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Ideals of linear type and ,some variants

M. Herrmann, B. Moonen, O. Villamayor

Introduction

Here we eonsider thc relationships that hold between the arithmetieal
properties of the Rees algebra Re(I) and the symmetrie algebra Sym (I)
of an ideal I in a noetherian ring A. As is weIl knownIRe(I) is of paramount
importance since it describes the blow up of A along I. It is, however, diffi­
eult to handle because its equations are given by the syzygies of all powers
In. Sym (I), on the eontrary, has a simpler strueture; its equations are
just given by the syzygies of I and so are linear. This makes it dear
that one is interested in situations where Sym (1) and Re(I) do not differ
mueh. The simplest ease is, of course, where they are just isomorphie, in
which case I is said to be of linear type (l.t.).

In this report we want to emphasize more the numerical approach to,linear
type ideals and the geometrie aspects of this property of an ideaL The

. geometrie interpreation of linear type means that the normal cone and
the normal bundle of a closed subscheme of a giyen scheme coincide. In
the course of our investigations it showed up that a weaker notion which
we call geometrie linear type (g.l.t.), turned out to be not oo1y useful
and interesting on its own, hut also to unify various aspeets in the papers
[HSiVl - 3] and [Bu3] with respect to linear type property and in [SV2]
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with respect to the dimension of the symmetrie algebra (Huneke-Rossi­
formula) . The condition to be of geometrie linear type refers only to
the reduced struetures of the normal eone and the normal bundle. To be
specific, this means that the fibres of the normal cone projection should be
linear. This already shows the closed connection of the g.l.t.-property with
thc l.t.-property..The main advantage of g.l.t. being that it can be checked
by numerical conditions. This provides the general strategy of proving l.t.
by first proving g.l.t. and then looking for additional conditions which
give "g.l.t.=> l.t.". Manifestations of this principle appear in the proof of
theorem 2.4 in [Bu3], and in [HSiV3], s. remark, page 80. (One should note
that this last result does not depe~d-on the machinery of approximation
complexes.) At this point we would like to remark that in general it is very
difficult to check the linear type-property for a given ideal. Known are
particular examples (for determinantal ideals s. [Bu3]), and, as a general
dass of ideals of linear type, those which are generated by d-sequenees
(s. [Hu!], [Val]). Note, however, that there are linear type ideals (in
particular determinantal ideals) which are not generated by d-sequences,
s. [Hu3], footnote **.

The material of this report can be divided roughly'jnto the following two
parts. The first one is theoretical and concerned with the general theory of
l.t., g.l.t. and weaker eonditions and their mutual interrelations; a partic­
ular weaker condition is contained in Valla's conjecture (§2). To this first
part also belong §1, A,C and §§3.4. In §2 we explain Valla's conjecture
and prove a particular ease of it. In §4, theorem 4.8 we investigate the
relationship of linear type, geometrie linear type and the almost complete
intersection-property (a.c.i.) in Cohen-MaeauIay rings, in partieular al­
most complete intersections are of linear type in this situation. This last
result is already mentioned in [SVl] and in [Hu4]. Here we give an elew

mentary proof based on a general Primbasissatz, which seems to be new
in this form.

The second part of the report is concerend with numerical aspects and
various examples and counterexamples illustrating the theory. To it belong
§2 , §5 and §l B. Section 2 appears here again because in Valla's conjecture
the l.t.- property is characterized by an effective-numerical condition. It is
also pointed out that the full validity of this conjecture is doubtful. In §5
we sketch a purely numerical approach to the linear type-property. The
results so obtained are only a first step in the direction towards conditions
which should be more effective, in particuIar from a practical point of view.
§l B is devoted to examples. Various other examples appear throughout
the text.
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Thc concept of linear type ideals seems to have been introduced in [Mi},
although not under this name (which is due to Robbiano and Valla). Some
main contributions were given in [S], [MSS} and [Val}, [Va2]. Since then
there has been constant interest in this topic. In particular we mention
the papers [HSiVl - 3}, [SV2 - 3} of Herzog, Vasconcelos and Simis and
[Hu4] of Huneke. This work, however, goes into a directio~ rather different
from our line of thinking. Since we will not return to this point of view in
the main text we describe briefly their approach:

An essential purpose of this work is to re1ate the Cohen-Macaulayness and
normality of the Rees algebra and th€Yassociated graded algebra of I to the
Koszul homology Hi(I, A) of I. ThiS.is done via various approximation
complexes. The fundamental idea of Vasconce1os and Simis is to construct
a graded comples M(I) =M, with the nth graded piece M m of M

-+ Hj(1jA) ~ Sym m_j(An/1An) -+ ... -+ Sym m(A"'/IAn) -+ 0 ,

where n ia the number of generators of I (which are fixed) . It then follows
for the homology of M that Ho(M) 'V Sym (1/12 ) ,and Hi(M)
is independent of the generating set of 1. Now, if M iso acyclic, I is of
.linear type. To get the acyclicity of M they ask for conditions on the
depth of the H i (1, A), in particular they ask for the Cohen-Macaulayness
of the Koszul homology to obtain in addition the Cohen-Macaulayness
of Sym (I) and Sym (1/12 ). These properties are of course difficult to
check and moreover in general far toD strong if one only wants .to have
linear type. All these papers, mentioned above, contain various variations
of this main theme.

We use the following notations throughout the report:

Re(I) = A[1T] =L PTn = Rees algebra of I

grr(A) = LI"'/I"'+l = graded algebra associated to I

Sym (M) = symmetrie algebra of an A - module M

ht(l) = height of I

s(I) = analytic spread oi I

p.(M) = "least" number oi generators oi M

l(M) = length of M .

The Cohen-Macaulay property is sometimes denoted with CM.
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The computations were done with the computer algebra system
MACAULAY.

The first author gave aseries of talks about this topic in the curve seminar
at Queen's University during September 1988. Special thanks go to A.V.
Geramita for helpful suggestions, his constant support and encouragement.
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§1. On linear type and geometrie linear type

Part A: Generalities

Given an A-module M, we shall be concerned, in this section, with the
structural morphism A -+ Sym (M). The following will be of use.

Observation 1: Let 1T : A -+ C be a morphism of rings inducing 11" :

SpecC -+ Spec(A), and assume that 1I"-I(P) (the fibre over P E Spec(A))
is irreducible VP E Spee(A). Then 11" admits a natural set theoretieal
section 8 : Spec(A) -+ Spec(C), wher~ .!(P) is the generic point of 11"-1 (P).

For any prime Q E Spec(C) we haveJQ 2 s(1I"(Q)), in particular equality
will hold if Q is a minimal prime of C.

In what follows I is an ideal of a noetherian ~ng A. Consider the natural
morphism

0-+ K -+ Sym (I)~Re(I) -+ 0 .

Definition 1: i) I is of linear type (l.t.) if 0: is an isomorphism.
fi) I is of geometrie linear type (g.l.t.) if K is ~lpq:tent.

Observation 2: The following are equivalent:

i) I is of geometrie linear type.
-

ii) Spec( Sym (I)) ~ Spec(Re(I)), (ä defined via 0: settheoreti-
cally).

