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Abstract. In this note we prove a convergence theorem for invariant subad-

ditive functions defined on the finite subsets of a discrete amenable group. The
theorem can be proved using a quasi-tiling result due to D.S. Ornstein and B.

Weiss but the proof given here follows ideas of M. Gromov.

Let us point out that we generalize here to discrete amenable groups the
version of the convergence theorem given for countable amenable groups in a

preceding paper by the same author.

1. Introduction

Let G be a group. We denote by F(G) the set of all finite subsets of G. Let K
and A be subsets of G. The K-boundary of A denoted by ∂K(A) is the set of all
elements g in G such that Kg = {kg : k ∈ K} intersects both A and G \A.

There are several equivalent definitions of amenable groups in the literature. The
following is a characterization due to Følner [Føl]. For a more complete description
of this class of groups see for example [Gre] or [Pat].

A (discrete) group G is said to be amenable if for all ε > 0 and for all K ∈ F(G),
there exists F ∈ F(G) satisfying

|∂K(F )| ≤ ε|F |,
where |F | denotes the cardinality of the set F . Such a set F is called an (ε,K)-
invariant set of G, or an (ε,K)-invariant Følner set of G .

It can be shown that a group G is amenable if and only if there exists a net
(Fi)i∈I of elements of F(G) such that

lim
i

|∂K(Fi)|
|Fi|

= 0

for every K ∈ F(G). Such a net (Fi)i∈I is called a Følner net of G.
The class of amenable groups includes finite groups, abelian groups, it is closed

under the operations of taking subgroups, taking factors, taking extensions and
taking increasing unions. Typical examples of non-amenable groups are the groups
containing a subgroup isomorphic to a non-abelian free group. But this property
of containing a non-abelian free group don’t characterize at all the non-amenable
groups (see for example [OlS]).

The aim of this paper is to prove the following convergence theorem:

Theorem 1.1 (Ornstein-Weiss). Let G be an amenable group and h : F(G) → R
a function satisfying the following conditions:
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(a) h is subadditive, i.e.

h(A ∪B) ≤ h(A) + h(B) for all A,B ∈ F(G);

(b) h is right invariant, i.e.

h(Ag) = h(A) for all g ∈ G and A ∈ F(G).

Then, for every Følner net (Fi)i∈I for G, the limit

λ = λ(G, h) = lim
i

h(Fi)

|Fi|
exists and is finite. Moreover, this limit does not depend on the choice of the Følner
net for G.

This theorem is a generalized version of the one containing in [Kri]. For countable
amenable groups and with more stronger conditions of h, this convergence theorem
was proved using the Ornstein-Weiss quasi-tiling result [OrW, Section I.2, Th. 6] in
[LiW, Th. 6.1]. In [Gro, Section 1.3], Gromov gives a sketch of the proof of 1.1 by
using tools introduced in [OrW]. The proof given here follows the ideas of Gromov.

Theorem 1.1 is used to define topological invariants of amenable group actions as
metric entropy, mean topological dimension (see [Gro], [LiW], [OrW], [CoK]). One
can find in [Mou] such a convergence theorem for invariant functions satisfying a
more stronger assumption than subadditivity. The result in [Mou] is sufficient for
defining the metric entropy of amenable groups.

The paper is organized as follows. In Section 2, we recall the notion of K-
boundary of a subset of a group G and the definition of Følner subsets. Then
we establish the Følner characterization of amenability in terms of Følner nets for
(non-necessary countable) discrete groups. We prove in Section 3 the Filling-lemma
(Lemma 3.5) used in the induction step of the proof of Theorem 1.1. In Section 4,
we prove the Theorem 1.1. The idea of the proof is the following. We construct
by induction a process needed to ε-cover every large Følner subset D of the group
by translates of some fixed small Følner subsets. The property of this particular

covering will make easy the estimation of h(D)
|D| needed in the proof of the convergence

theorem.
This work was done at Max Planck Institute for Mathematics (Bonn, Germany).

The author is grateful for the financial support and hospitality of the Institute
during his stay (April 2010).

