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Closed trajectories

It is easy to find a closed billiard trajectory in an acute triangle.

Exercise. Prove that the broken line joining the bases of hights of an acute triangle is a billiard
trajectory (it is called Fagnano trajectory ). Show that it realizes an inscribed triangle of minimal
perimeter.

4 / 49
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Challenge

It is difficult to believe, but a similar problem for an obtuse triangle is open.

Open problem. Is there at least one closed trajectory for (almost) any obtuse triangle?

It seems like the answer is affirmative (see an extensive computer search performed by R. Schwartz
and P. Hooper: www.math.brown.edu/∼res/Billiards/index.html)

Then, one can ask further questions:

• Estimate the number N(L) of periodic trajectories of length bounded by L ≫ 1 when L → +∞.

• Is the billiard flow ergodic for almost any triangle?

5 / 49

Unfolding billiard trajectories

Identifying the boundary of two triangles we get a flat sphere. A billiard trajectory unfolds to a geodesic
on this flat sphere.

6 / 49
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Flat surfaces

The surface of the cube represents a flat sphere with eight conical singularities. The metric does not
have singularities on the edges. After parallel transport around a conical singularity a vector comes
back pointing to a direction different from the initial one, so this flat metric has nontrivial holonomy.

7 / 49

Rational polygons

A polygon Π is called rational if all the angles of Π are rational multiples pi

qi
π of π. The properties of

rational polygons are known much better. Consider a model case of a rectangular billiard.

As before instead of reflecting the trajectory we can reflect the billiard table. The trajectory unfolds to a
straight line. Folding back the copies of the billiard table we project this line to the actual trajectory.

8 / 49
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Billiard in a rectangle

Fix a (generic) trajectory. At any moment the ball moves in one of four directions. They correspond to
four copies of the billiard table; other copies can be obtained from these four by a parallel translation.
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A

A

A

A

A

C

D

D

D

B

B B
C
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Billiard in a rectangle

Identifying the equivalent patterns by a parallel translation we obtain a torus; the billiard trajectory
unfolds to a “straight line” on the corresponding torus.

10 / 49
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Unfolding rational billiards

We can apply an analogous procedure to any rational billiard.

Consider, for example, a triangle with angles π/8, 3π/8, π/2. It is easy to check that a generic
trajectory in such billiard table has 16 directions (instead of 4 for a rectangle). Using 16 copies of the
triangle we unfold the billiard into a regular octagon with opposite sides identified by parallel
translations.

11 / 49

Flat surface of genus 2

Identifying the pair of horizontal sides and then the pair of vertical sides of a regular octagon we get a
torus with a single square hole. Identifying two opposite sides of the hole we get a torus with two
distinct holes. Identifying the holes we get a surface of genus two.

12 / 49
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Very flat surfaces

Note that the flat metric on the resulting surface has trivial holonomy, since the identifications of the
sides were performed by parallel translations. As before, a billiard trajectory is unfolded to a geodesic
on the surface. But now geodesics resemble geodesics on the torus: they do not have
self-intersections!

We abandon rational billiards for a while and pass to a more systematic study of “very flat” surfaces.

13 / 49
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Very flat surfaces

Consider a broken line constructed from vectors ~v1, . . . , ~vk.

~v1

~v2

~v3

~v4

~v4

~v3

~v2

~v1

and another one constructed from the same vectors taken in another order. If we are lucky enough
the two broken lines do not intersect and form a polygon.

15 / 49
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Very flat surfaces

~v1

~v2

~v3

~v4

~v4

~v3

~v2

~v1

Identifying the corresponding pairs of sides by parallel translations we get a closed surface endowed
with a flat metric.

16 / 49

Properties of very flat surfaces

• The flat metric is nonsingular outside of a finite number of conical singularities (inherited from the
vertices of the polygon).

• The flat metric has trivial holonomy, i.e. parallel transport along any closed path brings a tangent
vector to itself.

• In particular, all cone angles are integer multiples of 2π.

• By convention, the choice of the vertical direction (“direction to the North”) will be considered as a
part of the “very flat structure”.

For example, a surface obtained from a rotated polygon is considered as a different very flat
surface.

• A conical singularity with the cone angle 2π · N has N outgoing directions to the North.

17 / 49
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Example: conical singularity with cone angle 6π

Locally a neighborhood of a conical point looks like a “monkey saddle”.

A neighborhood of a conical point with a cone angle 6π can be glued from six metric half discs. At this
conical point we have 3 distinct directions to the North.

