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§o. Introductioll

In 1970's by an effective use of twistor theory originated from Pen­
rose [P], gauge-theoretic studies of anti-self-dual connections over 4­
manifolds were inaugurated by Atiyah, Hitchin and Singer (see for in­
stance [A-H-S), [A-J], [A-W]). Almost at the same time, Hartshorne
determined the moduli spaces of anti-self-dual connections for SU(2)­
bundles over S4 through a purely algebraic study of the null-correlation
bundles over P3(C). A little later, I(obayash..i [I{] introduced the concept
of Einstein-Hennitiari vector bundles over I{ähler manifolds, which is in
some sense a higher dimensional analogue of anti-self-dual connections
over 4-manifolds (see for instance I{obayashi [I{] for a general theory of
Einstein-Hermitian connections).

The purpose of this paper is to construct a compactified family of
Einstein-Hermitian connections on null-correlation bundles over odd­
dimensional complex projective spaces p2m+l(C). Let pm(H) = Sp(m+
1)1 Sp(m) x Sp(l) be the m-dimensional quaternionic projective space,
and p : p2m+l (C) ~ prn(H) the corresponding twistor space. The ho­
mogeneous space Sp(m +1)1 id x Sp(l) is a principal fibre bundle over
prn(H) with typical fibre Sp(m). Let T be the standard representation
of Sp(tn) in C2m • Then V:= (Sp(m + I)/id x Sp(I» X r C2m is a-com­
plex vector bundle over prn(H). 8ince 8p(m) is contained on U(2m), the
vector bundle V carries a natural Hermitian metric hv . Salamon intro­
duced in [8] a certain type of connections (which we call B 2 -connections)
on vector bW1dles over quaternionic I(ähler manifolds, and such connec­
tions are later studied by Berard-Bergery and Ochiai [B-O] in a more
general setting. We showed that B2-connections are Yang-Mills connec­
tions and studied them in [Nil], which is also obtained by Capria and
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Salamon independently. They constructed an interesting family of Yang­
Mills connections for the vector bundle (V, hv ) parametrized roughly by
SL(m +1, H)/ Sp(m +1). Ey generalizing the Penrose twistor correspon­
dence to higher dimensional quaternionic Kähler manifolds, we obtained
the following :

Theorem ([Ni2]). The moduli Jpace 01 B 2 -connectionJ on (V, h v )
iJ imbedded a~ a totally real Jubmanifold of the moduli Jpace of Eirwtein·
Hermitian connectiofW on (p"'V,p'" hv ).

This theorem allows us to construct a family of Einstein-Hermitian
connections on (p"'V,p"'h v ) parametrized by PGL(2m +2, C)/ PSp(m +
1, C) (cf. Section 1). Thus, we obtained a mapping 'ljJ of PGL(2m +
2, C)/ PSp(m + 1, C) to the moduli space of Einstein-Hennitian connec­
toins for (p'" V, p'" hv ). This mapping 'ljJ is regarded as a complexification
of the one constructed by Capria and Salamon, and moreover we obtain
(cf. Section 2) :

Theorem. The mapping 'ljJ iJ injective.

On the other hand, PGL(2m + 2, C)/ PSp(m + 1, C) can be ernbed­
ded as an open dense subset of pl(C) (where 1 = m(2m + 3)). Let
L:(p'"V, p'" hv) be the set of Einstein-Hermitian connections for (p"'V,
p*hv ) possibly with singularities, and consider the tmitary gauge trans­
formatioan group 9(p"'V, p'" hv) consisting of all btmdle automorphisms
on p"'V preserving p"'hv . Then we define an equivalence relation on
L:(p'"V, p'"hv) as follows : for "\7 1, "\72 E L:(p'" V, p'" hv), we say that "\71
is eqillvalent to "\72 if there is a gauge transformation 8 E 9(p"'V,p"'hv)
such that 8"''\71 = "\72 off the singular sets. We denote the resulting set of
equivalence dass by .c(p"V,p'" hv )/9(p"'V,p'"hv ). In section 4, we extend

'ljJ to a mapping;j; from pl(C) to L:(p"'V,p" hv )/9(p"V,p'" hv ), which gjves
us a cornpactmcation of the image 'ljJ(PGL(2m +2, C)/ PSp(m +1, C)).
Furthennore, we have:

Theorem. The family of Yang-MilLJ connection.! con.!tructed by
Capria and Salamon ü realized a.! a connected component of the moduli
",pace of B 2 -connectionJ on (V, hv ).

Finally, the author would like to thank all those people who en­
couraged hirn and gave hirn suggestions, and in particular Professors
H.Ozeki, M.Takeuchi, S.Murakami, M.Itoh, T.Mabuchi, I.Enoki and also
Dr. M.Furuta, H.Nakajima. He also would like to thank the Max-Plank­
Institute für Mathematik for the hospitality.
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§1. Notation, conventions and preliminaries

For this section, we refer to [C-S], [Nil] and [Ni2].