2. Amenability

In this section we introduce the notions ofK-interior, K-exterior andK-boundary
of a subset of a group G. These tools are very convenient for proving the Filling-
lemma (Lemma 3.5). We present the Følner characterization of amenability using
K-boundaries. We introduce Følner nets which are generalizations of Følner se-
quences and are very convenient for handling with non-countable amenable groups.

2.1. Relative amenability. Let K and A subsets of a group G. The K-interior
(resp. K-exterior) of A is the subset IntK(A) (resp. ExtK(A)) of the elements g in
G such that Kg = {kg : k ∈ K} is contained in A (resp. in G \ A). We define the
K-boundary of A as follow:

∂K(A) = G \
(

IntK(A) ∪ ExtK(A)
)
.
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Thus, the K-boundary of A is the subset of all elements g in G such that Kg
intersects both A and G \A.

An immediate consequence of the definition of K-boundary is the following:

Proposition 2.1. Let K, A, B be subsets of a group G and g an element of G.
We have:

(i) ∂K(A) = ∂K(G \A) ;
(ii) ∂K(A ∪B) ⊂ ∂K(A) ∪ ∂K(B) ;
(iii) ∂K(A \B) ⊂ ∂K(A) ∪ ∂K(B) ;
(iv) ∂K(A) ⊂ ∂K′(A) si K ⊂ K ′ ⊂ G ;
(v) ∂Kg(A) = g−1∂K(A) ;
(vi) ∂K(Ag) = ∂K(A)g.

�

Suppose K and A be finite subsets of G. Then ∂K(A) is finite. Suppose A 6= ∅.
We define the relative amenability constant of A with respect to K denoted by
α(A,K) by:

α(A,K) =
|∂K(A)|
|A|

.

Equalities (v) et (vi) of Proposition 2.1 imply

(2.1) α(A,Kg) = α(Ag,K) = α(A,K) for all g ∈ G.
If α = α(A,K), the set A is called an (α,K)-invariant Følner subset of G or simply
an (α,K)-invariant subset of G.

Recall that a discrete groupG is said to be amenable if for all ε > 0 andK ∈ F(G)
there exists an (ε,K)-invariant subset of G.

If the groupG is countable then the amenability ofG is equivalent to the existence
of a Følner sequence (Fn) of G, i.e. a sequence of elements of F(G) satisfying the
following:

lim
n→∞

|∂K(Fn)|
|Fn|

= 0 for all K ∈ F(G).

If the group is not countable, there is an analogue of Følner sequences in terms of
nets (see Proposition 2.2 below).

Nets are very useful tools since much results about sequences in topological spaces
extend to nets. Let us recall some results about nets needed in this paper.

2.2. Basic facts about nets. We give here some basic definitions and results
about nets (also called generalized sequences). For more details, see for example
[Ke] or [DuS].

Recall that a partially ordered set (I,≥) is said to be directed if I is not empty
and if every finite subset of I has an upper bound.

A map f from a directed set I to a set X is called a net in X. We will use the
notation xi instead of f(i) (for i ∈ I) and also (xi) instead of f .

A net (xi) in a topological space X is said to converge to x ∈ X if for every open
neighborhood V of x, there exists i0 ∈ I such that xi ∈ V for all i ≥ i0. If (xi)
converges to x, we note limi xi = x.

Let (xi) and (yj) be nets in a topological space X. The net (yj) is called a subnet
of (xi) if there exists a function ϕ : J → I satisfying the two conditions:

(1) yj = xϕ(j) for all j ∈ J ;
(2) for all i ∈ I there is m ∈ J with the property that, if j ≥ m then ϕ(j) ≥ i.
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The set C of all cluster points (sometimes called limit points) of a net (xi) in a
topological space X is the (closed) subset of X defined by

C =
⋂
i∈I
{xk : k ≥ i}.

The point x is a cluster point of the net (xi) if and only if there is a subnet (yj) of
(xi) converging to x.

