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ABSTRACT. In this short note we give a criterion of nonflattening for planar tree-
like curves and some upper and lower bounds for the minimal number of inflection
points on such curves unremovable by diffcomorphisms of R?, and finally, calculate
the number of tree-like curves with a given Gauss diagrarm.

§1. INTRODUCTION

This paper provides a partial answer to the following question posed to the
author by V.Arnold in June 95. Given a generic immersion ¢ : ST = R? (i.e. with
double points only) let fins(c) denote the number of inflection points on ¢ (assumed
finite) and let [c] denote the class of ¢, i.e. the connected component in the space of
generic immersions of S! to R? containing c. Finally, let finf(c] = ming g fins(¢').

PROBLEM. Estimate fi,s[c] in terms of combinaterics of c.

The problem itself is appearently motivated by the following classical result due
to Mobius.

THEOREM. Any cmbedded noncontractible curve on RP? has at least 3 inflection
points.

The present, paper contains some answers for the case when ¢ is a tree-like curve,
i.e. satisfies the condition that if p is any double point of ¢ then ¢\ p has 2 connected
components. Classes of tree-like curves are naturally enumerated by partially di-
rected trees with a simple additional restriction on directed edges, see §2. It was a
pleasant surprise that for the classes of tree-like curves therc exists a (relatively) sim-
ple combinatorial criterion characterizing when [c] contains a nonflattening curve,
i.e. ins[c] = 0 in terms of its tree. On the other hand, all attempts to find a closed
formula for §;ns[c] in terms of partially directed trees failed. Appearently such a
formula does not exist, see Concluding Remarks.

The paper is organized as follows. §2 contains some general information on tree-
like curves. §3 contains a criterion of noflattening.” §4 presents some upper and
lower bounds for #;,¢[c|. Finally, in §5 we solve a natural combinatorial question
about tree-like curves, namely, how many classes of tree-like curves have the same
Gauss diagram.
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§2. SOME GENERALITIES ON PLANAR TREE-LIKE CURVES

Recall that a generic immersion ¢ : S' = R? is called a tree-like curve if removing
any of its double points p we get that ¢\ p has 2 connected components, see Fig.1.
Some of the results below were first proved in [Ai] and later independently found
by the author.

a) tree-like curve b} nontree-like curve

Fig.1. Tree-like and nontree-like immaearsions.

2.1. STATEMENT, (sce Proposition 2.1. in [Ai]). A generic immersion ¢ : S —
R? is a trec-like curve iff its Gauss diagram is planar, i.e. can be drawn on R?
without selfintersections, see Fig.2.

Fig.2. Planar Gauss diagram for ex. 1 a).

2.2. REMARK. There is an obvious isomorphism between the set of all planar
Gauss diagrams and the set of all planar connected trees. Namely, each planar
Gauss diagram G D corresponds to the following planar tree. Let us place a vertex
in each connected component of D*\ GD where D? is the disc bounded by the basic
circle of GD and connect by edges all vertices lying in the neighboring connected
components. The resulting planar tree is denoted by Tr(GD). Leaves of Tr(G D)
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correspond to the connected components with one neighbor. On GD these con-
nected components have the natural cyclic order according to their position along
the basic circle of GD. This cyclic order coincides with the natural cyclic order on
the set Lv of leaves of its planar tree Tr(GD).

Decomposition of a tree-like curve. Given a tree-like curve ¢ : S = R? we
decompose its image into the union of curvilinear polygons bounding contractable
domains as follows. Take the planar Gauss diagram G D{(c) of ¢ and consider the
connected components of D? \ GD(c). Each such component has the part of its
boundary lying on S*.

2.3. DEFINITION.  The image of the part of the boundary of a connected
component in D\ GD(c) lying on S! forms a closed nonselfintersecting piecewise
smooth curve (a curvilinear polygon) called the building block of ¢, see Fig.3. (We
call vertices and edges of building blocks corners and sides to distinguish themn from
vertices and edges of planar trecs used throughout the paper.)

D

*
PO

.ll.

Fig. 3. Splitting of a tree-like curve into building blocks
and their coorlantation

The union of all building blocks constitutes the whole tree-like curve. Two
building blocks have at most one common corner. If they have a common corner
then they are called neighboring.

2.4. LEMMA. Given a coorientation of a tree-like curve c one gets that all sides
of any building block are cither inward or outward cooriented w.r.t. the interior of
the block.

Proor. Simple induction on the number of building blocks. O

Since every building block bounds a contractible domain the outward and inward
coorientation have the clear meaning. We denote the outward coorientation of a
building block by '+ and the inward by ‘—' placed near the corresponding vertex
of T'r(c).

