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Abstract

We study maximal orders Λ in quaternion algebras having an involution

over a quadratic field extension K/F . We construct a quadratic quater-

nary lattice in the algebra which parametrises the optimally embedded

orders in F -subalgebras. We show that the Clifford algebra of the dual

of this lattice can naturally be embedded in the order. We also develop a

theory relating quaternion orders to hermitian planes. Using these tech-

niques, we classify up to genus the optimally embedded suborders of Λ.

Finally, we show that the units of norm 1 in Λ maps surjectively to the

spinorial kernel of the orthogonal group of the lattice.
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In this paper we study maximal orders Λ in quaternion algebras A with a so
called type 2 involution over a quadratic field extension K/F , and particular
the optimally embedded orders in F -subalgebras of such algebras A. Our main
results concern the construction of a certain quaternary quadratic lattice (L, q).
This lattice parametrises the optimally embedded suborders in the given or-
der. The correspondence between lattice elements and suborders is naturally
described in terms of Clifford algebras. In particular, the discriminant of the
suborder is essentially given by the corresponding value of the quadratic form q.

Another technique that we develop is a one to one correspondence between
orders and hermitian planes. Given a quadratic order R, a quaternion algebra
Λ is called R-primitive if there exists an embedding of R into Λ. We show that
in the local case there is a one to one correspondence between such orders and
hermitian planes over R.

We give two applications of the above described results. First, combining
the two techniques, we can characterize the suborders up to genus, i.e. any
optimally embedded suborder of Λ can locally described up to isomorphism.

As a second application will prove in general that the norm one group of
Λ maps surjectively onto the spinorial kernel group of the lattice L. This is a
problem that was studied by James in [7]. He constructed in some situations an
explicit lattice having this property. Our proof is however completely general,
and in particular we do not need to make any restrictions at dyadic places.
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The original motivation for this work was for studying compact Shimura
surfaces, see [5]. There the Λ1-orbits in the lattice L corresponds to certain
modular curves on the surfaces.

1 Preliminaries

1.1 Algebras and orders

Let P be a Dedekind domain, and F its field of quotients. We assume that
all residue fields of P are perfect and that char(F ) 6= 2. Let K be a separable
quadratic extension of F . The non-trivial automorphism of K is denoted by
x 7→ x, and R is the ring of integers in K. Let R# = {x ∈ K | tr(xR) ⊆ P},
and the discriminant D is the P -ideal D = [R# : R]. There exist an ideal D in
R, the different, such that NK/F (D) = D.

If L is a lattice over P , then we say that an element β ∈ L is primitive, if for
every x ∈ F such that xβ ∈ L we have x ∈ P . Similarly, we say that an integral
quadratic or hermitian form f is primitive if xf , where x ∈ F , is integral only
if x ∈ P .

Let B be a quaternion algebra over F , i.e. a central simple algebra of di-
mension 4 over F . In case K is a field, then the following lemma is the Skolem-
Noether theorem. In the case K ∼= F × F , see lemma 2.5 in [5] for a proof.

Lemma 1. If ρ1 and ρ2 are embeddings of K into B, then there exists an

invertible element u ∈ B such that ρ1(x) = uρ2(x)u−1 for all x ∈ K.

Let O ⊂ B be an order over P . The dual lattice is O# = {x ∈ B |
tr(xO) ⊆ P}, and the reduced discriminant d(O) of O is the P -ideal which
satisfies [O# : O] = d(O)2.

Recall that the O is called hereditary, if every (left) O-module is projective.
An order is hereditary if and only if the discriminant d(O) is square free. The
order O is said to be a Gorenstein order, if O# is projective as left (or equiva-
lently right) O-module. O is called Bass order if every order O′ containing O
is a Gorenstein order. Finally, an order O is a Gorenstein (Bass) order if and
only if Op is a Gorenstein (Bass) order for every prime ideal p.

Assume that F is a local field, i.e. it is complete under some discrete valuation
v, and let π be a prime element of F (we assume that v(π) = 1). If K is split,
then R = P × P , with (x, y) = (y, x) for x, y ∈ P . Assume that K is a field.
We have R = P [Π], where the prime element Π is given as follows. If F is
non-dyadic, then Π =

√
θ where v(θ) = 0 if the extension K/F is unramified

and v(θ) = 1 if it is ramified. Consider the dyadic case. If K/F is unramified,
then Π = 2−1(1 +

√
θ) where θ ≡ 1 + 4ρ (mod 4π) and ρ is a unit in P . If the

extension is ramified there are two cases: In the so called ramified unit case we
have Π = π−k(1+

√
θ), where θ = 1+π2k+1ρ, ρ ∈ P ∗ and k is a rational integer

with 0 ≤ k < v(2). In the so called ramified prime case, we have Π =
√

θ, where
v(θ) = v(π). There exist an element δ ∈ R such that δ = −δ and D = (δ). We
have δ = Π in the non-dyadic case, δ =

√
θ in the dyadic unramified case, δ = 2Π

in the dyadic ramified prime case, and δ = 2π−k
√

θ in the dyadic ramified unit
case.

In the local case, let J(O) denote the Jacobson radical of the quaternion
order O. O is said to be an Azumaya order, if O/J(O) is a non-trivial central
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simple algebra over the residue field P̂ = P/(π). If O is a Gorenstein order
which is not Azumaya, then the Eichler invariant e(O) is defined by

e(O) =





−1 if O/J(O) is a quadratic field extension if P̂ ,

1 if O/J(O) ∼= P̂ × P̂ ,

0 if O/J(O) ∼= P̂ .

We recall the construction of even Clifford algebras. Let L be a P -lattice on
the F -vector space V such that FL = V . Let q : V → F be a quadratic form
such that q(L) ⊆ P . Consider the tensor algebra T0(L) =

⊕∞

k=0 L⊗2k. If I0 is
the ideal in T0(L) generated by all elements x ⊗ x − q(x), where x ∈ L, then
C0(L, q) = T0(L)/I0 is called the even Clifford algebra of (L, q). The following
result can be shown by a direct calculation (see [8], Satz 7).

Proposition 2. If O = C0(L, q), then the reduced discriminant of O is given

by d(O) = d(q).

