Fy) is the same as the
dynamical system (Gr(X?),idx x f), i.e. for any ¢ € S(X) the map F; maps each
point (z,y) € gr(y) into the point (z, f(y)) € gr(f o ¢) (in other words does not
change the first coordinate, see Figure 1).

gr(v)

(a, f(¢(a))) gr(foyp)

1
1
1
1
1
1
1
13
1
1
1
1
1
1
1
1
1
1
1

Figure 1.
The dynamical system (X2,idx x f) and a fiber X, := {(z,y) € X% : & = a}.

Let topological entropy of the map Fy be equal to o and 0 < « < +o0. Then
for any ¢ > 0 there is a compact subset K C S(X) such that

h(Fy, K) := lim lim sup 1 logsep(n,e, K) > o — 6.
e=0 pnosco N

We are going to show the existence of a precompact (with compact closure in
the natural topology) subset Kx of S(X) with entropy at least twice bigger than
on K. We will do it for any compact subset of S(X) and it does not depend on the
space Sy (X) or Sg(X).

Recall that, since X is a compact metric space, the uniform metric and Hausdorff
metric are equivalent in S(X) and uniformly equivalent on each compact subset of
S(X). Therefore a subset K of S(X) is compact in Sy(X) if and only if it is
compact in Sy (X). It is also well known that a subset of S(X), where X is a
compact metric space, has compact closure in a natural topology on S(X) if and
only if the subset is equicontinuous.

For much better understanding, we will provide firstly the proof of Theorem C
for two cases: when X is a compact interval or the Cantor set. Then we will use
these important cases for the general one.

Theorem 3.1. Let f be a continuous map on the interval I. Then the only possible
values for the topological entropy h(Fy) (does not matter hy (Fy) or huy(Fy)) are 0
and +oo.

Proof. Let I :=[0,1] and divide this interval into 3 equal parts. On the first part
we define a finite family of maps 77 from [0,1/3] to I in the following way: ¢ € T}
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if g(x) = ¢(6x), x € [0,1/6] and q(z) = p(6(1/3 — x)), = € (1/6,1/3] for a p € K.
On the third part we define a finite family of maps T3 from [2/3,1] to I as follows:
g €Ty if g(x) = ¢ (6(x — 2/3)), x € [2/3,5/6] and g(z) = ¢¥(6(1 — x)), = € (5/6,1]
for a ¢ € K.

Now we “glue” each map from 7T} with any one from T3 so that to get a continuous
map on the whole interval I. Just one additional assumption we need to all of
these maps - they must be constants on small neighborhoods of points 1/3 and 2/3
inside of the interval [1/3,2/3]. For instance, as it is showed on the picture (see
Figure 2) by using a copy of the tent map 7(z) = 6(x — 1/3), « € [1/3,1/2] and
T(x) =6(2/3 —x), = € (1/2,2/3].

1 1
gr(v)
gr(y) |
1 1 1 2 5
0 ! 0 i 3 2 5 @5 U
Figure 2.

Graphs of 4 constructed maps from K.

So, we have defined the following sets of continuous maps 77 := {g : [0,1/3] — I :
g(x) = p(6(x)), if z €10,1/6], and g(z) = ¢(6(1/3—2x)), if z € (1/6,1/3],p € K}
and T3 := {q : [2/3,1] = I : q(z) = ¥(6(x —2/3)), if x € [2/3,5/6], and ¢q(z) =
P(6(1 —x)), if x € (5/6,1],% € K}. Let also A := {(1/3,y) € I? : y = g(1/3),9 €
Ti} and B := {(2/3,y) € I? : y = q(2/3),q € T3}. Consider the following family of
tent maps

a, x€[1/3,1/3+ a/6];
Top(x) =q7(x), x€(1/3+a/6,2/3—p/6];

B, x € (2/3-5/6,2/3],
where 0 < o < 1and 0 < 8 < 1. Define Ty := {Thp : @ € A, 3 € B}. Put
Ky := Ty UTo UT;. Obviously Kx € S(I) and K;, K, are compact by the
definitions. Therefore K; and Ky are also the equicontinuous sets. So, for the
precompactness of Kx the set To must be also an equicontinuous set. But it is
obviously true, because each map from 75 is a continuous map which consists of
"two constant maps" parts and "always the same tent map" part.

We are going to investigate both cases Sy (I) and Sy (I) for the (n, Fr,e; Kk )—

separating properties.

e Case of Sy(I). Fix a positive ¢ and a positive integer n. Let F = E(n,e) C K
be an (n, Fy,e; K)-separated subset with the cardinality sep(n,e, K) (the maximal
cardinality of the (n, Fy,e; K)-separated subsets of ). In the uniform metric two
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maps ¢ and ¢ are (n, Fy,e)-separated if there are an integer 0 < j <n —1, and a
pair of points (x, f7(¢(z))) and (x, f?((x))) (one point on each graph of the maps
f? o and f7 o), respectively) with the same first coordinate and sufficient big
distance (> €) between the second coordinates.

