
Max-Planck-Institut für Mathematik
Bonn

Sklyanin algebras and a cubic root of 1

by

Natalia Iyudu
Stanislav Shkarin

Max-Planck-Institut für Mathematik
Preprint Series 2017 (49)





Sklyanin algebras and a cubic root of 1

Natalia Iyudu
Stanislav Shkarin

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

School of Mathematics
The University of Edinburgh
James Clerk Maxwell Building
The King’s Buildings
Peter Guthrie Tait Road
Edinburgh EH9 3FD
UK

Queen’s University Belfast
Department of Pure Mathematics
University Road
Belfast BT7 1NN
UK

MPIM 17-49





Sklyanin algebras and a cubic root of 1

Natalia Iyudu and Stanislav Shkarin

Abstract

We consider 3-dimensional Sklyanin algebras S, which are quadratic algebras over a field K
given by generators x, y, z and relations pxy+qyx+rzz = 0, pyz+qzy+rxx = 0 and pzx+qxz+ryy =
0, where p, q, r ∈ K. This class of algebras has enjoyed much attention. In particular, using tools
from algebraic geometry, Feigin, Odesskii [9], and Artin, Tate and Van Den Bergh [3], showed
that if at least two of the parameters p, q and r are non-zero and at least two of three numbers
p3, q3 and r3 are distinct, then S is Artin–Schelter regular. More specifically, S is Koszul and
has the same Hilbert series as the algebra of commutative polynomials in 3 indeterminates.
The authors [7] have previously proved the same result using only combinatorial and algebraic
techniques. However our proof was no less complicated than the one based on algebraic geometry.
In this paper we exhibit a linear substitution after which it becomes possible to determine the
leading monomials of a reduced Gröbner basis for the ideal of relations of S (without passing
to a suitable S-module as was the case in our previous proof). We also find out explicitly (in
terms of parameters) which Sklyanin algebras are isomorphic. The only drawback of the new
technique is that it fails for characteristic 3.

MSC: 17A45, 16A22

Keywords: Sklyanin algebras, Quadratic algebras, Koszul algebras, Hilbert series, Gröbner bases, PBW-

algebras, PHS-algebras

1 Introduction

Throughout this paper K is an arbitrary field of characteristic different from 3. If B is a graded
algebra, let Bm denotes the mth graded component of the algebra B. If V is an n-dimensional
vector space over K, then F = F (V ) is the tensor algebra of V . For any choice of a basis x1, . . . , xn
in V , F is naturally identified with the free K-algebra with the generators x1, . . . , xn. We always
consider the degree grading on the free algebra F : the mth graded component of F is V m = V ⊗m.
If R is a subspace of the n2-dimensional space V 2 = V ⊗ V , then the quotient of F by the ideal I
generated by R is called a quadratic algebra and denoted A(V,R). This is a standard notation, used
for example, in [10]. Since each quadratic algebra A is degree graded, we can consider associated
generating function, - its Hilbert series

HA(t) =
∞
∑
j=0

dimKAj t
j .

Another concept playing an important role in this paper is Koszulity. For a quadratic algebra
A = A(V,R), the augmentation map A → K equips K with the structure of a commutative graded
A-bimodule. The algebra A is called Koszul if K as a graded right A-module has a free resolution
⋅ ⋅ ⋅ → Mm → ⋅ ⋅ ⋅ → M1 → A → K → 0 with the second last arrow being the augmentation map and
the matrices of the maps Mm →Mm−1 with respect to some free bases consisting of homogeneous
elements of degree 1.

One of the important features of Sklyanin algebras, as of many other algebras, originated in
physics, is that they are potential algebras (or in other terminology vacualgebras, or Jacobi alge-
bras). The notion of a noncommutative potential was introduced by Kontsevich in [8, 5]. We make
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use of an equivalent definition from [4]. An element F of K⟨x1, . . . , xn⟩ is called cyclicly invariant
if F is invariant for the linear map C ∶ K⟨x1, . . . , xn⟩ → K⟨x1, . . . , xn⟩ defined by its action on
monomials as follows: C(1) = 1 and C(xju) = uxj for every j and every monomial u. The sym-
bol Kcyc⟨x1, . . . , xn⟩ stands for the vector space of all cyclicly invariant elements of K⟨x1, . . . , xn⟩.
We also consider the linear maps δ

δxj
∶ K⟨x1, . . . , xn⟩ → K⟨x1, . . . , xn⟩ defined by their action on

monomials u as follows: δu
δxj
= 0 if u does not start with xj and δu

δxj
= v if u = xjv. A potential

algebra AF defined by the potential F ∈ Kcyc⟨x1, . . . , xn⟩ is a K-algebra given by the generators
x1, . . . , xn and the relations δF

δxj
= 0 for 1 ⩽ j ⩽ n. For the sake of convenience, we consider the

onto linear map G ↦ G⟲ from K⟨x1, . . . , xn⟩ to Kcyc⟨x1, . . . , xn⟩ defined by its action on homo-

geneous elements by u⟲ = C(u) + . . . + Cdu, where d is the degree of u. For example, x4
⟲ = 4x4

and x2y
⟲ = x2y + xyx + yx2. There is a number of generalizations of potential algebras, see, for

instance, [4].
Recall that if (p, q, r) ∈ K3, the Sklyanin algebra Qp,q,r is the quadratic algebra over K with

generators x, y, z given by 3 relations

pyz + qzy + rxx = 0, pzx + qxz + ryy = 0, pxy + qyx + rzz = 0.

and it is a potential algebra with the potential r(x3 + y3 + z3) + pxyz⟲ + qxzy⟲.
Artin, Tate and Van den Bergh [3, 2], and Feigin, Odesskii [9], considered a certain family

of infinite dimensional representations of Sklyanin algebra. Namely, they used graded modules
with all graded components being one-dimensional, known as pointed modules. The geometric
interpretation of the space of such modules is in the core for most of their arguments. Artin, Tate
and Van den Bergh showed that if at least two of the parameters p, q and r are non-zero and the
equality p3 = q3 = r3 fails, then Qp,q,r is Artin–Shelter regular. More specifically, Qp,q,r is Koszul
and has the same Hilbert series as the algebra of commutative polynomials in three variables.

It became commonly accepted that it is impossible to obtain the same results by purely algebraic
and combinatorial means like the Gröbner basis technique, see, for instance, comments in [13]. We
have dispelled this notion in [7]. However our previous proof is rather complicated. It uses a
construction of a Gröbner basis in a suitable one-sided module over Qp,q,r and has quite a number
of cases to consider. In this paper we exhibit a linear substitution after which it becomes possible
to determine the leading monomials of a reduced Gröbner basis for the ideal of relations of S itself.

In section 3 we explicitly classify all Sklyanin algebras (in terms of parameters) up to isomor-
phism.

The only drawback of the new technique is that it fails if the characteristic of the ground field
equals 3.

We say that a Sklyanin algebra Sp,q,r is degenerate if either p3 = q3 = r3 or there are at least two
zeros among p, q and r.

Theorem 1.1. The algebra A = Qp,q,r is Koszul for any (p, q, r) ∈ K3. The equality HA = (1 − t)−3
holds if and only if the Sklyanin algebra A is non-degenerate.