1.2 Orders in the local case

Assume that F is a local field. In this case, there are only two isomorphism
classes of quaternion algebras over F . If O is a maximal order in M2(F ), then
there exists an invertible element u ∈ M2(F ) such that O = uM2(P )u−1 (see [9],
theorem 17.3). If B is a skew field, then B has a unique maximal order O. It
has a P -basis 1, E1, E2, E3, where

E2
1 = −ε − E1, E2

2 = π, E3 = E1E2, E2E1 + (E1 + 1)E2 = 0, (1)

where ε ∈ P , 1 − 4ε ∈ P ∗ \ P ∗2. The norm form is:

nr(λ) = a2
0 − a0a1 + εa2

1 − π(a2
2 − a2a3 + εa2

3), (2)

where λ = a0 + a1E1 + a2E2 + a3E3 for ai ∈ P . Using this, one easily get that
O = {x ∈ B | nr(x) ∈ P}. We let ΩF denote this unique maximal order in the
unique skew field over F .

The proofs of the following results can be found in [1]:

Proposition 3. If e(O) = −1, then O is a Bass order. Furthermore, there is

a unique chain of orders

O = O0 ⊂ O1 ⊂ · · · ⊂ On

such that [Oi+1 : Oi] = (π2) and e(Oi) = −1 for i = 0, 1, . . . , n − 1, and On is

a maximal order.

Proposition 4. If e(O) = 0 and O is a Bass order, then there is a unique

chain of orders

O = O0 ⊂ O1 ⊂ · · · ⊂ On

such that [Oi+1 : Oi] = (π), e(Oi) = 0 for i = 0, 1, . . . , n − 1, and d(On) = (π).

If O is a Bass order with e(O) = −1 or 0, then the first hereditary order in
the chain of orders in proposition 3 or proposition 4 respectively, is called the
hereditary closure of O and is denoted H(O).
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1.3 Primitive orders

We say that the order O over P is R-primitive if there exists an embedding of
R into O. If an order is R-primitive for some R, then it is a Bass order (see [1],
prop. 1.4). The following result follows from proposition 1.12 and remark 1.16
in [2]:

Proposition 5. Assume that P is a local ring and that O is an R-primitive

order which is not Azumaya. If K/F is unramified, then e(O) = −1. If K/F is

split, then e(O) = 1. If K/F is ramified and O is not hereditary, then e(O) = 0.
Furthermore, assume that d(O) = (πn), where n ∈ Z. Then:

i ) If e(O) = −1, then O = R + J(H(O))m, where m = n/2 if H(O) is an

Azumaya algebra, and m = n − 1 otherwise.

ii ) If e(O) = 0, then O = R + J(H(O))m, where m = n − 1.

If O1 and O2 are two R-primitive orders, then by conjugating one of these
orders if necessary, we may (by lemma 1) arrange so that they both contain the
same copy of R. Hence the situation is

O1 ⊂ B
∪ ∪
R ⊂ O2 .

(3)

Lemma 6. Assume that F is a local field, and that K is a field. Let Oi be two

non-maximal R-primitive orders in a quaternion algebra B. Then H(O1) ∼=
H(O2).

Proof. If B is a skew field, then there is nothing to prove since B contains a
unique hereditary order. Assume that B ∼= M2(F ). If K/F is an unramified
field extension, then e(Oi) = −1, for i = 1, 2, by proposition 5. Hence we get
that H(Oi) ∼= M2(P ) by proposition 3 and we are done. If K is a ramified
field, then we get, for i = 1, 2, that e(Oi) = 0, and hence that H(Oi) is a
non-maximal hereditary order by proposition 4. Such orders must have Eichler
invariant equal to 1, and hence they are isomorphic to ( P P

πP P ).

We have the following result, which is a version of the Eichler-Hasse-Noether-
Chevalley-Schilling theorem (cf. [4], Satz 7):

Proposition 7. Let R be a maximal order in a separable maximal commutative

subalgebra K of B, and let O1,O2 be two isomorphic orders in B containing R.

Then there exists a non-trivial ideal i ⊆ R such that iO1 = O2i.

Proof. We only need to check this locally. If K is split, then we may identify B
with M2(F ). We can assume, by lemma 1, that the embedding of R ∼= P ×P is

given by R =
(

P 0
0 P

)
. We get that the orders Oj are of the form Oj =

( P ajP
bjP P

)
,

for j = 1, 2, where aj , bj ∈ F . Since O1
∼= O2, we get that (a1b1) = (a2b2) ⊆ P .

It is now clear that if we choose an invertible element g ∈ R of the form g =
x
(

a2 0
0 a1

)
, where x ∈ F , then gO1 = O2g.

Assume now that K is a field. If the orders Oj are hereditary, then the claim
follows by theorem 1.8 in [3] (it states that the embedding numbers e∗(R,Oj)
(defined therein) are equal to 1, which gives the claim).
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Assume that the orders are not hereditary. By proposition 5, we have that
e(O1) = e(O2) 6= 1. We get, by proposition 5, that there exists an integer m
such that

Oj = R + J(H(Oj))
m,

for i = 1, 2. We have that H(O1) ∼= H(O2), by lemma 6, but we know that
the assertion holds in the hereditary case, and hence we have that gH(O1) =
H(O2)g for some invertible element g ∈ R. Consequently, we get gJ(H(O1)) =
J(H(O2))g, and we are done.

We are now ready to prove the main result of this section.

Theorem 8. Assume that F is a local field and let O1,O2 ⊂ B be two R-

primitive orders. If d(O1) = d(O2), then O1
∼= O2.

Proof. If the orders are maximal, then there is nothing to prove. Assume that
the orders are non-maximal. We can assume without loss of generality that the
situation is as in diagram (3). By lemma 6, we have that H(O1) ∼= H(O2),
and hence there exists, by proposition 7, an invertible element g ∈ R such that
gH(O1)g

−1 = H(O2). We get, for a suitable integer m as in proposition 5, that
gO1g

−1 = g(R + J(H(O1))
m)g−1 = R + J(H(O2))

m = O2.

1.4 Involutions

Let now A be a quaternion algebra over K and B as before a quaternion al-
gebra over F . The following elementary lemma gives the relation between the
discriminants of A and B respectively, when A ∼= K ⊗F B. For a proof, see [5],
lemma 4.3.

Lemma 9. A is ramified at a prime spot q of K if and only if q 6= q and p = qq

is a split prime spot of F such that Bp is ramified.

An involution of type 2 on A is a map τ : A → A such that τ 2(a) = a,
τ(a + b) = τ(a) + τ(b), τ(ab) = τ(a)τ(b) and τ(xa) = xτ(a) for all a, b ∈ A and
x ∈ K. Observe that if τ is any involution of type 2, then it commutes with the
canonical involution on A, i.e. τ(a∗) = τ(a)∗ for all a ∈ A. Using lemma 9, we
get (see [5], prop. 4.4):

Proposition 10. The following properties are equivalent:

i ) A has an involution of type 2;

ii ) A contains a subalgebra which is a quaternion algebra over F ;

iii ) A is ramified at a finite number of pairs of conjugated (different) prime

spots of K.