3

(1.1.1). The quaternionic projective space pm(H) is the set of 811
quaternionic lines through 0 sitting in the right H-module Hm+l. In
this paper we make use of co1umn vectors in order to describe elements
in vector space over C or H. Thus pm(H) = {(u)lu = '(uo,' . " um) E

Hm+l - {O}}, where (u) means the quaternionic line including a vec­
tor u( E Hm+l). Recall that pm(H) has a natural quaternionic I<ähler
structure. The right H-module H-m+1 has a standard quaternionic Her­
mitian inner product hD-lm+l (u, v) = 'uv (u, v E Hm+1

), which induces
the quaternionic Hermitian rnetric ho on the trivial vector bundle F
: = pm(H) x Hm+l. Let V be the quaternionie vector subbundle of
pm(H) x Hm+l such that each fibre V(u) over (u)(E pm(H)) is the or­
thogonal complement of the quaternionic line (u) with respect to ho.
The restriction of ho on V is denoted by hv .

(1.1.2). When Hm+l is identified with C2m+2 by the isomorphism
which sends each Ul + jU2 E Hm+1 to (u], tL2) E C2m+2, we regard V
and hv as a cornplex vector bundle and a (cornplex) Hennitian metric
respectively. The vector bundle 1\2 T"'(pm(H)) of covectors of degree 2 is
expressed as a direct surn of three holonomy invariant vector subbundles
A~, A~ and B2 (cf. [N i1 ]). A Hermitian connection V7 on (V, hv) is called
a B2-connection, if the curvature R V of V7 is an End(V)-valued B 2-forrn.
Let V7 be a B2 -connection on (V, hv ). Then V7 induces elliptic complexes
Cv = {(Ai,dj )} andGv = {(Äi,dd} (see [Ni2j(2.1)] for definitionofCv

and Cv).

(1.1.3). Let CB(V, hv ) be the set of all irreducible B 2-connections

\7 on (V, hv ) where V7 is said to be irreducible if HO(pm(H), Ov) = {O}.
We denote by ß'(V, hv ) the quotient space of CB(V, hv ) by the uni­
tary gauge transformation group g(V, hv), and B'(V, hv ) is often called
the moduli space of irreducible Hermitian B 2-connections on (V, hv ).
Furthennore, let C~(V, hv) be the set of all irreducible Hermitian B 2 -

connections V7 on (V, hv) such that H2 (pm(H), Ov) = {O}. We then
put B"(V, hv ) := c1J(V, hv )/9(V, hv). It is known that B"(V, hv) has
a natural structure of Riemannian manifold. For examples of Hermitian
B 2 -connections, see Capria and.Salamon [C-S]. Let M(1, k; H) be the set
of all quaternionie valued (1, k) rnatrices. We now set:

'H := {H E M(Z, kj H) - {O}I'H = H},
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'Ho := 'H n GL(m + 1,H).

We say that H1 , H2 ( E 'H) are equivalent if there exists an element a( E
R*) such that H1 = aH2 • We write the equivalence dass of H( E 'H) as

jj and the set of all jj (H E 'Ho) as Ho. Now the Lie group SL(m+ 1, H)

transitively acts on Ho, which is j ust SL(m + 1, H) / Sp(m + 1).

(1.1.4). To each H E 'Ho, we associate a quaternionic vector sub­
bundle WeH) of the trivial bunclle F = pm(H) x Hm+l by

...... ......
where W(H)(u) denotes the fibre of WeH) over (u). Then given H E 'Ho,
one sees that W(H) is independent of the choice of representations H for

H. Let h(H) be the quaternionic Hermitian metric on WeH) induced
from the standard quaternionie Hennitian metric on the trivial bundle
F. The Hat connection d of the vector bundle F over pm(H) naturally
induces a cormeetion \l(H) on WeH)

V(H) = P(H) 0 d,

where P(H) : F -+ WeH) denotes the fibrewise orthogonal projection
of the vector bundle F outo WeH) over pm(H). Then the connection
'\7(H) is compatible with the quaternionie Hennitian metrie h(H) on
W( H), and the corresponding holonomy group is Sp(m). Especially,
\J(H) is irreducible.

(1.1.5). Since Ro is connected, the vector bundle WeH) (H E 'Ho)
is isomorphie to V (= W(idQ-lm+l)) as quaternionie vector bundles. We
now note that Sp(m) is a maximal eompact subgroup of GL(m, H).
Hence, for each H E 'Ho there exists a quaternionie isomorphism

to(H) : (W(id), h(id))~(W(H),h(H))

preserving the Hermitian structure. The resulting pull-back connection

fleH) = to(H)t+tV(H) := to(H) 0 \1(H) 0 tO(H)-l

is a quaternionie connection on (V, hv ). By identifying Hm+l with
C2m+2 we regard D(H) as a Hennitian connection on the complex Her­
mitian vector bundle (V, hv ). Recall the following result of Capria and
Salarnon: .
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Theorem ([C-S]). For each H E Ho the Hermitian connection
D(H) ~ an irreducible B 2 -connection on the complex vector bundle
(V, hv ).

