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Intoduction

There are similar situations in three fields in which monodromy appears: in classical knot theory,
in the theory of singularities and in algebraic geometry. For example, the Alexander polynomial
of a knot corresponds to the characteristic polynomial in cohomology of the Milnor fibre of a
singularity. We want to give a survey of some results concerning this subject concluding by the
results of our recent paper [K K] (and some other results which are not contained in [K K]).

Now we give a more detailed description of this paper. In section 1 we define following
Milnor the Alexander invariants and in particular the Alexander polynomials in a general
situation of a CW-complex X and its infinite cyclic covering X,. Besides, we recall the Milnor
exact sequence which connects homology of X and X.

In section 2 we recall some facts of classical knot theory. In particular, we recall Stallings’es
theorem, characterizing the fibred knots as knots whose groups possess a finitely generated
commutator subgroups, to be compared with corresponding result on the fundamental group
of the complement of a plane algebraic curve [{1]. In section 3 we consider algebraic knots
throwing a bridge between knot theory and singularity theory.

[n section 4 we consider the Milnor fibration f : X' — S’ of a germ of a hypersurface
singularity. If X, = X’ xg U is the canonical Milnor fibre, where U — S’ is the unramified
covering, then the monodromy transformation h of the Milnor fibre can be considered as a
generator of the group of covering transformations of X,/ X'. We pay especial attention to
the Monodrony theorem and the limit mixed Hodge structure on cohomology of X, to be
compared with results [KK] in global situation (see sections 9 and 10).

In section5 we consider the monodromy of a quasihomogeneous singularity to connect results
on local and global situations. Besides, we recall a construction representing the Miinor fibre
X as a cyclic covering of the complement U = P\ V of a hypersurface in a weighted projective
space. ,

In section 6 we investigate the global case, that is, the complement X’ = ¢ \ D and P? \ D
of a plane algebraic curve. The definitions of the monodromy h and the (first) Alexander
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polynomial A(t) = det(tid — h.) are general. We recall the divisibility theorems of Libgober
[L1] and Vik. Kulikov [K1].

In section 7 we review methords of calculations of A(t) in case of irreducible curve D
intersecting the line at infinity transversally ([E], [LV]). They are based on Randell’s theorem
[R] reducing the calculation of A(t) to the calculation of the characteristic polynomial of the
monodromy of the Milnor fibre X; of a homogeneous [unction F(zo,z1,23). As we mentioned
above X, is an unramified cyclic covering of U = P? \ D. Esnault imbeds it to a ramified
coverinh of a "blown-up” plane Y = P?, and expresses A(t) in terms of cohomology of invertible
sheaves on Y. Loeser and Vaquie express A(¢) in terms of cohomology of some sheaves on P2

In sections 8-10 we review the results of our paper [KK]. In section 8 under weak conditions
of connectivity and irreducibility, we obtain a relation between homology of X/, the unramified
n-sheeted covering of X’ = €% \ D, and homology of its nonsingular projective model X,,
and also with homology of X, the infinite cyclic covering of X’. This generalizes Libgober’s
result [L1-L3]. Besides, we generalize the result of Kohno [Ko] on calculation of A(#) in terms of
cohomology of rational differentioal forms. In section 9 we sketch the proof of our theorem [KK]
on the semisimplicity of the monodromy k on /(X )#1. Besides, we five a sketch of the proof
of a new result of the semisimplicity of A on H;(Xe) under some condition of transversality.
At last in section 10, as a consequence of the semisimplicity theorem, we show how to introduce
a natural mixed Hodge structure on H;(X).

1 Alexander invariants of infinite cyclic coverings

For the first time the notion of the Alexander invariants appeared in classical knot theory. Then
it was transfered to other geometric contents. We begin with a general geometric situation
(Milnor [M2]). _

1.1. Let X be a finite connected complex or CW-complex and ¢ : X — X be the infinite
cyclic covering of X , determined by some epimorphism p : m(X) — ¥, onto the free group
F; = Z. Then F; acts freely on X as the group of covering transformations Deck(X/X) and
X/F =X.

Let & be a commutative ring and A = A(k) be group ring k[F,| of the group Fy. If ¢ is
one of two generators of F;, then A = k[tﬁ,’t“'] is the ring of Laurent polynomials in ¢ with
coefficients in k. The homology group H;(X,k) has a natural structure of a A-module, where
t-c = H(t)(c) for ¢ € Hi(X), Hi(t) is the automorphism corresponding to the covering
transformation ¢ : X — X.

Definition 1 The A-module A; = Ai(k) = H,-(qu,k) is called the i-th Alezander invariant
(module) of a space X (more ezactly of the pair (X, p)).

1.2. If k is a field, then A is a principal ideal domain. The homology group A = H.;(}A\r,k)
is finitely generated over A. Hence by a general theorem of algebra A is isomorphic to a direct
sum of cyclic modules

A~ @i A/(pj) = N @ (DA (1)),



where (p;) is a principal ideal generated by a polynomial p;(t). Here A® = Afree is a free part
corresponding to p;(t) = 0, and &%, A/(p;) = A¢ors is a torsion submodule of the A-module A.

The product ideal (p; - ... p;) is called the order of A. Obviously the order of A equals to
0 if and only if A has a free part, b # 0. In other words, the order A # 0 & A = Atopg is a

torsion module over A, i.e. A is a vector space of finite dimension over £.

Definition 2 If A = H;(X,k), then the polynomial Ai(2) = py(t) - ... - pi(t) is called the i-th
Alezander polynomial of a space X.

Obviously we have

Proposition 1 If A = H,(X, k) is finite dimensional over k, then Ai(t) coincides (to within
a unit of A) with the characteristic polynomial of linear transformation Hi(t) : H(X,k) —
H(X,k).

1.3. In general, if & is not a field, then the ring A = k[¢,¢™"] is not a principal ideal domain.
The most important example is & = Z. In any case, with any finitely presented module A
over a commutative ring A we can associate so called Fitting ideals Fy(A). They are defined

invariantly and are calculated in such a way. Let A* 25 A* = A — 0 be a presentation of a
A-module A and let P be the matrix of the linear map p. Then the k-th Fitting ideal Fi(A) C A
is generated by all minors of order s — k of the matrix P.

Definition 3 The ideals Fi._(A) are called the k-th Alexander ideals for A-module A.
For any ideal / C A denote by I the minimal principal ideal containing 1.

Definition 4 Any generator Ay(t) of the ideal Fy_(A) is called the k-th Alezander polynomial
for the A-module A.

Note that in the knot theory only the first Alexander polynomial of the space X = $° \ K
is nontrivial for a knot K. So in this case the k-th Alexander polynomial of the module H;(X)
is called the £-th Alexander polynomial of the knot K.

1.4. The Milnor ezact sequence. There is an exact sequence which is very usefull for
applications of H.-(};") for study of H;(X). It is analogous to Wang exact sequence for a locally
trivial fibration over a circle. Consider a short exact sequence

0o Cu(X) LD CuX) = C.(X) = 0

of chain complexes. Then homological (cohomological) Milnor ezact sequence is the correspond-
ing homology (cohomology) exact sequence

22 H(X) 2D HU(X) o Hi(X) D Hi(X) = ... = Ho(X) - 0.



2 Classical Knot Theory

2.1. Let K C S® be a knot, i.e. a connected submanifold in $% diffeomorphic to a circle
S'. The knot group is the most important invariant of a knot. The group of the knot K is
the fundamental group = = m(S® \ K) of the complement $° \ K = X, which is a K(m,1)
Eilenberg-Maclane space. It is easy to see that /;(S®\ K)=2Zfori=0,1and H{S*\ K)=0
for 1 > 2. Since H,(S® \ K) is the abelianization of the group m;(S® \ K), we have an exact
sequence

0= N o m(X)— Hi(X) =0,

where N =[G, G] = G’ is the commutator subgroup of . Consider an infinite cyclic covering
¢ : X = X determined by the epimorphism p : m(X) = H(X) = F;.
Let A = k[Fy] be the group ring of the group Fy.

——

Definition 5 The first Alezander invariant A = H,(X) of the space X = 8> \ K is called the
Alezander invariant of the knot K.

Any presentation matrix for the A-module Hy(X) is called an Alezander matriz. The
(k — 1)-th Fitting ideal Fi_i1(H,(X)), correspondingly, the k-th Alexander polynomial Ag(¢)
for the A-module Hl():') is called the k-th Alexander ideal, correspondingly, the k-th Alezander
polynomial for the knot K.

Theorem 1 The 1-st Alezander ideal Fo(H1(X)) of a knot K is principal.

The first Alexander ideal Fo(H;(X)) is called simply an Alezander ideal and its generater
A(t) = Ay(t) is called an Alezander polynomial for the knot K.

One can show that A(t) = det(V —tV7), where V is the so-called Seifert matrix for a knot
K. It is a 2¢ x 2¢g matrix defined by means of notions of a Seifert surface and a linking number
of cycles.

The following result shows that there is great freedom for the Alexander polynomials.

Theorem 2 (Seifert). If a polynomial A € A satisfies the conditions A(t) = £1 and A(t) =
t%- A(t7?), where d = deg A, then there is a knot K C S® such that its Alezander polynomial
is A.

2.2. Now we define a more restrictive class of knots which contains all algebraic knots (the
knots of singularities).

Definition 6 A knot K C S® is fibered if there is a fibration map p : S° \ K — S such that
K has a tubular neighborhood T ~ S x D? in S® for which the diagram

T\ K §tx (D*\ {0})

m\ /

Sl

is commutative, where D* = {y € C | |y |< 1} is the unit disk and po(z,y) = e
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Fibres Fy = p~'(¢), t € §!, are the interiors of compact surfaces F; C S® with common
boundary 0F, = K. (F; is obtained from a compact surface without boundary F; by means of
removing an open disk and is called a Seifert surface for the knot K).

Let F = Fy = p7'(1). The exact homotopy sequence of the fibration p gives that the
commutator subgroup of m;(S® \ K) coinsides with m(F) and, consequently, is a finitely
generated free group. The fibered knots are charecterized by this property.

Theorem 3 (Stallings). A knot K is fibered if and only if the commutator subgroup [m(S® \
K),m (8% \ K)] is finitely generated (and free).

The fibration p is locally trivial over a circle S! and so defines a monodromy homeomorphism
h . F — F and a momodromy operator Hi(h) : H;(f") — H,(F), which we’ll denote often
simply by h. Let [h] be a matrix of h. One can prove

Proposition 2 The matriz i - [d — [h] s an Alezander matriz for the knot K. In particular,
the Alexander polynomial A(t) for the fibered knot coincides with the characteristic polynomial
of the monodromy operator

A(t) = det(t- Id — [h)).

3 Algebraic Knots

3.1. Let (C,0) C (€%,0) be an isolated singularity of a plane curve (i.e. the curve is reduced).
Then we can associate with (C,0) a link L C S° where L = C'n SY and S? is a sphere of
sufficienly small radius €. Such links are called algebraic links. If (C,0) has k& components, then
the link L = L{C,0) has also k& components. In particular, if (C,0) is irreducible, k = 1, then
we obtain an algebraic knot L = K C S°.

Let f(z,y) = 0 be an equation of (C,0), i.e. (C,0) is the zero fibre of a morphism of germs
f:(c%,0) = (c,0). Consider the map

P SNLoS,  pley) = A

| fz,y) |

By a general result of Milnor [M1] it follows that p is a locally trivial fibration, i.e. we have
the following proposition.

Proposition 3 All algebraic knots (and links) are fibred.
3.2. An algebraic knot K = K(C,0) is entirely defined by the type of the singularity (C, 0).
Theorem 4 (K.Brauner). If

P(C,0) = {(my,n1), (ma,nz),. .., (ms,ns)}

is the sequence of Puiseuz pairs of a plane curve singularity (C,0), then the knot K(C,0) is
equivalent Lo the iterated torus knot associated lo the sequence of pairs P(C,0).



The Alexander polynomial A(t) of a knot K'(C,0) also can be expressed in terms of Puiseux
pairs.

Theorem 5 (Lé Diing Trang [Le]).

A(E) = Ay() = Py, (£2) - Py, (070),

where " - 1)
= 1)(t -
Pya(t) =
,\,n( ) (t‘\ _ 1)(i“ _ 1)7
andv;=mn;-...-n, fori=1,...,8, Vey1 =1, and Ay = my, A; = m; —my_n; + Ao nyn_y for
1=2,...,8.

For example, if (C,0) is a cusp, 3 + y?> = 0, then K(C,0) is the trefoil knot and

Al = ((:; - 11))((;2__11)) =Uottl

Besides, Lé Dung Trang proved the following theorem.

Theorem 6 . The quotient A/Ay of the first lwo Alexander polynomial of the knot K(C,0)
is the minimal polynomial of the monodromy operator M = h., : Hi(F) — Hi(F) of the
singularrity (C,0). Moreover, this polynomial has distinct roots and hence the monodromy M
has finite order and, in particular, M is semisimple.

Remark 1 If the singularity (C,0) is not irreducible, then the monodromy operator M can be
not semisimple. For example [AC1], if f = (2% + ¥*)(2® + 3?), then the minimal polynomial of
M is equal to (* + 1)(t* — 1) and has a double root ¢ = —1. Hence the monodromy operator
M has infinite order.

4 Milnor fibrations of germs of analytic functions

4.1. The Milnor fibration of an algebraic knot is a particular case of the Milnor fibration of an
analytic function germ f : (C**!,0) — (C,0). Let (¥,0) C (C**!,0) be a germ of a hypersurface
with the equation f(zg,%1,...,2,) = 0. Let the germ f be defined in a neighborhood of the
closed ball B, of sufficienly small radius ¢ > 0. Let S?**! = 9B, be the boundary sphere.

Definition 7 K = K(Y,0) = Y N §2*+1 C §2+! s called the knot of a singularity f or (Y,0).

Theorem 7 [M1]. If e > 0 is sufficienly small, then the map

. Q2ntl - 1 2} = J(z
(10‘56 \I\_)S3 ‘70() 'f(m)l,

is a smooth locally trivial fibration.
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If the singularity f is isolated, then the knot K is a smooth (2n — 1) -manifold. Any fiber
F, = ¢7!(t) is a smooth open manifold whose closure I, = F, U K. F; is a manifold with
boundary 9F; = K.

The fibration ¢ is called the Milnor fibration of a singularity f.

From the historical point of view the fibration ¢ is a natural generalization of fibred knots
(and then of algebraic knots). But there is another equivalent fibration associated to f which
is also called the Milnor fibration.

