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ON REGULAR GROUPS OF AUTOMORPHISMS
OF TRIVALENT POLYGONAL COMPLEXES
WITH NON-POSITIVE CURVATURE

Jacek gwigtkowski

Polygonal complex is a 2—dimensional polyhedral cell complex which is homogeneous,
i.e. each its cell is contained in a 2—cell. We shall refer to 0—, 1- and 2—cells as vertices,
edges and cells respectively. Polygonal complex X is trivalent if each its edge is contained
in exactly three cells.

A group I of automorphisms of a polygonal complex X is regular if it acts transitively
on flags in X, i.e. on incident triples (vertez,edge,cell). Polygonal complex X which
admits a regular group I' of automorhisms is called itself regular. Of course, if X is
regular, then the group Aut X of all its automorphisms is regular, since it contains I".

Simply connected regular polygonal complexes with nonpositive curvature (see (1.2)
below) are the 2-dimensional geometric analogs of regular trees; we will call them shortly
regular 2-trees. The class of regular 2—trees is very rich, and the classification of the
trivalent case has been obtained in [Poly]. The classification of regular 2—trees with higher
valency is, according to our knowledge, an open problem.

The present paper is motivated by the result of D. Djokovi¢ and G. Miller (see [DM])
— classification of a class of regular (i.e acting transitively on the set of all oriented edges)
groups of automorphisms of the trivalent tree. We study regular groups of automorphisms
of trivalent 2—trees, and give a method to construct examples of such groups which are
proper subgroups in full automorphism groups. In many cases the full automorphism group
of a regular polygonal complex is uncountable, but a subgroup obtained by our method is
discrete.

Here is a short description of our method.

Given a vertex v in a polygonal complex X, the link of X at v, denoted L(v, X), is a
graph whose vertices and edges represent respectively the edges and cells adjacent to v in
X, and a relation of being a face is induced from that in X.

If X is a regular polygonal complex, then there exist a natural number & > 3, and a
trivalent regular graph L, such that

(i) each cell of X is a k-gon, i.e. its boundary consists of &k vertices and k edges;
(i) links of X at all vertices are isomorphic to L.

We will call any simply connected polygonal complex satisfying (i) and (ii) a (k, L)-
complex.

Given a regular subgrup G C Aut L we define an additional structure on a (k, L)—
complex, which we call G-structure. We define also a notion of G-isomorphism, i.e. com-
binatorial isomorphism respecting G—structures.

Each regular group of automorphisms of a (k, L)-complex X induces canonically a
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G-structure on X, with some regular G C Aut L. In our approach we take the opposite
direction: we construct and classify regular groups of automorphisms of non—positively
curved (k, L)-complexes, which arise as groups of G-automorphisms of G-structures.

The idea behind our formalism is to view a regular graph L equipped with a reg-
ular subgroup G C AutL as a "less symmetric” regular graph. It turns out that the
methods developed in [Poly] apply to the study of regular polygonal complexes with such
"reduced” graphs as links, and these are nothing else than (k, L)-complexes with regular
G-structures. On the other hand, the results of [Poly] are contained in those of this paper
as a case when G = Aut L.

I would like to thank Max Planck Institut fiir Mathematik in Bonn, where I found
both inspiration and good conditions for work, and during my stay in which this paper
was written.

0. Trivalent graphs with regular groups of automorphisms.

0.1. Definitions and general results.

A graph L is 3—valent, if its each vertex is contained in exactly three edges. A group
G of automorphisms of L is regular, if it acts transitively on the set of all incident pairs
(vertex,edge) in L. If L admits a regular group of antomorphisms, we say that L itself
is regular. Of course, if L is regular, then the group Aut L of all its automorphisms is
regular.

Given a natural number s, an s-arc in a graph L is a sequence (vg,v1,...,0s) of its
vertices, such that
(i) (vi,vip1)isanedgeof L, fori=0,...,s—1;
(ii) vi #vigp fori=0,...,8 - 2.
Any group G of automorphisms of L clearly acts on the set of all s—arcs in L, for any s.

Definition. A group G of automorphisms of L is called s—arc-transitive, if it acts transi-
tively on the set of all s—arcs in L. It is s—regular, if it acts simply transitively on s-arcs.
Graph L is s—regular, if so is the group Aut L of all its automorphisms.

In the paper [T] W. Tutte initiated the study of regular groups of automorphisms of
trivalent graphs by proving the following.

Theorem [Tutte, 1947]. Let L be a finite, connected, trivalent and regular graph. Then
L is s—regular for some s € {1,2,3,4,5}.

The study culminated in the work of D. Djokovit and G. Miller [D-M], where they
indicated seven classes of s—regularity, according as s € {1,2',2”,3,4',4” 5}. In both cases
of s =2 or s = 4 the s'- and s”’-regularity are the subcases of s-regularity, distinguished
by means of edge stabilizers. The main result of [D-M] is the following.

Theorem [Djokovié—Miller, 1980].
Let L be a finite, connected and trivalent graph, and G a regular group of its automor-
phisms. Then G is s-regular for some s € {1,2/,2",3,4',4",5}.
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Moreover, Theorem 3 on page 211 of [D-M] shows the possible regularity types of
pairs (G, G’) of a regular group G and its regular subgroup G’.

0.2. Some examples.
The main source of examples for us is "The Foster Cenzus” [F| of trivalent regular
graphs. For the reader’s convenience we mention here several examples.

Many regular trivalent graphs correspond to 1-skeletons of regular tesseations of sur-
faces by polygons. A tesselation is called regular if the group of its combinatorial symme-
tries' acts transitively on the set of all flags, i.e. incident triples (vertex,edge, polygon),
of this tesselation. The most obvious examples are the tesselations of the sphere corre-
sponding to the boundaries of platonic solids: tetrahedron, cube and dodecahedron. The
corresponding 1-skeletons are 2-regular graphs.

We mention several non-spherical examples.

1. The Petersen graph of girth 5 and 10 vertices, which is 3-regular, corresponds to a
tesselation of the projective plane by 6 pentagons. This tesselation can be obtained from
dodecahedron by the antipodal identification.

2. The incidence graph of the Desargues configuration, which is 3-regular, consists
of 20 vertices and has girth 6, corresponds to a tesselation with six 10-gons of the non-

orientable surface with yx = —4. This tesselation can be obtained from the previous
 tesselation of the projective plane by the 2—fold cover branched over barycenters of all six
pentagonal cells.

3. The full bipartite graph K (3, 3), which is 3-regular, corresponds to a tesselation of
the torus by three hexagons.

4. The Mobius-Kantor graph of girth 6 and 16 vertices, which is 2-regular, corre-
sponds to a tesselation of the genus 2 oriented surface by six octagons. This tesselation is
obtained from the cube by the 2—fold cover branched over the barycenters of all six square
faces.

5. There is also a tesselation of the torus by 7 hexagons, the 1-skeleton of which is
isomorphic to the 4-regular Heawood graph having 14 vertices and girth 6. (This graph
can be also described as the incidence graph of the projective plane over the field Fy of
order 2; it is also a spherical building of type A;.) However, the symmetry group of
this tesselation is transitive only on flags with given orientation, i.e. it does not contain
orientation reversing mappings of the torus.