Observation 3: For any prime ideal P E Spee(A), k(P) ® Sym A(I) =
A

Sym k{p)(I f6l k(P)) ~ k(P)[X1 , ••• , X n ] (a polynomial ring in n = J.L(Ip )
A .

variables over the fie1d k(P) := Ap / PAp ).

Definition 2: Consider 11" : Spec(O) -+ Spec(A), where 0 is an lN-graded
A-algebra and 0 0 = A. 0 is said to be linear at P E Spec(A) if k(P) f6l 0

A
is isomorphie, as graded ring, to a polynomial ring over the field k(P).

Now we fix the diagram

Spec(Re(I))
-
Q

---+

Spec(A)

5

Spec( Sym (I))



Proposition 1.1: The following are equivalent:

1) All fibers of 1rl are linear.

2) Ci induces an isomorphism on each fibre.

3) J-L(Ip) = 8(Ip) VP E Spec(A).

4) I is of geometrie linear type.

Proof: Consider:

o-+ K -+ Sym (1) -+ Re(l) -+ 0 ,
J

,
where K o = K 1 = O. So on each fibre we have:

K ® k(P)~ Sym k(p)(I ® k(P))~ Re(l) ® k(P) -t 0 .
A A A

Since the middle ring is a polynomial ring in J-L(Ip) variables over the field
k(P), it follows that the ring at the right ia a polynomial ring (isomorphie
as graded algebra) if and only if im(ß) = O. This·,proves the equivalence
of 1) and 2), and that 2) implies 3).

Also the implication 3)=> 2) follows from this remark and the surjectivity
of 'Y.

Now we prove 4)::} 2): since K ia nilpotent , the same holds for im(ß).
Therefore im(ß) = O.

Firially.2)=> 4) is an application of Observation 1 to C = Sym (I)j in
faet 2) asserts that K is included in all minimal primes of C ,Le. K is

. nilpotent.

Remark 1: If I ~ A is of geometrie linear type and A -+ B is a Hat
morpmsm of rings, then IBis of geometrie linear type. In partieular
Ip ~ Ap is of geometrie linear type VP E Spee(A)..

Reeall that for an ideal I of a Ioeal ring (A, .. )

/-L(I) ~ 8(1) 2:: ht(I) ,

where 8(1) is the analytie spread of I. Indeed 8(1) is defined in terms of the
dimension of a closed fibre of a proper (moreover projective) morphism,
the last inequality being Grothendiecks " upper semieontinuity" of fibre
dimensions; s. [HOl].
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Proposition 1.2: For an ideal I of a Ioeal ring (A,.w) the following are
equivalent:

i) I is of geometrie linear type and equimultiple (Le. s(I) = ht(I)).

ii) I is an ideal of the principal dass, Le. ht(I) = j.L(I).

Proof: i)=> ii): Equimultiplieity means ht(I) == s(l) and g.l.t. asserts
that 8(1) == J.L(I).

ii)~ i): Für any P E Spec(A) we have ht(I) ~ ht(Ip) and J.L(I) ~ J.L(Ip).
So

ht(I) ~ ht(lp ) ~ 8(11)) ~ J.L(Ip ) ~ Jl(I) .
J

Now ii) implies that J.L(Ip ) == 8(Ip) VP E Spee(A), so ii)=> i) by Propo-
sition 1.1.

Corollary 1.3: If in addition A is quasi-unmixed and I == P is prime,
then A is a domain and P is a compiete interseetion.

This is well known (s.e.g. (HSV], 3.16.7). We sketch here a proof using
the g.l.t.-property.

Praof: Since J.L(P) == ht(P), there is a surjective morphism

8
A/P(X1 , ••• ,Xr ] --+ gr p(A) -t 0

where T = J.L(P) . Sinee both rings have the same dimension (= dimA ),
and the first is a domain, 8 must be an isomorphism. So P is a compiete
intersection. Also grp (A) being a domain implies that A is a domain.

Remark 2: An aIgebraic "motivation" for thc eondition J.L(I) = s(I) in a
loeal ring (A, 4U-) is the following observation: .

If there exists a minimal prime P of I such that ht(P) = J.L(I) , then
p.(I) = s(I), since sup {ht(P)jP E Min(I)} ~ s(I) ~ J.L(I).

Huneke (Hu3] used the eondition g.l.t. to prove that if X = (Xij) is a
generic nxn matrix and I = 1n -l(X) is the ideal of (n - 1) size minors
of X in A == 7J.,[Xij], then I is of linear type. One important observation
(see Proposition 2.2 in (Hu3]) in Huneke's proof is the fact that the Rees
algebra of an ideal of geometrie linear type is a "generic point" for the
symmetrie algebra Sym (I) in the following sense:

Proposition 1.4 «(Hu3]): Let A be a reduced (noetherian) ring and let
I be an ideal of grade I 2: 1 of A. Then the following are equivalent:

i) Sym (I)red ~ Re(I).

ii) J.L(Ip ) = s(Ip ) VP E Spec(A) .
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Proof: Apply Proposition 1.1.

Remark 3: Huneke's proof is more complicated (see [Hu3] ,po 325-326).
Moreover the assumption grade 1 ~ 1 is unessential.

Goly for this section we make the following

Definition 3: I is said to be of redueed linear type if i) of Proposition
1.4 holds.

Part B: Examples

J

-EO) A = k[[X, Y]]/(X 2,Xyn
) =:'k[[x,y]], n ~ 1 fixed

I:= (y)A c (x, y)A = minimal prime of I .

Then: dimA = ht(I) = 1, grade (I) = 0;

ht(Ip ) = s(Ip ) = J.L(Ip ) = 1 , Vp "2 I

Le. 1 is geometrie linear type.

But 0: y i 0: y2, hence [S]: Sy~ (1) ~ Re(I).

Note: Sym (Ir~d ~ Re(!), sinee A and' so Re(I) are not reduced.

~ A = k[[X, y]]/(X . Y) =: k[[x,y]] , redueed.

p = (x)A is a prime of height 0 .

Here: 0: x = 0 : x2 ,henee Sym (P) rv Re(P).

E2)[Ha] A = k[[X, Y, Z]]
P = (y 2 _ Xz;x 3 _ YZ; Z2 _ X 2Y)

defining the rational eurve (t3 , t' ,t5 ) in A3 .

Then:
J.L(P) = 3 = s(P) > ht(P) = 2

#-

J.L( Pp) = s(Pp) = 2 , since Ap regular

Hence P is of geometrie linear type. But P is also of linear type since it
is generated by a d-sequence.

{Note that Pis generated by the 2 size minors of [Y, Z, X
2

]
X, Y, Z '

and it is an almost complete intersection. ].
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Another argument for the linear type property comes from a theorem of
Valla [ Val] and [ Va2]: Since J.L(P) = grade (P) + land JL(Pp) =
grade (P) = 2 we get: Sym (P) rv Re(P).

In this example we have:

Re(P) == k[{X, Y, Z]][u, v, w]/~ ,where

u=(X2u+Zv+YWjZu+Yv+Xw) ,

Le. in partieular that Re{P) is Cohen-Maeaulay and normal.
...
J

E3,)A = k[{.s2 ,.s3, st, t]] . A is Buchsbaum, but not Cohen-Maeaulay .

P = (.st,t)

Then:

ht(P) = s(P) = 1 < J.L(P) , hence not of geometrie linear type and
:F

not of linear type,

A p regular,

J.L(P) ~ grade (F) + l.