2.5. DEFINITION. Given a tree-like curve ¢ we associate to it the following
planar partially directed tree T'r{c). At first we take the undirected tree T'r(GD(c))
where GD{(c) is the Gauss diagram of ¢, see Remark 2.2. (Vertices of Tr(GD(c}))
are in 1-1-correspondence with building blocks of ¢. Neighboring blocks correspond
to adjacent vertices of T7(G D(c)).) For each pair of neighboring building blocks b,
and by we do the following. If a building block by contains a neighboring building
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block b, then we direct the corresponding edge (by, b2) of Tr(GD(c)) from by to be.
The resulting partially directed planar tree is denoted by T'r(c).

Since T'r(c) depends only on the class [c] we will also use the notation T'r[c].

2.6. DEFINITION. Consider a partially directed tree T'r (i.c. some of its edges
are directed). T'r is called a noncolliding partially dirccted trec or ncpd-tree if any
path of T'r does not contain edges pointing at cach other. The usual tree T7'
obtained by forgetting directions of all edges of T'r is called underlying.

2.7. LEMMA. a) For any tree-like curve ¢ its Tr(c) is noncolliding;

b) the set of classes of tree-like curves is in 1-1-correspondence with the set of
ncpd-trees.

PROOF. A connected component of tree-like curves with a given Gauss diagram is
uniquely determined by the enclosure of neighboring building blocks. The obvious
restriction that if two building blocks contain the third one then one of them is
contained in the other is equivalent to the noncolliding property. (See an example
on Fig. 4.} O

Flg. 4. Ncpd-tree Tr{c] for the example on Fig.3
with the coorientation of its vartices

2.8. REMARK. In terms of the above ncpd-tree one can casily describe the
Whitney index (or the total rotation) of a given tree-like curve ¢ as well as the
coorientation of its building blocks. Namely, fixing the inward or outward coorien-
tation of some building block we determine the coorientation of any other building
block as follows. Take the (only) path connecting the vertex corresponding to the
fixed block with the vertex corresponding to the other block. If the number of undi-
rected edges in this path is odd then the coorientation chances and if this number is
even then it is preserved. (In other words, Coor(by) = (—1)4(4v3)Coor(by) where
g(br, b2) is the number of undirected edges on the above path.)

2.9. LEMMA, (sece theorem 3.1 of [Ai]).

ind(c) = Z Coor(b;).
b, eTr{c)

Proor. Obvious. 0O

§3. NONFLATTENING OF TREE-LIKE CURVES

In this section we give a criterion for nonflattening of a trec-like curve in terms
of its ncpd-tree. (The author is aware of the fact that some of the proofs below are
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rather sloppy since they are based on very simple explicit geometric constructions
on R? which are not so easy to describe with complete rigorousness.)

3.1. DEFINITION. A trec-like curve ¢ (or its class [¢]) is called nonflattening if
[€] contains a generic immersion without inflection points.

3.2. DEFINITION. The convez coorientation of a nonflattening  trec-like curve
c: 8! - R? is defined as follows. The tangent line at any p € ¢ belongs locally to
one component of R? \ ¢ and we choose at p a vector transversal to ¢ and pointing
at that connected component and extend it by continuity on the whole curve, see
Fig.5.

a
b +¢d
f e -|b
+ o+ +
e +®a

Fig. 5. Nonflattening curve with the convex coorientation
and its ncpd-tree,

3.3. DEFINITION. Given a building block b of a tree-like curve ¢ we call a corner
v of b is called of V-type {of A-type resp.) if the interior angle between the tangents
to its sides at v is bigger (smaller resp.) than 1807 sce Fig.6. (The interior angle
is the one contained in the interior of b.)

3.4. ReMARK. If v is a V-type corner then the neighboring block b’ sharing
the corner v with b lies inside b, 1.e. V-type corners are in 1-1-correspondence with
edges of the ncpd-tree of ¢ dirccted from the vertex corresponding to b.

3.5. CRITERION OF NONFLATTENING. A tree-like curve ¢ is nonflattening iff the
following 3 conditions hold for one of two possible coorientations of its ncpd-tree,
(see lemma 2.4).

a) all vertices of degree 1 are outward cooriented;
b) all vertices of degree 2 are outward cooriented;

¢) any inward cooriented vertex has degree k > 3 and at most k£ — 3 leaving edges
(i-e. edges directed from this vertex}.
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V-type cormner for the block b
/ and A-type corner for ¢

\

A-type corner for the block b
b and A-type comer for a

Fig. 6. V- and A-type comers for & building block.