For any graph represented as a l1-skeleton of a tesselation, each symmetry of this
tesselation induces an automorphism of the graph. If a tesselated surface is orientable,
and its tesselation regular, then the group G of all symmetries of this tesselation, and the
group Gt of all orientation—preserving symmetries, induce the groups of automorphisms
of the graph, which are 2'— and 1-regular respectively. The 1-regular subgroup appears
also in case of the Heawood graph (example 5 above), as induced from the full symmetry
group of the tesselation corresponding to this graph.

If a regularly tesselated surface is non-orientable, we get by the same procedure a
2'-regular group of automorphisms of the corresponding graphs.

In many cases.the groups described above are the proper subgroups in full automor-
phism groups of corresponding graphs.



1. G-structures, G—isomorphisms, and the Main Theorem.

Consider a trivalent graph L, an s-regular group G C Aut L of its automorphisms
and a (k,L)-complex X (see definitions in the introduction and in section 0). Given a
vertex v of X, a collection A, of isomorphisms v : L(v, X) — L will be called a G-atlas
at v, if for any two maps 7,7 € A,, we have ¥ oy~ € G, and A, is a maximal collection
with this property. Note that a G-atlas A, is in fact determined by any its element v by
A, = {go~y:g € G}. Note also, that the number of distinct G-atlasses at v corresponds
~to the index of G in Aut L. The maps of any G-atlas will be called charts. - -

A G-structure on X, is a set G = {4, : v € X} of G-atlasses, one for each vertex
v of X. A (k,L)-complex X equipped with a G-structure G will be called a (k, L,G)-
complex.

Let T : X — Y be a combinatorial isomorphism of (k, L}-complexes. Denote by
Ty : L(v, X) = L{T(v),Y) the induced isomorphism of links. If the complexes are equipped
with G-structures G = {A, : v € XD} and ¢’ = {A, : w € Y(O}, then T is said to respect
G-structures G and G’ (or, it is a G-isomorphism), if for any vertex v of X, and any charts
vy€ A, and v € Air(v)’ we have

(1.1) ¥ oT,oq7 ! €G.

Note that if (1.1) holds for some y € 4, and 7' € A'T(v), then it holds for any such -y and

!

¥

We denote the group of all G-automorphisms of a complex X with a G-structure
G by Aut(X,G). A (k,L,G)-complex (X,G) is said to be flag—symmetric, if the group
Aut(X,G) is flag-transitive on X. Note, that if X is a flag-symmetric (k, L)-complex,
and G is a proper subgroup of Aut L, then Aut(X,G) is a proper subgroup of Aut X,
becouse its elements induce less isomorphisms on links. On the other hand, in the trivial
case of G = Aut L, there is only one G-structure G on X, which in fact gives no additional
structure, and we have Aut(X,G) = Aut X.

We say that a group T" of automorphisms of a (k, L)—complex X is rigid, if its elements
are determined by restriction to the star of any vertex (called also a 1-ball in X); it is
weakly rigid, if it is not rigid, but its elements are determined by restriction the star of star
of any vertex (we will call such a piece a 2-ball in X). If a group I' is vertex—transitive, then
it follows from its rigidity (or weak rigidity) that the stabilisers of vertices (which are all
isomorphic) are finite, the group is finitely generated, and it acts properly discontinuously
and cocompactly on X.

A group I is flexible, if for any finite subcomplex P C X there exists an automorphism
F in T such that F|p = idp and F # idx. In such a case stabilisers of vertices are
uncountable, and the compact—open topology on I' is nondiscrete.

1.1. Main Theorem.
Let L be a finite connected _regular and trivalent graph, & > 3 a natural number, and
assume that the following non-positive curvature condition is satisfied (compare Remark
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0.5 in [Poly]}):

(1.2) g(L)

v

where g(L) is the length of shortest nontrivial circuit in L. Moreover, let G C Aut L be
an s—arc-regular-subgroup-of automorphisms of graph L. |

In the following statements (k, L, G)—complexes are considered to be equal, if they are
G-isomorphic.
(1) If G is s-regular with s € {3,4',4”,5}, and if k > 4, then there exists a unique
(k, L, G)-complex (X, G), it is flag-symmetric, and the group Aut(X,G) is flexible.
(2) If G is 1-regular, then there are two distinct flag-symmetric (k, L, G)-complexes, and
in each case the group Aut(X,§) is rigid.
(3) If one of the following conditions is satisfied:
(i) G is 2'-regular;
(ii) G is 2"-regular, and k is even;
then there are two distinct flag-symmetric (k, L, G)-complexes, and in each case the
group Aut(X,G) is rigid.
(4) If G is 2"-regular, and & is odd, then no (k, L, G)-complex is flag-symmetric.
(5) If G is 3-regular, and k = 3, then there are as many distinct (k, L, G)-complexes as

G—invariant elements in the cohomology group H*(L, Z3). The group Aut(X,G) is in
each such case weakly rigid.

(6) If G is s-regular with s € {4’,4"”,5}, and k = 3, then there are two distinct flag-
symmetric (k, L, G)-complexes, and in each case the group Aut(X,G) is flexible.

1.2. Remark on chart changes in L.

Let g : L — L be an element of G. For any maps f : Y —- L, h: L — Y and
~¢:L — L, consider the maps f' =go f, K = hog™! and ¢/ = gopog™t. Then we say
that f’, ' and ¢’ are the results of a chart change in I, or that they are equal to f, h and
@ respectively, up to a chart change in L. It is important that an isomorphism ¢ used to
define a chart change in L belongs to the subgroup G; the similar operations with use of
isomorphisms which are not in G are not chart changes.

Note the following facts, the proofs of which come straightforward from the definition
of a chart change.

1. The subgroup G itself does not depend on a chart change in L.

2. Since any GG-atlas consists of isomorphisms obtained from a fixed one by all chart
changes in L, it clearly does not depend on a chart change in L. Similarly, the notions of
G-structure and G-isomorphism are independent on chart changes in L.
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2. Inductive construction of a (k, L, G)—complex.

In this section we recall briefly the general construction of a (k, L)—complex of non-
positive curvature, as presented in section 3 of [Poly]. We indicate the additional feature
of this construction, so that it produces not only a complex, but also a G-structure on it.

2.1. Definition of a (k, L}-complex with convex boundary.

Let K be a 2-dimensional cell complex, with all 2-cells k—gonal. A vertex w of K is
called 1-free, if the link L(w, K) is a single edge; it is 2—free, if L(w, K) is isomorphic to a
star of vertex in a 3-valent tree, i.e. it consists of three edges adjacent with one endpoint
to a common vertex; it is 3—free, if L{w, K) is isomorphic to a star of edge in a 3—-valent
tree. An edge of K is called free, if it is contained in exactly one cell of K, and it is
interior, if it is contained in three cells of K. A vertex w is interior, if the link L(w, K) is
isomorphic to L.