Note that Valla's eonditions in [Va2], thm. 3.4b) are fulfilled exeept that
~ is not Cohen-Macaulay. Here we have Re(P) = Sym (P)/(u2 - av2

),

where

Re{P) = k[{a, b, c, d]][u, v]/« 1

Sym (P) = k[[a, b, c, d]][u, V]/~2
and

with

"'17 2 - (ac-bd' du- CV' au-bv' c2 -ad2
• bc-a2 d· a3 _b2

• bu -a2 v' cu-adv)vc. .- , , , , , , ,.

and

Remark to E3: Note that P is an almost complete intersection since
J.L{P = 2 = ht(P) + 1 and Ap is regular. Hence by §4, thm. 4.7 there
exists an ideal J and an element x tt J such that:

P = J + xA = tR + (st)R , J = complete intersection

Note that (t : .st) =1= (t : (st)2) = A, which comes from the fact that J is
A A

not height-unmixed since Ass(tA) = {P, "",}.
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E4) A:= k[[S2, st, t]] ::> P = (st, t) •
Now Ais Cohen-Macaulay (even a hypersurface), hut Ap is not regular.
Again we see that P is not of geometrie linear type, sinee ht(P) = s(P) =
1 < JL(P) = 2. -
Note that

Re(P) = k[[a, c, d)][u, v]/(c2 - ad2; du - CVj cu - adv; u 2
- av2) •

E5) (see [Val ], Remark 3.7). We eonsider the coordinate ring of the

rational curve in lP~:

A = k[[Sol, sSt, stS, tol
]] J

= k[[XO,X1 ,X2,XS ]]/P =: k[[XO,Xl,X2,X3]] ,

where:

Here we get JL(P) = 4 > s(P) = 3. Henee P is not of geometrie linear
type.

E6) Same A as in E5. Take I = (09\ t4). Since S4, t4 in a s.o.p. in the
Buchsbaum ring A, they form a d-sequence, hence I is of'linear type. The
Rees ring is

Re(I) = A[u,V]/(X3U - XoV; x~'U - xiv) .

E7) Same A as in E5. Take I = (stS , toll Then:

a) ht(l) = 1 < 8(1) = 2 = JL(I) .

b) Je P:= (st S ,s3t,t4) and Ap = k((S4))(~).

c) 1p=(~)SApand~=P.

d) JL(Ip) = s(Ip ) = 1.

The Rees ring of this ideal is R(I) = A[u, v]/« , where

a = (xs'U - X2V; Xl 'U - XaV; x~u - XIX3Vj XaX2'U - X~V; X2U2 - Xl v2) .

[ Note that this is a minimal base by MACAULAY. ]

Hence I is of geometrie linear type - and also of redueed linear type, but
not of linear type.

We eome back to this example in section 2 (see "Valla's conjecture").
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E8) A = k[[S2,st,t2,sz,tz,Z]]

P=(sz,tz,Z) .

Then A and A/P are CM and A is normally CM along P, henee ht{P) =
s{P) = 1. We have

JL{P) = 3 > s{P) = 1

Le. P is not of geometrie linear type.

Part C: On linear type in complex analytic geometry

One introduees stronger algebraic structures on complex spaces over a
given complex space S, (see [ Fi Ll.4:-1.7). This allows a geometrie in­
tepretation of linear and geometrie linear type.

Throughout, we use the notation

X={X,Ox)

for a complex space, and

for a morphism
(I, 1°) : (X, Ox) ~ (Y, O~) .

F\uther, cpl/s.. denotes the category of comples spaces on the given com­
plex space S.

Definition 1: Let 5 be a complex analytic space. A relative complex ana­

lytic space L~ s.. ia called a linear space aver s.. (or simply a linear fibre
space) if there are morphisms

a : L x§.. L.. ---t L
JL : !2s x~ L.. "---t L

in cpl/s., where es := S X C, such that the module axioms hold.

Remark 1: If:F ia a coherent sheaf on s., Specan{ Sym (.t)) ~ 5, where"
Sym (.t) is the symmetrie algebra on P, is a linear space. It can be shown

'Ir

that, converse1y, any linear spaee L --=-t Sarises this way by putting

:F:= sheaf of germs of linear forms on L .

This gjves an anti-equivalence

lin/S Acoh/S.

of the category of linear spaces and linear morphism over s.. with the
category of coherent sheaves on S (Duality Theorem).
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Remark 2: If L~ S is a linear 8pace then, for all SES, the fibre 1[-1 (~)

is a finite dimensional vectorspace (if L = Specan Sym (.t), 1[-1(8) ­
Specan( Sym
«F:z:/-m..:t.r:z:)V)). The converse need not be true.

Let X E cpl, Y ~ X be a c10sed complex subspace defined 'by a coherent
ideal I ~ Ox.

Definition 2: Q.(X, Y) := Specan( ffi I Je /ZJe+1), the normal cone of Y in
Je~O

X N(X, Y) := Spec~ Sym (I/P)), the normal bundle of
r,inX.

We have natural maps

Ox/I

giving the commutative diagram of spaces

Q.(X,Y)
i.
~ N(X,Y)

N(X, Y)~ Y is a linear space, and C(X, Y)~ Y a so-called conebun­
dle, the fibres of which are cones sitting in the linear fibres of 1L.

i
Definition 3: (i) Y y X is of linear type: <==} t is an isomorphism of
complex spaces over Y.

i
(ii) Y c..:.. X is of geometrie linear type: <==> lred is an isomorphism of
reduced complex spaces, Le. the fibres of ~ are linear.

Definition 4: R(X, Y) := Specan( ES I Je ), the "Rees space" of Y in X;
Ie>O

S(X, Y) := Specan( Sym (I)), the normal space ot~ i~ X.
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The natural homomorphisms

ffi I k
f- Sym (I)

le~O

/

Ox

gives the commutative diagram of spaces

H(X, Y)

x = Specan(0 x )

Over Y ~ X, this diagramm pulls back to the diagram (1). In particular,
there are natural inclusions

Q(X,Y) ~ R(X,Y)

! !

li(X,Y) ~ 5..(X,KJ

corresponding to

ffi I le /I le+1 f- ffi I k

Ic~O Ic~O

i r
Sym (I/I2

) f- Sym (I)

We now corne to the analytic ("schematic") closure, (see [Fi], 0.44):

1) Let Y ~ X be a locally closed subspace of the cornplex space X. The
smallest c10sed complex subspace Z t......t X containing Y as a locally clos·ed
subspace is called, if it exists, the analytic c10sure of Y in X and denoted
Y.

2) Let Y L...+ X be a closed subspace, A ~ X an analytic set, and let A ~

ox be any coherent ideal with A = supp(Ox / A) . Let Y be defined by the
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J

coherent ideal I ~ ()x , and define the gap sheaf I[ A]~ I with respeet to
A: If U ~ X is open, then

I[A](U) := {f E (}x(U)lf IU - A E I(U - A)}

Then, using Rückert 's Nullstellensatz, one shows

I[A] = U (I : A Je) ,
l:~O

and so is eoherent. Thus the analyye closure r - A in X exists and is
given by I[A].

