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REMARKS. (1) If this approach is taken as a definition of A(Y') then one must
show independence of the Heegaard splitting.

(2) Casson uses this approach to produce an effective algorithm for computing
A(M), when M is described in terms of surgery on links in §3 (another way of
presenting homology 3-spheres).

Since the Floer homology groups are a refinement of the Casson invariant,

it is now reasonable to ask if there is a way of computing HF(Y) using the
' Heegaard splitting and the Riemann surface X. I shall outline an approach to
this problem, which has yet to be fully worked out.

Since M is a Kahler manifold (with singularities) it is in particular symplectic.
In fact, as shown in [1], the symplectic structure is canonical and independent
of the metric on X. Moreover L* are Lagrangian submanifolds, i.e. submani-
folds of middle dimension on which the symplectic 2-form w of M is identically
zero. Now Floer [8, 7} has studied, in general, the problem of intersections of
Lagrangian submanifolds of compact symplectic manifolds and, for this purpose,
has developed a homology theory. From an analytical point of view this is very
similar to the theory leading to the HF groups described in §4. When applied
to the particular case of L* in M above it is highly plausible that it should
coincide with the theory of §4, as [ shall indicate later. So first let me outline
Floer's “symplectic Morse theory”.

We start from any compact symplectic manifold M and two (connected) La-
grangian submanifolds L+ and L~. Consider the space Q of paths in M starting
on L~ and ending on L*. Assume for simplicity that L* N L~ is not empty
(otherwise the theory will be trivial) and choose a base point mg € LY N L~.
Define a function f(p) on Q as the area (integral of the symplectic 2-form w) of
a strip obtained by deforming the path p to the constant path my.

Since L* and L~ are Lagrangian, and w is closed, this area is unchanged
under continuous variations of the strip (with p fixed). However topologically
inequivalent strips will differ in area by a “period” of w. If for simplicity we

The critical points of f are easily seen to be the constant paths corresponding to
the points of intersection of Lt and L~. The Hessian is again of Dirac type and
one can define a relative Morse index as in §4. This turns out to be well-defined
module 2N, where ¢;(M) = N{w], ¢ (M) being the first Chern class of M (note
that symplectic manifolds have Chern classes) and [w] is the class of w in H2(M).

The trajectories of grad f correspond to holomorphic strips (with boundaries
in L*) in the sense of Gromov [10]. If M is actually complex Kihler then these
are just holomorphic strips in the usual sense.

In this way, following Witten as in §4, Floer defines homology groups graded
by Z3n as intrinsic invariants of (M, Lt,L™).

If now we take (M, L*,L™) to be the moduli spaces arising from a Heegaard
splitting of a homology 3-sphere Y it is then reasonable to conjecture that the
groups defined in the symplectic context (with care taken of the singularities of
M) coincide with the groups HF(Y') of §4.

Note that in both cases the representations #; (Y') — SU(2) give the generators
of the chain group (provided these representations are nondegenerate). One has
then to compare the relative Morse indices and the boundary operator 9.

Geometrically, a path on M, i.e. a 1-parameter family of flat connections on
the Riemann surface X, can be viewed as a connection on the cylinder X x R.
Moreover the boundary conditions (corresponding to L* and L~) imply that,
asymptotically as ¢ — oo, the connection extends (as a flat connection) over
Y %, thus giving essentially a connection on Y. In this way the symplectic theory
for paths in M should be related to a limiting case of the Floer theory for the
space ¥ of connections on Y. Note that the limit is one in which Y is stretched
out along its “neck”, so that the two ends get further and further apart.

X
6. Donaldson Invariants. Donaldson [5] has introduced certain invariants
for smooth 4-manifolds which appear to be extremely powerful in distinguishing
different differentiable structures. These invariants are defined in the following
context. Let Z be an oriented simply connected differentiable 4-manifold and let
b7 and b; be the number of + and — terms in a diagonalization of the quadratic

(intersection) form on H3(Z). We assume b7 odd and > 1. Note that, for a
complex algebraic surface, we have the theorem of Hodge:

bt =1+ 2p,,

where p, is the geometric genus (number of independent holomorphic 2-forms).
Thus b7 is odd and > 1 when p, # 0.
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§1. Statement of results and discussion

In [S1] we described a simple arithmetical law to generate the Fourier coefficients of all
modular forms of weight 2 on I'g(m) and all Jacobi forms of weight 2 and index m.
The aim of the present article is to generalize these results to arbitrary weight k. The
final result will turn out to be a smooth and direct generalization, including the case of
weight 2 as a special case. In contrast to this the method of proof used in this article is
different and does not apply to the case of weight 2. A short overview of this method

will be given at the end of this introductory section.

To describe the main results we have to introduce some notation which will be kept
throughout this article. For numbers a,b,c the symbol [a, b, ¢] denotes the quadratic
polynomial

[a, b, cJ(X) = aX?®+bX +ec.

The group GL,(R) acts on these quadratic polynomials by
[a,b,¢] 0 (‘; ﬁ) (X) = a(aX + B)? + b(aX + B)(¥X + 8) + c(vX + 6)°.
Fix a positive integer m. For any pair of integers A, r set
Qm(A,1) = {[ma,b,cla,b,c € Z,b* — 4mac = A,b=r mod 2m} .

This set is obviously invariant under the action of

To(m) = ('nfl ;) NSLy(Z).

For A € SLy(Z) welet QA(A,r) := Qu(A, )04, i.e. the set of all  such that Qo A™!

liesin @ (A, 7). If Ag is a fundamental discriminant which is a square modulo 4m then
Xm A, ¢ {[ma,b,clla,b,c € T} — {0, %1}

denotes the generalized genus character introduced in ([G-K-Z], Proposition 1), i.e.

(Ao) if Ap divides % — 4mac such that (6% — 4mac)/Do
XAO([ma7 b, C]) = n

0 otherwise.

is a square modulo 4m and ged(a,b,c,8p) =1

Here n is any integer relative prime to Ag and represented by one of the quadratic forms
miaX? 4+ bXY + mycY? with m = myms, my,my > 0. If 4 is a matrix in SLy(Z)
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and @ a quadratic polynomial such that xm a, is defined for @ o A™? then we set

Xim,00(Q) 1= Xm,a,(Q 0 A7),

Note that the function xm a, is obviously Ig(m)-invariant, i.e. Xﬁ;,ao = Xm,a, for all
A eTy(m).

Finally, we introduce generalizations to the case of arbitrary level m of those zeta-
functions which appear in the theory of binary quadratic forms modulo SLy(Z). To
explain these let A, r and &y be as above and such that Ay divides A and Bé; is a square
modulo 4m. Let £ € P,(Q). We associate to these data a Dirichlet series by setting

(m,Aq Q) 1
Cm,A,r,E,Ao(S) = X A.( 5
QGQm(Az.;)/I‘o(m) [SL2(Z) @ : To(m)q] (;)m«%’:ﬂ)q\zz Q(z,y)

£ @¢modTg(m)
Q(z,p)>0

Here the first sum is over a complete set of representatives @ of @, (A, ) modulo Ty(m).
For each such Q we use I'o(m)g and SLy(Z) g for the stabilizer of @ in T'¢(m) and
SLy(Z), respectively, and - if Q@ = [a,b,c] and z,y € Z — we set Q(z,y) = az®+bzy+cy?.
The innner sum is over a complete set of representatives (;) for 22 modulo the usual
action of I'g(m)g on column vectors which satify the stated conditions, i.e. which satisfy
Q(z,y) > 0 and generate the same orbit as { under the usual action of I'¢(m) on P1(Q).
By standard arguments from the theory of quadratic forms it is easily seen that the first

sum is finite and that the inner sums are convergent for R(s) > 1.

We are now able to describe the arithmetical rule to generate the Fourier coefficients
of modular forms. This depends on 4 parameters (Ag, g, A, P) where Ag,rp is a pair
of integers such that Ay = 72 mod 4m and A; is a fundamental discriminant, where
A € SLy(Z), and where P = P(a,b, c) is a homogeneous polynomial in three variables
with complex coeflicients — say of degree k —1 —. To each such quadrupel (A, 1o, 4, P)
we shall associate a sequence Cp, aq,ro,4,P (A, 7) which is indexed by pairs of integers
A,r with A = r mod 4m, AgA > 0.