We stress again that the above theorem is essentially one of the main results in [3] with a
different proof provided in [7]. Our new proof is however much easier and shorter. Concerning
another result of this paper, where we give an explicit description in terms of parameters, which
Sklyanin algebras are isomorphic as graded algebras. The question when two different Sklyanin
algebras are isomorphic is touched in [3]. The authors associate to each Sklyanin algebra certain
geometric data (an elliptic curve and its automorphism) and observe that Sklyanin algebras are
isomorphic precisely, when the same happens to geometric data associated to them. This certainly
may be useful on many occasions, however this characterization of isomorphic Sklyanin algebras is
hard to use when the only data we have are just the triples of parameters (possible, of course, but
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rather inconvenient). In this section we find out explicitly in terms of just the values of parameters
which Sklyanin algebras are isomorphic to each other. Note that according to Proposition 2.3
below, the answer does not change if we allow all algebra isomorphisms instead of just graded
(=linear substitutions in our case) ones. Keeping this in mind, we just deal with isomorphisms
in the category of graded algebras. The next theorem yields a complete description of isomorphic
Sklyanin algebras. Note that monomiality of degenerate Sklyanin algebras was first noticed by
Smith [12], while their Koszulity was noticed in [13].

Theorem 1.2. Let K be a field such that there is θ ∈ K satisfying θ3 = 1 ≠ θ (a non-trivial cubic
root of 1). Then the following statements hold true∶

(I1) A degenerate Sklyanin algebra A = Qp,q,r is isomorphic to one of the following three pairwise
non-isomorphic monomial algebras Q0,0,0 = K⟨x, y, z⟩, Q1,0,0 given by the relations xy = zx =
yz = 0 or Q0,0,1 given by the relations xx = yy = zz = 0. Furthermore,

(I1.1) A is isomorphic to Q0,0,0 if and only if p = q = r = 0;
(I1.2) A is isomorphic to Q1,0,0 if and only if either r = pq = 0 and (p, q) ≠ (0,0) or p3 = q3 =

r3 ≠ 0 and p ≠ q;
(I1.3) A is isomorphic to Q0,0,1 if and only if either p = q = 0 and r ≠ 0 or p = q ≠ 0 and p3 = r3.

Finally, a degenerate Sklyanin algebra is never isomorphic to a non-degenerate one.

(I2) A non-degenerate Sklyanin algera A = Qp,q,r is isomorphic to a quantum polynomial algebra
Bα given by the relations xy = αyx, zx = αxz and yz = αzy with α ∈ K∗ if and only if r = 0
or (p + q)3 + r3 = 0. More specifically, A is isomorphic to Bα with given α ∈ K∗ if and only if

either r = 0 and α ∈ {−p
q ,−

q
p
}, or (p+ q)3 + r3 = 0 and α ∈ {θ p−θ

2q
p−θq , θ

2 p−θq
p−θ2q}. Furthermore, Bα

and Bβ are isomorphic if and only if either α = β or αβ = 1.
(I3) A non-degenerate Sklyanin algera A = Qp,q,r non-isomorphic to any quantum polynomial

algebra Bα with α ∈ K∗ satisfies r ≠ 0 and (p + q)3 + r3 ≠ 0 and therefore up to scaling of the
parameters (dividing by r), (p, q, r) turns into (a, b,1) with (a, b) ∈M , where

M = {(a, b) ∈ K2 ∶ (a, b) ≠ (0,0), (a + b)3 + 1 ≠ 0, (a3 − 1, b3 − 1) ≠ (0,0)}.

If both (a, b) and (a′, b′) belong to M , then the Sklyanin algebras Qa,b,1 and Qa′,b′,1 are iso-
morphic if and only if (a, b) and (a′, b′) are in the same orbit of the group action on M
generated by two maps

(a, b)↦ (θa, θb) and (a, b)↦ ( θa+θ2b+1a+b+1 , θ
2a+θb+1
a+b+1 ).

This group is finite, consists of 24 elements (thus if K is infinite, for generic (a, b) ∈ M ,
there are exactly 23 other elements of M giving rise to an isomorphic Sklyanin algebra) and
is isomorphic to SL2(Z3). The complete list of pairs (a′, b′) ∈ M such that for a given
(a, b) ∈M , Qa,b,1 and Qa′,b′,1 are isomorphic is as follows∶
(θja, θjb) and (θjb, θja) with j ∈ {0,1,2};

( θja+θkb+θma+b+θn , θ
ka+θjb+θm
a+b+θn ) with n ∈ {0,1,2} and {j, k,m} = {0,1,2}.

Throughout this paper, we always use the left-to-right degree-lexicographical order on
monomials in x, y and z assuming x > y > z. We recall some general well-known facts on quadratic
algebras in Section 2. Elementary observations concerning Sklyanin algebras are collected in Sec-
tion 3. Most of them are borrowed from our paper [7]. We prove Theorem 1.1 in Section 4. Section 5
is devoted to the proof of Theorem 1.2, while the final Section 6 contains some extra comments.
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2 General background

We shall use the following well-known facts, all of which can be found in [10]. A quadratic algebra
A = A(V,R) is called PBW if there are linear bases x1, . . . , xn in V and r1, . . . , rm in R and a well-
ordering of monomials in xj compatible with multiplication such that r1, . . . , rm form a Gröbner
basis of the ideal of relations of A. Here we follow notation from [10]. As a matter of warning,
the term PBW is overused in the literature: we are aware of at least four pairwise non-equivalent
definitions of PBW algebras. This is probably because all these notions generalizes in a different
directions the PBW property of the universal enveloping of Lie algebra.

Note that every monomial quadratic algebra A = A(V,R) is a PBW-algebra, in our sense (see
also [10]), which we will fix once and for all.

Let us pick a basis x1, . . . , xn in V , we get a bilinear form b on the free algebra F = F (V ) defined
by b(u, v) = δu,v for every monomials u and v in the variables x1, . . . , xn. The algebra A

! = A(V,R⊥),
where R⊥ = {u ∈ V 2 ∶ b(r, u) = 0 for each r ∈ R}, is called the dual algebra of A. Clearly, A! is a
quadratic algebra in its own right. One easily sees that up to a graded algebra isomorphism, A!

does not depend on the choice of a basis in V . We recall that

every PBW-algebra is Koszul;

A is Koszul ⇐⇒ A! is Koszul;

if A is Koszul, then HA(−t)HA!(t) = 1.

The latter property of A, when the Hilbert series satisfies the property: HA(−t)HA!(t) = 1, we
will call numeric Koszulity.

The following lemma proved in [7] allows us to prove Koszulity of Sklyanin algebras once we
have computed their Hilbert series. We say that u ∈ A = A(V,R) is a right annihilator if V u = {0}
in A. A right annihilator u is non-trivial if u ≠ 0.

Lemma 2.1. Let A = A(V,R) be a quadratic algebra such that A!
4 = {0}, A!

3 is one-dimensional
and wA!

2 ≠ {0} for every non-zero w ∈ A!
1. Then the following statements are equivalent∶

(2.1.1) A is Koszul;

(2.1.2) A has no non-trivial right annihilators and HA(−t)HA!(t) = 1.

Next, we stress upon a well-known fact that neither Koszulity nor the Hilbert series of a quadratic
algebra A = A(V,R) is sensitive to changing the ground field.