3) We have Y - A ~ Y, and Y - A = Y if and ooly if the vanishing
ideal sheaf IAny ~ (}y of An Y in Y contains a nonzerodivisor in every
still, in which case A nY is called analytically rare in Y. Geometrically
this means that at any point y E AnY there is an f E (}Y,y which vanishes
on An Y near y, hut not on any of the Ioeal components (inc1uding the
embedded ones) of Y at y.

As a corollary we obtain a geometrie version of Cl theorem proved alge­
braically by [HSiV2], thm. 3.2.

Theorem 1.5: Let X be a eomplex space, Y C-+ X a closed eompiex
subspace. The f~llowing statements are equivalent:

Jc
(i) R(X, Y.)red~4f~(X, Y)red is the identity

i
(ii) Q(K, Y.)red7:;N..(X, Y)red is the identity.

Proof (i)::::}(ii): is c1ear.

(ü)=>(i): By [Fi], p. 163, we have that the canonical immersion

X - Y f--t 1r..S.(X, Y)

gives, upon closure, the blowup of X along Y :

IeR(X, Y) = X - Y .

Now lPC(X, Y) is analytieally rare in lPR(X, Y) , because it is a divisor,
and so in lPS(X, Y), being contained in IPR(X, Y). Henee
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Now, if we have (ii), we have IPG(X, Y) = IPN(X, Y), hut lPS(X, Y) ­
IPN(X, Y) = X - Y, hence

~(X,Y) = X - Y = lPR(X,Y) .

This implies
~(X,Y)-X=R(X,Y)-X .

Since X is nowhere dense in hoth, S(X, Y) and R(X, Y), we get (i) upon
taking the settheoretic closures. Q.e.d.

J
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§2. On Valla's conjecture

Conjecture 1: Let A be a regular ring an P a prime ideal in A. Then if
p.(P) = 8(P) , P is of linear type.

If P is not prime Valla showed us in a letter a counterexample to that
conjecture:

Let I = (X 3 , X 2y, y2 Z) ~ k(X, Y, Z] =: A. Then:

J.t(I) = 8(1) = 3

Sym (1) = A(T1 , T2 , T3]/(~!1 - XT2 ; YZT2 - X 2T3]

Now ZTi - XT1T3 is vanishing for J(.Tl,T2 ,T3) = (X 3 ,X2 y,y2Z), but
this element is not in (YT1 - XT2 ; YZT2 - X 2T3 ).

A "weaker" conjeeture ia the following:

Conjecture 2: Let A be regular and P a prime ideal of geometrie linear
type. Then Pis of linear type. --

li A is not regular and if we also aecept ideals I being only primary (ta
same ideal P), then example 7 of §l is a eounterex'ample.

Also this weaker form of Valla'a conjeeture is far from being trivial: Note
that "geometrie linear type" implies Sym (p)red ~ Re(P) by Proposition
1.4. Moreover sinee A is a domain, Re(P) and therefore Sym (pred is
·a domain. What we want to show for proving thc eonjecture is that

Sym (P) itself is a domain, s. [Mi], [Hu5], theorem 1.1.

For this it is sufficient to show (see [Hu3], Lemma 2.3) that there is
an element x of positive degree in Sym (P), not nilpotent, such that
Sym (P)/(x) is redueed. Indeed, then we have N := nilrad( Sym (P)) ~

(x) and giyen an element YEN, say Y = 8X, we know that 8 E N (since
N is prime in our ease). So N ~ xN, hence N = O.

Within the framework of these eonjeetures we eonsider the following spe­
cial situation (*), where we can give a partial answer in the affirmative.

(*) Let (A,.-.) be a regular loeal ring and P a prime ideal of A eontained
in .+H,.2. Assume that AlP is Cohen-Maeaulay with maximal embedding
dimension, Le.

J.t(A/P) = e(AIP) + dim(AIP) - 1 .

Remark 1: Thc loeal ring at a rational surfaee singularity satisfies these
hypotheses on AlP.
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Remark 2: (see also [GoShi], p. 71) (*) implies [Sa1] that p,(P) = (~)
, where e = e(AIP). Moreover J-L(AIP) = clim( fH.IMV2

) since P C ;1#2,

hence J-L(AI P) = d, since A is regular. So we get

(1) d = e + d* - 1 ,

where d = dimA and d* = dim(AIP), in particular we have h := ht(P) =
e -1.

Theorem 2.1: Under the assumptions (*) we have:

a) P is an almost complete inter~ection (a.c.L) iff e = 3 (Le. h = 2).
J

b) If h = 2 then the asymptotic depths lim inf( depth (pn I pn+l ))
and lim inf( depth (RI pn)) denoted by a(P) and b(P) are d - 3.

c) If d* ~ 2, then: j.L(P) = 8{P) iff P is of linear type.

Proof: a) P is a.c.i. iff /L(P) = h + 1, hence iff (~) = e, Le. e = 3.

b) h = 2 implies that P is a.c.L, henee P is of linear type (since P can be
generated by a d-sequence, s.e.g. [GaShi), lemma 2~5). Therefore we have
j1.(P) = s(P).

Moreover (Burch's inequality):

(2) - 8(P) ~ d - inf depth (pn Ip n+1
) ~ d - inf depth (AI p n)

Using (1) we get:

inf( depth (p n Ipn+l)) ::; d* - 1 ,

inf( depth (AI pn)) ~ d* -1 .

Since P is generated by a d-sequence, say P = (x 1 , X2 , X3)' Whete (x 11 X2 )

is a regular sequenee in A, we know that

dim A - depth (AI{Xl"'" Xk) ~ k
for 1 $ k $ 3. Then [Ru], theorem 4.2:

inf( depth (Alp n
)) = d - 3 = d* -1 ,

hellce inf( depth (pn I pn+l) = inf( depth (AI pn) = d-3 . So equality
oeeurs in Burch's inequality (2), therefore a(P) = b(P) = d - 3.

c) If d* = 1 then d = e = h +1. Assuming JL{P) = 8(P) we get

s(P) = (h ~ 1) ~ d - a(P) = (h +1) - a(P) ,

hence h = 1 or 2 (h = 2 is possible beeause of b)). If h = 1 then P is a
eomplete intersection and so P is of linear type. If h = 2 then P is a.c.i.,
hence of linear type too.
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If d* = 2 and j.L(P) = s(P) then d = h +2 and

(h+l)s(P) = 2 ~ (h + 2) - a(P) .

On the other hand a(P) = 0 or 1, hence again h ~ 2, Le.P is of linear
type, q.e.d.

Remark 3: Valla's conjecture would be always true for the situation (*),
if a(P) ~ d- - 2.

...
In general this condition is much tooßtrong, as pointed out to UB by Shin
Ikeda: Let X = (Xii) be a generic n x (n + l)-matrix and P = In(X)
the ideal of n size minors of X in k[XiiJ =: A. Then

d* = dim AlP = n(n + 1) - 2

and a(P) = n2
- 1. Hence the con~tion a(P) ~ d* - 2 would imply

n ::; 3.

Remark 4: Note that for a.c.i. P in the situat.ion: (*) we have a(P) = 0
if d* = 1 and a(P) = 1 if d* = 2.