We have the following well-known result (see [10], theorem 7.4, p. 301):

Lemma 11. Let τ and ν be two involutions of type 2 on A. Then there exists an

invertible element γ ∈ A such that τ(γ)∗ = γ and ν(a) = γ−1τ(a)γ for all a ∈ A.

Furthermore, if γ1 is another invertible element in A satisfying τ(γ1)
∗ = γ1 and

ν(a) = γ−1
1 τ(a)γ1 for all a ∈ A, then there exists r ∈ F such that γ1 = rγ.
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Let τ be an involution of type 2 on A and Λ ⊂ A a maximal R-order. We
let Aτ and Λτ denote the algebra respectively the order consisting of elements
fixed under the involution, i.e.

Aτ = {x ∈ A | τ(x) = x}

and Λτ = Λ ∩ Aτ . It is clear that, in general, the isomorphism class of Λτ do
depend on τ . We remark that by statement iii) in proposition 10, it is natural
to define dP (Λ) = d(Λ) ∩ P , when A allows an involution of type 2.

Let ν and τ be two involutions. By lemma 11, there exists an element
γ = γν,τ ∈ A such that τ(γ)∗ = γ and ν(x) = γ−1τ(x)γ for all x ∈ A. We say
that ν and τ are of the same local type if the integers vp(nr(γ)) are even for all
primes p dividing d(Λ).

The choice of involution will be important in our constructions. We say
that an involution τ on A is optimal with respect to a maximal order Λ if
d(Λτ ) = dP (Λ). Locally, for any maximal order there exists an optimal invo-
lution. Globally, this is in general not true. To see this, consider for example
any algebra A which is ramified at an odd number of pairs of prime spots in K.
But it need not be possible even if A is ramified at an even number of pairs
of prime spots. Consider for example the case where F = Q and A ∼= M2(K),
but Λ 6∼= M2(R) (such orders exist if the class number of K is even). If τ is
optimal, then Λτ

∼= M2(Z), which gives that Λ ⊇ RΛτ
∼= M2(R), so we get a

contradiction. However, it turns out that it is most important to have good
behaviour of Λτ at those prime spots that divide D. We say that an involution
τ of type 2 on a maximal order Λ is special, if for all primes p such that p | D, we
have (Λτ )p

∼= M2(Pp). Note that for p ramified in K we have (Aτ )p
∼= M2(Fp),

by proposition 10, so the condition of the definition is equivalent to requiring
that (Λτ )p is maximal. Note also that the involution is special if and only if
d(Λτ ) and D are relatively prime. Another way to formulate this, is to say that
τ : Ap → Ap is optimal with respect to Λp for all primes p, which are ramified
in K. In the next section we will see that there always exist an involution which
is special with respect to any given maximal order.

We now formulate a local result on optimal involutions in a special case,
which we will need later.

Lemma 12. If F is a local field and π is a prime element such that π | d(Λ),
then any involution τ on Λ is optimal. Furthermore, there exists an isomorphism

ΩF ×ΩF → Λ such that the induced involution on ΩF ×ΩF is given by τ(x, y) =
(y, x) for all (x, y) ∈ ΩF × ΩF .

Proof. By lemma 9, we can identify Λ with ΩF ×ΩF and let ι be the involution
given by ι(x, y) = (y, x) for all (x, y) ∈ ΩF × ΩF . By lemma 11, there exists
γ = (b, b∗) such that τ(λ) = γ−1ι(λ)γ for all λ ∈ Λ. We get that Λτ = {(x, y) ∈
ΩF × ΩF | yb = bx} ∼= ΩF , so τ is optimal.

We clearly have RΛτ ⊆ Λ, but on the other hand we have that RΛτ is a
maximal order, hence we get Λ = RΛτ . The claim follows.

1.5 Existence of special involutions

We now show that the requirement that the involution is special can always be
fulfilled, i.e. for every maximal order Λ in A there exist an involution which is
special with respect to Λ.
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Proposition 13. Let A be a quaternion algebra over K and assume that it

exists an involution of type 2 on A. If Λ is a maximal order in A, then there

exists an involution of type 2 on A which is special with respect to Λ.

Proof. Let τ be some involution of type 2 on A. Let p be a prime ideal ramified
in K. Let Πp and θp be as in section 1.2, so Πp =

√
θp in the non-dyadic and

in the dyadic ramified prime case, and Πp = u−1
p (1 +

√
θp) for some element

up ∈ Pp in the dyadic ramified unit case. We have Rp = Pp + ΠpPp and if
x ∈ 2Rp, then x = x1 +x2

√
θp where x1, x2 ∈ Pp. From lemma 9, we know that

Ap
∼= M2(Kp) and hence we get that the maximal order Λp is isomorphic to

M2(Rp). We fix such an isomorphism. We let ιp denote the natural involution
on M2(Kp), which is given by element-wise conjugation on the entries of the
matrices x ∈ M2(Kp). By lemma 11, there exists an element γp ∈ Ap such that
τ(γp)∗ = γp and ιp(x) = γ−1

p τ(x)γp for all x ∈ Ap. Let tp be an integer such
that ptpγ−1

p ∈ 4pΛp.

If we let W = {x ∈ A | τ(x)∗ = x}, then γp ∈ Wp for all p. Choose now an
element β ∈ W such that β − γp ∈ ptpΛp for all ramified primes p. Define an
involution of type 2 on A by

ν(x) = β−1τ(x)β.

We want to show that ν is a special involution with respect to Λ. Let

Λν = {λ ∈ Λ | ν(λ) = λ}.

Let again p be a prime ideal ramified in K. If we let ωp = γ−1
p β, then

ν(λ) = ω−1
p ιp(λ)ωp for all λ ∈ Λp and ιp(ωp)

∗ = ωp. Now ωp−1 = γ−1
p (β−γp) ∈

ptpγ−1
p Λp ⊆ 2p(2Λp), so ωp = ap + 2

√
θpbp, where ap ∈ P ∗

p and bp ∈ pM2(Pp)
with b∗p = −bp. We have (Λν)p = {λ ∈ Λp | ιp(λ)ωp = ωpλ}. We write
λ = x + Πpy with x, y ∈ M2(Rp),

In the non-dyadic case and in the dyadic ramified prime case, then ιp(λ)ωp =
ωpλ if and only if ybp + bpy = apy + bpx − xbp = 0. It is straightforward to
verify that we can define a Pp-linear map gp : M2(Pp) → (Λν)p by

gp(x) = x + a−1
p

√
θp(xbp − bpx).