Remark 2.2. Fix the bases x1, . . . , xn and r1, . . . , rm in V and R respectively. Then A = A(V,R)
is given by generators x1, . . . , xn and relations r1, . . . , rm. Let K0 be the subfield of K generated
by the coefficients in the relations r1, . . . , rm and B be the K0-algebra defined by the exact same
generators x1, . . . , xn and the exact same relations r1, . . . , rm. Then A is Koszul if and only if B
is Koszul (see, for instance, [10]) and the Hilbert series of A and of B coincide. The latter follows
from the fact that the Hilbert series depends only on the set of leading monomials of the Gröbner
basis. In particular, replacing the original field K by its algebraic closure or by an even bigger field
does not change the Hilbert series or Koszulity of A. On the other hand, the PBW-property is
sensitive to changing the ground field [10].

Since our secondary task is to describe all isomorphic Sklyanin algebras, a natural question arises.
Do we deal with isomorphism in the category of K-algebras or consider only isomorphisms in the
category of graded K-algebras. Formally speaking, the answer may depend on the choice of the
category. It does not do so in our case. This follows from the next elementary and very general
result.
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Proposition 2.3. Let A = A(V1,R1) and B = A(V2,R2) be quadratic algebras over the same ground
field K (any field of any characteristic is allowed here). Assume also that A and B are isomorphic
as K-algebras. Then they are isomorphic as graded K-algebras.

Proof. Let A = A(V1,R1) and B = A(V2,R2) be quadratic algebras over the same ground field K.
Let x1, . . . , xn be a linear basis in V1 and y1, . . . , ym be a linear basis in V2. Pick a linear basis
f1, . . . , fs in R1 and a linear basis g1, . . . , gt in R2. Let φ ∶ A → B be a K-algebra isomorphism.
The proof will be complete if we construct another algebra isomorphism ψ ∶ A → B such that its
restriction to V1 is a linear isomorphism from V1 onto V2 (then ψ is a graded algebra isomorphism).

Since fj ∈ V 2
1 , fj = ∑

1⩽k,p⩽n
a
(j)
k,pxkxp with a

(j)
k,p ∈ K. Let u(j) = φ(xj) for 1 ⩽ j ⩽ n. As usual, for an

element u of a graded algebra, uj stands for degree j homogeneous component of u. Since φ is an
algebra isomorphism, u(j) must generate B. Since the first component of every element of B in

the subalgebra generated by u(j) is in the linear span of u
(j)
1 , the said span must coincide with V2.

In particular, n ⩾m. The same argument with the roles of A and B switched yields m ⩾ n. Hence

m = n and u
(j)
1 for 1 ⩽ j ⩽ n form a linear basis in V2. Since φ is an algebra homomorphism, we

have

∑
1⩽k,p⩽n

a
(j)
k,pu

(k)u(p) = 0 in B for 1 ⩽ j ⩽ s. (2.1)

The zero component of the above equation reads

∑
1⩽k,p⩽n

a
(j)
k,pu

(k)
0 u

(p)
0 = 0 in K for 1 ⩽ j ⩽ s. (2.2)

The degree 1 component of (2.1) looks like

∑
1⩽k,p⩽n

a
(j)
k,p(u

(k)
0 u

(p)
1 + u

(p)
0 u

(k)
1 ) = 0 in V2 for 1 ⩽ j ⩽ s. (2.3)

Since u
(j)
1 are linearly independent, the left-hand sides in (2.3) are zero as polynomials in u

(j)
1 .

Hence,

∑
1⩽k,p⩽n

a
(j)
k,p(u

(k)
0 u(p) + u(p)0 u(k)) = 0 in B for 1 ⩽ j ⩽ s. (2.4)

Combining (2.1), (2.2) and (2.4) we get

∑
1⩽k,p⩽n

a
(j)
k,p(u

(k) − u(k)0 )(u
(p) − u(p)0 ) = 0 in B for 1 ⩽ j ⩽ s. (2.5)

The second degree component of (2.5) now is

∑
1⩽k,p⩽n

a
(j)
k,pu

(k)
1 u

(p)
1 = 0 in B for 1 ⩽ j ⩽ s. (2.6)

Since fj are linearly independent and u
(j)
1 are linearly independent, (2.6) provides s linearly inde-

pendent quadratic relations in B. In particular, s ⩽ t. The same argument with the roles of A and
B reversed, gives t ⩽ s. Hence s = t and the linear span of the left-hand sides of (2.6) must coincide

with R2. It follows that the map xi ↦ u
(i)
1 extends to an algebra isomorphism of A and B. Clearly,

this is a graded isomorphism, we were after.
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3 Elementary observations

The following elementary facts are proved in [7]. The next lemma is proved by a direct computation
of the reduced Gröbner basis for the ideal of relations of the dual of Sklyanin algebra (using the
usual left-to-right degree lexicographical ordering on monomials assuming x > y > z. The last
statement is verified directly since knowing the Gröner basis we know the multiplication table in
the relevant finite dimensional (in this case) algebra A!.

Lemma 3.1. Let (p, q, r) ∈ K3 and A = Qp,q,r. Then the Hilbert series of A! is given by

HA!(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 + 3t if p = q = r = 0;
1+2t
1−t if p3 = q3 = r3 ≠ 0 or exactly two of p, q and r equal 0;
(1 + t)3 otherwise.

(3.1)

Moreover, wA!
2 ≠ {0} for each non-zero w ∈ A!

1 provided HA!(t) = (1 + t)3.

Note [10] that for every quadratic algebra A = A(V,R) (Koszul or otherwise), the power series
HA(t)HA!(−t) − 1 starts with tk with k ⩾ 4. This allows to determine dimA3 provided we know
dimA!

j for j ⩽ 3. This observation together with (3.1) yield the following fact.

Corollary 3.2. Let (p, q, r) ∈ K3 and A = Qp,q,r. Then

dimA3 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

27 if p = q = r = 0;
12 if p3 = q3 = r3 ≠ 0 or exactly two of p, q and r equal 0;
10 otherwise.

(3.2)

The following two lemmas can be found in [7]. Since their proof is very short, we present it for
the sake of reader’s convenience.

Lemma 3.3. Assume that (p, q, r) ∈ K3 and θ ∈ K is such that θ3 = 1 and θ ≠ 1. Then the graded
algebras Qp,q,r and Qp,q,θr are isomorphic.

Proof. The relations of Qp,q,r in the variables u, v, w given by x = u, y = v and z = θ2w read
puv+ qvu+θrww = 0, pwu+ quw+θrvv = 0 and pvw+ qwv+θruu = 0. Thus this change of variables
provides an isomorphism between Qp,q,r and Qp,q,θr.

Lemma 3.4. Assume that (p, q, r) ∈ K3 and θ ∈ K is such that θ3 = 1 and θ ≠ 1. Then the graded
algebras Qp,q,r and Qp′,q′,r′ are isomorphic, where p′ = θ2p+θq+ r, q′ = θp+θ2q+ r and r′ = p+ q+ r.

