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NON-VANISHING SQUARE-INTEGRABLE AUTOMORPHIC1

COHOMOLOGY CLASSES - THE CASE GL(2) OVER A CENTRAL2

DIVISION ALGEBRA3

JOACHIM SCHWERMER4

Abstract. Let k be a totally real algebraic number field, and let D be a central divi-
sion algebra of degree d over k. The connected reductive algebraic k-group GL(2, D)/k

has k-rank one; it is an inner form of the split k-group GL(2d)/k. We construct auto-

morphic representations π of GL(2d)/k which occur non-trivially in the discrete spec-
trum of GL(2d, k) and which have specific local components at archimedean as well

as non-archimedean places of k so that there exist automorphic representations π′ of

GL(2, D)(Ak) with Ξ(π′) = π under the Jacquet-Langlands correspondence. These re-
quirements depend on the finite set VD of places of k at which D does not split, and on

the quest to construct representations π′ of GL(2, D)(Ak) which either represent cusp-

idal cohomology classes or give rise to square-integrable classes which are not cuspidal,
that is, are eventually represented by a residue of an Eisenstein series. The demand for

cohomological relevance gives strong constraints at the archimedean components.

1. Introduction5

1.1. The square-integrable cohomology groups H∗(sq)(G,C). Let G be a reductive al-6

gebraic group over a totally real algebraic number field k, and suppose that G modulo its7

radical has k-rank greater than zero. We write G∞ for the group Rk/Q(G)(R) of real points8

of the algebraic Q-group Rk/Q(G) obtained from G by restriction of scalars, and K∞ for a9

maximal compact subgroup of G∞. Within the framework of the automorphic cohomology10

H∗(G,C) of a reductive algebraic group G over k one has the notion of square-integrable co-11

homology (see Section 8 for details). This subspace of H∗(G,C), to be denoted H∗(sq)(G,C),12

reflects the contribution of the discrete spectrum L2
disc,J(G) of G to the cohomology. It13

contains the cuspidal spectrum L2
cusp,J(G). In fact, there is a decomposition14

(1.1) L2
disc,J(G) = L2

cusp,J(G)⊕ L2
res,J(G)

where the complement L2
res,J(G) denotes the residual spectrum of G. Each constituent of15

L2
res,J(G) can be structurally described in terms of residues of Eisenstein series attached16

to irreducible representations occurring in the discrete spectra of the Levi components of17

proper parabolic k-subgroups of G.18

On the cohomological level, this presents itself as a chain of inclusions19

(1.2) H∗cusp(G,C) ⊂ H∗! (G,C) ⊂ H∗(sq)(G,C) ⊂ H∗(G,C).
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2 JOACHIM SCHWERMER

where H∗cusp(G,C), the cuspidal cohomology of G, corresponds to the cuspidal spectrum.1

The so-called interior cohomology H∗! (G,C), a topologically defined object, is sandwiched2

between two analytically defined cohomology groups.3

1.2. Non-vanishing results for the square-integrable cohomology of GL(2, D). The4

question arises how one can detect non-vanishing square-integrable cohomology classes in5

H∗(sq)(G,C) and related automorphic representations. In this paper we study this problem6

in the case of the general linear group GL(2, D) over a finite-dimensional central division7

algebra D of degree d > 1, defined over a totally real algebraic number field k. The group8

GL(2, D)/k is an inner form of the general linear group GL(2d)/k.9

Two ingredients are essential in this investigation: Firstly, the global Jacquet-Langlands10

correspondence by Badulescu [2] and Badulescu-Renard [3] which relates via an injective11

map, to be denoted Ξ, the set of the irreducible constituents of the discrete spectrum12

of GL(2, D)(Ak) with the set of the irreducible constituents of the discrete spectrum of13

GL(2d, k) (see Section 3 for details).14

Secondly, we have to construct automorphic representation π = ⊗′v∈Vkπv of GL(2d)/k15

which occur non-trivially in the discrete spectrum of GL(2d, k) and which have specific local16

components at archimedean as well as non-archimedean places of k so that there exists a17

corresponding automorphic representation π′ = ⊗′v∈Vkπ
′
v of GL(2, D)(Ak) with Ξ(π′) = π.18

These requirements depend on D, more precisely, on the finite set VD of places of k at19

which D does not split, and on the quest to construct representations π′ of GL(2, D)(Ak)20

which either represent cuspidal cohomology classes or give rise to square-integrable classes21

which are not cuspidal, that is, are eventually represented by a residue of an Eisenstein22

series. The demand for cohomological relevance gives strong constraints at the archimedean23

components of πv, v ∈ Vk,∞.24

We finally construct three different kinds of non-vanishing square-integrable cohomology25

classes in H∗(sq)(G,C) (see Theorems 8.1, 7.3, and 8.5):26

(a) classes in the cuspidal cohomology H∗(cusp)(GL(2, D),C) which correspond to a cus-27

pidal representation of GL(2d, k),28

(b) classes in the cuspidal cohomology H∗(cusp)(GL(2, D),C) which correspond to a resid-29

ual representation of GL(2d, k),30

(c) non-cuspidal classes in H∗(sq)(GL(2, D),C) which correspond to a residual represen-31

tation of GL(2d, k) of a type different from the one occuring in (b).32

1.3. Example. We illustrate these results by the following example: Let k be a totally33

real field of degree [k : Q] = 4, and let D be a central division algebra of degree 2 over34

k. Suppose that |VD| = 6 and that V∞,k ⊂ VD. Then the cuspidal representation π′35

of GL(2, D)(Ak) constructed in Theorem 8.1 contributes non-trivially to the cuspidal co-36

homology H∗cusp(H ′,C) of H ′ = GL(2, D) in degrees 8, 9, 10, 11, 12, that is, in a range of37

degrees centered around the middle dimension 10. By contrast, the cuspidal representation38

constructed in Theorem 7.3 contributes non-trivially in degrees 4, 7, 10, 13, 16. The cohomol-39

ogy class obtained via the residual spectrum contributes in degree 4 to the square-integrable40

cohomology. Note that these residual classes are carried at the archimedean components41

by the same irreducible non-tempered unitary representation as the non-tempered cuspidal42

classes.43

1.4. We describe two of the results obtained in a more precise way.44

Theorem 1.1. Given a totally real number field k of degree `, let D be a finite-dimensional45

central division algebra over k of degree d > 1. Let VD ⊂ Vk be the finite set of places of k at46
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which D does not split. Let t denote the number of archimedean places in VD, and suppose1

that t > 0. Then there exist automorphic representations π′ = ⊗′v∈Vkπv of GL(2, D)(Ak)2

which occur as irreducible constituents in the residual spectrum of GL(2, D)(Ak), whose3

archimedean components π′v are irreducible non-tempered unitary representation of GL(d,H)4

for v ∈ VD ∩ Vk,∞ (resp. of GL(2d,R) for v ∈ Vk,∞, v /∈ VD), and which give rise to a5

non-trivial cohomology class in H∗(sq)(GL(2, D),C) that is not cuspidal.6

The proof relies on the description of the residual spectrum of GL(2d,Ak) in [36] and an7

explicit construction of an irreducible tempered representation of GL(d,Ak) with prescribed8

local and global properties, aligned with the demands (see Proposition 3.4) defined by the9

Jacquet-Langlands correspondence.10

We will give the archimedean components π′v, v ∈ Vk,∞, of the representation π′ in the11

Theorem in a precise form in Section 4, denoted by JR(2, θ) in the case of the group12

GL(2d,R), and denoted by J ′R(2, θ′) in the case of GL(d,H). These two representations13

correspond to one another by the local Jacquet-Langlands correspondence. In the latter14

case, the Poincare polynomial is given in Proposition 4.2. This permits, for example, to15

conclude the following result.16

Corollary. Suppose that D does not split at all archimedean places, i.e., Vk,∞ ⊂ VD. Then17

there exists a non-vanishing non-cuspidal cohomology class of degree q = ` · d(2d−3)
2 in the18

square-integrable cohomology H∗(sq)(GL(2, D)).19

With regard to the construction of cuspidal cohomology classes we discuss the case of20

non-tempered classes. For the other one we refer to Theorem 8.121

Theorem 1.2. Let k be a totally real number field, and let D be a finite-dimensional cen-22

tral division algebra over k of degree d > 1. Suppose that the set VD of places of D at23

which D does not split contains at least one archimedean place. Then there exist cuspi-24

dal automorphic representations π′ = ⊗π′v of H ′(Ak) = GL(2, D)(Ak) with Ξ(π′) =: π a25

residual representation of the group H(Ak) = GL(2d,Ak) under the Jacquet-Langlands cor-26

respondence Ξ so that the archimedean components π′v, v ∈ V∞,k, have the following form:27

If v ∈ VD ∩ Vk,∞, that is, H ′v
∼= GL(d,H), then π′v

∼= J ′R(2, θ′), and if v ∈ Vk,∞, v /∈ VD,28

that is, H ′v
∼= GL(2d,R), then π′v

∼= JR(2, θ). In both cases the archimedean component is a29

non-tempered representation of H ′v. The representation π′ represents a non-trivial class in30

H∗cusp(GL(2, D),C).31

For the proof of this result, consider the uniquely determined standard maximal parabolic32

k-subgroup Qd of H/k = GL(2d, k) which is conjugate to its opposite. We construct a33

specific residual automorphic representation of H(Ak), essentially via the residue of an34

Eisenstein series attached to a cuspidal automorphic representation of the Levi component35

LQd
∼= GL(d)/k × GL(d)/k of Qd. Required by the description of the image of the map36

Ξ, this cuspidal representation has to satisfy some local conditions at places in VD as well37

as at the archimedean places. Thus, secondly, we use the process of global automorphic38

induction (see [23]) to construct such a cuspidal representation. It is decisive that the39

global automorphic induction is compatible with the local automorphic induction. We refer40

to Subsection 5.2 for the construction.41

Remark 1.3. The archimedean components of the cuspidal representations as constructed42

above are of the form J ′R(2, θ′). This non-tempered unitary representation of GL(d,H) also43

appears as an archimedean component (for a place v ∈ VD ∩ Vk,∞) of the global automor-44

phic representation of the adele group GL(2, D)(Ak) which contributes to the non-cuspidal45
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cohomology. However, in the former case, the contribution to cohomology is over the full1

range of cohomological degrees associated with the representation J ′R(2, θ′), whereas in the2

latter case the degree q = ` · d(2d−3)
2 is just the minimal degree in which the representation3

has cohomology. It is an important question if there are higher degrees in which there is a4

contribution to the non-cuspidal square-integrable cohomology. If v ∈ Vk,∞, v /∈ VD, thus,5

π′v
∼= JR(2, θ), the same question arises (see Remarks 8.6 and 8.7 for details).6

Notation and conventions7

Let k be an algebraic number field, i.e., an arbitrary finite extension k/Q of the field Q8

of rational numbers, and let Ok denote its ring of integers. The set of places of k will be9

denoted by Vk, and Vk,∞ (resp. Vk,f ) refers to the subsets of archimedean (resp. non-10

archimedean) places of k. Given a place v ∈ Vk, the completion of k with respect to v is11

denoted by kv. For a finite place v ∈ Vk,f we write Ok,v for the valuation ring in kv. If the12

field k is fixed, we write V = Vk etc.13

Let Ak (resp. Ik) be the ring of adèles (resp. the group of idèles) of k. We denote by14