Namely, let P, = Py(b,c) denote a polynomial in b, ¢ such that
Py(b,c+1)— Pi(b,c) = P(0,b,¢).

Note that such a polynomial exists: indeed, it can be obtained by replacing each power
c*~! in P(0,b,c) by B"T(c), where Bp(c) is the n-th Bernoulli polynomial, i.e. that
polynomial which is uniquely determined by the properties B,(c + 1) — By (c) = nc"!
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and fol B,(c)dc = 0 for n > 1, By(c) = 1. Moreover, any two such polynomials differ
by a polynomial in b. We make the specific choice

B*+1(C)

Pi(b,c):=P(0,b ' 220,40yt
1(1C)'_ 1a*+1 +/0(_)aava)a

where the first term on the right denotes the polynomial just described. Similarily, we

let

— p [ Bxri(a) /b _ 0P
Py(a, b) ._P( =1 ,b,0)+ b-n 50,80,

where the first term on the right is the polynomial obtained by replacing each power
a®"!in P(a,b,0) by B"Tm. Let N :=m|Ay|. Using Py, P,, N we define a function ﬁ(Q)
by setting for any @ = [a, b, | with integral coeflicients

( sign(a)P(a,b,c) if ac<O0
b ¢
k—lP - = . — N
N l(N’N) if a=0,0<e<
=S — k-1 e by . —
P(Q) =< N PQ(N,N) if ¢=0,0<a< N
NP bo _p (02 if a=e¢=0
1 N’ 2 3 N - )
. 0 otherwise
(sign(a) = a/|a| for any non-zero real a). Finally, we set
Crdoroa P (A7) = 3 xm s @P(Q) 1)

QRERA(AoA,ror)

if k=1, and, if k > 2, we define Ciy A4, r,4,P (A, ) to be the right hand side of (1) plus

a correction term which is given by

YP(1,0,0) [Cm,a0a,rer,40,80(k) +(—1)*sign(A0)Cm,a0a,ror,—40,80(k)]

(2)
_7P(0, 0, 1) [Cm,AoA,ror,Aoo,Ao(k) +(_1)kSign(A0)Cm,AoA,ror,—Aoo,Ao(k)] )

where
1

—— (*l)k(k _ 1)'2 (Agﬂ)k_".

7T C(2k) (2K — 1)

(¢(s) =Riemann zeta-function).

Note that the sum in (1) is finite. In fact, if IS(Q) # 0 — say Q = [a,b,¢c] — then
a,b,csatisfies a = 0,0 Lc< Norc=0,0<a< N orac< 0. But obviously there
are only finitly many integral (a, b, ¢) satisfying one of these equations and the equation

b* — dac = A¢A. Also note that there is a contribution to the sum (1) from terms
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with @ = 0 or ¢ = 0 only if AgA is a perfect square. If the latter is the case then
the contribution coming from P(0, b, B—j_'l_‘T(cl) and P(B—‘*ij-*_l—liﬂ,b, 0) may be viewed as a
natural value assigned to the (divergent) sums

1 . 1 .

~5 2 Xm,a0(@)sign(e)P(0,,0), 3 Y Xima,(@)sign(a)P(a, b,0),

taken over all @ = [a,b,c] € QA(AgA,ror) such that @ = 0 and ¢ = 0, respectively.
Indeed, replace e.g. in the first of these sums each power ¢*~! by ¢"~!|c|™*, note that
the resulting expression can be analytically continued to the complex plane (since it can
be written as a linear combination of Hurwitz zeta-functions), and compute its value at

s = 0. The latter is easily done using the formula

1 Z sign(c)c™~! ws=0 = _ Bu(z)
[]* n

c€Ca41
cy0

(valid for any positive integer n and any real z with 0 <z < 1, except forn =1,a =0
where the left hand side of this identity is obviously 0). The equation (1) could therefore

be written symbolically as

correction

Cotoronr(Br)= 3 xi,AO(Q)SigH(Q)P(Q)-F{

certain }
?
QEQRA(AoA,roT)

where, for any Q = [a, b, ], we use

sign(@) i= 3 (sign(a) - siga(c)),

(with sign of the real number 0 := 0), and P(Q) = P(a,b,c). The ‘certain correction’
is given by (2) and a contribution due to the integrals in the definition of P; and P;.
Finally, this shows — as the reader can also verify more directly — that in the definition
‘of P we could choose for N any positive integer such that the value Xﬁ,Ao(Q) and the
condition ‘Q € Q4 (A¢A, rer) for any Q of the form [0,5,c] or [a, b,0] depend only on
¢ resp. a modulo N: another choice would of course affect the definition of P but not

the value of the sum (1).

The numbers Ci; Aq,ro,4,P (A,7) represent the arithmetical rule to generate the
Fourier coefficients af any elliptic modular form. To state this precisely let 95;°P(m),
for positive integers k,m denote that certain space of elliptic cusp forms f of weight 2k

on I'y(m) which was introduced in [S-Z}. By definition it is the space of modular forms
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spanned by all cusp forms f of weight 2k on T'o(m) such that the standard L-series
L(f,8) = Ygpr @£} of f(r) = S a(£)e* 7 is of the form

= (I @) (g )
Pl
for some m'|m, some new-form g on I'g(m'), and with polynomials ,(s) in p~* satis-
fying
PHQy(s) =pH**IQy(2k — )

for all p'||Z. Thus, 9M,;°P(m) contains all new-forms of level m and a certain choice

from each old-class. We then have

Theorem 1. Let k,m be positive integers. For any A € SLy(Z), for any homogeneous
polynomial P(a,b, c) of degree k — 1, satisfying

92 0 0
(@‘aa)h(”

and for any two pairs A;,r; (i = 0,1) such that A; = r? mod 4m, AgA; > 0 and the
A; are fundamental discriminants, define a function of one variable r € C,3(7) > 0 by

setting

- k-2 [ D1 e 2mit
fAo,ro,ar,r1,4,P(T) 1= Z Za - (T) Cm,Ag,r0,A, P (AIE,T‘15> e?™r,

=1 alt

Then these functions are elements of M3;*P(m), apart from the case Aq = k = 1, where
this 1s true only up to an additive rnultiple of the series Ej(dr) — 1 with d running
through the divisors of m and with Ej denoting that non—holomorphic modular form
on SLy(Z) of weight 2 which is given by E}(7) =1— ﬂg =5 — 243 (Edu ) e2mitr
Vice versa, any cusp form in M5 °P(m) can be written as a linear combination of these

functions on,"o,At,ﬂ,A,P'

Actually we shall prove more and Theorem 1 will be obtained as a Corollary of this
more general result. To explain this let S;’m and Sjm denote the spaces of holomorphic
and skew-holomorphic Jacobi cusp forms of weight £ and index m, respectively (we shall

review the definition of these spaces in §2). The main theorem of this paper will be
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Theorem 2. Let k,m be positive integers. Then for any A € SLy(Z), any homoge-
neous polynomial P(a,b,c) of degree k — 1, satisfying

a? g a0
(m'f“a—a&)ho’

and for any pair of integers Ao, o such that Ag = r§ mod 4m and A, is a fundamental

discriminant the function

2
2wi(1—',;‘°u+4—l' mA iv+rz)
¢A0,TO,A,P(Taz) = § : Cm.Ao,fo,A,P (A,r)e
A, TEX
Aamr?mod4m
ApA>0

(r =u+1w,z € C,v > 0) defines an element of 5S¢, ., where € = sign(A). Moreover,
any Jacobi form in S, . and SZ’_,_I .. is obtained as a linear combination of these

functions ¢a, re,A,P-

We remark that in the case m = 1 and Ay < 0 the correction terms (2) of the
Fourier coefficients of the series ¢a,,ro,4,p can be interpreted as a contribution coming
from Jacobi-Eisenstein series. In fact, for m = 1 the series (;n aga rro,6,4,(8) coincide
with the well-known zeta-functions appearing in the theory of binary quadratic forms.

