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Ideals of linear type and some variants

M. Herrmann, B. Moonen, O. Villamayor

Introduction

Here we consider the relationships that hold between the arithmetical
properties of the Rees algebra Re(I) and the symmetric algebra Sym (I)
of an ideal I in a noetherian ring A. Asis well known, Re(I) is of paramount
importance since it describes the blow up of A along I. It is, however, diffi-
cult to handle because its equations are given by the syzygies of all powers
I™. Sym (I), on the contrary, has a simpler structure; its equations are
just given by the syzygies of I and so are linear. This makes it clear
that one is interested in situations where Sym (I) and Re(I) do not differ
much. The simplest case is, of course, where they are just 1somorph1c, in
which case I is said to be of linear type (1.t.).

In this report we want to emphasize more the numerical approach to Jlinear
type ideals and the geometric aspects of this property of an ideal. The
" geometric interpreation of linear type means that the normal cone and
the normal bundle of a closed subscheme of a given scheme coincide. In
the course of our investigations it showed up that a weaker notion which
we call geometric linear {ype (g.l.t.), turned out to be not only useful
and interesting on its own, but also to unify various aspects in the papers
[HSiV1 — 3] and [Hu3] with respect to linear type property and in [SV2]
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with respect to the dimension of the symmetric algebra (Huneke-Rossi-
formula) . The condition to be of geometric linear type refers only to
the reduced structures of the normal cone and the normal bundle. To be
specific, this means that the fibres of the normal cone projection should be
linear. This already shows the closed connection of the g.l.t.-property with
the L.t.-property. The main advantage of g.1.t. being that it can be checked
by numerical conditions. This provides the general strategy of proving l.t.
by first proving g.l.t. and then looking for additional conditions which
give “g.l.t.= L.t.”. Manifestations of this principle appear in the proof of
theorem 2.4 in {Hu3), and in [HSiV3], s. remark, page 80. (One should note
that this last result does not depend on the machinery of approximation
complexes.) At this point we would like to remark that in general it is very
difficult to check the linear type-property for a given ideal. Known are
particular examples (for determinantal ideals s. {Hu3]), and, as a general
class of ideals of linear type, those which are generated by d-sequences
(s. [Hul},[Val]). Note, however, that there are linear type ideals (in
particular determinantal ideals) which are not generated by d-sequences,
8. [Hu3], footnote **.

The material of this report can be divided roughly‘into the following two
parts. The first one is theoretical and concerned with the general theory of
1.t., gl.t. and weaker conditions and their mutual interrelations; a partic-
ular weaker condition is contained in Valla’s conjecture (§2). To this first
part also belong §1, A,C and §§3.4. In §2 we explain Valla’s conjecture
and prove a particular case of it. In §4, theorem 4.8 we investigate the
relationship of linear type, geometric linear type and the almost complete
intersection-property (a.c.i.) in Cohen-Macaulay rings, in particular al-
most complete intersections are of linear type in this situation. This last
result is already mentioned in [SV1] and in [Hu4|. Here we give an ele-
mentary proof based on a general Primbasissatz, which seems to be new
in this form.

The second part of the report is concerend with numerical aspects and
various examples and counterexamples illustrating the theory. To it belong
§2, §5 and §1 B. Section 2 appears here again because in Valla’s conjecture
the 1.t.- property is characterized by an effective numerical condition. It is
also pointed out that the full validity of this conjecture is doubtful. In §5
we sketch a purely numerical approach to the linear type-property. The
results so obtained are only a first step in the direction towards conditions
which should be more effective, in particular from a practical point of view.
§1 B is devoted to examples. Various other examples appear throughout
the text.



The concept of linear type ideals seems to have been introduced in [Mi],
although not under this name (which is due to Robbiano and Valla). Some
main contributions were given in [S],[MSS] and [Val],{Va2]. Since then
there has been constant interest in this topic. In particular we mention
the papers [HSiV1 — 3], [SV2 — 3] of Herzog, Vasconcelos and Simis and
[Hu4] of Huneke. This work, however, goes into a direction rather different
from our line of thinking. Since we will not return to this point of view in
the main text we describe briefly their approach:

An essential purpose of this work i8 to relate the Cohen-Macaulayness and
normality of the Rees algebra and the-associated graded algebra of I to the
Koszul homology H;(I,A) of I. This is done via various approximation
complexes. The fundamental idea of Vasconcelos and Simis is to construct
a graded comples M(I) = M, with the nth graded piece M,, of M

— Hi(I;A) ® Sym ,,_;(A"/IA™) = ... — Sym ,(A™/IA™) =0 |,

where n is the number of generators of I (which are fixed) . It then follows
for the homology of M that Hy(M)= Sym (I/I?) ,and H;(M)

is independent of the generating set of I. Now, if M is acyclic, I is of
linear type. To get the acyclicity of M they ask for conditions on the
depth of the H;(I, A), in particular they ask for the Cohen-Macaulayness
of the Koszul homology to obtain in addition the Cohen-Macaulayness
of Sym (I) and Sym (I/I?). These properties are of course difficult to
check and moreover in general far too strong if one only wants to have
linear type. ‘All these papers, mentioned above, contain various variations
of this main theme.

We use the following notations throughout the report:

Re(I) = A[IT] = ) I"T™ = Rees algebra of I

grr(A) = Z I™/I"t = graded algebra associated to I

Sym (M) = symmetric algebra of an A — module M
ht(I) = height of I

8(I) = analytic spread of I

p(M) = “least ” number of generators of M

(M) = length of M

The Cohen-Macaulay property is sometimes denoted with CM.
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The computations were done with the computer algebra system
MACAULAY.

The first author gave a series of talks about this topic in the curve seminar
at Queen’s University during September 1988. Special thanks go to A.V.
Geramita for helpful suggestions, his constant support and encouragement.



§1. On linear type and geometric linear type
Part A: Generalities

Given an A-module M, we shall be concerned, in this section, with the
structural morphism A — Sym (M). The following will be of use.

Observation 1: Let 7 : A — C be a morphism of rings inducing = :
SpecC — Spec(4), and assume that #~1(P) (the fibre over P € Spec(4))
is irreducible VP € Spec(A). Then n admits a natural set theoretical
section s : Spec(A) — Spec(C), where s(P) is the generic point of = (P).
For any prime Q € Spec(C) we haveQ 2 s(x(Q)), in particular equality
wil hold if @ is a minimal prime of C.

In what follows I is an ideal of a noetherian ring A. Consider the natural
morphism
0— K — Sym (I)— Re(I) -+ 0

Definition 1: i) I is of linear type (l.t.) if a is an isomorphism.
ii) I is of geometric linear type (g.l.t.) if K is nilpotent.

Observation 2: The following are equivalent:

i) I is of geometric linear type.

i) Spec( Sym (I)) & Spec(Re(I)), (& defined via & settheoreti-
cally).