For each map ¢g from E there is a map G € Kk the graph of which has at
least one compressed copy of g (on the interval [0,1/6] and/or [2/3,5/6]). Since
the compression maps are (z,y) — (2/6,y) and (x,y) — (/6 + 2/3,y) on these
intervals, respectively, it does not change the second coordinates of graphs there.
Therefore there exist of a set Ep C Ky which is (n, Fy, e; K )-separated and its
cardinality is at least (sep(n, e, K))2.

e Case of Sy(I). Again fix a positive ¢ and a positive integer n. Two maps ¢
and ¢ are (n, Fy,e)-separated in Sy (I) iff there exists some x € [0,1] that the
distance dpay in I x I between the point (z, f¥ o ¢(x)) on the corresponding graph
and any point (2, f¥ o ¢)(z')) on the another graph is bigger than e. Hence, after
the compression of this maps they will be (n, Fy, %;KiK)fseparated, because the
distance between points may be less up to 6 times.

So, the sets E, which consist of at least (sep(n, e, K))? maps, are (n, Fy,&; K )—
separated in Sy (X) and (n, Fy, &; K )-separated in Sy (X), respectively. This
means that entropy h(Fy, Ki) is at least twice bigger than h(Fy, K).

Hence, we can conclude that the only possible values for h(F}) are 0 and +oc0. O

One can see that the proof for the case of the Cantor set is similar to the proof
of Theorem 3.1, so we leave it to the reader.

4. LOCALLY CONNECTED CONTINUA

Before we start to prove the main result of this section — Theorem C, let us recall the
following classical Hahn-Mazurkiewicz theorem: A non-empty Hausdorff topological
space X is a continuous image of the unit interval if and only if it is a compact,
connected, locally connected metrizable space (i.e. Peano continuum).

Proof of Theorem C- the first part. Let X be a locally connected metric conti-
nuum (with a metric d) and let K be a compact subset of S(X). Take a maximal
cardinality (n, F,e; K)-separated set in K and denote it by E = E(n,e). Now we
are going to find a precompact set Kx C S(X), which depends only on K and has
at least (sep(n,e; K))? of (n, Fy,e; K¢ )-separated maps for each positive integer n
and € > 0. We will do it similarly as in the proof of Theorem 3.1.

For a fixed point zyp € X let us define r : X — I by r(z) = d(zg,x) -
(maxyex d(wo,y))~'. Of course, the map r is continuous and surjective. By
the Hahn-Mazurkiewicz theorem there also exists a continuous surjective map
1] = X.

Now, let p,¢ € K and let ¢(z) = (i(6r(x))), if r(z) € [0,1/6] and ¢(z)
p(i(6(1/3 — r(x))), if r(z) € (1/6,1/3]; g(z) = (i(6(r(x) — 2/3))), if r(z)
[2/3,5/6] and g(z) = ¥(i(6(1 — r(x)))), if r(z) € (5/6,1]; 7(x) = i(6r(x) — 2), i
r(z) € [1/3,1/2] and 7(z) = i(4 — 6r(x)), if r(x) € (1/2,2/3].

For any pair ¢, € K we also define the following map:

somol
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(@), r(z) € [0,1/3];
a1 (1/3),  r(x) € (1/3,a)

(=), r(z) € (a,1/2];
Cor@=1 "), r(z) € (1/2.0)
g1 2/3)), () € (b2/3];

o(a), r(x) € (2/3.1),

where a := min{y € [1/3,1/2] : i(6y — 2) = ¢(i(0))} and b := min{y € [1/2,2/3] :
i(4 —6y) = 1(i(0))} (such values are non empty, because i maps I onto X). Obvi-
ously also that G, : X — X is continuous (see Figure 3).

X
1 gl‘(G%w)
T~ LS ~
0 S NN I 1

T~ [N T

=

X
Figure 3.

So, we can define K as the following set K := {G, 4 € S(X) : p € K,¢ € K}.
It is easy to check that the set K is equicontinuous and therefore precompact in
S(X).

Recall that the modulus of continuity of a continuous map ® on the compact
metric space (X, d) is defined, with € > 0, as

P) = A(®(z), D(y)).
w(e, @) max max (®(x), ®(y))

Put ¥(x) :=i(6(r(z))) for any x € X. Since ¥ € S(X) is uniformly continuous on
X, the modulus of continuity w(e, ¥) tends to 0 when € — 0.