Note furthermore that for a.c.i. ideals P in the situation (*) we know
[GoShi], Cor. 3.5, theorem 1.2, that grp(A) and Re(P) are both Goren­
stein. Hut AlP is of course not Gorenstein [Ku]. Under the assumption of
situation (*) we mention a quite elementary proof of the fact, that almost
complete intersections are not Gorenstein rings:

P is a.c.i. means h = ht(P) = 2, hence

depth (AlP) = dim(AIP) = d - 2 .

Then we know by [Sa2], theorem 3.2, p. 84 that

j.L(P) ::; (n + l)e(A) = n + 1 , where

n := dimkExt~-2(k,AIP), k = AI,ftV . Since

Ext~-2(k,AIP) .......HomA(k, AI(P, Xl, ••• , Xd-2))

~HomA/p(k, AI(P, Xl,"" Xd-2))

::Ext~/~(k, AIP) ,

where Xl, ••• , Xd-2 is a regular sequence on AlP, n is the highest Bass­
number of AlP at ~P. In Dur case j.L(P) = h + 1 = 3, Le. n 2: 2 ,
heuce AlP is not Gorenstein.
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Examples for the situation (*):

EI) A = k[[X]] , where X = (Xi;) is a generie 2 x 3 matrix. Let P =
12(X) the ideal generated by the 2 size minors. Then AlP is Cohen­
Maeaulay wi th:

e(AIP) == e == 3

E2) Example E2) of §1 .

d=G d* == 4 , J.L(P) == 3 .

We eome back to Valla's conjectur~ in a more general frame in §4 .
J

To eonclude we mention another situation where Valla's conjecture is true:

For the ideals 11c(X) generated by the k size minors of a generie matrix
X, the following statements are equivalent:

(i) 11c (X) is of linear type

(ii) 11c(X) is geometrie linear type

(iii) J.L(I1c (X)) == s(Ik(x)).

The reason is that all three eonditions are equivalent with the faet that
there are Da non-trivial Plücker relations (s. [Hu3]).
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§3. Krull dimension of symmetrie algebras

Here we mention the Huneke-Rossi-formula [HuR] linking the dimension of
Sym (M) to the Forster number that bounds the number of generators M

as expressed in its Ioeal data; Simis and Vaseoneelos showed in [SiV1] how
to derive this result from a theorem expressing dim(A) in terms of ideals
of linear type. Here we put these arguments into a somewhat more gen­
eral framework and show how Simis' and Vaseoncelos'arguments fit into a
general dimension formula for arbitrary ideals. We base our approach on
the following theorem.

Theorem 3.1: Let A be a noetheriarl..ring, I ~ A an ideal eontained in
the Jacobson radieal of A. Then

dim(A) = Bup{dim(AIP) + ,g(Ip)} .
P~1

Remark 1: This is clear if A is catenarian, since we have always

dim(A) ;::: sup{dim(AIP) + s(Ip )} .
Pd1 .

HAis .catenarian,. pick Po E Min (All) to be such that ht(I) = ht(Po).
Then dim(A) = dim(AIpoY+ ,g(Ipo), which proves the claim.

For the general case we need some generalities on the dimension of noethe­
rian rings.

Lemma 3.2: Let B be a domain which is a finite1y generated k-algebra
over a field k. Then

tr.d.]e(Quot(B)) = dim(B) .

Proaf:· By Noether normalization, B is finite aver a polynomial snbring
k[XI, ... ,Xd ) ~ B, where d = tr.d.]e(Quot(B)). Then, by going up

dim(B) = dimk[XI, ... ,Xd ) = d .

Lemma 3.3: Let B be finitely generated over a subring A, P E Spec(B),
and p := P n A. Then

dim(BIP) ~ dim(Alp) + tr.d.k(p)k(P)

~ dim(Alp) + dim(B ® k(p))
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Proof: For the first inequality, replacing BIP by Band Alp by A, we
may assume that A and B are integral domains and P = (0), p = (0).
Ey the dimension inequality in [Ma], Theorem 23.... we have, for any Q E

Spec(B) and q:= Q n A:

ht(Q) ::; ht(q) + tr.d'AB - tr.d.k(q)k(Q)

:5 dim(A) + tr.d·AB .

Choosing Q with ht(Q) = dim(B) proves the first inequality.

For the second inequality eonsider tl}e ring extension BIP ~ Alp, which
establishes BIP f8J k(p) = BIP ® Qupt(Alp) as a finitely generated k(p)-
algebra; hence , by Lemma 3.2: .

tr.d.k(p)k(P) = dim(BIP f8J k(p)) ,

since Quot(BIP f8J k(p)) = Quot(BIP) = k(P). But by right exactness
of'®: BIP ® k(p) is a quotient of B rs k(p), whence dim(B IP ® k(p)) ~
di~(B rs'k(p)). Q.e.d.

Remark 2: It might be instruetive to look at th'e geometrie signifieance of
this fomula. Let f : X -+ Y be a morphism of finite type of noetherian
schemes (corresponding to A l....+ B ), and let X' l....+ X', Y' = feX') ~ y
be closed subschemes (eorresponding to P and p). This gjves the eommu­
tative diagramm

1':=fIX'

X' X

11

y' ~ y

Then Lemma 3.3 cari be interpreted as:

dimX' ::; dim Y' + "generic fibre dimension of I' "
::; dim Y' + "generic fibre dimension of f along Y' ",

the second inequality being geometrically obvious from (f')-1 (y) ~ /-1 (y)
for all y E Y'.

Proof of Theorem 3.1: For any P ~ I, one has (see Remark 1):

dim(AIP) + s(Ip) ::; dim(A) .
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It suffices to exhibit one P ~ I such that

dim(A/P) + .s(Ip) 2: dim(A) .

For this consider B := grI(A), Ä := A/l. For any P E Spec(B), we have
by Lemma 3.3:

dim(B/P) ~ dim(A/P) + .s(Ip )

(where we denote by P the inverse image of P n Annder A -+ Ä = All).
Choosing P so that clim(B/P) = dimB proves the claim, since dimB =
dim(grI(A)) = dimA. Q.e.d.

Remark 3: Geometrically one look~at the normal cone map

v: C(X,Y) -+ Y

with X = Spec(A), Y = Spec(A/I), and restricts it to an irreducible
component of C(X, Y) having the maximal dimension.

Before proving the theorem of Huneke and ROBsi we make a last remark.

Remark 4: Using the natural Sym (M)- homomorphism
V' '.

M 0 Sym (M)-t Sym (M)+ ~ 0
A

and taking the n-th symmetrie power of cp we get

Sym n(M) 0 Sym (M) -t Sym n( Sym (M)+) -+ 0

then the universal property ofsuch powers with respeet to the base change
A -+ Sym (M) shows immediate1y that

( Sym (M)+)" I'V Sym n( Sym (M)+) ,

Le 1:= Sym (M)+ is of linear type; s. [HSiV1], Expl. 2.3, p. 87, or for
another argument [Val], Prop. 3.11.