We get nrΛp/Rp
(gp(x)) = xx∗ + da−2

p nrΛp/Rp
(bpx − xbp), which gives that

nrΛp/Rp
(gp(x)) ≡ det(x) (mod p)

for all x ∈ M2(Pp). But the determinant form on M2(Pp) has discriminant 1,
and hence the norm form on (Λν)p has discriminant 1 too. Hence (Λν)p

∼=
M2(Pp) and we are done.

In the dyadic ramified unit case, then ιp(λ)ωp = ωpλ is equivalent to bpy +
ybp = 0 and (a+2b)y = up(xbp−bpx). We can define a map gp : M2(Pp) → (Λν)p

by

gp(x) = x + up(ap + 2bp)
−1

√
θp(xbp − bpx).

and proceed as above.

7



H. Granath

2 On orders associated to hermitian planes

2.1 Hermitian planes

A hermitian plane (V, h) is 2-dimensional vector space V over K together with
a map h : V × V → K which is K-linear in the first variable and satisfies
h(y, x) = h(x, y) for all x, y ∈ V . There is a well known way (see [11]) to
construct quaternion algebras from hermitian planes. Our aim in this section is
to extend this construction to orders and examine some of its properties.

Proposition 14. Let (V, h) be a non-degenerate hermitian plane over K. Then

Qh = {f ∈ EndK(V ) | h(f∗x, y) = h(x, fy) ∀x, y ∈ V }

is a quaternion algebra. Furthermore, Qh is split if and only if − det(h) is trivial

in F ∗/ nrK/F (K∗), i.e. if and only if h is isotropic.

For a proof, see [11], p. 23–25.

Let M be a projective R-module of rank 2. Any such M will be called an
R-plane. Let V = K ⊗R M , so V is a 2-dimensional vector space containing
M as a lattice. If h : M × M → R is a hermitian form, then we construct a
P -order Oh, by

Oh = {λ ∈ EndR(M) | h(x, λy) = h(λ∗x, y) for all x, y ∈ M}, (4)

i.e. we have Oh = Qh ∩ EndR(M). Note that EndR(M) is a maximal order
in EndK(V ). It is clear that the isomorphism class of Oh only depends on the
similarity class of h.

We know that an R-primitive order is a Bass order. Conversely, it is true, if
P is a local ring, that any Bass order O is R-primitive for some maximal order
R in some quadratic extension of F (see proposition 1.11 in [2]). We will see
later in this section that if P is a local ring, then the order Oh in (4) is in fact
R-primitive. As a consequence we get, for an arbitrary base ring P , that Oh is
a Bass order.

2.2 A one to one correspondence

To a similarity class of hermitian R-planes we have, by (4), associated a P -order.
Now we want to give a construction going in the opposite direction. Given an
R-primitive order, we want to construct a similarity class of hermitian R-planes.

Let O be an R-primitive order with a fixed choice of an embedding of R
into O. We want to construct a hermitian form hO, on some R-plane M , in such
a way that the similarity class of hO is well defined. Now O can be naturally
considered as an R-plane by multiplication from the left, and we will in fact
construct a hermitian form on this R-plane. Consider the natural embedding of
O into EndR(O) given by

λ 7→ λ̂ = (v 7→ vλ∗),

for all λ ∈ O. This induces the following commutative diagram of ring embed-
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dings

A // EndK(A)

O //

OO

EndR(O) .

OO

(5)

With these identifications, it is clear that we have

O = A ∩ EndR(O). (6)

Now we claim that there exists a map

ξ : A → K (7)

satisfying ξ(F ) = F , ξ(la) = lξ(a) for all l ∈ K, a ∈ A, and ξ(a∗) = ξ(a) for all
a ∈ A. We can construct ξ as follows. Let u ∈ A be such that l = ulu−1 for all
l ∈ K. Such an element u exists by lemma 1. Now we get that A = K ⊕ Ku
and we let ξ be projection on the first summand. It is straightforward to verify
that this map has the required properties. The map ξ is uniquely determined
up to a non-zero factor of F . We choose one such map ξ satisfying ξ(O) ⊆ R
and we define the hermitian form

hO : O ×O → R

by

hO(x, y) = ξ(xy∗).

Using this construction, we get in particular:

Proposition 15. If O is an R-primitive order, then O is isomorphic to Oh for

some R-plane (M, h).

Proof. We want to show that we can choose (M, h) as the hermitian R-plane
(O, hO), or in other words that the composition O 7→ hO 7→ OhO

induces
the identity on the set of isomorphism classes of R-orders. It is clear that
hO(x, λ̂(y)) = hO(λ̂∗(x), y) for all x, y, λ ∈ O. Furthermore, we claim that the
copy of A in EndK(A) given by diagram (5), equals

{f ∈ EndK(A) | hO(x, f(y)) = hO(f∗(x), y) for all x, y ∈ A}. (8)

Namely, A is clearly an F -subalgebra of the algebra defined by (8). On the
other hand, both these algebras are 4-dimensional vector spaces over F , and
hence equal. Now, using equality (6), we get that OhO

= O as desired.

The following lemma is the key step to prove that we get a one-to-one cor-
respondence between similarity classes of R-planes and isomorphism classes of
R-primitive orders in the local case. If (M, h) is a R-plane, then n(h) denotes
the P -ideal generated by all elements h(u, u) for u ∈ M .

Lemma 16. If v ∈ M , then Oh(v) = M if and only if n(h) = (h(v, v)).

9
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Proof. First we show that the condition is necessary. Assume that Oh(v) = M .
Take an element w ∈ M . Then there exists by hypothesis an element λw ∈ Oh

such that λw(v) = w. We get h(w, w) = h(λw(v), λw(v)) = h(v, λ∗
wλw(v)) =

nr(λw)h(v, v) ∈ (h(v, v)). Hence n(h) = (h(v, v)), since w was arbitrary.
Now we want to show that the condition is sufficient. If v ∈ M is any element

with n(h) = (h(v, v)), then clearly Oh(v) ⊆ M . To show that we have equality,
it is sufficient to show that we have equality for all localisations. Hence we can
assume that P is a local ring. It is furthermore sufficient to show that Oh(v) =
M for some element v with n(h) = (h(v, v)). Let namely u ∈ M be some other
element satisfying n(h) = (h(u, u)). By hypothesis, we have u = λu(v) for some
element λu ∈ Oh. But then we get, as above, that (h(u, u)) = nr(λu)(h(v, v))
and hence λu is a unit in Oh. Therefore, Oh(u) = (Ohλu)(v) = Oh(v) = M .
Scaling h with a suitable constant, we can assume that h is a primitive hermitian
form on M = R ⊕ R. We identify M with 2 × 1 R-matrices, and a hermitian

form h is then given by h(x, y) = ytHx, for some 2× 2 matrix H with H
t
= H .