If C 6= ∅, the limit inferior lim infi xi (resp. limit superior lim supi xi) of a net
(xi) of real numbers is the supremum (resp. the infimum) of its cluster points. If
lim infi xi (resp. lim supi xi) is finite, then it is the minimum (resp. maximum) of
the set of cluster points. Thus, if lim infi xi = lim supi xi < ∞ then the net (xi)
will converge to its unique cluster point.

Recall also that every net in a compact space admits at least one cluster point.

2.3. Amenability and Følner nets. The next result gives a characterization of
amenable discrete groups in terms of Følner nets:

Proposition 2.2. A (discrete) group G is amenable if and only if there exists a
net (Fi)i∈I in F(G) satisfying

lim
i

|∂K(Fi)|
|Fi|

= 0,

for all K ∈ F(G). Such a net (Fi) is called a Følner net of G.

Proof. Suppose that G is amenable. Let I be the (non-empty) set defined by

I = {(ε,K) : ε > 0 and K ∈ F(G)}.

Direct I as follow:

(ε2,K2) ≥ (ε1,K1)⇔ ε2 ≤ ε1 and K1 ⊂ K2.

As G is amenable, we can choose for every i = (η, L) an (η, L)-invariant subset Fi
of G. This define a net (Fi) in F(G). Let ε > 0 and K ∈ F(G). Let i0 = (ε,K).
For i = (η,K ′) ≥ i0 we have

|∂K(Fi)|
|Fi|

≤ |∂K
′(Fi)|
|Fi|

≤ η ≤ ε,

since K ⊂ K ′ and since η ≤ ε (see Proposition 2.1.(iv)). Hence limi
|∂K(Fi)|
|Fi| = 0.

Suppose now that there exists a net (Fi) of finite subsets of G satisfying

lim
i

|∂K(Fi)|
|Fi|

= 0,

for all K ∈ F(G). We will show that G is amenable. In fact, let ε > 0 and

K ∈ F(G). As limi
|∂K(Fi)|
|Fi| = 0, there is an i0 ∈ I such that |∂K(Fi)|

|Fi| ≤ ε for all

i ≥ i0. In particular, Fi0 is (ε,K)-invariant. Hence G is amenable. �

3. The filling lemma

In this section we introduce some tools needed for proving the Filling-lemma
(Lemma 3.5). This lemma is the key-result in the induction step of the proof of
Theorem 1.1.
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Let X be a set and ε > 0. A family (Ai)i∈I of finite subsets of X is said to be
ε-disjoint if there is a family (Bi)i∈I of disjoint subsets of X such that Bi ⊂ Ai and
|Bi| ≥ (1− ε)|Ai| for all i ∈ I.

Lemma 3.1. Let X be a set and (A1, A2, . . . , An) be an ε-disjoint family of subsets
of X. Then

(1− ε)
n∑
i=1

|Ai| ≤ |
n⋃
i=1

Ai|.

Proof. Since (A1, A2, . . . , An) is ε-disjoint, there exists a disjoint family (B1, B2, . . . , Bn)
of subsets of X such that Bi ⊂ Ai and |Bi| ≥ (1− ε) |Ai| for all 1 ≤ i ≤ n. Thus

(1− ε)
n∑
i=1

|Ai| ≤
n∑
i=1

|Bi| = |
n⋃
i=1

Bi| ≤ |
n⋃
i=1

Ai|.

Lemma 3.2. Let G be a group, K a finite subset of G, and 0 < ε < 1. Let
A1, A2, . . . , An be an ε-disjoint family of non empty finite subsets of G and let η > 0
such that α(Ai,K) ≤ η for all 1 ≤ i ≤ n. Then one has

α(

n⋃
i=1

Ai,K) ≤ η

1− ε
.

Proof. Using Proposition 2.1.(ii), we obtain

∂K(

n⋃
i=1

Ai) ⊂
n⋃
i=1

∂K(Ai).

Thus

|∂K(

n⋃
i=1

Ai)| ≤
n∑
i=1

|∂K(Ai)| =
n∑
i=1

α(Ai,K)|Ai| ≤ η
n∑
i=1

|Ai|.