In particular one has the well-known formula

C1,8008,m6,80(8) = Lag(s)La(s),

where La(s), for any A = A, f2, A; fundamental, f € Z, f > 0, denotes the standard

Dirichlet series
[e%) A _,
La(s) = (Z (Tl) 14 )
=1

(cf. [Z1], Proposition 3). Using the functional equation of the La,(s) the correction

S (&) e

delf

term (2) can then be written in a more pleasant form as

La,(1—k)La(1—
C(T—2k)

k) : (P(170a0)—P(03011))

From this, we recognize first of all that it is an effectively computable rational number.
Moreover, La(1 — k) is just the A-th Fourier coefficient of the Jacob-Eisenstein series
of weight k + 1 and index m = 1 (cf. [E-Z], Theorem 2.1). A similar reasoning should
be possible for arbitrary m. However, we shall not pursue this question any further in

this article.
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We end this section by some remarks concerning the method to derive the stated
theorems, their connection to published results and the organization of this article.
Theorem 2 was proved for the case of weight £ 4+ 1 = 2 in [S1]. The basic idea for the

proof of the general case remains in essence the same and relies on the diagrams

Sag. o -
Sitim —2° Sar(To(m)) £ Hpyr (To(m), €[X2k—2) ",

par.

and the corresponding diagrams with ‘=’ replaced by ‘+’. Here the Sa », are certain
lifting maps to Sex(Lo(m)) (= space of cusp forms of weight 2k on I'g(m)) which were
studied in [S-Z]. They are indexed by pairs of integers Ag,ry with Ay = rf mod 4m,
A¢ < 0 and fundamental. The symbol H},, (To(m),C[X]2x—2) denotes the first ‘cus-
pidal’ cohomology group of T'g(m) acting in the natural way on the space C[X]or—z of
complex polynomials of degree < 2k — 2. The outer automorphism (: ? ) bt (—Uv _aﬁ )
of To(m) induces an involution on this cohomology group and the ‘—’-sign denotes the
‘—(—1)*-eigenspace of this involution. Finally p~ is that isomorphism which is induced

by the Eichler-Shimura isomorphism. Let
Hﬁ—\o,ro € H;M._ (FQ(W),C[X]Q;-_Q)H ® Sk_-i-l,m

denote the kernel function of p~ 0 Sa, », (With respect to the natural Petersson scalar
product on S} +1,m)' If X is a linear functional on the first factor of the above tensor
product then (A ® 1)(Hy, ,,) is an element of S;°, . By results of [S-Z] the inter-
section of all kernels of the Sa, -, is void, and since p~ is injective (actually, it is an
isomorphism) the intersection of all the kernels of the p~ 0 84, r, is void too. From the
latter it is easily deduced that the (A ® 1)(Hy, , ) span the whole space i, ... The
miracle is that the Fourier coefficients of the Haoro (and the corresponding qu,f‘o) can
be explicitely computed and are given by a finite and effective formula; suitable choices
of the functionals A produce exactly the the forms ¢a, sy, 4,p introduced in Theorem
2, and mapping these forms to S2x(To(m)) via the maps Sa, r, produces the forms

fao,r0,8,,r1,4,P @ppearing in Theorem 1.

In order to compute the Fourier development of Hy . one will first of all try to
replace the above first cohomology group and the Eichler-Shimura isomorphism by a
more handy space and map. In the case of level m = 1, i.e. the SL,y(Z)—case, these
more handy items are found by replacing the first cohomology by the space of period
polynomials, a certain subspace of the space C[X]2x—2, which was explicitly determined

in [K-Z]. Now this procedure can be generalized to arbitrary m and it turns out that
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the above cohomlogy group attached to a given k,m has to be replaced by a certain
subspace of C[X ];:Ez?/ ™) This generalization seems to be well-known in a more or
less precise formulation but the author could not find any reference in the literature
(although it was communicated to the author that there should be an article on this
by Henri Cohen which disappeared in some proceedings volume). Also, this subspace
and the correspondingly modified Eichler-Shimura isomorphism will be studied in a
forthcoming paper by J.Antoniadis [A]. We shall give a precise statement (including
proofs) of the very basic items of this theory (as far as we need them in this article) in
§3. Now, replacing the above first cohomology by the space of period polynomials, we
may view the kernel functions 'Hio’ro as elements of C[X]';,i(_zzlmz) ® Sfﬂ,m. We shall

compute these kernel functions in §4.

For the computation of Hy = we start with a kernel function for Sa,,r- The
choice of this kernel function is the main difference to the quoted article [S1]. Here we
shall use a holomorphic kernel function as it was defined and studied in [G-I-Z] whereas
in [S1] we used a non-holomorphic theta function as kernel. In principle it should be
possible to use such theta kernels in the general case too, and to compute directly the
period polynomials associated to these kernels, considered, with fixed first argument, as
(non-holomorphic) modular forms. This was the procedure in [S1] and it yielded period
polynomials, the coefficients of which have been holomorphic or skew-holomorphic Ja-
cobi forms and which are essentially identical with the ¢a, ro,4,p appearing in Theorem
2. However, for weight k¥ + 1 > 3 these coefficients are no longer holomorphic or skew-
holomorphic, and thus one would have to append a holomorphic or skew-holomorphic
projection. This all together would give a proof from scratch of the above theorems but
the computation of the Hio,rn seems to become somewhat lengthy in such a setting.
On the other hand the disadvantage of using the holomorphic kernel function is that it
works only for the case of weight £ + 1 > 3. This is due to certain problems of conver-
gence which could probably be circumvented (using the so called Hecke trick), but the
treatment of this would spoil the whole presentation. Thus, in this paper we shall only

deal with the case of weight > 3; for the case of weight 2 the reader is referred to [S1].

The computation of the Fourier development of the Hio,ro in §4 is very closely
related to similar computations in [K-Z]. In fact, the Fourier coefficients of the holomor-

phic kernel function of Sa, r,, considered as a Jacobi form, are certain modular forms
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which, in the case of level m = 1, are simply linear combinations of the functions

3 (QoA) )™
AESLy(X) g\SL2(Z)
where Q(t) is a quadratic polynomial with positive discriminant. These functions were
introduced in [Z2] in connection with the Doi-Naganuma lifting. Its periods have been
calculated in [K-Z], Theorem 5. This Theorem, in essence, is a special case (m = Ay = 1)
of the Proposition 4 below. The calculations in [K-Z] which led to Theorem & loc.cit.
can essentially be carried over to our situation, and we shall precisely do so. This

computation is based on three key lemmas which are stated and proved in the Appendix
A and B..

With respect to the ‘+’-case there are some remarks indispensable. The proof is

¢

completely identical with the proof of the ‘—’-case. Nevertheless, at the first glance
there are two obstructions: First of all the maps Sa, -, (Ao > 0) on S;:-+l,m are not yet
defined in the literature. Secondly, the fact that the intersection of their kernels is void
seems to depend on a trace formula, and the corresponding computations (which will
be given in [S2]) have not yet been published. Both problems can be solved by literally

copying the corresponding facts and proofs in the °

—’-case. The first problem will be
solved in precisely this manner in §2, for the second one the reader is referred to the
quoted paper. Thus, since this paper is not yet available, a suspicious reader might wish
a modified formulation of the Theorems 1 and 2 with respect to the ‘4’-case; the correct
and honest formulation can be found in §5 where we shall summarize and append some

formal considerations to complete the proof of the two claimed theorems.

§2. The lifting maps from Jacobi forms to modular forms

As in the foregoing section let S = and S;:m denote the spaces of holomorphic and
skew-holomorphic Jacobi cusp forms, respectively. Thus, Sfc,m, for positive integers
k,m and € = %1, is by definition the space of smooth and periodic functions ¢(r, z)
with 7 € £, the set of complex numbers with positive imaginary part, and 2z € C, which

satisfy the following two properties:
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(i) The Fourier expansion of ¢(r,z) is of the form

¢(r,2) = Z Co(A,r)ea r(1,2),

A r€ER,cA>0
Amrdmoddm

where the coefficients Cy(A,r) depend on r only modulo 4m. Here

2 2 .
%;—‘u+%“—l«v+rz)

211’1'( .
ear(T,z)=¢ (r =u+1v).