18 / 49

Families of flat surfaces

The polygon in our construction depends continuously on the vectors ~vj . This means that the
combinatorial geometry of the resulting flat surface (its genus g, the number m and types
2π(d1 + 1), . . . , 2π(dm + 1) of the resulting conical singularities) does not change under small
deformations of the vectors ~vj . This allows to consider a flat surface as an element of a family of flat
surfaces sharing common combinatorial geometry.
As an example of such family one can consider a family of flat tori of area one, which can be identified
with the space of lattices of area one:

\ SL(2, R) /
SO(2, R) SL(2, Z) = H

2/
SL(2, Z)

19 / 49
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Family of flat tori

neighborhood of a
cusp = subset of
tori having short
closed geodesic

The corresponding “modular surface” is not compact: flat tori representing points, which are close to
the cusp, are almost degenerate: they have a very short closed geodesic.

20 / 49

Holomorphic 1-forms and quadratic differentials versus ve ry flat sur-
faces 21 / 49

Holomorphic 1-form associated to a flat structure

Consider the natural coordinate z in the complex plane, where lives the polygon. In this coordinate the
parallel translations which we use to identify the sides of the polygon are represented as
z′ = z + const.

Since this correspondence is holomorphic, our flat surface S with punctured conical points inherits the
complex structure. This complex structure extends to the punctured points.

Consider now a holomorphic 1-form dz in the complex plane. The coordinate z is not globally defined
on the surface S. However, since the changes of local coordinates are defined as z′ = z + const, we
see that dz = dz′. Thus, the holomorphic 1-form dz on C defines a holomorphic 1-form ω on S which
in local coordinates has the form ω = dz.

The form ω has zeroes exactly at those points of S where the flat structure has conical singularities.

22 / 49
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Flat structure defined by a holomorphic 1-form

• Reciprocally a pair (Riemann surface, holomorphic 1-form) uniquely defines a flat structure.

• In a neighborhood of zero a holomorphic 1-form can be represented as wd dw, where d is the
degree of zero. The form ω has a zero of degree d at a conical point with cone angle 2π(d + 1).
Moreover, d1 + · · · + dm = 2g − 2.

• The moduli space Hg of pairs (complex structure, holomorphic 1-form) is a Cg-vector bundle
over the moduli space Mg of complex structures.

• The space Hg is naturally stratified by the strata H(d1, . . . , dm) enumerated by unordered
partitions d1 + · · ·+ dm = 2g − 2.

• Any holomorphic 1-forms corresponding to a fixed stratum H(d1, . . . , dm) has exactly m zeroes
of degrees d1, . . . , dm.

23 / 49

Dictionary

flat structure (including a choice complex structure and a choice
of the vertical direction) of a holomorphic 1-form ω

conical point zero of degree d
with a cone angle 2π(d + 1) of the holomorphic 1-form ω

(in local coordinates ω = wd dw)

side ~vj of a polygon relative period
∫ Pj+1

Pj
ω =

∫

~vj
dz

of the 1-form ω

family of flat surfaces sharing stratum H(d1, . . . , dm) in the
the same cone angles moduli space of holomorphic 1-forms

2π(d1 + 1), . . . , 2π(dm + 1)

coordinates in the family: coordinates in H(d1, . . . , dm) :
vectors ~vi relative periods of ω in

defining the polygon H1(S, {P1, . . . , Pm}; C)

24 / 49
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Flat surfaces and quadratic differentials

Identifying pairs of sides of this polygon by isometries we obtain a surface of genus g = 1. Now the flat
metric has holonomy group Z/2Z. The cone angles are multiples of π.
Flat surfaces of this type correspond to quadratic differentials.
For example, the quadratic differential representing the surface from the picture belongs to the stratum
Q(2,−1,−1).

25 / 49

Volume element

Note that the vector space H1(S, {P1, . . . , Pm} ; C) contains a natural integer lattice
H1(S, {P1, . . . , Pm} ; Z ⊕

√
−1 Z). Consider a linear volume element dν normalized in such a way

that the volume of the fundamental domain in this lattice equals one. Consider now the real
hypersurface H1(d1, . . . , dm) ⊂ H(d1, . . . , dm) defined by the equation area(S) = 1. The volume
element dν can be naturally restricted to the hypersurface defining the volume element dν1 on
H1(d1, . . . , dm).

Theorem (H. Masur; W. A. Veech) The total volume Vol(H1(d1, . . . , dm)) of every stratum is finite.

The values of these volumes were computed by A. Eskin and A. Okounkov.