(1.1.6). The equivalence class [D(H)] of D(H) modulo the unitary

gauge transformation group 9(V, hv ) depends only on fI E iio and is
independent of the choice of vector bundle isomorphism to(H) as above.
We then have the mapping

<p : Ho 3 fI ~ [D(H)] E B"(V, hv ).

(1.2.1). The twistor space corresponding to prn(H) is

p : p2m+l(C) 3 [z] ---t (z) E pm(H),

where [z] denotes the complex lirre including a vector z (z E C2m+2 ~
Hm+1). The puB-back (p"'V,p"'h v ) over p2m+l(C) is a Hennitian vector
btmdle with vanishing first Chern class. A Hermitian connection \7
on (p"'V,p'" hv ) is an Einstein-Hermitian connection if and only if the
corresponding Ricci-curvature is a constant multiple of identity. Since
the first Chern dass of p"'V is zero, the constant is equal to zero.

(1.2.2). Take an Einstein-Hennitian connection '\l on (p"'V, p'" hv ).
Then \7 induces elliptic complexes Av and Bv defined by Itoh and Kim
(see [Ni2j(2.1)] for definition of Av and Bv). Let CE(p"'V,p"'hv ) be the
set of all Einstein-Hermi tian connections on (p'" V, p'" hv). Moreover, let
Ck(p'"V, p'" hv ) be the set of all irreducible Einstein-Hermitian connec­
tions '\l on (p*V,p'" hv) where \l is said to be irreducible if HO(p2m+l(C),
Av ) = {O}. We denote by E(p"'V,p*hv) and E'(p"'V,p"'hv ) the quo­
tient space of CE(p"'V,p"'hv) and Ck(p"'V,p"'hv ) by the unitary gauge
transformation group Q(p"'V,p'" hv). The quotient space E'(p'"V, p'" hv )
i8 often called the moduli space of irreducible Einstein-Hermitian con­
nections on (p"'V,p"'h v ). FUrthermore, let C~(p"'V,p·hv) be the set of
irreducible Einstein-Hennitian connections \7 on (p"'V, p'" hv ) such that
H2(p2m+l(C), Bv) = {O}. We then put

E"(p·V,p'" h v ) := C~(p"'V,p'"hv )/Q(p"'V,p'"hv ).

It is known that E"(V, hv) has a natural structure of l<äWer manifold
(cf. [I], [I<]).

(1.3). The pull-back \7 ~ p"'\l of connections induces an imbed­
ding p. : B'(V, hv ) ---t E'(p"'V,p"'hv ) (p'" : B"(V, hv ) ---t E"(p"'V,p*hv )).
Furthermore we obtained :
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Theorem «(Ni2]). The embedding p*: B"(V, h v ) <-+ E"(p*V,p* h v )
i" totally real, (i.e., B"(V,hv ) ü embedded in E"(p*V,p*hv) by p* as a
totally real "ubmanifolrI).

§2. Construction of Einstein-Hermitian connections

In this section, we construct a family of Einstein-Hermitian connec­
tions on the Hermitian vector bundle (p*V, p* hv ) over p2m+l (e). It will
be shown that connections constructed here are parametrized by sym­
plectic structures on C2m+2 i.e., we shall obtain a mapping of the set of
all symplectic structures of C2m+2 onto a family of Einstein-Hermitian
connections on (p*V,p*h v ).

(2.1.1). Let M(kj C) be the set of complex-valued square matrices
of degree k. A complex-valued skew-symmetric matrix S E M(2m+2; C)
induces a skew-symmetric bilinear form on C2m+2 by

Then this bilinear form is non-degenerate if and only if the matrix S is
of full rank. We identify each S with the corresponding bilinear form
defined as above, when no confusion is likely to occur.

(2.1.2). We put

6 := {O -=I S E M(2m + 2; C) I S ia skew-symmetric },

S := {S E (5 I S is non-degenerate }.

Then C* naturally acts on 6 by

C* x 6 3 (c, S) ~ cS E 6

Note that this C*-action preserves the subset S of 6. We now define :

<5 := S/C*,

S:= Sle*.

For each S E (5, we denote by S the corresponding element of <5. Then
it is easily seen that S is nothing but PGL(2m + 2, C)/ PSp(m + 1, C).

(2.2.1). Recall that the vector bundle p* F is the trivial bundle
p2m+l(C) X C2m+2 over p2m+l(C). For SES, we define a complex
subbundle V(S) of p* F such that the fibre V(S)[z] over (z] E p2m+l(C)

is the vector subspace {y E C2m+21 tySz = 0, tyCSS)1/2 Z = O} of
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C2m+2. Since the two vectors Sz and CSS)1/2 z are orthogonal, V(S) is
a complex vector bundle of rank 2m. Note that V(S) = V(S') whenever
--- ---S= S'.

(2.2.2). Let k(S) be the Hermitian metric on V(S) induced from
the standard Hermitian metric on p.F. Then the flat connection d on
the trivial bundle p.F induces a Hermitian connection V7( S) on V(S)
by

V7(S) = Q(S) 0 d,

where Q(S) denotes the orthogonal projection of p.F onto V(S). We
then obtain:

Theorem 2.2.3. For each S, the Hermitian connection V7(S) = V7
i3 an Einstein-Hermitian connection on (V(S), k(S)).