(ii) One has

-1 2 2 ™ ife=—1
o(F03)erE = i) {

T'T FElr| ife=+1

Let J(Z) = SLa(Z) o 7?2, where the semi direct product has to be taken with
respect to the natural ( right-) action of SLy(Z) on Z2, the column vectors with integral
entries. The group J(Z) acts on §) x C by

ar+ 8 z+ A+ p af
(i) = (S, 22 2) e = ((20) o))
and for any given pair of integers k, m on functions ¢(r,2) by
(#lfmT) (r.2)

_ ar+ 0 24+ AT+ -2"im("—*.%fﬁ+)\’r+2,\z) _ Ik .
- o (R R (&7 +8) ~H(er + O,

and similarily by a slash operator ‘|; °, which is defined by the same formula as ‘|2.',m’
but with (¢7 + 6)17*|(cr + 6)| replaced by (cr + §)7*.

It is easily verified that any element of ¢ € S% ,, satisfies ¢[; , T = ¢ for all
T € J(Z), and that for any two functions ¢, € 5§ ,, the function

|6, )P, 2l ™ ¥ ()

is invariant under (7,2) — T . (7,2) for all T € J(Z). The Petersson scalar product of
$, is defined by

(B1) = / 167, 2)B(r e~ TS (r) AV
TJ@N\HxC
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Here dV is the J(Z)-invariant volume element on $ x Z, i.e.

dudvdzdy
23

dV(r,z) = (r=u+1w,z =z +1y),

and the integral has to be taken over any (measurable) fundamental domain of § x C

modulo J(Z). As fundamental domain one can take e.g.
(A7 + )| 7] = 1,—% < R(r) < %,o <ApERN+pu<1).
The above integral is absolutely convergent since, for any cusp form ¢, the function
16(r, 2)e 2 I ()

is exponentially decreasing as () tends to infinity, as it is immediate from the Fourier

development of ¢. Thus, (¢[1)) defines a non-degenerate scalar product on S,i’m.

Fix a pair of positive integers k,m. Let Ag,ro € Z,A¢ = r2 mod 4m, Ay funda-

mental; let € = sign(Ao). For any ¢ € Si , we set

a2 3 (z (2)c (Aog_z,rog)) dnt (e,

=1 \ alt

Qao,ro(t; 7, 2) 1= Z (|A0A|k_§ Z %@) ear(r,2) (3)

A,rEX,A9A>0 QEQm(AoA,ror)
asr?modam

(r,t € H,z € C). For € = %1 and an integer k let S;(Io(m)) denote the subspace of
cusp forms f of weight k on T'o(m) satisfying f (=2) = (—1)%6(\/(771)7)“’),1‘(7'), ie. the

space of cusp forms f of weight k on T'y(m) such that L*(f, s) := (27) " *miT(s)L(f,s) =
L*(f, k — s).

Proposition 1. Assume k > 3. The series (3) is normally convergent on $ x ) x C.
For fixed t it defines an element of Sf ., and for fixed 7,2 it defines an element of

S3k—2(Lo(m)), where € = sign(A). For any ¢ € Si,m one has
SAOJ'O¢ = (¢|ci,mQAo,ro(_z; ))5 :

: -1
Here ¢ ,, = (%)k—zﬂ (2:__24) (v—1:=1) is a constant depending only on k, m

™

and e.
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Remark. Note that the Proposition implies in particular that Sa,,r, maps Si , into
St _2(To(m)). This was proved for the ‘—'-case in [S-Z] and for the ‘+’-case and & = 2 in
[S1). The kernel function Q4 ,, Wwas introduced in [G-K-Z], and the above Proposition

was proved loc.cit. (‘Theorem’ in II.3) for the ‘—’-case .

The proof of the above Proposion for the ‘—’-case extends almost without change to
the “4”-case. The only new ingredient which has to be inserted is the skew-holomorphic

Poincaré series.

Proposition 2. Let k > 3. Let Ag,r9 € Z,A¢ = r2 mod 4m, Ay # 0. Set

PAo,fo = Z eﬁo,ro|i,mT7
TeT(X)\T(Z)
where ¢ = sign(Ag), where J(€)oo = (((1) f) ,O,Z) , and where the sum is over a
complete set of representatives for J(Z) modulo J(Z)e. Then this sum is well-defined
(i.e. does not depend on the choice of the representives T ) and normally convergent on

$) x €, and it defines an element of S .. For any ¢ € S§ ,, one has

— C¢(A0?T0)
(¢|PA0,7‘0) - dk,mW7
m* M (k-3) . .
where di m = por= . Moreover, Pa, r, has the Fourier expansion
PAﬂer = Z (eAUlr - e(_l)kebﬂx_r)
rcl
rErgmoddm
+ D gagr(Ar) (eay —e(=Dfea,-r),
A rgl,Age>0,
Agr?modam
where
k 3
. 2 fANTTRS VTN
— k /= = . 0
d0mn(8) = (e Tor 2 ()7 Y ot ro a iy (2.

~y=1

Here Jk_g(z) = E:‘;O(—l)"% is the Bessel function of order k — %, we use
v—1=1, and

2 2
gwi(mv:«n —ag,.ri-a 5+(ra+:mx)r)
— mey dmy 2my
H-y(Ao,T‘O;A,T):’f i Z €

A,a,dmody
aé=1mody
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Remark. For the “—"-case the above Proposition was proved in [G-K-Z] (Proposition
in I1.2).

Proof. We show that the arguments given in [G-K-Z] for the ‘—’-case remain valid
in the ‘4’-case by shortly reviewing the computation given loc.cit. and thereby in-
cluding the case of positive discriminants. The arguments for normally convergence,
well-definednes and correct invariance under J(Z) are literally the same as loc.cit..
Thus, in view of the asserted Fourier development, which we shall deduce below, it is

in fact an element of S,f.‘m.

The scalar product (¢|Pa, r,) equals by the usual argument of ‘unfolding the inte-
gral’

2
f qS(T,z)er,ro(T,z)e_“m'v_vde,
T (@)oo \HXC

where as always 7 = u +tv,2 = z + 1y. Inserting the Fourier development of ¢ and
choosing {0,1] X R5p x [0, 1] x R as a fundamental domain for §) x C modulo J(Z ) one
thus finds

1 oo 1 +o0 2
ZC¢(A,1')] duf dv/ d:c/ dy eA,,.('r,z)er’,.o(T,z)e_“m’v_vk.
Ar 0 0 0 —o0

Integrating with respect to v and z yields 0, unless (A,r) = (Ag,r9). Thus the scalar

product in question equals

oo +o0 L] +4 +4mﬁ) k=2p(k — 2
C¢(A0, T‘g)/ dv / ‘Uk—ae 7"( m ’ oy v = C¢(A0,T0)m ( 2),
0 -0 27Tk-§

as claimed.

To compute the Fourier development we choose as representatives T the elements
(1,A,0) - (A,5,0)(U,0), where A runs through Z, where U € {Zunit matrix}, where
(v, 6) runs through all coprime pairs of integers with 4 > 1 or (v,6) = (0,1), and where
for each such pair A, s denotes an element of SL,(Z) with second row equal to v, 6.
We then obtain

Pag,ro(T,2) = So(1,2) + 3 (S4(7,2) — e(=1)* Sy (7, —2))

=1

where

z 2mim :—;’-i—;+/\2.4r+2A;ﬁ_—5
S‘)’(T: Z) = Z {77- + 6}6A0,1"o (ATa T+ 5 + )\AT) e ( )

X, 6€
(8,v)=m1
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Here A = A, 5, and for any complex number w we use {w} = w™* if &g < 0, and
{w} =" ~F|lw|™ if Ap > 0. Now Sj is just the first sum of the right hand side of (4).