Theorem 3.4 ([HuR]:), Let A be a noetherian ring 'and M a finite1y
generated A- module. Then

dim( Sym (M)) = sup {dim(A/P) + j.L(Mp )} •
peSpeC(A)

p'roof: Localizing 8:= Sym (M) at thc multiplieative set 1 + l
(where 1= Sym (M)+) we get 18(1+1) in the Jacobson radical of 5(1+1)

; and all primes p over I have thc form P + I with P E SpeeA. Sinee I is
in particular of geometrie linear type, we know that

.s(Ip ) = J.t(Ip ) = j.L(Mp )

by the universal property of Sym (M), which proves Theorem 3.4.
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§4. Almost complete intersections

The main result in tbis section is the charaeterization of a generalized
notion of an almost compiete intersection (a.e.i.), in arbitrary Ioeal rings.
As an applieation we get a charaeterization of an a.e.i. in Cohen-Maeaulay
rings. In particular those a.c.i. 's are of linear type. This was mentioned
by Huneke [Hu4]; somewhat earlier Vasconcelos and Simis [SV!] indicated
a proof for that fact using ideas reiated to our Primbasissatz (s. Theorem

. 4.2). This Primbasissatz for general ideals in Iocal rings seems to have
gone unmentioned, therefore we sketch the proof. In this way we analyse
finally the interplay between proper·t1es of an ideal to be an a.e.i., to be of
linear type or to be of geometrie lin~ type.

Part A: A general Primbasissatz rar local rings

In this section (A,-. ) will be a Ioeal ring, noetherian, with infinite residue
fie1d k = AIMJ, [ the reason for this being that, for a finj te dimensional
veetorspaee over k, a finite union of proper subvarieties cannot exhaust
the whole spaee, and this allows for genericity arguments.] We denote
the n-fold produet [ x ... x I of an ideal I. ~ ·:A by [[n] , to prevent
eonfusion with the n-fold idealtheoretie produet I ..... I = In. Elements
(Xl, ... , Xn ) E I[n] are also denoted by~. We endow I[n] with the topology
induced on it by the projeetion 1r: [fn] -t (I/~I)en from the Zariski­
topology on the finite dimensional k-vectorspaee (I IifH-'I)$n.

Definition 1: A subset U ~ [[n] is ealled generie if U contains a nonempty
open subset.

In the following proposition, we eollect various properties of generie sets.

Proposition 4.1:

(i) A generie set is dense.

(ii) The intersection of finitely many generie sets is generie.

(iii) Let m ~ n arid 1r': [ln] --+ [[rn] be the projection. If U ~ [fn] is
generic, so is 1r(U) ~ [[rn]. If V ~ [[rn] is generie, so is 1r-1(V).

(iv) Let r.p : A -t S be a surjeetive homomorphism of loeal rings,
J ~ S an ideal, and let [ := r.p-l(J). If V ~ J[nJ is generie so is
r.p-l(V) ~ j[n].

(v) Let (al, ... l am ) be an idealbasis of the ideal [, U ~ [{nl. Then
U is generie if and only if the following holds:
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There are polynomials Fj(X) E A[X], j = 1, ... ,i, where ..:t
is an nxm-matrix of indeterminates, say

such that, if (Xl, ... ,Xn ) E [In], Le.

TJ1,

Xi = L elaj ,.... e; E A , 1 ~ i ~ n

;=1 J

the fact that some FIe(e) is a unit in A implies (Xl"," Zn) EU.

Before formulating the Primbasissatz, we need two mOre eoneepts.

Definition 2: Let A be any ring, I an ideal. A height sequenee for I (of
length h) is a sequence (al, ... , ah) E [fh] such that (al,"" ah)A is an
ideal of height h.

Definition 3: Let A be a ring, a E A a nonunit. Then ais ealled acti\f

:<=? a is nonzerodivisor in Ared

<=> VP E Min(A) : a -rt. P

<=? ht(aA) = 1 ..

We eau now formulate thc Primbasissatz; s. (Mu,] , [Na].

Theorem 4.2: (Primbasissatz) Let (A, -1f(, ) be a noetherian loeal ring with
infinite residue field k = AI#(.. Let I ~ A be an ideal of A. Then
there exists a generic set Pr(I) ~ I[~1)] ("Primbasen") such that for all
(al,' .. ,a~(I») E Pr(I) the following statements hold:

(i) (al,"" aJl(1)) is a minimal system of generators for I.

(ii) If ht(I) > 0, al1 aj are aetive or if grade (I) > 0, all aj are
nonzerodivisors.

(iii) VP E Ass(A/I): (al, ... ,a~(IAp») ·Ap = IAp .

(iv) (al, ... , aht(I)) is a maximal height sequence for I; in partieuiar

ht((a}, ... , aht(I») . A) = ht(I)
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Addendum Because of Proposition 4.1(ii) one may constrain Pr(l) fur­
ther by any finitely many additional generic conditions. So one may, in
addition, require

grade «al, ... ,agrade (1)) . A) = grade (I)

s«al"'" a.(I)) . A) = s(l)

The proof of Theorem 4.2 proceeds by showing that any of the con­
ditions (i)-(iv) imposed is generic and applying Proposition 4.1(ii). In
fact, from Proposition 4.1, one deduces the following series of state­
ments 4.3-4.6. Note for this that. a'" subset of a vectorspace V is called
maximally independent if any finite ~ubset of k ~ dim V elements is lin­
early independent.

Proposition 4.3. Let I be an ideal, m E :IN. The set

B(I, m) :={(al"'" am) E I[m] I {al, ... , am}

is maximally independent modulo -ft-I}

is generic.

Proof: Fix a basis of J. The independency conditions, then, are expressed
in terms of nonvanishing of maximal minors moduln .M(, of the matrix
expressing ab"', am in terms of thc given basis. By Proposition 4.1(v),
B(I, m) is generic.

Proposition 4.4. Let P be a finite set of primes of A, I ~ A an idal with
I ~ U P, mEIN. Then the set

PEP

is generic.

Proof: In I/4It-I, U P is contained in a finite union of hyperplanes.
PEP

Proposition 4.5. Let P E Spec(A) be a prime,

Ap: A~ A p

the localization map, I ~ A an ideal, m E lN. Then, if V ~ IA~] is
generic, Apl(V) ~ I[m] is generic.
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Proof: Choose, according to Proposition 4.1, polynomials defining V.
Multiplying these by a common denominator lifts these to polynomials
defining Ap1(V).

Proposition 4.6. Let kEIN, h ~ ht(I), and

Then ?-l(I, h) ~ I[h] is generic.
./

Proo!. H ht((a1, ... , ah) · A) = h,ht((a1,"" aj) . A) = j für 1 < j ~ h.
Hence, by Proposition 4.1(iii), it suffices to consider the case h = ht(I).
Let P E Min(A/I) with ht(I) = ht(P). Then I Ap is P-primary, and
s.o.p.'s, being minimal reductions, are generic by [NR], p. 153. Then
apply Proposition 4.5.

Proof of Theorem 4.2. Let P ~ Ass(A/I) be either empty if ht(1) = 0 or
Min(A/I) if ht(1) > 0 or Ass(A/I) if grade (I) > O. Let J.L := J.L(I) , h =
ht(I), and

be the projection. Then put

'Pr(I) :=8(1, J.L) n A(I, J.L; p)n

n Ap1 (8(1Ap , JL)) n 71"-1 (?-l(1, h)) .
pEASS(A/l)

Then Theorem 4.2 follows from Prop. 4.3, Prop. 4.4, Prop. 4.5, Prop.
4.6, and Prop. 4.1(ii). Q.e.d.