Proof. A direct computation shows that the space of the quadratic relations of Qp,q,r in the variables
u, v, w given by x = u + v + w, y = u + θv + θ2w and z = u + θ2v + θw (the matrix of this change
of variables is non-degenerate) is spanned by p′uv + q′vu + r′ww = 0, p′wu + q′uw + r′vv = 0 and
p′vw + q′wv + r′uu = 0. Thus Qp,q,r and Qp′,q′,r′ are isomorphic.

Lemma 3.5. Assume that K contains an element θ such that θ3 = 1 ≠ θ. Let A = Qp,q,r be a
degenerate Sklyanin algebra. Then

• A = K⟨x, y, z⟩ ⇐⇒ p = q = r = 0;
• A is isomorphic to the monomial algebra Q1,0,0 given by the relations xy = zx = yz = 0 if and

only if either r = 0, pq = 0 and (p, q) ≠ (0,0) or p3 = q3 = r3 ≠ 0 and p ≠ q;
• A is isomorphic to the monomial algebra Q0,0,1 given by the relations xx = yy = zz = 0 if and

only if either p = q = 0 and r ≠ 0 or p = q ≠ 0 and p3 = r3;

Furthermore, the algebras K⟨x, y, z⟩, Q1,0,0 and Q0,0,1 are pairwise non-isomorphic and a degenerate
Sklyanin algebra can not be isomorphic to a non-degenerate one.
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Proof. The statement A = K⟨x, y, z⟩ ⇐⇒ p = q = r = 0 is obvious. If exactly two of p, q and r
are zero, then up to scaling we have three options for (p, q, r): (1,0,0), (0,1,0) and (0,0,1). Note
that swapping x and y, while leaving z as it is, provides an isomorphism between Q1,0,0 and Q0,1,0.
It remains to deal with the case p3 = q3 = r3 ≠ 0. If p = q, then by scaling we can make p = q = 1.
Then r3 = 1. By Lemma 3.3, Qp,q,r is isomorphic to Q1,1,1. By Lemma 3.4, Q1,1,1 is isomorphic
to Qp′,q′,r′ , where p′ = θ2 + θ + 1 = 0, q′ = θ + θ2 + 1 = 0 and r′ = 1 + 1 + 1 = 3 ≠ 0. Hence Qp,q,r is
isomorphic to Q0,0,1. It remains to deal with the situation p3 = q3 = r3 and p ≠ q. By scaling, we
can make p = 1. Then r3 = q3 = 1 and q ≠ 1. By Lemma 3.3, Qp,q,r is isomorphic to Q1,q,q2 . By
Lemma 3.4, Q1,q,q2 is isomorphic to Qp′,q′,r′ , where p′ = q + q3 + q2 = 0, q′ = q2 + q2 + q2 = 3q2 ≠ 0 and
r′ = 1 + q + q2 = 0. Thus Qp,q,r is isomorphic to Q1,0,0.

Clearly, K⟨x, y, z⟩ is not isomorphic to any of Q1,0,0 and Q0,0,1 (for example, K⟨x, y, z⟩ has
no non-trivial zero divisors, while Q1,0,0 and Q0,0,1 have non-trivial zero divisors provided by the
defining relations). The algebrasQ1,0,0 andQ0,0,1 are non-isomorphic since the only one-dimensional
representation of Q0,0,1 is the augmentation map, while the map sending x to 1 and y and z to 0
extends to a one-dimensional representation of Q1,0,0.

Finally, by Corollary 3.2, a degenerate and a non-degenerate Sklyanin algebras always have
different dimensions of their third graded components. Hence a degenerate Sklyanin algebra can
not be isomorphic to a non-degenerate one.

Lemma 3.6. Assume that K contains an element θ such that θ3 = 1 ≠ θ. A non-degenerate Sklyanin
algebra A = Qp,q,r is isomorphic to a quantum polynomial algebra Bα given by the relations xy = αyx,
zx = αxz and yz = αzy with α ∈ K∗ if and only if r = 0 or (p + q)3 + r3 = 0. More specifically, A is
isomorphic to Bα with given α ∈ K∗ if and only if either r = 0 and α ∈ {−p

q ,−
q
p
}, or (p+ q)3 + r3 = 0

and α ∈ {θ p−θ
2q

p−θq , θ
2 p−θq
p−θ2q}. Furthermore, Bα and Bβ are isomorphic if and only if either α = β or

αβ = 1.

Proof. If r = 0, then obviously A = Qp,q,r is isomorphic to Bα with α = − q
p (these algebras coincide).

Assume now that (p + q)3 + r3 = 0 and r ≠ 0. Clearly, Qp,q,r = Qs,t,1, where s = p
r and t = q

r .
Since (p + q)3 + r3 = 0, we have (−s − t)3 = 1. By Lemma 3.3, Qs,t,1 is isomorphic to Qs,t,−s−t. By
Lemma 3.4, Qs,t,−s−t is isomorphic to Qp′,q′,r′ , where p′ = (θ2 − 1)s+ (θ − 1)t, q′ = (θ − 1)s+ (θ2 − 1)t
and r′ = 0. Note that the assumptions yield that Qp,q,r is non-degenerate and therefore so is Qp′,q′,r′ .

Hence p′q′ ≠ 0. Then Qp′,q′,r′ = Q1,−α,0 with α = − (θ−1)s+(θ
2−1)t

(θ2−1)s+(θ−1)t . After easy simplifications, one gets

α = θ p−θ
2q

p−θq ∈ K
∗. Thus A is isomorphic to Bα with α = θ p−θ

2q
p−θq . Since swapping x and y, while

leaving z as it is, provides an isomorphism between Bα and Bα−1 , we see that A is isomorphic to

Bα if either r = 0 and α ∈ {−p
q ,−

q
p
}, or (p + q)3 + r3 = 0 and α ∈ {θ p−θ

2q
p−θq , θ

2 p−θq
p−θ2q}.

Next, we shall verify that A is not isomorphic to any Bα provided r ≠ 0 and (p + q)3 + r3 ≠ 0.
Indeed, assume that r ≠ 0 and (p + q)3 + r3 ≠ 0. We shall verify that A has no one-dimensional
representations except for the augmentation map. Let φ ∶ A→ K be a representation (=an algebra
homomorphism) and let a = φ(x), b = φ(y) and c = φ(z). We have to prove that a = b = c = 0. From
the defining relations of A it follows that (p + q)ab = −rc2, (p + q)bc = −ra2 and (p + q)ac = −rb2.
Multiplying these equalities, we get a2b2c2((p+q)3+r3) = 0. Since (p+q)3+r3 ≠ 0, we have abc = 0.
Without loss of generality, we may assume that a = 0. From (p + q)ab = −rc2 and (p + q)ac = −rb2
we now get rb = rc = 0. Since r ≠ 0, we obtain a = b = c = 0. On the other hand, the map x ↦ 1,
y ↦ 0 and z ↦ 0 extends to a one-dimensional representation for each Bα. Thus each Bα has more
than one one-dimensional representations. Thus A is not isomorphic to any Bα provided r ≠ 0 and
(p + q)3 + r3 ≠ 0.