Proor. The necessity of a) - ¢) is rather obvious. Indeed, in the cases a)
and b) a vertex of degree < 2 corresponds to the building block with at most 2
corners. If such a building block belongs to a nonflattening tree-like curve then it
must be globally convex and therefore outward cooriented w.r.t. the above convex
coorientation. For c) consider an inward cooriented (w.r.t. convex coorientation)
building block b of a nonflattening curve. Such b is a curvilinear polygon with
locally concave edges. Assuming that b has k corners one gets that the sum of
its interior angles is less than #{k — 3). Therefore the number of V-type corners
(or leaving edges at the corresponding vertex) is less than k — 3. (Sce Fig.7 for
violations of conditions a)-c). )

Sufficiency of a)-c) is proved by a relatively explicit construction. Given a ncpd-
tree satisfying a) - ¢) let us construct a nonflattening curve with this tree using
induction of the number of vertices. While constructing this curve inductively we
provide additionally that every building block is star-shaped with respect to some
interior point, i.e. the segment connecting this point with a point on the boundary
of the block always lies in its convex hull.

Case 1. A ncpd-tree contains an outward cooriented leaf connected to an out-
ward cooriented vertex (and thercfore the connecting cdge is directed). Obviously,
the tree obtained by removal of this leaf is also an ncpd-tree. By the inductive
hypothesis we can construct a nonflattening curve corresponding to the reduced
tree and then depending on orientation of the removed edge either glue inside the
appropriate locally convex building block a small convex loop (which is obviously
possible) or glue a big locally convex loop containing the whole curve. The pos-
sibility to glue a big locally convex loop containing the whole curve is proved in
lemma 3.9.

Case 2. All leaves are connected to inward cooriented vertices. (By conditions
a) and b) these vertices are of degree > 3.) Using the ncpd-tree we can find at least
1 inward cooriented vertex b which is not smaller than any other vertex, i.e. the
corresponding building block contains at least 1 exterior side. Let k be the degree
of b and ey, ...,ex be its edges in the cyclic order. (Each e; is either undirected or
leaving.) By assumption c¢) the number of leaving edges is at most & — 3. Il we
remove b with all its edges then the remaining forest consists of & trees. Each of
the trees connected to b by an undirected edge is an nepd-trec. We make every tree
connected to b by a leaving edge into an ncpd-tree by gluing the undirected edge
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instead of the removed directed and we mark the extra vertex we get. By induction,
we can construct & nonflattening curves corresponding to each of k obtained ncpd-
trees. Finally, we have to glue them to the corners of a locally concave k-gon with
the sequence of V- and A-type corners prescribed by ey, ...,ex. The possibility of
such a gluing is proved in lemmas 3.11 and 3.12. O

SUPPORTING LEMMAS FOR CASE 1.

*
+

a) i b) c)

Fig.7. Curves and their ncpd-trees violating each of the 3 conditions of
proposition 3.5. separately

3.6. Important construction. The following operation called contracting ho-
mothety will be extensively used below. It does not change the class of a tree-like
curve and the number of inflection points.

Taking a tree-like curve ¢ and its double point p we split ¢\ p into 2 parts ¢*
and ¢~ intersccting only at p. Let 7 and 2~ denote the union of convex hulls of
building blocks contained in ¢* and ¢~ resp. There are 2 options a) one of domains
contains the other, say, 2~ € Q*; orb) O nat = {n}.

In case a) the result of contracting homothety (the usual homothety applied
to ¢~ and then smoothening of the 2nd and higher derivatives at p) is a tree-like
curve ¢; isotopic to ¢ and such that ¢t = ¢l while ¢ lics in an arbitrary small
neighborhood of p.

In case b) we can apply a contracting homothety to either of 2 parts and get 2
nonflattening tree-like curves ¢; and c¢; isotopic to ¢ and such that either ¢t = c'l"
while ¢ lies in an arbitrary small neighborhood of p or ¢™ = ¢j while ¢ lies in
an arbitrary small neighborhood of p. See Fig.8 for the illustration of contracting
homothety.

3.7. DEFINITION. Consider a locally convex domain 2 in R? with a piecewise
C?-smooth boundary 9. 2 is called rosette-shaped if for any side ¢ of Q2 therc
exists a point p(e) € e such that € lies in one of the closed halfspaces R? \ {,(¢)
w.r.t the tangent line {,(e) to 91 at p(e).

3.8. REMARK. For a rosette-shaped {2 there exists a smooth convex curve y(e)

containing € in its interior and tangent to 92 at exactly one point lying on a given
side e of (2.
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point of point of
homaothety homothety

/ / Ple=e
— DO

Fig. 8. Contracting homothety for enclosed and not enclosed building blocks.

