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Compact surfaces embedded (or immersed) in Ifg have

been studied in differential geometry since its very

beginnings. Also various special surfaces have Beén"investigated,
such as ellipsoids, tori of revolution,etc. Surprisingly,
however, with one exception [2], we do not know any

compact surface in IR3 of genus g > 1 appearing in the
literature because of its special differential geometric
properties. The same appliés to compact nonorientable sur-

faces in R?.

Recently many such surfaces have been obtained as solutions
to the féllowingiﬁariatibnalrproblem. Tﬂé problem is to find
compact surfaces,of breséribed £opological type,which-(on |
the average) have the least possible curvature, i.e. which
are "as smooth as possible". As a measure for the averége
curvature ,one chooses for an immersion f:M2 —_ Ifg (M2 an

abstract compact surface) the functional

m(£) = § , k}+k2 aa
2 1 2
M
Here k1,k2 are the principal curvatures and dA is the
volume element induced from IR3. Instead of 1 it has

become costumary to study the equivalent functional
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n(f) = %E(f) oy (M%),

where x(Mz) denotes the Euler characteristic of MZ.

Because of the Gauss-Bonnet theorem,we have

where H = %(k1-Fk2) is the mean curvature of the surface.

For a given abstract surface M2, we will discuss three

problems:
1) Determine w(Mz):= inf ﬁ(f) over all immersions
2 3

f:M™ — R7 .

2) Classify all f for which WN{(f) eguals the minimal

value m(Mz).

3) Determine all critical points f of 3 and the

corresponding values n(£) .

Critical points of 1 are called Willmore surfaces and

are characterized by the Euler equation.

AH + 2H(H? - K) = 0,

where K = k1k2 is the Gaussian curvature. Willmore
surfaces were first studied by Blaschke and Thomsen in

1923 [3,16]. They also established the most important property



of WI': The functional # is invariant under conformal
mappings g:]R3 U {=} > R3U (=}. For example, if
f:M2 ——>IR3 is an immersion such that 0 ¢ f(M2),then

f
W (——

) = D(E).
1£12

For M2 & 52 and M2 ~ E{Pz,the above problems 1), 2), and

3) are completely solved. We have w(sz) = 47, and the
minimum is attained only for round spheres (Willmore 1965
L18]). Recently Bryant [5] classified all Willmore-immersions

f:S2 ——é~]R3. The possible values of [ 2szA are 4mn,

S
with n a natural number, where either n = 1 or
nz4 and n evenor n 2 9 and n odd. Figure 1 shows

a Willmore-sphere with n = 4.

Any immersed projectivé plane in If3 must have a triple

v

point, so,by a result of Li and Yau [12], ﬁ(RPz) 127 .
Recently R. Bryant .[6] and independently R. Kusner (9]
found explicit immersions of RPZ for which the minimal
value 121 is attained. Indeed, Bryant classified all
minimizing :RPz's in ZR3 and found (modulo conformal
transformations) a two-parameter family of such surfaces.
Figure 2 shows a Willmore—IRP2 with'  three-fold symmetry.

thus providing an "optimal" version of a surface first

described qualitatively by W. Boy in 1903 [4].



Figure 1 Figure 2

For the torus T2, there is the long-standing "Willmore
Conjecture": w(Tz) = 2ﬂ2. The value 2ﬂ2 is actually
attained for a certain torus of revolution whose

generating circle has radius 1 and distance 2 - 1 from

the axis of revolution (See Fig. 3).



Figure 3

The Willmore inequality szdA 2 2ﬂ2 has been proved for
various special classes of immersed tori (such as tori of

revolution [10]), but, in general, it is only known that for

any immersion £:7° ——?-IR3 we have W(£)> 4m [18].

Recently L. Simon [15] proved the existence of a minimizing

2

immersion f of T with D.(£f) = m(Tzl. This implies then

B(T%) > 4T.

Li and Yau [12] proved that for any immersed surface with self-

intersections one has szdA z 8n. Moreover, for any

genus g , there are compact orientable surfaces in :R3



with szdA < 81 (see below). Therefore,all surfaces of
genus g which are absolute minima: of ® (if they exist) -
are necessarily embedded and, of course, are Willmore
surfaces. Most of the known exaﬁples of embédded

Willmore surfaces comevfroﬁ compéét minimal surfaces in

the unit sphere SB‘ CIIR4. Already Balschke and Thomsen

had proved that stereographic projections (M) of compaét

minimal surfaces M in S° are alwa?s Willmore surfaces.
The area of M2 = S3 equals- IHZdA for the‘stereographic
2 3

projection of M in R .