The proof will be complete if we verify that Bα and Bβ are isomorphic if and only if either α = β
or αβ = 1. Since B1 = K[x, y, z] is the only commutative algebra among Bα, it is non-isomorphic
to any Bα with α ≠ 1. Thus it remains to deal with the case α ≠ 1 and β ≠ 1. Let α,β ∈ K∗, α ≠ 1
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and β ≠ 1. Assume that there is a graded algebra isomorphism φ ∶ Bα → Bβ. Let x, y, z be the
usual generators of Bβ, while u, v and w be the images under φ of the usual generators of Bα.
Then u, v and w form a linear basis in the degree 1 component Bβ

1 = V of Bβ and satisfy uv = αvu,
wu = αuw and vw = αwv. Furthermore, the linear span of uv−αvu, wu−αuw and vw−αwv treated
as elements of K⟨x, y, z⟩ must coincide with the linear span of xy − βyx, zx− βxz and yz − βzy. In
particular, uv −αvu, wu−αuw and vw −αwv must be ’square-free’: when written in terms of x, y
and z they should not contain any of xx, yy and zz. Since α ≠ 1, it immediately follows that each
of u, v and w, when written in terms of x, y and z must be a scalar multiple of a single element
of {x, y, z}. That is, the matrix of our linear substitution φ is a product of a diagonal matrix and
a permutation matrix (of size 3 × 3). If the permutation in question is even, one easily sees that
uv −αvu, wu−αuw and vw−αwv are scalar multiples of xy −αyx, zx−αxz and yz −αzy (in some
order), while if the permutation is odd uv − αvu, wu − αuw and vw − αwv are scalar multiples of
αxy−yx, αzx−xz and αyz−αzy (in some order). Thus, the spans of the triples uv−αvu, wu−αuw
and vw − αwv and xy − βyx, zx − βxz and yz − βzy can coincide only if α = β or αβ = 1, which
completes the proof.

Lemma 3.7. Degenerate Sklyanin algebras A = Qp,q,r are Koszul and have the Hilbert series HA =
(1 − 3t)−1 if p = q = r = 0 and HA = 1+t

1−2t otherwise. Non-degenerate Sklyanin algebras A = Qp,q,r

satisfying either r = 0, or (p + q)3 + r3 = 0, or p3 = q3 are Koszul and have the Hilbert series
HA = (1 − t)−3.

Proof. By Remark 2.2, by passing to a field extension, we can, without loss of generality, assume
that K is algebraically closed. Since charK ≠ 3 and K is algebraically closed, we can find θ ∈ K
such that θ3 = 1 ≠ θ. Now by Lemmas 3.5 and 3.6 in all cases except for p3 = q3 ≠ 0 and r ≠ 0, A is
PBW and therefore Koszul. Indeed, A is either isomorphic to a monomial algebra or to quantum
polynomials. The computation of the Hilbert series is straightforward and very easy.

It remains to consider the case p3 = q3 ≠ 0 and r ≠ 0. By normalizing, we can without loss
of generality assume p = 1. Then q3 = 1 and the defining relations take form xx = −1

ryz −
q
rzy,

xy = −qyx − rzz and xz = −1
q zx −

r
qyy. A direct computation shows that the reduced Gröber basis

of the ideal of relations comprises the defining relations rxx+yz+qzy, xy+qyx+rzz, qxz+ryy+zx
together with yyz−q2zyy and yzz−q2zzy (the basis is finite; one has to use the equality q3 = 1). Now
the normal words (the words, which do not contain any of the leading monomials xx, xy, xz, yyz,
yzz of the basis as submonomials) are exactly zk(yz)mylxε, where k,m, l are non-negative integers

and ε ∈ {0,1}. As there are precisely
(n+1)(n+2)

2 normal words of degree n, we have HA = (1 − t)−3.
Since the set of normal words is closed under multiplication by z on the left, the map u ↦ zu
from A to itself is injective. In particular, A has no non-trivial right annihilators. By Lemma 3.1
HA! = (1 + t)3 and wA!

2 ≠ {0} for every non-zero w ∈ A!
1. Now Lemma 3.2 implies that A is

Koszul.

We need another observation made in [7].

Lemma 3.8. For every p, q, r ∈ K, the Sklyanin algebra A = Qp,q,r satisfies dimAn ⩾ (n+1)(n+2)2 for
every n ∈ Z+.

4 Proof of Theorem 1.1

Throughout this section p, q, r ∈ K and A = Qp,q,r. By Remark 2.2, by passing to a field extension,
we can, without loss of generality, assume that K is algebraically closed. Since charK ≠ 3 and K is
algebraically closed, we can find θ ∈ K such that θ3 = 1 ≠ θ. If p3 = q3 or r = 0 or (p + q)3 + r3 = 0,
the conclusion of Theorem 1.1 follows from Lemma 3.7. Thus for the rest of the proof, we can
assume that none of these equalities holds. Moreover, if p+q = 0, one easily sees that a substitution
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from Lemma 3.4 breaks this equality. Thus we can additionally assume that p + q ≠ 0. Since r ≠ 0,
by scaling the relations, we can without loss of generality assume that r = 1. Then (p, q) ≠ (0,0),
(p3 − 1, q3 − 1) ≠ (0,0), p + q ≠ 0 and (p + q)3 + 1 ≠ 0.

Our proof hinges on finding a convenient linear substitution. The main objective is to make
specific monomials (namely, xx, xy and yz) into leading monomials of defining relations with respect
to the standard left-to-right degree-lexicographical ordering assuming x > y > z. We perform the
substitution in a number of steps: each of the steps is a linear sub itself and the resulting substitution
is their composition. We keep the same letters x, y, z for both old and new variables. We introduce
a substitution by showing by which linear combination of (new) x, y, z must the (old) variables
be replaced. For example, if we write x → x + y + z, y → z − y and z → 7z, this means that all
occurrences of x (in the relations, potential etc.) are replaced by x + y + z, all occurrences of y are
replaced by z − y, while z is swapped for 7z.

Note that our Sklyanin algebra Qp,q,1 is potential with the potential

Fp,q = x3 + y3 + z3 + pxyz⟲ + qxzy⟲.

First, we perform the sub x → − x
p+q , y → y and z → z. As a result, we see that A = Qp,q,1 is

isomorphic to the potential algebra with the potential

F ′p,q = −
(p+q)3+1
(p+q)3 x3 + (x3 + y3 + z3) − p

p+qxyz
⟲ − q

p+qxzy
⟲.

Note that we have used the condition p + q ≠ 0. Next, we do the sub x→ x + y + z, y → x + θ2y + θz
and z → x + θy + θ2z. As a result, A is isomorphic to the potential algebra with the potential

F ′′p,q = −
(p+q)3+1
(p+q)3 (x + y + z)

3 + 3((1−θ)p+(1−θ2)q)
p+q xyz⟲ + 3((1−θ2)p+(1−θ)q)

p+q xzy⟲.

Note that the (x + y + z)3-coefficient in F ′′p,q is non-zero since (p + q)3 + 1 ≠ 0. Since multiplying
a potential by a non-zero constant has no effect on the corresponding potential algebra, A is
isomorphic to the potential algebra with the potential

Ga,b = (x + y + z)3 + axyz⟲ + bxzy⟲,

where
a = 3(p+q)2((θ−1)p+(θ2−1)q)

(p+q)3+1 , b = 3(p+q)2((θ2−1)p+(θ−1)q)
(p+q)3+1 .