Let Ep = {Gyy € S(X) : ¢ € E, v € E}. Obviously that the cardi-
nality of Ef is greater than or equal to (sep(n,e,K))?. The set Ep C Ky is
(n, Fy,e; K¢ )-separated in Sy (X) and (n, Fy, ew; K )-separated in Sy (X), where
ey := min{e;w(e, ¥)}. This means that entropy h(Fy, Kf) is at least twice bigger
than h(Fy, K). Therefore h(Fy) is equal to +oc or 0. O
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5. COMPACT METRIC SPACES WITH UNCOUNTABLY MANY CONNECTED
COMPONENTS

Before we start to prove the second part of Theorem C (for the case when X is a
compact metric spaces with continuum many connected components), let us provide
all the tools we need.

Recall that a decomposition D of a topological space X is upper semi-continuous
(u.s.c.) if for each element F in D and each open set U containing E, there is an
open set V' such that £ C V C U and V is the union of members of D.

It is well known that every compact metric space is a continuous image of the
Cantor set. We will also use the following inverse version of this fact:

Theorem 5.1. Every compact metric space (X, d) with continuum many connected
components can be continuously mapped onto the Cantor set.

Proof. A decomposition of the space X into connected components generates an
equivalence relation on X. Let Y := X/~ be the quotient space and g : X — Y
be the quotient map. Given a compact metric space X the decomposition of X
into components is upper semi-continuous and hence the quotient space Y is a
continuum (see Theorem 2.2 in [16]).

A locally compact Hausdorff space is zero-dimensional if and only if it is totally
disconnected. Y is a compact metric space, therefore it is also locally compact. As
a consequence Y is zero dimensional. Since Y is a separable metric space, all but
countably many points of Y are condensation points (i.e. each neighbourhood of a
condensation point contains uncountably many points) and the set of condensation
points is perfect. Therefore the set of condensation points of Y is homeomorphic to
the Cantor set C'. Sierpinski [17] showed that every nonempty closed subset of C'is a
retract of C. This gives us the following well-known fact: every nonempty compact
zero-dimensional metrizable space is homeomorphic to a retract of C. Since Y is
zero-dimensional, every non-empty closed subset of Y is a retract of Y. Hence C
is a retract of Y. O

Proof of Theorem C- the second part. The proof is almost the same as the proof
of Theorem C - the first part, from the Section 4. We just need to replace the
map 7 : I — X by a continuous surjective map i’ : C — X, where C is the Cantor
set, and the map r : X — I should be replaced by a continuous surjective map
r’: X — C (the existence of such a map follows from Theorem 5.1). O

6. COMPACT METRIC SPACES WITH +00-ENTROPY MAPS

In this section we prove Theorem B. The proof will consist of two cases: 1) X
— compact metric space with a nontrivial Peano subcontinuum; 2) X — compact
metric space with continuum many connected components. In order to prove it, we
need the following generalisation of the commutativity of the entropy from [12].

Theorem 6.1. Let X and Y be compact topological spaces. For any continuous
maps f: X =Y and g: Y — X the topological entropies h(go f, X) and h(fog,Y)
are equal.

Proof. Since f o (go (f og)o f, the map f semiconjugates go f : X — X
with fog: f(X) — ). The semiconjugacy f: X — f(X) is surjective and so

f) =
(X
h(go f) = h(f o g, f(X)). Similarly, h(f o g, f(X)) > h(go f,(go f)(X)). Since
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(9o f)(X) C X and h(F,X) = h(F, F(X)) for any continuous map F : X — X, we
get h(go f, X) = h(f o g, f(X)).

Similarly one can show that h(fog,Y) = h(gof,g(Y)). So, we have h(fog,Y) =
hgg ° f,g()Y)) < hlgo f,X) = h(fog, f(X)) <h(fog,Y). Hence h(go f, X)
h(fogY).

Ol

Proof of Theorem B. Case 1. Recall that a space Y is said to be arcwise
connected provided that any two points of Y can be joined by an arc in Y. It
is known that every Peano continuum is arcwise connected (see Chapter VIII of
[16]).

Let P be a nontrivial Peano subcontinuum of the compact metric space X =
(X,d). Take a point zyp € P. Let us define the map r : X — I by r(z) =
d(xo,z) - (maxyex d(zo,y)) ™", which is continuous and surjective.

Now, take a point 21 € P and assume without loss of generality that r(z1) = 1.
Since P is arcwise connected there is an arc L C P which connects zg and 1, i. e.
a homeomorphism ¢ : I — L such that ¢(0) = o and ¢(1) = ;.

Take a point xo € L such that z3 = ¢(az), where az := max{z € ¢~}(L N
0By /2(x0))}. Let Ly be the closed subarc of L connecting points 2, and x; and
J1 = [ag, aq], where o := 1. Obviously that ¢(J1) = Ly and r(Ly) = [1/2,1].