Part B: Characterization of almost complete intersections

Definition 1: Let A be a ring, I ~ A an ideal.

(i) I is called a eomplete intersection (e.i.) if ht(I) = J.L(I).

(ii) I is called a Ioeal complete intersection (l.c.i.) if

VP E Min(A/I) : 1Ap is c.i. in Ap

(iii) I is called an almost complete interseetion (ac.i.) if I is 1.c.i. and
ht(1) + 1 = J.L(1).
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Theorem 4.7. Let (A,.tM.-) be a loeal ring, I ~ A an ideal.

(i) Let A have an infinite residue field. If I is an a.e.L, there is an
ideal J ~ I and a E I, a rt J, such that I = J +aR, and J is a
eomplete interseetion. If J is height unmixed (Le. ht(J) = ht(P)
for all P E Ass(A/J)), (J: a) = (J : a2

).

(ii) Conversely, if I = J +aR, with J a eomplete interseetion and
(J : a) = (J : a2 ), then I is either e.i. or a.e.i.

Proof. Let h = ht(I) and Jl. = J.L(I):."

Ad (i): Choose (al, ... ,aJL) to be a Primbasis of I aceording to Theorem
4.2. Put J := (al,"" ah)·A and a := ah+l = aJL' Then a rt J, 1= J +aA,
and J is c.i.

Now let J be height unmixed. By standard arguments it suffices to show
that (J : I) n I = J, and for this it suffiees to show: (JA p : I A p ) n
I Ap ~ J Ap for all P E Ass(AJJ) = Min(AJJ); and it clearly suffiees to
assnme P E Min(AJI). But then ht (P) = ht (IAp ) = ht(J Ap) = h, so
J Ap = I Ap by Theorem 4.2(iii).

Ad(ii). One always has

ht(J) = J.L(J) ~ ht(I) ~ ht(IAp ) ~ J.L(IAp) ~ J.L(I)

~ J.L(J) +1 = ht(J) +1

for all P ~ I. The oo1y ease which is not eompletely trivial is ht(I) =
J.L(I) - 1. Let P E Min(A/I); then ht(IAp ) = ht(P) is either h or h + 1.
If it is h + 1, it follows that J.L(IAp) = h + 1, so IAp is e.L

If it is h, P must be a minimal prime of J. This implies an E J Ap for
same n, and so IAp = J Ap, sinee (J : a) = (J : a2 ). This proves thm.
4.7.

Remark 1. For (ii), both cases do oceur.

Let us abbreviate the property of an ideal I to be of the form I ­
J + aA with J~ e.i. J and (J : a) = (J : a2 ) by saying I is a
generalized almost eomplete interseetion (g.a.c.i.), see also [Va2].

We cau now characterize almost eomplete intersections in a Cohen­
Macaulay ring.

27



Theorem 4.8. Let A be a Cohen-Macaulay ring such that alliocalizations
Ap , P E Spec(A), have infinite residue field, and let I ~ A be an ideal with

ht(I) +1 = p..(1). The following statements are equivalent:

(i) 1 is an a.e.i.

(H) 1 is a g.a.e.L

(iii) 1 is of linear type.

(iv) 1 is of geometrie linear type.

'"The equivalenee of (i), (Hi), and (iv) l}olds without the assumption on the
loealizations. .

Proof. We mayassume A is loeal.

(i)=>(ii) :
(ii )=>(iü):
(iii)=>(iv) :
(iv)=>(i):

This is Theorem 4.7(i).
This is a standard implieation, see e.g.[Val].
Tms is obvious.
Let P E Min(AII). Then also.IAp is of geometrie linear
type. So .s(1Ap ) = JL(IAp ), Le. IAp is a parameter
ideal and henee e.L Q.e.d.

Remark 1. One eannot strengthen the eondiditons for a l.e.i. to "IAp

" e.i. for all P E Aas(AII)" without destroying the equivalenees of Theorem
4.8, as easy examples, show. However, for a CM ring, one Iooses in some
eases nothing, as the following generalization of the result [HOl], Satz 1,
shows, which is in [HI], following a suggestion of Hochster.

Theorem 4.9 ([HI]): Let A be a CM Ioeal ring, I ~ A a l.c.i. .Then
the following are equivalent:

(i) ht(I) = .s(I)

(H) I is e.i..

Addendum. I is l.e.i. iff VP E Min(AII): l(ApIIAp ) = e(IAp).

Remark 2. The important implieation (i) => (Hi) ia formulated in {Hu4],
proposition 2.4, (1). Hut the reference for proof only refers to the prime
ideal ease. This ease was also obtained independently by Valla [Va2]
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§5. Numerical conditions ror a.c.i

In the following we mention briefly some simple numerical conditions for
an ideal in a Ioeal ring (A, AK1 to be an a.e.i. and of linear type. The
philosophy is to complete the given ideal to an '*1,.-primary ideal by adding
apart of a s.o.p. and to impose numerieal conditions on this primary
ideal. The results so obtained surely are but a first tentative step in the
direction towards conditions which should be more effeetive both from a
theoretical and practical point of view.

First we demonstrate our approach by looking for some examples.
J

1) Example E2 oI §1:

A = k[[X, Y, Z]] ,

p = (y2 _ X Z,Xs - YZ, Z2 - X 2Y) is a.e.i./

Choose the parameter X mod P'and consider the 4J1.--primary ideal

Then q := (y2, Z2, X) is a minimal reduction of I, namely 12 = q . I,
I ct. q, and

r(1) := max{r I1r
-

1 ct. q} = 2 .

Therefore we have:

e(1) = e(q) = l(A/q) = 4 and l(A/I) = 3 ,

hence:

(1) e(I) = l(A/1) +r(I) - 1

Note, if we choose Z instead of X, we get:

J :=P + ZA

e(J),-S , l(A/J)=4 , r(J)=2 ,

hence the same relation (1) as before.

Moreover, in the example:

(2) J.L(I) = J.L(P) + dim(A/P) .
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2) Example E5 of §1:

A = k[[XO,X1 ,X2 ,XSJ]

p = (X~X2 - X;;XoXs - X 1X 2;Xoxi - X~X3;XIX; - Xi) .

We take Xo,Xs as a soo.p. mod P and consider

Leo J.L(I) = 5 i= J.L(P) +dim(AIP} ;
so (2) is not fulfilled. J

A minimal reduction of I is q = (Xo,Xs,X:,Xi), namely: 13 = qI2

and 12 rt q. Then

e{I) = l{Alq) = l{AII) + l{Ilq + 12
) + l{I2 +q/q) .

One can check that: e{I) = 9 and l{AII) = 5, hence also (I) is not
fulfilled. [ Note that P is not a.c.i.]. -

3) (s. [Sa2], p. 84):

A = k[[X, Y, Z, WJ]

P = (X 3
- Z2;Xy2

- W 2 ;XW - YZ;X2y - ZW) .