To compute S., for v > 1 we rewrite it, using A7 = :TTig =S+ ooy, as

Sy(r,z)= ), {7+ 8)eacn (%,/\3) gPmimATS

X 6€EZ v
(6,v)=1

A NESIGE) AN
-1 z - ; 2mim ~F
X €A4,rp ) €
This in turn can be rewritten as

i !rQ+2mA!2—Ana V
S’Y(T$z)= Z e ( ™ )T_kF‘T (T-I-%)z_")"') ] (5)

A,a,6mod-y
ad@R1lmody

Fv(r,z>=2{ﬂr+s}eao,,o( ! "‘“)J”‘"‘('“n).

2 7
Ry Y7 +5) (7 +9)

But F, (1, z) is periodic; thus we have

F., = E CA,,.CA,,- ,

A, rcx
A=r2mod2m

-1 V4 Zrim(‘:g) .
car = dr dz{r}eao,r, | 5= — ) € ear(r,z) .
9(1‘):01()0) 3(:):02 ‘Y T 71-

Note that the Fourier coefficients ca , are a priori functions of the imaginary parts of

the arguments of F.,, so that one would have to fix such arguments and to choose Cy, C;
equal to their imaginary parts. However, as the following computation will show, the
above double integral does not depend on Cy(> 0),C3, so that we allow ourself the

above notational shortcut. Now the inner integral equals

f 2 2 ror
2m‘(lﬂi—""’ —rz) T 2“"(m°~,—r+m"—!%7)
e yT T dz - — e )
9(2‘):02

Here, for any complex numbers w,r, we use w" := €'" (-7 < 8 := Arg(w) < +7).
Inserting the last formula in the double integral we find
e?fri(—;-,%:-,) +o00

CA,,. = T . (u_l_z'cl)%—ke]% (ﬁ?ﬂ%+&(u+aicl))du
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for negative Ag, and

e2mi(— 745 ) oo

x i a :
Cayr = ——F—— (u— icl)%_kem(":‘:'% +A(u=vier)) du
’ V2mi -0
for positive Ag. Here o = 1 if Ay and A have the same sign, and ¥ = —1 otherwise.

Note that the second integral is the complex conjugate of the first but with A replaced
by —A. Thus it suffices to evaluate the first one. It vanishes if Ay and A have opposite
signs since we then can shift the path of integration to tco. If Ag and A have the same
sign substitute 7 = 1, /|$—2—|w. Then the first integral becomes

o " quriww%-keP('v‘er)dw,

¢1—ico
where p = ’L_ﬁmﬂ But the integral here equals 27¢J;_3(p). Inserting this in the formula
for ca r, and then inserting the resulting Fourier expansion of F, into the formula (5) for
S., we finally find that the A, r-th Fourier coefficient of S, equals —(—1)*ega, o (A, 7).
From this we find the asserted Fourier expansion of Pa, r,. This concludes the proof of

the Proposition.

Proof of Proposition 1. The convergence properties and the modular behaviour of
Qaq,re(2; 7, 2) as function of t are proved as in [G-K-Z] (for the behaviour under ¢ — =%
apply (loc.cit., I. Proposition 1 (P2))). For the remaining assertions it is obviously

enough to prove the identity

o _3

Z Zak"z (%) —IA;’Jk : PAoL;,roé(T’z) el — Ck,mSao,ro(t; T 2).  (6)
t=1 \ at ™ ¢

But this can be checked as in [K-Z] by just comparing the Fourier coefficients (in the

Fourier development with respect to 7,2,t) on both sides. The Fourier development of

the left hand side is immediately obtained by inserting the developments of the Pa, r,

computed in Proposition 2. The Fourier development of the right hand side is obtained

by inserting the Fourier developments of the
3 Xm,a0(Q)
k-1
QERm(AodA,ror) Q)

These latter Fourier developments have been computed in [K-Z] (II.1 Proposition 1) for
positive and negative Ay (however, there is a tiny mistake in the formula given loc. cit.:

the term en(m, A, p,Dg) on p.517, second line from the bottom, has to me mutiplied
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by the factor (—sign Dp)*). Finally, in that paper the Fourier coefficients of both sides
of (6) have been compared in the case of negative Ay and this comparison can literally

be copied for the case of positive Ag. This completes the proof of Proposition 1.

§3. A variation of the Eichler-Shimura isomorphism

Let f be a cusp form of weight k on I'g(m), and A € SLy(Z). We define a complex
polynomial in the indeterminate X by setting

pealh) = [ (Fled) (X 0t

Here the integral has to be taken along the line t = i (0 < ), and for any function f,
defined on the upper half plane, any A = (f” g) € SLy(R), and any integer k we use

) =1 (SEE) e+

Since f is a cusp form f|;A(t) is exponentially decreasing for ¢ — 0,700 and any A, and
hence the above integral is absolutely convergent. Note also that p; a(f) depends only
on the left coset of 4 in To(m)\SLy(Z). Let g := ('), thus, g (: 'g) g= (_o’_r —f).
For € € {£1} we set

Pral(f) = px,a(f) + (=D)* %epy g ag(f)l2—x9,

pal = [ (I @C =0 + (~D2e(Tlodg) O +0 )t ()

Identifying To(m)\SLo(Z) with Py(Z/mZ) via T'y(m) ("‘ *) — (¥ mod m : § mod m)

v 8
we may view

pi(f) = {pi'.A(f)}AEFo(m)\SLz(I)

as an element of C{X ][:l(zz/ ml)’ where C[X];_2 is the space of complex polynomials in

X of degree less or equal to k — 2. The correspondences f — pi.(f) thus define maps
i Su(To(m)) — CIXIELE ™Y,

respectively.
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Proposition 3. For each integer k the maps p} and py are injective.
Proof. Let o € {£1}, f € Sx(Ty(m)) and A € SL,(Z). For t = in one has t = —7 and
gAgt = —At, and thus
(FleA@)(X = )" + o flrgAg(t)(X +1)*72) dt
= f(At)(et +d) "X — ) 2dt — o f(—AL)(ct + d) K (X - D)2,
Therefore, decomposing
f=fiotif,
£t = 5O+ D), f-(8) = 5:(F () ~ FCD),
we have
(FIRANX =172 — flagAg(t)(X +8)*7%) dt
= 2R (f+ e AGR)X — 1)¥72dt) + 2R (fo |k AQRNX — ) 2dt),
and the same for o = +1 but with R replaced by 3.
Thus, to show that p’,:' and p, are injective it obviously suffices to show that for

any f € Si(T'o(m)) the equations

AM%UhMmX—0“%0=0(AeShan (8)

imply f = 0. But the latter statement is easily reduced via the Manin trick to the
fact that the usual period mapping of the Eichler-Shimura isomorphism is injective.
Namely, let B € Ty(m) and to € . Write B = £T™ST™S...T"* S with n; € Z
and T, S denoting the generators ((1, }), (2 _01) of SLy(Z) respectively, and set B; :=
+T™ST™S ... T% S, By := 1. Then

£03‘° R (f(t)(X )L 2dt (/‘Blto -/Blj‘:o /"itl"to) % ()X — t)k—2dt) ’

and

Bj 41to T™5 4151,
/ R (F(£)(X — t)F2dt) = ] ® (£(Bjt)(X — B;t)*~2dB;t)

B,'to to

T™i+1 Stq .,
=/ R (flxB;(1) (B X —)*72dt) (v; X + ;)% (Bj' = ( )),

to Vi 6]
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Note that one has T +1 5S¢, = —% + nj4+1. Thus, setting to = in and letting 7 tend to
0, it follows

/BO R(fNX — ) 2dt) = Z_: /m R (fleB;(1)(B; ' X = t)*72dt) (v; X + &;)"2,

j=0
where the first integral has to be taken along the semicircle in §) joining 0 and BO.
Hence (8) implies

/ e R (f(EUX —t)F2dt) = 0.