Proof. Let N(S) be the vector subbundle of p. F obtained as the

orthogonal complement of V(S) in p.F. We denote by Q= Q(S) the
orthogonal projection of p.F onto N(S). Put H = eSS)1/2. For z E

C2m+2, let A be the (2m +2, 2)-matrix consisting of two column vectors

Hz and SZ. Then the projection Q is written as follows

(1)

at [z] E p2m+1(C). For a section f E r(p2m+1(C), COO(V(S))),

V7f = (id - Q)(df)

= df + d(Q)/,

since Qf = O. The curvature R = R(S) for V7 is given by

R = (d + dQ) 0 (d + dQ)
..... .....

= dQ 1\ dQ.

More precisely, R = Q(dQ 1\ dQ)Q, where we denote Q(S) by Q for
simplicity. Since

Q(Hz,SZ) = 0 and t(Hz,Sz)Q = 0,

we obtain from (1) the expression:

(2)
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where dA = (Hdz, Sdz). Moreover,

(3)

By (2) and (3),

(4) R = (det CAA))-lQdA (ISz1
2 0) t(dA)Q

o IHzl 2

Q{ISzI 2 Hdz A t([Ztll + lHz l2 SClZ A tdztS}Q
-

det (' AA)

Hence, R is an End(V(S))-valued (l,l)-form. Hence V is a Hermitian
connection of type (1,0) on (V(S), k(S)). Secondly, we shall calculate
the Ricci curvature ,(S) = , for V. Let w be the Fubini-Study form on
p2m+I(C). Recall that the corresponding I(ähler operator

L: {p - forms} --+ {(p + 2) - forms} o~ p ~ 2(2m + 1)

is defined by L(7]) := w A 1] for a p-form 'TJ on p2m+I(C). Let A be the
formal adjoint of L. Then A can be naturally extended to the operator
id&;A (denoted also by Afor simplicity) on End(V(S)) ®A"'T'" p2m+I(C).
Recall that ,=HAR. Let {(Uj , c.pj)}O~j~2m+1 be the standard affine
coordinate system for p2m+1 (C), defined by

and c.p j is the mapping :

Let us calculateHAR on Uo. For z = t(l, Xl, .. " x2m+I
), we have:

where (Z,O) denotes the (2m + 2,2m + 2)-matrix whose first column
vector is z and all other entries are o. Substituting the above expression
of R, we now conclude that

,= O.

Hence V is an Einstein-Rermitian connection on (V(S), k(S)). Q.E.D.
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(2.3). Since S is conneeted, (V(S), k(S)) is isomorphie to (p*V,
p* hv ) as COO-Hennitian veetor bundle. We choose such an isomorphism
t(S): (p*V,p*hv) ~ (V(S), k(S)). Let D(S) be the pull-back t(S)*\7(S)
:= t(S)-l 0 \7(S) 0 t(S) of "\7(S). Then the eonneetion D(S) is also an
Einstein-Hermitian connection on (p·V,p* hv ). Note that the equiva­
lence dass [D(S)] modulo Q(p*V,p* hv ) is independent of the choice of

the isomorphism t(S). We obtain the mapping 1jJ:S -t E(p*V,p*h v ) by

1/;(5) = [D(S)] SES.

Since the holonomy group of D(S) is Sp(m), the connection D(S) is
irredueible (for more details see Section 3). Thus 1f; is regarded as a

mapping: S -t E'(p*V,p*hv ).

(2.4.1). Recall that the element j (E H) induces areal structure jo
on C2m+2(~ Hm+1 ) :

jo: C2m+2 :1 (a, b) 1-+ (-b, ä) E C2m+2.

Therefore the subset S of M(2m +2; C) admits a natural real structure

je:6 3 S..-+jö1Sjo E 6.

Since js(cS) (e E C*, S E 6) is ejs(S), the real structure je on 6 is

pushed down on areal structure (denoted by j6) on (5. Furthermore, i 6

and j6 restrict to the real structures js and is on S and S respeetively.

(2.4.2) . Recall that t he twistor space p2m+1 (C) has the standard
real structure

T: [Zl,Z2] 1-+ [-Z2,~] z\z2 E C m +1 •

Since p*V is trivial on each fibre of p : p2m+l(C) -t pm(H), the real
structure Tinduces a bundle automorphism f on p*V such that the
following diagram is commutative:

T
p*v

1
r

I p2m+l(C).

p*V

p2m+l(C)

By the bundle automorphism T, we define a mapping T' of &'(p*V,p*hv )
auto itself as follows:

1

T'([DJ) = [T*D], ([D] E E' (p.V, p. hv))



10 T.Nitta

(cf. (Ni2;(3.6)]).