Ak,∞ =
∏
v∈Vk,∞ kv the archimdean component of the ring Ak, and by Ak,f the finite adèles15

of k. There is the usual decomposition of Ak into the archimedean and the non-archimedean16

part A = Ak,∞ × Ak,f .17

2. Generalities18

In this section, mainly to fix notations, we recollect some background material regarding19

the general linear group over a finite-dimensional central division algebra defined over some20

algebraic number field.21

2.1. The algebraic k-group GL(q,D). Let A be a central simple algebra of degree d22

over an algebraic number field k. Given a positive integer q, let GL(q, A) be the connected23

reductive algebraic k-group whose group GL(q, A)(l) of rational points over a commutative24

k-algebra l containing k equals the group25

(2.1) GLq(Al) =
{
x ∈Mq(Al) | nrdMq(Al)(x) 6= 0

}
,

where Al = A ⊗k l, and nrdMq(Al) is the reduced norm on the algebra Mq(Al) of (q × q)-26

matrices with entries in Al. If q = 1 then GL1(Al) is the group A×l of invertible elements27

in the l-algebra Al. The reduced norm defines a surjective k-morphism GL(q, A) −→ Gm of28

k-groups, whose kernel is a connected semi-simple algebraic k-group, to be denoted SL(q,A).29

If A = D is a central division k-algebra of degree d, that is, dimkD = d2, then the30

connected reductive k-group GL(q,D) is of semi-simple k-rank q − 1. Let l be a splitting31

field of D, thus, there is an isomorphism ψ : D ⊗k l → Md(l) of l-algebras. We fix this32

isomorphism ψ once and for all. We denote by the same letter the isomorphism33

(2.2) ψ : GL(q,D)×k l −→ GL(qd, l),

of algebraic l-groups induced by ψ. The group GL(q,D)/k is a k-form of the general linear34

k-group H := GL(qd, k)/k.35

In the specific case of the connected reductive k-group GL(2, D) the group Z ′(k) of
k-rational points of its center Z ′ is given by

Z ′(k) = {g = diag(λ, λ) | λ ∈ k×1D}
of scalar diagonal matrices. We fix a maximal k-split torus S′ ⊂ GL(2, D) subject to

S′(k) =
{
g =

(
λ 0
0 µ

)
| λ, µ ∈ k×1D

}
.
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The centralizer L′ := ZGL(2,D)(S
′) of S′ is given by

L′(k) =
{
g =

(
x 0
0 y

)
| x, y ∈ D×

}
.

Note that L′ is isomorphic to the k-group GL(1, D)×GL(1, D).1

Let Φ′k = Φ(GL(2, D), S′) ⊂ X∗(S′) be the set of roots of GL(2, D) with respect to2

S′. A basis of Φ′k is given by the non-trivial character α : S′/k → Gm/k, defined by the3

assignment
(
λ 0
0 µ

)
7→ λµ−1. The corresponding minimal parabolic k-subgroup determined4

by {α} is denoted by Q′. Its Levi factor is LQ′ = L′, and we have a Levi decomposition of5

Q′ into the semidirect product LQ′NQ′ of its unipotent radical NQ′ by LQ′ .6

2.2. Splitting. Given a place v ∈ Vk, there exist a positive number rv and a central7

division algebra ∆v over kv of degree dv ≥ 1 (uniquely determined up to isomorphism) so8

that D ⊗k kv ∼= Mrv (∆v) with rvdv = d. We say that a given central division algebra D9

over k splits at the place v ∈ Vk if D ⊗k kv ∼= Md(kv). Let VD be the finite set of places10

of k at which D does not split, that is, dv > 1. Note that, if v ∈ Vk,∞ is an archimedean11

place which is complex, then necessarily dv = 1, that is, ∆v = C. If there exists a real place12

v ∈ VD ∩ Vk,∞, then ∆v is isomorphic to the Hamilton quaternion algebra H, hence dv = 2,13

and, by rvdv = d, we get that d is even in this case.14

2.3. Parabolic k-subgroups and Levi subgroups in GL(n, k). Let Q0 denote the min-15

imal parabolic k-subgroup of GL(n, k), n ≥ 1, consisting of upper triangular non-singular16

matrices, and let Q0 = L0N0 be its Levi decomposition where L0 denotes the maximal17

torus of diagonal matrices and N0 denotes the unipotent radical of Q0. Let Φ, Φ+, ∆ de-18

note the corresponding sets of roots, positive roots, simple roots, respectively. The set ∆ is19

given as ∆ = {α1, α2, . . . , αn−1} where αi denotes the usual projection L0 → k× given by20

the assignment diag(t1, . . . , tn) 7→ ti/ti+1. The conjugacy classes with respect to GL(n, k)21

in the set P(GL(n)) of parabolic k-subgroups are in one-to-one correspondence with the22

subsets of ∆. The class corresponding to J ⊂ ∆ is the class represented by the standard23

parabolic subgroup QJ . We define SJ = (∩α∈Jker α)◦, and we write LQJ := ZGL(n)(SJ)24

for its centralizer. The group LQJ is reductive, a so-called Levi subgroup of QJ , and QJ is25

the semi-direct product of its unipotent radical NQJ by LQJ .26

We use the following description: Let ρ = (r1, ...., rs) be an ordered partition of n into27

positive integers, i.e., an ordered sequence of positive integers so that r1 + ....+ rs = n. The28

corresponding standard parabolic subgroup Qρ consists of all matrices in GL(n, k) admitting29

a block decomposition in the form (pi,j) with pi,j a (ri × rj)–matrix, and pi,j = 0 for i > j.30

Every parabolic subgroup ofGL(n, k) is conjugate to a subgroup of this type. More precisely,31

Qρ is of type Jρ = ∆ \ {αr1+...+ri : i = 1, . . . , n − 1}, and the assignment ρ 7→ Jρ defines32

a bijection between ordered partitions of n and subsets of ∆. The standard Levi subgroup33

LQρ of Qρ is the subgroup of matrices in Qρ where each block above the block diagonal is34

zero, i.e., pi,j = 0 for i < j. Thus, there is an isomorphism LQρ
∼= GL(r1)× .....×GL(rs).35

By definition, a cuspidal parabolic subgroup corresponds up to conjugacy to the case where36

ri = 1 or 2 for i = 1, ...., s.37

3. The global Jacquet-Langlands correspondence38

3.1. The global correspondence. Let k be a totally real number field of degree `, and39

let D be a central division algebra over k of degree d > 1. Let VD ⊂ Vk be the finite set of40

places of k at which D does not split. Let t denote the number of archimedean places in VD.41

Denote by H ′ the connected reductive algebraic k-group GL(2, D). This group is of semi-42

simple k-rank 1; it is an inner form of the algebraic k-group H := GL(2d, k). Let Z denote43
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the center of one of the two groups H/k or H ′/k. In both cases the locally compact group1

Z(Ak) is isomorphic to the group of ideles Ik. The isomorphism is provided by assigning to2

an element a ∈ Ik the scalar matrix of the appropriate size with a on the diagonal. Thus,3

we may view a unitary character of Z(k)\Z(Ak) as a unitary character of k×\Ik. We fix4

such a character ω.5

The global Jacquet-Langlands correspondence due to Badulescu [2] and Badulescu-Renard6

[3]) relates the discrete spectrum of H(Ak) = GL(2d,Ak) and the discrete spectrum of7

H ′(Ak) = GL(2, D)(Ak). The definition uses the local Jacquet–Langlands correspondence8

(cf. [2, Sect. 3]). It is defined for Harish–Chandra modules at infinite places v ∈ Vk,∞, and9

smooth representations at finite places v ∈ Vk,f . Hence, one should have in mind, when deal-10

ing with irreducible constituents of the discrete spectrum, that we actually pass to the un-11

derlying (g,KR;G(Af ))-module without mentioning that explicitly. Note that, by definition,12

the adele group H ′(Ak) of the group H ′/k is the restricted product H ′(Ak) =
∏′
v∈Vk H

′(kv)13

with respect to the maximal compact subgroups H ′(Ok,v) ⊂ H ′(kv), for almost all v ∈ Vk,f .14

If v ∈ VD ∩ Vk,∞, then H ′(kv) ∼= GL(d,H). If v ∈ Vk,∞, v /∈ VD, then H ′(kv) ∼= GL(2d,R).15

To be more precise, as in [2, 5.1], we have the following16

Definition 3.1. We say that an irreducible constituent of L2
disc(H,ω) is (globally) compati-17

ble with respect to D if every local component πv of π at a place v ∈ VD is locally compatible18

as a unitary representation of H(kv) ∼= GL2d(kv), i.e., there is a unitary representation π′v19

of H ′(kv) ∼= GL2(Dv) corresponding to πv by the local Jacquet-Langlands correspondence20

(cf. [3, Sect. 13], [2, Sect. 3]).21

In our case at hand, the main result regarding the Jacquet-Langlands correspondence is22

as follows (cf. [2, Thm. 5.1.]):23

Theorem 3.2. There is a unique map, to be denoted Ξ, from the set of irreducible con-24

stituents of L2
disc(H ′, ω) to the set of irreducible constituents of L2

disc(H,ω), such that if25

π = Ξ(π′), with π = ⊗v∈Vkπv and π′ = ⊗v∈Vkπ′v, then26

• π is compatible (with respect to D),27

• πv ∼= π′v for v 6∈ VD,28

• πv corresponds to π′v by the local Jacquet–Langlands correspondence at v ∈ VD.29

The map Ξ is injective, and the image of Ξ consists of all compatible constituents of30

L2
disc(H,ω) with respect to D.31

3.2. The classical correspondence. Suppose that B is a central division algebra of32

degree d = 2 over k, that is, B is a quaternion division k-algebra. Note that all irre-33

ducible automorphic representations of B×Ak are cuspidal. The original correspondence due34

to Jacquet-Langlands [25] is a bijection between (cuspidal) automorphic representations of35

B×Ak which are not one–dimensional and cuspidal automorphic representations of GL(2,Ak)36

with square-integrable local component at each place where B does not split, such that if37

π′ ∼= ⊗vπ′v corresponds to π ∼= ⊗vπv, then π′v
∼= πv at v 6∈ VB , and π′v corresponds to πv38

by the local Jacquet-Langlands correspondence at v ∈ VB . This is extended in [2], [3] to an39

injective map Ξ, analoguous to the one described in Theorem 3.2. In particular, Ξ maps40

a one-dimensional representation, given by χ ◦ nrd with χ a unitary character of k×\Ik, to41

χ ◦ det.42

Remark 3.3. We refer to 4.1 where one finds a description of the local Jacquet-Langlands43

correspondence between GL(2,R) and H× in the specific case of unitary square–integrable44

representations δ of GL(2,R).45
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3.3. The residual spectrum of H(Ak) = GL(2d,Ak). The discrete spectrum L2
disc(H,ω)1

of H(Ak) with respect to ω decomposes into a direct Hilbert space sum2

(3.1) L2
disc(H,ω) ∼= L2

cusp(H,ω)⊕ L2
res(H,ω).

of the cuspidal spectrum and the residual spectrum of H(Ak). The cuspidal spectrum3

L2
cusp(H,ω) is the direct Hilbert space sum of irreducible cuspidal automorphic representa-4

tions of H(Ak) with central character ω, each appearing with multiplicity one (cf.[45]). By5

the work of Moeglin-Waldspurger [36], the residual spectrum of H(Ak) decomposes along6

the cuspidal support into7

(3.2) L2
res(H,ω) ∼= ⊕ρL2

res,{Qρ}(H,ω)

where the sum ranges over the associate classes of all proper k-parabolic subgroups Qρ8

corresponding to a partition ρ = (r1, . . . , rs) subject to the condition r1 = . . . = rs. Let us9

denote this value by r. Thus, the Levi subgroup LQρ is a direct product of l copies of GL(r)10

with r · s = 2d. The summand corresponding to the associate class {Qρ} of k-parabolic11

subgroups has the following structure: it is given by the sum L2
res,{Qρ}(H,ω) ∼= ⊕σJ(s, σ),12

where J(s, σ) denotes the unique irreducible quotient of an induced representation1
13

(3.3) σ|det |(s−1)/2 × σ|det |(s−3)/2 × · · · × σ|det |−(s−1)/2

with σ an irreducible cuspidal representation of GL(r,Ak) whose central character ωσ equals14