4.2. Let S=Ss={tecC ||t|<d}, & =85\{0}, X =X.5=B.nfS) X =
B.nf1(Ss), X'=X\ f710),and f: X = S, f: X = S denote the restrictions of f to X
and X.

Theorem 8 ([M1]; L& Diing Trang, 1977). If € 3> & > 0 are sufficiently small, then the map
f i X' = 8 is topological locally trivial fibration, and f': X' = §' is a smooth locally trivial
fibration.

Definition 8 The fibration f': X’ = 5, and also ' : X' — &, is called the Milnor fibration
of a singularity f.

Sometimes, one uses the terms open Milnor fibration and closed Milnor fibration to distin-
guish between f’ and f'.

The fibre X, = [~'(t), t € &', is a Stein complex manifold, dim X; = n. The fibre X; =
f~1(t) is a manifold with boundary. X, and X, have the homotopy type of a CW-complex of
real dimension . The fibre X, (and also X,) is called the Milnor fibre of a singularity f.

Obviously the fibrations f and f are homotopically equivalent to their restrictions over the
circle S5,, C Ss of radius /2. Identifying Sj;, and S!, we can assume that the radius of the
circle equals to 1. Denote the restrictions of f and f over S' by ¢ and 9 correspondingly.

Theorem 9 (i) The fibrations ¢ and ¢ are fibre diffeomorphic equivalent.
(11) The fibrations ¢ and i are fibre homotopy equivalent.

Thus introduced definitions of the notion of Milnor fibration are equivalent.

Remark 2 The Milnor fibration associated to a hypersurface singularity (Y, 0) does not depend
on the choice of an equation f = 0 for (Y,0). This comes from the fact that K-arbits are
connected. Moreover, the equivalence class of the Milnor fibration for an isolated singularity
does not change under p-const deformations.

4.3. A locally trivial fibration over a circle S' determine (and is determined by) a mon-
odromy transformation

h.:X; - X,

The monodromy transformation determines homology and cohomology operators
M =h,: H (X)) = H(X,), T=(hr")":H(X,) = H(Xy).
The basic property of monodromy operators is given by
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Monodromy Theorem. Let T': H?(X,,C) — H?(X,,C) be the monodromy operator in p-
dimensional cohomology of the Milnor fibration of a hypersurface singularity (Y,0) C (C**,0)
or of a germ of a function f:(C**',0) = (C,0). Then

(i) All the eigenvalues of T are roots of unity, or in olher words, the operator T is quasiu-
nipotent, i.e there exist positive intergers | and q such that

(T" = id)" = 0.

(i1) T! has index of unipotency at most p, i.e. we can take ¢ = p+ 1, i.e. the dimensions of
Jordan blocks of T are less or equal to p+ 1.

There are several different proofs of the Monodromy Theorem (Grothendieck A., Landman
A., Clemens C.H., Katz N.M., Borel A., Brieskorn E.,..., sce, for example, [G-S]).

The Monodromy Theorem is closely connected with the theory of mixed Hodge structures
(MHS). One can find an introduction to this theory in [G-S].

4.4. Let f : (C**1,0) — (C,0) be an isolated singularity and let X; be its Milnor fibre.
We consider the canonical Milnor fibre X, i.e. the total space of the pullback of the Milnor
fibration f' : X' — S’ to the universal cover U — 5" of 5/, X, = X’ xgU. As each X, is
homotopy equivalent to X, there is a canonical isomorphism between H"(X,) and H*(X).
The vanishing cohomology groups carry a mixed Hodge structure first defined by Steenbrink
[S], who used an embedding of f : X — S to a family of projective hypersurfaces and resolution
of singularities of this family. Then Varchenko A.N. and Sherk-Steenbrink [S-S] gave another
description of the Hodge filtration on H™(X,) which does not use resolution of singularities.
The weight filtration W. on H*(X) is connected with the monodromy operator T'. It is the
weight filtration of the nilpotent operator N = —éﬁlog T., where T, is the unipotent part of
the monodromy.

We can make more precise formulation of part (ii) of the Monodromy Theorem for H™(X})

#6’) The Jordan blocks of T are of size at most n+1. The Jordan blocks for eigenvalue 1 of
T are of size at most n.

Van Doorn M.G.M. and Steenbrink J.H.M. [DS] gave the following supplement to the Mon-
odromy Theorem :

Theorem 10 If the monodromy operator T on H™(X,) has a Jordan block of size n + 1 (nec-

essarily for an eigenvalue # 1), then T also has a Jordan block of size n for the eigenvalue
1.

This theorem is an analogue in higher dimensions of the following result of Lé D.T. (1972):
The monodromy of an irreducible plane curve singularity is of finite order.

4.5. At last we want to mention about the MHS on cohomology of the knot (link) of a
singularity and the Wang sequence (cf. [Ka]) to be compared with the Milnor exact sequence
and our result in the last section of this article.

Let K = Xo N St Xy = [71(0), be the knot of an isolated singularity f. It is known
that the pair (X, Xo) is homeomorphic to the cone on (S***!) K') with the vertex zo = Sing f.
So K is homotopy equivalent to Xo \ {zo} and hence Hi(Xo \ {zo}) >~ H:(K). By the



Poincaré duality we have an isomorphism H;(K) ~ H**~'=(K), and by the Alexander duality
H 1K) ~ Hi (ST \ K). Again Hip (S \ K) ~ Hia(X'), X' = X\ Xy, since
S#+1\ K is homotopy equivalent to X’. For the cohomology with coefficients in a field we
obtain dual isomorphisms

HY(K) ~ H' (X0 \ {zo}) = H*Y(X").

So we can think about each of these cohomology as cohomology of the knot of a singularity.
Using the above isomorphism we can introduce a MHS on H*(K). Indeed, because X,
is contractible, the long exact cohomology sequence of the couple (Xo,Xo \ {z,}) implies
isomorphism H'(Xp \ {zo}) ~ H™* (X, Xo \ {ze}) & I'IE:O'}(XO). But X, can be extended
to a complete variety Xo, and by excision H}, 1(Xo) = H{xo](XO)' On Hiro}(XU) there is a
canonical and functorial MHS.
The monodromy operator 1" appears in Wang exact sequence

o HY(XY) = HYOG) TS (X)) = B (XY >

For an isolated singularity f the Milnor fibre X; is homotopy equivalent to a buquet of
n-spheres and hence H*(X;) # 0 only for i = 0 and i = n. Consequently the only interesting
cohomology groups of the knot are H*(X’) and H™*!(X’) which are the kernel and the cokernel,
respectively, of the map 7' — Id : H*(X;) —» H™(X;).

The terms of the Wang sequence carry the MHS. The map T — Id need not be a morphism
of Hodge structures. But if we change T — Id by N = —#log T., then the sequence remains
exact and becomes a MHS exact sequence.

5 Monodromy of a quasihomogeneous singularity

5.1. Let f € Czo,...,2n] be a quasihomogeneous (= weighted homogeneous) polynomial of
degree deg f = N with respect to the weights wt z; = w;, 1.e. f satisfies the Euler relation

f(r g, ... ,r""z,) = er(rco, e Ty), Vrec, zect,

Consider the singularity f : (C**',0) — (C,0). Then the local Milnor fibration f': X’ — S
defined in the previous section is equivalent to the global affine Milnor fibration f’, where we
denote by f: X — § a morphism defined by the polynomial f,

=X DO X'=X\Xo, Xo = f~10)
f| \f’
c=5 D S=c\{0}.
Indeed, we can consider the C*-action on C**! associaied to weights w = (wy,...,w,)

roz = (r**zg,...,r*"z,), r€C, zet.
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The fibre X; = f~'(t) has the equation f(zo,...,z,) = t. The Euler relation f(r o z) =
N f(z) = vVt shows that r € C translates the fibre X, to the fibre X »,, and C* acts on the
set of fibres X;, ¢t € C*, transitively. If we deline the action of C* on § = C, rot = V¢, then
we see that the morphism f : €**! — C is equivariant.

5.2. Let us calculate the monodromy h : X; — X;. Consider the fibre F' = X, over the
point t =1 € §' = {| ¢ |= 1}. If we construct a family of diffeomorphisms A, : X; = Xi,
t = e?™¥ then h = hy : X; — X, is the monodromy. Obviously, we can take h,, =: e o (+)
and then we have roz € X,v = Xemip = Xy forz € Xy, f(z) =1, and r = e*¥. Thus we
obtain a concrete description of the geometric monodromy A : X; = X,

hiz) = (69_"3"_1%’ . ,e%na:n).

In particular, AV = 1 and the monodromy T = h* : H'(X;,C) — H'(X;,C) has a finite order,
TN = id. We obtain

Corollary 1 The monodromy of a quasthomogeneous singularity is semisimple, T = T,, and
all eigenvalues X are roots of unity, \N =1 .

5.3. We can use the weighted projective space
P=P(w)=C"""\ {0}/C",

where the action of C* on C**! is defined above, to calculate the eigensubspaces of H*(X,,C).
The space P(w) generalizes the usual projective space P* corresponding to weights w = (1,...,1)
(in the case of homogeneous polynomial f). The equation f(z) = 0 defines a hypersurface V C P
and let U = P\ V be the complement to V. We can consider ¥ = Xy C C**! as a quasicone
Y = Cy over V. We obtain a diagram

Y\ {0} |4

n N
¢\ {0} P
U U

X=g# D X ——— U=P\V

f >

=X,

S=Cc D §531

Thus, €**! \ {0} is partitioned into C*-orbits and the set of orbits is P. The fibre Y = f~1(0)
consists of orbits, the generators of the quasicone Cv, Y \ {0}/C* = V. And any fibre X,
t # 0, is mapped onto UU. Moreover, the subgroup uy = {r € C | r™¥ =1} is the stationary
subgroup of the fibre X; (»Nt =t = r¥ = 1). The group un acts on X; and the generator
e?™/N of this group acts as the monodromy A, and X,/pun = U.

10



Thus, £/,, = U and we can use the differential forms on the principal open subset U = P\ V
to calculate summands of H'(f,C), H'(F,OFf), H (F,Q%) in their decomposition into the sum
corresponding to the characters y € Hom(un,C).

6 Alexander polynomial of a plane curve

6.1. Let D C C* be a plane affine curve of degree d defined by an equation f(z,y) = 0. Let

flz,y) = Hf (2, y) (1)

be the decomposition into irreducible factors. Denote by D; C €? an irreducible component of D
defined by the equation fi(z,y) =0, ¢ =1,...,k. The function t = f(z,y) defines a morphism
f:X = S, where X =%, S =c'. Then D = f~!(0). Denote S’ =C \ {0}, X' = X \ D.
Consider the infinite cyclic covering ¢ = ¢ : Xoo = X' corresponding to the universal covering
e:U —= S where U =C, t =e(u) = e?™,

Xoo _(L, 4)(!
W
v ———— &

It is well known that H, (X', Z) = Z* is generated by the loops 7; ”surrounding” the components
D;. The homomorphism f, : 71 (X') = m{(S5") = Z factors through the Hurewitz homomorphism

H

1 (X’) A (X' z2)=7" 25 2,

where §(si[11] + ... + si[w]) = | ST
Definition 9 We say that f is primitive if the generic fibre of f : € — C is irreducible.

It is well known that if [ is not primitive, then f factors through a covering p : C —
C, f(z,y) = p(g(z,y)) such that g(z,y) is primitive.

Proposition 4 ([K1],[Sa]). The vector space H,(X,C) is finite-dimensional if and only if f
is a power of a primitive polynomial.

In the sequel we’ll assume that f is primitive, in particular,
G.C.D.(my,...,my) = 1.

Then f! : m(X’) — Z is an epimorphism.
The following theorem is an analog of Theorem 3 (Stallings) in the case of algebraic curves.

Theorem 11 ({K1], [K2]) If f is primitive, then Ker f. is finitely generated. In particular, if
D C €? is an irreducible curve, then [my(C* \ D), m(C \ D)] is finitely generated.
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Definition 10 The i-th Alezander polynomial Ap; of a curve D C € is the i-th Alezander
polynomial of the space X' = C* \ D associated with the epimorphism f!. The first Alezander
polynomial Ap(t) = Ap,1(t) is called simply the Alezander polynomial of D.

Definition 11 The Alezander polynomial Ap(t) of a projective curve D C P? is the Alezander
polynomial of an affine curve D C €, where @ =P*\ L, D = DNC?, and L C P? is a generic
line.

We can begin with an affine curve D C €? and consider its projective closure D C P2 Then
for the equality Ap(t) = Ap(t) it is necessary for L to intersect D trasversally.

Theorem 12 (Randell [R}). If D C P?is a reduced curve defined by the equation F(zg, %y, z5) =
0, then Ap(t) is equal to the characteristic polynomial of the monodromy h on first homology
of the Milnor fibre of the homogeneous singularity F : €3 — C,

Ap(t) = det(t - id — h).

In particular, this yields that the monodromy of a reduced curve transversally intersecting
the line at infinity is semisimple because it is so for the monodromy of a quasihomogeneous
singularity.

6.2. The divisibility by the Alezander polynomial ([L1], [K1]). Let p; € D be a singular
point. Denote by Ay, p(t) the characteristic polynomial of the monodromy 7" on cohomology
HY(X}) of the Milnor fibre of the singularity (D,p;). Equivalently, A, p(¢) is the Alexander
polynomial of the algebraic link K (D, p;).

Let $% = 9T(L) be the boundary of the tubular neighbouhood of the line L = Lo, C P? at
infinity. Denote by A, p(t) the Alexander polynomial of the link DN T (L) C 8T(L). If L is

in general position relative to D, then
Ao p(t) = (t = 1)t = 1)*2

Theorem 13 (Libgober [L1]). If D C C* is an irreducible curve, then

(1) Ap(t) divides the product [T Ap, p(t) of the local Alezander polynomials of all singularities
pi € D.

(ii) Ap(t) divides A, p(2).

This theorem provides some information about the fundamental group m;(C? \ D). The
application of it to curves with only cusps and nodes one can find in [L3].

Let Xy, ..., X, be the degenerate fibres of f' : X’ — 5" such that X'\ (UXy;) = 5"\ (Ut;)
is a C* locally trivial fibration. Let X, be a generic fibre. Let v and 4., be circles with centers
at 0 and of radius ro € 1 and r,, > 1. Denote by hy and h,, the monodromy operators on
H'(X,) corresponding to 7o and ve (and defined modulo an inner automorphism). We call the
characteristic polynomial A;,(t) = det(ho —t- Id) (correspondingly, A..(t) = det(hes — 1 - Id))
the internal (and (correspondingly, ezternal) Alexander polynomial.