With these identifications, we get

Oh = {λ ∈ M2(R) | λ
t
H = Hλ∗}.

We want to show that there exists an element v ∈ M such that Oh(v) = M .
There are several cases:

Assume that K is a split algebra, so R = P × P . Let e1 and e2 be the
orthogonal idempotents of R, so e1 = e2. It is clear that we can find a basis of
M such that h is similar to the form given by the matrix H =

(
1 0
0 x

)
, x ∈ P .

We get
Oh = {e1X + e2Y | X, Y ∈ M2(P ) and Y tH = HX∗},

which gives Oh = {e1

(
a −xb
c d

)
+ e2

(
d −xc
b a

)
| a, b, c, d ∈ P}. The claim follows by

choosing v =
(
1 0

)t
.

Assume that K is a local field with, as before, valuation v and prime elements
π and Π of P and R respectively. We are now going to use the classification of
hermitian planes in [6] to verify the claim.

Assume first that M has an orthogonal basis, so we can choose a basis such
that H is given by H =

(
α 0
0 β

)
with v(α) ≤ v(β). We get

Oh = {
(

a −cβ/α
c a

)
| a, c ∈ R},

so if we choose v =
(
1 0

)t
, then Oh(v) = M and we are done. If K is an

unramified field extension of F , then every hermitian plane has an orthogonal
basis (see [6], p. 453). Hence we assume from now on that K is ramified.

Consider first the non-dyadic case. In this case, we can choose π and Π such
that Π =

√
π. By proposition 8.1 in [6], if h does not have an orthogonal basis,

then h is similar to a hyperbolic plane, which is given by the matrix

H(i) =

(
0 Πi

Π
i

0

)

for i = 0, 1. We get

Oh = {
(

a b
c d

)
| a, d ∈ P, c, d ∈ R, Π

i
c = −Πic, Πib = −Π

i
b}. (9)

10
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If i = 0, then we get Oh = {
(

a Πb
Πc d

)
| a, b, c, d ∈ P}, so Oh(v) = M if v =(

1 1
)t

. If i = 1, then we get Oh = M2(P ), and we can choose v =
(
1 Π

)t
.

Now we consider the dyadic case. Let Π be as in section 1.1. According
to (9.1) in [6], we have, for i = 0, 1, that n(H(i)) = (2πi) in the ramified prime
case, and n(H(i)) = (2π−k) in the ramified unit case. In the former case, the
situation is analogous to the non-dyadic case using (9). In the latter case, it
is straightforward to check, using (9), that we get Oh(v) = M if we choose

v =
(
1 Π

)t
when i = 0 and v =

(
1 1

)t
when i = 1.

There are even more subnormal planes h to consider in the dyadic case.
According to propositions 9.1, 9.2 and 10.2 in [6], they are given by the following:
Let i = 0 or i = 1, and assume that h is Πi-modular. We have n(h) ⊇ n(H(i)).
Assume that n(h) = (πm). Then h can be given by the matrix

H =

(
πm Πi

Π
i

α

)
,

where v(α) ≥ m. It is straightforward to verify that

Oh = {
(

a Πi(a − a)/πm − αc/πm

c a + (Πic + Π
i
c)/πm

)
| a, c ∈ R}

and hence v =
(
1 0

)t
will do.

Assume now that there exists an element v ∈ M satisfying Oh(v) = M .
Then, for any element s ∈ R, there exists a unique element λs ∈ Oh such that
λs(v) = sv. Hence we get an embedding of R into Oh by the map

s 7→ λs,

and consequently Oh is R-primitive. Furthermore, consider the map ξ : Oh → R
defined by

ξ(λ) = h(v, λ(v)).

This map ξ clearly satisfies all the requirements we made concerning the map-
ping (7). Using this, it is clear that the composition of maps h 7→ Oh 7→ hOh

is
the identity on the set of similarity classes of hermitian R-planes.

If P is a local ring, then the existence of an element v ∈ M as in lemma 16
is clear. As a special case of proposition 7, we get in the local case that if
ρj : R → O, j = 1, 2, are two embeddings, then there exists an element γ in
the normaliser N(O) of O such that γρ1(s)γ

−1 = ρ2(s) for all s ∈ R. Hence
we get that the two hermitian spaces constructed by using this two choices
of embeddings are isomorphic. In other words, the hermitian form hO is well
defined, that is, it does not depend of the embedding of R into O. Hence we
have shown

Theorem 17. If P is a local ring, then the map h 7→ Oh gives a one-to-one cor-

respondence between similarity classes of hermitian R-planes and isomorphism

classes of R-primitive orders.

Since being Bass is a local property, and we know that R-primitive orders
are Bass orders, we get the following global result:

11
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Corollary 18. The orders Oh are Bass orders.

Remark. It is easy to give a global example when the map h 7→ Oh is not
injective. Let P = Z and R = Z[i]. We let h1 be the hermitian form given
by

(
1 0
0 6

)
, and h2 the form given by

(
2 0
0 3

)
. We have that h1 and h2 do not

belong to the same similarity class of hermitian forms over R. This can be seen
by noting that there is no element v such that (h2(v, v)) = n(h2) = (1), but
such an element clearly exists for h1. A straightforward calculation gives that
Oh1

∼= Oh2
.

3 The quaternary lattice

Let A be a quaternion algebra over K with a maximal R-order Λ and a special
involution τ . We will now construct a natural P -lattice Lτ in a certain F -
subspace Wτ of A. The point of this lattice is that it parametrises optimally
embedded suborders of Λ.

3.1 Construction

Define
Wτ = {β ∈ A | τ(β)∗ = β},

which is a 4-dimensional vector space over F . Consider now the norm form
nr : A → K. If β ∈ Wτ , then nr(β) = nr(τ(β)∗) = nr(β). Hence nr restricts to
a quadratic form on Wτ taking values in F :

nr |Wτ
: Wτ → F.

Let A0 = {x ∈ A | nr(x) ∈ F, nr(x) 6= 0}. We define an action of A0 on Wτ by

x · β = τ(x)βx−1 , (10)

It is easy to check, that this induce a group homomorphism of A0 into the
orthogonal group O(Wτ , nr).