ω. Note that there is exactly one associate class of maximal parabolic k-subgroups of15

GL(2d)/k which can contribute to the decomposition 3.2 of the residual spectrum L2
res(H,ω).16

It is the class of the maximal parabolic k-subgroup Qd whose Levi subgroup is isomorphic17

to GL(d)×GL(d). In this case, we have18

(3.4) L2
res,{Qd}(H,ω) ∼= ⊕σJ(2, σ),

where σ ranges over the irreducible cuspidal representation of GL(d,Ak) with central char-19

acter ωσ = ω.20

We denote by Q′ the minimal parabolic k-subgroup of upper triangular matrices in21

GL(2, D). Its Levi subgroup is isomorphic to the k-group GL(1, D) × GL(1, D), and we22

have a Levi decomposition of Q′ into the semi-direct product L′N ′ of its unipotent radi-23

cal N ′ by L′. The image of the l-group Q′ ×k l under the map ψ as given in 2.2 is the24

maximal parabolic l-subgroup Qd = Q∆\{αd}. Its Levi subgroup LQd/l is isomorphic to25

GL(d)/l ×GL(d)/l.26

The following result concerning one summand in the decomposition of L2
res,{Qd}(H,ω) is27

a consequence of the general work of Badulescu and Badulescu-Renard regarding the global28

Jacquet-Langlands correspondence. By [2] and [3, Prop. 18.2] we have29

Theorem 3.4. Suppose that the central division algebra D over k is of even degree, say30

d = 2h. If π ∼= J(2, σ), where σ = ⊗v∈Vkσv is a cuspidal automorphic representation of31

GL(d,Ak), is a summand of L2
res,{Qd}(H,ω), then π is always compatible with respect to D,32

that is, π ∼= J(2, σ) occurs in the image of Ξ. One has to distinguish the following two cases33

in the correspondence via Ξ:34

1Here we use the standard notation: Given a partition (m1, . . . ,ms) of the natural number m ≥ 1 and

given for each mi, i = 1, . . . , s, an automorphic representation πi of GL(mi,Ak) we denote by π1 × · · · × πs
the automorphic representation obtained by parabolic induction from π1 ⊗ · · · ⊗ πs on the Levi subgroup
LPρ of the parabolic subgroup Pρ attached to the ordered partition (m1, . . . ,ms) in GL(m).
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(1) If there is a place v0 ∈ VD such that σv0 is not square–integrable, then π corresponds1

to a cuspidal automorphic representation π′ of H ′(Ak).2

(2) If σv is square–integrable at all non–split places v ∈ VD, let σ′ be the cuspidal3

automorphic representation of D×Ak corresponding to σ by the Jacquet-Langlands4

correspondence. Note that σ′ is not one–dimensional. Then π corresponds to the5

residual representation J ′(2, σ′) of H ′(Ak) which is constructed in analogy to J(2, σ)6

and occurs in the residual spectrum L2
res(H

′, ω).7

4. Some cohomological representations of GL(d,H) and GL(2d,R)8

The investigation of the global injective map Ξ from the set of irreducible constituents9

of L2
disc(H ′, ω) to the set of irreducible constituents of L2

disc(H,ω) involves, if π = Ξ(π′),10

with π = ⊗v∈Vkπv and π′ = ⊗v∈Vkπ′v, a precise knowledge of the local Jacquet-Langlands11

correspondence between πv and π′v at places v ∈ VD. Since we aim to construct global12

automorphic representations of H ′(Ak) which are of cohomological relevance, this question,13

in particular, concerns the archimedean places v ∈ VD ∩ Vk,∞. We are interested in those14

representations π so that the local group in question, say H(kv) resp. H ′(kv), v ∈ Vk,∞,15

has non-trivial continuous cohomology with coefficients in πv ⊗C resp. π′v ⊗C. The case of16

the groups GL(1,H) ∼= H× and GL(2,R) provides the basic ingredients in dealing with the17

general case. Results of Vogan-Zuckerman concerning the general classification of irreducible18

unitary representations of a real reductive Lie group with non-zero continuous cohomology19

as established in [49] resp. [48] are fundamental in this study.20

4.1. Discrete series representation of GL(2,R) and the local correspondence. Let
V (r), r ≥ 2, denote the irreducible two-dimensional representation of the orthogonal group
O(2) which is fully induced by the character kθ 7→ eirθ of the subgroup SO(2) of rotations
kθ, θ ∈ [0, 2π], in O(2) of index two. Given an integer m ≥ 2, we denote by Dm the
discrete series representation of GL(2,R) of lowest O(2)-type m. The representation Dm is
square-integrable and characterized by the fact that its restriction to the maximal compact
subgroup O(2) of GL(2,R) decomposes as an algebraic sum of the form

Dm|O(2)
∼= ⊕r∈Σ(m)V (r), Σ(m) = {l ∈ Z | l ≡ m mod 2, l ≥ m}.

In this labelling of the discrete series representations of GL(2,R) the Harish-Chandra pa-21

rameter of Dm,m ≥ 2, is m− 1.22

The local Jacquet-Langlands correspondence between GL(1,H) = H× and GL(2,R) is23

as follows: Let δ be a unitary square-integrable representation of GL(2,R), and let χ be a24

unitary character of R×. If δ = D2(χ ◦det2) is of lowest O(2)-type 2, then it corresponds to25

the character χ ◦ nrd1 of H×. Observe that D2 corresponds to the trivial character of H×,26

denoted by 1H× . Next, if δ = Dm(χ◦det2) is of lowest O(2)-type m > 2, then it corresponds27

to δ′ = D′m(χ ◦ nrd1), where D′m is the representation of H× which corresponds to Dm, and28

nrd1 denotes the reduced norm on H×. The representation δ′ is not one-dimensional.29

4.2. Non-vanishing continuous cohomology for Dm. Let (σk, Fk), k ≥ 0, be the ir-30

reducible finite-dimensional representation of GL(2,R) of highest weight µk = k · ω [where31

ω denotes the fundamental dominant weight of GL(2,R)], thus, dimFk = k + 1. The con-32

tinuous cohomology H∗ct(GL(2,R), Dm ⊗ Fk) vanishes if k 6= m − 2 since the infinitesimal33

character χDm differs from the one of the contragredient representation of (σk, Fk). In the34

case k = m− 2 one has Hq
ct(GL(2,R), Dm ⊗ Fm−2) = C for q = 1; it vanishes otherwise.35
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4.3. The classification of Vogan-Zuckerman - the general case. It is necessary,1

mainly to fix notation, to recall some results of Vogan-Zuckerman concerning the general2

classification of irreducible unitary representations of a connected real reductive Lie group3

with non-zero continuous cohomology as established in [49] resp. [48]2. This constructive4

approach is algebraic in nature. We fix a maximal compact subgroup K ⊂ G, denote5

by X = XG the associated symmetric space, and write θK for the corresponding Cartan6

involution. Write g = k+p for the corresponding Cartan decomposition of the Lie algebra g7

of G. By definition, a θK-stable parabolic subalgebra of g is a parabolic subalgebra q ⊂ gC8

such that θKq = q, and q∩ q = lC is a Levi subalgebra of q where the bar refers to complex9

conjugation with regard to the real form g of gC. The Levi subalgebra lC is necessarily10

defined over R, and the real subalgebra l is stable under the Cartan involution. We define11

the Levi subgroup L attached to q by12

(4.1) L = {g ∈ G | Ad(g)(q) ⊂ q}.
It is a connected real reductive group of the same rank as G. The Cartan involution θK13

preserves L, and the restriction θK,|L to L is a Cartan involution of L. The fact that14

L contains a maximal torus T ⊂ K is essential in the classification of θ-stable parabolic15

subalgebras of g up to conjugation by K. Given a θK-stable parabolic subalgebra q of g with16

Levi subgroup L, write u for the nil radical of q, and R(q) := dim(u∩pC). Attached to q there17

is an irreducible unitary representation πq of G. Up to infinitesimal equivalence, πq depends18

only on the K-conjugacy class of q. Notice that there are only finitely many K-conjugacy19

classes of θK-stable parabolic subalgebras of g. If we write Aq for the Harish-Chandra20

module of πq, then the continuous cohomology of G with coefficients in πq coincides with21

the relative Lie algebra cohomology with respect to Aq, and we have, using [49, Theorem22

3.3],23

(4.2) Hp
ct(G, πq ⊗ C) ∼= Hp(g,K;Aq) ∼= Hp−R(q)(l, L ∩K;C).

The right hand side is isomorphic to Homl∩k(Λ
p−R(q)(l ∩ p),C) so that we get24

(4.3) Hp
ct(G, πq ⊗ C) ∼= Homl∩k(Λ

p−R(q)(l ∩ p),C).

Thus, the cohomology group H∗ct(G, πq ⊗ C) vanishes in degrees below R(q) and above25

R(q) + dim(l ∩ p). Now interpret the right hand side of 4.3 in the following way: Let Lu26

be the compact form of the real Levi subgroup L, and let XL,u be the compact dual of the27

space L/(K ∩L). Then we have (see, for example, [43, Section 7.1] and the references given28

therein)29

(4.4) Homl∩k(Λ
p−R(q)(l ∩ p),C) ∼= Hp−R(q)(L0

u/(Lu ∩K)0,C).

By Poincare duality, we obtain R(q) = (1/2)(dimX − dimXL,u).30

We denote by P (πq, t) the Poincare polynomial of the cohomology space H∗ct(G, πq⊗C).31

Then, by the preceding argument, we obtain the formula32

(4.5) P (πq, t) = tR(q)P (XL,u, t)

where P (XL,u, t) denotes the Poincare polynomial of the compact dual XL,u of the space33

L/(K ∩ L).34

Suppose (π,Hπ) is an irreducible unitary representation of G so that the continuous co-35

homology of G with coefficients in (π,Hπ) does not vanish. Then, by [49, Thm. 4.1], there36

is a θ-stable parabolic subalgebra q of g so that πq ∼= π, and thus also for the corresponding37

2If G is non-connected but still in Harish-Chandra’s class the notation is slightly more complicated but
there arise no essential new difficulties.
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Harish-Chandra module Hπ,K
∼= Aq. Given a θ-stable parabolic subalgebra q, the corre-1

sponding irreducible unitary representation πq is a discrete series representation if and only2

if l ⊂ k. It is a fundamental series representation if and only if [l, l] ⊂ k. If [l, l] is not3

contained in k then πq is not tempered (cf. [49, p. 58]). If the θ-stable parabolic subalgebra4

q coincides with g, then L = G, hence the corresponding representation πq is the trivial5

representation.6

Let q be a θ-stable parabolic subalgebra of g and let πq be the corresponding unique irre-7

ducible representation of G so that the continuous cohomology of G with coefficients in πq8

is non-zero. In the cases of interest for us, it is necessary to determine how these representa-9

tions fit into the Langlands classification (cf. [35]) of irreducible admissible representations10

of G. Fundamentally, the idea behind the classification is to inductively parametrize the11

irreducible admissible representations of G in terms of irreducible tempered representations12

of Levi subgroups L of G.13

Thus, given a θ-stable parabolic subalgebra of g, we have to describe the corresponding so-14

called Langlands quotient, characterized by its uniquely determined data (P, σ, ν), namely,15

a (standard) parabolic subgroup P of G with decomposition P = MAPN , σ an irreducible16

tempered representation of M , and ν ∈ a∗P such that 〈Reν, α〉 > 0 for all roots α in n. The17

final general result, with regard to the choice of P obtained in a process of two steps, is18

described in [49, Thm. 6.16]. In the case GL(2r,R), one can partially read it off from [46,19

sect. 4].20

4.4. The classification of Vogan-Zuckerman - the cases GL(2r,R) and GL(r,H).21

Firstly, we consider the case of the non-connected real reductive group G = GL(2r,R), r ≥ 1,22

K = O(2r), and g = k⊕ p the Cartan decomposition which corresponds to θK . Let m0 ≥ 023

be an integer, and let m1, . . . ,ms be positive integers with r = m0 +m1 + . . .+ms. Note,24

in the case s = 0, m0 = r. There corresponds a θK-stable parabolic subalgebra q = l ⊕ u25

whose corresponding real Levi subalgebra is26

(4.6) l = gl(2m0,R)⊕ gl(m1,C)⊕ . . .⊕ gl(ms,C).