Theorem 14 (Kulikov [K1]). If the polynomial f(z,y) is primitive, then Ap(t) divides A, (t)
and it divides A (t).

12



Let o : P2 — P? be a composition of ¢ -processes resolving the points of indeterminacy of
the rational map

f:pP? — — — pl!
U U
c? ct ;
Put f = oo f:P? — P.. We can assume that the fibres
5 Mo ~ Neo
F710) =5 miD;, S (00) =) rik;
i=1 =1
are divisors with normal crossings. Put
Dy = D; \ (U(D:in Dy)), R =R\ (U(R:N Ry)).
i#] i#7

In this case the internal and external Alexander polynomials can be calculated in terms of Euler
characteristics x(D?) (respectively x(R?)) and multiplicities m; (respectively r;) [AC2] :

Au(t) = (t-1) ﬁ(t"‘-‘ - 1)~x(D?)’

e
Aewlt) = (t—1) [ —1)~xRD,

=1
In particular, if the curve D = Dy U...U Dy, C P? intersects Le, transversally, then
Aea:(t) = (t — 1)(1,Zd.'mg _ 1)2:1;—2’
where d; = deg D;.

7 Calculations of Alexander polynomials of reduced
curves

We review the results of Esnault [E], Loeser-Vacuié [LV], Kohno [Ko].

7.1. The Alezander polynomial coincides with the characteristic polynomial of the mon-
odromy for a homogeneous singularity. Let D = Dy + ...+ Dy C P? be a reduced curve of
degree d with the equation F(zo,z1,z2) = 0. In virtue of Randell’s Theorem the question is
reduced to the calculation of the characteristic polynomial A{t) = Ap(t) for the monodromy
h* : HY(X,,C) —» H'(X,,C) of the Milnor fibre X; = [7~*(1) of the homogeneous singularity
F.¢ =

7.2. The monodromy transformation is « generalor of the group of automorphisms of a
cyclic unramified covering. Consider the diagram from section 5

13



Xo \ {0} D

N N
¢\ {0} p?
U U
X=¢ D X' e U=P2\D
P ~ /p
X,
S=¢c DO %

The calculation of A(t) is based on the fact that p : Xy = U is an unramified cyclic covering
of degree d, and the monodromy h : X; = X, acting as h(zo,z,22) = ({z0,(z1,(z2), Where
¢ = e*™/?¢ is the primitive root of unity of degree d, coincides with the generator of the group
Auty X, = Z/dz.

7.8. The imbedding of an unramified covering to a ramified one. Let X, be a projective
closure of the surface X; in P% defined by the equation F(zg,z1,z2) = z¢. The projection
P? = P?, (z0:21:22: %3) = (To: T1 : T2) from the point (0:0:0: 1) € X, determines the
covering p : X; — P? extending p and ramified over the curve D C P2 Resolve the singularities
of X;. First take the imbedded resolution ¢ : ¥ — P? of the curve D to obtain a divisor
with normal crossings C = o~}(D). Let C C Y be the proper preimage of D and E; be the
exeptional curves. Then take the pullback image Y* = X xp2 Y of the surface X; over Y and
take its normalization Y — Y’. At last, consider a good resolution Z —= Y of the singularities
of Y. The surface Y has only rational (in fact, quotient) singularities, because C is a divisor
with normal crossings, and after minimal resolution of ¥ chains of rational curves are ”glued”.

We obtain a commutative diagram

X, CZ
T T
1% X, DX,
q P
Ucy = P°PO>U =P\ D.

7, YD) = ¢~'(C) = A is a divisor with normal crossings. Then

7.4. The description of ramified cyclic coverings in terms of invertible sheaves ([E]). Let
(temporarily) Y be a nonsingular algebraic variety (of arbitrary dimension m). In a local
situation, if for example ¥ = €%, a cyclic covering ¢ : Y’ — Y of degree n ramified over a
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divisor D C Y defined by an equation f(z,y) = 0 is a projection of the subvariety Y’ C €* x C
defined by the equation 2” = f(z,y) in the trivial fibration. We can write Y'= Spec Oy ,
where Oy = O ® Oz @ ... & Oczz™! |, and the structure of algebra on Oy is given by the
rule z" = f(z,y).

In a global situation instead of trivial fibration we must take a locally trivial fibration or an
invertible sheaf. The construction of a cyclic covering runs as follows. Let £ be an invertible
sheaf on Y such that the sheaf £™ has a section s : Oy — L™ and its zeroes determine a divisor
D cCY. Then £~" C Oy is the sheaf of ideals of the divisor D. Set

n—1

Y’ = SpeCy(® E—j),

J=0
where the Oy-algebra structure is defined by inclusion L7 C Oy . Then ¢ : Y = Y is a
cyclic covering ramified over D.
Now let D = 311 E; be a divisor with normal crossings. Then the normalization v : Y — Y’
can be described concretely in terms of the following shecaves L) . Put g = vogq : Y -
t
Y' 25 Y. Then the direct image of the structure sheaf

n—1

0.0y = DLV,

j=0
where

L9 = 3 © Oy (- L (2 u] B,
=

and [-] denote the entire part of a number. .
The group Auty Y’ = AutyY = Z/nZ acts semisimply on q.L; . Let ( = e?™/™ be a root of

unity, and
n—1

7.0y =P F;
=0
be the decomposition into the sum of eigensubsheaves, where Fj corresponds to the eigenvalue
(7 of the generator h of Z/nZ. Actually the decomposition described above coincides with the
decomposition according to eigenvalues of A,

F=LY j=0,..,n-1

Return to our situation. The covering p : X; — P? is ramified over a divisor D and
is determined by the sheaf £ = Op2(1) and inclusion F : L% = Op(—d) = Opz, X; =
Specrg(eaf;é(')rz(—j)), and the covering ¢’ : Y/ — Y is determined by £ = o*(Op2(1)) and
inclusion £~¢ = Oy(—C) C Oy, where C = C + ¥ v; E;.

7.5. The decomposition of cohomology of the Milnor fibre. The fibre X, is a nonsingular
algebraic variety and so there is a MHS on H'(X,,Q) (Deligne). We need a good compactifica-
tion of X; to introduce the MHS. We can take a good resolution Z O X, because A = Z \ X,
is a divisor with normal crossings. We have a spectral sequence

EY" = HY(Z,9%(log A)) = H"*(X,,C),
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degenerating in the term Ey. In particular, we obtain that
HY(X1,€) = H(Z,0z) ® H°(Z,Q%(log A)).

7.6. The descent to Y. The singularities of the surface Y are rational (being quotient
singularities) and the morphism ¢ is finite. This involves

Corollary 2 We have
0.z (logA) = Qf(logC) ® ¢.0y,
Rp.Q%(logA) = 0 for : > 0.
Consequently,
H*(Z,9%(log A)) = H(Y, Q% (log C) ® ¢.0)
= @ISHU(Y, Q% (log C) ® (L)

and the last equality is the decomposition into the sum of eigensubspaces for the operator h
with eigenvalues (7.
In particular, we obtain

Corollary 3 We have
H'(X(,Q)s = H'(Y,(LV)") @ HO(Y, 2} (log C) @ (£Y)7")
forj=0,...,d—1.
We have £LU) = Oy for 5 =0, H'(Y,Oy) = 0 since Y is a rational surface, and
RO(Y, W (log C)) = k — 1.

Therefore, dim H'(X,,C); = k — 1.
We obtain the following expression for the Alexander polynomial

Theorem 15 ([E]). If a curve D C P? is reduced, then

d—1

Ap(t) = [T(t = ¢y,

i=0
where ( = e*™/?, and
h; = dim H'(Y, (L9)1) 4 dim HO(Y, Q) (log C) ® (£L)™Y).
We have ho = k — 1 for 3 = 0. Besides,

dim H°(Y, Q) (log C) @ (£9)™") = dim H'(Y, (£U=)~1)
forg=1,...,d—1.
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The last equality is proven in [LV]. Strictly saying, this theorem is contained in the Esnault’s
paper [E] implicitly. She calculates b;(X,), b2(X;) and also the rank and the signature of the
intersection quadratic form on HZ(Xy,€). This theorem is contained in [LV], where the further
descent to P? is realized with the help of Vanishing theorem and the theory of MHS in vanishing
cohomology of an isolated hypersurface singularity.

7.7. The descent to P* ([LV]). Let o : Y — P? be an embedded resolution of singularities of
a curve D C P2 In the paper [LV] the sheaves o.(£"Y) ® wy ), where wy is the canonical sheaf,
are calculated. They prove that

o (LY @uwy) ~ A5 - 3),

where @ = j/d—1, 1 < 7 < d—1, and the subsheal 4, C Op:2, for @ € @, =1 < a < 0,
coincides with Opz outside Sing D and for a singular point @ € SingD is defined by the condition

(Aa)e = {9 € Oraz | as(gwo) > a},

where f = 0 is a local equation of the curve D at z, wy is a 2-form regular and not vanishing
at z, and ay(w) is the order of a form w. [If [ : (C**',0) — (C,0) is an isolated singularity
and w is a (n 4+ 1)-form, then the order af(w) is the minimal exponent of ¢ in the asymptotic
development of integrals [ 3 over manyvalued horisontal sections of homological Milnor fibra-
tion.] A.N.Varchenko expressed as(w) (in the case a;(w) < 0) in terms of embedded resolution
7 X — C*! of the singularity f :

1 + vj(w)

ag(w) = inf( ~
i

- ]):

where 771(f71(0)) = 3 m; E; and v;(w) is the order of the form 7*(w) along the component E;.
Moreover, Loeser and Vacuié prove in [LV] with the help of the vanishing theorem (E.Vieweg)
that
Ro (LY Quwy)=0 fori>0and j=1,...,d—1.
This involves that ’
dim H' (Y, (£9)™") = dim A (P?, Au(5 — 3))
forj=1,...,d—land e =j/d - 1.
It is proven in [LV] that
H'(P? Aa(j = 3)) = 0,

if @ = 7/d — 1 does not belong to one of the spectra of z € Sing D. Summarizing we obtain the
Loeser-Vaquie’s result

Theorem 16 ([LV]). If D = Dy +...+ Dy C P? is a reduced curve, then
Ap(t) = (t = 1) TI (Aa(®)),
a€Ap
where Ap is the set of &« € Q for which —1 < @ < 0, d- @ € Z and o belongs lo the spectrum
of one of the singularities x € SingD, and
Au(t) = (t —exp(2mia))(t — exp(—2mia)),
l, = dimH'(P* A(d(a+1) - 3)).
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7.8. Calculation of the Alezander polinomial in terms of cohomology of rational differential
forms ([Ko]). T.Kohno calculates Ap(¢) for a reduced irreducible curve D C €2 transversally
intersecting the line Ly, at infinity. To calculate Ap(t) in terms of differential forms one
needs some preliminary results about the connection between cohomology of infinite and d-fold
coverings of C2\D. We'll obtain these results in general setting in the next section, and then
we'll calculate Ap(t) in section 8.6.

8 The homology of cyclic coverings of the complement
to a plane curve

We pass to the exposition of the main results of the paper [ K]. The problem is to consider
as general curve as possible, not reduced and without conditions at infinity as it was assumed
in the previous section. We return to the notation of section 6 : D =m; D1+ ...+ mpDy C c?
is a curve of degree d defined by the equation f(z,y) = 0 and so on.

8.1. Let ¢, : X, = X be n-fold cyclic covering of X' = €%, where X, is a normalization of
the surface defined by the equation z" = f(z,y) in . Denote X’ = X\ D, X! = X, \ B, B=
@ 1(D). Then the infinite cyclic covering ¢ = @ : Xoo — X' factors through the unramified
covering o, : X, = X’ and we have a commutative diagram

¢ Xoo 228 X1 Eny X
|foo \f; \f’ (2)
e: U — 5 = 8,

where e(u) =t =e*™ foru € U = C, ep(z) =t = 2" and z = e?™™/" for z € S, = C \ {0}.
We’ll be interested in the connection between the homology of the affine variety X, and its
projective completion X,.

Remark 3 The investigation of cyclic coverings X, of the plane P? (theory of algebraic sur-
faces) was the main reason for O.Zariski ([Z1], [%2]) to study m(C* \ D). The computation of
the irregularity g(X,) and other invariants of X, is one of the directions of the subject which
we don’t touch (see the Sakai’s survey [Sa]).

Let f : P? - § = P! be a rational map corresponding to the morphism f : X — S,
not defined only at some points of the infinite line L, = P? \ €* = f~'(00). Resolving the
points of indeterminacy by means of o-processes o : X — P? we get a morphism [ = f -0 :
X — 5. We can imagine X = €? to be obtained from X by means of throwing out a curve
0~ (Le) which consists of some quasisections and some components of fibres of the morphism
f. Analogously we can construct a completion X,. We begin with a hypersurface in P? defined
by the equation z} = a7 f(zo,21,%2), where f(zo,;,72) is a homogeneous polynomial of
degree deg f associated with f, m = n — deg f. Let X, be a normalization of this surface
and @, : X, = P? be induced by the morphism ¢, : X, — X. Resolving the singularities
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and the points of indeterminacy of morphisms we get a smooth surface X, D X0, where
X? =X, \ SingX,, and a commutative diagram

X cXcX, X oXx
\f,’, \f \fn If ]f (3)
S c S cS=85>S8

8.2. Let us formulate the conditions which we impose on the curve D. We say that the
condition (Irr,) holds for a curve D if all the curves B; = o '(D;), i = 1,...,k, are irreducible.

Definition 12 A curve D is connected modulo n, if the support of the divisor

Dmodﬂ = Z ?TT,,'D{

miEOmodn

is connected. D is absolutely connected modulo n , or shorter, salisfies the condition (C,,), tf
D is connected modulo n, for each ny, ny | n. (Ch)
We need the condition (C,) to get the following
Theorem 17 ([N K]). If D satisfies the condition (C,) , then
H(X5, 0%,) =C.

This theorem affims that the regular and regular invertible functions on the afline variety
X, are only constants, i.e. the matter is the same as on €*. From this theorem follows that
from the point of view of one-dimensional homology only the components B; = ¢;!(D;), which
lie on the normalization X2, are essential for a compactification X!, C X,.