Note that a = 0 ⇐⇒ p = θ2q, b = 0 ⇐⇒ p = θq and a = b ⇐⇒ p = q. Since p3 ≠ q3, we have

ab(a − b) ≠ 0. Furthermore, a + b = − 9(p+q)3
(p+q)3+1 and therefore a + b ≠ 0 as well.

Now we perform the sub x→ a
a+bx, y →

b
a+bx+y−z and z → z. We need the fact that a(a+ b) ≠ 0

for it to be non-degenerate. As a result, A is isomorphic to the potential algebra with the potential

G′a,b = (x + y)
3 + ab

a+bxxz
⟲ + a2

a+bxyz
⟲ + ab

a+bxzy
⟲ − axzz⟲.

By this point, we have already reached our main objective. One easily sees that the leading
monomials of the defining relations of the last algebra are indeed xx, xy and yz. However, we shall
perform one final sub (with a triangular matrix) in order to simplify the potential. Namely, we use

the sub x→ x− a−b
a y + (a+b)

2+a2b
(a−b)3 z, y → a−b

a y − (a+b)
2+ab2

(a−b)3 z and z → − a+b
(a−b)2 z, which is non-degenerate

since ab(a + b)(a − b) ≠ 0. As a result, A is isomorphic to the potential algebra with the potential

Pα,γ = x3 − xyz⟲ + yyz⟲ + αyzz⟲ − (γ − α2)z3, (4.1)

where

α = − (a+b)
3+ab(a2+b2)
(a−b)4 , γ = − (a+b)

4(a2−ab+b2)+ab(a+b)3(2a2+2b2−3ab)+a2b2(a4+b4+a2b2−a3b−ab3)
(a−b)8 .
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Remark 4.1. There is no black magic to this string of substitutions. There is no visible pattern
to the leading monomials of the Gröbner basis of the ideal of relations of the Sklyanin algebras in
their original form. We had to change something and the most drastic change ensues from altering
the leading monomials of the defining relations. However for generic Sklyanin, it is impossible to
get rid of the square xx of the largest generator. It is equally impossible to lose both xy and xz,
so we might as well keep xy. The only freedom we have now is to find a sub, which will change the
smallest leading term xz and this can not possibly go below yz. So we set on changing it into yz.
We use elementary linear algebra to find necessary and sufficient conditions on a potential for the
corresponding potential algebra to have xy, xz and yz as the leading terms of defining relations.
These have the form of equations on the coefficients of the potential. Each of the first few of the
above subs were designed to alter the potential in such a way that one equation is satisfied without
spoiling the previously obtained ones. The last sub is there for the sake of neatness.

The case α = γ = 0 does not occur (does not come from a Sklyanin algebra). One can see it
directly using the above formulas for α and γ. However there is an indirect way. The potential
algebra with the potential P0,0 enjoys a rank 1 quadratic relation xy = yy (we mean the usual rank in
V ⊗V ). On the other hand, it is elementary to see that no such thing exists for any non-degenerate
Sklyanin algebra. We shall discuss the potential P0,0 later since it is peculiar indeed.

Thus A is isomorphic to the potential algebra B defined by the potential Pα,γ of (4.1) with
α, γ ∈ K, (α, γ) ≠ (0,0). Since A and B are isomorphic, the proof will be complete if we show that
B is Koszul and HB = (1 − t)−3. A direct computation shows that B is presented by generators
x, y, z and relations

xx − zx + zy + αzz = 0, xy − yy − αzx + γzz = 0, yz − zx + zy + αzz = 0 (4.2)

(observe the leading monomials xx, xy and yz). Let I be the right ideal in B generated by y and
z: I = yB + zB. For f, g ∈ B, we write f = g (mod I) if f − g ∈ I. For each k ∈ Z+ consider the
following property:

(Πk) there exist ak, bk ∈ K such that xzkx = akxzk+1 (mod I) and xzky = bkxzk+1 (mod I).

Note that according to (4.2), Π0 is satisfied with a0 = b0 = 0. We shall prove the following Claim.
Claim: If k ∈ Z+ and Πk is satisfied, then either Πk+1 is satisfied or

(Σk+1) xz
k+1x = xzk+1y (mod I) and xzk+2 = 0 (mod I).

Proof of Claim. Assume that Πk holds. Then xzkx = akxzk+1 (mod I) and xzky = bkxzk+1 (mod I).
Using (4.2), we see that xzkyz = xzk+1x − xzk+1y − αxzk+2 for some ak, bk ∈ K. On the other hand,
xzkyz = bkxzk+2 (mod I). These equalities yield

−xzk+1x + xzk+1y + (bk + α)xzk+2 = 0 (mod I).

By (4.2), xzkxy = xzkyy+αxzk+1x−γxzk+2. Using (Πk), we then have xzkxy = bkxzk+1y+αxzk+1x−
γxzk+2 (mod I). Directly from (Πk), we have xz

kxy = akxzk+1y (mod I). These two equalities yield

αxzk+1x + (bk − ak)xzk+1y − γxzk+2 = 0 (mod I).

Again, by (4.2), xzkxx = xzk+1x − xzk+1y − αxzk+2. By (Πk), xz
kxx = akxzk+1x (mod I). By the

last two equalities,
(ak − 1)xzk+1x + xzk+1y + αxzk+2 = 0 (mod I).

In the matrix form, the equations in the above three displays have the form

M
⎛
⎜
⎝

xzk+1x

xzk+1y

xzk+2

⎞
⎟
⎠
=
⎛
⎜
⎝

0
0
0

⎞
⎟
⎠
(mod I), where M =

⎛
⎜
⎝

−1 1 bk + α
α bk − ak −γ

ak − 1 1 α

⎞
⎟
⎠
. (4.3)
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If the first two columns of matrix M are linearly independent, Πk+1 follows straight away.
It remains to consider the case when the first two columns of matrix M are proportional. In this

case ak = 0 and bk = −α and M has the form

M =
⎛
⎜
⎝

−1 1 0
α −α −γ
−1 1 α

⎞
⎟
⎠
.

Since (α, γ) ≠ (0,0), (4.3) is now equivalent to xzk+1x = xzk+1y (mod I) and xzk+2 = 0 (mod I),
which is Σk+1. This concludes the proof of the claim.

According to the above claim we have two options: either Πk holds for all k ∈ Z+ or for some
k ∈ Z+, Π0, . . . ,Πk and Σk+1 are satisfied. Note that the first option is what happens for generic
(α, γ) ∈ K2, while the validity of Π0, . . . ,Πk and Σk+1 occurs for (α, γ) from an algebraic curve.

Case 1: Πk holds for all k ∈ Z+. The only monomials, which do not contain any of yz, xzkx
and xzky for k ∈ Z+ are zkym and zkymxzj for k,m, j ∈ Z+. Denote this set of monomials N .