Thus, the possible corresponding Levi subgroups L are27

(4.7) L = GL(2m0,R)×GL(m1,C)× . . .×GL(ms,C).

Secondly, let G be the connected real reductive group GL(r,H), K = Sp(r). Let n0 ≥ 028

be an integer, and let n1, . . . , ns be positive integers with r = n0 + n1 + . . . + ns. Note, in29

the case s = 0, n0 = r. There corresponds a θK-stable parabolic subalgebra q = l ⊕ u of g30

whose corresponding real Levi subalgebra is31

(4.8) l = gl(n0,H)⊕ gl(n1,C)⊕ . . .⊕ gl(ns,C).

Thus, the possible corresponding Levi subgroups L are32

(4.9) L = GL(n0,H)×GL(n1,C)× . . .×GL(ns,C).

This result is based on an explicit constructive procedure similar to the one as carried33

through in the analogous case of the Lie group SL(r,H), also denoted by SU∗(2r), in [44].34

4.5. Tempered cohomological representations. Suppose that n is an even positive35

integer, say, n = 2r. Within the family of irreducible unitary tempered representations of36

the real Lie group GL(2r,R) there is exactly one representation (θ,Hθ) (up to infinitesimal37

equivalence) so that the continuous cohomology H∗ct(GL(2r,R), Hθ ⊗ C) of GL(2r,R) with38

coefficients in θ ⊗ C is non-zero. This representation can be described in the following way39

(cf. [41, Section 3]).40
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Let Pδn be the cuspidal parabolic subgroup of GL(n,R) given by the partition δn =1

(2, . . . , 2) of n. Its Levi subgroup LPδn is isomorphic to GL(2,R)×· · ·×GL(2,R). Consider2

the representation τ = ⊗τi, i = 1, . . . , r, of LPδn whose i-th component τi is a discrete series3

representation of GL(2,R) of lowest O(2)-type 2i, i = 1, . . . , r. Then4

(4.10) Ind(Pδn , τ) ∼= D2 ×D4 × · · ·Dn

is an irreducible unitary representation of GL(n,R), the unique one (up to infinitesimal5

equivalence) that is tempered and so that H∗ct(GL(n,R), Ind(Pδn , τ) ⊗ C) 6= {0}. The6

continuous cohomology does not vanish in a range of length rk GL(n,R)− rk O(n) around7

the middle dimension of the underlying symmetric space (cf. [7, III, Prop. 5.3.]).8

For the sake of completeness we ascertain that the θ-stable parabolic subalgebra q of9

gl(2r,R) which corresponds to the representation Ind(Pδn , τ) is of the form so that the real10

Levi subalgebra is11

(4.11) l ∼= gl(1,C)⊕ . . .⊕ gl(1,C) ∼= gl(1,C)r.

Thus, its parameter is (m0;m1, . . . ,mr) = (0; 1, . . . , 1).12

We now determine a representation (θ′, Hθ′) of GL(r,H) which corresponds under the13

local Jacquet-Langlands correspondence to the representation (θ,Hθ) := Ind(Pδn , τ). We14

denote by P ′δr = L′δrN
′
δr

the standard minimal parabolic subgroup of GL(r,H) whose Levi15

subgroup consists of r copies of GL(1,H) ∼= H×. Then the representation16

(4.12) Ind(P ′δr , τ
′) ∼= 1H× ×D′4 × · · ·D′2r

is an irreducible unitary representation of GL(r,H). In fact, θ′ := Ind(P ′δr , τ
′) is the only17

irreducible unitary representation of GL(r,H) which is tempered and so that the continuous18

cohomology of GL(r,H) with coefficients in θ′ ⊗ C is non-zero in a certain range.19

Proposition 4.1. Let n = 2r be even. The irreducible tempered representation θ′ :=20

Ind(P ′δr , τ
′) of GL(r,H) corresponds under the local Jacquet-Langlands correspondence to21

the irreducible tempered representation (θ,Hθ) := Ind(Pδn , τ) of GL(n,R). The continuous22

cohomology of GL(r,H) with coefficents in θ′⊗C is non-zero. More precisely, the continuous23

cohomology does not vanish in a range of length rk GL(r,H) − rk Sp(r) around the middle24

dimension of the underlying symmetric space.25

Proof. Since the local Jacquet-Langlands correspondence at real archimedean places (see [3,26

Section 13]) commutes with parabolic induction and the process of forming tensor products27

of representations the assertion is an immediate consequence of the construction of both28

representations where the building blocks match under the correspondence.29

We relate the representation θ′ = Ind(P ′δr , τ
′) of GL(r,H) to the corresponding data30

within the classification of irreducible unitary representations of the Lie group GL(r,H) with31

non-zero continuous cohomology as described in 4.3. The representation θ′ is equivalent to32

the representation πq′ which corresponds to the θK-stable parabolic algebra q′ of the Lie33

algebra g′ of GL(r,H) so that the real Levi subalgebra l′ of q′ is given by34

(4.13) l′ ∼= gl(1,C)r.

Since [l′, l′] = {0} ⊂ k′, it follows that θ′ is tempered. The basis for the coincidence of the35

form of l′ in this case with the form of the real Levi subalgabra as given in formula 4.11, and36

hence finally for the Jacquet-Langlands correspondence, is the fact that the Lie algebras37

gC and g′C attached to the two groups GL(2r,R) and GL(r,H) share Levi subalgebras of38

θ-stable parabolic subalgebras which are products of gl(mi,C). �39
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4.6. A specific non-tempered representation of GL(d,H). Given our global context,1

that is, a central division algebra D over k of even degree, say d = 2h, the representation2

(θ,Hθ) of GL(d,R) as well as the representation (θ′, Hθ′) of GL(h,H) give rise to two other3

representations which are decisive in our construction of non-vanishing square integrable4

cohomology classes for the group GL(2, D).5

Let JR(2, θ) with θ = Ind(Pδd , τ) as defined in 4.5 denote the unique irreducible quotient6

of the induced representation of GL(2d,R) of the form7

(4.14) θ|det |1/2 × θ|det |−1/2.

Under the local Jacquet-Langlands correspondence this representation JR(2, θ) of GL(2d,R)8

corresponds to the analogous representation J ′R(2, θ′) with θ′ = Ind(P ′δh , τ
′) as defined in 4.59

for GL(d,H), given as the unique irreducible quotient J ′R(2, θ′) of the induced representation10

of the form11

(4.15) θ′nrd1/2 × θ′nrd−1/2.

Proposition 4.2. The irreducible unitary representation J ′R(2, θ′) of GL(d,H), d even, say12

d = 2h, is a non-tempered representation. It corresponds under the local Jacquet-Langlands13

correspondence to the irreducible non-tempered representation JR(2, θ) of GL(2d,R), and14

the continuous cohomology of GL(d,H) with coefficents in J ′R(2, θ′) ⊗ C is non-zero. The15

Poincare polynomial of the representation J ′R(2, θ′) of GL(d,H) has the form16

(4.16) P (J ′R(2, θ′), t) = t
d(2d−3)

2 ·
d/2∏
s=1

ms∏
i=1

(1 + t2i−1).

with mi = 2, i = 1, . . . , d/2. The lowest degree p in which the continuous cohomology17

H∗ct(GL(d,H), J ′R(2, θ′)) of GL(d,H) with coefficients in J ′R(2, θ′) does not vanish is d(2d−3)
2 .18

Proof. We describe the representation J ′R(2, θ′) of GL(d,H) in terms of the classification19

of irreducible unitary representations of GL(d,H) with non-zero continuous cohomology as20

established in [49] resp. [48] (see subsection 4.4 above). Thus, given the irreducible unitary21

representation J ′R(2, θ′) of GL(d,H), we proceed as follows to obtain the corresponding22

algebraic data in this framework. Since, in the given case, we already know the Langlands23

data by construction, going backwards in the line of arguments in [49, Section 6]) we can24

identify the corresponding θK-stable parabolic subalgebra q in g: the real Levi subalgebra25

l of q turns out to be26

(4.17) l ∼= gl(2,C)⊕ gl(2,C)⊕ . . .⊕ gl(2,C) ∼= gl(2,C)h.

By 4.5 the Poincare polynomial of J ′R(2, θ′) has in terms of the corresponding θ-stable27

parabolic subalgebra q the following form28

(4.18) P (J ′R(2, θ′), t) = tR(q)P (XL,u, t).

The compact dual XL,u is a product of h copies of the symmetric space (U(2)×U(2))/U(2).29

Thus, using [19, Thm. IX], we obtain30

(4.19) P (XL,u, t) =

h∏
s=1

ms∏
i=1

(1 + t2i−1).

where (m0,m1, . . . ,mh) := (0, 2, . . . , 2) is the partition of d attached to the θK-stable par-31

abolic subalgebra q in question. The shift R(q) = dim(u ∩ pC) = (1/2)(dimXGL(d,H) −32
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dimXL,u) is given by1

(4.20) R(q) = (1/2)[(2d2 − d)− h · 22] = (1/2)d(2d− 3).

Thus, the Poincare polynomial of the representation J ′R(2, θ′) of GL(d,H) has the form2

(4.21) P (J ′R(2, θ′), t) = t
d(2d−3)

2 ·
d/2∏
s=1

ms∏
i=1

(1 + t2i−1).

with mi = 2, i = 1, . . . , d/2. �3

5. Construction of cohomological cuspidal representations for GL(n)/k4

with prescribed local behaviour5

This section falls into two parts. First, using the transfer of irreducible cuspidal represen-6

tations between GL(n)/k and SL(n)/k as proved in [32], [33], and their actual construction7

in [6] in the case SL(n)/k, we construct such representations π = ⊗′v∈Vkπv for the for-8

mer group such that its archimedean component π∞ is cohomological with regard to the9

trivial coefficient system, and, given a finite set S ⊂ Vf,k of non-archimedean places, the10

corresponding local components πv, v ∈ S, are Steinberg representations. Second, using11

the concept of automorphic induction, we construct irreducible cuspidal representations of12

GL(n)/k, n even, with π∞ cohomological with regard to the trivial coefficient system, and,13

given a fixed non-archimedean place v0 ∈ Vf,k, the local component πv0 is not a square-14

integrable representation of GL(n, kv0).15

5.1. Via transfer.16

Theorem 5.1. Let k be a totally real number field, and let GL(n) be the general linear group17

defined over k. Given a finite set S ⊂ Vf,k of finite places of k, there exists a cuspidal auto-18

morphic representation π = ⊗′v∈Vkπv occuring non-trivially in L2
cusp(GL(n, k)\GL(n,Ak))19

so that the local component πv, v ∈ S, is the Steinberg representation of GL(n, kv) and so20

that the local components πv, v ∈ V∞,k, of the representation π∞ are (up to equivalence) the21

only irreducible tempered representation Ind(Pδn , τ) of GL(n,R) with non-trivial continuous22

cohomology H∗ct(GL(n,R), Vπ∞ ⊗ C).23

Proof. By [6, 11.3] the assertion is valid in the case of the special linear group SL(n)/k.24

Thus, there exists a cuspidal automorphic representation π = ⊗′v∈V πv, occuring non-trivially25

in L2
cusp(SL(n, k)\SL(n,Ak)), so that the local component πv, v ∈ S, is the Steinberg rep-26

resentation of SL(n, kv) and so that the representation π∞ has non-trivial continuous co-27

homology H∗ct(SL(n)∞, Vπ∞ ⊗ C). Using the global transfer between GL(n) and SL(n) in28

terms of L-packets in the automorphic context as proved in [32, Prop. 3.5] [see the correction29