K is a (k, L)-complex with convex boundary, if each its vertex is either interior or
m—free, for some m € {1,2} if k > 4, and for some m € {1,2,3} if kK = 3. Note that then
each edge of K is either interior or free, and denote by 0K the subcomplex of K consisting
of all free edges, and call it the boundary of K.

A G-structure on a (k, L)-complex K with convex buondary, is a collection Gx of
G-atlasses at interior vertices of K. A combinatorial isomorphism between two such com-
plexes is a G—~isomorphism, if it satisfies (1.1} for all interior vertices of the first complex.

2.2. Initial step of the construction.

Arrange a disjoint collection of k—gonal cell, labelled by edges of the graph L, around
an initial vertex v, by glueing them along edges according to the pattern provided by L,
so that the link of resulting complex at v is isomorphic to L, and only the edges which are
adjacent to v have been glued. We will denote the complex obtained in this way by Bj,
since it corresponds to a 1-ball in a (k, L)}-complex. Note that the labelling of cells of By
provides the isomorphism -y : L(v, B;) =& L. We take the G-atlas A = {goy: g € G} at
v, getting a G-structure on B;.

2.3. General inductive step.

Note that the complex B; constructed above is a (k, L)-complex with convex bound-
ary, and therefore we can apply everything that follows below in this subsection to it, thus
initiating a process of an inductive construction.

Let K be a finite (k, L)-complex with convex boundary, and assume 0K # (. Denote
by K the complex obtained from K by glueing two new k-gonal cells to each its free
edge, without performing any other glueings. For each free (i.e. not interior) vertex w
of K consider a label map A, : L(w,f(") — L, which is by definition locally injective, i.e.
injective on star of each vertex in L(w,I? ). Denoting by VoK the set of the boundary

vertices of K ,call a collection A = {A,, : w € VyK} of such label maps a label system for
K.



Remark. Note that under non—positive curvature condition (1.2), the only cases when a
label map A,, is not injective (globally) are:
(i) w is 2—free and ¢(L) < 4;
(i) w is 1-free and g(L) = 3;
since 3—free vertices w, by convexity, appear only when k = 3, but then g(L) > 6 by (1.2},
which 1mplies injectivity of A,.
In any case, we have

(21) )\wlL(w,K) is injective.

For each free vertex w of K consider a copy B}’ of a complex isomorphic to By, together
with a chart v, : L(vy, B}’) — L defining a G-structure on it (where v,, is the interior, i.e.
central vertex of BY). Consider the composition map (7y,,) "t oAy, : L(w, K ) = L(v,,, BY),
and denote by %, : st(w, K ) — B}’ the naturally induced map on stars of the corresponding
vertices. Define a complex K = K(A) by

(22) K= f(: U¢,w1 Biul U... U,p . B‘{U’",

where wy, ..., w, are all the vertices of 0K.

Note that, due to (2.1), K is naturally embedded in K. Moreover, as it is proved in
3.6 of [Poly], K is again a finite (k, L)-complex with nonempty convex boundary.

Assume we have a G—structure Gg on K, i.e. a collection of G-atlasses at interior
vertices of K. We shall extend Gk to a G-structure in K, in a canonical way. Note that
the complexes BY’* are naturally embedded in K, since a target space of a glueing map
always embeds into a composition space obtained by a glueing. Thus, we can think of
charts 7,,, of those balls as of charts v, : L{(w;, K) = L. These determine G-atlasses
Ay, = {g°7w, : g € G} at vertices w;, and we define

(2.3) g? =Gg U {Aw.- Fwy € VaK}

Since the only new interior vertices of K are those contained in the boundary of K, G is
a G-atlas for K.

2.4. Remark. Note that, denoting by &, : L{w, K ) = L{w, K) the map induced on links
by the canonical map K- K, we have 4, 0 Ky = Ap. This means that our distinguished
charts 4, coincide with the label maps A,, on the parts of links corresponding to K. We
shall use this fact later.

To summarize, we construct a (k, L, G)—complex by an infinite sequence of succesive
steps from K to K, starting with K = B;. The initial chart for B;, together with the
sequence of label systems used at all steps, determine uniquely the G-structure G = | J Gk
on the resulting (k, L)-complex X.

2.5. Lemma. A (k,L,G)-complex constructed.as above does not depend, up to G-
isomorphism, on chart changes in L, for the label maps used at all steps of the construction.
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More precisely, if A’ is a label _system obtained by chart changes in L from a system A,
then the complexes K(A) and K(A') are G-isomorphic by an isomorphism extending the
identity on K.

The proof of above Lemma consists of straightforward manipulations with chart
changes, and we omit it.

2.6. Remark. Note that any (k, L, G)-complex (X,G) can be obtain by means of the
general construction above, if the label maps at the corresponding steps of the construction
are chosen appropriately.

To see this, consider a subcomplex K in X, with convex boundary, and a G—structure
G on it, restricted from the one on X. We shall interpret the star st(K,X) of K in X,
as a complex f(A) obtained from K by procedure described in 3.3, with use of some label
system A.

Recall that the star st(K, X) is the subcomplex of X consisting of all cells of K, and
cells adjacent to the boundary vertices of K. We then have the obvious map pu : K->
st(K, X), extending id g, well defined up to transpositions at pairs of cells not contained in
K, and adjacent to its boundary edges. For w € VoK, let py : L{w, K) = L{w, st(K, X))
be the induced map on links. Consider any chart «,, from the G-atlas at w for the G-
structure G on X, and put

(2.4) Aw = Y © Moy,

thus getting the label system A = {A,, : w € VpK}. A standart checking shows that the
complexes st(K, X) and K(A) are then canonically G-isomorphic by the G-isomorphism
extending idg.

Remark 2.6 follows by applying above interpretation to n—balls in X, i.e. to the
subcomplexes of X obtained by the succesive iteration of the operation of taking star, first
applying it to a vertex in X.

3. Order systems and characteristic functions.

As it is explained in Remark 2.6 of the previous section, each (k, L, G)-complex can be
obtained by a variant of the inductive construction there described. The choices of label
systems provide freedom in the construction, allowing non-G-isomorphic complexes to
appear. In this section we introduce characteristic functions of label systems — the notion
usefull in the study of the G-isomorphism question for resulting (k, L, G)-complexes.

3.1. Definitions of order systems in L.

Let p be a vertex, and e an edge of L.

3.1.1. Let z,y be the vertices of edge e. Denote by O, and O, the pairs of edges
in L, distinct from e, adjacent to z and y respectively, with distinguished order for each
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pair. We will call them ordered pairs of peripheral edges at edge e, and the whole system
(e, 0z, Oy) an order-system at e.

3.1.2. Let z,y, z be all the vertices of st(p, L) distinct from p. Denote by O, O, and
O, the pairs of edges in L, not contained in st(p, L), adjacent to x, ¥ and z respectively,
with distinguished order for each pair. We will call them ordered pairs of peripheral edges
at star of vertex p, and the whole system (p, O, Oy, O,) an order-system at star of p.