The number of monomials of degree n in N is exactly
(n+1)(n+2)

2 . Since Πk is satisfied for each k,

B is the linear span of N . It follows that dimBn ⩽ (n+1)(n+2)2 for each n and these inequalities
turn into equalities precisely when monomials from N are linearly independent in B. On the other

hand, by Lemma 3.8, dimAn = dimBn ⩾ (n+1)(n+2)2 for each n. Hence dimBn = (n+1)(n+2)2 for every
n, that is, HB = (1 − t)−3, and monomials from N are linearly independent in B. Equalities in
Πk can be written as the equalities xzkx − akxzk+1 + fk and xzky − bkxzk+1 + gk in B with fk, gk
being homogeneous elements of I of degree k+2. According to the above observations, the equality
HB = (1−t)−3 implies that yz−zx+zy+αzz together with xzkx−akxzk+1+fk and xzky−bkxzk+1+gk
for k ∈ Z+ form a reduced Gröbner basis in the ideal of relations of B and that N is the set of
corresponding normal words. Since N is closed under multiplication by z on the left, the map
u ↦ zu from B to itself is injective. Thus B has no non-trivial right annihilators. Since A and
B are isomorphic HA = (1 − t)−3 and A has non non-trivial right annihilators. By Lemma 3.1
HA! = (1+ t)3 and wA!

2 ≠ {0} for every non-zero w ∈ A!
1. Now Lemma 3.2 implies that A is Koszul.

Case 2: there is k ∈ Z+ such that Π0, . . . ,Πk and Σk+1 hold. By Σk+1, xz
k+1x = xzk+1y (mod I)

and xzk+2 = 0 (mod I). Using these equalities and (4.2), we have xzk+1xx = xzk+1yx (mod I) and
xzk+1xx = xzk+2x − xzk+2y − αxzk+3 = 0 (mod I). Hence

xzk+1yx = 0 (mod I).

The only monomials, which do not contain any of yz, xzjx for 0 ⩽ j ⩽ k + 1, xzjy for 0 ⩽ j ⩽ k,
xzk+2 and xzk+1yx are the words of the form zjymw, where m,j ∈ Z+ and w is an initial subword
(empty allowed) of the infinite word xzk+1yyyy . . . . Denote this set of monomials N . As before,

the number of monomials of degree n in N is
(n+1)(n+2)

2 . Now exactly the same argument as in
Case 1 yields HA = HB = (1 − t)−3 and shows that A is Koszul. Note that this time the reduced
Gröbner basis in the ideal of relations of B turns out to be finite: it consists of 2k + 6 elements.
This concludes the proof of Theorem 1.1.

5 Isomorphic Sklyanin algebras

Recall that we still assume that charK ≠ 3. Throughout this section we shall also assume that there
is θ ∈ K such that θ3 = 1 ≠ θ and use θ for this element without further reference. Note that the
absence of a non-trivial cubic root of 1 does effect the results below both directly (when θ features
in a statement) and indirectly.
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By Lemmas 3.5 and 3.6, a non-degenerate Sklyanin algebra Ap,q,r is non-isomorphic to any
quantum polynomial algebra Bα if and only if r ≠ 0, (p+ q)3 + r3 ≠ 0, (p, q) ≠ (0,0) and p3 = q3 = r3
fails. That is, by dividing by r, (p, q, r) can be turned into a unique triple (a, b,1) with

(a, b) ∈M, where M = {(a, b) ∈ K2 ∶ (a, b) ≠ (0,0), (a + b)3 + 1 ≠ 0, (a3 − 1, b3 − 1) ≠ (0,0)}.

Since scaling the triple of parameters does not change the Sklyanin algebra, in order to describe
which non-degenerate Sklyanin algebras non-isomorphic to quantum polynomials are isomorphic
to each other, it suffices to do so in the case (p, q, r) = (a, b,1) with (a, b) ∈M .

Lemma 5.1. If both (a, b) and (a′, b′) belong toM , then the Sklyanin algebras Qa,b,1 and Qa′,b′,1 are
isomorphic if and only if (a, b) and (a′, b′) are in the same orbit of the group action on M generated

by two maps (a, b) ↦ (θa, θb) and (a, b) ↦ ( θa+θ2b+1a+b+1 , θ
2a+θb+1
a+b+1 ). This group is finite, consists of 24

elements (thus if K is infinite, for generic (a, b) ∈ M , there are exactly 23 other elements of M
giving rise to an isomorphic Sklyanin algebra) and is isomorphic to SL2(Z3).

The complete list of pairs (a′, b′) ∈ M such that for a given (a, b) ∈ M , Qa,b,1 and Qa′,b′,1 are
isomorphic is as follows∶

• (θja, θjb) and (θjb, θja) with j ∈ {0,1,2};
• ( θja+θkb+θma+b+θn , θ

ka+θjb+θm
a+b+θn ) with n ∈ {0,1,2} and {j, k,m} = {0,1,2}.

The first line line in the above list provides 6 pairs, while the second line yields 18.

Proof. Assume that (a, b) and (a′, b′) belong toM , then the Sklyanin algebras A = Qa,b,1 = A(V,R)
and B = Qa′,b′,1 = A(V,R′) are isomorphic. By Theorem 1.1, dimA3 = dimB3 = 10. Since dimV 3 =
27, we have dim (V R+RV ) = dim (V R′+R′V ) = 27−10 = 17. Since dimV R = dimRV = dimV R′ =
dimR′V = 9, it follows that dim (RV ∩ V R) = dim (R′V ∩ V ′R) = 1. On the other hand, obviously,
the potentials F = x3 + y3 + z3 + axyz⟲ + bxzy⟲ and F ′ = x3 + y3 + z3 + a′xyz⟲ + b′xzy⟲ for
A and B respectively satisfy F ∈ RV ∩ V R and F ′ ∈ R′V ∩ V R′. Since a linear substitution
T ∈ GL3(K) facilitating the graded isomorphism of A and B must send RV ∩ V R to R′V ∩ V R′,
it transforms F to F ′ up to a scalar multiple. Hence T must transform the abelianization of F
G = x3 + y3 + z3 + 3(a + b)xyz ∈ K[x, y, z] (the image of F under the canonical map from K⟨x, y, z⟩
to K[x, y, z]) into the abelianization G′ = x3 + y3 + z3 + 3(a′ + b′)xyz ∈ K[x, y, z] of F ′ up to a scalar
multiple. Hence, T provides an isomorphism between the elliptic (projective) curves C given by
G = 0 and C′ given by G′ = 0.

Since (a, b) and (a′, b′) belong to M , we have (a + b)3 + 1 ≠ 0 and (a′ + b′)3 + 1 ≠ 0 and therefore
the curves C and C ′ are regular. Note that the each of the curves C and C′ have the same exactly
collection of nine inflection points which are the nine lines Lk for 1 ⩽ k ⩽ 9 spanned by (1,−1,0),
(1,−θ,0), (1,−θ2,0), (1,0,−1), (1,0,−θ), (1,0,−θ2), (0,1,−1), (0,1,−θ) and (0,1,−θ2) respectively.
Since T is an isomorphism between Cp,q and Cp′,q′ , T must leave the union of Lj invariant. It is
a routine exercise to verify that the subgroup G of GL3(K) leaving the union of Lj invariant is
generated by

⎛
⎜
⎝

λ 0 0
0 λ 0
0 0 λ

⎞
⎟
⎠
(λ ∈ K∗),

⎛
⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟
⎠
,
⎛
⎜
⎝

1 0 0
0 1 0
0 0 θ

⎞
⎟
⎠

and
⎛
⎜
⎝

θ θ2 1
θ2 θ 1
1 1 1

⎞
⎟
⎠
. (5.1)

One way to see it is to notice that, first of all, each linear map in the above display leaves the
union of Lj invariant. Next, one easily checks that the group K generated by matrices in the above
display acts transitively on the set of triples of Lj that span K3. This fact together with an (easily
verifiable) observation that K contains all permutation matrices and all scalar matrices yields that
K contains all elements of G and therefore K = G. Thus T ∈ G.
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Now the linear transformations given by the first two matrices in the above display provide au-
tomorphisms of each Qp,q,1, while the linear transformation given by the third matrix in the above
display facilitates an isomorphism between Qp,q,1 and Qθp,θq,1 for each (p, q) ∈M . Finally, a direct
computation shows that the linear transformations given by the last matrix in the above display pro-

vides an isomorphism of Qp,q,1 and Qp′,q′,1 for every (p, q) ∈M , where (p′, q′) = ( θp+θ
2q+1

p+q+1 , θ
2p+θq+1
p+q+1 ).