To define the lattice, we first need an auxiliary definition. Consider A as a
right A-module. A map Φ : A × A → A is called an A-hermitian form if

i) Φ(x + y, z) = Φ(x, z) + Φ(y, z),

ii) Φ(xa, y) = Φ(x, y)a,

iii) Φ(x, y) = τ(Φ(y, x))∗,

for all a, x, y, z ∈ A. Furthermore, we say that Φ is integral with respect to the
order Λ, if

iv) Φ(x, y) ∈ Λ for all x, y ∈ Λ,

v) Φ(x, x) ∈ R + DΛ for all x ∈ Λ.

Let τ be a special involution. For any β in Wτ , we define a hermitian form
Φτ,β : A × A → A by

Φτ,β(x, y) = τ(y)∗βx.

12
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We are interested in those elements β for which Φτ,β satisfy the above integrality
conditions, so we define a P -lattice Lτ of rank 4 by

Lτ = {β ∈ Wτ | Φτ,β is integral}. (11)

Let Λ1 = {λ ∈ Λ | nr(λ) = 1}. It is clear from the definitions, that if λ ∈ Λ1

and β ∈ L, then τ(λ)βλ∗ ∈ L. Hence, the action (10) restricts to an action of
Λ1 on L. Now, we also define a dual lattice L#

τ to Lτ by

L#
τ = {l ∈ Wτ | tr(l∗Lτ ) ⊆ P}.

In section 4.1, we will also define quadratic forms qτ and q#
τ on these lattices.

3.2 Uniqueness

In this section we prove a somewhat technical result which relates the lattices
we get if we use different involutions of the same local type. However, first we
prove an elementary result: If b ∈ A with b 6= 0, define the ideal

mΛ(b) = {x ∈ K | xb ∈ Λ}. (12)

Lemma 19. Assume that K is a local field. If Λ ∼= M2(R) and a, b ∈ Λ with

mΛ(b) = R, then ΛaΛ ⊆ bΛ if and only if a ∈ nr(b)Λ.

Proof. Let Π be a prime element of K. Assume that mΛ(b) = R, i.e. b ∈ Λ and
b 6∈ ΠΛ. The two-sided ideal ΛaΛ satisfies ΛaΛ = ΠnΛ for some integer n (see
theorem 18.3 in [9]). We get ΛaΛ ⊆ bΛ if and only if ΠnΛ ⊆ bΛ if and only if
Πnb∗Λ ⊆ nr(b)Λ if and only if b ∈ Π−n nr(b)Λ. By the hypothesis on b, this is
equivalent to Πn ∈ (nr(b)). The claim follows.

Proposition 20. If τ and ν are special involutions, which belong to the same

local type, then there exists an element γ ∈ Wτ and an ideal i in P such that

ν(x) = γ−1τ(x)γ for all x ∈ A and Lν = γ∗iLτ .

Proof. By lemma 11, there exists an element w ∈ Wτ such that

ν(x) = w−1τ(x)w

for all x ∈ A. If x ∈ A, then by a straightforward calculation, we get that
ν(w∗x)∗ = w∗x if and only if τ(x)∗ = x. Hence, we conclude that

Wν = w∗Wτ ,

so the two lattices Lν and w∗Lτ span the same 4-dimensional F -vector space,
i.e. they are commensurable.

We must show that for every prime p there exists r ∈ Fp such that

(Lν)p = rw∗(Lτ )p. (13)

Hence, we assume from now on that F is a local field. We examine the different
cases:

We consider first the case π | d(Λ). By lemma 12, we can make the identifica-
tion Λ = ΩF ×ΩF with τ(x, y) = (y, x). Consider now the involution ν given by
ν(λ) = w−1τ(λ)w, where w = (c, c∗) with c ∈ ΩF . By the hypothesis that these

13



H. Granath

two involutions are of the same local type, we have that vπ(nr(w)) = vπ(nr(c))
is even. This implies that c is of the form sε, for some s ∈ F and ε ∈ Ω∗

F . We
now get

Lτ = {(x, x∗) | x ∈ ΩF }

and

Lν = {(x, εx∗ε−1) | x ∈ ΩF }.

Hence we get Lν = s−1w∗Lτ and we are done in this case.
Assume now that π - d(Λ). We have that Λ ∼= M2(R) and we let ι be the

optimal involution on M2(R), which is given by element-wise conjugation, i.e.

ι((aij)) = (aij)

if (aij) ∈ M2(R). We now claim that it is sufficient to show the following:

Claim. For any special involution σ on A, there exists γσ ∈ Wι such that the

following holds

i ) σ(x) = γ−1
σ ι(x)γσ for all x ∈ A.

ii ) Lσ = γ∗
σLι.

Assume namely that this claim is true. Then it is easy to check that the
following holds: τ(γ−1

τ γν)∗ = γ−1
τ γν , ν(x) = (γ−1

τ γν)−1τ(x)γ−1
τ γν for every

x ∈ A and Lν = (γ−1
τ γν)∗Lτ . By the uniqueness part of lemma 11, we have

γ−1
τ γν = rw for some r ∈ F , and hence we have shown that (13) holds if the

claim holds. We will now prove the claim in the different cases.
Assume first that π is unramified in K. Let γσ ∈ Wι be some element

satisfying i) in the claim. Replacing, if necessary, γσ with sγσ for some suitable
s ∈ F , we may assume that mΛ(γσ) = (1) (see (12)). Now we have

Lι = {y ∈ Wι | ΛyΛ ⊆ Λ}

and

Lσ = {γ∗
σy | y ∈ Wι, σ(Λ)γ∗

σyΛ ⊆ Λ}.

But σ(Λ)γ∗
σyΛ ⊆ Λ if and only if γ∗

σΛyΛ ⊆ Λ, which, by lemma 19, is equivalent
to ΛyΛ ⊆ Λ. Hence, we get Lσ = γ∗

σLι.
Assume now that π is ramified in K. By the hypothesis that σ is special,

we have that Λσ
∼= M2(P ). We claim that this implies that, replacing γσ with

sγσ for some s ∈ F if necessary, we can assume that γσ is of the form

γσ = ι(ε)∗ε, (14)

for some unit ε ∈ Λ. To see this, fix an isomorphism Λι → Λσ . Since RΛι =
RΛσ = Λ, this map can be extended to an automorphism of Λ. By the Skolem-
Noether theorem this automorphism is inner, and hence there exists an invertible
element g in A such that Λσ = g−1Λιg. Then we also get that g satisfies
gΛ = Λg, so gΛ is a two-sided ideal. Hence gΛ = aΛ for some a ∈ K, and
therefore g = aε for some ε ∈ Λ∗. Thus, we get

Λσ = ε−1Λιε.