[33]], there exists a cuspidal automorphic representation π̃ = ⊗′v∈V π̃v, occuring non-trivially30

in L2
cusp(GL(n, k)\GL(n,Ak)).31

Given a place v ∈ S, the local component π̃v, v ∈ S, is the Steinberg representation of32

GL(n, kv), since the restriction of the Steinberg representation of the local group GL(n, kv)33

is the Steinberg representation of the group SL(n, kv), that is, the corresponding L-packet34

consists of one element.35

At an archimedean place v ∈ V∞, by the results recalled in 4.5, the local component π̃v is36

equivalent to the unique irreducible cohomological representation Ind(Pδn , τn) of GL(n,R).37

Finally, note that the restriction π̃v|SL(n,kv) of an unramified representation π̃v, v ∈ Vf,k,38

contains a uniquely determined constituent that is unramified. �39
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5.2. Via automorphic induction - the case GL(2). We turn to the second construction.1

More specifically, we call for cuspidal representations π = ⊗′v∈Vkπv of GL(2,Ak) whose2

archimedean component π∞ is cohomological and, given a fixed non-archimedean place3

v0 ∈ Vf,k, the component πv0 is not a square-integrable representation of GL(2, kv0).4

In view of this task it is necessary to recall, through the cohomological lens, some facts5

regarding the compatibility of discrete series representations of GL(2,R) and the irreducible6

finite-dimensional algebraic representation (η,E) of GL(2)∞ in a complex vector space E.7

As before we assume that this representation originates from an algebraic representation of8

the algebraic k-group GL(2). Its highest weight can be written as µ = (µ)ιv , v ∈ V∞,k, where9

ιv ranges over the embeddings ιv : k → R corresponding to v ∈ V∞,k. Each of the weights10

(µ)ιv is of the form µvωv, µv ∈ Z, µv ≥ 0, where ωv denotes the fundamental dominant11

weight of the group Gv ∼= GL(2,R), v ∈ V∞,k. Given a highest weight µ = (µ)ιv , v ∈ V∞,k,12

we say that a family {Dmv}, mv ∈ Z,mv ≥ 2, of discrete series representations of GL(2,R),13

parametrized by v ∈ V∞,k, is compatible with µ if µvωv = (mv − 2)ωv for all v ∈ V∞,k.14

Theorem 5.2. Let k be a totally real algebraic number field, and let (η,E) be an irre-
ducible finite-dimensional algebraic representation of the archimedean component G∞ =∏
v∈V∞,k Gv, with Gv ∼= GL(2,R), of GL(2,Ak). The highest weight of (η,E) is denoted

by µ = (µvωv)v∈V∞,k , where µv ∈ Z, µv ≥ 0. Given a fixed non-archimedean place
v0 ∈ Vf,k, there exists an irreducible cuspidal automorphic representation π of GL(2,Ak)
whose archimedean component π∞ = ⊗v∈V∞,kπv is of the form

π∞ = ⊗v∈V∞,kDmv

where the family {Dmv}v∈V∞,k of discrete series representations of GL(2,R) is compatible15

with the highest weight µ, that is, mv = µv+2 for all v ∈ V∞,k, and where the component πv016

is not a square-integrable representation of GL(2, kv0). The representation π of GL(2,Ak)17

contributes non-trivially to the cuspidal cohomology H∗cusp(GL(2), E) in degree d = [k : Q].18

Proof. The irreducible cuspidal automorphic representation π of GL2(Ak) we ask for will be19

constructed via automorphic induction from a Hecke character of an imaginary quadratic20

extension of k. Given a fixed non-archimedean place v0 ∈ Vf,k, we may choose such an21

extension field F of k such that v0 splits in F . If ` = [k : Q], then [F : Q] = 2`. The22

extension F/Q is usually called a CM-field extension. Fix a CM-type Φ of F , that is, a set23

Φ ⊂ Hom(F,Q), say Φ = {σw}w∈V∞,F , such that, if σ ∈ Φ, then its conjugate σc under the24

unique non-trivial element of the Galois group Gal(F/k) does not belong to Φ.25

Given a unitary Hecke character θ : IF −→ C× of the group of ideles IF of F , we denote26

by π(θ) the automorphic induction of θ to GL2(Ak). It is defined by π(θ) = ⊗′vπ(θ)v, where27

(1) if v ∈ Vk splits in F , then π(θ)v is the principal series representation of GL2(kv)28

induced from the character θw1 ⊗ θw2 of the torus, where w1 and w2 are the two29

places of F above v;30

(2) if v does not split in F , then π(θ)v is the local automorphic induction of θw to a31

representation of GL2(kv), where w is the unique place of F lying above v.32

Since F is an imaginary quadratic extension field of k all archimedean places of k do not33

split in F , thus, the second case is valid at places v ∈ V∞,k.34

The discrete series representation Dκ+2 of GL(2,R) corresponds, via the local Langlands
correspondence, to the two-dimensional irreducible representation of the Weil group WR
obtained by induction from the character of WC = C∗ given by the assignment

z 7→ (z/|z|)κ+1, z ∈ C∗,
where |z| =

√
z · z. Hence, Dκ+2 is the local automorphic induction of that character.35
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Let {µv}v∈V∞,k be the set of integers µv ∈ Z, µv ≥ 0, that originates with the highest
weight µ = (µvωv)v∈V∞,k of (η,E). It is a basic observation of Weil [50], using a result of
Chevalley [9], that, since F is a CM-field, there is a unitary Hecke character θ of F with
archimedean components given by

θw(zw) = (σw(zw)/|σw(zw))µw+1 for all w ∈ Φ.

In turn, the discrete series representation Dµw+2 is the automorphic induction π(θ)v of θw,1

with w ∈ Φ the only place above v ∈ V∞,k. Note that θ 6= θc, with c ∈ Gal(F/k), c 6= 1, since2

this is correct already for the archimedean components. Thus, the unitary Hecke character3

θ does not factor through the norm map NF/k. As a consequence, by [1, Chap. 3, sect. 6],4

the automorphic induction π(θ) of θ is a cuspidal automorphic representation of GL(2,Ak).5

Since, by the very choice of the CM-field F , the place v0 of k splits in F , the local6

component π(θ)v is the principal series representation of GL2(kv) induced from the character7

θw1
⊗ θw2

on the torus in GL(2, kv0), where w1 and w2 are the two places of F above v.8

Here we have identified kv0 with Fw1
resp. Fw2

. Hence, π(θ)v0 is not a square-integrable9

representation of GL(2, kv0). �10

5.3. The case GL(2n). A slight extension by an additional step within the automorphic in-11

duction used in the proof above allows us to construct cuspidal representations of GL(2n)/k12

with specific local properties. This approach uses a totally real extension with cyclic Galois13

group.3 In this case, the global automorphic induction relies on the work of Henniart [23]14

and the proof of its compatibility with the local automorphic induction. The case of the15

latter one (over a local non-archimedean field of characteristic zero) is dealt with in [24].16

However, the decisive argument is the case GL(2). For the sake of simplicity we only deal17

with the trivial representation as coefficient system, that is, E = C.18

Theorem 5.3. Let k be a totally real algebraic number field, and let v0 ∈ Vf,k be a fixed
non-archimedean place of k. Then there exists an irreducible cuspidal automorphic repre-
sentation π of GL(2n,Ak) whose archimedean component π∞ = ⊗v∈V∞,kπv consists of the
local components

πv = Ind(Pδ2n , σv), v ∈ V∞,k,
with P the parabolic subgroup of type δ2n = (2, . . . , 2) and the representation σv = ⊗σv,i,19

i = 1, ..., n, of LPδ2n where σv,i is the discrete series representation of GL(2,R) of lowest20

O(2)-type 2n− 2i+ 2, i = 1, . . . , n. Moreover, the component πv0 corresponding to the fixed21

place v0 ∈ Vk,f is not a square-integrable representation of GL(2n, kv0).22

Proof. Given n ∈ N, n ≥ 2, there exists a totally real Galois extension L′/Q with cyclic23

Galois group of order n. Indeed, Dirichlet’s theorem on arithmetical progressions asserts24

that any progression a, a + q, a + 2q, . . . where (a, q) = 1 contains infinitely many primes.25

Thus, we can a find a prime p with p = 1 mod 2n. The pth cyclotomic field Q(ζp) contains26

the maximal totally real subfield Q(ζp + ζ−1
p ). Since 2n divides p− 1, n divides the degree27

(p− 1)/2 of the cyclic extension Q(ζp + ζ−1
p )/Q. It follows that there is a Galois extension28

L′/Q with L′ ⊂ Q(ζp + ζ−1
p ) and cyclic Galois group Gal(L′/Q) of order n. Since we have29

infinitely many options to choose the prime p we may (and will) assume that the totally30

real fields k and L′ are linearly disjoint within the algebraic closure Q̄. We denote their31

compositum by L. Then L/k is a Galois extension degree n. Let γ denote a generator of the32

Galois group Gal(L/k). Choose an imaginary extension F ′ of L′, and form the compositum33

F of L and F ′. Then F/Q is a CM-field extension, with k its maximal totally real subfield.34

3This idea is taken from Clozel [10] who deals with the case SL(2n). Aside from that, we have to deal

with the additional local property which is required at a given finite place.
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We fix a CM-type Φ′ of F ′. Each element in Φ′ extends an archimedean place VL′,∞,
that is, |Φ′| = n. Following the argument in the proof of Theorem 5.2 there is a unitary
Hecke character θ′ : IF ′ −→ C× whose archimedean component is of the form

((z/|z|)1, (z/|z|)3, . . . , (z/|z|)2n−1)

We denote by θ : IF −→ C× the character obtained as the composite θ′◦NF/F ′ where NF/F ′
denotes the norm map. Then, as a first step, there exists a cuspidal representation π(θ)
of GL(2,AL), the automorphic induction of θ. In the second step, given π(θ), there exists
an automorphic representation Π(θ) of GL(2n,Ak) (unique up to isomorphism) whose base
change [under the extension L/k] is given as

Ψ := π(θ)× π(θ)γ × · · · × π(θ)γ
n−1

.