26 / 49
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Group action

The subgroup SL(2, R) of area preserving linear transformations acts on the “unit hyperboloid”

H1(d1, . . . , dm). The diagonal subgroup

(

et 0
0 e−t

)

⊂ SL(2, R) induces a natural flow on the

stratum, which is called the Teichmüller geodesic flow.

Key Theorem (H. Masur; W. A. Veech) The action of the groups SL(2, R) and

(

et 0
0 e−t

)

preserves the measure dν1. Both actions are ergodic with respect to this measure on each connected
component of every stratum H1(d1, . . . , dm).

27 / 49

Hope for a magic wand

Suppose that we need some information about geometry or dynamics of an individual flat surface S.
Consider the element S in the corresponding family of flat surfaces H(d1, . . . , dm). Denote by
C(S) = GL+(2, R) S ⊂ H(d1, . . . , dm) the closure of the GL+(2, R)-orbit of S in H(d1, . . . , dm).
In numerous cases knowledge about the structure of C(S) gives a comprehensive information about
geometry and dynamics of the initial flat surface S. Moreover, some delicate numerical characteristics
of S can be expressed as averages of simpler characteristics over C(S).

Examples:

• Veech surfaces;

• Nonergodic directions;

28 / 49

14



Generic geodesics 29 / 49

Asymptotic cycle

Theorem (S. Kerckhoff, H. Masur, J. Smillie) For any flat surface directional flow in almost any
direction is ergodic.

Consider an “irrational” geodesic on a torus. Choose a short transversal segment X . Each time when
the geodesic crosses X we join the crossing point with the point x0 along X obtaining a closed loop.
Consecutive return points x1, x2, . . . define a sequence of cycles c1, c2, . . . .

The asymptotic cycle is defined as limn→∞

cn

‖cn‖
= c ∈ H1(T

2; R)

30 / 49

Asymptotic flag

cN

‖cN‖ν2

‖cN‖ν3

H1(S; R) ≃ R2g

x1
x2

x3

x4

x5

x2g

Asymptotic plane L2

Direction of the
asymptotic cycle

S

31 / 49
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Asymptotic flag

Theorem For almost any surface S in any stratum H1(d1, . . . , dm) there exists a flag of subspaces
L1 ⊂ L2 ⊂ · · · ⊂ Lg ⊂ H1(S; R) such that for any j = 1, . . . , g − 1 one has

lim sup
N→∞

log dist(cN , Lj)

log N
= νj+1

and
dist(cN , Lg) ≤ const,

where the constant depends only on S and on the choice of the Euclidean structure in the homology
space.
The numbers 2, 1 + ν2, . . . , 1 + νg are the top g Lyapunov exponents of the Teichmüller geodesic flow
on the corresponding connected component of the stratum H(d1, . . . , dm); in particular, they do not
depend on the individual generic flat surface S in the connected component.

32 / 49

Lyapunov exponents

Consider a map f : X → X ergodic with respect to a finite measure dµ on X . Consider a
matrix-valued function F : X → GL(m, R) such that

∫

X
max(log ‖F‖, 0)dµ < ∞. Consider a

product of matrices along a trajectory P0, P1 = f(P0), . . . of the map f :

F (n)(P0) = F (Pn−1) · · · · · F (P1) · F (P0)

Lyapunov exponents are defined as mean values of logarithms of eigenvalues of these product
matrices : νi(P0) := limn→∞

log |λi(n)|
n

.

Theorem (Oseledets) Under conditions above Lyapunov exponents are well defined and constant
almost everywhere.

When f : Xm → Xm is smooth one can consider the differential F (P ) := DfP as a matrix-valued
function. In this case the Lyapunov exponents are responsible for the rate of divergence (convergence)
between two trajectories starting nearby.

33 / 49
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The theorem above was initially formulated in as a conditional statement under the conjecture that all
the exponents νj , for j = 2, . . . , g, are distinct. This conjectures was partly proved by G. Forni and in
full generality by A. Avila and M. Viana.

Currently there are no methods of calculation of individual Lyapunov exponents νj (though there is
some experimental knowledge of their approximate values). Nevertheless, for any connected
component of any stratum (and, more generally, for any GL+(2; R)-invariant suborbifold) it is possible
to evaluate the sum of the Lyapunov exponents ν1 + · · ·+ νg, where g is the genus. The formula for
this sum was discovered by M. Kontsevich; morally, it is given in terms of characteristic numbers of
some natural vector bundles over the strata H(d1, . . . , dm). In some particular cases this formula was
developed by I. Bouw and M. Möller and by M. Bainbridge. This is also a subject of our unfinished
project with M. Kontsevich.