Take the parameters X, Y mod P and consider

1:= P + (X, Y)A = (Z2;W2;ZW;X;Y) ,

Leo (2) is not fulfilled. But relation (I) is fulfilled: take the maximal
reduction q (X; Y; Z2; W 2 ) of I, note that 12 = qI and r{I) = 2, hence

e{I) = l{AII)+ (r(I) -1)

11

4

11

3

11

1

Note, that P is not a.c.i. (and not of linear type).
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A = k[[S2, S3 ,st, t, S2 U,tu]]

P = (S2 U , tu)

Then A is CM and AlP is Buchsbaum, but not CM. In [GoShi] it was
shown that P is a.c.i. . Corresponding to this, the relations (1) and (2)
are fulfilled if char(k) f:. 2 , which D. Rees pointed out to us:

Choose parameters 8 2 , t and consider:

I ;= (S2 U , tu, 8
2

, t)

Then J:= (t - S2 U , tu, S2) is a reduction of I (note that also t - AS 2U

any A f:. 0, would be a possible genera~or of a reduction of I).

Since S2u. . t = 8 2 • tu we get

(t +S2'U)2 = (t - S2 U )2 + 4s2 • tu E J2 ,

so that
I = (J, t +8

2u)· and 12 = J . I .

Moreover we have

MC-
2 = (I + (S3 ,st)A)2 = I -stt- + (8 6 ,s4t;:s2t2)A ,

hence 41C- 2 :::: 11ft-- Le. I is a reduction of .M-t-- •

Furthermore.

So we get:

4 :::: e(..m-) :::: e(I) :::: e(J) :::: l(AIJ) :::: 1.(AII) +1.(11 J) ,

since l(AII) :::: 3 and l(I I J) :::: l(AIJ : I) = 1. Therefore the relations
(1) and (2) are fulfilledj this implies again that P is a.c.i. as the following
proposition shows.

Proposition 5.0: Let (A,Mt--) be CM and let P be a prime ideal in A such
that

(i) J.L(P) ~ ht(P) + 1

(ii) A p is regular.

Assume that there exists a s.o.p. ~ mod P such that

(1) e(l) :::: l(AII) + r(I)-1

(2) J.L(I) :::: JL(P) + dim(AIP) , with I:::: P +~A .

Then P is of linear type.
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Proof: Let q be a minimal reduction of I such that 1r
-

1 C/. q,. where
r = r(I). Then

e(I) = l(A/q) = l(A/1) + l(I/q +12
) + ... +l(y-l + q/lr + q) .

From (1) we see that l(l/q + 12) = 1, hence I = (alt ... , ad, ad+l),
where q = (al,'" ,ad) ,d = dimA. Hence by (2)

J.'(P) = ht(P) + 1 ,

Le. P is a.c.i. in a CM ring A, t~erefore it can be generated by a d-
sequence [GoShi]. Q.e.d. J

Of course.the conditions (1) and (2) are too strong. Therefore we make
the following definition.

Definition. Let (A, -tH--) be a Ioeal ring, I S; A an ~primary ideal, q S; I
a minimal reduction. Put

N(I,q):= ffi (I" + q/",..I~ +-q)
Jc~O

which is artinian;

n(l, q) := l(N(I, q))

r(I, q) := min{k I I" S; q} ,
n(I) := min{n(I, q) I q S; I
r(I) := min{r(I, q) I q S; I

and

a minimal reduction }

a minimal reduction} .

Lemma 5.1. (i) n(I, q) 2: r(l, q)
(ii) n(I, q) = r(1, q) and r(I, q) > 1

Hf J.'(I) = dim(A) + 1.

Proof: Use the observation

r{I.q)-l

n(I, q) = :E l(I" +q / Mt' I" + q) ,
k=O

which implies (i) and the direction "=:>" of (ii). For the converse of (ii),
note that auy minimal base of q can be extended to a minimal base of I
by [NR], Lemma 3, p. 147; so we have l(I /Ml--1 + q) = 1, and hence the
claim.

32



Corollary 5.2. n(I) 2: r(I).

Theorem 5.3. Let (A, 4+Y) be a quasi-unmixed loeal ring. Let I ~ A be a
l.c.i. ideal. Let ~ denote a s.o.p. with respect to I, and put I(~) := ~A.+I.

Finally, let q ~ I(~) be a minimal reduction of I(~). Define properties
Aq ), A) and B):

n(I(~),q) = r(I(~), q) > 1

n(I(~)) = r(I(~)) > 1

JL(I(~)) = JL(L) + dim(A/I)

Consider the following statements:

(i) Aq ) and B) hold for all ~ and q

(ii) Aq ) and B) hold for some ~ and some q

(iii) A) and B) hold for some ~

(iv) I is an a.c.i.

Then the following holds:

(I) (i)=> (iii)=> (ii)=> (iv)

(11) If A and AII are GM, (iv)=>(i).

Proof: We only show (11):

Since I is a.c.i., ciearly dim(A) ~ 1L(I(e)) ~ dim(A) + 1, and we have to
rule out the case dim(A) = JL(I(~)). So assume dim(A) = JL(I(e)). Then

e(I(;~.)) = e(~A +I) ~ e(~,I,A)

- L e(IAp)e(~,AIP)
PEAssh(A/1)

L l(ApIIAp)e(~,AIP)
PEAl!Il!Ih(A/I)

= e(~,AII)

= l(AII(~)) , since AII is CM

But since A is also GM, we mnst have equality everywhere. By Theorem
4.9 in §4, then, I is c.i., contrary to the assumption. Q.e.d.

Remark 1: In a GM ring, the conditions Aq ), A) cau be expressed in
terms of the multiplicity e(I(~)) as folIows:
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Introduce, for I an 44t--primary ideal in a Ioeal ring (A, Mt---), and q ~ I
a minimal reduetion,

D(l):= ffi .-.IIe + qlJ'1c+l + q
k2:0

d(l,q) := l(D(I))

d(l) := max{d(I,q) I q ~ I a minimal reduetion} .

Then we get:

Corollary 5.4. In Theorem 5.3 th~ eondition Aq ) and A) ean be replaeed .
by J

A~)

A')
e(l(~)) ~ d(I(~), q) + r(I(~), q)

e(I(~)) ~ d(I(z:)) + r(I(~)) and

and r(I(~),q) > 1

r(I(~)) > 1

in case A is CM.

The following is a simple sufficient eondition for a.c.i., eompare Proposition
5.0.

Corollary 5.5. Let the assumption be as in Corollary 5.4. Suppose the
eonditions:

B)

e(I(~)) ~ l(AII(~)) + r(I(~), q) - 1

Jl(I(~)) = Jl(I) + dim(AIl)

hold. Then I is an a.c.i., and so of linear type in the CM ring A.

In many simple examples, A~) holds for a.e.i.'s, and one may ask to which
extent A~) and A~) are equivalent. A partial answer is given as folIows:

Proposition 5.6. Let (A, AU-- ) be a CM ring, I ~ A a l.e.i. such that
All is CM.

(i) If I ia an a.c.i. and A~) hoIds, then

(ii) .Conversely, if (*) holds, A~) is true and so I ia an a.c.i.
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Remark 2: Using Herzog's work on ideals of monomial curves [H] , and
Lejeune-Jalabert 's and Teissier's work [Tl, Chap. I on integral closures of
monomial ideals, one may systematically construct monomial space curves
which are a.c.i.'s and CM which do not satisfy(*) and so not satisfy A~).

This remark is due to O. Villamayor.

Questions: 1) Are there numerical conditions (hopefully practical) which
imply B)?

2) 1s, B) true for any ideal and a generic choice of 12.?

J
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