(2.4.3). One can easily check that 1/J ajs = T' a'lj;. Hence 1/J induces
the mapping

where SR and E' (p* V, p* hV)R are the subsets of all elements of S and
E'(p*V,p* hv ) fixed by the real structures js and T' respectively. Note

that SR ~ 'Ho and (1/J)~ = p* 01/J. By [Nil;(O.2)], p*(B'(V, hv)) is con­
tained in E'(p*V,p* hv)~. Thus,

Image('lj;) np*(B'(V, hv )) = p*(Image( 4>)).

§3. Injectivity of the mapping 1/J

In this section we shall prove that the mapping 'lj; is injective. This
injectivi ty allows us to show that the image of 1./J is PGL(2m +2, C) / P Sp
(m + 1,C).

(3.1.1). Let SES. Then the matrix H(S) in Section 2 induces a
Hermitian inner product on C2m+2 by

This irmer product H(S)( , ) naturally defines a Hermitian metric
ko(S) on the trivial bundle p* F. Let k1(S) be the restrietion of ko(S)
to the subbundle V( S). The flat cormection d on the trivial bundle
p*F induces a Hermitian connection VI (8) on the Hermitian Bubbundle
(V(S), k1(S)) by

~1(S) := Ql(S) 0 d,

where Ql(S) denotes the orthogonal projection of p* F onto V(S). By
a calculation similar to Teorem 2.2.3, the Hermitian connection \71 (S)
is an Einstein-Hermitian connection on (V(S), k1 (S)). By the same ar­
gument as in (2.3), there exists an isomorphism t 1 (S) : (p* V, p*hv) =:::
(V(S), k1(S)) of Coo-Hermitian vector bundles. By D 1 (S), we denote
the pull-back t1 ( S)'"~1(S) of V'1 (S) for simplicity. Then D 1 (S) is also
an Einstein-Hennitian connection on (p*V,p* hv ), and its equivalence
dass [D 1(S)] modulo Q(p*V,p"'hv) is independent of the choice of the

isomorphism t 1 (S). We now define a mapping 'lj;l : S~ E(p*V,p'" hv ) by

SES.
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(3.1.2). Let /1(S) be the automorpmsm of p·V defined by

11

Then /1 (S) is an isomorphism between Coo-Hermitian vector bundles

(V(S'),h(S')) and (V(S),k1(S)) where S' := (H(S)-1)1/2S). Obvi­
ously,

V 1(S) = /1(S) 0 V(S') 0 /1(S)-I.

Hence D(S') is equivalent to D 1(S) modulo Q(p·V,p·hv). Note that
the mapping:

S3S~S'ES

is bijective. Thus 'lj; is injective if and only if so is 1/;1,

(3.2). We prepare the following lemma in linear algebra in order
to give an explicit expression of the curvature R1(S) of D 1(S).

Definition 3.2.1. There exi.5tJ a C -basis {eI, •• " e2k} for C 2k such
that the Hermitian inner product H(S) and the symplectic form S are
respectively represented by the matrice" [ and J in teMn8 of the basis,
where

o 1
-1 0

2k

=Let· 0 ei,
i==1

[ .-.-

J .-.-

1 0
o 1

o 0
o 0
o 1
-1 0

o 0
o 0

o 0
o 0

o
1 0
o 1

o
o

o
o k

=L(e;j-l 0 e;j - e;j 0 e;j_l)'
}==1

Such a C·ba"i" i" called a "ymplectic basi" witk respect to S.

(3.2.2). Fix an SES. Note that S induees a skew symmetrie bi­
linear form fibrewise on the trivial bundle p.F. Then k1 (S) and the re­
strietion of the symmetrie bilinear form to V(S) allow us to regard V(S)
as a veetor bundle with Sp(m)-strueture. Take a point [z] E [p2m+l(C).
Then we choose aC-basis {al,a2, ... ,a2m+2} for C2m+2, whieh is sym­
pleetic with respect to the symplectic strueture S, such that the fibre
V(S)[z] of V(S) at [z] is generated by the flat sections eorresponding to
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al, a2, ... , a2m over C. Obviously, the connection \71(S) is Sp(m)­
invariant. We shall now show that \71 (8) is irreducible. The curvature
Rl (8) of \71(8) is written in the form

CzH(S)z)-IUB(U-l dz A tetztU- l + JU- l etz A tdztU- 1 tJ)BU- l ,

at [z] E p2m+l(C), where B = 2:;:1 ei®et and U denote the square ma­
trix of degree 2m+2 whose i-th column vector is aj for each i. Hence the
holonomy group of \71 (8) is exactly Sp(m). Thus \71 (S) is irreducible.

Theorem 3.2.3. The mapping"pl : S --+ E' (p. V, p* hv) is injective,

i. e., if [D l (81 )] = [D l (82 )] for 81 ,82 E 5, then there exists an element
c E C· such that SI = CS2.

Proof. Assume [D l (SI)] = [D l (S2)]. We have an isomorphism 9
: (V(SI),k l (SI)) ~ (V(S2),kl (S2)) such that 9\71(81)g-1 = \71(S2).
The proof is divided into three steps.