That this equation is true for any B € I'g(m) means that f is in the kernel of the
Eichler-Shimura isomorphism, i.e. f = 0 ([Sh], Theorem 8.4 ), and this was to be

shown,

§4. The map from Jacobi forms into the space of period polynomials

The aim of this section is to compute the kernel function of the composed maps

Pk © Saurs  Sharm — CXIE™ (e =sign(80) ). (9)
We shall assume throughout this section that k& > 2 since various expressions occuring
in the following would not converge for smaller k. For k =1 and Ay = 1 the composed
map (9) is not even a priori well defined since in this case certain Jacobi cusp forms
map to Eisenstein series and the integral (7) defining the period map will not in general
converge for non cusp forms. However, as was shown in [S1], the integral (7) does in fact
converge absolutely for those modular forms of weight 2 occuring as images of Jacobi
cusp forms under all the lifting maps Sa, - Hence we could speak of a composed map

even in that quoted special case. The result of this section is as follows.
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Proposition 4. Let k,m be positive integers, k > 2. For A € 5L,(Z) and integers
Ao,To, A, such that Ay = r2 mod 4m, A = r? mod 4m, AgA > 0 and Aq is funda-
mental, define

Chyr(Am XY= D xh A (@)sign(a)Q(X)* !

QEQRA(Aga,ror)
Q=[a,b,c],ac0

-1 bX
A N B +c
Y XA @B (5
Qm0,5,c]e@ (80a,ror)
0Ced<N
Nk a+b/X .
- Y xha@T B () e
k N
Q=[a,5,01€QA (ap4,rgr)
0<a<N

7 [Cm,AoA,ror,AO,AO(k) + (_1)k6€m.ﬁuﬂ,fof‘,—A0,Ao(k)] XQk—IZ
-y [gm,AoA,ror,Aoo,Ao(k) + (_1)k64m,AoA,ror,—Aoo’Ao(k)] .
Here € = sign(A), and N is any positive integer such that for any Q = la,b,0] or

@ = [0,b, c] the value of X‘:;,AO(Q) and the condition ‘Q € Q2 (A¢A,rer)’ depend only
on a,c modulo N. Moreover By(X) is the k-th Bernoulli polynomial, and

(=D —1)
7= k) 2k — 1)

(Ao A%,
Set

fr2_a r211a

L4 (r,z;X)=1b cA (A, X) 2’"( i "+‘ﬁ—l"+")
Ag,ro\Tr &) )_ k,m Ag,ro\ M T €

A,r€X, 80450

AmrZmoddm

(r,t € 9,z € C), where bx , = 72:(%)"'1 (v/( = 1) =1). Then this defines the kernel
function for the composed map p3; 4 © Say,r,. More precisely, Eﬁo,ro is an element of

k+1,m» and for any ¢ € Sty ,, one has

(¢I£:§o,r0('; _T)) = (pgk,ASAo,roqs)(X)'

Remark. 1. In the statement of the proposition we are tacitly identifying polynomials
and polynomial functions, i.e. for fixed 7,z we view Eﬁa,rD(T,z;X) as a function in
the complex variable X rather than as a polynomial in the indeterminate X. 2. Note

that the statement of the proposition implies that the coefficients Cgo (B, X) do

sy iy~
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not depend on the special choice of N. However, this follows also from the well-known

equations

= By(X) (n€Z,n>0)

Proof. Using the kernel function for §a, r, given in Proposition 1 (but with k replaced

by k + 1) we can write the polynomial pax 4Sa,, r,® as

100 2
/ / é(r, 2)Chy1,ma0,ro lak A(—%; 7, 2)(X — t)zk'ze_"m'v_vk“dth.
0 SLa(Z) I\($xC)

It is easily checked that we can interchange the order of integration, and from this we

recognize that the Jacobi form

—P2k A (c;c-pl‘mﬂtlo,fo('; 7, z)) (_7)

is the kernel function of the map pax 4 0 Sa,,r, (To conclude this one also needs that
—t =t fort € iR.). Inserting here the Fourier expansion (3) of Q4, r, and interchanging
summation (over A,7) and integration we find for C(A,r; —~X), the A, r-th coefficient

of the kernel function for p§; 4 0 Sa,,r,, the formula

i n2k=2
ClA,r X)= _Ci~+1.m|A°Ark_§ ./ E Xm o Q) (Qo ;*))(t)
0 QeQ
. (X 4ty
D' 2 xma A gy |

Here @ = @ (Ao, ror). As a first simplification of this formula we note that the set
Q is invariant under Q — —Qog, i.e. under [a, b, ¢] — [—a,b, —c]. Hence we can replace

@ by —Q o g in the second sum. It is easily verified that

Xm,80(—Q 0 9g) = sign(Bo)xm,a(Q@) —(Qoggdg)(t) = —(Q o A)(-1).

Thus the second sum equals (—1)*¢ times the first but with ¢ replaced by —¢, i.e. with
t replaced by % (since t € iR). Hence, after substituting ¢t — ? in the integral of the

second sum we can write
_ X —¢ 2k
C(A ) =~ [ S i @E 2D
—ioo Q1)
QEQoA

Note that, though we have studied the infinite sum occuring here only for ¢t € 5, it is
normally convergent in the lower half plane $(¢) < 0 as well, and along the imaginary
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axis the function defined by it can even be continuously continued to ¢+ = 0. Thus, the

above integral makes sense.

To compute this integral we decompose it as
C(A,7) = —Chpy mlDoAF~H (I + K), (10)

where I and K denote that contributions to the last integral from all Q = [a, b, ¢] such
that ac # 0 and ac = 0, respectively.

To simplify I we proceed as in ([Ko-Zaj; pp.223). From the following computation it

will be clear that we can in general not interchange summation and integration. Instead

ico ico ix ico -4
[rsemn (L[ 12
—ico Ao ~ico  J—ix  Jifa —ioo

Here interchanging integral and sum is allowed since the series is uniformly convergent

we write

on the compact pathes joining A and /A and —:/\ and —:iA, respectively. In the third

and fourth integral we substitute t — =}, and @ — Q 0 7!, where S = ({ 7'). Then

we obtain
I=L+ L+, (11)

g
il

> xda@ [ EETa

G=[a,b,c]lEQoA —ioo Q(t)"
acz0

tA 2k—2
. X -t
heetn Y e ) O

A—D

k
A>0 Qm[a,b,c]€EQoA —tA Q(t)
acy0

(Xt 4 1)2k2

I = lim Xi5A, (@) dt.
A>o0 Q-[a.l;c]:EQoAs e i QF
acyk0

The inner integrals in I, are absolutely convergent and can easily be evaluated (cf.
Lemma A2. of the Appendix). One has

Li=Craoa D, Xima(@sign(@)Q(X)*, (12)

Q=[a,b,c]EQo A
ac<0

with a constant Ck a,a, depending only on k& and AgA, as given in the appendix. To
simplify I, we apply Proposition Al. The contribution to I, from those @ = [a, b, ¢] with

positive ¢ can immediately read off from this lemma. To treat the contribution from
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those @ with negative ¢ we have to substitute @ — —Q o g, i.e. [a,b,c] — [~a,b,—(],
to put it into a form such that the Proposition Al can be applied. We obtain

-9 'X2k—2
b= m [Cm,AoA,ror,AD,&o(k) + (_1)kecm.ﬂuﬁnf'ﬂ":—AO’A0(k)] ' (13)

Similarily we find

Dmi X2k
I = m [leAoA,ror,Aoo,Ao(k) + (—l)kegm.ﬁoﬁ,roT,—AOO,AD(k)] : (14)

To compute K we choose a positive integer N as in the statement of the Proposition

(e.g. N =m|Ag|). Using it we can write

- -k foo bt+C _
K=N *{ Z Xih.2,(Q) ck( & )(X-t)“ 2dt

Q=[0,b,c]EQe A —100
0Ce< N
+ > Xm,a0(@) . Ck( = )t (X —t)?F24dt
Q={a,b,0)EQoA
0<ad N
oo bt b/t +c
A —2k
+ E Xm,a0(Q) " (Ck (ﬁ) + Ck ( = )t
Q=[0,6,0]€Q0A

-ﬁ) (X - t)“-2dt},

where we use

B 1 omi(=1)F 1 rd\FT e
Ce) =2 GreF = k=1 (E) ami T

These integrals have been evaluated in the appendix (cf. Lemma A3), and inserting the

values computed in the appendix we find

NE-1 bX +¢
K=0k.aoa{ > @B (S5

Q=[0,5,c]€QoA
0Le<N

Nk a+b/X
A r2k—2
- Y xmad@— Bk( = )A }

Q=f{a,b,0l€Q0A
0<a N

(13)

Inserting the formulas (12),(13), (14), (15) into (11) and (10), picking up the constants
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k—
_CZ-H,m X IAoAI * X Ck,ADA

26\ /Ze [2k -2\ k1 2mi(~1)F (2::12)
=—-( — _ X JAeAIFTE x
m = \(k-1 (AgA)*-1

2 I k_l_b
T e \mi - Thm

—2m1

(2k — 1)((2k)

2 (2e\"" (=D)f(k-1)2 -3 _
BRYC (??ZZ) * C(2k)(2k—1)!(A°A)k = bm X7,

we find that C(A,r; X) equals Cﬁo’ro(A,r;X). This proves the proposition.