Again we see that the representation π(θ) is not fixed by the elements in Gal(L/k), thus,1

Π(θ) is a cuspidal representation of GL(2n,Ak).2

The process of global automorphic induction is compatible with the local process [23,
Thm. 5]. More precisely, given a place v ∈ Vk, let Lv = L ⊗k kv the kv-algebra cyclic
under Gal(L/k). Then Π(θ)v is the local automorphic induction of the representation π(θ)v
of GL(Lv). At an archimedean place v ∈ V∞,k, the representation Π(θ)v of GL(2n, kv) is
therefore (up to isomorphism) of the form

Π(θ)v ∼= D2 ×D4 × . . .×D2n.

since the unitary Hecke character θ′ : IF ′ −→ C× we started with had the archimedean3

component ((z/|z|)1, (z/|z|)3, . . . , (z/|z|)2n−1). We observe that this is exactly the unique4

irreducible tempered representation of GL(2n,R), denoted Ind(Pδ2n , τ) in 4.5, that has non-5

trivial continuous cohomology H∗ct(GL(2n,R), Ind(Pδ2n , τ) ⊗ C) with regard to the trivial6

representation as coefficient system.7

Next, let v0 ∈ Vf,k be a fixed non-archimedean place of k, and let ṽ0 ∈ Vf,L be a place8

above v0. Then, as proved in Theorem 5.2, we can achieve that the local representation9

π(θ)ṽ0 is not square-integrable. By the compatibility of the global and local automorphic10

induction the property descends to the local representation Π(θ)v0 . �11

6. Construction of residual automorphic representations for GL(2, D)/k12

Let k be a totally real algebraic number field of degree `, and let D be a finite-dimensional13

central division algebra over k of degree d > 1. We suppose that there is at least one14

archimedean place at which D does not split. Then, by 2.2, it follows that d is even. Let H ′15

denote the algebraic k-group GL(2, D), and let H denote the k-group GL(2d)/k as before.16

Now, based on the existence of cuspidal automorphic representations with certain prescribed17

local behaviour as proved in Theorem 5.1, we construct automorphic representations π′ of18

H ′(Ak) which occur as irreducible constituents in the residual spectrum of H ′(Ak) and19

which eventually contribute non-trivially to the square-integrable cohomology of H ′/k [see20

Section 8].21

Theorem 6.1. Let k be a totally real number field of degree `, and let D be a finite-22

dimensional central division algebra over k of degree d > 1. Let VD ⊂ Vk be the finite set23

of places of k at which D does not split. Let t denote the number of archimedean places in24

VD, and suppose that t > 0. Then there exist automorphic representations π′ = ⊗′v∈Vkπv25

of H ′(Ak) which occur as irreducible constituents in the residual spectrum of H ′(Ak) and26

whose archimedean component πv at a place v ∈ VD ∩ Vk,∞ is equivalent to the irreducible27

unitary representation J ′R(2, θ′) of GL(d,H).28
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Proof. Consider the maximal parabolic k-subgroup Qd of H = GL(2d) whose Levi subgroup1

is isomorphic to GL(d) × GL(d). Since d is even, say d = 2h, there exists an irreducible2

cuspidal automorphic representation σ = ⊗′v∈Vkσv of GL(d,Ak) which satisfies the following3

two conditions (see Theorem 5.1):4

Firstly, the archimedean components of σ are of the form σv ∼= D2 ×D4 × · · ·D2h. This5

is exactly the irreducible unitary representation of GL(d,R), denoted Ind(Pδd , τ) in 4.5, the6

unique one (up to infinitesimal equivalence) that is tempered and so that the continuous7

cohomology H∗ct(GL(d,R), Ind(Pδd , τ)⊗ C) does not vanish.8

Secondly, for all finite places v ∈ VD ∩ Vk,f , the local component σv is the Steinberg9

representation of GL(d, kv). This representation is an irreducible admissible representation10

of GL(d, kv) and it is square-integrable modulo the center [8, Sect. 7].11

Then there is the automorphic representation of GL(2d,Ak), to be denoted12

(6.1) σ|det |1/2 × σ|det |−1/2,

obtained by parabolic induction from σ⊗σ on the Levi subgroup LQd
∼= GL(d)×GL(d) of the13

parabolic subgroup Qd. By the work of Moeglin-Waldspurger [36], this representation has a14

unique irreducible unitary quotient J(2, σ) which contributes non-trivially to the summand15

(6.2) L2
res,{Qd}(H,ωσ)

of the decomposition of the residual spectrum L2
res(H,ωσ) of H(Ak) = GL(2d,Ak).16

With regard to this constituent J(2, σ) the works of Badulescu and Badulescu-Renard,17

in particular, [2] and [3, Prop. 18.2], imply that, if π ∼= J(s, σ), where σ = ⊗v∈V σv is a18

cuspidal automorphic representation of GL(d,Ak), is a summand of L2
res,{Qd}(H,ωσ), then19

π is always compatible with respect to D, that is, π ∼= J(s, σ) occurs in the image of Ξ.20

Moreover, by construction, σv is square-integrable at all non–split places v ∈ VD. Let21

σ′ be the cuspidal automorphic representation of GL(1, D)(Ak) = D×Ak corresponding to22

σ by the Jacquet-Langlands correspondence. Note that σ′ is not one–dimensional. Then23

J(s, σ) corresponds under Ξ to the representation J ′(s, σ′) of H ′(Ak). The latter represen-24

tation J ′(s, σ′) is obtained as the unique irreducible unitary quotient of the automorphic25

representation26

(6.3) σ′nrd1/2 × σ′nrd−1/2,

and it occurs non-trivially in the summand27

(6.4) L2
res,{Q′}(H

′, ωσ).

of the residual spectrum of GL(2, D)(Ak). Within this construction, by Proposition 4.2,28

the archimedean component J ′(s, σ′)v of J ′(s, σ′) at a place VD ∩ Vk,∞ is equivalent to the29

irreducible unitary representation J ′R(2, θ′) of GL(d,H). �30

Remark 6.2. Note that, if v ∈ Vk,∞ is a place at which the central division algebra splits,31

that is Dv ⊗ kv ∼= Md(R), and hence H ′v
∼= GL(2d,R), then the corresponding component32

of π as constructed is of the form πv ∼= JR(2, θ).33

7. Construction of cuspidal automorphic representations for GL(2, D)/k34

In this section we use the results of Section 5 to prove the existence of cuspidal auto-35

morphic representations of the group GL(2, D)(Ak) which are of cohomological relevance.36

These representations occur in two different forms. One consists of cuspidal representa-37

tions whose archimedean components are tempered and whose construction relies, via the38
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general Jacquet-Langlands correspondence, on Theorem 5.1. The other form consists of cus-1

pidal representations whose archimedean components are non-tempered. Since these latter2

cuspidal representations are nearly equivalent to the residual automorphic representations3

constructed in Theorem 6.1 they may be viewed as shadows of Eisenstein series.4

7.1. The tempered case. We recall that, given a central division algebra D over k of5

degree d, the center Z of both of the two groups H/k = GL(2d)/k and H ′/k = GL(2, D)/k6

is isomorphic to the group of ideles Ik. Thus, we may view a unitary character of Z(k)\Z(Ak)7

as a unitary character of k×\Ik. We fix such a character ω. It is preserved by the global8

Jacquet-Langlands correspondence.9

Theorem 7.1. Let k be a totally real number field of degree `, and let D be a central division10

algebra over k of degree d. Let VD be the finite set of places of k at which D does not split.11

Let t denote the number of archimedean places of k at which D does not split. Denote by H ′12

the algebraic k-group GL(2, D), an inner form of the algebraic k-group H = GL(2d). Then13

there exist cuspidal automorphic representations π′ of H ′(Ak) with Ξ(π′) =: π cuspidal under14

the Jacquet-Langlands correspondence Ξ, and whose archimedean components π′v, v ∈ Vk,∞,15

are irreducible tempered representations of H ′v with H∗ct(H
′
v, Vπv ⊗ C) 6= {0}. .16

Proof. We denote by S the finite set VD ∩ Vk,f , that is, the finite set of non-archimedean17

places at which D does not split. By Theorem 5.1 there exists a cuspidal automorphic18

representation π = ⊗′v∈Vkπv occuring non-trivially in L2
cusp(GL(2d, k)\GL(2d,Ak)) so that19

the local component πv, v ∈ S, is the Steinberg representation of GL(2d, kv) and so that20

the local components πv, v ∈ Vk,∞, of the representation π∞ are (up to equivalence) the21

only irreducible representation Ind(Pδ2d , σ) of GL(2d,R) with non-trivial continuous co-22

homology H∗ct(GL(2d,R), Vπv ⊗ C). The representation π is compatible with D, since at23

the places v ∈ S the local component is square-integrable. Thus, the representation π is24

in the image of the injective map Ξ, that is, there exists an irreducible constitutent π′ of25

L2
cusp(GL(2, D)(Ak)) with Ξ(π′) = π. Under the local correspondence, for v /∈ VD, clearly26

πv ∼= π′v, and πv corresponds to π′v by the local Jacquet–Langlands correspondence at27

v ∈ VD. In particular, let v ∈ VD∩Vk,∞, then necessarily d is even and Dv
∼= Md/2(H), thus28

H ′v
∼= GL(d,H). Within the classification [up to infinitesimal equivalence] of the irreducible29

unitary representations of GL(d,H) with non-vanishing continuous cohomology with regard30

to the trivial coefficient system, one finds the so-called fundamental series representation.31

It is constructed as follows: We denote by P ′δd = L′δdN
′
δd

the standard minimal parabolic32

subgroup of GL(d,H) whose Levi subgroup L′δd consists of d copies of GL(1,H). As pointed33

out in Remark 3.3 the local Jacquet-Langlands correspondence between GL(2,R) and H×34

asserts that if δ = D2(χ◦det2) is of lowest O(2)-type 2, then it corresponds to the character35

χ ◦ nrd1 of H×, where χ is a unitary character of R×. Thus, D2 corresponds to the trivial36

character of H×.37

If δ = Dm(χ◦det2) is of lowest O(2)-type m > 2, then it corresponds to δ′ = D′m(χ◦nrd1),
which is not a one-dimensional representation of H×. Given the discrete series representation
Dm,m > 2, of GL(2,R), we denote by D′m the corresponding representation of H×. The
local representation

Ind(P ′δd , σ
′) ∼= 1H× ×D′4 × . . .×D′2d

of GL(d,H) is an irreducible unitary representation, the unique one that is tempered and has38

non-vanishing continuous cohomology with regard to the coefficient system C. By [3, Sect.39

13], under the local Jacquet-Langlands correspondence this representation corresponds to40

the irreducible tempered representation Ind(Pδ2d , σ) ∼= D2×D4×. . .×D2d of GL(2d,R). �41



SQUARE-INTEGRABLE AUTOMORPHIC COHOMOLOGY CLASSES - GL(2, D) 19

7.2. The non-tempered case. We retain the notation of the previous subsection. As1

before we suppose that the set VD of places of D at which D does not split contains at2

least one archimedean place. Then it follows that d is even. We write d = 2h. Let H ′3

denote the algebraic k-group GL(2, D). In the following we construct cuspidal automorphic4

representations π′ of H(A′k) which eventually contribute non-trivially to the cuspidal coho-5

mology H∗cusp(H ′,C) and which are CAP-representations. For the sake of clarity we recall6

this notion.7

Definition 7.2. We call an irreducible cuspidal representation τ of a quasi-split connected8

reductive k-group G a CAP-representation with respect to a parabolic k-subgroup P of G9

if τ is nearly equivalent to an irreducible constituent of an induced representation IndGPσ10

where σ is a cuspidal representation of the Levi subgroup of P .11

If G′ is an inner form of a quasi-split group G as above, a modification of this notion12

of being CAP is necessary (see, for example, [14, 3.9, 3.10] or [27, Sect. 6]). Since the13

local groups G′v and Gv are isomorphic for almost all v ∈ Vk, it makes sense to say that14

a representation τ ′ of G′(Ak) is nearly equivalent to a representation of G(Ak). Thus, we15

call an irreducible cuspidal representation τ ′ of G′(Ak) a CAP representation with respect16

to a parabolic k-subgroup of G if τ ′ is nearly equivalent to an irreducible constituent of an17

induced representation IndGPσ where σ is a cuspidal representation of the Levi subgroup of18

P .19

Theorem 7.3. Let k be a totally real number field, and let D be a finite-dimensional central20

division algebra over k of degree d. Suppose that the set VD of places of D at which D21

does not split contains at least one archimedean place. Let H ′/k denote the algebraic k-22

group GL(2, D)/k. Then there exist cuspidal automorphic representations π′ of H ′(Ak)23

with Ξ(π′) =: π a residual representation of the group H(Ak) attached to the split group24

H/k = GL(2d)/k under the Jacquet-Langlands correspondence Ξ so that the archimedean25

components π′v, v ∈ V∞,k, have the following form: If v ∈ VD∩Vk,∞, that is, H ′v
∼= GL(d,H),26

then π′v
∼= J ′R(2, θ′), and if v ∈ Vk,∞, v /∈ VD, that is, H ′v

∼= GL(2d,R), then π′v
∼= JR(2, θ).27

In both cases the archimedean component is a non-tempered representation of H ′v.28