14
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Now, for any λ ∈ Λι, we have σ(ε−1λε) = ε−1λε. Hence ι(ε)γσε−1 ∈ K and we
get that γσ must be of the form

γσ = tι(ε)∗ε,

for some t ∈ K. But ι(γσ)∗ = γσ , so t = t, and hence we have t ∈ F . Replacing
γσ with t−1γσ , we have demonstrated (14).

Now we get
Lι = {x ∈ Wι | x ∈ R + DΛ}

and
Lσ = {γ∗

σy | y ∈ Wι, γ∗
σx ∈ R + DΛ}.

With γσ as in (14), it is clear that for any y ∈ Λ, we have y ∈ R + DΛ if and
only if γ∗

σy ∈ R + DΛ. It follows that Lσ = γ∗
σLι. We have now proved the

claim in the case that K is a field.
Assume finally that π is split in K and that π - d(Λ). Then R = P ×P , and

we identify Λ with M2(P ) × M2(P ), where ι(a, b) = (b, a). Hence

Lι = {(x, x∗) | x ∈ M2(P )}.

Let γσ = (b, b∗), where b ∈ M2(P ) with det(b) 6= 0. Without loss of generality,
we can assume that b is primitive, i.e. b 6∈ πM2(P ). We get

Lσ = {γ∗
σy | y ∈ Wι, σ(Λ)γ∗

σyΛ ⊆ Λ}.

If y ∈ Wι, so y = (z, z∗), where z ∈ M2(F ), then we have σ(Λ)γ∗
σyΛ ⊆ Λ if and

only if b∗M2(P )zM2(P ) ⊆ M2(P ). According to lemma 19, this is equivalent
to z ∈ M2(P ). Hence we get Lσ = γ∗

σLι, so the claim holds in the split case
too.

For future reference we now write down an explicit local description of the
lattices for an optimal involution ι on Λ. If π | d(Λ), then we have

Lι = {β = (x, x∗) | x ∈ ΩF } (15a)

and
L#

ι = {l = (y, y∗) | y ∈ Ω#
F }. (15b)

If π - d(Λ), then we have

Lι = {β =

(
α aδ
bδ α

)
| α ∈ R, a, b ∈ P} (16a)

and

L#
ι = {l =

(
α a/δ

b/δ α

)
| α ∈ R#, a, b ∈ P}. (16b)

4 Optimally embedded orders

We use the notations of section 3. A P -suborder O of Λ is said to be optimally

embedded if O = FO ∩ Λ. If β is an invertible element in A, then we define a
F -subalgebra of A:

Aτ,β = {a ∈ A | βa = τ(a)β},
and an order Λτ,β in Aτ,β:

Λτ,β = Aτ,β ∩ Λ.

15
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Lemma 21. Every F -subalgebra of A which is a quaternion algebra is of the

form Aτ,β for some invertible element β in L.

Proof. Since every F -subalgebra which is a quaternion algebra corresponds to
an involution ν of type 2 having the given subalgebra as its fixed point set, the
claim follows from lemma 11.

In particular, lemma 21 implies that any optimally embedded order in Λ is
of the form Λτ,β for some β ∈ L.

4.1 A Clifford algebra construction

In general the maximal order Λ is not isomorphic to an even Clifford algebra of
a quaternary lattice. However, as we will see in this section, there is a natural
large subring which is. For simplicity, we assume in this section that F is a local
field.

We define quadratic forms

qτ : Lτ → P, qτ (β) = xτ nr(β),

and

q#
τ : L#

τ → P, q#
τ (l) = yτ nr(l),

where the factors xτ and yτ are elements of F chosen such that qτ and q#
τ are

primitive integral forms. These forms will hence only be defined up to a factor
in P ∗. It follows however from proposition 20 that the similarity classes of these
quadratic forms do not depend on the choice of special involution τ (at least up
to local type). We also remark that the quadratic forms qτ and q#

τ also exists
globally for instance in the case when P is a PID.

Consider now the quaternary quadratic lattice (L#
τ , q#

τ ) and the even Clifford
algebra C0(L

#
τ , q#

τ ) associated to it. Define a function

φτ : L#
τ ⊗P L#

τ → A

by

φτ (l1 ⊗ l2) = yτ l∗1l2.

We can extend φτ in a natural way to the even tensor algebra, so we get a
map φτ : T0(L

#
τ ) → A. This map clearly vanishes on the ideal generated by

the elements l ⊗ l − q#
τ (l) giving an embedding of the ring C0(L

#
τ , q#

τ ) into the
algebra A. Θτ will denote the image of the map

φτ : C0(L
#
τ , q#

τ ) → A

Θτ is a subring of A, but it should be noted that it is not in general an R-order.
However, we have:

Lemma 22. We have that Θτ ⊆ Λ and Λ/Θτ
∼= R/d(Λ) (as abelian groups).

More precisely, we have

Θτ = {λ ∈ Λ | nr(λ − τ(λ)) ∈ d(Λ)}. (17)
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Proof. Let ν be another special involution of the same local type as τ . By
proposition 20, there exists an element γ ∈ Lτ such that

Lν = γ∗Lτ .

It immediately follows that
L#

τ = γL#
ν ,

and hence we get that yν = η nr(γ)yτ for some η ∈ P ∗.
Take arbitrary elements γl1, γl2 ∈ γL#

ν = L#
τ . We get φν(l1⊗l2) = ηφτ (γl1⊗

γl2) and hence we have
Θν = Θτ ,

i.e. Θτ does not depend on the choice of involution (up to the local type).
Let now ι be an optimal involution on Λ of the same local type.
If π - d(Λ), then we need to show that Θι = Λ. This is just a straightforward

calculation given the description of L#
ι in (16).

Consider now the case π | d(Λ). With notations as in (15) and in equa-
tion (1), we have that

(1, 1), (E1,−1 − E1), (π−1E2,−π−1E2), (π−1E3,−π−1E3)

is a basis of L#
τ . A P -basis of Θτ is hence given by: (1, 1), (πE1,−π − πE1),

(E2,−E2), (E3,−E3), (E2 + E3, E3), (εE2, εE2 + E3), (1 + E1, 1 + E1), (πε −
π − πE1,−πε). Thus Θτ is a P -sublattice of Λ of index (π2). We get

Θτ = {(x, y) ∈ ΩF × ΩF | nr(x − y) ∈ (π)},

which follows directly from the above description and equation (2). This equality
is exactly (17).