Step 1. Let [z] E p2m+1 (C) be arbi trary. Then there exists a C­
basis {eI,· .., e2m+2} for C2m+2, which is symplectic with respect to the
symplectic structure SI, such that V(Sl)[z] is generated by the flat sec­
tions aI, a2, ... ,a2m over C. Since the normalizer of Sp(m) in U(2m) is
U(l)· Sp(m), we have an element cE C* such that {cg(el)'···' cg(e2m)}
is a symplectic C-basis for V(S2)[z] with respect to the symplectic struc-
ture induced by S2' Hence there exist vectors !2m+I, !2m+2 E C2m+2

such that {cg(el),· .. , cg( e2m), !2m+l, !2m+2} is a symplectic C-basis
for C2m+2 with respect to 52. Let Hj := H(5 i ), i = 1,2 and let Ul =
(eI,···, e2m+2) be the square matrix, of degree 2m+2, whose i-th colurrm
vector is ei. Moreover, put U2 = (cg(el),···,cg(e2m),!2m+1,!2m+2). We
then obtain :

(a) (tzH 1 Z ) -1 U1BKI B U1-1

= CZH2Z)-lg-1U2B[(2BU2-1g,

on V(SI)[z], where

[(i = B(Uj-
l dz A tetztUi- l + JUj -

ldZ A tdztUj-
1 tJ)B,

for i = 1,2 . From our definition of U1 and U2 , we have :

g-IU2B = C-1UIB.

This together with (a) yields

CzHzz)CzH1z)-11(1 = 1(2.
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Therefore, by setting T := U11dz 1\ tetz(lUI)-I and C := U2-
I UI, we

obtain :

(b) CzH2z)CzHIz)-I B(T + JTJ)B

=B{CTt"C + (JCJ)JTtJt(JCJ)}B.

Step 2. Put E ij = ei 0 ej - ej 0 er (i t- j) and

Write the matrix C as (Cij). Then there exist a (l,O)-vector VI E
7[z]p2m+I (e) such that

T( VI , VI) = Eu.

Hence the identity (b) implies

Icul2 + IC2I12 = 1, Cil =° (3 ~ i ~ 2m).

Similarly, we have V2 E 7{.t]p2m+l(C) such that T(V2, V2) = E 22 . It then
follows that

Inductively, we obtain

IC2,,-1 ,2,,_11
2 + IC2",2,,-II2 = 1,

1c2,,-1,2,,[2 + IC2",2,,12 = 1,

C2,,-1,j = C2",j = 0 (j t- 28 - 1, 2s) ,

for all 8 with 1 ~ 8 ~ m. For suitable v', V" E T[.:) (p2m+l (e) corre­
sponding to the following four values of T(v', V"),

T(v', v") = E 12 , HE12 , HEu, HE22

we contract the equality (b) by V 1\ v, We then have

and there is a () ERsuch that

i8
all = a22 = e .

Similarly, taking T(v', v") to be either E2j-l,2j,AE2j-I,2j,AE2j,2j

orAE2j-l,2j-1 we have

a2j-l,2j = a2j,2j-I = 0 (2 ~ j ~ m)
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and 8j E R (2 ~ j ~ m) such that

i8·
a2j-l,Zj-l = a2j,Zj = e J

Furthennore, let T(v', v") be either E2i ,2j-l (i t j) or E k ,2m+l ( 1 ~ k
~ 2m - 1). Then the identities

81 = ... = 8m

and
ai,2m+l = ai,2m+2 = 0 (1 ~ i ~ 2m).

follow. Hence we obtain :

ei8 0 0 0 0

0 0
c= 0 0 ei8 0 0

aZm +l,1 a2m+l,2m a2m+l,Zm+l a2m+l ,Zm+2

aZ m +2,1 a2m+2 ,2m aZ m +2,Zm+l aZm +2,2m+2

Step 3. Since tU2 HzU2 = I, the matrix tc is just tUI HzUz . Thus,

(e) H2(/l, .. " IZm) = ev'=f8H1(el,' . " e~m) (1 ~ j ~ 2m).

Sinee {eI,' . " e2m} is a tlllitary basis for C2m ~th respect to the Her­
mi tian inner product H1, t he (i, j )-entry (H1 ) ij is giyen by

i.e., when restrieted to the subspace I:;:1 fi, the Hermitian inner prod­
uets associated with HzH;-l Hz and Hz coincide on the space. Changing
[z] E pZm+l (C) is arbitrarily, we have HzH:;-1 Hz = Hz on CZm+Z • Hence
Hz = H1 . Now by (e),

fj = e- i8 ej (1 ~j ~ 2m),

and we have V(Sz)[z] = V(Sl){z]' Now, sinee (V(Sz)[z))-L = Cz + CSzz,
and (V(Sz)[z))J.. = Cz +cS;Z, there exists a holomorphic funetions c(z)
on CZm+Z

- {O} such that SI = c(z)Szz for all z E CZm+Z
• By Hartogs'

Theorem, we ean extend c(z) to a holomorphie function on CZm+Z. Using
the Taylor expansion of c(z) at z = 0, we see that c(z) is eonstant on
C2m+Z. Thus we obtain the eomposite c such that S = cl for constant
c, as required. Q.E.D.
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(3.3). In (2.4.3), we have p. o<p eoincides with (tP)~. Henee in view
of (3.2.2), we have

Corollary 3.3.1. The mapping c.p ~ injective, and ~o the image 0/
<p i3 SL(rn + 1, H)/ Sp(m + 1).