This completes the proof of the isomorphism statement. Thus the existence of an isomorphism
between A and B is equivalent to A and B being in the same orbit of the group action on M

generated by two maps (a, b)↦ (θa, θb) and (a, b)↦ ( θa+θ2b+1a+b+1 , θ
2a+θb+1
a+b+1 ).

A direct computation shows that this group consists of the maps (a, b) ↦ (θja, θjb) with j ∈
{0,1,2} (a, b) ↦ (θjb, θja) with j ∈ {0,1,2} and (a, b) ↦ ( θja+θkb+θma+b+θn , θ

ka+θjb+θm
a+b+θn ) with n ∈ {0,1,2}

and {j, k,m} = {0,1,2}. Hence the group has 24 elements. As for this group being isomorphic
to SL2(Z3), this can be done by computing enough features of this group (for instance, it has a
two-element center, maximal order of an element in it is 6 etc.) to be able to identify it in the
well-known list of 24-element groups.

Theorem 1.2 is just an amalgamation of Lemmas 3.5, 3.6 and 5.1. That is, it is already proven.
Note that analyzing the conclusion of Theorem 1.2, it is easy to see that it has the following neat
corollary, where we do not distinguish between different types of Sklyanin algebras, like degenerate
and non-degenerate, quantum polynomials or not. The argument for those classes of algebras may
differ (one of the reasons to treat quantum polynomials separately is that the elliptic curve from the
proof of Lemma 5.1 becomes degenerate in this case) but the results admit a ’uniform’ description.

Corollary 5.2. Two Sklyanin algebras Qp,q,r and Qp′,q′,r′ are isomorphic if and only if (p, q, r) and
(p′, q′, r′) lie in the same orbit of the natural action of the subgroup H of GL3(K) generated by

⎛
⎜
⎝

λ 0 0
0 λ 0
0 0 λ

⎞
⎟
⎠
(λ ∈ K∗),

⎛
⎜
⎝

1 0 0
0 1 0
0 0 θ

⎞
⎟
⎠

and
⎛
⎜
⎝

θ θ2 1
θ2 θ 1
1 1 1

⎞
⎟
⎠
. (5.2)

Curiously enough, the above group H is a subgroup of the group G from the proof of Lemma 5.1.

6 Some remarks

1. Observe that our results on Sklyanin algebras collapse in characteristic 3. Indeed, a cubic root of
1 plays an essential role in the substitution we construct as well as in the description of isomorphic
Sklyanin algebras.

2. Concerning the potential
P0,0 = x3 − xyz⟲ + yyz⟲,

which does not correspond to a Sklyanin algebra, the algebra W it does generate is quite peculiar.
The defining relations of W are xx − zx + zy = 0, xy − yy = 0 and yz − zx + zy = 0. A direct
computation shows that the reduced Gröbner basis in the ideal of relations of W is finite. It
comprises xx − zx + zy, xy − yy, yz − zx + zy = 0, yyy, xzx − xzy + zyx − zzx + zzy and xzyx, which

allows us to compute the Hilbert series of W ∶ HW = (1+t)(1+t
2)(1+t+t2)

1−t−t3−2t4 . On the other hand, the dual

algebra W ! is given by the relations xx + yz + zx, xy + yy, xz, yx, zx + zy and zz. Those together
with yyy, zyz, yyz − zyy and yzy − zyy form the reduced Gröbner basis in the ideal of relations of
W !. The corresponding normal words are 1, x, y, z, yy, yz, zy and zyy, yielding HW ! = (1 + t)3.
Clearly, the the duality relation HW (t)HW !(−t) = 1 fails and therefore W is non-Koszul. Thus W
provides an example of a non-Koszul quadratic potential algebra on three generators.
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3. We would like to make a comment on the groups G andH defined in (5.1) and (5.2), respectively.
Both are subgroups of GL3(K) containing the group S = K∗Id of scalar matrices as a normal
subgroup. Consider the groups G0 = G/S and H0 =H/S. Both H0 and G0 turn out to be finite (H0

is a subgroup of G0). Naturally, H0 is isomorphic to the group from Lemma 5.1. Thus it has 24
elements and is isomorphic to SL2(Z3). As for G0, it is rather easy to find its order: G0 contains
216 elements.

4. For the results on isomorphisms we supposed that the filed is algebraically closed, or at least
there is nontrivial cubic root of unity. Analogous results could be obtained if we omit this condition.
In fact, the similar methods, we have used above, allow to deal with the case when charK ≠ 3 but
K possesses no nontrivial cubic roots of 1. Equivalently, the quadratic equation t2 + t + 1 = 0 has
no solutions in K. In this case, there are much fewer isomorphic Sklyanin algebras. Namely, Qp,q,r

and Qp′,q′,r′ are isomorphic if and only if either (p′, q′, r) is proportional to (p, q, r) (in this case
the algebras Qp,q,r and Qp′,q′,r′ coincide) or (p′, q′, r) is proportional to (q, p, r). In the latter case
swapping of x and y, while leaving z as it is, provides a required isomorphism. Note that now we
have four pairwise non-isomorphic degenerate Sklyanin algebras. The extra one is Q1,1,1 and it is
not isomorphic to any monomial algebra. Similarly, in this case non-degenerate Qp,q,r satisfying
(p + q)3 = −r3 ≠ 0 are no longer isomorphic to quantum polynomials. To give a taste of how all
this can be verified, we sketch the proof of the analog of Lemma 5.1. Let K1 be the extension of
K via the polynomial t2 + t+ 1 (K1 is the quotient of K[t] by the ideal generated by t2 + t+ 1). Let
θ ∈ K1 be one of the two solutions of the quadratic equation t2 + t + 1 = 0. Then θ3 = 1 ≠ θ. In the
proof of Lemma 5.1 it is shown that T ∈ GL3(K1) provides an isomorphism between some Qa,b,1

and Qa′,b′,1 for (a, b), (a′, b′) ∈M if and only if T belongs to the group G defined in (5.1) (in which
case T preserves the whole class of algebras Qa,b,1 with (a, b) ∈M). Now the substitutions we are
interested in (those which work in the case when the ground field is K) are precisely T ∈ G with all
entries from K. These are easily seen to be only the scalar multiples of permutation matrices. If
the permutation in question is even, T provides an automorphism of each Qa,b,1, while if it is odd,
T provides an isomorphism between Qa,b,1 and Qb,a,1.
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