The representation π′ is CAP-representation with respect to the (maximal) parabolic k-29

subgroup Qd = Q∆\{αd} of GL(2d)/k.30

Proof. The group H ′ = GL(2, D)/k is a k-form of the general linear k-group H = GL(2d)/k.
Let l be a splitting field of D, thus, there is an isomorphism

ψ : GL(2, D)×k l −→ GL(2d)/l

of algebraic l-groups.. Let Q′ be the minimal parabolic k-subgroup of GL(2, D) fixed in
Subsection 2.1. The image of the l-group Q′ ×k l under ψ is the standard parabolic l-
subgroup Qd = Q∆\{αd} of GL(2d)/`. Its Levi subgroup LQd/l is isomorphic to GL(d)/l×
GL(d)/l. Since d is even, say d = 2h, we can use the construction of cuspidal representations
carried through in Theorem 5.3 for each of these factors. Thus, there exists an irreducible
cuspidal automorphic representation τ of GL(2h,Ak) whose archimedean component τ∞ =
⊗v∈Vk,∞τv consists of the local components

τv = Ind(Pδ2h , σv), v ∈ Vk,∞,

with P the parabolic subgroup of type δ2h = (2, . . . , 2) and the representation σv = ⊗σv,i,31

i = 1, ..., h, of LPδ2h where σv,i is the discrete series representation of GL(2,R) of lowest32

O(2)-type 2h−2i+2, i = 1, . . . , h. Moreover, by Theorem 5.3, we may assume that at a fixed33

place v0 ∈ Vf,k the component τv0 is not a square-integrable representation of GL(2h, kv0).34
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We denote by Ind(2, τ) the representation of GL(2d,Ak) induced from the representation

τ |det | 12 ⊗ τ |det |
−1
2

of the Levi factor LQd(Ak). As proved in [36, I. 11], this representation has a unique1

irreducible quotient to be denoted by J(2, τ). It is a representation of GL(2d,Ak) which2

occurs in the residual spectrum (cf.[26]). The representation J(2, τ) is compatible with3

respect to D. Thus, there exists a unique irreducible automorphic representation π′ of4

H ′(Ak) with Ξ(π′) = J(2, τ). Since the local representation τv0 is not a square-integrable5

representation of GL(2h, kv0), it follows, by [3, Prop. 18. 2] (see Theorem 3.4 in this paper),6

that the representation π′ is cuspidal.7

Let v ∈ Vk,∞ be an archimedean place of k. By construction, the local component of the
cuspidal representation τ is of the form

τv = Ind(Pδ2h , σv), v ∈ V∞,k,

with P the parabolic subgroup of type δ2h = (2, . . . , 2) and the representation σv = ⊗σv,i,8

i = 1, ..., h, of LPδ2h where σv,i is the discrete series representation of GL(2,R) of lowest9

O(2)-type 2h − 2i + 2, i = 1, . . . , h. Thus, the archimedean component J(2, τv) of J(2, τ),10

v ∈ Vk,∞, is equivalent to the irreducible non-tempered representation JR(2, θ) of GL(2d,R)11

(in the notation of Subsection 4.6). Hence, if v ∈ Vk,∞, v /∈ VD, π′v
∼= JR(2, θ) and, using12

Proposition 4.2, π′v
∼= J ′R(2, θ′) if v ∈ VD ∩ Vk,∞. In the latter case, recall that θ′ ∼= τ ′v13

where τ ′v is the representation of GL(h,H) which corresponds under the Jacquet-Langlands14

correspondence to τv. Again, as the representation JR(2, θ), the representation JR(2, θ′) ∼=15

JR(2, τ ′v) is non-tempered and it has non-vanishing continuous cohomology.16

By construction, one sees that the cuspidal automorphic representations π′ ofH ′(Ak) with17

Ξ(π′) = J(2, τ) is a shadow of an Eisenstein series with cuspidal support in the parabolic18

k-subgroup Qd = Q∆\{αd} of GL(2d, k). Thus, it is a CAP-representation. �19

Remark 7.4. We remark that in [38] the authors provide in the case GL(2, B)/Q with B20

a quaternion division algebra of discriminant two over the field Q of rational numbers an21

explicit construction of cuspidal automorphic forms lifted from suitable Maass cusp forms,22

thus, finally an explicit example of a CAP representation in this specific case.23

8. Non-vanishing results for the square-integrable cohomology of GL(2, D)24

In this section we prove various non-vanishing results for the square-integrable cohomol-25

ogy of GL(2, D) which are implied by the constructions of specific automorphic represen-26

tations carried through in the previous two sections. We begin with a brief review of the27

cohomology groups in question.28

8.1. The cohomology groups H∗(G,C). Let G be a reductive algebraic group over a29

totally real algebraic number field k, and suppose that G modulo its radical has k-rank30

greater than zero. We write G∞ for the group Rk/Q(G)(R) of real points of the algebraic31

Q-group Rk/Q(G) obtained from G by restriction of scalars, and K∞ for a maximal compact32

subgroup of G∞.33

Let J ⊂ Z(g∞,C) be the annihilator of the trivial representation in the center of the34

universal enveloping algebra U(g∞,C) of the complexified Lie algebra of G∞. Then J is35

an ideal of finite codimension in Z(g∞,C). Let VG,umg = C∞umg(G(k)\G(Ak)) be the space36

of smooth complex-valued functions f of uniform moderate growth on G(k)\G(Ak), in the37

sense of [37, I.2.3]. Define A(G) ⊂ VG,umg to be the subspace of functions f ∈ VG,umg which38

are annihilated by a power of J and which are trivial on the identity component AG,∞ of39
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the group Resk/Q(S)(R) with S the maximal split torus in the center Z of G. The space1

A(G) is naturally equipped with a (mG,K∞;G(Ak,f ))-module structure where mG denotes2

the Lie algebra of AG,∞ \G∞. Thus, the (mG,K∞)-cohomology H∗(mG,K∞;A(G)⊗C) is3

well-defined.4

Following the work of Franke [11] these cohomology groups present itself as the automor-5

phic interpretation of the cohomology groups given as the inductive limit6

(8.1) H∗(G,C) := colimCH
∗(XC ,C)

over all sufficiently small open compact subgroups C ⊂ G(Ak,f ) of the deRham cohomology7

groups H∗(XC ,C) associated to the orbit space8

(8.2) XC := G(k)AG,∞ \G(Ak)/K∞C.

As proved by Rohlfs [39, Cor. 2.12], the cohomology H∗(G,C) is isomorphic (in a functorial9

way) to the cohomology of the projective limit S := limCXC , that is, we have10

(8.3) H∗(G,C) = colimCH
∗(XC ,C) ∼= H∗(limCXC ,C).

An analogous result is correct for the cohomology with compact supports, denoted by11

H∗c (−,C), that is,12

(8.4) H∗c (G,C) := colimCH
∗
c (XC ,C) ∼= H∗c (limCXC ,C).

We denote by H∗! (G,C) the image of the cohomology H∗c (G,C) with compact supports in13

H∗(G,C), usually called the interior cohomology4.14

8.2. The square-integrable cohomology groups H∗(sq)(G,C). The space A(G) con-15

tains as a natural submodule the subspace L(G) consisting of all square-integrable auto-16

morphic forms in A(G). The inclusion L(G) ↪→ A(G) gives rise to a morphism in (mG,K∞)-17

cohomology18

(8.5) H∗(mG,K∞;L(G)⊗ C)→ H∗(mG,K∞;A(G)⊗ C).

We call the image of this map the square-integrable (automorphic) cohomology of G, to be19

denoted by H∗(sq)(G,C), whereas the right hand side, usually denoted H∗(G,C), presents20

the automorphic cohomology of G with trivial coefficients.21

Let L2
disc,J(G) denote the submodule in L(G) with regard to the (mG,K∞;G(Ak,f ))-22

module structure which is spanned by all irreducible submodules; it is called the discrete23

spectrum of G with regard to J . It contains the cuspidal spectrum L2
cusp,J(G) as a submod-24

ule. In fact, there is a decomposition25

(8.6) L2
disc,J(G) = L2

cusp,J(G)⊕ L2
res,J(G)

as (mG,K∞;G(Ak,f ))-module where the complement L2
res,J(G) denotes the residual spec-26

trum of G with regard to J . The two inclusions of (mG,K∞;G(Ak,f ))-modules27

(8.7) jdisc : L2
disc,J(G) −→ A(G) jcusp : L2

cusp,J(G) −→ A(G).

induce homomorphisms on the level of (mG,K∞)-Lie algebra cohomology. The image of28

(8.8) j∗disc : H∗(mG,K∞;L2
disc,J(G)⊗ C) −→ H∗(mG,K∞;A(G)⊗ C).

is equal to the square-integrable cohomology H∗(sq)(G,C) (see [6, Sect.7] using [37, VI, 2.1]).29

In general, the map j∗disc need not be injective. Within deRham theory, the cohomology30

4These interior cohomology groups enjoy a natural interpretation in the framework of the Borel-Serre
compactification, a manifold S with boundary ∂S, of S. The interior cohomology consists of all those classes
in H∗(S,C) which restrict trivially to the cohomology of the boundary ∂S
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space H∗(mG,K∞;L2
disc,J(G) ⊗ C) may be interpreted as the space of harmonic square-1

integrable differential forms on S, [5, Prop. 5.6]. By [6, Sect. 5] the homomorphism2

(8.9) j∗cusp : H∗(mG,K∞;L2
cusp,J(G)⊗ C) −→ H∗(mG,K∞;A(G)⊗ C).

is injective. We denote by H∗cusp(G,C) its image, the cuspidal cohomology of G..3

Note that, using Theorem 5.3 and its Corollary in [4], it is not difficult to show that4

the interior cohomology H∗! (G,C) contains the cuspidal cohomology H∗cusp(G,C), thus, the5

topologically defined object H∗! (G,C) is sandwiched between two analytically defined coho-6

mology groups, that is, we have7

(8.10) H∗cusp(G,C) ⊂ H∗! (G,C) ⊂ H∗(sq)(G,C) ⊂ H∗(G,C).

8.3. Construction of tempered non-trivial classes in H∗cusp(GL(2, D),C). Let D be8

a central division algebra over k of degree d. The center Z of both of the two groups9

H/k = GL(2d)/k and H ′/k = GL(2, D)/k. is isomorphic to the group of ideles Ik via10

the isomorphism that assigns to an element a ∈ Ik the scalar matrix of the appropriate11

size with a on the diagonal. Thus, we may view a unitary character of Z(k)\Z(Ak) as12

a unitary character of k×\Ik. We fix such a character ω. It is preserved by the global13

Jacquet-Langlands correspondence.14

By Theorem 5.1, given a totally real number field k, and a finite set S ⊂ Vf of fi-15

nite places of k, there exists a cuspidal automorphic representation π = ⊗′v∈Vkπv occuring16

non-trivially in L2
cusp(GL(2d, k)\GL(2d,Ak)) so that the local component πv, v ∈ S, is the17

Steinberg representation of GL(2d, kv) and so that the local components πv, v ∈ V∞ of18

the representation π∞ are (up to equivalence) the only irreducible tempered representation19

Ind(Pδ2d , τ) of GL(2d,R) with non-trivial continuous cohomology H∗ct(GL(2d,R), Vπ∞ ⊗C).20

By Proposition 4.1 the representation Ind(Pδ2d , τ) of GL(2d,R) corresponds under the local21

Jacquet-Langlands correspondence to the irreducible tempered representation Ind(P ′δd , τ
′)22

of GL(d,H).23

Theorem 8.1. Let k be a totally real number field of degree `, and let D be a central division24

algebra over k of degree d. Let VD be the finite set of places of k at which D does not split.25

Let t denote the number of archimedean places of k at which D does not split. Then there26

exist cuspidal automorphic representations π′ = ⊗π′v of H ′(Ak) with Ξ(π′) =: π cuspidal27

under the Jacquet-Langlands correspondence Ξ, and so that the archimedean components28