As the family (Ai)1≤i≤n is ε-disjoint, Lemma 3.1 implies

(1− ε)
n∑
i=1

|Ai| ≤ |
n⋃
i=1

Ai|.

We deduce

α(

n⋃
i=1

Ai,K) =
|∂K(

⋃n
i=1Ai)|

|
⋃n
i=1Ai|

≤ η

1− ε
.

Lemma 3.3. Let G be a group and let K, A and Ω be finite subsets of G such that
∅ 6= A ⊂ Ω. Suppose that there exists ε > 0 such that |Ω \A| ≥ ε|Ω|. Then

α(Ω \A,K) ≤ α(Ω,K) + α(A,K)

ε
.

Proof. The Proposition 2.1.(iii) gives

∂K(Ω \A) ⊂ ∂K(Ω) ∪ ∂K(A).

Thus
|∂K(Ω \A)| ≤ |∂K(Ω)|+ |∂K(A)| = α(Ω,K)|Ω|+ α(A,K)|A|.

Since |Ω \A| ≥ ε|Ω| ≥ ε|A|, we deduce

α(Ω \A,K) =
|∂K(Ω \A)|
|Ω \A|

≤ α(Ω,K) + α(A,K)

ε
.
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Lemma 3.4. Let G be a group and let A and B be two finite subsets of G. Then
one has ∑

g∈G
|Ag ∩B| = |A||B|.

Proof. For E ⊂ G, denote by χE : G→ {0, 1} the characteristic fonction of E. We
have ∑

g∈G
|Ag ∩B| =

∑
g∈G

∑
g′∈G

χAg∩B(g′) =
∑
g∈G

∑
g′∈G

χA(g′g−1)χB(g′).

Now, after changing the order of summation and changing the variable, we obtain:∑
g∈G
|Ag ∩B| =

∑
g′∈G

χB(g′)
∑
g∈G

χA(g′g−1) = |B||A|.

Let G be a group. Let K and Ω be finite subsets of G and ε > 0. A subset
R ⊂ G is called an (ε,K)-filling of Ω if the following conditions are satisfied:

(C1) R ⊂ IntK(Ω);
(C2) the family (Kg)g∈R is ε-disjoint.

Remark that an (ε,K)-filling is a finite set and that it could be empty.

Lemma 3.5 (Filling-lemma). Let Ω and K be non-empty finite subsets of a group
G. For all ε ∈]0; 1], there exists a finite subset R ⊂ G such that:

(a) R is an (ε,K)-filling of Ω;
(b)

∣∣⋃
g∈RKg

∣∣ ≥ ε(1 − α0)|Ω|, where α0 = α(Ω,K) is the relative amenability
constant of Ω with respect to K.

Proof. Since K 6= ∅, we can suppose 1G ∈ K (otherwise choose k0 ∈ K, replace K
with Kk−1

0 and remark that α(Ω,K) = α(Ω,Kk−1
0 ) according to Equalities (2.1)).

As 1G ∈ K, we have IntK(Ω) ⊂ Ω and ExtK(Ω) ⊂ G \ Ω. We deduce

Ω \ ∂K(Ω) = IntK(Ω)

thus

(1− α0)|Ω| ≤ |Ω \ ∂K(Ω)| = | IntK(Ω)|.(3.1)

Since IntK(Ω) ⊂ Ω, every (ε,K)-filling of Ω is contained in Ω and has a bounded
cardinality. Thus we can choose an (ε,K)-filling R ⊂ G of Ω with maximal car-
dinality. Define A =

⋃
g∈RKg. We will prove that |A| ≥ ε(1 − α0)|Ω|, which is

exactly condition (b). Lemma 3.4 implies∑
g∈IntK(Ω)

|Kg ∩A| ≤ |K||A|.(3.2)

Let us prove that

ε|K| ≤ |Kg ∩A| for all g ∈ IntK(Ω).(3.3)

If g ∈ R, then Kg ∩ A = Kg and (3.3) is true since ε ≤ 1. Suppose now g ∈
IntK(Ω) \R and |Kg ∩A| < ε|K|. Then

|Kg \A| > (1− ε)|Kg|,
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which implies that R∪{g} is an (ε,K)-filling of Ω. This contradicts the maximality
of the cardinality of R. Thus Inequality (3.3) is true. We deduce

ε|K|| IntK(Ω)| ≤
∑

g∈IntK(Ω)

|Kg ∩A|.(3.4)

Inequalities (3.1), (3.2) and (3.4) imply

|A| ≥ ε(1− α0)|Ω|.