34 / 49

Saddle connections and closed geodesics 35 / 49

Saddle connections

A saddle connection is a geodesic segment joining a pair of conical singularities or a conical singularity
to itself without any singularities in its interior.
Similar to the torus case regular closed geodesics on flat surface always appear in families; any such
family fills a maximal cylinder bounded on each side by a closed saddle connection or by a chain of
parallel saddle connections.
Let Nsc(S, L) be the number of saddle connections of length at most L on a flat surface S. Let
Ncg(S, L) be the number of maximal cylinders filled with closed regular geodesics of length at most L
on S. It was proved by H. Masur that for any flat surface S both counting functions N(S, L) grow
quadratically in L:

const1(S) ≤ N(S, L)/L2 ≤ const2(S)

36 / 49
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Exact quadratic asymptotics

Theorem (A. Eskin and H. Masur) For almost all flat surfaces S in any stratum H(d1, . . . , dm) the
counting functions Nsc(S, L) and Ncg(S, L) have exact quadratic asymptotics

lim
L→∞

Nsc(S, L)

πL2
= csc(S) lim

L→∞

Ncg(S, L)

πL2
= ccg(S)

where the Siegel–Veech constants csc(S) and ccg(S) depend only on the connected component of the
stratum.

Consider some saddle connection γ1 = [P1P2] with an endpoint at P1. Memorize its direction, say, let
it be the North-West direction. Let us launch a geodesic from the same starting point P1 in one of the
remaining remaining k − 1 North-West directions. Let us study how big is the chance to hit P2 ones
again, and how big is the chance to hit it after passing the same distance as before.

37 / 49

Phenomenon of multiple saddle connections

Theorem (A. Eskin, H. Masur, A. Zorich) For almost any flat surface S in any stratum and for any
pair P1, P2 of conical singularities on S the function N2(S, L) counting the number of pairs of parallel
saddle connections of the same length joining P1 to P2 also has exact quadratic asymptotics

lim
L→∞

N2(S, L)

πL2
= c2 > 0.

For almost all flat surfaces S in any stratum one cannot find neither a single pair of parallel saddle
connections on S of different length, nor a single pair of parallel saddle connections joining different
pairs of singularities.

38 / 49
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Rigid collections of saddle connections

• Any saddle connection on a flat surface persists under small deformations of S inside the
ambient stratum.

• It might happen that any deformation of a given flat surface which shortens some specific saddle
connection necessarily shortens some other saddle connections.

• We say that a collection {γ1, . . . , γn} of saddle connections is rigid if any sufficiently small
deformation of the flat surface inside the stratum preserves the proportions |γ1| : |γ2| : · · · : |γn|
of the lengths of all saddle connections in the collection.

Theorem (Eskin, Masur, Zorich) Let S be a flat surface corresponding to a holomorphic 1-form ω. A
collection γ1, . . . , γn of saddle connections on S is rigid if and only if all saddle connections
γ1, . . . , γn are homologous in H1(S, {zeroes of ω}; C).

39 / 49

Homologous saddle connections

The directions and lengths of saddle connections can be expressed in terms of integrals of the
holomorphic 1-form ω along corresponding paths. Hence

• Homologous saddle connections γ1, . . . , γn are parallel and have equal length and

◦ either all of them join the same pair of distinct singular points,

◦ or all γi are closed loops.

40 / 49
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Saddle connections joining distinct zeroes

S ′
3

S ′
2

S ′
1

S3
S2

S1

S3
S2

γ1γ2

γ3

Multiple homologous saddle connections, topological picture.
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Siegel–Veech formula

To every closed regular geodesic γ on a flat surface S we associate a vector ~v(γ) in R
2 having the

length and the direction of γ. In other words, ~v =
∫

γ
ω, where we consider a complex number as a

vector in R2 ≃ C. Applying this construction to all closed regular geodesic on S we construct a
discrete set V (S) ⊂ R2. Consider the following operator f 7→ f̂ from functions with compact support
on R2 to functions on the stratum H1(β) = H1(d1, . . . , dm):

f̂(S) :=
∑

~v∈V (S)

f(~v)

Function f̂(S) generalizes the counting function Ncg(S, L) introduced in the beginning of this section.
Namely, when f = χL is the characteristic function χL of the disc of radius L with the center at the
origin of R2, the function χ̂L(S) counts the number of regular closed geodesics of length at most L on
a flat surface S.