π′v, v ∈ V∞,k, have the following form: If v ∈ VD ∩ Vk,∞, then π′v
∼= Ind(P ′δd , τ

′), and if29

v ∈ Vk,∞, v /∈ VD, then π′v
∼= Ind(Pδ2d , τ), that is, the archimedean components of π′ are30

tempered representations of H ′v, v ∈ Vk,∞. The representation π′ represents a non-trivial31

class in H∗cusp(GL(2, D),C).32

Proof. We denote by S the finite set VD∩Vk,f . By Theorem 5.1 there exists a cuspidal auto-33

morphic representation π = ⊗′v∈Vkπv occuring non-trivially in L2
cusp(GL(2d, k)\GL(2d,Ak))34

so that the local component πv, v ∈ S, is the Steinberg representation of GL(2d, kv) and so35

that the local components πv, v ∈ V∞,k, of the representation π∞ are (up to equivalence)36

the irreducible representation Ind(Pδ2d , τ) of GL(2d,R). The representation π is compati-37

ble with D, since at the places v ∈ S the local component is square-integrable. Thus, the38

representation π is in the image of the injective map Ξ, that is, there exists an irreducible39

constitutent π′ of L2
cusp(GL(2, D)(Ak)) with Ξ(π′) = π. Under the local correspondence,40

for v /∈ VD, clearly πv ∼= π′v, and πv corresponds to π′v by the local Jacquet–Langlands41

correspondence at v ∈ VD. In particular, let v ∈ VD ∩ Vk,∞, then necessarily d is even and42

Dv
∼= Md/2(H), thus H ′v

∼= GL(d,H). By Proposition 4.1 the representation Ind(Pδ2d , τ) of43
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GL(2d,R) corresponds under the local Jacquet-Langlands correspondence to the irreducible1

tempered representation Ind(P ′δd , τ
′) of GL(d,H). Since the map2

(8.11) j∗cusp : H∗(mH′ ,K
′
∞;L2

cusp,J(H ′)⊗ C)→ H∗(mH′ ,K
′
∞;A(H ′)⊗ C).

induced by jcusp : L2
cusp,J(H ′) −→ A(H ′) is injective we obtain non-trivial classes in the3

cuspidal cohomology H∗cusp(GL(2, D),C) whose archimedean components are tempered rep-4

resentations. �5

8.4. Construction of non-tempered non-trivial classes in H∗cusp(GL(2, D),C). Given6

a totally real number field k, let D be a finite-dimensional central division k-algebra of degree7

d > 1. We suppose that the set VD of places of D at which D does not split contains at8

least one archimedean place.9

It follows that d is even. We write d = 2h. Let H ′ denote the algebraic k-group10

GL(2, D). In the following we construct cuspidal automorphic representations π′ of H(A′k)11

which contribute non-trivially to the cuspidal cohomology H∗cusp(H ′,C) and which are CAP-12

representations.13

Theorem 8.2. Let k be a totally real number field, and let D be a finite-dimensional central14

division algebra over k of degree d. Suppose that the set VD ∩ Vk,∞ is non-empty. of15

places of D. Let H ′/k denote the algebraic k-group GL(2, D)/k. Then there exist cuspidal16

automorphic representations π′ = ⊗π′v of H ′(Ak) with Ξ(π′) =: π a residual representation17

of the group H(Ak) attached to the split group H/k = GL(2d)/k under the Jacquet-Langlands18

correspondence Ξ so that the archimedean components π′v, v ∈ V∞,k, have the following form:19

If v ∈ VD ∩ Vk,∞, that is, H ′v
∼= GL(d,H), then π′v

∼= J ′R(2, θ′), and if v ∈ Vk,∞, v /∈ VD,20

that is, H ′v
∼= GL(2d,R), then π′v

∼= JR(2, θ). In both cases the archimedean component is a21

non-tempered representation of H ′v. The representation π′ represents a non-trivial class in22

H∗cusp(GL(2, D),C).23

Proof. By Theorem 7.3 there exist cuspidal automorphic representations π′ of H ′(Ak) with24

Ξ(π′) =: π a residual representation of the group H(Ak) attached to the split group25

H/k = GL(2d)/k under the Jacquet-Langlands correspondence Ξ so that the archimedean26

components π′v, v ∈ V∞,k, have the following form: If v ∈ VD∩Vk,∞, that is, H ′v
∼= GL(d,H),27

then π′v
∼= J ′R(2, θ′), and if v ∈ Vk,∞, v /∈ VD, that is, H ′v

∼= GL(2d,R), then π′v
∼= JR(2, θ).28

In both cases the archimedean component is a non-tempered representation of H ′v. More-29

over, the continuous cohomology H∗ct(H
′
v, π
′
v ⊗ C) of H ′v with coefficients in π′v, v ∈ Vk,∞,30

does not vanish. If π′v
∼= πv ∼= JR(2, θ), this is proved in [13, 5.6.]. If π′v

∼= J ′R(2, θ′), we refer31

to Proposition 4.2 where one also finds the Poincare polynomial of the cohomology space.32

Finally, as in the last step of the proof of Theorem 8.1, we see that we obtain non-trivial33

classes in the cuspidal cohomology H∗cusp(GL(2, D),C). �34

Remark 8.3. As rounded off by Grbac in [15], the work of Badulescu [2] gives a complete35

structural description of the discrete spectrum of GL(2, D)/k. In particular, as a conse-36

quence of the description of the residual spectrum, Grbac [15, A. 8.] obtains a classification37

of the cuspidal spectrum. Using this result we observe that the cuspidal representations of38

GL(2, D) with cohomological archimedean components as constructed in Theorem 8.1 resp.39

Theorem 7.3 cover the only two possibilities to construct cuspidal cohomology classes for40

GL(2, D)/k.41

Remark 8.4. In [21], Grobner deals with the automorphic cohomology in the case GL(2, B)42

where B is a definite quaternion algebra over the field Q. He also uses functoriality to43
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construct residual resp. cuspidal cohomology classes in degree 1, the latter ones being CAP.1

However, his treatment of the cuspidal cohomology in degrees 2, 3 is incomplete.2

8.5. Existence of non-cuspidal square-integrable cohomology classes for GL(2, D).3

Now we are in the position to formulate the implication of the construction of residual au-4

tomorphic representations which occur non-trivially in the space L2
res,J(GL(2, D)) for the5

existence of square-integrable non-cuspidal cohomology classes in H∗(sq)(GL(2, D),C). For6

the sake of simplicity in the exposition we suppose that D does not split at all archimedean7

places. Taking into account some archimedean places where D splits is an easy matter; we8

refer to Remark 8.7.9

Theorem 8.5. Let k be a totally real algebraic number field of degree `, and let D be a10

finite-dimensional central division algebra over k of degree d > 1. Let VD ⊂ Vk be the finite11

set of places of k at which D does not split. We suppose that Vk,∞ ⊂ VD. Then there exists12

a non-vanishing cohomology class of degree q = ` · d(2d−3)
2 in the square-integrable coho-13

mology H∗(sq)(GL(2, D)). This class is non-cuspidal, and it does not belong to the interior14

cohomology H∗! (GL(2, D),C).15

Proof. As before, let H ′ denote the algebraic k-group GL(2, D), and let H denote the16

k-group GL(2d)/k. By 2.2, d is even, say d = 2h. Theorem 6.1 implies that there exist17

automorphic representations π′ = ⊗′v∈Vkπv ofH ′(Ak) which occur as irreducible constituents18

in the residual spectrum of H ′(Ak) and whose component πv at all archimedean places19

v ∈ Vk,∞ ⊂ VD is equivalent to the irreducible unitary representation J ′R(2, θ′) of GL(d,H).20

The continuous cohomology of GL(d,H) with coefficents in J ′R(2, θ′) ⊗ C is determined in21

Proposition 4.2. Inspecting the Poincare polynomial as given in formula 4.16 tells us that22

the lowest possible degree in which this cohomology does not vanish is q = ` · d(2d−3)
2 . Using23

[40, Theorem I.1 = III.1], we conclude that the map24

(8.12) H∗ct(GL(d,H), J ′R(2, θ′)⊗ C) −→ H∗(sq)(H
′,C)

induced by π ↪→ L2
disc,J(G) −→ A(G) is injective in the lowest degree in which the continuous25

cohomology H∗ct(GL(d,H), J ′R(2, θ′)⊗C) is non-zero. Thus, there exists a non-vanishing co-26

homology class of degree q = `· d(2d−3)
2 in the square-integrable cohomology H∗(sq)(GL(2, D)).27

By construction, this class is non-cuspidal. Note that, as shown in [40], this non-trivial class28

represented by a residue of an Eisenstein series does not belong to the interior cohomology29

H∗! (GL(2, D),C). Indeed, the restriction of this class to the cohomology of the boundary of30

the Borel-Serre compactification is non-trivial. �31

Remark 8.6. The Poincare polynomial of the representation J ′R(2, θ′) of GL(d,H) as deter-32

mined in Proposition 4.2 gives precise information in which degrees the continuous coho-33

mology H∗ct(GL(d,H), J ′R(2, θ′) ⊗ C) is non-zero. Even in the case d = 2 this list contains34

more degrees than just the minimal degree q which matters in the assertion of Theorem 8.535

As proved in Theorem 7.3, this non-tempered unitary representation J ′R(2, θ′) of GL(d,H)36

also appears as an archimedean component of a cuspidal automorphic representation of the37

adele group GL(2, D)(Ak) which contributes to the cuspidal cohomology In this case the38

contribution to the cuspidal cohomology is over the full range of degrees associated with39

Proposition 4.2.40

In contrast, if the representation occurs as an archimedean component of a residual41

automorphic representation π′ of H ′(Ak), it is an important question to determine up to42

which degree or in which other degrees than q the cohomology attached to the automorphic43

representation π′ contributes non-trivially to H∗(sq)(GL(2, D)).44
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In the case that the representation π is the trivial representation, obtained as the iterated1

residue of specific Eisenstein series attached to the constant functions on the Levi subgroup of2

proper parabolic subgroups of a semi-simple group, a similar type of question is investigated3

in [12].4

Remark 8.7. Suppose that there exists a place v ∈ Vk,∞ at which the central division5

algebra D over k splits, that is, Dv ⊗Md(R), thus, H ′v
∼= GL(2d,R). By Remark 6.2, the6

corresponding local component of π as constructed is of the form πv ∼= JR(2, θ). The lowest7

possible degree in which the group GL(2d,R) has non-trivial continuous cohomology with8

coefficients is (1/2)(2d2− d). To see this we proceed as in the proof of Proposition 4.2. The9

θ-stable parabolic subalgebra q of the Lie algebra of GL(2d,R) which corresponds within10

the Vogan-Zuckerman classification to the irreducible representation JR(2, θ) has as real Lie11

subalgebra the algebra12

(8.13) l ∼= gl(2,C)⊕ gl(2,C)⊕ . . .⊕ gl(2,C) ∼= gl(2,C)h.

where as before d = 2h. The lowest possible degree we look for is determined by the shift13

(8.14) R(q) = dim(u ∩ pC) = (1/2)(dimXGL(2d,R) − dimXL,u).

We obtain14

(8.15) R(q) = (1/2)[
1

2
(2d(2d+ 1)− h · 22] = (1/2)[2d2 − d]

as claimed. Another way to determine this value is given in [13, 5.6.].15
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[52] Žampera, Z., The residual spectrum of the group of type G2, J. Math. Pures Appl. 76 (1997), 805–835.23

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna,24

Austria resp. Max Planck Institute for Mathematics, Vivatsgasse 7, D-53111 Bonn, Germany.25

E-mail address: Joachim.Schwermer@univie.ac.at26


	48_Schwermer_cover
	48_Schwermer