�

4. Proof of the Theorem 1.1

Let us first give some remarks:

(1) If one choose A = B in condition (a) of Theorem 1.1, we get h(A) ≤ 2h(A) for
all A ∈ F(G). This shows that h ≥ 0.

(2) To prove Theorem 1.1 it is sufficient to prove the existence of the limit of
(h(Fi)/|Fi|) for all Følner net (Fi) of G. In fact, the limit will be independent
of the choice of the Følner net. To see this fact, let (Ai) and (Bj) be two Følner

nets of G. Let Î = {̂i : i ∈ I} (resp. Ĵ = {ĵ : j ∈ J}) a copy of the directed set

I (resp. J). Direct the set K = (I × J)
⊔

(Î × Ĵ) with the binary relation ≥
defined in the natural way by:
(i, j) ≥ (i′, j′) ⇔ i ≥ i′ and j ≥ j′ if (i, j) ∈ I × J and i′, j′ ∈ I × J,
(i, j) ≥ (î′, ĵ′) ⇔ i ≥ i′ and j ≥ j′ if (i, j) ∈ I × J and î′, ĵ′ ∈ Î × Ĵ ,
(̂i, ĵ) ≥ (i′, j′) ⇔ i ≥ i′ and j ≥ j′ if (̂i, ĵ) ∈ Î × Ĵ and (i′, j′) ∈ I × J,
(̂i, ĵ) ≥ (î′, ĵ′) ⇔ i ≥ i′ and j ≥ j′ if (̂i, ĵ) ∈ Î × Ĵ and (î′, ĵ′) ∈ Î × Ĵ .

Now define the net (Fk) as follows: if k = (i, j) then let Fk = Ai and if

k = (̂i, ĵ) then let Fk = Bj . Defined in this way, the net (Fk) is a Følner net
of G. Moreover, if

(
h(Fk)/|Fk|

)
converges to λ with respect to the directed set

K, then both nets
(
h(Ai)/|Ai|

)
and

(
h(Bj)/|Bj |

)
converge to λ with respect

to their directed set.

Proof of Theorem 1.1. Let (Fi) be a Følner net of G and fix ε ∈]0, 1
2 ]. Remark

that the properties of h imply that h(A) ≤ h({1G})|A| for all A ∈ F(G) which

shows that the net defined by xi = h(Fi)
|Fi| is bounded. More precisely, the numbers

xi are contained in [0, h({1G})]. As every net in a compact space admits at least
one cluster point, we can define the real number

λ = lim inf
i

xi,

which is in fact the least cluster point.
Fix an integer n ≥ 2. Then there exists a finite sequence K1,K2, . . . ,Kn ex-

tracted from (Fi) and satisfying the following conditions:

(C1) h(Kj)/|Kj | ≤ λ+ ε for all 1 ≤ j ≤ n,
(C2) α(Kj ,Ki) ≤ ε2n for all 1 ≤ i < j ≤ n.

In fact, as λ is the least cluster point of xi we can find a subnet (xϕ(k))k∈K and
k0 ∈ K satisfying

xϕ(k) ≤ λ+ ε,

for all k ≥ k0. Remark that (Fϕ(k)) is also a Følner net of G, i.e. for all K ∈ F(G)

we have limk
|∂K(Fϕ(k))|
|Fϕ(k)|

= 0. Thus, it is possible to extract a finite sequence
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K1,K2, . . . ,Kn from (Fϕ(k)) satisfying condition (C2).