§4. The moduli space of B2-connections on (V, hv )

The moduli spaee B"(V, hv ) is written as a union of eonnected com­
ponents Bi(V, hv ) :

B"(V, hv) = UBi(V, hv ).
iEI

BY 8 1 (V, hv ), we denote the cornponent eontaining the image of 1>. us­
ing the same method as in [A-H-S] and [F], we shall examine 8 1(V, hv ).

Theoren14.1.1. B1(V,h v ) i~ nothing hut the image 0/1>, i.e.,
BI (V, hv) i.! diffeomorphic to SL(m + 1, H)/ Sp(m + 1).

To prove Theorem 4.1.1, we eompute the dimension of B1 (V, hv ).
By Borel-Weil-I(ostant-Bott's theorem (cf. [MuD we shall show the fol­
lowing:

Lelnma 4.1.2. The real dimen3ion 0/ 8 1 (V, h v ) ~ m(2m + 3) ( =
dim tli SL(m + 1, H)/ Sp(m + 1) ).

Proof. By [Ni2], BI (V, h v ) is dime H1(p2m+l (e), A D ), where D
denotes the Einstein-Hermitian eonnection \leI) on (p"'V, p'" h v ). Sinee
the vector bundle p"'V is homogeneous, and sinee p2m+l (e) = Sp(m +
1)/ Sp(m) X U(I), we ean write the veetor bundle End(p"'V) as Sp(m +
1) x(p0p.) g{(2m, C), where p is the unitary representation of Sp(m) X

U(I) on C2m defined by

p : Sp(m) x U(I) :1 (a, b) t-t p(a, b) := a E Sp(m) C U(2m).

The representation p fi!; p'" is equivalent to p'" fi!; p'" and is expressible as a
direct surn CwC 2m EB I\~p'" EB S2 p'" of irreducible representations CwC 2m,

I\~p'" and S2 p"', where WC2m is such that

Recall that 1\6P'" := (CwC 2m).L n 1\2 p'" and that S2 p'" is the symmetrie
part of p"'fi!;p". Now, the veetor bundle is written as a mrect surn LI EB L 2
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ffi L 3 of homogeneous vector bundles LI, L 2 , L 3 corresponding to rep­
resentations CwC 2m, !\5P"", 8 2 p", respectively. Hence the complex ADo
is decomposed into three components A(L l ), A(L2 ), A(La). Applying
Borel-Weil-I(ostant-Bott's theorem to A(Li) (i=1,2,3), we obtain

dimc H l (A(L.» = 0 (i = 1,3),

dime H1 (A(L2 » = (2m + 3)m.

Summing these up, we have dimc Hl(ADo ) = (2rn+3)m, as required.
Q.E.D.

(4.1.3). By using Lemma 4.1.2, we prove Theorem 4.1.1. Consider
the frame bundle P of unitary bases. Let M(2m +2, 2mj C) be the set of
(2m + 2, 2m)-matrices. Then P is naturally regarded as a submanifold
of M(2m + 2, 2m, C) as folows:

Let (u) E pm(H) and let (11," ',/2m) be a unitary basis for (V(u),
(hv)(u»' Now, the Lie group SL(rn + 1,H) acts on P by

v : SL(rn + 1, H) x P :1 (g, B) ~ gBC9BgB)-1/2 E P.

Let '1J be the action of SL(rn + 1, H) on pm(H) such that

7}: SL(m+ 1,H) x pm(H):1 (g,(u» 1-7 Ca-lu) E pm(H).

In terms of these actions, the natural projection of P outo pm(H) is
equivalent. The vector bundle Ai T* pm(H) splits into a direct SUfi Ai
ffi B. in such a way that Ai and Bi are holonomy invariant vector subbun­
dIes (cf. [Nil ;(3.1 )J). Since the decornposition Ai T* pm (H) = Ai ffi Bi
(1 ~ i ~ 2m) depends only on the GL(m, H) . GL(l, H)-structure of the .
tangent bundle of pm(H), the action l/ induces the one of SL(m+ 1, H) on
BI (V, hv). By an argument similar to [A-H-S;Section 9] and [F; Section
2], the isotropy subgroup of SL(m + 1, H) is compact. Since Sp(m + 1)
is a maximal compact subgroup of SL(rn + 1, H) and diIl1Gi(BI (V, hv» =
(2m+1)m (Lemma (4.1», the isotropy subgroup is equal to Sp(m + 1).
Hence 8 1 (V, hv ) = SL(m + 1, H)/ Sp(m + 1) and it coincides with the
image of <P, as reqmred.