3.1.3. Let z,y,2 and u be all the vertices of st{e, L) not contained in e. The system
(e, 04,0y, 0,,0,) consisting of ordered pairs of edges in L, adjacent to z, y, z and u
respectively, and not contained in st(e, L), will be called an order-system at star of e, and
its elements ordered pairs of peripheral edges at star of e.

3.1.4. Denote by O, the cyclically ordered triple of edges in L adjacent to p. We will
call (p,0,) a cyclic order at p.

All orders at pairs of peripheral edges, or at a triple in the last case, will be called
peripheral orders.

3.2. Definition of good label systems.

Assume we have fixed order-systems in L of all four types 3.1.1-3.1.4, and let K be a
finite (k, L)-complex with convex boundary, as defined in 2.1. Denote by V3K the set of
vertices of K contained in the boundary 0K.

We will say that a label system A = {\,, : w € V3K } is good, if its label maps satisfy
the following conditions:

(i) if w is 1-free in K, then A,(L{w,K)) = e, where e is the edge appearing in the

corresponding order-system in L;

(ii) if w is 2-free in K, then A, (L{w, K)) = st(p, L), where p is the vertex appearing in

the corresponding order-system in L;

(iii) if w is 3-free in K, then Ay, (L(w, K)) = st(e, L), where e is the edge appearing in the

corresponding order-system in L.

3.3. Remark. Note that, due to transitivity of G on vertices and edges of L, each label
system can be made good by the appropriate chart changes in L, for its label maps.

3.4. Characteristic functions of good label systems.

Let EsK denotes the set of boundary edges of K. Given a good label system A =
{Aw : w € VpK}, for each edge d € EsK and its endpoint w, consider the order on the
pair of cells in K \ K adjacent to d, induced by the label map A,, from the order system of
" appropriate type in L. Since d has two endpoints, we have two such induced orders. We
define a characteristic function x5 : EpK — {0,1} by

(3.1) xald) = { 0 if the two corresponding induced orders agree;
1 otherwise.



3.5. K—equivalences of label maps and label systems.

Given w € VyK, we say that label maps A, A : L(w,f{' — L) are K-equivalent,
if Alp(w,x) = X|L(w,k), i-€. their restrictions to the link of K coincide. Label systems
A={dy:we VyK}and A = {N, : w € VypK} are K—-equivalent, if for each w € VpK
the label maps A, and A, are K-equivalent.

The significance of the notions of K—equivalence and and characteristic function of a
good label system becomes apparent due to the following lemma, which will be used later
in the classifications up to G—isomorphism. We shall also use characteristic functions to
define local invariants of G—isomorphism in the next section.

3.6. Lemma. If two good label systems A = {\, : w € VpK} and A’ = {A, : w €
Vo K} are K-equivalent, and have equal characteristic functions, then there exists a unique
combinatorial automorphism T : K(A) = K (A’) satisfying the following conditions:

(i) T|x = idx;

(i) Ty = (7,,) "L o vy for each w € VK.
Moreover, T is a G-isomorphism with respect to G-structures g,?( A) and Gf( A

(Recall that T, is the isomorphism induced on the links at w by isomorphism T, and

that v, and v, are the charts at vertex w naturally appearing during constructions of
K(A) and K(A') respectively.)

Proof: By K—equivalence of label systems A and A’, in view of Remark 2.4, we have

(3.2) ((7i) ™" o Yw) | L(w, k) = 18L(w, k)

for each w € VpK. This means that condition (i) is compatible with conditions of form
(ii), for all vertices w € VpK. It remains to check, wheather conditions of form (ii), for
any two adjacent vertices, are compatible.

By the equality of characteristic functions xa and xar at a boundary edge d = (v, w),
we get that either both (v,)~! o1y, and (v,,)~! 0. induce a tranposition at cells of K\K
adjacent to d, or they both induce the identity on them. In any of the cases, this gives the
compatibility of conditions (ii) for v and w, since the stars st(v, K) and st(w, K) intersect
only at three cells adjacent to d.

Since the conditions (i) and (ii) together determine T' at stars of all interior vertices
of K, by their compatibility we get both the existence and uniqueness of T.

To prove that T is a G-isomorphism, we check (1.1) at each vertex w € V3K by
putting v = «,, and ¥’ = «,,, thus getting
(3.3) Y oTwor !t =1, 0 (1) o) ovy' =idL €G.

4

This finishes the proof of Lemma.
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4. Local invariants of G—isomorphism.

4.1. Action of G on order systems.

It is clear that G acts on the sets of: vertices, edges, oriented edges, stars of vertices and
stars of edges in L, and consequently on the corresponding order systems in L. We extract
the following results concerning these actions from Propositions 1-5 of {[DM] (compare
Properties 2.2.1, 2.3.1, 2.4.1 and 2.5.1 in [Poly]).

4.2. Proposition.

(1) Any clement of the stabiliser Stab(p,G) C G
(a) preserves a cyclic order at p, if G is 1-regular;

(b) either preserves all three peripheral orders at star of p, or reverses them all, if G
is 3-regular, and orders are properly chosen (it is not true for each choice).

(c) either preserves all three peripheral orders at star of p, or reverses exactly two of
them, if G is s-regular for some s € {4’,4",5}.

(2) Any element of the subgroup Stab(e,G) C G of automorphisms fixing e, but not
necessarily its endpoints either preserves both peripheral orders at e, or reverses them
both, if G is 2'-regular;

(3) Any element of the subgroup Stab*(e,G) C G of automorphisms fixing edge e as
oriented edge, i.e. together with its endpoints, either preserves both peripheral orders
at e, or reverses them both, if G is 2"'-regular.

(4) any element of G fixing edge e, but reversing its orientation, reverses exactly one of
the peripheral orders, if G is 2”-regular.

(5) The converse of any of above statements is true, i.e. for any change of peripheral
orders mentioned in any of the cases (1)-(4) above, there exists a corresponding au-
tomorphism from G, which results with exactly this change.

4.3. Local invariants of G—isomorphism.

Invariants described in this subsection are closely related to those described in section
2 of [Poly]. To describe them by means of characteristic functions, we shall view local pieces
in {k, L)~complexes, such as stars of edges, of cells, or of 1-balls, as been constructed out
of those edges, cells or 1-balls respectively, by means of procedure of section 2.3, as it is
explained in Remark 2.6. Note that, by Remark 3.3, the label system of form (2.4) can be
always chosen to be good, and Proposition 4.2 clearly applies in this situation.

G, as always, denotes an s—arc-regular subgroup of Aut L.

- 4.3.1, Case s =1.

One easily extends all the notions, constructions and results introduced so far in this
paper, to a little bit degenerate case of K equal to a single edge d = (wy, w3). Define K,
to consist of three k—gonal cells glued to d along some of their edges, and fix a cyclic order
(p,Op) in L, as defined in 3.1.4. Define a label system A for K, to consist of two label
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maps A; : L(w;, K) — L. A is said to be good, if Mi(L{w;, K)) = p, for i = 1,2. Given
such a good label system, induce twice the cyclic order from L to the set of three cells of
K, by pulling back with respect to the label maps A;, and define characteristic function

xa : {d} = {0,1} by

0 if the two induced cyclic orders agree;
4.1 @) = { ’
(4.1) xa(d) 1 otherwise.