Observation 3: For any prime ideal P € Spec(4), k(P) § Sym 4(I) =
Sym k(p)(I§ k(P)) =~ k(P)[X,,...,X,] (a polynomial ring in n= r(Ip)
variables over the field k(P) := Ap/PAp ).

Definition 2: Consider = : Spec(C) — Spec(A), where C is an IN-graded
A-algebra and Cy = A. C is said to be linear at P € Spec(4) if k(P) % C
is isomorphic, as graded ring, to a polynomial ring over the field k(P).

Now we fix the diagram

t

Spec(Re(I)) =  Spec( Sym ()
™\ T

Spec(A)



Proposition 1.1:  The following are equivalent:

1) All fibers of m are linear.

2) a induces an isomorphism on each fibre.
3) u(Ip) =s(Ip) VP € Spec(4).

4) I is of geometric linear type.

Proof: Consider:

0~ K — Sym (F) - Re(I) >0
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where Ky = K7 = 0. So on each ﬁbre‘wé have:

K @ k(P) L, Sym ypy(I ® k(P)) 1 Re(1) ®k(P) — 0
Since the middle ring is a polynomial ring in u(Ip) variables over the field
k(P), it follows that the ring at the right is a polynomial ring (isomorphic
as graded algebra) if and only if im(f) = 0. This-proves the equivalence
of 1) and 2), and that 2) implies 3).

Also the implication 3)= 2) follows from this remark and the surjectivity
of 7.

Now we prove 4)= 2): since K is nilpotent , the same holds for im(3).
Therefore tm(8) = 0.

Finally 2)=> 4) is an application of Observation 1 to C = Sym (I); in
fact 2) asserts that K is included in all minimal primes of C ,i.e. K is
_ nilpotent.

Remark 1: If I C A is of geometric linear type and A — B is a flat
morphism of rings, then IB is of geometric linear type. In particular
Ip C Ap is of geometric linear type VP € Spec(4).

Recall that for an ideal I of a local ring (A4, w)
W(I) 2 o(1) 2 by(I)

where s(I) is the analytic spread of I. Indeed s([) is defined in terms of the
dimension of a closed fibre of a proper (moreover projective) morphism,
the last inequality being Grothendiecks “ upper semicontinuity” of fibre
dimensions; s. [HO1].



Proposition 1.2: For an ideal I of a local ring (A, w ) the following are
equivalent:

i) I is of geometric linear type and equimultiple (i.e. s(I) = ht(I)).
ii) I is an ideal of the principal class, i.e. ht{I) = u(I).

Proof: i)-‘=> ii): Equimultiplicity means ht(I) = s(I) and g.l.t. asserts
that s(I) = p(I).
ii)= i): For any P € Spec(A) we have ht(I) < ht(Ip) and u(I) > u(lp).
So .

ht(I) < bt(Ip) < s(Ip) < u(lp) < w(I)
Now ii) implies that u(Ip) = s(Ip) VP € Spec(A), soii)= i) by Propo-
sition 1.1.

Corollary 1.3: If in addition A is quasi-unmixed and I = P is prime,
then A is a domain and P is a complete intersection.

This is well known (s.e.g. [HSV], 3.16.7). We sketch here a proof using
the g.l.t.-property.

Proof: Since u(P) = ht(P), there is a surjective morphism
A/PIXy,..., X.] D gr p(4) = 0

where r = p(P) . Since both rings have the same dimension (= dim 4 ),
and the first is a domain, # must be an isomorphism. So P is a complete
intersection. Also grp(A) being a domain implies that A is a domain.

Remark 2: An algebraic “motivation” for the condition u(I) = s(I) in a
local ring (A, # ) is the following observation: -

If there exists a minimal prime P of I such that ht(P) = u(I) , then
p(I) = s(I), since  sup {ht(P)|P € Min(I)} < s(I) < u(I).

Huneke [Hu3] used the condition gl.t. to prove that if X = (z;;) is a
generic nxn matrix and I = I,—1(X) is the ideal of (n — 1) size minors
of X in A = Z[z;;], then I is of linear type. One important observation
(see Proposition 2.2 in {Hu3]) in Huneke’s proof is the fact that the Rees
algebra of an ideal of geometric linear type is a “generic point” for the
symmetric algebra Sym (I) in the following sense:

Proposition 1.4 ([Hu3]): Let A be a reduced (noetherian) ring and let
I be an ideal of grade I > 1 of A. Then the following are equivalent:

i) Sym (I)r¢ ~ Re(I).

ii) u(Ip) = s(Ip) VP € Spec(A) .
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Proof: Apply Proposition 1.1.

Remark 3: Huneke’s proof is more complicated (see [Hu3} ,p. 325—326).
Moreover the assumption grade I > 1 is unessential.
Only for this section we make the following

Definition 3: [ is said to be of reduced linear type if i} of Proposition
1.4 holds.

Part B: Examples

-~

4

E0) A=EK[X,Y])/(X?XY™) =k[[z,y]), n>1fixed

I:=(y)AC (z,y)A = minimal prime of I
Then: dim A = ht(I) =1, grade (I) = 0;
hi(Ip) = s(Ip) = p(lp)=1 , VP2I ,
1.e. I is geometric linear type. B
But 0:y#0:y% hence [S]: Sym (I) % Re(I).
Note: Sym (I)™¢ ¢ Re(I), since A -a.nd‘ so Re(I) are not reduced.

El) A=K[X,Y))/(X-Y)=:k[[z,y]] , reduced.
P =(z)A isa prime of height 0

Here: 0:z =0:z2%hence Sym (P)< Re(P).

E2)Ha)  A=K[X,Y,Z]
P=(Y?-X2;X*-YZ;2% - X?Y) ,
defining the rational curve (%,¢*,1%) in 43.
Then:
p(P) =3 = s(P) ; ht(P) =2
u(Pp) =-8(Pp) =2 , since Ap regular

Hence P is of geometric linear type. But P is also of linear type since it
is generated by a d-sequence.

. L Y, Z, X2
[ Note that P is generated by the 2 size minors of X v z ,
and it is an almost complete intersection. ).
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Another argument for the linear type property comes from a theorem of
Valla [ Val ] and | Va2 ]: Since u(P) = grade (P)+1 and u(Pp) =
grade (P) = 2 we get: Sym (P) = Re(P).

In this example we have:

Re(P) = k[[X,Y, Z]][u,v,w]/a , where
a=(Xu+Zv+Yw; Zu+Yv + Xw) ,

i.e. in particular that Re(P) is Cohen—Macaulay and normal.
-
QA = k[(s?,4%,3,t]] . A is Buchsbaum, but not Cohen—Macaulay .
P = (st,1)

Then:
ht(P) = s(P) =1 ip(P) , hence not of geometric linear type and
not of linear type,
Ap regular,
u(P) < grade (P) + 1.