3.9. LEMMA. Consider a nonflattening tree-like curve ¢ with the convex coori-
entation and its locally convex building block b containing at least one exterior
side, i.e. a side bounding the noncompact exterior domain on R%. Therc exists a
nonflattening curve ¢’ isotopic to ¢ such that its building block §' corresponding to
b bounds a rosette-shaped domain.

PrRooF. Step 1. Let k denote the number of corners of b. Consider connected
components ¢y, ...,cx of ¢\ b. By assumption that b contains an cxterior side one
has that every ¢; lies either inside or outside b (can not contain b). Thercfore
using contracting homothety we can make every ¢; small and lying in the small
neighborhood of its corner preserving the nonflattening property.

Step 2. Take the standard unit circle §! C R? and choose k points on §'. Then
deform S? slightly into a piecewise smooth locally convex curve S! with the same
sequence of V- and A-type corners as on b. Now glue the small components cp, ..., cx
(after appropriate linear transformation applied to each ¢;) to S! in the same order
as they sit on b. The resulting curve ¢ is a nonflattening  tree-like curve with the
same ncpd-tree as ¢. 0O

3.10. CoroLLARY. Using the remark 3.8. onc can glue a big locally convex
loop containing the whole ¢’ and tangent to ¢’ at one point on any exterior cdge
and then deform this point of tangency into a double point and therefore get, the
nondegenerate tree-like curve required in case 1.

SUPPORTING LEMMAS FOR CASE 2.

Take any polygon Pol with k vertices and with the same sequence of V- and
A-type vertices as given by ey, ...,ep, see notations in the proof of case 2. The
cxistence of such a polygon is exactly guarantced by condition ¢}, i.e. & > 3 and
the number of interior angles > 7 is less or equal than & — 3. Deform it slightly to
make it into a locally concave curvilinear polygon which we denote by Pol.

3.11. LEMMA. It is possible to glue a nonflattening curve é (after an appropri-

ate diffeomorphism) through its convex exterior edge to any A-type vertex of Pol

LA

placing it outside Pol and preserving nonflattening of the union.
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ProoF. We assume that the building block containing the side e of the curve
¢ to which we have to glue v is rosette-shaped. We choose a point p on e and
substitute e by 2 convex sides meeting transversally at p. Then we apply to & a
linear transformation putting the origin at p in order to a) make ¢ small; b) make
the angle betwecn the new sides equal to the angle at the A-type vertex to which
we have to glue &. After that we glue ¢ and smoothen the higher derivatives. 0O

3.12. LemMMA. It is possible to glue a nonflattening curve ¢ after cutting away
its exterior building block with 1 corner to a V-type vertex of Pol and preserving
nonflattening of the union. The curve is placed inside Pol.

Proor. The argument is essentially the same as above. We cut away a convex
exterior loop from ¢ and apply to the remaining curve a linear transformation
making it small and making the angle between 2 sides at the corner where we have
cut away a loop equal to the angle at the V-type vertex. Then we glue the result
to the V-type vertex and smoothen the higher derivatives. O

§4. UPPER AND LOWER BOUNDS OF firf[c] FOR TREE-LIKE CURVES

Violation of any of the above 3 conditions of nonflattening leads to the appear-
ance of unremovable by diffeomorphisms inflection points on a tree-like curve. At
first we reduce the question about the minimal number #;,¢{c] of inflection points
on the classes of tree-like curves to a purely combinatorial problem and then give
some upper and lower bounds for this number. Some of the geometric proofs are
only sketched for the same reasons as in the previous section. Since we are in-
terested in inflections which survive under the action of diffeornorphisms of R? we
will assume from now on that all considered curves have only locally unremovable
inflection points. (For example, the germ (¢, #*) is not interesting since its inflection
disappears after a small deformation of the germ.)

4.1. DEFINITION. A generic immersion ¢ : S' — R? the inflection points of
which coincide with some of its double points is called normalized.

4.2. PROPOSITION. Every tree-like curve is isotopic to a normalized tree-like
curve with at most the samec number of inflection points.

Proor.