The value of xa does not depend on the chart changes in L for which the label maps
A; remain good, since the stabilizer of vertex p in G preserves the cyclic order O, (see
Proposition 4.2(1)(a)).

Then, viewing the star st(e, X) of any edge e as been constructed in the way as above,
put

(4.2) ex,g(e) = xa(e),
for some good label system A of form (2.4).

4.3.2. Case s =2'.

Given a cell ¢ in a (k, L)~complex X, put K = ¢, and consider a good label system
A of form (2.4) for K. Since by Proposition 4.2, an element [xa] € H'(8K, Z2) does not
" depend on the choice of A, put

(4.3) £x,6(c) = [xal-

4.3.3. Case s = 2",

Consider a variant of the order system of form 3.1.3 at an edge e in L, to consist of
an oriented edge e, and two orders at peripheral pairs at e. Then given an oriented cell ¢t
in a (k, L)-complex X, put K = ¢, and note that ¢ induces the orientations on edges d.
corresponding to c, in links L{w, X) at vertices w of ¢. We wiil say that a label map A,
for K is good, if it maps d. onto e preserving orientations.

Consider a good label system A of form (2.4) for K (which clearly exists due to the
transitivity of G on the set of oriented edges in L), and note that due to Proposition 4.2(3),
the cohomology element

(4.4) £%.6(c™) = [xal

does not depend on the chart changes in L, for which A remains good in the above explained
sense.

Note also that due to Proposition 4.2(4), if ¢* denote the opositely oriented cells
related to a nonoriented cell ¢, then

(4.5) Ex clc™) #ExglcT)if k is odd, and &y g(c*) = €% g(c7) if k is even.
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4.3.4. Case s =3.
For a vertex v in X, let K be a 1-ball centered at v, and A a good label system of form
(2.4) for K. Since by Proposition 4.2, an element {x5] € H(0K, Z,) does not depend on

" the choice of A, put

(4.6) nx.6(v) = [xal-

4.3.5. Case s € {4/,4”,5} and k =3.
Let v, K and A be as in 4.3.4. Then by Propostion 4.2, the number

(4.7) oxg)= Y xa(d) (mod 2)
deEg K

does not depend on the choice of A.

4.3.6. Lemma. In all four cases above, the quantities ¢, &, n and o are the invariants of
G—-isomorhism of the corresponding complexes st(K, X).

In case of s = 3 this requires the following more carefull statement. If T : Ba(v) —
Ba(w) is a G-isomorphism of 2-balls in (k, L)-complexes, and T1 = T|gp, (v is the re-
striction of T' to the boundary of the 1-ball B;(v), then T} pulls back n(w) to n(v), i.e.
T (n(w)) = (o).

The proof of Lemma 4.3.6 consists of the straightforward manipulations with G-
- structures, and we omit it.

5. Conditions for label systems, related to local invariants.

The general construction of (k, L, G)—complexes, as presented in section 2, does not
provide any control on local invariants of resulting complexes. In this section we describe
how to provide such a control, in terms of restrictive conditions for label systems used at
corresponding steps of construction. We shall use letter C' as a variable, speaking about
condition C, whenever refering to conditions of this genaral form. We shall prove that
conditions of this type are consistent, i.e. that there exist label systems which satisfy
them. We shall also prove that these conditions determine resulting complexes uniquely,
up to G-isomorphism.

5.1. Description of conditions.

Given k and L satisfying nonpositive curvature condition (1.2), we shall call an n-ball
a (k, L)-complex with convex boundary, equipped with a G-structure, obtained from a
1-ball as described in 2.2, by succesive application of n — 1 steps of construction described
in 2.3.
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In the following descriptions of conditions C, K will denote an n-ball with its G-
structure Gx. We shall denote by L the set of good label systems for K, satisfying given
condition C.

5.1.1. The case when G is 1-regular.

Denote by Fou: K the set of all outer edges in K, i.e. those which have at least one
vertex on the boundary K. Consider any function e¢ : Eoe K — {0,1}, and define
condition C by '

(5.1) A e L iff €R(A) (e) = ec(e) for each e € F, K.

Remark. Note that a G-structure Gg, together with a condition C, determine values of
invariant € at all edges of K, so that no stronger condition can be expressed in terms of
this local invariant.

5.1.2. The case when G is 2'-regular, or when G is 2”-regular and % is even.
Denote by Coy K the set of all outer cells of K, i.e. those which contain at least one
boundary vertex. Consider any function & : Cpy: K — Z5, and define condition C by

(6.2) A€ LG iff Exny(€) = €c(c) for each ¢ € Coue K.

In the above equation we use the canonical identification of H'(dc, Z;) with Z,.

Note that due to (4.5), when G is 2"-regular and k is even, we can view £’ as an
invariant of nonoriented cells. Then define condition C in this case in exactly the same
way, replacing € by zi” in (5.2).

Remark. Note that G together with C, determine values of invariant £ (or £” respec-
tively) at each cell of K, so that no stronger condition can be expressed in terms of this
invariant.

5.1.3. The case when G is 2”-regular and k is odd.

For each cell ¢ € Cyy K choose an orientation, and denote the set of so oriented cells
by Co.K (note that only one of the two oriented cells corresponding to a given cell of
Cout K is contained in C%, K). Consider a function £ : C%1, K — Zs, and define condition
C by

(5.3) A€ LG iff %(A)(c) = £z (c) for each c € Co, K.

Remark. Note that, due to (4.5), if the value of £” is determined at an oriented cell,
then it is also determined at this cell with opposite orientation. Thus, a G-structure G,
together with a condition C, determine values of £” at all oriented cells of K, so that no
stronger condition can be expressed in terms of this invariant.

5.1.4. The case when G is 3—regular.
Denote by K~ the (n —1)-ball contained in K, corresponding to the one step shorter
construction, i.e. centered at the same point, and such that K— = K. For each v €
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VoK, consider the boundary dB;(v) of the 1-ball centered at v, and an element n¢ (v) €
HY(8B1(v), Z3), thus getting a sheaf nc of cohomology elements. Define condition C by

(5.4) A e LS iff W(A)(”) = ne(v) for each v € VK.

5.1.5. The case when G is s-regular for some s € {4',4”,5}.
Under notation of 5.1.4, consider a function o¢ : V3K~ — Z,, and define condition
C by

(5.5) A e LG iff 0%y (v) = oc(v) for each v € VoK™

Remark. Note that a G-structure G and a condition C, determine valeues of invariants
1 or o (in the corresponding cases of s-regularity of G) at all vertices of K, so that no
stronger conditions can be expressed in terms of these invariants.

The rest of this section is devoted to proving the following two results concerning
conditions C described above. For the second result, recall the notion of K—equivalence of
label systems, introduced in 3.5.

5.2. Proposition. Let C be any of the conditions described in 5.1. Then the set £ of
good label systems satisfying this condition is nonempty.