—cfprm X D07 x

§5. The proof of the main result

In this last section we collect the facts of the previous discussions to complete the proof
of Theorem 1 and 2. We assume throughout that &£ > 2. For the case of weight k+1 =2
the reader is referred to [S1].

For e € {1} let 5,

LR, (1,2 X) (A € SLa(Z), sign{Ag) = €) appearing in Proposition 4, and let S ;...

denote the subspace of S, ., spanned by the Jacobi forms

be the space of functions spanned by all the @ay,r,4,pP(T,2) With Ag,70,A, P as in
Theorem 2, sign(Ag) = e. Finally, let K¢ be the intersection of all kernels ker (Sa, ;)
with sign(Ag) = e. We shall show in a moment

Stor. = (Y- (16)
S;er. = S:pher. (17)
Here (-)* means the orthogonal complement with respect to the Petersson scalar prod-
uct. For € = —1 it was shown in [S-Z], Theorem 3, that K = 0. Thus the equa-
tions (16),(17) clearly imply Theorem 2 for ¢ = —1. Moreover, it was shown loc.cit.

that the sum of all the images of the Sa, , with negative Ay is just the subspace
spanned by all modular forms f in 95;°P(m) whose L-series L(f, s) satisfies L*(f, s) :=
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(2m/m)™°T'(s)L(f,s) = —L*(f,2k—s). Thus, the ‘=-part of Theorem 1 is a consequence
of Theorem 2 by noticing that

on,f‘o,A]J‘l 9AvP(T) = SAlyrl (¢A01TO;A,P(T3 Z)) *

For the ‘+’-case we can so far only deduce that S;h"’ = (K*)1, and that the subspace
spanned by all fa, re,a,,m,4,P(7) (&1 > 0) is just the sum of all the images of the
Sa,,r with positive A;. However, it will be shown in [S2] that this image is precisely
that part of M5,°P(m) spanned by all f such that L*(f,s) := (2r/m)7*T(s)L(f,s) =
+L*(f,2k — 5), and that K+ = 0. Thus, the equations (16),(17) imply the ‘+’-parts of

Theorem 1 and 2 as well.

The equation (16) follows from the logical equivalences
(BILA,,7(5 X)) = 0 <= p5iSagred = 0 <= ¢ € ker (Saq,r),

valid for any Ao with Ag = € and any ¢ € Si,; ,,- Here the first ‘<=’ follows from

Proposition 4, and the second one from Proposition 3.

To prove (17) note first of all that for any X the polynomial

Py(a,b,c) = (aX*® +bX + c)k_1

[

satisfies (gy - %T?’) Py =0, and that
¢A0,T‘0,A,PQ(T, z) = Cgo,ro(.; X)'

The latter is easily checked using the characteristic properties of the Bernoulli polyno-
mials which were recalled in §1 when we defined the associated polynomials P, and Ps.
Thus, 57, C S;pper, To prove the converse inclusion note that, for any fixed Ag, 1o, 4,

the map P — ¢, r,,4,pP is linear. Hence, it suffices to prove the following Lemma.

Lemma. Let P(a,b,c) be a homogeneous polynomial of degree k in the three variables
a,b,c. Then the following two statements are equivalent: (i) One has (ai:g - %;c) P=

0. (1i) The polynomial P can be written as a linear combination of polynomials of the
form (aX2 +bX +¢)" (X € €).

Proof. That (ii) implies (i) is verified by direct computation. So assume (i). We prove
(ii) by induction on the degree k of P. If k¥ = 0 then (ii) is trivially true. So assume
k > 0 and that (ii) is true for all polynomials with degree strictly smaller than k. Now,
since P satisfies (i), the polynomial -(%P does s0 too, and by induction hypothesis it can
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thus be written as a linear combination of suitable (aX? + bX + c) Integra.ting with
respect to b now shows that P is a linear combination of polynomials (aX 240X + )
up to the addition of a polynomial P, which is independent of b. Clearly P, satisfies
(1), and hence 'E%'EPO = 0. But this means that Py = aa® + yc* for suitable constants
«,v. From this it is clear that P, satisfies (ii) (use e.g.
Rt

and therefore P does so too. This concludes the proof of the lemma and the proof of

Theorem 1 and 2 as well.

Appendix A: Zetafunctions associated to binary

quadratic forms modulo T'o(m)

In this part of the appendix is we prove the following Proposition A1l which was used
in the computations of §4.
Let @ = [a, b, ¢] be a polynomial of degree < 2, and let ¢ € P1(Q)(= QU {o0}). To
the pair Q, ¢ we associate a Dirichlet series (g ¢(s) by setting
_ w R(Q,§n)
Ce(s) = ; —

where, for any positive integer n, we use

R(Q,€m) = fTo(m)q\ { (:) -

Recall that ﬁ = £ mod I'y(m) means that i’— and £ lie in the same orbit of the natural
action of T'o(m) on P(Q), and that I'y(m)q denotes the stabilizer of @ in Tg(m).

Clearly, this zeta function depends only on the I'y(m)-equivalence classes of ¢ and €.

az? + bzy + cy? =n
A Z ""{mod To(m)

These zeta-functions are connected to the zeta function defined in §1 by the formula

— Xm,Ao(Q) ].8
racarorsanl)= 2, e Temg s (9

where @ runs through a complete set of representatives for @m(A,r) modulo T'o(m).
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Lemma. Let Q) be a polynomial of degree < 2 with integral coefficients, and let C
denote the I'g(m)-equivalence class of Q. Let £ € P1(Q), £ = s ged(z,y) = 1. Then

Qe(s)=¢(2s) D, QGw™
Q'EC/To(m),
Q' =, p)>0

Here ((s) is the Riemann zeta function, and the sum Is over a complete set of rep-
resentatives for C modulo T'o(m)e (=stabilizer of £ in Ty(m)). (Recall that we use
Q(z,y) = az® + bay + cy® for any Q = [a,b,c].)

Proof. Denote by RP™(Q, {; n) the number of all coprime pairs of integers z, y modulo
Io(m)q such that Q(z,y) = n, and % is To(m)-equivalent to €. Clearly

RQ.&n) = Y R™(Q.6 ).

d?|n

Now the maps M +— M¢ and M — Q o M induce bijections

I‘Q\{ (;) €z’

respectively, where we used I' = I'g(m). But via these isomorphisms we find

ged(z,y) =1
A i =¢{modT

} TQ\I'/T¢ == €Ty,

RPT(Q,&n) =4{Q € C|Q(€) = n} /T¢.

Inserting this into the above equation for R(Q,¢;n), and rewriting the resulting equa-

tions in terms of Dirichlet series we obtain the asserted identity.

The following Proposition was proved in the case m = 1, D not a square, in [K-Z],

Lemma on p.226.