Step 1. The idea of the proof is to separate building blocks as much as possible
and then substitute every block by a curvilinear polygon with nonflattening sides.
Namely, given a tree-like ¢ let us partially order the vertices of its ncpd-tree Tr(c]
by choosing one vertex as the root (vertex of level 1). Then we assign to all its
adjacent vertices level 2, etc. The only requirement for the choice of the root is that
all the directed edges point from the lower level to the higher. One can immediately
see that noncolliding property garantees the existence of at least onc root. Given
such a partial order we apply consecutively a series of contracting homotheties to all
double points as follows. We start with double points which are the corners of the
building block b corresponding to the root. Then we apply contracting homothety
to all connected components of ¢\ b. Then we apply contracting homothety to all
connected components of ¢\ (Ub;) where b; has level less or equal 2 etc. (See an
example on Fig.9.) Note that every building block except for the root, has its father
to which it is attached through a A-type corner since the root contains an exterior
edge. The resulting curve ¢ has the same type and nwinber of inflection points as
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¢ and widely separated building blocks. Every building block lies in a very small
neighborhood of the corresponding corner of its father and the radius of smallness
increases from level to level.

—

Fig.9. Separation of building blocks of different levels by contracting
homothety. (Numbers show different levels of building blocks.)

Step 2. Now we substitute every side of every building block by a nonflattening
arc not increasing the number of inflection points. Fixing some orientation of &
we assign at every double point 2 oriented tangent elements to 2 branches of & in
the obvious way. Note that we can assume that any 2 of these tangent elements
not sharing the same vertex arc in general position, i.¢. the line connecting the
footpoints of the tangent elements is different from both tangent lines.

Initial change. At first we will substitute every building block of the highest
level by a convex loop. There exists a smooth (except for the corner) convex loop
gluing which instead of the building block will make the whole new curve C'-smooth
and isotopic to & in the class of C!'-smooth curves. This convex loop lies on the
definite side w.r.t. both tangent lines at the double point. Note that if the original
removed building block lies wrongly w.r.t. one (both resp.) tangent lines then it
has at least 1 (2 resp.) inflection points. After constructing a C'-smooth curve we
change it slightly in a small neighborhood of the double point in order to provide
for each branch a) if the branch of & changes convexity at the double point then we
produce a smooth inflection at the double point; b) if the branch does not change
the convexity then we make it smooth. The above remark garantecs that the total
number of inflection points does not increase.

Typical change. Assume that all blocks of level > 7 already have nonflattening
sides. Take any block b of level i. By the choice of the root it has a unique A-type
corner with its father. The block 5 has a definite sequence of its V- and A-type
corners starting with the attachment corner and going around b clockwise. We
cut away all connected components of ¢\ b which have level > i then substitute
b by a curvilinear polygon with nonflattening sides and then glue back the blocks
we cut of. Let us draw the usual polygon Pol with the samec sequence of V- and
A-type vertices as for b. Now we will deform its sides into convex and concave arcs
depending on the sides of the initial b. The tangent elements to the ends of some
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side of b can be in one of 2 typical normal or 2 typical abnormal positions {up to
orientation-preserving affine transformations of R?), see Fig.10.

normal abnormal

Fig.10. Normal and abnormal positions of the tangent elements
to a side.

If the position of the tangent elements is normal then we deform the correspond-
ing side of Pol to get a nonflattening arc with the same position of the tangent
elements as for the initial side of b. If the position is abnormal then we deform
the side of Pol to get a nonflattening arc which has the same position w.r.t. the
tangent element at the beginning as the original side of b. Analogous considerations
as before show that after gluing everything back and smoothening the total number
of inflections will not increase. O

4.3. DEFINITION. Given a planar tree Tr we denote by its fat ncpd-tree FTr
the planar graph obtained from Tr by ’blowing up’ each vertex into a polygon
with the number of vertices equal to the degree of the vertex, see Fig. 11. These
polygons are called fat vertices. Again we call by sides edges of the fat vertices to
distinguish them from the edges of the original tree Tr. A fat trec with signs '+’
or -’ on every side of each fat vertex is called labelled.

4.4, DEFINITION. Given a tree-like normalized curve ¢ we associate to it the
following labelled fat ncpd-tree. We take the fat tree F7r[c} obtained from T'rc].
(Pay attention to the fact that if we contract the edges of the original tree Tr(c]
then the fat tree FTr[c] is homeomorphic to the original curve ¢ and the sides of
¢ are in 1-1-correspondence with the sides of FTr¢ .} Then we put on each side of
each fat vertex of FTr[¢] "+’ or -’ depending on whether the corresponding side
of the corresponding building block is convex or concave w.r.t. the interior of the
block, see Fig. 11. (Note that this labelling depends on a particular choice of ¢ and
not only on [¢].)

The following proposition is closely related to the criterion of nonflattening from
§2.
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4.5. PROPOSITION (CRITERION OF REALIZABILITY OF A LABELLED FAT TREE).
There exists a tree-like normalized curve with a given labelled fat nepd-tree if and
only if the following 3 conditions hold

a) the side of every 1l-sided fat vertex is marked by ’+;

b) 2 sides of every 2-sided fat vertex are marked either by '+’ or by '+-;

c) if all sides of some fat vertex with & > 3 sides are marked by ’-’ then there
exists at most k — 3 directed edges of the initial tree leaving this fat vertex.