5.3. Proposition. Any two label systems Ay, Ay € L§ are K—cquivalent, after appropri-
ate chart changes in L for label maps of one of them.

Proposition 5.2 means that any condition C of 5.1 is consistent, while Proposition
5.3, in view of Lemmas 2.5 and 3.6, is the first step towards the proof that such condition
determines the resulting complex K uniquely up to G-isomorphism. The proof of this last
fact will be completed in section 6.

Before strarting to prove Propositions 5.2 and 5.3, we need to establish some facts
concerning the notion of an order structure in a trivalent graph.

5.4. Order structures in trivalent graphs.

By a trivalent graph we shall mean a connected graph @, each vertex of each is adjacent
either to one or to three edges of Q). () is a tree, if it is simply connected, i.e. contains no
nontrivial cycle of edges. We shall denote by 0@Q the set of all boundary vertices of @, i.e.
those which are adjacent to only one edge of Q.

5.4.1. Three types of order structures.

Type 1. If v is an interior (i.e. not boundary} vertex of @, an order atlas at v consists
of a choice of a cyclic order at v (i.e. a cyclic order for the edges of Q adjacent to v).
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An order structure of this type in @ consists of a collection of fixed order atlasses at all
interior edges of Q.

Type 2. Let e be an. interior edge of @, i.e. one with both endpoints interior. An
order atlas at e consists of two order systems at e (as described in 3.1.1), that differ by
the simultaneous change of both peripheral orders. An order structure in @ of this type
consists of a collection of fixed order atlesses at all interior edges of Q).

Type 3. We shall need also a variant of order structure consisting of order atlasses at
oriented interior edges of J. Order atlasses of this structure consist of two order systems
that differ by the simultaneous change of both peripheral orders. Moreover, order atlasses
of this structure, at any two edges with opposite orientation, differ from each other by a
change of any one of their peripheral orders (peripheral pairs of edges are the same at such
two edges).

- 5.4.2, Examples: G-invariant order structures in L.

We define such an order structure by simply taking an orbit of the action of G in the
space of order systems at vertices, edges or oriented edges in L (compare 4.1), arranging
elements of this orbit into a collection of order atlasses in the obvious way. More precisely

(i) if G is 1-regular, we define an order structure of type 1;
(i) if G is 2'-regular, we define an order structure of type 2;
(iii) and finally, if G is 2"-regular, we define an order structure of type 3.

- Remark. All above order structures are well defined due to Proposition 4.2.

5.4.3. Proposition. Consider a G—-invariant order structure in L, as in Example 5.4.2,
and a trivalent tree @@ equipped with an order structure of the same type. Then there
exists a combinatorial immersion ¢ : () = L preserving order structures. Moreover, this
immersion is unique up to chart change in L.

Proof: Consider an s-arc in ¢}, where s = 1 for type 1, and s = 2 for types 2 and
3. (If there is no such arc in @, then there is no order structure in @, and you can
immerse it whatever you like, getting uniqueness by the regularity of G.) Immerse this
s—arc arbitrarily in L, and notice that the requirement of order structures to be preserved,
determines an extension of immersion to the whole of ) uniquely, in all three cases of
types.

The uniqueness of immersion up to chart change in L follows from above uniqueness
of extension.

We omit further details.

5.5. Proof of Proposition 5.2.
We will provide the proof separately for the corresponding cases of s-regularity of G
and the kind of invariant used to define condition C.

5.5.1. Remark. Note that using order structure in L, it is possible to induce order
systems, or rather classes of order systems corresponding to order atlasses, by means of
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any label maps, not necessarily good ones. If an order structure in L is G—invariant, as in
examples.5.4.2, then.the class of induced order systems does-not depend on chart changes -
for a label map.

The case when G is 1-regular.

In this case condition C is defined in terms of invariant £, as in 5.1.1.

Consider a vertex w € V3K, and an edge e = (w, u) adjacent to w and not contained
in K. The vertex p. € L(w, K), which represents edge e, is then interior in the link
L{w, K) viewed as a trivalent tree.

Since vertex u of e is interior in K, we have the G-atlas of G-structure Gy at it, and
an induced (by some chart of this G-atlas), well defined (by Remark 5.5.1 and Proposition
4.2(1)(a)) cyclic order on the triple of cells in K adjacent to e. By condition C, we want to
have e5(e) = ec(e), and thus the value of ec(e) determines the cyclic order at vertex p, in
L{w, K), namely the one which has to be induced by a label map at w used in construction
of K.

By repeating above procedure for all outer but not buondary edges of K, we get the
order structures determined by condition C in all links L{w, K} at boundary vertices w,
and we know that restrictions Ay |z(w,x) Of label maps used in construction of K, have
to preserve these order structures, with respect to the G-invariant order structure in L,
determined by the order system chosen in L (the one used in definition of invariant €).

Immerse links L(w, K) into L, in a way preserving order structures, which is possible
by Proposition 5.4.3, and extend arbitrarily these immersions (after chart change if nec-
essary) to good label maps A, at all w € VpK, getting a good label system A. Construct
the complex K(A), and note that €R( A)(e) = ec(e) for all outer not boundary edges of
K. Now, for each boundary edge d of K, compare the values of ER( A)(a!) and ec(d), and
if they are different, change the label map at one endpoint w of d, only at the peripheral
pair of edges in L(w, K) corresponding to the peripheral pair of cells in K adjacent to d.

Note that after the changes as above, the new label system A’ belongs to £&, and
thus the proof for this case follows.

The case when G is 2~ or 2"-regular.
_ In these two cases conditions C are defined in terms of invariants £ and £” respectively,
as in 5.1.2 and 5.1.3.

Consider a cell ¢ in K, which is outer, but has no edge contained in the boundary 4K,
and denote by w its unique vertex contained in 0K. Note that the edge e, representing ¢
is inner in the link L{w, K) viewed as a trivalent tree.

Since all the vertices of ¢ other than w are inner in K, we have G-atlasses of the
G-structure G at them, and we have order systems (or rather classes of them) in the
corresponding links at those vertices, induced by charts of these G-atlasses. Of particuliar
interest to us are order systems induced at edges representing cell ¢ in these links, since
they take part in determining invariant £ (or £”) at cell c.

It is easy to realise that the requirement {x(c) = éc(c) (or {’T'{-(ci) = ¢4 (ct), where
are the two oriented cells corresponding to a nonoriented cell ¢) implies that label maps
Aw : L(w,f{' ) — L which fulfill it, induce order systems at the edge e, (at oriented edges

ct
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eLrespectively) which form a certain order atlas at this edge.

Having equipped L{w, K) with the order structure determined by condition C in
above way; we choose any its immersion into L preserving order structures, and extend
it arbitrarily (after a chart change if necessary) to a good label map A, : L(w,f(" — L),
thus getting a label system A by repeating above procedure at all vertices w € V3K.
By construction of A, we have {z,,(c) = €c(c) for all outer cells ¢ of K with no edge
contained in 8K (and the same holds for such oriented cells, and for invariant £”, in the
corresponding second case considered parallelly).