In 1970, Lawson [11] discovered many such Willmore
surfaces. He found that every compact surface but the
projective plane (which is prohibited) can be minimally
immersed into S3. Moreover, every compact, orientable
surface can be minimally embedded in S3. These surfaces
are obtained by first solving the Plateau problém for
certain geodesic quadrilaterals in S3 and then extending
this solution surface by reflection across its geodesic

boundary arcs.

For example, one such family of compact surfaces,
‘:{Mg} (g = genus), is obtained by starting with such
quadrilaterals . having edge.lengths w/2 and angles 7/2,
n/g+1, /2, w/g+1. For these examples, 4w < [ szA<:8W
and lim . J H%dA = 87. (See Figs. 4-5). o ttg)

g LO(Mg)



Figure 4 Figure 5

New examples of compact embedded minimal surfaces

in 'S3, and hence embedded Willmore surfaces, were

recently discovered (Karcher-Pinkall-Sterling 1986 [81]).
2
These examples are based on the tessellations of S into

cells having .the symmetry of a Platonic solid. For exampie,

S3 is naturally tessellated by five tetrahedra (as S3 is

by four triangles) or 53 is tessellated by two cubes

(as 52 is by two hexagons), etc. Dividing a cell by its
planes of symmetry one obtains as a fundamental region for

the group of symmetries a tetrahedron T.



To construct a minimal surface in S3, one
first finds a minimal surface with boundary, called a

"patch" (Fig. 6),wi££in >T; which intersects orthogonally all the
plane-faces of vT in planar geodesics..From the patch,one
obtains a certain piece of the whole surface, called a

"bone" (Fig. 7), by gepeafgdly reflecting‘patches through those
plane-faces of T which aré no£ contaiﬁed in faces of a

cell. Finally,one builds the complete surface using

reflections through faces of the cells (See Fig.8‘%13).

Figure 6 Figure 7



Figure 8 Figure 9

Figure 10 : Figure 11



-10-

Figure 12 Figure 13

Remarks:

1) The computer plays a crucial role in the investigation

of minimal surfaces in S3. For example, computer estimates
indicate the area of Lawson's three-holed torus M, is

less than that of the genus three surface in Figure 8. This
lends evidence to the conjecture that stereographic projections
of Lawson's n-~holed tori Mn are "optimal", in the sense that

they are absolute minima of the Willmore integral among all

genus n surfaces.

2) It was proved by Lawson that a compact minimal embedded

surface in 53 separates S3 into two diffeomorphic components;
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Furthermore, there was the following conjecture ([19],

problem #98).

Conjecture. Any compact minimal embedded surface in

S3 separates S3 into two components of equal volume.

The surface with dodecahedral symmetry. in Figure 12

is a counterexample.

It suffices to prove M stays within a distance
m/2 - D (&% 23.8) of its equator of reflection, E, where
4D - 2 sin (2D) = w, since this tube around E contains
half the volume of S3. This is obvious from Figure 14

and can be rigorously proved (the actual value is

approximately 7°).

- Figure 14
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3) In 1985 [13], the first author found the first
examples of compact embedded Willmore surfaces which
are not stereographic projections of compact embedded
minimal surfaces in S3. Using results of Langer and
Singer [10] on elastic curves on s> an infinite

series of such surfaces is exhibited. (See Fig. 15).

Figure 15

All of these surfaces are however unstable critical points
of w and hence are not candidates for absolute -

minima.

Finally,we want to mention that also the tori of constant

mean curvature in ZR3, discovered recently by H. Wente [171],
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are related to the Willmore functional: ‘A. Garsia [7]

and R. Riledy [14] had proved that any compact Riemann
surface (i.e. an oriented surface with a conformal
structure) can be conformally immersed into ZR3. Again

one might ask for an "optimal" model in ZR3 (in the

sense of the Willmore functional) for a given compact
Riemann surface (M,g) (g a Riemannian metric defining

the conformal structure). More generally,we are interested
in "cbnstrainedWillmoresurfaces“, i.e. critical points

of the functional ¥ restricted to the space of all
conformal immersions f:(M,g) —> R3. It has been observed
by J. Langer that any compact surface in IR3 of constant
mean curvature is a constrained Willmore surface. This follows
from the fact that the Gauss map of a constant mean
curvature surface is harmonic, and the functional T is

essentially just the energy of the Gauss map. -

The figures 15-19 éﬁow an immersed torus with constanf

H that was explicitly constructed by U. Abresch [1].

The whole surface (Figure 16) consists of six congruent
pieces, which are immersed annuli (Figure 17). The figures

18 and 19 show one half and one third of thé torus,

respectively.



Figure 1¢

Figure 18
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T

Figure 19
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