SKETCH OF PROOF. The necessity of a)-c) is obvious. These conditions garantee
the existence of all building blocks with nonflattening sides. It is easy to see that
they are, in fact, sufficient. Realizing each building block by some curvilinear
polygon with nonflattening sides we can glue them together in a global normalized
tree-like curve. Namely, we start from some building block which contains an
exterior cdge. Then we glue all its neighbors to its corners. (In order to be able to
glue them we make them small and adjust the gluing angles by appropriate linear
transformations.) Finally, we smoothen higher derivatives at all corners and then
proceed in the same way for all new corners. O

Fig.11. Ncpd-tree and the fat labeled ncpd-tree obtalned from a given normalized
trea-llke curve.

Combinatorial setup. The above proposition 4.5. allows us to reformulate the
question about the minimal number of inflection points §iaf[c] for tree-like curves
combinatorially.
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4.6. DEFINITION. A labelling of a fat ncpd-tree is called admissible if it satisfies
the conditions a)-c) of proposition 4.5.

Note that sides of all fat vertices of a given planar fat tree have the natural cyclic
order.

4.7. DEFINITION. Given a labelled fat ncpd-tree LETr consider 2 consecutive
(in the natural cyclic order) sides belonging to 2 different fat vertices (i.e. these sides
are connected by an edge of the original tree). We say that thesc sides create an
inflection point if cither a) their signs coincide and the connecting edge is directed;
or b) their signs arc different and the connecting edge is undirected. For a given
labelled fat tree LFT'r let i,y (LFTr) denote the total number of created inflection
points,

4.8. PROPOSITION (combinatorial reformulation). For a given tree-like curve ¢
one has

finglc] = minfiny (LFTT)

where the minimum is taken over the set of all admissible labellings of FTr(c] and
FTr[c] is the fat ncpd-tree of c.

Proor, This is the direct corollary of propositions 4.2 and 4.5. Namely, for
every tree-like curve & isotopic to ¢ there exists a normalized curve & with at most
the same number of inflection points. The number of inflection points of & coincides
with that of its labelled fat ncpd-tree. On the other side, for every admissible
labelling of FTr[c] there exists a normalized curve ¢’ with such a labelled fat nepd-
tree. O

Lower bound. A natural lower bound for §,s{c] can be obtained in terms of the
ncpd-tree Tr[¢] (without any use of FTr[c]). Choose any coorientation of ¢ and
the corresponding coorientation of Tr[c|, see §2. All 1-sided building blocks of ¢
(corresponding to the leaves of Trlc]) have the natural cyclic order. (This order
coincides with the natural cyclic order on all leaves of T'r[c] according to their
position on the plane.)

4.9. DEFINITION. A neighboring pair of 1-sided building blocks (or of leaves
on Tr[c]) is called reversing if the coorientations of these blocks arc different. Let.
frev[c] denote the total number of reversing neighboring pairs of building blocks.

Note that #rev[c] is even and independent on the choice of coorientation of c.
Moreover, §,..[c] depends only on the class [c] and therefore we can use the above
notation instead of fr..(c).

4.10. PROPOSITION. {reulc] < Bingle].

Proor. Pick a point p; in cach of 1-sided building blocks b; such that the
side is locally convex near p; w.r.t. the interior of b;. (Such a choice is obviously
possible since b; has just 1 side.) The proof is accomplished by the following simple
observation.

Take an immersed segment v : [0,1] — R? such that v(0) and (1) are not
inflection points and the total number of inflection points on <y is finite. At each
nonflattening point p of o we can choose the convex coorientation, sce §3, i.e. since
the tangent line to + at p belongs locally to 1 connected component of R? \ y we can
choose a transversal vector pointing at that halfspace. Let us denote the convex
coorientation at p by n(p).
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4.11. LEMMA. Assume that we have fixed a global coorientation Coor of +.
If Coor(0) = n(0) and Coor(1) = n(1) then « contains an even numnber of locally
unremovable inflections. If Coor(0) = n{0) and Coor(1) is opposite to n(1) then v
contains an odd number of locally unremovable inflections.

PROOF. Recall that we have assumed that all our inflection points are unre-
movable by local deformations of the curve. Therefore passing through such an
inflection point the convex coorientation changes to the opposite. O

Upper bound.