We now consider an outer cell b, with at least one edge contained in K. If SN (b) #
£c(b), choose one endpoint w of one boundary edge e of ¢, and modify A, only at the
peripheral pair of edges in L(w,fé ) representing the peripheral pair of cells in K adjacent
to e. Repeating this for all cells b as above, we get a new label system A’, which now
belongs to Ef(.

The case when G is 4'—, 4”— or 5-regular, and k£ = 3.

Note that condition C in this case is expressed in terms of invariant o, as in 5.1.5.

Choose an arbitrary good label system A = {A,, : w € V3 K}, and for each v € VoK~
compare the numbers O%( A)(v) and o¢{v). If they are different, then consider a boundary
edge e of K, which belongs to 9B1(v) (such edge always exists by convexity of the boundary
of K, becouse the nonpositive curvature condition (1.2) implies g(L) > 6 in this case).
Choose one endpoint of e, say w, and modify the label map A, at the peripheral pair of
edges in L(w, K) corresponding to the peripheral pair of cells in K adjacent to e. The so
obtained new label system A’ clearly belongs to £%.

The case when G is 3-regular.
Note that condition C in this case is expressed in terms of invariant n, as in 5.1.4.
Choose an arbitrary good label system A = {Ay : w € V3K}, and for each vertex
v € VpK~, compare the cohomology elements 77z, (v) and no(v). If they are different,
denote by A(v) the subgraph in 8B;(v) consisting of all edges not contained in 8K.

5.5.2. Claim. A(v) is a connected contractible subgraph in 8B4 (v).

Proof of Claim: Denote by L’ the graph obtained from L(v, K) by subdivision of each its
edge into k — 2 smaller edges ( where k is the number characterising our (k, L)—complex),
and by L', its part corresponding to L(v, K~). Then A(v) is isomorphic to st(L’,L').
Since A(v) has then a form of subdivided L(v, K~) with pairs of peripheral edges attached
disjointly to all former boundary vertices, the Claim follows in any of the following cascs,
which exhast all the possibilities:
(i) k£ > 5, since then all the boundary vertices of K~ are m—free with m < 2;
(ii) k& > 4, since then g(L) > 4 by (1.2), and all the boundary vertices of K~ are m—free
with m < 2;
(iii) k = 3, since then g(L) > 6 by (1.2), and diam A(v) < 5 by convexity.
This finishes the proof of Claim.

Note that, by. contractibility of A(v), it follows from the exact cohomology sequence
for the pair (0B;(v), A(v)), that any 1-cochain in A(v) can be extended to a 1-cochain
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in &B1(v), representing any cohomology element from H!(8B,(v), Z3) (see the proof of
Proposition 7.4.6, and the Property 7.4.7 in [Poly], for more details). Thus, we can modify
label maps of A at peripheral pairs of edges in L(w,R’ ), so that a new label system A’
satisfies equalities 7z A,)(v) = nc(v) for each v € V5K ™, and thus belongs to L.

This finishes the proof of Proposition 5.2.

5.6. Proof of Proposition 5.3.

In the cases when G is 1-, 2’ or 2”-regular, Proposition follows from Proposition
5.4.3 applied to links L{w, K) : w € V3K, equipped with order structures determined by
condition C in the way described in the proof of Proposition 5.2 (and more precisely, from
the uniqueness part of Proposition 5.4.3).

In the cases when G is 3—-, 4'—, 4"’— or 5-regular, Proposition 5.3 follows even more
easily from the following observation.

5.6.1. Claim. If a buondary vertex w is m—free; and G is m—arc—transitive, then any two
good label maps at w are K—equivalent up to a chart change.

Proof of Claim: This follows from transitivity of G on m-arcs, and thus on restrictions
of good label maps to L(w, K) (since m < 3 by convexity).

This finishes the proof of Proposition 5.3.

6. Local conditions determine (k, L, G)—complexes uniquely.
This section is devoted to the proof of the following.

6.1. Proposition. Let K be an n-ball, as defined at the beginning of 5.1, with a
triple (k, L, G) as local data, where G C Aut L is an s-regular subgroup, for some s €
{1,2",2",3,4',4",5}. Moreover, let C be a condition of one of the forms described in 5.1
(or just the empty condition, if s € {3,4’,4”,5} and k > 4). Then for any two label
systems A, A’ € LE, the complexes K(A) and K(A’) constructed by means of these label
systems, are G—isomorphic, by a G-isomorphism extending the identity automorphism of
K. Moreover, if s € {1,2',2"}, or if s = 3, k = 3 and n > 2, then this G-isomorphism is
unique, while there is more than one such G-isomorphism in the other cases.

6.1.1. Remark. In the case when s € {3,4’,4” 5} and k > 4, we consider the empty
condition C (no restrictions for label systems), in which case the space L& consists of all
good label systems for K. The Proposition says then, that any two (n + 1)-balls of form
K(A) are G-isomorphic by an isomorphism extending id.

To prove Proposition 6.1, we introduce the notion of modifications of characteristic
functions, and give two preparatory lemmas.

6.2. Modifications of characteristic functions.

Consider the following elementary modifications of a function x : EsK — {0,1}:
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(i) change the values of of x at both edges of 8K adjacent to a I—free vertex of K;

(ii) change the value of x at any edge of 0K adjacent to a 1-free vertex of K;

(iii) change the values of x at all three edges of K adjacent to a 2-free vertex of K;

(iv) change the values of x at any two of the three edges of 0K adjacent to a 2—free vertex
of K;

(v) change the values of x at all four edges of K adjacent to a 3-free vertex of K;

(vi) change the valeus of x at any two of the four edges of 0K adjacent to a 3-free vertex
w of K, such that the vertices in L{w, K') corresponding to those two edges are at
distance two in L(w, K).

A modification is a finite sequence of elementary modifications of the forms as below:
(1) when s = 1, no modifications;
(2) when s =2’ or s =2", form (i) only;
(3) when s = 3, forms (ii) and (iii);
(4) when s =4’ or s = 4", forms (ii), (iv) and (v);
(5)

6.3. Lemma. Let x’ : EgK — {0,1} be a function obtained from a characteristic function
x = xa of a label system A by a modification (suitable for the corresponding regularity
type of G). Then there exists a K-equivalent to A label system A’, obtained from A by a
chart change in L, such that x' = xar.

Proof: The Lemma follows from Propositions 1-5 of [DM], where the subgroups of G fixing
poitwise an edge, a star of vertex, and a star of edge in L (the pieces which correspond
to the links of K at the boundary vertices) are described, together with their actions on
edges of peripheral pairs.

6.4. Lemma. Under the notation of Proposition 6.1, characteristic functions of any two
K-equivalent label systems from E?{ differ at most by a modification (suitable for the
corresponding case of regularity of G).