Let x3 € L be a point such that z3 = ¢(a3), where ag := min{z € ¢~ 1(L N
0By /4(x0))}. Take a point x4 € L such that x4 = ¢(ay), where ay := max{z €
¢~ (LN OBy s(x0))}. Let Ly be the closed subarc of L connecting points x4 and
x3 and Jo = [ay, ag]. Obviously that ¢(J2) = Lg and r(L2) = [1/8,1/4].

Continuing in the same way we have the following sequence of points from L:
Zop—1 € L is a point such that z9,—1 = ¢(ag,—1), where ag,—1 := min{z €
¢~ (LN 0By j92n-2(20))}; T2n € L is a point that xo, = ¢(az,), where ag, =
max{z € ¢~ (L N OBy o2n-1(x0))}. Let Ly be the closed subarc of L connecting
points x9, and x9,—1 and J, = [ag,,as,—1]. Obviously that ¢(J,) = L, and
r(Ly) = [1/227~1,1/22"=2] (see also Figure 4).

Figure 4.

Since ¢ : I — L is a homeomorphism, the sequence «,, is converging to 0
when n — oo. Therefore we can define a homeomorphism ¢ from I onto L such



12 S. KOLYADA AND JU. SEMIKINA

that ¢(1/2"7!) = z,, for any n = 0,1,2,.... Let I,, := [1/2?"711/22"=2]. Then
o(I,) = L,, and as we already know r(L,,) = I,.

Now we define a continuous map g : I — I with topological entropy h(g) = +o0
in a standard way. Let s > 2. Recall that an s-horseshoe for a continuous map
f I — Iis a closed interval A C I and closed subintervals Ay, ..., A; of A with
pairwise disjoint interiors, such that f(A;) = A for j = 1,...,s. We shall denote
this horseshoe by (A; A1, ..., As). By the Misiurewicz theorem [14] the existence of
an s-horseshoe for f implies that topological entropy h(f) > logs.

So, let g be a continuous map which is piecewise monotone surjective (with 2n+1
pieces of monotonicity) on each closed interval I,, and is the identity map on the
interval between I,,41 and I,,, n > 1. Since g has an 2n+ 1-horseshoe for any n > 1,
obviously we have that h(g) = 400 (see Figure 5).

1

I
gr(g)

I

I3

R R & n !
Figure 5.

So, we have defined the following continuous map f := pogor from X into itself,
more precisely from X onto L. We can rewrite this composition as the following
(so called) non-autonomous dynamical system

xSrsr5rhr5rs0 514505121505
Since we have the following inequality for topological entropy h(f) > h(f|z, L) =

h(¢ogor, L), instead it we will consider the the following periodic non-autonomous
dynamical system
rsr3rsrhrsrsn 1S 35131505

Using the commutativity of topological entropy (see Theorem 6.1), we can write
this as h(f|r, L) = h(pogor,L) = h(rowog,I) = h(gorop,I). Since ¢(I,) = L,
and r(L,) = I,, for any n > 1, the map gorop: [ ™% I on the interval I,, has an
s(n)-horseshoe for any n > 1, where s(n) > 2n + 1. Therefore topological entropy
h(f) > h(f|L7L) = h(goro%j) = +00.
Case 2. Although one can just repeat the proof as the proof of the previous case,
we give here somewhat different one. Let ¢ : X — C be a continuous map from the
space X onto the Cantor set C'. Such a map exists by Theorem 5.1. Take a map
g : C — C with topological entropy h(g) = +o00. Obviously such maps exist (see for
instance [7]). As we have mentioned above, it is also well known that every compact
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metric space is a continuous image of the Cantor set. Let ¢ : C ™% X be such a

continuous map. So, we have defined the following continuous map f := ¥ ogoi
from X onto itself.

Using again the commutativity of topological entropy, we can write h(f) =
h(f,X)=h(pogoi,X)=h(iotpog,C) = h(goiop,C). Since iop is a continuous
(surjective) map from C onto itself and C' is a compact metric space, it is easy to
show that h(g,C) < h(goiog,C).

Really, let (7,Y) be a dynamical system, given by a continuous map 7" and a
compact metric space Y, and let S : Y — Y be a continuous surjective map. Then
for any € > 0, any positive integer n and any (in particular, of maximal cardinality)
(n,T,e)-separated set E in Y there exists an (n, ToS, ¢)-separated set Es C S™(E)
in Y with at least the same cardinality. So, obviously h(T) < h(T o S).

Therefore h(f) = h(g) = +00. As a concluding remark let us mention also that
if in Case 1 X is a Peano continuum, then there also exists a continuous surjective
map with 400 topological entropy. ([l
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