4.12. DEFINITION. Each pair of neighboring 1-sided blocks of ¢ (leaves of FT'r[c]
resp.) is joined by the unique segment of ¢ (path in FTr(c] resp.) called connecting.
If a connecting path joins a pair of neighboring 1-blocks {leaves resp.) with the
opposite coorientations then it is called an reversing connecting path, compare with
4.9.

4.13. DRFINITION. Let us call by a joint of a trec-like curve a nonextendable
sequence of 2-sided building blocks not contained in each other. (On the level of its
ncpd-iree one gets a sequence of degree 2 vertices connected by undirected egdes.)

Every joint consists of 2 smooth intersecting segments of ¢ called threads belong-
ing to 2 different connecting paths.

4.14. DerFINITION. For every nonreversing connecting path p in FTr[c] we
determine the standard sign distribution of this path as follows. First we put '+’
on one end of p. If the next side of p is connected to the cgd by an undirected edge

\ A
- ({ﬁ.‘t\r\m I\

of T'r[c] then we change the sign and if the edge is directed then we keep the sign. elc,

(By definition both ends of p will be labelled by '+'.}

4.15. DEFINITION. A joint is called suspicious if either

a) both its threads lie on nonreversing paths and both sides of some 2-sided
block from this joint are labelled by - w.r.t. the standard sign distribution of
nonreversing paths; or

b} one thread lies on nonreversing path and there exists a block from this joint the
side of which lying on the nonreversing path is labelled by -’ (w.r.t. the standard
sign distribution); or

¢) both threads lie on reversing paths.

Let #;; denote the total nunber of suspicious joints.

4.16. DEFINITION. A building block with k sides is called suspictous if

a) if contains at least k — 3 other blocks, i.e. at least £ — 3 edges are leaving the
corresponding vertex of the trec;

b) all sides lying on nonreversing paths are labelled with -’ w.r.t. the standard
sign distributions of these nonreversing paths.

Let #; denote the total number of suspicious blocks.

4.17. PROPOSITION.

ﬁiuf [C] S ﬁrev[c] + 2(ﬂjt + ﬁbf)'

PRoOF. According to the statement 4.8 for any tree-like curve ¢ one has ;,,7(c] <
Bins (LFTT) where LFTr is some admissible labelling of the fat ncpd-trec FT'r(c]
of ¢. Let us show that there exists an admissible labelling of FTr[c] with at most
Breulc] + 2(f;¢ -+ o) inflection points, see Def 4.7. First we fix the standard sign
distribution of all nonreversing paths. Then for each reversing path we choose any
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sign distribution requiring exactly 1 inflection point to get the necessary signs of all
leaves. Now the labelling of the whole fat ncpd-tree is fixed but it is not admissible,
in general. In order to make it admissible we have to provide conditions b) and c) of
Proposition 4.5 for at most §;; suspicious joints and at most f, suspicious blocks.
To make cach such suspicious joint or block admissible we need to introduce at
most 2 inflection point. Proposition follows. O

85. ENUMERATION OF TREE-LIKE CURVES WITH A GIVEN GAUSS DIAGRAM.

In this section we calculate the number of different classes of tree-like curves
which have the same Gauss diagram.

5.1. ProposITION. There exists a 1-1-correspondence between classes of ori-
ented tree-like curves on nonoriented R? and the set of all planar ncpd-trees on
oriented R?.

Proor. Obvious.

5.2. DEFINITION. For a given planar tree T'r consider the subgroup Dif f(T'r) of
all orientation-preserving diffcomorphisms of R? sending Tr homeomorphically onto
itself as an embedded 1-complex. The subgroup PAut(Tr) of the group Aut{Tr) of
automorphisms of T'r as an abstract tree induced by Dif f(Tr) is called the group
of planar automorphisins of Tr.

The following simple proposition gives a complete description of different possible
groups PAut(Tr). (Unfortunately, the author was unable to find the corresponding
reference.)

5.3. STATEMENT.

(1) The group PAut(T'r) of planar automorphisms of a given planar tree T'r is
isomorphic to Z/Z, and is conjugate by an appropriate diffeomorphism to
the rotation about some centre by multiples of 27 /p.

(2) If PAut(Tr) = Z/Z, for p > 2 then the above centre of rotation is a vertex
of Tr. ’

(3) For p = 2 the centre of rotation is either a vertex of T'r or the middle of its
edge.

(4) If the centre of rotation is a vertex of T'r then the action PAut(Tr) on T'r is
free except of the centre and the quotient can be identified with a connected
subtree STr C T'r containing the centre.

(5) For p = 2 if the centre is the middle of an edge then the action of PAut(Tr)
on T'r is free except for this edge.