The proof of Lemma 6.4 splits in fact into five separate cases. Each of the cases brings
another type of difficulty into play. We do not present here these five proofs, since they are
implicit in the proofs of the corresponding results in [Poly]. For the reader’s convenience,
we give the following detailed references:

(1) for the case of s = 1, sec Lemma 7.1.3;
(2) for the case of s = 2’ or s = 2", see Lemma 7.2.4, together with preceding Lemma

7.2.3;

(3) for the case of s =3 and k = 3, see Lemma 7.4.10 together with Lemma 7.4.6(ii);

(4) for the case of s € {4/,4”,5} and k = 3, see Lemma 7.3.6 together with 7.3.3-7.3.5;
(5) for the case of s € {3,4',4”,5} and k > 4, see 6.1-6.5.

6.5. Proof of Proposition 6.1.

Given label systems A, A’ € £§, we know by Lemma 3.5 that the complexes K(A)
and K (A’) do not depend, up to G-isomorphisms extending idg, on chart changes in L.
Thus, due to Proposition 5.3, we can assume that A and A’ are K-equivalent. Then,
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Lemma 6.4 tells us that characteristic functions ya and xas differ by a modification, and
using Lemma 6.3 we again modify, say A, by a chart change in L, so that now A and A’
are K—equivalent and have equal characteristic functions. But this allows to apply Lemma
3.6, which finishes the proof of the existence part of Proposition 6.1.

To see the uniqueness in the cases when s € {1,2’,2"}, consider G—-isomorphisms
T\, Tz : K(A) - K(A’), both extending the identity automorphism of K. Note that in
these cases there is no nontrivial isomorphism of G, fixing pointwise a star of vertex or a star
of edge in L. This implies that, if w is a 2—free or a 3—free vertex of K, then 71| st(w,T(A)) =

Ty | st(w,K(A))? and hence the isomorphisms 77 and T coincide on the subcomplex
M=KuU U{st(w,f(A)) : w is 2-free or 3-free in K}.

But then, the links L(v, M) at those 1-free vertices v of K, which have a 2-free or a 3—free
neighbour, are big enough to imply the coincidence of T1 and T on the stars st(v, K(A)).
Repeating this argument, we get T) = T3 by the fact that the boundary 0K is connected.

The similar argument as above applies to the case when s = 3 and k = 3, with the
following changes. There is no nontrivial isomorphism of G, fixing pointwise a star of
edge in L. Thus, G-isomorphisms 77 and T, coincide on stars of 3-free vertices of K.
The following Claim allows then to extend this coincidence to the whole of K (A), by the
arguments of the previous cases.

Claim. If £ = 3 and K is an n-ball with n > 2, then at least one vertex in K is 3—free,
and no one is 1-free.

Proof of Claim: Constructing an n-ball from an (n — 1)-ball, we glue 1-balls to it,
according to the pattern provided by a label system. The boundary of this n—-ball consists
then of parts of boundaries of the glued 1-balls. If ¥ = 3, no boundary vertex of the 1-ball
is 1-free, and so this is also true for K. On the other hand, if k£ = 3 then all the vertices
of By-1 \ Bn—1 become 3—free in By, and the Claim follows.

Now, we proceed to prove that there is more than one G-isomorphism between K(A)
" and K(A'), extending idy, in the following three remaining cases:

(1) s =3, k=3 and K is a 1-ball;

(2) s=3and k> 4;

(3) s e {4,4",5}.

We start with the observation that in the case (1) only 2-free vertices appear at
8K, and in the case (2) only 2-free and 1-free ones. In any of the cases, there exists
an isomorphism of G fixing pointwise an edge (a star of vertex respectively) in L, and
transposing all pairs of its peripheral edges; if the case (3) happens, the same is true also
for a star of edge in L (see [DM] Propositions 1-5, and note that Proposition 6.3 is also
related to those properties).

Using these facts we can construct in any of the cases (1)—(3) a G~isomorphism be-
tween K (A) and K (A’) that differs from a given one at all pairs of peripheral cells in K.
We omit further details.
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7. Proof of the Main Theorem.

The necessary condition for a (k, L, G)-complex (X, G) to be flag-symmetric, is that
the value of the appropriate local invariant (viewed as a function on the set of vertices,
edges or cells of X, or as a sheaf of cohomology elements, respectively) is constant. It
is clear what this constantness means in all the cases when s # 3 or k > 4, since then
the invariants (can be canonically viewed to) have values in the set Z; = {0,1}. In the
case when s = 3 and k = 3, it is necessary that the value nx g{w) € HY(8B:1(w), Z,),
at any vertex w € X, is a G-invariant cohomology element (with respect to the action
of G on 8B;(w), induced by any map of the G-atlas A,, of G, from L). It is also clear
how to compare such elements at distinct vertices of X, since the 1-spheres 0B;(w) are
canonically G-equivariant. The necessary condition for the flag-symmetry of the complex
(X, G), is that the sheaf 7x g is constant with respect to the above G-equivariance.

The existence and uniqueness properties of flag-symmetric (k, L, G)-complexes, as
stated in the Main Theorem, are immediately implied by the following.

7.1. Lemma. Given any local data satisfying (1.2) (with the exception for 2"-regular G
and odd k), and a value for the local invariant (of the type suitable for the corresponding
regularity type of G), there exists a (k, L, G)-complex (X,G), with the local invariant
constant and equal to the given value. Moreover, this (k, L, G)—-complex is unique up to
G-isomorphism, and flag-symmetric.

7.1.1. Remark. The above Lemma is obviously not valid in the case when G is 2"-
regular and k is odd, due to (4.5). This means that no flag-symmetric (k, L, G)-complex
with these local data exists, which coincides with the statement of part (4) of the Main
Theorem.

Proof: The existence of an appropriate (k, L, G)—complex follows from the possibility to
construct it. The requirement for the local invariant, to be constant and equal to the given
value, can be expressed in terms of the appropriate conditions C for label systems used
during the construction. The existence part of the Lemma follows then from Proposition
5.2, by which the appropriate label systems at each stage of the construction exist.

The uniqueness up to G-isomorphism follows from Proposition 6.1, by which we can
construct inductively a G-isomorphism between any two (k, L, G)-complexes with constant
and equal local invariants. The same construction proves the flag-symmetry of any such
(k, L, G)-complex. '

This finishes the proof of Lemma.

We now proceed to prove the properties of the automorphism groups Aut(X,G). They
all follow easily from the uniqueness—nonuniqueness part of Proposition 6.1.

By the existence part of this Proposition, we can construct inductively a G—-automor-
phism of a flag-symmetric (k, L, G)-complex, starting from any G—isomorphism of some of
its 1-balls. In the cases when s € {1,2’,2"}, this initial G-isomorphism extends uniquely
at each inductive step, giving the G-automorphism uniquely determined by its restriction
to the initial 1-ball. In the next case when s = 3 and k = 3, this initial G-isomorphism
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extends in several ways to a G-isomorphism of 2-balls, but since the further extensions
are unique, any resulting G-automorphism is determined by its restriction to the initial

2-ball. In the remaining cases, there are many possibilities of extensions at any stage of
the inductive construction of a G—automorphism.

From above remarks, the properties of automorphism groups Aut(X,G) stated in the
Main Theorem follow, which finishes the proof.
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