Corollary 4 . If a curve D satisfies the condition (Cy,), then the inclusion i : X2 C X, induces
an isomorphism

1e: Hi(X0) — H\(X,).
8.3. The relation between homology of X! and X, is given by

Theorem 18 ([K K)).
(i) If D satisfies the conditions (C,) and (Irr,) , then there is an ezact sequence

k . -
0= Py - Hi(X,,C) == Hi(X,,C) =0, (4,)
=1
where i = 1, : X, C X, is an imbedding, and the cycle 3; € Ker 1. corresponds to ”going arroud
the component B;” .
(it} Moreover, if D satisfies the conditions (Cynpy) and (Irrapy) , then the sequence (4,) is
exact for all n.
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The condition of Theorem 17 (i) holds if the support of the curve D is connected in €* and
(mi,n) = 1 for each multiplicity m; (in particular, if D is a reduced curve). If D is an irreducible
curve, we get a generalization of the Libgober’s result: dim Keri, = 1 (the conditions at infinity
are superfluous).

8.4. The relation of H\(Xs) and H((X]). The proof of Theorem 17 (ii) is based on the
application of the Milnor exact sequence (see section 1) to analyse the relation of H;(X,) and
Hy(X.) for different n.

Consider the Milnor exact sequence for the infinite cyclic covering peon : Xoo = X,. If
(G, C F, is the infinite cyclic group generated by A", then X| = X /G, and X' = X]/un,
where u, = F;/G, is the cyclic group of order n. Denote by h, the automorphism of X
induced by the monodromy h. Then h, is the generator of the group p, which corresponds
also to the generator of the Galois group Gal(k(X))/k(X")).

Put together the Milnor exact sequence and the exact sequence (4,,)

0 — 05,05 — (X)) ks [ (X)—0 (5)

The group F; = Z with the generator h = h. acts on the spaces H;(Xo), Hi(X]) and
Hi(X,) (on Hy(X%) and H,(X,) the action is reduced to the group p, = Fi/G, with the
generator h,). Clearly, the homomorphisms (¢eon )« and (2, )« are equivariant.

We denote

Hrl(Xoo) ) @;HI(XDO)A.. = [lrl(/\’oo)/\zl EB 11(1():00);(_-1

the root decomposition of the automorphism h, where H)( X))z = @rz1 H1(Xoo)a. We shall
apply the analogous notation for the root decomposition of the spaces Hj(X’) and H(X,)
corresponding to the automorphism h, = (hy,)..

The colomn in diagram (5,) gives that H; (X)) is almost Im(@e ). C H((X}),

Coker(weon)s ~ Ho(Xeo), Ho(Xeo) = €, and h acts trivially on Ho(Xe). On the other hand,
Im(poon)e = Coker(h™ — id). We need an easy exercise in the linear algebra.

Lemma 1 . Let h be an automorphism of a vector space L/C. Then
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(i) If the Jordan decomposition of h has only one Jordan block with a eigenvalue A\ # 0,
then for ¥n € N the automorphism h™ also has one Jordan block with the eigenvalue A™. This
involves

(it) If h has no eigenvalues A = 0, then the number and the dimensions of Jordan blocks for
h™ are the same as for h.

(iit) If h has only one Jordan block with A # 1, then h —id : L — L is an isomorphism,
and if A =1, then dim Ker(h — id) = dim L/ (h-id)[ = 1.

Therefore, applying this lemma to A" in the diagram (5,,), we get that, moving from H; (X))
to H1(XNe), the Jordan blocks of Hy(Xe) with A™ # 1 disappear, and every Jordan block with
A" = 1 gives one eigenvector in the space H,(X, ) with the same eigenvalue A. Denote by J =
J(h) the number of Jordan blocks of the automorphism h, and by J; = Jyzy, Jo = Janzr, Ja
the number of Jordan blocks with eigenvalues A = 1, with eigenvalues A such that A\* = 1, with
eigenvalues not equal to 1 correspondingly. Thus lemma involves that

dim Hy (X)) = Ji(h*) + 1 = Ju(h) + 1.

8.5. The decomposition of H(X]) into eigensubspaces. Now consider the line in the diagram
(54). On one hand, the fact that X,/pn is a rational surface (and hence there are no invariant
holomorphic forms on X,) involves that the operator h, on H,(X,,C) has no eigenvalues
A =1, H(X,,C) = Hl(Xﬂ,C)#. On the other hand, under the condition (Irry), i.e. if the

curves B; are irreducible, the cycles 4;, 1 = 1,...,k, are invariant relative to h,. This involves
the proof of the Theorem 17, and we obtain that
H(X\ )0 =0,C %,  Hi(X)a~ H(X,)

This involves

dim H}(}:’n) = Jn - J] = J¢1(D,n),
where Jy (D, n) is the number of Jordan blocks of the monodromy h on H,(Xe,C) with
eigenvalues A # 1 for which A" = 1.
8.6. Calculation of the Alezander polinomial of an irreducible curve in terms of cohomology
of rational differential forms ([Ko]). Let D be an irreducible curve (k = 1) of degree deg D = d.
If D intersects the line at infinity transversally, then according to the Randell’s theorem in
section 6 the monodromy h is semisimple, and A? = 1. In the next section we obtain the

theorem on the semisimplicity of A without the assumption of the transversality of intersection
at infinity. Thus (8.4) and (8.5) involve that

H' (Xeo) = HM (XD

The surface Xyg C C? defined by the equation 2™ = f(z,y) is normal, because the curve D is
reduced. Recall that X' =C? \ D, X}, = X4\ B, where B C X; is the curve with the equation
z=0and @4 : X; - X' is an unramified covering of degree d.

We apply the Grothendick’s theorem to calculate the cohomology H!(X/,C). If X is a
complex variety, D C X is a hypersurface, 7: X' = X \ D — X is the imbedding, then

H(X',€) =’ (Qy.) = H(5.0x.) = H(Qx (D)),
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where (U (+D) is de Rham’s complex of meromorphic forms with poles along D. If X is an
affine variety, then
H(X',C) = H(T(S2y (+D)).

Apply this to X = ¢? and X = X;. We obtain
H'(X3,©) = H (I(Qy,(xB)).

Let h = hg be a generator of the group Auty, X}, h® = 1. Let ( = e*™/¢ be a root of unity of
degree d and

H (X3, €©) = @52 H' (X5, C)¢s
be the decomposition into eigensubspaces. The monodromy h acts semisimply also on the
differential forms on X). The part corresponding to the eigenvalue (7 is equal to

Qx,(xB); = Qy (xD)2’.

Since ‘—i}{— = i(:qd—l = d‘i—z, we have
d(Zw) =327 Mz Aw + 2 dw = (—]— Aw+ dw)z’.
d

So the multiplication by z/ = f//¢ defines an isomorphism of complexes
o= B (+B); 5 O (+B); - .
b
= QR(xD) 2 QP (+D) > ...
where V; is a regular connection in Qy (D) defined by the formula

)
Viw) =dw + l—f A w.

df

Therefore,

HY (X3, Q) = H'(D(Q,(B);, d) = H'(D(Qx (D), V)

and we obtain Kohno’s theorem.

Theorem 19 ([Ko]). If D C C* is an irreducible curve of degree d transversally intersecting
the line at infinity, then the Alezander polynomial is

Ap(ty= JI -,

1<5<d-1

where h; = dime¢ H'([(Qe2(%D), V;).
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In virtue of the theorem on the simplicity of monodromy in the next section we obtain the
generalization of Kohno’s theorem:
Theorem 18’

i). The Kohno’s theorem is true without the condition of transversality at infinity;

it). if D is a connected reduced curve, then

Ap(t)=(t-1) T[ (t-¢).

1<5<d—1

9 The semisimplicity of the monodromy

9.1. If a curve D C €2 is reduced and D transversally intersects the line at infinity, then
the monodromy A on H;(X.) is semisimple, because it coincides with the monodromy of
a quasihomogeneous singularity (see section 6). We generalize it to the case of nonreduced
curves without any conditions at infinity, and use quite different ideas based on the Milnor
exact sequence and the theory of mixed Hodge structures.

Theorem 20 ([KK}). If a curve D satisfies the conditions (Cy(py) and (Irrypy), then the
monodromy h on Hy(Xe )1 s semistmple.

We sketch the proof of this Theorem. We have to prove that the Jordan blocks of the auto-
morphism h on H,(X.) with eigenvalues A # 1 are one-dimensional. We compare the mon-
odromies on homology of X, and on homology of a nonsingular fibre Y. Let Y = X, = f~'(¢),
correspondingly ¥ = X, = f~'(t), be a nonsingular fibre (close to X) of the morphism f,
correspondingly f, in the diagram (3). The morphisms ¢, and ¢, are unramified coverings
and the fibers 7}(Y) and ¢! (Y') break up into components isomorphic to Y. Choosing points
u € eZ}(t) and 7 € e;'(¢) we can assume that Y is embedded into X, and X}, as fibres f3'(u)
and f7!({) such that the diagram

14 = Yo Y

jml lj ]3

X X' — X,.
© Poom "3

is commutative. We get a commutative diagram for homology

H(Y) = H(Y)— H(Y)

(joo)*l Jj.. ‘ i
H\(Xeo) — Hi(X}) — Hi (X,).

The monodromy operator acts on the spaces Hy(Xo), H1(X!), Hi(Y) and H,(Y) and the
homomorphisms in the above diagram are equivariant, i.e. commute with the action of the
monodromy operators. The part of the diagram corresponding to the eigenvalues A # 1 is the
following



H(Y)g Hy(Y)
| :
fll(xoo)#m Hy (X)) ;” Hy(X,.).

The key place of the proof is the following. On one hand, in virtue of (8.4) every Jordan
block of the automorphism h on H{(X)s1 (i.e. the invariant subspace L on which h consists
of one Jordan block) gives in H,(X,) one non zero vector, dimi. - (¢eon)sf = 1. On the other
hand, a two-dimensional block L can be obtained from a two-dimensional block L in H,(Y).
At last the theory of mixed Hodge structures yieds that we can choose L in such a way that
(L) = 0in Hy(X,). This shows that the blocks in /(X )x1 can be only one-dimensional.

9.2. If D is an irreducible curve, then Ap(1) = &1 [K1]. Hence from Theorem 20 we obtain
the following theorem.

Theorem 21 The monodromy h on H\(Xy) is semisimple for an irreducible curve D.

Remark 4 The analogous statement is not true for knots. For example, for the knq‘u 810 the
monodromy A on H;(X) isn’t semisimple.

Proposition 5 Let D =m D + D’ be a curve satisfying the following conditions:

i) Dy is irreducible and Dy ¢ supp(D'),

it) there exists a point x € D N supp(D') at which the divisor Dy 4+ D/, is locally a divisor
with normal crossings,

i) for the curve D' the monodromy h on H\(X ) is semisimple.

Then for the curve D the monodromy h on Hy (X )1 is semisimple.

We sketch the proof of this proposition. From the homological Milnor exact sequence it
follows that one needs to show that the Alexander polynomial Ap(t) of the curve D satisfies
the condition: Ap(t) = (t—1)¥""'-A’(t), where A’ is a polynomial such that A’(1) # 0, and & is
the number of irreducible components of D. The straightforward calculations of the Alexander
polynomial (as in [K1] and [K2}), using Fox’s free calculus, show that the polynomial Ap(t)
possesses the required property under the conditions of the proposition.

As a consequence of this proposition and Theorem 20 we obtain the following theorem.

Theorem 22 Let D = m Dy + ... + mp Dy be a curve satisfying the conditions of Theorem 20
and such that fori1=1,..., k — 1, there exists a point x; € D1 N (U§=1Dj) such that the curve

DU+ = Dy 4 ...+ Diyy is locally a divisor with normal crossings at x;. Then for the curve D
the monodromy h on H(Xy) is semisimple.

Conjecture. If a curve D satisfies the conditions (Cy(py) and (Irrypy), then the monodromy
h on Hi(X) is semisimple.
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10 On the mixed Hodge structure on H'(X,)

The construction of X, for X’ = €* \ D is analogous to the construction of a canonical fibre
for a family of nonsingular projective varieties over the punctured disk S’ or for the Milnor
fibration of a hypersurface singularity, but in our case the fibration f': X’ — S’ is not locally
trivial. In these cases there is a limit MHS (W.Schmid, J.Steenbrink). We want to introduce a
MHS on H'(Xs,Q) such that the homomorphisms

(o)™ H'(X}) = H'(Xoo)

are MHS morphisms.

The surface X/ is a nonsingular algebraic variety and so there is the MHS on H'(X]})
introduced by Deligne [G-S]. Remind that we must take a nonsingular projective variety X, D
X! such that X, \ X’ = D is a divisor with normal crossings. The weight filtration W. defines
spectral sequence which involves an exact MHS sequence

0— HY(X,) » H(X!) = H (D) - H*(X,),

where there is a pure Hodge structure of weight 1 on H'(X,), DY is a disjoint union of the
components of D and there is a pure Hodge structure of weight 2 and type (1,1) on H°(DW).
In our case by the Theorem 17 this exact sequence is the exact sequence

0o HY(X,) —» H' (X)) = 0t,c.37 =0 (4,)

dual to the sequence (4,,). So if W. is the weight filtration on H'(X.), H'(X]) = W, D W; D0,
then W, = H'(X,) and GrY¥ = W,/W, = &C- 7 and the pure Hodge structure on GrY is of
type (1,1).

In our case the cyclic group p, = Z/nZ, generated by h7, acts on H'(X)). The monodromy
h% is a MHS isomorphism since h,, is an isomorphism of the algebraic variety X. From section
(8.5) we have

HY(Xy) = HY(X]), H'(X)) > ®L,C %

Hence the MHS on H'(X)) splits and is the direct sum of pure Hodge structures of weight 1
on H'(X,) and of weight 2 and type (1,1) on ®%.,C - ;.

Consider the diagram dual to the diagram (5,,)
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H'(Xo)
(h*)* ~id
H'(Xc)

(Poon)”
0 — Hl(xn)—“ Hl(X,") —’EB:?:]C"_T;'—* 0 (511)

HO(Xeo)

T

0
By the Theorem 20 if n(D) | n, then

H' (XL = B (X o).

is an isomorphism. So if we introduce the MHS on H'(X,) as a direct sum of the pure Hodge
structure of weight 1 on H'(X)z1, obtained by the isomorphism (¢eon(n))*, and the pure
Hodge structure of weight 2 and type (1,1) on H'(X,,)1, then we obtain the desired MHS.

Theorem 23 ([KK]). If a curve D satisfies the conditions (Cnpy) and (Irrapy), then there
exists a natural mized Hodge structure on H'(X,Q) such that the homomorphisms o3, ,, :
HY (X!,Q) = HY(X,Q) are MHS morphisms. [f a curve D is irreducible, then the MHS on
H'Y (X, Q) is pure.
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The monodromies of knots, hypersurface singularities
and polynomials

V. S. Kulikov *and Vic. S. Kulikov }

Intoduction

There are similar situations in three fields in which monodromy appears: in classical knot theory,
in the theory of singularities and in algebraic geometry. For example, the Alexander polynomial
of a knot corresponds to the characteristic polynomial in cohomology of the Milnor fibre of a
singularity. We want to give a survey of some results concerning this subject concluding by the
results of our recent paper [A K] (and some other results which are not contained in [K K]).