SKETCH OF PROOF. The action of PAut(Tr) on the set Lv(Tr) of leaves of T'r
preserves the natural cyclic order on Lv(Tr) and thus reduces to the Z/Zy-action
for some p. Now each element g € PAut(Tr) is determined by its action on Lv(T'r)
and thus the whole PAut(7'r) is isomorphic to Z/Z,. Indeed consider some Z/Z,-
orbit O on Lv(Tr) and all vertices of Tr adjacent to Q. They are all pairwise
different or all coincide since otherwise they can not form an orbit of the action of
diffeomorphisms on Tr. O

Proor. Obvious. O
5.4. PropPosITION. The number §(G D) of all classes of oriented tree-like curves
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on nonoriented R? with a given Gauss diagram GD on n vertices is equal

(a) 2" 14 (n - 1)2772, if PAut(GD) is trivial;

b) 2252 4+ (2k — 1)2%%-3 4 25~ where n = 2k,if PAut(GD) = Z/2Z
and the rotation centre is the middle of the side;

RHGD) = { c) 25+ (2" + (n — 1)2"2 — 2¥)/p, where n = kp + 1 and
PAut{(GD) = Z/pZ for some prime p (including PAut(GD) = Z/2Z
with a central vertex);

\ d) for the general case see Proposition 8 below.

ProoF. By Proposition 5.1 we enumerate ncpd-trees with a given underlying
planar tree T'r(DG).

Case a). Let us first calculate only ncpd-trees all edges of which are directed.
The number of such ncpd-trees equals the number n of vertices of Tr(DG) since
for any such tree there exists such a source-vertex (all edges are dirccted from this
vertex). Now let us calculate the number of ncpd-trees with ! undirected edges.
Since Aut(G DY) is trivial we can assume that all vertices of Tr(G D) are enumerated.
There exist ("TI ) subgraphs in Tr(GD) containing ! edges and for cach of thesc
subgraphs there exist (n — [) ncpd-trees with such a subgraph of undirected edges.
Thus the total number §(GD) = S0 ("7 (n = 1) = 2"~ + (n — 1)272.

Case b). The Z/2Z-action on the set of all ncpd-trees splits them into 2 groups
according to the cardinality of orbits. The number of Z/2Z-invariant nepd-trees
equals the number of all subtrees in a tree on k vertices where n = 2k (since the
source-vertex of such a tree necessarily lies in the centre). The last number equals
2%=1 This gives j(GD) = (2" + (n — 1)2"=2 — 2k-1)/2 4 k—1 = 226=2 4 (9} _
1)22k—3 4 ok—1

Case ¢). The Z /pZ-action on the set of all nepd-trees splits them into 2 groups
according to the cardinality of orbits. The number of Z/pZ-invariant ncpd-trecs
equals to the number of all subtrees in a tree on k 4 1 vertices where n = pk + 1
(since the source-vertex of such a tree lies in the centre). The last number equals
2%, This gives §(GD) = 2% + (2"~ + (n — 1)2"~2 — 2%) /p.

5.5. PROPOSITION. Consider a Gauss diagram G D with the tree T+(GD) on n
vertices which has Aut(Tr) = Z /pZ where p is not a prime. Then for each nontrivial
factor d of p the number of ncpd-trees with the Z/dZ-group of symmetry equals

>omd)z¥
d'\d
where p(d') is the Mobius function. (This gives a rather unpleasant, expression for
the number of all tree-like curves with a given GD if p is an arbitrary positive
integer.)
Proor. Consider for each d such that d[p the subtree STrq on km + 1 vertices
m = %‘1 ’spanning’ Tr with respect to the Z/dZ-action. The number of ncpd-
trees invariant at least w.r.t Z/dZ equals 2*™ where p = dm and n = kp+ 1. Thus
by inclusion-exclusion formula one gets that the number of ncpd-trees invariant
exactly w.r.t. Z/dZ equals Ed.ldp(d')Q?. O
PRrROBLEM. Calculate the munber of ncpd-trees with a given underlying tree and
of a given index.
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§6. CONCLUDING REMARKS.

In spite of the fact that there exists a reasonable criterion of nonflattening in the
class of tree-like curves in terms of their ncpd-trees the author is convinced that
there is no closed formula for fin¢[c]. Combinatorial reformulation 4.7. reduces
calculation of #;ny{c] to a rather complicated discrete optimization problem which
can hardly have any closed answer. (One can even make speculations about the
computational complexity of the above optimization problem.)

The lower and upper bounds presented in §4 can be improved by using much
more complicated characterics of an ncpd-tree. On the other side, both of them are
exact on some ncpd-trees. Since the closed formula is unavailable the author was
not trying to get the best possible estimations.
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