Note that Valla’s conditions in [Va2], thm. 3.4b) are fulfilled except that
A is not Cohen—Macaulay. Here we have Re(P) = Sym (P)/(u? — av?),
where

Re(P) = k{{a, b, ¢, d]][u,v]/« and

Sym (P) = k{[a, b, ¢, d]][u,v]/ 2 with

17 2. = (ac—bd; du—cv; au—bv; ¢ —ad®; be—a®d; a® —b?; bu—av; cu—adv)
and |

R =( R u®—av?)

Remark to E3): Note that P is an almost complete intersection since
p#(P) = 2 = ht(P) + 1 and Ap is regular. Hence by §4, thm. 4.7 there
exists an ideal J and an element z ¢ J such that:

P=J+zA=tR+(st)R , J = complete intersection

Note that (tjlst) # (¢ jl(.st)z) = A, which comes from the fact that J is
not height—unmixed since Ass(tA) = { P, ae}.
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E4) A :=k[[s?,st,i]] D P =(st,t)

Now A is Cohen—Macaulay (even a hypersurface), but 4p is not regular.
Again we see that P is not of geometric linear type, since ht(P) = s(P) =
1<u(P)=2.

Note that

Re(P) = k[[a, ¢, d]][u,v]/(c® — ad®;du — cv; cu — adv;u? — av?)

E5) (see [ Val ], Remark 3.7). We consider the coordinate ring of the
rational curve in IP}:

A= E[[s*, 8%, st3,84)] .
= k[[Xo, X1, X2, Xs]|/ P =: k[[z0,21,22,2s]] ,

where:
P=(X3X, - X} X0Xs — XnXo; Xo X2 - X1 X3; X1 X2 - X3)

Here we get pu(P) = 4 > s(P) = 3. Hence P is not of geometric linear
type.

E6) Same A asin E5. Take I = (s*,¢*). Since s*,¢* in 2 s.0.p. in the
Buchsbaum ring A, they form a d-sequence, hence I is of linear type. The
Rees ring is

Re(I) = Alu,v]/(zsu — zov; ziu — ziv)

a) ht(I)=1<s(I)=2=p(I)

b) IC P:=(st*s,*) and Ap = k((s*))(2).

¢) Ip = (4)*Ap and VI=P.

d) u(Ip)=s(lp)=1.

The Rees ring of this ideal is R(I) = Alu,v]/x , where

E7) Same A asin E5. Take I = (st3,4*) Then:

& = (Tyu — T2V; T1U — TV} ToU — T1T3V; LoToU — TIV; Tou’ — 2107)

[ Note that this is a minimal base by MACAULAY. |

Hence I is of geometric linear type - and also of reduced linear type, but
not of linear type.

We come back to this example in section 2 (see “Valla’s conjecture”).
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E8) A = k[[s%, st,1%, 52,12, 2]]
P = (s2,1z,z)

Then A and A/P are CM and A is normally CM along P, hence ht(P) =
s(P) =1. We have

WP)=3>s(P)=1 ;
i.e. P is not of geometric linear type.

Part C: On linear type in complex analytic geometry

One introduces stronger algebra.ic.s'tructures on complex spaces over a
given complex space .S, (see [ Fi],1.4-1.7). This allows a geometric in-
tepretation of linear and geometric linear type.

Throughout, we use the notation
X =(X,0x)
for a complex space, and
i X =Y
for a morphism o
(f,7°):(X,0x) = (Y,0r) .

Further, ¢pl/S denotes the category of comples spaces on the given com-
plex space S.

Definition 1: Let S be a complex analytic space. A relative complex ana-

lytic space L £, Sis called a linear space over S (or simply a linear fibre
space) if there are morphisms

a : L xs L — L
g € xg L — L
in cpl/S, where Cg := § x €, such that the module axioms hold.

Remark 1: If F is a coherent sheaf on S, Specan( Sym (F)) — S, where-
Sym () is the symmetric algebra on F, is a linear space. It can be shown
that, conversely, any linear space L =, S arises this way by putting

F := sheaf of germs of linear forms on L
This gives an anti-equivalence

of the category of linear spaces and linear morphism over § with the
category of coherent sheaves on S (Duality Theorem).
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Remark 2: If L = Sisa linear space then, forall s € § , the fibre ™! ()
is a finite dimensional vectorspace (if L = Specan Sym (F), =~ 1(s) =
Specan( Sym

((Fz /#=Fz)Y)). The converse need not be true.

Let X € cpl, Y — X be a closed complex subspace defined by a coherent
ideal T C Oy.

Definition 2: C(X,Y):= Specan(k§0 T*/T*+1), the normal cone of Y in

X N(X,Y) := Specan( Sym (Z/Z2)), the normal bundle of
YinX. )

We have natural maps

8THIH o Sym (1/T)
'\ / . )
Ox/I

giving the commutative diagram of spaces

[~

N(X,Y) Z,Y is a linear space, and C(X,Y) £, Y aso-called conebun-
dle, the fibres of which are cones sitting in the linear fibres of z.

Definition 3: (i) Y < X is of linear type: <= j is an isomorphism of
complex spaces over Y.

(ii) Y X is of geometric linear type: <= j__ is an isomorphism of

reduced complex spaces, i.e. the fibres of v are linear.

Definition 4: R(X,
(X,

<

) = M(gol"‘), the “Rees space” of Y in X;

try
<

) := Specan( Sym (Z)), the normal space of:¥ in X.
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The natural homomorphisms
® I* «— Sym(I)
k>0
AN /"
Ox

gives the commutative diagram of spaces

(2 r N\ 7

o

X = Specan(Ox)

Over Y — X, this diagramm pulls back to the diagram (1). In particular,
there are natural inclusions

cX,Y) — RX)Y) -
! !
N(X,)Y) = S(X,Y)
corresponding to

o Ik/l'k-l-l — D Ik
k>0 k>0

T T

Sym (Z/I?) «— Sym(I)

We now come to the analytic (“schematic”) closure, (see {Fi], 0.44):

1) LetY — X be alocally closed subspace of the complex space X. The
smallest closed complex subspace Z — X containing Y as a locally closed
subspace is called, if it exists, the analytic closure of ¥ in X and denoted
Y.

2) Let Y < X be a closed subspace, A C X an analytic set, and let A C
Ox be any coherent ideal with A = supp(Ox/A) . Let ¥ be defined by the
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coherent ideal T C Ox , and define the gap sheaf T[A] of T with respect to
A: I U C X is open, then

TIAI(U) == {f € Ox(U)If |U — A€ I(U - A)}
Then, using Riickert’s Nullstellensatz, one shows

I[A]=kg0(r : Ak) 3

and so is coherent. Thus the analytic closure Y — A in X exists and is
given by I[A]. : :

3) Wehave Y - A — Y, and Y — A = Y if and only if the vanishing
ideal sheaf T4y C Oy of ANY in Y contains a nonzerodivisor in every
stalk, in which case ANY is called analytically rare in Y. Geometrically
this means that at any point y € ANY thereis an f € Oy,;, which vanishes
on ANY near y, but not on any of the local components (including the
embedded ones) of Y at y.