42 / 49
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Siegel–Veech formula

Theorem (W. Veech For any function f : R
2 → R with compact support the following equality is valid:

1

VolHcomp
1 (β)

∫

Hcomp
1

(β)

f̂(S) dν1 = C

∫

R2

f(x, y) dx dy ,

where the constant C does not depend on the function f .
The same theorem is valid for configurations of homologous saddle connections (but the constant will
change).
Theorem (A. Eskin, H. Masur, A. Z.)

c(C) = lim
ε→0

1

πε2

Vol(“ε-neighborhood of the cusp C ”)

VolHcomp
1 (β)

=

= (explicit combinatorial factor) ·
∏k

j=1 VolH1(β
′
k)

VolHcomp
1 (β)
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Applications: billiards in rectangular polygons. (With J. Athreya and
A. Eskin) 44 / 49

Rectangular polygons
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By a rectangular polygon Π we call a topological disc endowed with a flat metric, such that the
boundary ∂Π is presented by a finite broken line of geodesic segments and such that the angle
between any two consecutive sides equals kπ/2, where k ∈ N.
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Billiards in rectangular polygons versus quadratic differ entials on C P1

We want to count trajectories emitted from a corner of such billiard and getting to some other corner.
We also want to count closed billiard trajectories. In both cases we count trajectories of length
bounded by L ≫ 1 and study the asymptotics as L tends to infinity.

Note that the topological sphere obtained by gluing two copies of the billiard table by the boundary is a
flat surface, or, in other words, a meromorphic quadratic differential with simple poles on C P1.

Moreover, geodesics on this flat sphere project to billiard trajectories! Thus, to count billiard trajectories
we may count geodesics on flat spheres!
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Number of generalized diagonals

Pi

Pj

Pi

Pj

We prove that for a generic rectangular polygon with angles π/2 and 3π/2 the number of trajectories
joining any two fixed corners with right angles is “approximately” the same as for a rectangle:

1

2π
·
(bound for the length)2

area of the table

and does not depend on the shape of the polygon.
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Naive intuition does not help...

P2

1P
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P3

P
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0
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However, say, for a typical L-shaped polygon the number of trajectories joining the corner with the
angle 3π/2 to some other corner is “approximately”

2

π
·
(bound for the length)2

area of the table

which is 4 times (and not 3) times bigger than the number of trajectories joining a fixed pair of right
corners...
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Open problems and bibliography

• Compactification.
• Classification of orbit closures of GL(2; R).
– done for genus two (C. McMullen);
– “invariant algebraic” implies “affine” (M. Kontsevich) and sometimes even more (M. Möller);
– even extremely particular flat surfaces might produce the entire stratum as their orbit closure

(P. Hubert, E. Lanneau, M. Möller).
• “Ratner-type” theorem: classification of closures of the unipotent subgroup?
...

For a short survey and essential bibliography see:
A. Zorich, Geodesics on flat surfaces, Proceedings of the ICM 2006, Madrid, Vol. III. EMS Publishing
House, 2006, 121–146.
For a more detailed survey and extended bibliography see:
A. Zorich, Flat surfaces, in collect. “Frontiers in Number Theory, Physics and Geometry. Vol. 1: On
random matrices, zeta functions and dynamical systems”; Ecole de physique des Houches, France,
March 9-21 2003, P. Cartier; B. Julia; P. Moussa; P. Vanhove (Editors), Springer-Verlag, Berlin, 2006,
439–586.

49 / 49

23


	From Billiards to Flat Surfaces
	Closed trajectories
	Challenge
	Unfolding billiard trajectories
	Flat surfaces
	Rational polygons
	Billiard in a rectangle
	Unfolding rational billiards
	Flat surface of genus 2
	Very flat surfaces

	Very flat surfaces
	Very flat surfaces
	Properties of very flat surfaces
	Conical singularity
	Families of flat surfaces
	Family of flat tori

	Holomorphic 1-forms versus very flat surfaces
	From flat to complex structure
	From complex to flat structure
	Dictionary
	Flat surfaces and quadratic differentials
	Volume element
	Group action
	Hope for a magic wand

	Generic geodesics
	Asymptotic cycle
	Asymptotic flag
	Lyapunov exponents

	Saddle connections and closed geodesics
	Saddle connections
	Exact quadratic asymptotics
	Phenomenon of multiple saddle connections
	Rigid collections of saddle connections
	Homologous saddle connections
	Saddle connections joining distinct zeroes
	Siegel--Veech formula

	Billiards in rectangular polygons
	Rectangular polygons
	Billiards versus quadratic differentials
	Number of generalized diagonals
	Naive intuition does not help...
	Open problems and bibliography