Now we give a more detailed description of this paper. In section 1 we define following
Milnor the Alexander invariants and in particular the Alexander polynomials in a general
situation of a CW-complex X and its infinite cyclic covering X,. Besides, we recall the Milnor
exact sequence which connects homology of X and X.

In section 2 we recall some facts of classical knot theory. In particular, we recall Stallings’es
theorem, characterizing the fibred knots as knots whose groups possess a finitely generated
commutator subgroups, to be compared with corresponding result on the fundamental group
of the complement of a plane algebraic curve [K1]. In section 3 we consider algebraic knots
throwing a bridge between knot theory and singularity theory.

[n section 4 we consider the Milnor fibration f' : X’ — 5 of a germ of a hypersurface
singularity. If X, = X’ xs U is the canonical Milnor fibre, where U — S’ is the unramified
covering, then the monodromy transformation 4 of the Milnor fibre can be considered as a
generator of the group of covering transformations of X, /X’. We pay especial attention to
the Monodrony theorem and the limit mixed Hodge structure on cohomology of X, to be
compared with results [KK] in global situation (see sections 9 and 10).

In section5 we consider the monodromy of a quasihomogeneous singularity to connect results
on local and global situations. Besides, we recall a construction representing the Milnor fibre
X, as a cyclic covering of the complement / = P\ V of a hypersurface in a weighted projective
space.

In section 6 we investigate the global case, that is, the complement X’ = €% \ D and P?\ D
of a plane algebraic curve. The definitions of the monodromy A and the (first) Alexander

*The research described in this publication was made possible in part by Grant No. 4373 from the INTAS.
'The work was done partially when the second author stayed at Max-Planck-Institut fiir Mathematik in
Bonn.



polynomial A(t) = det(tid — h.) are general. We recall the divisibility theorems of Libgober
[L1] and Vik. Kulikov [K1].

[n section 7 we review methords of calculations of A(¢) in case of irreducible curve D
intersecting the line at infinity transversally ([E], [LV]). They are based on Randell’s theorem
[R] reducing the calculation of A(t) to the calculation of the characteristic polynomial of the
monodromy of the Milnor fibre X of a homogeneous function F(z,z;,z;). As we mentioned
above X, is an unramified cyclic covering of U = P? \ D. Esnault imbeds it to a ramified
coverinh of a ”blown-up” plane Y = P2 and expresses A(t) in terms of cohomology of invertible
sheaves on Y. Loeser and Vaquie express A(t) in terms of cohomology of some sheaves on P2,

In sections 8-10 we review the results of our paper [KK]. In section 8 under weak conditions
of connectivity and irreducibility, we obtain a relation between homology of X/, the unramified
n-sheeted covering of X’ = €* \ D, and homology of its nonsingular projective model X,
and also with homology of X, the infinite cyclic covering of X’. This generalizes Libgober’s
result {L1-L3]. Besides, we generalize the result of Kohno [Ko] on calculation of A(t) in terms of
cohomology of rational differentioal forms. In section 9 we sketch the proof of our theorem [KK]
on the semisimplicity of the monodromy A on H(Xe)x1. Besides, we five a sketch of the proof
of a new result of the semisimplicity of A on H;(X) under some condition of transversality.
At last in section 10, as a consequence of the semisimplicity theorem, we show how to introduce
a natural mixed Hodge structure on H{(X).

1 Alexander invariants of infinite cyclic coverings

For the first time the notion of the Alexander invariants appeared in classical knot theory. Then
it was transfered to other geometric contents. We begin with a general geometric situation
(Milnor [M2]).

1.1. Let X be a finite connected complex or CW-complex and ¢ : X = X be the infinite
cyclic covering of X , determined by some epimorphism p : 7;(X) — F, onto the free group
F, = Z. Then Fy acts freely on X as the group of covering transformations Deck(X/X) and
}\’/]Fl = X

Let k be a commutative ring and A = A(k) be group ring k[F,] of the group Fy. If ¢ is
one of two generators of ¥y, then A = k[t,¢™'] is the ring of Laurent polynomials in t with
coefficients in k. The homology group Hi(X,k) has a natural structure of a A-module, where
t ¢ = Ht)(c) for ¢ € Hi(X), Hi(t) is the automorphism corresponding to the covering
transformation ¢ : X — X.

Definition 1 The A-module A; = Ai(k) = Hi(X,k) is called the i-th Alezander invariant
(module) of a space X (more ezactly of the pair (X,p)).

2. If k is a field, then A is a principal ideal domain. The homology group A = H,-(:f, k)
is finitely generated over A. Hence by a general theorem of algebra A is isomorphic to a direct
sum of cyclic modules

Az @, A (p) = N & (@5, (),
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where (p;) is a principal ideal generated by a polynomial p;(t). Here A® = Afree 18 a free part
corresponding to p;(t) = 0, and B, A/(pi) = Ators is @ torsion submodule of the A-module A.

The product ideal (p; - ... - p;) is called the order of A. Obviously the order of A equals to
0 if and only if A has a free part, b # 0. In other words, the order A # 0 & A = Ay 5 is a
torsion module over A, i.e. A is a vector space of finite dimension over k.

Definition 2 [f A = H;(X,k), then the polynomial Aty = pi(t) - ... pe(t) is called the i-th
Alezander polynomial of a space X.

Obviously we have

Proposition 1 If A = H;(X,k) is finite dimensional over k, then Ai(t) coincides (to within
a unit of A) with the characteristic polynomial of linear transformation Hy(t) : Hi(X, k) —
Hi(X,k).

1.3. In general, if & is not a field, then the ring A = k[t,¢™!] is not a principal ideal domain.
The most important example is & = Z. In any case, with any finitely presented module A
over a commutative ring A we can associate so called Fitting ideals Fx(A). They are defined
invariantly and are calculated in such a way. Let A* 5 A’ = 4 — 0 be a presentation of a
A-module A and let P be the matrix of the linear map p. Then the &-th Fitting ideal Fi.(A) C A
is generated by all minors of order s — k of the matrix P.

Definition 3 The ideals Fy_1(A) are called the k-th Alexander ideals for A-module A.

For any ideal I C A denote by I the minimal principal ideal containing /.

Definition 4 Any generator Ai(t) of the ideal Fi_(A) is called the k-th Alezander polynomial
for the A-module A.

Note that in the knot theory only the first Alexander polynomial of the space X = §° \ K
is nontrivial for a knot K. So in this case the k-th Alexander polynomial of the module H,{X)
is called the k-th Alexander polynomial of the knot A’

1.4. The Milnor ezact sequence. There is an exact sequence which is very usefull for

applications of H;(X) for study of H;(X). It is analogous to Wang exact sequence for a locally
trivial fibration over a circle. Consider a short exact sequence

02 C(X) B CUX) = C(X) 20

of chain complexes. Then homological (cohomological) Milnor exact sequence is the correspond-
ing homology (cohomology) exact sequence

=2 HA(XD) S Hi(X) o Hi(X) 2 Hi (X)) = ... = Ho(X) — 0.



2 Classical Knot Theory

2.1. Let K C S® be a knot, i.e. a connected submanifold in S% diffeomorphic to a circle
S'. The knot group is the most important invariant of a knot. The group of the knot K is
the fundamental group 7 = m(5° \ K') of the complement $3 \ A = X, which is a A'(r,1)
Eilenberg-Maclane space. It is easy to see that /;(S®\ A) =Zfori =0, 1 and Hy(S®\ K) =0
for 1 > 2. Since Hi(S® \ A") is the abelianization of the group 7;(S® \ K), we have an exact
sequence

0= N —=m(X)—> H(X) -0,

where N =[G, (] = (' is the commutator subgroup of . Consider an infinite cyclic covering
@ : X = X determined by the epimorphism p : 7 (X)) — H\(X) = F,.
Let A = k[F,] be the group ring of the group F;.

Definition 5 The first Alexander invariant A = Hl(?) of the space X = 5% \ K is called the
Alexander invariant of the knot K.

Any presentation matrix for the A-module Hl(f) is called an Alezander matriz. The
(k ~ 1)-th Fitting ideal Fi_,(H,(X)), correspondingly, the k-th Alexander polynomial A(t)
for the A-module H,(X) is called the k-th Alezander ideal, correspondingly, the k-th Alezander
polynomial for the knot K.

Theorem 1 The 1-st Alezander ideal FO(HI(:‘?)) of a knot K is principal.

The first Alexander ideal Fo(Hy(X)) is called simply an Alezander ideal and its generater
A(t) = A(t) is called an Alezander polynomial for the knot K.

One can show that A(t) = det(V —tV7), where V is the so-called Seifert matrix for a knot
K. It is a 2¢ x 2g matrix defined by means of notions of a Seifert surface and a linking number
of cycles.

The following result shows that there is great freedom for the Alexander polynomials.

Theorem 2 (Seifert). If a polynomial A € A satisfies the conditions A(t) = £1 and A() =
t - A(t™Y), where d = deg A, then there is a knot K C S° such that its Alezander polynomial
is A. :

2.2. Now we define a more restrictive class of knots which contains all algebraic knots (the
knots of singularities).

Definition 6 A knot K" C S° is fibered if there is a fibration map p: S \ K — S' such that
K has a tubular neighborhood T ~ S' x D? in S® for which the diagram '

T\ K S'x (D*\ {0})

PIT\\I\\ %

St

is commutative, where D* = {y € C | |y |< 1} is the unit disk and po(z,y) = .
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Fibres F, = p~!(t), t € S', are the interiors of compact surfaces F; C S% with common
boundary 8F, = K. (F, is obtained from a compact surface without boundary F; by means of
removing an open disk.and is called a Seifert surface for the knot K).

Let FF = Fy = p~!(1). The exact homotopy sequence of the fibration p gives that the
commutator subgroup of m(S® \ K) coinsides with 7 (F) and, consequently, is a finitely
generated free group. The fibered knots are charecterized by this property.

Theorem 3 (Stallings). A knot K is fibered if and only if the commutator subgroup [m (53 \
K),m(S* \ K] is finitely generated (and free).

The fibration p is locally trivial over a circle S* and so defines a monodromy homeomorphism
h : F — F and a momodromy operator H,(h) : H,(F) — H,(F), which we’ll denote often
simply by h. Let [h] be a matrix of . One can prove

Proposition 2 The matriz t - Id — [h] is an Alezander matriz for the knot K. In particular,
the Alezander polynomial A(t) for the fibered knot coincides with the characteristic polynomial

of the monodromy operator
A(t) = det(t- Id — [h]).

3 Algebraic Knots

3.1. Let (C,0) C (€*,0) be an isolated singularity of a plane curve (i.e. the curve is reduced).
Then we can associate with (C,0) a link L C S, where L = C N S? and S? is a sphere of
sufficienly small radius €. Such links are called algebraic links. If (C,0) has k& components, then
the link L = L(C,0) has also & components. In particular, if (C,0) is irreducible, k£ = 1, then
we obtain an algebraic knot L = K C S3.

Let f(z,y) = 0 be an equation of (C,0), i.e. (C,0) is the zero fibre of a morphism of germs
f: (€%, 0) = (C,0). Consider the map

. g3 1 _ Sy
p:S;\ LS, plz, y) EE

3

By a general result of Milnor [M1] it follows that p is a locally trivial fibration, i.e. we have
the following proposition.

Proposition 3 All algebraic knots (aﬁd links) are fibred.
3.2. An algebraic knot /' = K(C,0) is entirely defined by the type of the singularity (C,0).
Theorem 4 (K.Brauner). [f
P(C,0) = {(m1,n1), (ma,na), ..., (ms,ns)}

is the sequence of Puiseuz pairs of a plane curve singularity (C,0), then the knot K(C,0) is
equivalent to the iterated torus knot associated to the sequence of pairs P(C,0).



The Alexander polynomial A(t) of a knot K'(C,0) also can be expressed in terms of Puiseux
pairs.

Theorem 5 (Lé Ding Trang [Le}).

A(t) = Ayt) = Payn, (872) -0 Py, (E741),

where .
-0t -1
‘D‘\‘n(t) — ( - )( )’
(¢t = 1)(tr = 1)
andv;=n;-...-ng fori=1,...,8, vgp1 = 1, and Ay = my, \; = m; —mi_yn; + N_ynyni_y for
1=2,...,8.

For example, if (C,0) is a cusp, z° + y? = 0, then A(C,0) is the trefoil knot and

@ =niE-1 _
W=wne=n -

tP —t+1.

Besides, Lé Dung Trang proved the following theorem.

Theorem 6 . The quotient A/A; of the first two Alexander polynomial of the knot K(C,0)
is the minimal polynomial of the monodromy operator M = h. : H\{(F) — H,(F) of the
singularrity (C,0). Moreover, this polynomial has distinct roots and hence the monodromy M
has finite order and, in particular, M is semisimple.

Remark 1 If the singularity (C,0) is not irreducible, then the monodromy operator M can be
not semisimple. For example [AC1], if f = (2% 4+ y*)(z® + y?), then the minimal polynomial of
M is equal to (t° + 1)(t* — 1) and has a double root ¢ = —1. Hence the monodromy operator
M has infinite order.

4 Milnor fibrations of germs of analytic functions
4.1. The Milnor fibration of an algebraic knot is a particular case of the Milnor fibration of an
analytic function germ f : (C**',0) = (C,0). Let (Y,0) C (C**',0) be a germ of a hypersurface

with the equation f(zoyz1,...,2n) = 0. Let the germ f be defined in a neighborhood of the
closed ball B, of sufficienly small radius ¢ > 0. Let S?**! = 9B, be the-boundary sphere.

Definition 7 K = K(Y,0) = Y N S+ C §2"F! is called the knot of a singularity f or (Y,0).

Theorem 7 [M1]. If ¢ > 0 is sufficienly small, then the map

@ 53”“ \ A = St p(z) = /(=)

is a smooth locally trivial fibration.



If the singularity f is isolated, then the knot A" is a smooth {2n — 1) -manifold. Any fiber
F, = ¢71(t) is a smooth open manifold whose closure F; = F, U K. F, is a manifold with
boundary 9F, = K.

The fibration ¢ is called the Milnor fibration of a singularity f.