Proposition Al. Let C be the I'y(m)—equivalence class of a quadratic polynomial
Qo(t) = at®+bt+c. Assume that Qq(t) has real coefficients and that D := b? —4ac > 0.
Let A € SLy(R). Then, for any integer k > 2 and any integer v > 0, the limit
ix
t¥dt
lim f pdi
- k
AA>3 Q=[u,b,zc]€CoA —iA Q(t)
aF#0,e>0

equals

21 (Q,,a0(k)

[SL2(Z) q : To(m)q]™ (2k —1)  ((2k)

when v = 0, and it equals 0 otherwise.
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Remark. Note that the Proposition together with (18) yields the formula

iAoy 2k—2
. X -t dt
i Y xha@ [ S

—i i
A>0 geQA(a0a,ror) i ()
Q=[a,d,¢)
ayx0,e>0

2mi X 2k—2
mcm AgA,ror,AO AO(S)

Proof. To compute the limit we choose a positive integer V such that Co A is invariant
under @ — Qo ( ) i.e. under [a,b,c] — [a+bN +cN2% b+2Nc,c]. Then we arrange
the terms of the sum so that we first sum over those @ = [a, b,¢] with 0 < b < 2¢N and
for each such Q over all [a+bNn+cNn? 2Ncz,c] (z = 25 +n, n € Z, (2¢Nz)? # D).

Moreover, we write
D
[a +bNn +cNn? 2Ncz,c|(t) = ¢(1 + Nzt)? — Z-t2'
c

Finally we substitute ¢ — At. Thus, we have to compute

1 1¥ dt

lim A¥ E — E / . (19)
k k

A=0 amisbalecoa, © Lo ya (1 + NzAt)? — B (At)?]

0K b 2N (2cN:)2¢D

Now the inner sum tends to

f+°° / t¥dida
_; (14 Nzt)?*

for A — 0, and it does so uniformly in & and ¢. Thus we see that the expression (19)
equals 0 for positive v. So let v = 0. Then we may interchange in (19) the limit and
the first sum, and insert the value of the last integral, which 1s m Now, for N we
can choose N = [SLy(Z) ¢ : T'o(m)g], and then the condition ‘0 < b < 2¢N’ means that
we sum over a set of representatives for C o A/(A71Ty(m)A)s. Hence, after making the

substitution @ — @ o A we find for (19) the expression

2m
> (QoA)0)™~.
(2k - 1)N QEC/Tg(m) a0
QoA(0)>0

Applying to this the above Lemma we recognize the asserted formula.
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Appendix B: Computation of some integrals

In this part of the appendix we calculate some integrals which have been used when we
computed the period polynomials of the kernel functions of the Jacobi forms — ellliptic
modular forms correspondences. The following two lemmas can in principle be read
off from corresponding calculations in [Ko-Za]. However, because of slightly different
normalisations and the need of slightly more general formulations we include them here

with independent proofs. For the following lemma compare [Ko-Za], pp. 224,225.

Lemma A2. Let Q(t) = at® + bt + ¢ be a quadratic polynomial with real coefficients,
and assume that ac # 0 and D = b2 — 4ac > 0. Then for any complex number X and

any positive integer k the integral

+ioo (X — t)21:—2
/—ioo Q(t)k d

is absolutely convergent; it equals 0 when ac is positive, and for negative ac it equals
C’k‘Dsign(a)Q(X)k“l,

where

2k-2
3 has no singularities on

Proof. Using ac # 0 and D > 0 it is easily seen that (X—,—?E—)-,,—
the imaginary axis and that it is an O(¢™2) for ¢t — ico. Thus the integral in question

is absolutely convergent.

To compute this integral note that for any sufficiently small A € € and for all
t € iR5o we have [A||X — t® < |Q(¢)|. Thus we can write

) _ +ico X — t)2k—2 +ioo ©C ~ (X _ t)Qk_?'
)\k 1 (—d _ gep (X )22
; /_‘°° Q(t)* t /_ioo ; 4 Q(t)* d
+ioco d y
= /— R )\EX 3y = 277251gn(Q,\)D§,

where Qa(t) = Q(t) — A(X — t)?, and where D) denotes the discriminant of Qx(2).
Recall that sign(R) = 3 (sign(a) — sign(c)) for any R = [a,b,c]. The interchanging
of summation and integration is easily justified by doing the above computation with
X —t and Q(t) replaced by its absolute values, noticing that the resultant integrals are
finite and applying Lebesgue’s theorem. For the last equality we used that for any real
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quadratic polynomial R(t) with positive discriminant, the integral of R(¢)~!dt along the
imaginary axis equals 272 times the sum of the residues of the integrand in the right half
plane, which in turn equals sign(R)- (discriminant of R)%. Now, by a simple calculation

and by continuity

Dy =D +4AQ(X), sign(@») = sign(Q),

respectively. Thus

0 +io00 (X _ t)2k—2

IR

i@ () B2

k-—l
k=1 D 3

dt = 2risign(Q) (D + 4AQ(X))*

Equating coefficients of these power series in A finally proves the asserted formula of the

lemma.

To state the following lemma we recall that for any positive integer k and any
complex t € C\ Z from the upper half plane we use
2‘rrz'(—1)k_1 dk—l ezqrit

(k=1)! dth=1eimit — 1"
Lemma A3. Let a,b,c be real numbers such that b 3 0 and 0 < a,c < 1. Then for

any complex number X and any integer k > 2 the following integrals are absolutely

Ce(t) = (20)

convergent and the following equalities hold:

+i100 .
/ Ck (bi + C)(X - t)zk_zdt = g&Bk(bX + ¢),

—100 k

+ico 2
/ Cr (@ + b/t)t=2H(X — 12t = — C’;C'b Bi(a + b/ X) X2,

—ioco

100 b )
[+ (Ck (bt) + sz(kt) - (b:)‘”) (X —t)2k—2dt = E%L (B;.-(bX) - B“%)X“‘?) .

—fco
Here Bi(X) denotes the k—th Bernoulli polynomial and

. =1 [ 2k—2
27”(_1)L ! ( k—1 )
|5]2F—1

Crp: =

(as in Lemma A2).

Proof. Immediately from the definition (20) it is clear that Cj (¢) is holomorphic in
C\Z, that it is exponentially decreasing for R(t) fixed and 3(¢) — Loo, and that it has
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a pole at t = 0 with polar part t~*. These statements immediately imply the absolute

convergence of the integrals in the lemma.

To prove the listed identities note that the second one follows from the first by
substituting ¢ — 1, X — -}7 Moreover, the third one follows by adding the first two,
setting a = ¢ = A and letting A tend to 0. We leave the details to the reader. Finally,
to prove the first equation, note that it suffices to prove it for b = 1: multiplying
both sides of the first equation by (—1)¥, if necessary, and using Cj, (—t) = (—1)*Ck (%)
and Bg(1 — X) = (=1)*Bx(X) we may assume first of all that b > 0; then substitute
t—f, X o -)f- Thus, writing

+ico ctico
/ Gt o)X -ty tat = f C Ce()(X +e—t)*tat
—ico c—ioo
we recognize that we have to prove

o (2= 2\ By(Y)
fw:cok(t)(Y-t)“ 24t — 2mi(—1)* (k—1>T' (21)

To do this call the left hand side of this equation f(Y"). Shifting the path of
integration to the left crossing 0 but not —1 gives

FY +1) = f(Y) = =27 Res,;=o Cr (1)(¥ — £)* 72,
le.

k-1

Since f(Y) is clearly a polynomial the last equation determines it up to a constant.

FIY +1) = f(Y) = 2mi(—1)*! (2’“ - 2) yr-1,

On the other hand side the polynomial on the right hand side of (21) is a solution to
the last equation. Thus, to conclude the proof it suffices to check for instance that
7 f(y)dy = 0. But indeed,

tZk-l . (t _ 1)2k—1

1
/0 Fly)dy = A o O

42k=1 $2k=1
= — Cr (¢ dt = 271 Res;—oCy (¢ =0
~/3?(‘)=c -/ﬂ;(t)=c—1 k{ )2k -1 =0Ck ( )2161 -1

This proves the Lemma.
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