As a corollary we obtain a geometric version of & theorem proved alge-
braically by [HSiV2], thm. 3.2.

Theorem 1.5: Let X be a complex space, ¥ «— X a closed complex
subspace. The following statements are equivalent:

k
(1) E(K_y }_r)redhc"i()_{s X_)red is the identity
(11) Q(l) K)red!‘:’dﬂ(ly X)red is the identity.

Proof  (i)=>(ii): is clear.
(ii)=(i): By [Fi], p. 163, we have that the canonical immersion

X-Y < PSX,Y)
gives, upon closure, the blowup of X along Y :
M(iy X-) =X-Y

Now PC(X,Y) is analytically rare in PR(X,Y) , because it is a divisor,
and so in IPS(X,Y), being contained in PR(X,Y ). Hence

PS(X,Y) = PS(X,Y) - PC(X, Y)

14



Now, if we have (ii), we have PC(X,Y) = PN(X,Y), but PS(X,Y) —
PN(X,Y)=X-Y, hence

Ls(la X) = i -Y = M(l}l)
This implies
ﬁ(qu X.) -X= E(X_:.K) -X

Since X is nowhere dense in both, S(X,Y) and R(X,Y), we get (i) upon
taking the settheoretic closures. Q.e.d.

o~

T
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§2. On Valla’s conjecture

Conjecture 1: Let A be a regular ring an P a prime ideal in A. Then if
p(P) = s(P) , P is of linear type.

If P is not prime Valla showed us in a letter a counterexample to that
conjecture:

Let I = (X3,X?%,Y%*Z) Ck[X,Y,Z] =: A. Then:
u(I) =s(I) =3
Sym (I) = A[Tl,Tg,Tsl/(Yg‘l - .XTz;YZTg - .XzTg]

Now ZT? — XTyTs is vanishing for (T}, T3, T3) = (X3, X2Y,Y?Z), but
this element is not in (YT} — XT0; Y ZTp — X2Ty).

A “weaker” conjecture is the following:

Conjecture 2: Let A be regular and P a prime ideal of geometric linear
type. Then P is of linear type.

If A is not regular and if we also accept ideals I being only primary (to
some ideal P), then example 7 of §1 is a counterexample.

Also this weaker form of Valla’s conjecture is far from being trivial: Note
that “geometric linear type” implies Sym (P)"*¢ ~ Re(P) by Proposition
1.4. Moreover since A is a domain, Re(P) and therefore Sym (P)"¢ is

-2 domain. What we want to show for proving the conjecture is that
Sym (P) itself is a domain, s. [Mi], [Hu5], theorem 1.1.

For this it is sufficient to show (see [Hu3]), Lemma 2.3) that there is
an element z of positive degree in Sym (P), not nilpotent, such that
Sym (P)/(z) is reduced. Indeed, then we have N := nilrad( Sym (P)) C
(z) and given an element y € N, say y = sz, we know that s € N (since
N is prime in our case). So N C zN, hence N =0.

Within the framework of these conjectures we consider the following spe-
cial situation (*), where we can give a partial answer in the affirmative.

(*) Let (A, m) be a regular local ring and P a prime ideal of A contained
in mm?. Assume that A/P is Cohen-Macaulay with maximal embedding
dimension, i.e.

u(A/P) = e(A/P) + dim(4/P) - 1

Remark 1: The local ring at a rational surface singularity satisfies these
hypotheses on A/P.
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Remark 2: (see also [GoShi], p. 71) (*) implies [Sal] that pu(P) = (;)
, where e = e(A/P). Moreover u(4/P) = dim(#m/m?) since P C 2,
hence u(A/P) = d, since A is regular. So we get

1) d=e+d -1 |,

where d = dim A and d* = dim(A/P), in particular we have h := ht(P) =
e—1.

Theorem 2.1: Under the assumptions (*) we have:

a) P is an almost complete intersection (a.ci.) iff e=3 (i.e. h=2).

b) If A = 2 then the asymptotic éepths liminf( depth (P™/P™*1))
and liminf( depth (R/P"™)) denoted by a(P) and b(P) are d — 3.

¢) If d* <2, then: u(P) = s(P)iff P is of linear type.

Proof: a) P is a.cd. iff u(P) = h+ 1, hence iff (;) =e,ie. e=3.

b) h = 2 implies that P is a.c.i., hence P is of linear type (since P can be
generated by a d-sequence, s.e.g. [GoShi], lemma 2:5). Therefore we have

u(P) = s(P).
Moreover (Burch’s inequality):
(2) s(P) < d—inf depth (P"/P™*!) < d —inf depth (4/P™)
Using (1) we get:
inf( depth (P*/P™*)) <d* -1 ,
inf( depth (4/P™)) <d* -1

Since P is generated by a d-sequence, say P = (z,22,23), where (z1,22)
is a regular sequence in A, we know that

dim A — depth (A/(z1,++,zx) < k
for 1 < k <3. Then [Huj, theorem 4.2:
inf( depth (4/P")) =d—-3=d*-1 |,
hence inf( depth (P™/P™*!) =inf( depth (4/P™) = d—3 . So equality
occurs in Burch’s inequality (2), therefore a(P) =b(P)=d - 3.
¢) Ifd*=1thend=e=h+1. Assuming u(P) = 3(P) we get
s(P) = (’”2‘1) <d-aP)=(h+1)-a(P) ,

hence h =1 or 2 (h = 2 is possible because of b)). If h = 1 then P is a
complete intersection and so P is of linear type. If h = 2 then P is a.c.i.,
hence of linear type too.
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If d* =2 and u(P) = s(P) then d=h +2 and

o(P) = (hfgl) < (h+2)—a(P)

On the other hand a(P) = 0 or 1, hence again A < 2, i.e.P is of linear
type, q.e.d.

Remark 3: Valla’s conjecture would be always true for the situation (*},
if a(P) > d* — 2.

In general this condition is much tool,strong, as pointed out to us by Shin
Ikeda: Let X = (z;;) be a generic #2 x (n + 1)-matrix and P = I,,(X)
the ideal of n size minors of X in kfz;;] =: A. Then

d*=dim A/P=n(n+1)-2

and a(P) = n? — 1. Hence the condition a(P) > d* — 2 would imply
n<3.

Remark 4: Note that for a.c.i. P in the situation (*) we have a(P) =0
ifd>=1and a(P)=1if d* = 2.