From the historical point of view the fibration ¢ is a natural generalization of fibred knots
(and then of algebraic knots). But there is another equivalent fibration associated to f which
is also called the Milnor fibration.

42 Let S=S;={tec ||t|<é},S=5\{0}, X =X,5=0B.nFYS), X =
B.N f7H(Ss), X=X\ f71(0),and f: X = §, f: X = S denote the restrictions of f to X
and X.

Theorem 8 ({M1]; Lé Dang Trang, 1977). If ¢ > § > 0 ave sufficiently small, then the map
f: X' = S is topological locally trivial fibration, and [’ : X' — S’ is @ smooth locally trivial
fibration,

Definition 8 The fibration f': X' = S', and also f': X' — &', is called the Milnor fibration
of a singularity f.

Sometimes, one uses the terms open Milnor fibration and closed Milnor fibration to distin-
guish between f’ and f.

The fibre X, = f~!(t), t € &', is a Stein complex manifold, dim X, = n. The fibre X, =
f='(t) is a manifold with boundary. X, and X, have the homotopy type of a CW-complex of
real dimension n. The fibre X, (and also X,) is called the Milnor fibre of a singularity f.

Obviously the fibrations f and f are homotopically equivalent to their restrictions over the
circle S3,, C S5 of radius 6/2. Identifying Sj,, and S', we can assume that the radius of the

circle equals to 1. Denote the restrictions of f and f over S! by % and ¥ correspondingly.

Theorem 9 (i) The fibrations  and ¥ are fibre diffeomorphic equivalent.
(i1} The fibrations v and ¢ are fibre homotopy equivalent.

Thus introduced definitions of the notion of Milnor fibration are equivalent.

Remark 2 The Milnor fibration associated to a hypersurface singularity (Y, 0) does not depend
on the choice of an equation f = 0 for (Y,0). This comes from the fact that K-arbits are
connected. Moreover, the equivalence class of the Milnor fibration for an isolated singularity
does not change under p-const deformations.

4.3. A locally trivial fibration over a circle S! determine (and is determined by) a mon-
odromy transformation
~h X! s Xg.

The monodromy transformation determines homology and cohomology operators
M =h.: H(X,) = H(Xy), T=("R)":H(X) = H(X,).
The basic property of monodromy operators is given by
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Monodromy Theorem. Let T : H?(X,,C) — HP(X,,C) be the monodromy operator in p-
dimensional cohomology of the Milnor fibration of a hypersurface singularity (Y,0) C (C*+1,0)
or of a germ of a function f: (C**!,0) — (C,0). Then

(1) All the eigenvalues of T are roots of unity, or in other words, the operator T' is quasiu-
nipotent, i.e there exist positive intergers | and q such that

(T' — id)" = 0.

(ii) T! has index of unipotency at most p, i.e. we can take ¢ = p+ 1, i.e. the dimensions of
Jordan blocks of T are less or equal to p + 1.

There are several different proofs of the Monodromy Theorem {Grothendieck A., Landman
A., Clemens C.H., Katz N.M., Borel A., Brieskorn E.,..., see, for example, [G-S]).

The Monodromy Theorem is closely connected with the theory of mixed Hodge structures
(MHS). One can find an introduction to this theory in {G-S].

4.4. Let f: (C**',0) = (C,0) be an isolated singularity and let X, be its Milnor fibre.
We consider the canonical Milnor fibre X, 1.e. the total space of the pullback of the Milnor
fibration f': X’ — 5’ to the universal cover U — & of &', Xoo = X' x5 U. As each X, is
homotopy equivalent to X, there is a canonical isomorphism between H™(X;) and H™(X).
The vanishing cohomology groups carry a mixed Hodge structure first defined by Steenbrink
[S], who used an embeddingof f : X — S to a family of projective hypersurfaces and resolution
of singularities of this family. Then Varchenko A.N. and Sherk-Steenbrink [S-S] gave another
description of the Hodge filtration on H"(X,..) which does not use resolution of singularities.
The weight filtration W. on H"*(Xs) is connected with the monodromy operator 7. It is the
weight filtration of the nilpotent operator N = —z-logT., where T, is the unipotent part of
the monodromy.

We can make more precise formulation of part (ii) of the Monodromy Theorem for H™(X,)

it') The Jordan blocks of T are of size at most n+ L. The Jordan blocks for eigenvalue 1 of
T are of size at most n.

Van Doorn M.G.M. and Steenbrink J.H.M. [DS] gave the following supplement to the Mon-
odromy Theorem :

Theorem 10 [f the monodromy operator T on H™(X,) has a Jordan block of size n + 1 (nec-
essarily for an eigenvalue # 1), then T also has a Jordan block of size n for the eigenvalue
1.

This theorem is an analogue in higher dimensions of the following result of Lé D.T. (1972):
The monodromy of an irreducible plane curve singularity is of finite order.

4.5. At last we want to mention about the MHS on cohomology of the knot (link) of a
singularity and the Wang sequence (cf. [Ka]) to be compared with the Milnor exact sequence
and our result in the last section of this article.

Let K = XoN St Xy = f~1(0), be the knot of an isolated singularity f. It is known
that the pair (X, Xp) is homeomorphic to the cone on ($***!, K’} with the vertex zo = Sing f.
So K is homotopy equivalent to Xo \ {zo} and hence H;(Xo \ {zo}) ~ Hi(K). By the
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Poincaré duality we have an isomorphism H;(') ~ H**~'={(LK), and by the Alexander duality
H17H(K) ~ Hi (S \ K). Again Hip (S \ R) o~ Hip (X7), X' = X\ Xo, since
§+1 \ K is homotopy equivalent to X’.. For the cohomology with: coefficients in a field we
obtain dual isomorphisms

H(K) >~ H(Xo \ {xo}) >~ H*(X").

So we can think about each of these cohomology as cohomology of the knot of a singularity.
Using the above isomorphism we can introduce a MHS on H'(K). Indeed, because Xg
is contractible, the long exact cohomology sequence of the couple (Xo, Xo \ {z,}) implies
isomorphism H'(Xo \ {2o}) = H*'(Xo, Xo \ {w0}) of HEIDI}(XO). But X, can be extended
to a complete variety Xo, and by excision H, 1(Xo) =~ H{Io}(.-‘:’o). On H{zo}(XO) there is a
canonical and functorial MHS.
The monodromy operator T appears in Wang eract sequence

o H(XY) = H(X) TS ) - (X >

For an isolated singularity f the Milnor fibre X, is homotopy equivalent to a buquet of
n-spheres and hence H(X,) # 0 only for : = 0 and i = n. Consequently the only interesting
cohomology groups of the knot are H*(X’) and H™*'(X’) which are the kernel and the cokernel,
respectively, of the map T — Id : H*(X;) = H"(X\4).

The terms of the Wang sequence carry the MHS. The map T — /d need not be a morphism
of Hodge structures. But if we change T'— [d by N = —;-log T,, then the sequence remains
exact and becomes a MHS exact sequence.

5 Monodromy of a quasihomogeneous singularity

5.1. Let f € C{zg,...,zs] be a quasihomogeneous (= weighted homogeneous) polynomial of
degree deg f = N with respect to the weights wt «; = w;, i.e. f satisfies the Euler relation

f(r"'“:cg,...,r""":z:n)=er($0,...,:cn), YrecC, zecCt!,

Consider the singularity f : (€**',0) = (C,0). Then the local Milnor fibration f': X’ — &
defined in the previous section is equivalent to the global affine Milnor fibration f’, where we
denote by f: X — S a morphism defined by the polynomial f,

ctl=X DO X' =X\ X, Xo = f71(0)
fl ‘f’
c=S5 D §=c)\{0}.
Indeed, we can consider the C*-action on €"*! associated to weights w = (wo, ..., ws)

roz = (r*zg,...,r""a,), recC, rcc".
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The fibre X; = f~!'(t) has the equation f(zo,...,%.) = t. The Euler relation f(roz) =
r¥ f(z) = rVt shows that r € C translates the fibre X, to the fibre X,~,, and C* acts on the
set of fibres X, t € C, transitively. If we define the action of C on S =C, ro* = rV¢, then
we see that the morphism f: C**! = C is equivariant.

5.2. Let us calculate the monodromy h : X, = X,;. Consider the fibre F = X, over the
point t =1 € §' = {| ¢t |[= L}. If we construct a family of diffeomorphisms A, : X; — X,
t = e?™% then h = h, : X| = X is the monodromy. Obviously, we can take h, =: 62_7# o(-)
and then we haveroz € Xixv = Xomio = X, forz € Xy, f(z)=1,and r = ¢’ ¥, Thus we
obtain a concrete description of the geometric monodromy A : X| = X,

h(z) = (ea_ﬂ;”lrx:o, ey e”—xmxn).
In particular, AV = 1 and the monodromy T' = h* : H'(X,,C) = H'(X,,C) has a finite order,
TV = id. We obtain

Corollary 1 The monodromy of a quasthomogeneous singularity is semisimple, T = T,, and
all eigenvalues A are roots of unity, AN =1 .

5.3. We can use the weighted projective space
P=P(w)=C""\ {0}/C,

where the action of € on C**! is defined above, to calculate the eigensubspaces of H*(X,,C).
The space P(w) generalizes the usual projective space P™ corresponding to weights w = (1,...,1)
(in the case of homogeneous polynomial f). The equation f(z) = 0 defines a hypersurface V C P
and let U = P \ V be the complement to V. We can consider ¥ = Xy C C**! as a quasicone
Y = Cy over V. We obtain a diagram

Y \ {0} %
N M
P
U

o\ {0}
u
X=¢t D X ———— U=P\V

fl e

FE,Xl

S=¢Cc O 531

Thus, €**! \ {0} is partitioned into C*-orbits and the set of orbits is P. The fibre Y = f~!(0)
consists of orbits, the generators of the quasicone Cy, Y \ {0}/C* = V. And any fibre X},
t # 0,is mapped onto /. Moreover, the subgroup uy = {r € C | ¥ =1} is the stationary
subgroup of the fibre X; (r¥t = t = r¥ = 1). The group un acts on X, and the generator
e?™/N of this group acts as the monodromy A, and X,/uy = U.
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Thus, F/,, = U and we can use the differential forms on the principal open subset U = P\ V'
to calculate summands of H'(F,C), H'(F,Of), H (F, Q%) in their decomposition inte the sum
corresponding to the characters y € Hom(uy,C).

6 Alexander polynomial of a plane curve

6.1. Let D C C? be a plane affine curve of degree d defined by an equation f(z,y) = 0. Let

k

flzoy) = [T fM (e ) (1)

=1

be the decomposition into irreducible factors. Denote by D; C €? an irreducible component of D
defined by the equation fi(z,y) =0, 1 =1,...,k. The function t = f(z,y) defines a morphism
f:X = S, where X =% S =¢'. Then D = f7}(0). Denote S’ =C \ {0}, X' =X \ D.
Consider the infinite cyclic covering ¢ = o : Xoo = X’ corresponding to the universal covering
e: U — S, where U =C, t=e(u) = e,

Xoo v . X!
Al
v ——— &

[t is well known that H,(X',Z) = Z* is generated by the loops v; ”surrounding” the components
D;. The homomorphism f, : m;(X’) = 71(S’) = Z factors through the Hurewitz homomorphism
" ‘

fam(X) - (X z) =28 L 2,
where §(si[y1] + ... + sk[v]) = T, sim.
Definition 9 We say that f is primitive if the generic fibre of f : C* — C is irreducible.

[t is well known that if f is not primitive, then f factors through a covering p : C —
C, f(z,y) = p(g(z,y)) such that g(z,y) is primitive.

Proposition 4 ([K'1],(Sa]). The vector space Hi(Xw,C) is finite-dimensional if and only if f
is a power of a primitive polynomial.

In the sequel we’ll assume that f is primitive, in particular,
G.C.D(my,...,my) =1l

Then f! : m(X’) = Z is an epimorphism.
The following theorem is an analog of Theorem 3 (Stallings) in the case of algebraic curves.

Theorem 11 ([K1], [K2]) If f is primitive, then Ker f! is finitely generated. In particular, if
D C C is an irreducible curve, then [m(C* \ D), m (C* \ D)] is finitely generated.
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Definition 10 The i-th Alexander polynomial Ap; of a curve D C €% is the i-th Alezander
polynomial of the space X' = C* \ D associated with the epimorphism f.. The first Alezxander
polynomial Ap(t) = Ap(t) is called simply the Alezander polynomial of D.

Definition 11 The Alexander polynomial Ap(t) of a projective curve D C P? is the Alexander
polynomial of an affine curve D C C*, where G2 = P2\ L, D = DNC?, and L C P? is a generic
line.

We can begin with an affine curve D C C? and consider its projective closure D C P2, Then
for the equality Ap(t) = Ap(t) it is necessary for L to intersect D trasversally.

Theorem 12 (Randell [R]). If D C P?is a reduced curve defined by the equation F(zg,x1,x2) =
0, then Ap(t) is equal to the characteristic polynomial of the monodromy h on first homology
of the Milnor fibre of the homogeneous singularity F : C* — C,

Ap(t) = det(t - id — h).

In particular, this yields that the monodromy of a reduced curve transversally intersecting
the line at infinity is semisimple because it is so for the monodromy of a quasihomogeneous
singularity.

8.2. The divisibility by the Alezander polynomial ([L1}, {K1}). Let p; € D be a singular
point. Denote by A, p(t) the characteristic polynomial of the monodromy T' on cohomology
H'(X,) of the Milnor fibre of the singularity (D,p;). Equivalently, A, p(t) is the Alexander
polynomial of the algebraic link K(D, p:).

Let 5% = AT(L) be the boundary of the tubular neighbouhood of the line L = Lo, C P? at
infinity. Denote by A, p(¢) the Alexander polynomial of the link DN 8T (L) C dT(L). If L is
in general position relative to D, then

Aoo,D(t) = (t— 1)(td - 'l)d_2.

Theorem 13 (Libgober [L1]). If D C €* is an irreducible curve, then

(1) Ap(t) divides the product [ Ay, p(t) of the local Alexander polynomials of all singularities
pi € D. .

(11) Ap(t) divides Ay, p(t).

This theorem provides some information about the fundamental group m(C* \ D). The
application of it to curves with only cusps and nodes one can find in [L3].

Let Xi,,...,X:, be the degenerate fibres of f': X' — 5 such that X'\ (UX,;) = &\ (Ut;)
is a € locally trivial fibration. Let X; be a generic fibre. Let vy and v, be circles with centers
at 0 and of radius r9 €« 1 and ry, > 1. Denote by hy and h,, the monodromy operators on
H!(X;) corresponding to v and e (and defined modulo an inner automorphism). We call the
characteristic polynomial A;,(t) = det(hg — t - [d) (correspondingly, A..(t) = det(he — t - [d))
the internal (and (correspondingly, external) Alezander polynomial.