Let D be a non-empty finite subset of G such that

α(D,Kj) ≤ ε2n for all 1 ≤ j ≤ n.(4.1)

We will show that for a large enough integer n, there is an ε-disjoint family in D
composed by certain translates of the type Kjg (with 1 ≤ j ≤ n and g ∈ G) which
partially cover D, i.e. such that the proportion of D covered be these sets is at least
1 − ε. After that, we will use this partial cover and the properties of h to prove
lim supi→∞ h(Fi)/|Fi| ≤ λ, ending the proof of the Theorem 1.1.

Let us define by induction a process to ε-cover D in at most n steps:

Step 1. Recall that α(D,Kj) ≤ ε2n for all 1 ≤ j ≤ n. Using Lemma 3.5 with
Ω = D and K = Kn, there is Rn ⊂ G an (ε,Kn)-filling of D such that

|
⋃
g∈Rn

Kng|
|D|

≥ ε
(
1− α(D,Kn)

)
≥ ε(1− ε2n).

Put D1 = D \
⋃
g∈Rn

Kng. The previous inequality implies:

(4.2) |D1| ≤ |D|
(
1− ε(1− ε2n)

)
.

We continue this covering process by induction as follows. Put D0 = D. Suppose
that the covering process applies k times, with 1 ≤ k ≤ n− 1.
The induction hypothesis at step k is:

(H1) α(Dk−1,Kj) ≤ (2(k − 1) + 1)ε2n−k+1 for all 1 ≤ j ≤ n− k + 1;
(H2) Rn−k+1 ⊂ G is an (ε,Kn−k+1)-filling of Dk−1;
(H3) If we write

Dk = Dk−1 \
⋃

g∈Rn−k+1

Kn−k+1g,

then

|Dk| ≤ |D|
k−1∏
i=0

(
1− ε

(
1− (2i+ 1)ε2n−i

))
.

Remark that this hypothesis is satisfied for k = 1. Let us construct step k + 1 :

Step k + 1. If |Dk| ≤ ε|Dk−1| then |Dk| ≤ ε|D| and we stop the covering
process. Otherwise, we have |Dk| > ε|Dk−1|. Let 1 ≤ j ≤ n−k. Lemma 3.3 implies

(4.3) α(Dk,Kj) ≤
α(
⋃
g∈Rn−k+1

Kn−k+1g,Kj)

ε
+
α(Dk−1,Kj)

ε
.

Equalities (2.1) and condition (C2) imply

α(Kn−k+1g,Kj) = α(Kn−k+1,Kj) ≤ ε2n.

Since the family (Kn−k+1g)g∈Rn−k+1
is ε-disjoint, Lemma 3.2 gives

α(
⋃

g∈Rn−k+1

Kn−k+1g,Kj) ≤
ε2n

1− ε
.
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Using Inequality (4.3) and the induction hypothesis (H1), we deduce

α(Dk,Kj) ≤
ε2n

(1− ε) ε
+

(
2(k − 1) + 1

)
ε2n−k+1

ε
≤ (2k + 1)ε2n−k

for all 1 ≤ j ≤ n−k. The latter inequality is (H1) for k+ 1. Using Lemma 3.5 with
Ω = Dk and K = Kn−k, we get the existence of Rn−k ⊂ G an (ε,Kn−k)-filling of
Dk satisfying

|
⋃
g∈Rn−k

Kn−kg|
|Dk|

≥ ε
(
1− α(Dk,Kn−k)

)
≥ ε

(
1− (2k + 1)ε2n−k

)
.

In particular, hypothesis (H2) is satisfied for k + 1. Define

Dk+1 = Dk \
⋃

g∈Rn−k

Kn−kg.

Then we have

|Dk+1| ≤ |Dk|
(
1− ε

(
1− (2k + 1)ε2n−k

))
.

Using the induction hypothesis (H3) and the latter inequality, we obtain

|Dk+1| ≤ |D|
k∏
i=0

(
1− ε

(
1− (2i+ 1)ε2n−i

))
which is exactly (H3) for k + 1. This finishes the construction of step k + 1 and
proves the induction step.

Now, suppose that this covering process continues until step n, and that we have
|Dn−1| > ε|Dn−2|. Using (H3) for k = n, we obtain

(4.4) |Dn| ≤ |D|
n−1∏
i=0

(
1− ε

(
1− (2i+ 1)ε2n−i

))
.