Note furthermore that for a.ci. ideals P in the situation (*) we know
[GoShi], Cor. 3.5, theorem 1.2, that grp(A) and Re(P) are both Goren-
stein. But A/P is of course not Gorenstein [Ku]. Under the assumption of
situation (*) we mention a quite elementary proof of the fact, that almost
complete intersections are not Gorenstein rings:

P is a.c.i. means h = ht(P) = 2, hence
depth (A/P) = dim(A/P)=d -2
Then we know by {Sa2], theorem 3.2, p. 84 that
w(P)<(n+1)e(A)=n+1 , where
n = dim,Ezt%"*(k,A/P), k= A/m . Since

Ezt{2(k,A/P) %Homa(k,A/(P,z1,...,Z4_2))
EHOmA/p(k, A/(Pyz1,...,24-2))
~Ezty 5 (k,A/P) ,
where z,...,T4-2 is a regular sequence on A/P, n is the highest Bass-

number of A/P at 4#/P. In our case u(P) =h+1=3,ie. n > 2,
hence A/P is not Gorenstein.
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Examples for the situation (*):

El) A = K[[X]], where X = (z;;) is a generic 2 X 3 matrix. Let P =
I5(X) the ideal generated by the 2 size minors. Then A/P is Cohen-
Macaulay with:

e(A/P)=e=3 ; d=G ; d*'=4 , uP)=3

E2) Example E2) of §1 .

We come back to Valla’s conjectur,e.'m a more general frame in §4 .
4

To conclude we mention another situation where Valla’s conjecture is true:

For the ideals I;(X) generated by the k size minors of a generic matrix
X, the following statements are equivalent:
(i) Ix(X) is of linear type
(i) I(X) is geometric linear type
(i) Te(X)) = s(Iu(2)).

The reason is that all three conditions are equivalent with the fact that
there are no non-trivial Plicker relations (s. [Hu3]).
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§3. Krull dimension of symmeiric algebras

Here we mention the Huneke-Rossi-formula [HuR] linking the dimension of
Sym (M) to the Forster number that bounds the number of generators M
as expressed in its local data; Simis and Vasconcelos showed in [SiV1] how
to derive this result from a theorem expressing dim(A4) in terms of ideals
of linear type. Here we put these arguments into a somewhat more gen-
eral framework and show how Simis’ and Vasconcelos’arguments fit into a
general dimension formula for arbitrary ideals. We base our approach on
the following theorem.

-

Theorem 3.1: Let A be a noetheriad ring, I C A an ideal contained in
the Jacobson radical of A. Then

dim(4) = ?ng}{dim(A/P) +s(Ip)}

Remark 1: This is clear if A is catenarian, since we have always

dim(A) > sup{dim(A/P) + s(Ip)}
PDI :

If A is catenarian, pick Py € Min (A/I) to be such that ht(I) = ht(Fp).
Then dim(A) = dim(A/Py) + s(Ip,), which proves the claim.

For the general case we need some generalities on the dimension of noethe-

rian rings.

Lemma 3.2: Let B be a domain which is a finitely generated k-algebra
over a field k. Then

tr.d.,(Quot(B)) = dim(B)

Proof: - By Noether normalization, B is finite over a polynomial subring
k[Xi,...,X4) — B, where d = tr.d.;(Quot(B)). Then, by going up

dim(B) = dimk[X;,...,X4) =4d .

Lemma 3.3: Let B be finitely generated over a subring A, P € Spec(B),
and p:= PN A. Then

dlm(B/P) < dlm(A/p) + t‘f‘.d.k(p)k(P)
< dim(A4/p) + dim(B ® k(p))
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Proof: For the first inequality, replacing B/P by B and A/p by A, we
may assume that A and B are integral domains and P = (0), p = (0).

By the dimension inequality in {Ma}, Theorem 23, we have, for a.ny Q €
Spec(B) and g:= QN A:

ht(Q) < ht(g) +tr.d.aB — tr.d.k(q)k(Q)
< dim(A) + tr.d.oB

Choosing @ with ht(Q) = dim(B) proves the first inequality.

For the second inequality consider the ring extension B/P «— A/p, which
establishes B/P @ k(p) = B/P ® Qupt(A/p) as a finitely generated k(p)-
algebra; hence , by Lemma 3.2:

tr.d.ypk(P) = dim(B/P ® k(p)) ,

since Quot(B/P ® k(p)) = Quot(B/P) = k(P). But by right exactness
of ®, B/P ® k(p) is a quotient of B ® k(p), whence dim(B/P ® k(p)) <
dim(B ® k(p)). Q.ed.

Remark 2: It might be instructive to look at the geometric significance of
this fomula. Let f : X — Y be a morphism of finite type of noetherian
schemes (correspondingto A— B ),andlet X' = X, V' = f(X') =Y
be closed subschemes (corresponding to P and p). This gives the commu-
tative diagramm

X' o X
fl=fx" | 1 f
- Y! < Y

Then Lemma 3.3 can be interpreted as:

dimX' < dimY'+ “generic fibre dimension of f' "
< dimY' + “generic fibre dimension of f along Y' ",

the second inequality being geometrically obvious from (')~ (y) C f~(y)
forally e Y'.

Proof of Theorem 3.1: For any P D I, one has (see Remark 1):

m(A/P) + s(Ip) < dim(A)
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It suffices to exhibit one P D I such that
dim(A/P) + s(Ip) > dim(A)

For this consider B := gr;(A), A := A/I. For any P € Spec(B), we have
by Lemma 3.3:
dim(B/P) £ dim(A/P) + s(Ip)

(where we denote by P the inverse image of PN Aunder A - A= A/I).
Choosing P so that dim(B/P) = dim B proves the claim, since dim B =
dim(grr(A4)) =dimA. Q.e.d.

Remark 3: Geometrically one looké.:at the normal cone map

‘ v:0(X,Y)>Y
with X = Spec(4), Y = Spec(A/I), and restricts it to an irreducible
component of C(X,Y) having the maximal dimension.

Before proving the theorem of Huneke and Rossi we make a last remark.

Remark 4: Using the natural Sym (M)- homomorphism
M@ Sym (M) Sym (M), 50
and taking the n-th symmetric power of ¢ we get

Sym (M) ® Sym (M) — Sym ,( Sym (M)4+) -0 ;

then the universal property of such powers with respect to the base change
A — Sym (M) shows immediately that

(Sym (M)+)* 2 Sym o( Sym (M)s)

i.e I := Sym (M), is of linear type; s. [HSiV1], Expl. 2.3, p. 87, or for
another argument [Val], Prop. 3.11.