Theorem 14 (Kulikov [K1]). If the polynomial f(z,y) is primitive, then Ap(t) divides A;,(t)
and it divides A,;(t).



Let o : P* = P? be a composition of o -processes resolving the points of indeterminacy of
the rational map '

f:pP? — — — p!
U U
C2 Cl

Put f=cof: B? - P!. We can assume that the filres

are divisors with normal crossings. Put
DY = Di \ (U(Din D)), R} = R: \ (U(R: 0 Ry)).
i i#5
In this case the internal and external Alexander polynomials can be calculated in terms of Euler
characteristics x(D?) (respectively x(R?)) and multiplicities m; (respectively r;) [AC2] :

No
Am(t) = (¢—1) H(tm.— _ l)—x(D?)’

i=1

Ae(t) = (¢ _ 1) Nﬁ(tn _1)mXRY),

In particular, if the curve D = D, U ... U Dy C P? intersects Lo, transversally, then
Aealt) = (¢ = D)2 5m — )2 42,

where d; = deg D;.

7 Calculations of Alexander polynomials of reduced
curves

We review the results of Esnault [E], Loeser-Vacuié [LV], Kohno [Ko].

7.1. The Alezander polynomial coincides with the characteristic polynomial of the mon-
odromy for a homogeneous singularity. Let D = Dy + ...+ Dy C P? be a reduced curve of
degree d with the equation F(zo,z;,z2) = 0. In virtue of Randell’s Theorem the question is
reduced to the calculation of the characteristic polynomial A(t) = Ap(t) for the monodromy
h* . H'(X,,C) — H'(X,,C) of the Milnor fibre X; = F~'(1) of the homogeneous singularity
F:C>cC

7.2. The monodromy transformation is a generator of the group of automorphisms of a
cyclic unramified covering. Consider the diagram from section 5
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Xo \ {0} D

M N
&\ {0} P2
U U
,\’ = (C’} D X’ U == ]P2 \ D
N
F /P
X,

S=c D> ¢

The calculation of A(t) is based on the fact that p: .X; = U is an unramified cyclic covering
of degree d, and the monodromy h : X; — X, acting as h(zo, z1,22) = ((z0o,(z1,(z2), Where
¢ = e**'/4 is the primitive root of unity of degree d, coincides with the generator of the group
Auty X, = Z/dZ

7.3. The imbedding of an unramified covering to a ramified one. Let X, be a projective
closure of the surface X in P? defined by the equation F(zg,z;,z2) = z¢. The projection
P? = P2 (zo: T : 2 a3) — (To: 2 @ x2) from the point (0:0:0: 1) g X, determines the
covering j : X; — P? extending p and ramified over the curve D C P2 Resolve the singularities
of X,. First take the imbedded resolution o : Y — P? of the curve D to obtain a divisor
with normal crossings C = 0~!(D). Let C C Y be the proper preimage of D and E; be the
exeptional curves. Then take the pullback image Y’ = X; xp2 Y of the surface X, over ¥ and
take its normalization Y — Y. At last, consider a good resolution Z —+ ¥ of the singularities
of Y. The surface ¥ has only rational (in fact, quotient) singularities, because C is a divisor
with normal crossings, and after minimal resolution of ¥ chains of rational curves are "glued”.

We obtain a commutative diagram

X,CcZ
™ 7
Y X0 X,
q p
vcy PO U =P\ D.

7 @YD) = ¢ Y(C) = A is a divisor with normal crossings. Then

7.4. The description of ramified cyclic coverings in terms of invertible sheaves ([E]). Let
(temporarily) Y be a nonsingular algebraic variety (of arbitrary dimension m). In a local
situation, if for example Y = €%, a cyclic covering ¢' : Y’ — Y of degree n ramified over a
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divisor D C Y defined by an equation f(z,y) = 0 is a projection of the subvariety Y’ C ¢2 x C
defined by the equation 2z = f(z,y) in the trivial fibration. We can write Y'= Spec Oy
where Oy: = O @ Oz @ ... ® Og2z"~! | and the structure of algebra on Oy is given by the
rule 2" = f(z,y).

In a global situation instead of trivial fibration we must take a locally trivial fibration or an
tnvertible sheaf. The construction of a cyclic covering runs as follows. Let £ be an invertible
sheaf on Y such that the sheaf £™ has a section s : Oy — £ and its zeroes determine a divisor
D CY. Then £7" C Oy is the sheaf of ideals of the divisor D. Set

n=1

Y' = Specy (D L)
j=0
where the Oy-algebra structure is defined by inclusion £ C Oy . Then ¢ : ¥/ = Y is a
cyclic covering ramified over D.
Now let D = ¥ 11 E; be a divisor with normal crossings. Then the normalization v : ¥ — ¥’
can be described concretely in terms of the following sheaves L) . Put g = vog : ¥ -5

¥’ 25 Y. Then the direct i image of the structure sheaf

n—1

2.0y = (L)

j=0

where

L(J ‘CJ ® O}’ Z[—*U(]Eg)
]
and [-] denote the entire part of a number.
The group Auty Y’ = AutyY = Z/nZ acts semisimply on ¢.L5 . Let ( = e?™/" be a root of
unity, and

n—1

7.0y = D F;
j=0
be the decomposition into the sum of eigensubsheaves, where F; corresponds to the eigenvalue
(7 of the generator h of Z/nZ. Actually the decomposition described above coincides with the
decomposition according to eigenvalues of A, »

Fj=£(j), j=0,....,n—1.

Return to our situation. The covering 5 : X, — P? is ramified over a divisor D and
is determined by the sheaf £ = Op:(1) and inclusion £ : L7¢ = Op(—d) = Op, X, =
Spece2 (B -00r2( 7)), and the covering ¢’ : Y’ — Y is determined by £ = ¢*(Op(1)) and
inclusion E = Oy(=C) C Oy, where C = C + > v E;

7.5. The decomposition of cohomology of the Mu’nm ﬁbre. The fibre X, is a nonsingular
algebraic variety and so there is a MHS on H( X, Q) (Deligne). We need a good compactifica-
tion of X to introduce-the MHS. We can take a good resolution Z D X, because A = 7 \ X,
is a divisor with normal crossings. We have a spectral sequence

EY = HY(Z,0%(log A)) = HP(X,,0),

-
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degenerating in the term Ey. In particular, we obtain that

R4

HY(X,,C) = HY(Z,02) ® H(Z, QL (log A)).

7.6. The descent to Y. The singularities of the surface Y are rational (being quotient
singularities) and the morphism ¢ is finite. This involves

Corollary 2 We have

.(logd) = (logC) @ q.0r,
R'o.Q%(logA) = 0 for i > 0.
Consequently,

HY(Z,Q(logA)) = H(Y, 0% (log C) ® ¢.0)
= @I HU(Y, 2 (log C) @ (L)

and the last equality is the decomposition into the sum of eigensubspaces for the operator A
with eigenvalues (7.
In particular, we obtain

Corollary 3 We have -
H'(X,, Q) = H'(Y, (L)) @ H(Y, 2} (log O) ® (L9)™)
forj=0,...,d-1.
We have LU) = Oy for j =0, H(Y,Oy) = 0 since Y is a rational surface, and
RO(Y, Q4 (log C)) = k — 1.

Therefore, dim A'(X,,C), = k — 1.
We obtain the following expression for the Alexander polynomial

Theorem 15 ([E}). If a curve D C P* is reduced, then &

d—1

AD(t) = H(t - Cj)hja

j=0
where ( = e*™/%, and
h; = dim H'(Y, (£9)™") 4 dim HO(Y, Q% (log C) ® (£L9) 7).
We have ho = k — 1 for 3 = 0. Besides,

dim H°(Y, 2} (log C) @ (L)1) = dim H(Y, (L)1)

forg=1,...,d—1.
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The last equality is proven in [LV/]. Strictly saying, this theorem is contained in the Esnault’s
paper [E] implicitly. She calculates b,(X1), b2(.X'|) and also the rank and the signature of the
intersection quadratic form on H2(X1,C). This theorem is contained in [LV], where the further
descent to P? is realized with the help of Vanishing theorem and the theory of MHS in vanishing
cohomology of an isolated hypersurface singularity.

7.7. The descent to P* ([LV]). Let o : Y — P? be an embedded resolution of singularities of
a curve D C P2 In the paper [LV] the sheaves o.(£Y) ® wy )}, where wy is the canonical sheaf,
are calculated. They prove that

Uu(ﬁ(j) Quy) > Ay - 3)1

where a = j/d— 1, | < j < d -1, and the subsheal A, C Op2, for a € @, -1 < a < 0,
coincides with Opa outside SingD and for a singular point « € SingD is defined by the condition

(Aa)e = {9 € Op2x | ay(gwo) > o,

where f = 0 is a local equation of the curve D at z, wg is a 2-form regular and not vanishing
at z, and ay(w) is the order of a form w. {If f: (C**',0) = (C,0) is an isolated singularity
and w is a (n + 1)-form, then the order af(w) is the minimal exponent of ¢ in the asymptotic
development of integrals [ J over manyvalued horisontal sections of homological Milnor fibra-
tion.] A.N.Varchenko expressed a;(w) (in the case af(w) < 0) in terms of embedded resolution
7 X = C**! of the singularity f :

L+ v(w)

ay(w) = inf( -
7

- l)’

where 71 f~1(0)) = ¥ m, E; and v;(w) is the order of the form 7*(w) along the component E;.
Moreover, Loeser and Vacuié prove in [LV] with the help of the vanishing theorem (E.Vieweg)
that
Ro (LY Q@uwy)=0 fori>0and j=1,...,d—1.
This involves that _
dim (Y, (L7 = dim (B2 AL (5 — 3))
forj=1,...,d=1and a=j/d — 1.
It is proven in [LV] that
Hl([P?s Aa(j—3)) =0,

if @« = j/d — 1 does not belong to one of the spectra of € Sing D. Summarizing we obtain the
Loeser-Vaquie’s result

Theorem 16 ([LV]). If D = D, +...+ Dy C P? is a reduced curve, then
AD(t) = (JE - l)k—l H (An(t))laa
) a€dp
where Ap is the set of @ € Q for which -1 < a < 0, d- & € Z and « belongs to the spectrum
of one of the singularities x € SingD, and
Aq(t) = (t —exp(2mia))(t — exp(—2mia)),
l« = dimHY(P? A (d(a +1) - 3)).
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7.8. Calculation of the Alezander polinomial in terms of cohomology of rational differential
forms ([Ko]). T.Kohno calcnlates Ap(t) for a reduced irreducible curve D € €? transversally
intersecting the line Lo, at infinit;. To calculate Ap(¢) in terms of differential forms one
needs some preliminary results about the connection between cohomology of infinite and d-fold

coverings of C2\ D. We’'ll obtain these results in general setting in the next section, and then
we'll calculate Ap(f) in section 8.6.

8 The homology of cyclic coverings of the complement
to a plane curve

We pass to the exposition of the main results of the paper [K'K]. The problem is to consider
as general curve as possible, not reduced and without conditions at infinity as it was assumed
in the previous section. We return to the notation of section 6 : D = m Dy + ...+ my D, C C*
is a curve of degree d defined by the equation f(z,y) = 0 and so on.

8.1. Let ¢, : X, = X be n-fold cyclic covering of X = €%, where X,, is a normalization of
the surface defined by the equation z* = f(z,y) in C*. Denote X' = X'\ D, X!, = X,\ B, B=
©-1(D). Then the infinite cyclic covering ¢ = v : N = X' factors through the unramified
covering ¢, : X, — X’ and we have a commutative diagram

b Xeo 228 X1 22y X
\fm \f; lf’ (2)
e: U — 5§ =8,

where e(u) =t =e?™ foru € U =C, ex(z) =t =z"and : = e forz € !, =C \ {0}.
We'll be interested in the connection between the homology of the affine variety X and its
projective completion X,,.

Remark 3 The investigation of cyclic coverings X, of the plane P? (theory of algebraic sur-
faces) was the main reason for O.Zariski ([Z1], [Z2]) to study =;(C* \ D). The computation of
the irregularity ¢(X,) and other invariants of X, is one of the directions of the subject which
we don’t touch (see the Sakai’s survey [Sal).

Let f : P2 - § = P! be a rational map corresponding to the morphism f : X — §,
not defined only at some points of the infinite line Lo, = P? \ €* = f~!(c0). Resolving the
points of indeterminacy by means of o-processes o : X — P? we get a morphism f = f .o :
X — 8. We can imagine X = C? to be obtained from X by means of throwing out a curve
0~ (Lo ) which consists of some quasisections and some components of fibres of the morphism
f. Analogously we can construct a completion X,. We begin with a hypersurface in P* defined
by the equation z@ = z¥ f(zo,21,2,), where f(zo, 21, 22) is a homogeneous polynomial of
degree deg f associated with f, m = n — deg f. Let X, be a normalization of this surface
and @, : X, = P? be induced by the morphism ¢, : X, = X. Resolving the singularities
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and the points of indeterminacy of morphisms we get a smooth surface X, D X2, where
X? = X, \ SingX,, and a commutative diagram

r

X, Cc X0 X, .

\f,ﬁ l ‘fn j\ ]f (3)

s c 8, c &, LN S

8.2. Let us formulate the conditions which we impose on the curve D. We say that the
condition (Irr,) holds for a curve D if all the curves B; = ¢;'(D;), i = 1,...,k, are irreducible.

Definition 12 A curve D is connected modulo n, if the support of the divisor

Domoin =Y. miD;

m,;Z0modn

is connected. D is absolutely connected modulo n , or shorter, satisfies the condition (C.), if
D is connected modulo n, for each ny, n; | n. (Ca)

We need the condition (C,) to get the following
Theorem 17 ([N K]). If D satisfies the condition (C,) , then

H(X,,0%,) =

This theorem affims that the regular and regular invertible functions on the affine variety
X, are only constants, i.e. the matter is the same as on C2. From this theorem follows that
from the point of view of one-dimensional homology only the components B; = ¢;!(D;), which
lie on the normalization X0, are essential for a compactification X! C X,,.