(4.2). Let N be a holomorphic vector bundle of rank 2m over
p2m+l (e). Recall that N is a null-correlation bundle if there exists
a following exact sequence :
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where T, H are respectively the holomorphic tangent bundle and the
hyperplane bundle over p2m+l (C). By N we denote the set of null­
correlation bundles over p2m+l (C) . Then we obtain :

Proposition 4.2.1. We have a natural bijection of N onto the
image of t/;.

Proof. Given 5 E 6, we denote by Us the holomorphic seetion to
H 2 ~ T* defined by

0"8([Z]) = tzSz , [z] E p2m+l(c).

Then the mapping (5 3 S ~ Us E HO(p2m+l(C), H2 ~ T*) is bijective.
Restricting to S, we have the parametrization of N = {N[s]; [S] E 6}
by S. Endow the tangent bundle T of p2m+l(C) with the Fubini-Study
metric. Since the natural (1 ,O)-connection on the holomorphic subbundle
N[SJ of T ~ H- 1 is obtained from the dual bundle (V(S), \7(S))*, we
obtain the bijections

N ~ S ~ Image'ljJ, N[s] ~ [S] t-+ (V(S), \7(5))

as required. Q.E.D.

§5. Compactiflcation of t/;(S)

In this section, we give a certain type of compactification of S, by ­
which we study the ends of the family of Einstein-Hermitian connections
constructed in Section 2.

(5.1.1). Let 6 k be the subset of 6 defined by

6 k := {S E 6; ranke S = 2k}.

Then (5m+l is nothing but S and 6 is represented as a union of (5k 's,
1 ~ k ~ m + 1. Each (5k is isomorphie to the complex homogeneous
manifold GL(2m + 2, C)/ Gk where .

Gk = {(~ ~) E GL(2(m + 1), C); C E Sp(k, e)}.

(5.1.2). Note that 6 is a complex projective space of complex di­
mension m(2m+3). Since (5 is a union of (5ks,

6 = U Sk,
l~k~m+l
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by setting 5A: = <Skle". Obviously, we have <Sk r'V PGL(2m + 2; C)I
Gk , where

Since Sm+1 is just S, the boundary of S in S is a lll1ion U1~k~m Sk.

(5.1.3). Let .c(p"V,p· hv ) be the set of all Einstein-Hermitian con­
nections on (p·V,p· hv ) possibly with singularities. Then we have an
equivalence relation on .c(p·V,p·hv) as folIows. For \71 , \72 E .c(p·V,

, p" hv ), we say that '\71 is equivalent to \72 if (1) the singular sets for '\71

and '\72 coincide, and (2) there exists a unitary gauge transformation
t E Q(p·V, p.hv ) such that t \71 t-1 = \72 outside the singularities. We
denote the equivalence class of \7 by [V] and the set of all equivalence
classes

by E(p·V,p· hv). We shall now study the Einstein-Hermitian connec­

tions corresponding to the boundary of S in (5. Let S E (5 - S. Then,

we can define V(S), h(S) and \7(S) for S E (5 by the method similar to
(2.2). Moreover, we put

F(S) = {[z] E p2m+1(C)j Sz = O}.

Then, outside F(S), the vector bundle V(S) has a natural holomor­
pillc structure such that \7(S) is an Einstein-Hermitian connection on

(V(:S) , h(S)). Since.-,S is open-dense in 6, there exists a sequence {Si}
in S converging to S. For the corresponding sequence {D(Si)}, we have
unitary gauge transformations 9i such that {giD( Si)g;l} converges to
D(S) E .c(p·V,p·hv ) with respect to COO-topology on every compact
subset of p2m+l(C) - F(S).

(5.1.4). We now have Coo bundle isomorphism t : (p·V,p· hv) ~
(V(S), h(S)) outside F(S), such that

tD(S)t-1 = '\7(S).

The gauge equivalence dass [D(S)] depends only on S. Furtherrnore,

there is an element K E PGL(2m + 2, C) such that S is written as
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t!(Jj !(. Hence the set F(S) is !(-1F(Jj), which is aspace of complex
dimension 2m + 1 - 2j. Hence we obtain the mapping

;j : 6 3 S -+ [D(S)] E E(p·V, p. hv ).

~ ~

Obviously, <5 is compact and therefore the image of 'lj; is a compactifi-
cation of 'lj;(S) ~ N.

(5.2). The space &(p·V,p· hv ) carries the real structure

T : t (p. V, p.hv) :1 [D] t-+ T([D]) := [T 'oD 0 TU] E t (p. V, p.hv),

which is a natural extension of the real structure T' on f'(p·V,p· hv ).
By calculation, ~ is compatible with the real structures je; (cf. (2.4.1))

and T. Hence .(fi restriets to the real points

Since we have a natural identification of SR with

{positive semi-definite quaternionie Hennitian matrices} IR·,

the image of ({;)R gives us a compactification of 'lj;.

Added in Proof. After the completion of trus paper, the auther
received a preprint by H.Doi and T.Okai entitled "l-instantons on Hpn",
which gives a result slightly stronger that Theorem 4.1.1 .
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