Theorem 3.4 (([HuR]:). Let A be a noetherian ring and M a finitely
generated A- module. Then

dim( Sym (M)) = sup {dim(A/P)+ u(Mp)}
PeSpec(A)

Proof: Localizing § := Sym (M) at the multiplicative set 1 4 I

(where I = Sym (M), ) we get IS5, 1) in the Jacobson radical of S(y4p
; and all primes p over I have the form P + I with P € SpecA. Since I is
in particular of geometric linear type, we know that

| s(Iy) = (1,) = u(Mp)
by the universal property of Sym (M), which proves Theorem 3.4.
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§4. Almost complete intersections

The main result in this section is the characterization of a generalized
notion of an almost complete intersection (a.c.i.), in arbitrary local rings.
As an application we get a characterization of an a.c.i. in Cohen-Macaulay
rings. In particular those a.c.i.’s are of linear type. This was mentioned
by Huneke [Hu4); somewhat earlier Vasconcelos and Simis [SV1] indicated
a proof for that fact using ideas related to our Primbasissatz (s. Theorem
. 4.2). This Primbasissatz for general ideals in local rings seems to have
gone unmentioned, therefore we sketch the proof. In this way we analyse
finally the interplay between properties of an ideal to be an a.c.i., to be of
linear type or to be of geometric linear type.

Part A: A general Primbasissatz for local rings

In this section (A, ) will be a local ring, noetherian, with infinite residue
field £ = A/a [ the reason for this being that, for a finite dimensional
vectorspace over k, a finite union of proper subvarieties cannot exhaust
the whole space, and this allows for genericity arguments.] We denote
the n-fold product I x ... x I of an ideal I.C-A by Il*), to prevent
confusion with the n-fold idealtheoretic product I-...-I = I™. Elements
(Z1,...,%n) € I are also denoted by z. We endow I'™ with the topology
induced on it by the projection 7 : I™ — (I/#I)®* from the Zariski-
topology on the finite dimensional k-vectorspace (I/me)®™.

Definition 1: A subset U C I is called genericif U contains a nonempty
open subset.

In the following proposition, we collect various properties of generic sets.

Proposition 4.1:

(i) A generic set is dense.
(i) The intersection of finitely many generic sets is generic.

(iii) Let m < n and «: I'™ — Il™ be the projection. If U C I™ is
generic, so is w(U) C Il™, If V C I"™! is generic, so is m~1(V).

(iv) Let ¢ : A — S be a surjective homomorphism of local rings,
J C S an ideal, and let I := o~*(J). If V C JI"™ is generic so is
(V) c I,

(v) Let (a1,...,am) be an idealbasis of the ideal I, U C I™. Then
U is generic if and only if the following holds:
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There are polynomials F;(X) € A[X], j=1,...,{, where X
is an nxm-matrix of indeterminates, say

Xi,. .., XP
X=1 ......... s
X1, xm

such that, if (z1,...,z,) € II™, ie.
z;=2§fa,~ ;o éed , 1<i<n
j=1 .
the fact that some Fi(£) is a unit in A implies (21,...,2,) € U.
. Before formulating the Primbasissatz, we need two more concepts.
Definition 2: Let A be any ring, I an ideal. A height sequence for I (of

length h) is a sequence (ai,...,as) € I such that (a;,...,ax)4 is an
ideal of height A. oo

Definition 3: Let A be a ring, ¢ € A a nonunit. Then a is called active
<> @ is nonzerodivisor in A,.q
& VP eMin(d):a ¢ P
& ht(ed) =1 ..

We can now formulate the Primbasissatz; s. [Mu,], [Na].

Theorem 4.2: (Primbasissatz) Let (A, ) be a noetherian local ring with
infinite residue field ¥ = Afus. Let I C A be an ideal of A. Then
there exists a generic set Pr(I) C I¥D] (“Primbasen”) such that for all
(a1,-..,a,n) € Pr(I) the following statements hold:

(i) (e1,---,8un) is a minimal system of generators for I.

(i) If ht(I) > 0, all a; are active or if grade (I) > 0, all a; zre
nonzerodivisors.

(111) VP € ASS(A/I) :(O’,],...,a”(;AP))-AP = IAp.
(iv) (a1,...,anr)) is a maximal height sequence for I; in particular
ht((ai,...,anr)) - 4) = ht(I)
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Addendum Because of Proposition 4.1(ii) one may constrain Pr(I) fur-
ther by any finitely many additional generic conditions. So one may, in
addition, require

grade ((a1,... »grade () + 4) = grade (I)
s((a1,-..,a,n) - 4) = s(I)

The proof of Theorem 4.2 proceeds by showing that any of the con-
ditions (i)-(iv) imposed is generic and applying Proposition 4.1(ii). In
fact, from Proposition 4.1, one deduces the following series of state-
ments 4.3-4.6. Note for this that.a subset of a vectorspace V is called
maximally independent if any finite subset of k < dimV elements is lin-
early independent.

Proposition 4.3. Let I be an ideal, m € IN. The set

B(I,m) :={(a1,...,am) € I'™ | {a1,...,am}

is maximally independent modulo +2.I}

is generic.

Proof: Fix abasisof I. The independency conditions, then, are expressed
in terms of nonvanishing of maximal minors modulo # of the matrix
expressing di,...,am in terms of the given basis. By Proposition 4.1(v),
B(I,m) is generic.

Proposition 4.4. Let P be a finite set of primes of A ICAan 1da.l with
A U P, m € IN. Then the set

A(Lm; P) = {(a,...,am) € ™ | Vi:a; & PP

is generic.
Proof: In I/#l, PléJpP is contained in a finite union of hyperplanes.

Proposition 4.5. Let P € Spec(A) be a prime,

Ap:A— Ap

the localization map, 7 C 4 an ideal, m € . Then, if V C 1A s
generic, A5 (V) C I™ is generic.
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Proof: Choose, according to Proposition 4.1, polynomials defining V.

Multiplying these by a common denominator lifts these to polynomials
defining Ap!(V).

Proposition 4.6. Let k € IN, A < ht(J), and

H(I, k) := {(a,.-.,as) € ™ | ht((ay,...,as)A4) = h}
Then H(I, k) C I" is generic.

Proof. If ht((a1,...,an)-A) = b, bt{(a1,...,a;) - A)=jfor1 <j<h.

Hence, by Proposition 4.1(iii), it suffices to consider the case h = ht(I).

Let P € Min(A/I) with ht(I) = ht(P). Then IAp is P-primary, and

8.0.p.’s, being minimal reductions, are generic by [NR], p. 153. Then
apply Proposition 4.5.

Proof of Theorem 4.2. Let P C Ass(A/I) be either empty if ht(I) =0 or
Min(A/I) if ht(I) > 0 or Ass(A/T) if grade (I) > 0. Let p:=p(l) , h= -

ht(I), and
o W, A

be the projection. Then put

Pr(I) :=B(I,p) N AL, x;P)N

(2 (BIAp,p)) N7~ (H(I,R))
PeAss(A/D

Then Theorem 4.2 follows from Prop. 4.3, Prop. 4.4, Prop. 4.5, Prop.
4.6, and Prop. 4.1(ii). Q.e.d.