Corollary 4 . If a curve D satisfies the condition (C.,), then the inclusioni: X° C X, induces
an tsomorphism

it Hi(X0) — Hy(X,).
8.3. The relation between homology of X! and X, is given by

Theorem 18 ([KK]).
(1) If D satisfies the conditions (C,) and (Irr,) , then there is an exact sequence

k : —
0= Poy - Hi(X,,C) = H(X.,C) =0, (4,)
i=1
where i = i, : X! C X, is an imbedding, and the cycle 3; € Ker i, corresponds to "going arroud
the component B;” .
(ii) Moreover, if D satisfies the conditions (Cnpy) and (Irrypy) , then the sequence (4,) is
exact for all n.
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The condition of Theorem 17 (i) holds if the support of the curve D is connected in €* and
(rni,n) = 1 for each multiplicity m; (in particular, if D is a reduced curve). If D is an irreducible
curve, we get a generalization of the Libgober’s result: dim Aeri. = 1 (the conditions at infinity
are superfluous).

8.4. The relation of H\(Xs) and H(X}). The proof of Theorem 17 (ii) is based on the
application of the Milnor exact sequence (see section 1) to analyse the relation of H;(Xo) and
H, (X)) for different n.

Consider the Milnor exact sequence for the infinite cyclic covering weon + Xoo = X[, If
G, C Fy is the infinite cyclic group generated by A", then X = X /G, and X' = X /u,,
where p, = F|/G, is the cyclic group of order n. Denote by h, the automorphism of X7,
induced by the monodromy h. Then h, is the generator of the group u, which corresponds
also to the generator of the Galois group Gal(k(X.)/&(X")).

Put together the Milnor exact sequence and the exact sequence (4,)

Hl(f\’oo)

(Goom)-
0 — @b, 0% — Hy(X1) Ul g (X,)— 0 (5n)

Ho(XNeo)

l

0

The group F, = Z with the generator A = h. acts on the spaces H(X), H\(X}) and
Hy(X,) (on H\(X]) and H;(X,) the action is reduced to the group u, = F; /G, with the
generator h,). Clearly, the homomorphisms (¢e.n). and {i,). are equivariant.

We denote

Hi(Xo0) = B:iHi(Xeo)r = HFi(Xeo)am1 @ Hi{ XN )1

the root decomposition of the automorphism £, where Hi( X )x1 = ®aze1 H1(Xw)r. We shall
apply the analogous notation for the root decomposition of the spaces H,(X’) and H,(X,)
corresponding to the automorphism b, = (h,)..

The colomn in diagram (5,) gives that H,(X) is almost Im(@oon). C H1(X]),
Coker(Yoon)- 2 Ho(Xoo), Ho(Xeo) = C, and h acts trivially on Hp(Xe). On the other hand,

Im(@eon)s = Coker(h™ — id). We need an easy exercise in the linear algebra.

Lemma 1 . Let h be an automorphism of a vector space L[/C. Then



(i) If the Jordan decomposition of h has only one Jordan block with a eigenvalue A # 0,
then for ¥n € N the automorphism h™ also has one Jordan block with the eigenvalue A™. This
involves

(i1) If h has no eigenvalues A = 0, then the number and the dimensions of Jordan blocks for
h™ are the same as for h.

(iit) If h has only one Jordan block with A # 1, then h —id : L — L is an isomorphism,
and if A =1, then dim Ker(h — id) = dim L/(h-id)L = I.

Therefore, applying this lemma to A" in the diagram (5,), we get that, moving from H, (X))
to H(X), the Jordan blocks of H;(Xy) with A" # 1 disappear, and every Jordan block with
A" =1 gives one eigenvector in the space H\(X) with the same eigenvalue A. Denote by J =
J(h) the number of Jordan blocks of the automorphism h, and by J, = Jy=1, Jo = Jan=1, Ja
the number of Jordan blocks with eigenvalues A = 1, with eigenvalues A such that A" = 1, with
eigenvalues not equal to 1 correspondingly. Thus lemma involves that

dim Hy(X1) = Ji(h™) + 1 = Ju(h) + L.

8.5. The decomposition of Hy(X},) into eigensubspaces. Now consider the line in the diagram
(5.). On one hand, the fact that X,/u, is a rational surface (and hence there are no invariant
holomorphic forms on X’,,) involves that the operator h, on Hl(.i’n,C) has no eigenvalues
A =1, H,(X,,,c) = HI(X,,,C)#. On the other hand, under the condition (Irry), i.e. if the

curves B; are irreducible, the cycles 3;, v = 1,...,k, are invariant relative to h,. This involves
the proof of the Theorem 17, and we obtain that
H(X)1 =@5,C %, Hi(X))s = Hi(X,).

This involves

d!m H](Xn) = Jn hd J] = J¢1(D,n),

where Jyx(D,n) is the number of Jordan blocks of the monodromy h on H,(X,,C) with
eigenvalues A # 1 for which A" = 1.

8.8. Calculation of the Alezander polinomial of an irreducible curve in terms of cohomology
of rational differential forms ([Ko]). Let D be an irreducible curve (k = 1) of degree deg D = d.
If D intersects the line at infinity transversally, then according to the Randell’s theorem in
section 6 the monodromy A is semisimple, and A* = 1. In the next section we obtain the

theorem on the semisimplicity of A without the assumption of the transversality of intersection
at infinity. Thus (8.4) and (8.5) involve that

H' (Xeo) = H' (X)) 41

The surface Xy C € defined by the equation :™ = f(x,y) is normal, because the curve D is
reduced. Recall that X’ = C* \ D, X} = X, \ B, where B C X, is the curve with the equation
z =0 and ¢q: X; — X' is an unramified covering of degree d.

We apply the Grothendiek’s theorem to calculate the cohomology H!'(X),C). If X is a
complex variety, D C X is a hypersurface, j : X' = X \ D — X is the imbedding, then

H(X',C) =H (Qx,) = H (5:Qx,) = H(Qx (D)),
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where Qy(*D) is de Rham’s complex of meromorphic forms with poles along D. If X is an
affine variety, then

H(X',c) = H(I(Qy(xD)).
Apply this to X = C? and X = X;. We obtain

H'(X),€) = H'(D(y, (+B)).

Let & = hy be a generator of the group Auty: X/, h* = 1. Let ¢ = €*™/? he a root of unity of
degree d and
H (X}, C) = &Yy H' (N, O

be the decomposition into eigensubspaces. The monodromy h acts semisimply also on the
differential forms on X}. The part corresponding to the eigenvalue ¢’ is equal to

Dy, (*B); = Qy (D).
Since 4} = d—(z%d-l = d%‘i,‘ we have

. . . i d .
d(z'w) = j2/ Mz Aw + P dw = (i(—j: Aw + dw)zt.

d f

So the multiplication by z# = f/¢ defines an isomorphism of complexes

o B (xD) 5 Q2 (xD) — ...
where V; is a regular connection in Qy(xD) defined by the formula

i lY
Vj(w)—dw-f-df Aw.

Therefore,
H'(X3,0)¢; = H'(D(Q,(+B);,d) = H{(T(Qx (+D), V;)

and we obtain Kohno’s theorem.

Theorem 19 ([Rol). If D C € is an irreducible curve of degree d transversally intersecting
the line at infinity, then the Alezander polynomial is :

Ap(t)= I (t-¢,

1< <d—1

where h; = dime¢ H'([(Q (D), V;).

O]
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In virtue of the theorem on the simplicity of monodromy in the next section we obtain the
generalization of Kohno’s theorem:
Theorem 18’

i). The Kohno's theorem is true without the condition of transversality at infinity;

it). if D is a connected reduced curve, then

Ap()=(t=1) I (t=¢)™.

1<j<d-1

9 The semisimplicity of the monodromy

9.1. If a curve D C € is reduced and D transversally intersects the line at infinity, then
the monodromy h on H;(X.) is semisimple, because it coincides with the monodromy of
a quasihomogeneous singularity (see section 6). We generalize it to the case of nonreduced
curves without any conditions at infinity, and use quite different ideas based on the Milnor
exact sequence and the theory of mixed Hodge structures.

Theorem 20 ([KK}). If a curve D satisfies the conditions (Cppy) and (Irrypy); then the
monodromy h on H (X )21 is semisimple.

We sketch the proof of this Theorem. We have to prove that the Jordan blocks of the auto-
morphism ~ on H (X ) with eigenvalues A # 1 are one-dimensional. We compare the mon-
odromies on homology of X, and on homology of a nonsingular fibre Y. Let Y = X, = f~!(¢),
correspondingly ¥ = X, = f~!(¢), be a nonsingular fibre (close to X,) of the morphism f,
correspondingly f, in the diagram (3). The morphisms ¢, and ., are unramified coverings
and the fibers ¢! (Y) and ¢} (Y) break up into components isomorphic to Y. Choosing points
u € eZ}(t) and £ € e7'(t) we can assume that Y is embedded into X, and X}, as fibres f'(u)
and f7'() such that the diagram

Y = Y - Y

jm\ }j ;

X X o X,
© Poom " g

is commutative. We get a commutative diagram for homology

H(Y) = H(Y)— H(Y)

(jm),.\ ]j.. lg
Hl(Xoo) — HI('X';) ’—> H[(.‘Z’n)

The monodromy operator acts on the spaces H(Xo), Hi(X]), Hi(Y) and H(Y) and the
homomorphisms in the above diagram are equivariant, i.e. commute with the action of the
monodromy operators. The part of the diagram corresponding to the eigenvalues A # 1 is the
following
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Hy(Y ) -

Hy (X )is gy H(Xa)er—5— Hi(K.).

The key place of the proof is the following. On one hand, in virtue of (8.4) every Jordan
block of the automorphism h on H{(X)zt (i.e. the invariant subspace L on which A consists
of one Jordan block) gives in H,(X,) one non zero vector, dimi. - (¢eon).L = 1. On the other
hand, a two-dimensional block L can be obtained from a two-dimensional block L in H,(Y).
At last the theory of mixed Hodge structures yieds that we can choose L in such a way that
7+(L) =0 in H;(X,). This shows that the blocks in H,(X.)#1 can be only one-dimensional.

9.2. If D is an irreducible curve, then Ap(1) = £1 [K1]. Hence from Theorem 20 we obtain
the following theorem.

Theorem 21 The monodromy h on H (X)) is semisimple for an irreducible curve D.

Remark 4 The analogous statement is not true for knots. For example, for the knot 8,0 the
monodromy h on H;(X) isn’t semisimple.

Proposition 5 Let D = m; Dy + D' be a curve satisfying the following conditions:

i) Dy is irreducible and Dy ¢ supp(D’),

ii) there ezists a point ¢ € Dy Nsupp(D') at which the divisor Dy + D.,; is locally a divisor
with normal crossings,

i11) for the curve D’ the monodromy h on H(Xy), is semisimple.

Then for the curve D the monodromy h on H{(X), is semisimple.

We sketch the proof of this proposition. From the homological Milnor exact sequence it
follows that one needs to show that the Alexander polynomial Ap(t) of the curve D satisfies
the condition: Ap(t) = (t—1)*~!-A’(t), where A’ is a polynomial such that A’(1) % 0, and & is
the number of irreducible components of D. The straightforward calculations of the Alexander
polynomial (as in {K1] and [K2]), using Fox’s free calculus, show that the polynomial Ap(t)
possesses the required property under the conditions of the proposition.

As a consequence of this proposition and Theorem 20 we obtain the following theorem.

Theorem 22 Let D =m Dy + ... + mi Dy be a curve satisfying the conditions of Theorem 20
and such that fori =1,.., k — 1, there exists a point x; € Dy N (Uj;:le) such that the curve
DU = Dy 4 .. + Diy, is locally a divisor with normal crossings at z;. Then for the curve D
the monodromy h on H,(X.) is semisimple.

Conjecture. If a curve D satisfies the conditions (Cn(p)) and (Irrypy), then the monodromy
h on Hy(Xs) is semisimple.



10 On the mixed Hodge structure on H'(X,,)

The construction of X, for X’ = €% \ D is analogous to the construction of a canonical fibre
for a family of nonsingular projective varieties over the punctured disk S’ or for the Milnor
fibration of a hypersurface singularity, but in our case the fibration f': X’ — 5 is not locally
trivial. In these cases there is a limit MHS (W.Schmid, J.Steenbrink). We want to introduce a
MHS on H!(X,,,Q) such that the homomorphisms

(Poon) s HY(X]) = H' (X))

are MHS morphisms.

The surface X! is a nonsingular algebraic variety and so there is the MHS on H'(X})
introduced by Deligne [G-S]. Remind that we must take a nonsingular projective variety X, D
X! such that X, \ X’ = D is a divisor with normal crossings. The weight filtration W. defines

spectral sequence which involves an exact MHS sequence
0= H'(X,) - H'(X)) = HY(DW) = HY(X,),

where there is a pure Hodge structure of weight 1 on HY(X,), DU is a disjoint union of the
components of D and there is a pure Hodge structure of weight 2 and type (1,1) on H°(DW),
[n our case by the Theorem 17 this exact sequence is the exact sequence

0= H'(X,) = HY(X') > @5, C-37 =0 ()

dual to the sequence (4,). So if W. is the weight filtration on H'(X.), H(X.) = W, D W, D 0,
then W, = H'(X,) and Gr)¥Y = Wy/W, = @C- 3r and the pure Hodge structure on Gri¥ is of
type (1,1). '
In our case the cyclic group w, = Z/nZ, generated by A, acts on H'(X). The monodromy
hZ is a MHS isomorphism since h, is an isomorphism of the algebraic variety X/,. From section

(8.5) we have )
HY(X,) = H' (X )sn, HY(XO) > @1LC- 5

Hence the MHS on H'(X,) splits and is the direct sum of pure Hodge structures of weight 1
on H'(X,) and of weight 2 and type (1,1) on ®%_,C- 7;.

i=1

Consider the diagram dual to the diagram (5,)



H'Y(Xo)
(k") — id
H'(Xx)

((;{)00.71)‘
0 — H'(80)— HYX}) ——&i,C 3— 0 (5)

(o1t

HO(Xo0)

T

0
By the Theorem 20 if n(D) | n, then

HY(X ) =8 HY(X )1

is an isomorphism. So if we introduce the MHS on H!(X,,) as a direct sum of the pure Hodge
structure of weight 1 on H'(Xs)z1, obtained by the isomorphism (¢eon(py)*, and the pure
Hodge structure of weight 2 and type (1,1) on H'(X)1, then we obtain the desired MHS.

Theorem 23 ([KK]). If a curve D satisfies the conditions (Cnpy) and (frrypy), then there
exists a natural mized Hodge structure on H'(Xw,Q) such that the homomorphisms ©7, , :
HY X!, Q) » H (X, Q) are MHS morphisms. If a curve D is irreducible, then the MHS on
HY (X, Q) ts pure.
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