The next step is to show that for n large enough (only depending on ε) we get
|Dn| ≤ ε|D|. From Inequality (4.4), we deduce:

|Dn| ≤ |D|
(
1− ε(1− (2n− 1)εn+1)

)n
.(4.5)

Since limi→∞(2i− 1)εi+1 = 0 and limi→∞(1− ε
2 )i = 0, there is an integer n0 such

that for all i ≥ n0, we have (2i− 1)εi+1 ≤ 1
2 and (1− ε

2 )i ≤ ε. If n ≥ n0, Inequality
(4.5) implies

|Dn| ≤ |D|(1−
ε

2
)n ≤ ε|D|.

From now, we suppose that the integer n fixed at the beginning of the proof is
greater than this n0.

Let us recall what we proved: for all subset D of G satisfying α(D,Kj) ≤ ε2n

for all 1 ≤ j ≤ n, there is an integer k0 (with 1 ≤ k0 ≤ n) such that |Dk0 | ≤ ε|D|.
More precisely, the proportion of D covered by the sets of the following ε-disjoint
families

(Kng)g∈Rn
, (Kn−1g)g∈Rn−1

, . . . , (Kn−k0+1g)g∈Rn−k0+1
,

is at least 1− ε.
Using this cover, we want to obtain a good upper bound for h(D)/|D|. To

simplify the notations, let J = {n − k0 + 1, . . . , n} and write KjRj for
⋃
g∈Rj

Kjg
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for all j ∈ J . From now, we also will use subadditivity and right-invariance of the
function h. Since

D =
⋃
j∈J

KjRj ∪Dk0

with

|Dk0 | ≤ ε|D|,
we deduce

(4.6)
h(D)

|D|
≤
h(
⋃
j∈J KjRj)

|D|
+
h(Dk0)

|D|
≤
h(
⋃
j∈J KjRj)

|D|
+ εh(1G).

We obtain

h(
⋃
j∈J KjRj)

|D|
≤
∑
j∈J

∑
g∈Rj

h(Kjg)

|D|
=
∑
j∈J

∑
g∈Rj

h(Kj)

|Kj |
|Kjg|
|D|

.

Using condition (C1), we deduce

(4.7)
h(
⋃
j∈J KjRj)

|D|
≤ (λ+ ε)

∑
j∈J

∑
g∈Rj

|Kjg|
|D|

.

Remark that the family containing the sets Kjg, with j ∈ J and g ∈ Rj , is an
ε-disjoint family of D. According to Lemma 3.1 we get

(4.8)
∑
j∈J

∑
g∈Rj

|Kjg| ≤
|D|

1− ε
.

Thus, inequalities (4.7) and (4.8) imply

(4.9)
h(
⋃
j∈J KjRj)

|D|
≤ λ+ ε

1− ε
.

Now, using inequalities (4.6) and (4.9) we have

h(D)

|D|
≤ λ+ ε

1− ε
+ εh(1G).(4.10)

Since (Fi) is a Følner net, there exists i0 ∈ I such that

(i ≥ i0)⇒ α(Fi,Kj) ≤ ε2n for all 1 ≤ j ≤ n.

Note that the limit superior µ of the bounded net
(h(Fi)
|Fi|

)
exists and is the biggest

cluster point of this net. In particular, there exists a subnet
(h(Fϕ(j))

|Fϕ(j)|
)
j∈J converging

to µ. Let j0 ∈ J such that ϕ(j) ≥ i0 for all j ≥ j0. Using inequality (4.10) with
D = Fϕ(j) and for j ≥ j0, we deduce

µ = lim
j

h(Fϕ(j))

|Fϕ(j)|
≤ λ+ ε

1− ε
+ εh(1G).

Since the latter inequality is satisfied for all ε ∈]0, 1
2 ], we can take the limit when ε

tends to 0 and we get

lim sup
i

h(Fi)

|Fi|
= µ ≤ λ = lim inf

i

h(Fi)

|Fi|
,

ending the proof of the theorem. �
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