Part B: Characterization of almost complete intersections

Definition 1: Let A be a ring, I C A an ideal.
(i) I is called a complete intersection (c.i.) if ht(I} = p(I).

(1) I is called alocal complete intersection (l.c.i.) if

VP € Min(A4/I): ITAp isci. in Ap

(iii) I is called an almost complete intersection (ac.i.) if I'isl.c.i. and
ht(I) + 1 = u(I).
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Theorem 4.7. Let (A4, m ) be a local ring, I C A an ideal.

(i) Let A have an infinite residue field. If I is an a.c.i., there is an
ideal JCTandacI,a¢ J,such that I =J +aR,and Jisa
complete intersection. If J is height unmixed (i.e. ht(J) = ht(P)
for all P € Ass(A/J)), (J:a)=(J:a?).

(ii) Conversely, if I = J + aR, with J a complete intersection and
(J : @) = (J : a?), then I is either c.i. or a.c.d.

Proof. Let h=ht([) and u = u(I):,

Ad (i): Choose (a;,...,a,) to be a Primbasis of I according to Theorem
4.2, Put J := (a1,...,ap)-Aand e := any1 = ax. Thena & J, I = J+aA,
and J is c.i.

Now let J be height unmixed. By standard arguments it suffices to show
that (J : I)NI = J, and for this it suffices to show: (JAp : IAp) N
IAp C JAp for all P € Ass(A/J) = Min(A4/J); and it clearly suffices to
assume P € Min(A4/I). But then ht (P)= ht (IAp) =ht(JAp) =R, s0
JAp = IAp by Theorem 4.2(iii).

Ad(ii). One always has

hi(J) = u(J) < W(I) < ht(I4p) < p(IAp) < p(I)
<u(J)+1=ht(J)+1

for all P D I. The only case which is not completely trivial is ht(I) =
p(I) — 1. Let P € Min(A/I); then ht(IAp) = ht(P) is either h or b + 1.
If it is A + 1, it follows that u(IAp) =h +1, 80 TAp is c.i.

If it is A, P must be a minimal prime of J. This implies a™ € JAp for
some n, and so IAp = JAp, since (J : a) = (J : a?). This proves thm.
4.7.

Remark 1. For (ii), both cases do occur.

Let us abbreviate the property of an ideal I to be of the form I =
J + aA with Jeci. , and (J : a) = (J : a*) by saying I is a
generalized almost complete intersection (g.a.c.i.), see also [Va2].

We can now characterize almost complete intersections in a Cohen-
Macaulay ring.
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Theorem 4.8. Let A be a Cohen-Macaulay ring such that all localizations
Ap, P € Spec(A), have infinite residue field, and let I C A be an ideal with

ht(I) + 1 = p(I). The following statements are equivalent:
(i) [Iisan a.c.i.
(ii) Iisag.a.ci.
(iii) I is of linear type.
(iv) I is of geometric linear type.

The equivalence of (i), (iii), and (iv) olds without the assumption on the
localizations. ’

Proof. We may assume A is local.

(i)=>(ii) :  This is Theorem 4.7(i).
(it)=(iii):  This is a standard implication, see e.g.[Val].
- (iii)=(iv) :  This is obvious.
(iv)=(): Let P € Min(A/I). Then also.IAp is of geometric linear
type. So s(IAp) = u(IAp),i.e. IAp is a parameter
ideal and hence c.i. Q.ed.

Remark 1. One cannot strengthen the condiditons for a l.ci. to “IAp
. cd. for all P € Ass(A/I)” without destroying the equivalences of Theorem
4.8, as easy examples show. However, for a CM ring, one looses in some
cases nothing, as the following generalization of the result [HO1], Satz 1,
shows, which is in [HI], following a suggestion of Hochster.

Theorem 4.9 ([HI]): Let A be a CM local ring, I C 4 a l.ci..Then
the following are equivalent:

(i) ht(I) = s(I)

(i) Tis c...
Addendum. I'is lci. iff VP e Min(A/I): {(Ap/IAp)=e(IAp).
Remark 2. The important implication (i) = (iii) is formulated in [Hud],

proposition 2.4, (1). But the reference for proof only refers to the prime
ideal case. This case was also obtained independently by Valla [Va2]
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§6. Numerical conditions for a.c.i

In the following we mention briefly some simple numerical conditions for
an ideal in a local ring (A4, 4t) to be an a.ci. and of linear type. The
philosophy is to complete the given ideal to an -m-primary ideal by adding
a part of a s.0.p. and to impose numerical conditions on this primary
ideal. The results so obtained surely are but a first tentative step in the
direction towards conditions which should be more effective both from a
theoretical and practical point of view.

First we demonstrate our approach by looking for some examples.
T

1) Example E2 of §1:

A=k[[X,Y,Z]] ,
P=(Y’-XZ2,X*-YZ,2* - X?) isaci
Choose the parameter X mod P and consider the 4¢-primary ideal
I:=P+XA=(Y?YZ, 2% X)
Then ¢ := (Y?2,22%,X) is a minimal reduction of I, namely I?> =g¢-1I,

I¢gq,and
r(l):=max{r | I"™* ¢ q} =2

Therefore we have:
e(I) =e(q)=£(A/q)=4 and {A/I)=3 ,
hence:
(1) e(I) =¢(A/I)+r(I)-1
Note, if we choose Z instead of X , we get:

J=P+ZA
eJ)=5 , HA/T)=4 , r(J)=2 ,

hence the same relation (1) as before.

Moreover, in the example:
(2) #(I) = p(P) + dim(A/ P)
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2) Example E5 of §1:

A= k[[X03X1:X2:X3”
P= (XX, - X} X0Xs — X1 X2; X0 X2 - X2 Xy; X1 X2 - X3)

We take Xy, X5 as a s.0.p. mod P and consider
I:=P+(Xo,Xs)A=(Xo0,X}; X1 X2;X3; X5)

ie. w(I)=5+ u(P)+dim(A/P) ]
30 (2) is not fulfilled.

A minimal reduction of I is ¢ = (Xo,Xs, X}, X3), namely: I3 = qI?
and I ¢ q. Then

e(I) = £(A/q) = &A/T) + (I /g + I*) + (I’ + ¢/q)

One can check that: e(I) = 9 and £(4/I) = 5 hence also (1) is not
fulfilled. [ Note that P is not a.c.i..

3) (s. [Sa2], p. 84):

A=k[X,Y,Z,W]
P=(X*-Z%XY? -W%XW -YZ; X’Y - ZW)

Take the parameters X,Y mod P and consider
I:=P+(X,Y)A=(Z5W* 2ZW;X;Y) ,

ie. (2) is not fulfilled. But relation (1) is fulfilled: take the maximal
reduction ¢ = (X;Y; 2%; W?) of I, note that I? = ¢I and r(I) = 2, hence

e(l)= {A/D+ (r(I)-1)

Note, that P is not a.c.i. (and not of linear type).
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4) A = k[[s?, %, st,1, 8% u, tu))
P = (s%u,tu)
Then A is CM and A/P is Buchsbaum, but not CM. In [GoShi] it was

shown that P is a.ci. . Corresponding to this, the relations (1) and (2)
are fulfilled if char(k) # 2 , which D. Rees pointed out to us:

Choose parameters s2,¢ and consider:
I = (s?u,tu,s®,t)
Then J := (t — s%u,tu,s?) is a reduction of I (note that also t — As*u
any A # 0, would be a possible generator of a reduction of I).
Since s%u-t=s%.1{u we get
(t+s2u) = (t—s*u) +4s® tuc J?

so that
I=(J,t+s%) and I’=J-T

Moreover we have
an? = (I 4 (83,8t)A)? = I+ (35,5%,5%12)4
hence m2=Im ; ie. Iisareductionof s .
Furthermore.
I=(J,8u); J:I=J:s% J:I2I .
So we get:
d=em)=ce(l)=ce(J)=LA/T)=LA/I)+LI/T) ,

since {(A/I) =3 and ¢(I/J) =¥€(A/J : I) = 1. Therefore the relations
(1) and (2) are fulfilled; this implies again that P is a.c.i. as the following
proposition shows.

Proposition 5.0: Let (A, ) be CM and let P be a prime ideal in A such
that

(i)  w(P)>ht(P)+1

(i)  Ap is regular.

Assume that there exists a s.0.p. £ mod P such that

(1) e(I) =¢(A/I)+r(I) -1

(2) w(I) = u(P) +dim(A/P) , with I=P+gA
Then P is of linear type.
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Proof: Let ¢ be a minimal reduction of I such that I""! ¢ g, where
r =7(I). Then

e(I) =¢(A/q) = L(A/I) + €I/q+ P)+ ...+ LI""  +q/I" +q)

From (1) we see that €(I/q + I?) = 1, hence I = (a;,...,04,0d+1),
where ¢ = (a1,...,a4) , d = dim A. Hence by (2)

W(P)=hP)+1 ,
i.e. P is a.ci. in a CM ring A, therefore it can be generated by a d-

sequence [GoShi]. Qed. -,

Of course the conditions (1) and (2) are too strong. Therefore we make
the following definition.

Definition. Let (A, m) be a local ring, I C A an 4-primary ideal, ¢ C I
a minimal reduction. Put

N(I,q):= @ (I* + g/mI* +q)
k>0
which is artinian;

n(1,q) := {N(I,q))
r(I,g) := min{k | I* C g} , and
n(I) :== min{n(l,¢) | g €I a minimal reduction }
r(I) ;= min{r(I,q) | g €I a minimal reduction }
Lemma 5.1. (i) =n(I,q)2r(I,q)
(ii) n(l,q)=r(I,q) and r(l,g)>1
iff u(I) = dim(4) + 1.

Proof: Use the observation

r(I,g)-1
n(I,q) = z e(Ik+Q/ ‘“"Ik'i'Q) )

k=0

which implies (i) and the direction “=" of (ii). For the converse of (ii),
note that any minimal base of ¢ can be extended to a minimal base of T
by [NR], Lemma 3, p. 147; so we have £(I f#n] + ¢g) = 1, and hence the
claim.
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Corollary 5.2. n(I) > r(I).

Theorem 5.3. Let (4, 44) be a quasi-unmixed local ring. Let I C A be a
l.c.i. ideal. Let z denote a s.0.p. with respect to I, and put I(z) := zA+1.

Finally, let ¢ C I(z) be a minimal reduction of I(z). Define properties
Ag), A) and B):

Aq) n(I(.:E)) Q) = T(I(E)a Q) >1
A) n(I(z)) =r(I(z)) > 1
5) WI(2)) = u(D) + dim(A/I)

Consider the following statements:
(i) Ag) and B) hold for all z and ¢
(ii) Ag) and B) hold for some z and some ¢
(ili) A) and B) hold for some z
(iv) Iis an a.cd.
Then the following holds:
1) (@)= (iii)= ()= (iv)
(I) If A and A/I are CM, (iv)=-(i).

Proof: We only show (II):
Since I is a.c.i., clearly dim(A4) < p(I(z)) £ dim(A) + 1, and we have to
rule out the case dim(A) = u(I(z)). So assume dim(A) = u(I(z)). Then
e(I{z)) = e(zA+1I) > e(z,I,A)
= Y e(IAp)e(z,A/P)

PcAassh(A/T)

PcAssh(A/T)

= e(z, A/T)
={(A/I(z)) , since A/I isCM

But since A is also CM, we must have equality everywhere. By Theorem
4.9 in §4, then, I is c.i., contrary to the assumption. Q.e.d.

Remark 1: In a CM ring, the conditions A;), A) can be expressed in
terms of the multiplicity e(I(z)) as follows:
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Introduce, for I an 4 -primary ideal in a local ring (A4, 4+ ),and ¢ C I
a minimal reduction,

D(I) := I* JEH
(I) &w +g/I"" + ¢

d(1,q) == ¢D(I))
d(I) :=max{d(I,q) | ¢ €I a minimal reduction }

Then we get:

Corollary 5.4. In Theorem 5.3 the condition A,;) and A) can be replaced -
by ‘

4)  ell(z)) <d(I(z),q) +r(I(z),q) and r(I(z),q)>1
4') e(I(z)) < d(I(z)) +r(I(z)) and r(I(z))>1

in case A is CM.

The following is a simple sufficient condition for a.c.i., compare Proposition
5-0. . M

Corollary 5.5. Let the assumption be as in Corollary 5.4. Suppose the
conditions:

Al e(I() < UA/1(2)) +(I(z),q) - 1
and
B) #(I(z)) = p(I) + dim(A/I)

hold. Then I is an a.c.i., and so of linear type in the CM ring A.

In many simple examples, A7) holds for a.c.i.’s, and one may ask to which
extent A7) and A7) are equivalent. A partial answer is given as follows:

Proposition 5.6. Let (A, 4« ) be a CM ring, I C A a l.c.i. such that
A/I is CM.

(i) IfIisan a.ci. and A]) holds, then

(*) w-I(z) C I(z)* + ¢
(ii) .Conversely, if (x} holds, A7) is true and so I is an a.c.i.
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Remark 2: Using Herzog’s work on ideals of monomial curves [H] , and
Lejeune-Jalabert’s and Teissier’s work {T], Chap. I on integral closures of
monomial ideals, one may systematically construct monomial space curves
which are a.c.i.’s and CM which do not satisfy (+) and so not satisfy A7).
This remark is due to O. Villamayor.

Questions: 1) Are there numerical conditions (hopefully practical) which
imply B)?

2) Is B) true for any ideal and a generic choice of z?

4
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