Note that Θτ is not an R-order if A is a skew field, but from equation (17),
we immediately get

RΘτ = Λ. (18)

4.2 Suborders and sublattices

For a primitive element β ∈ Lτ , we define a ternary quadratic lattice (L#
τ,β, q#

τ,β),
where

L#
τ,β = {l ∈ L#

τ | tr(l∗β) = 0}

and q#
τ,β denotes the restriction of q#

τ to L#
τ,β. By restriction of φτ we get an

embedding of the quaternion order C0(L
#
τ,β, q#

τ,β) into A. The image is in fact
a suborder of Aτ,β.

Lemma 23. The image of C0(L
#
τ,β, q#

τ,β) under φτ is Θτ ∩ Aτ,β.

Proof. If we take l1, l2 ∈ L#
τ,β, then βl∗1l2 = −l1β

∗l2 = l1l
∗
2β = τ(l∗1 l2)β, so

φτ (l1 ⊗ l2) ∈ Aτ,β. We conclude that C0(L
#
τ,β, q#

τ,β) ⊆ Aτ,β .
To show the inverse inclusion, take λ ∈ Θτ ∩ Aτ,β. It follows from the

definitions of the lattices and the fact that β is a primitive element of Lτ that
L#

τ = L#
τ,β ⊕ Pω for some ω ∈ L#

τ with tr(ω∗β) = 1. Since λ belongs to Θτ ,

it can be written in the form λ = λ0 + yτ l∗1ω + y2
τ l∗2l3l

∗
4ω, where λ0 lies in the

17



H. Granath

image of C0(L
#
τ,β, q#

τ,β) and l1, . . . , l4 ∈ L#
τ,β. A direct calculation gives now

0 = βλ − τ(λ)β = −τ(yτ l∗1 + y2
τ l∗2l3l

∗
4). Hence λ = λ0 + (yτ l∗1 + y2

τ l∗2l3l
∗
4)ω =

λ0 ∈ φτ (C0(L
#
τ,β, q#

β )) and we are done.

As a consequence of this result, we can now determine the factors xτ and yτ

occurring in the definitions of qτ and q#
τ .

Proposition 24. We have that xτ is a generator of the P -ideal dP (Λ)d(Λτ )−1,

and yτ is a generator of Dd(Λτ ).

Proof. We only have to show this locally, so assume that P is local.
If π | d(Λ), then (xτ ) = (1) and (yτ ) = (π) by (15). We also have dP (Λ) =

d(Λτ ) = (π), so we are done.
If π | D, then we have by hypothesis that dP (Λ) = d(Λτ ) = (1). The claim

now follows by the explicit description in (16).
If finally π - d(Λ) and π - D, then we have L#

ι = Lι, that qι and q#
ι are

unimodular and Λ ∼= C0(L
#
ι , q#

ι ). Furthermore, we have Lτ = γ∗Lι, where
γ ∈ Lι is primitive. Hence xτ ∈ nr(γ)−1P ∗ and yτ ∈ nr(γ)P ∗. By lemma 23,
we have Λι,γ

∼= C0(L
#
ι,γ , q#

ι,γ). But Λι,γ = Λτ , so we are done if we show that

d((L#
ι,γ , q#

ι,γ)) = (nr(γ)).

We have γP + L#
ι,γ ⊆ L#

ι . Using the fact that γ is a primitive element of

Lι, we get tr(γ∗L#
ι ) = P . On the other hand, we get tr(γ∗(γP + L#

ι,γ)) =

tr(γ∗γ)P = 2 nr(γ)P , and so we see that [L#
ι : γP + L#

ι,γ] = (2 nr(γ)). Using
this, we get

d(γP + L#
ι,γ) = (2 nr(γ))2d(L#

ι ).

We can also compute d(γP + L#
ι,γ) by noting that γP + L#

ι,γ is an orthogonal
sum, and hence we have

d(γP + L#
ι,γ) = 2 nr(γ)2d(L#

ι,γ).

We conclude that d(L#
ι,γ) = (nr(γ)), since d(L#

ι ) = (1).

Lemma 25. The discriminant of the ternary quadratic lattice (L#
τ,β, q#

τ,β) is

d(q#
τ,β) = qτ (β)dP (Λ).

Proof. If we consider the sublattice Pβ + L#
τ,β ⊆ L#

τ and argue as in the

end of the proof of proposition 24, we get the two equalities d(Pβ + L#
τ,β) =

(2 nr(β))2d(L#
τ ) and d(Pβ + L#

τ,β) = 2q#
τ (β)2d(L#

τ,β). Solving for d(L#
τ,β) gives

d(L#
τ,β) =

(2 nr(β))2d(L#
τ )

4q#
τ (β)

.

It follows by (15) and (16) that d(L#
τ ) = dP (Λ)2D, and by proposition 24 we

have q#
τ (β)P = d(Λτ )D nr(β), so

d(L#
τ,β) =

dP (Λ)2

d(Λτ )
nr(β) = qτ (β)dP (Λ).

18



Lattices and Orders in Quaternion Algebras with Involution

Proposition 26. In the local case, the discriminant of the P -order Λβ is

(qτ (β)) ∩ dP (Λ).

Proof. By lemma 23 and lemma 22, we know that the image of the order
C0(L

#
τ,β, q#

τ,β) is Λτ,β ∩Θτ . If π - d(Λ), then we have by lemma 22 that Λ = Θτ ,

and hence Λτ,β
∼= C0(L

#
τ,β, q#

τ,β). The claim therefore follows from lemma 25
and proposition 2. If π | d(Λ), then we know that Λτ,β

∼= ΩF . Furthermore, q
is isometric to nr : ΩF → P , by (15). Hence the claim follows, since we have
that π2 - qτ (β).

Now we turn to the global case. The form q do not necessarily exist globally
if P is not a PID, but we can reformulate our result using instead the norm form.
Applying proposition 24, we get that following global version of proposition 26:

Theorem 27. In the global case, the discriminant of the P -order Λβ is the

ideal (nr(β)r) ∩ dP (Λ), where r = dP (Λ)d(Λτ )−1.

Example. We work out a concrete example. Let F = Q, K = Q(
√

13), so
P = Z and R = Z[r], where r = (1 +

√
13)/2. Consider the algebra A = K[i, j],

where i2 = 2, j2 = −3 and ij + ji = 0, and the involution τ on A which fixes
the subalgebra F [i, j]. Let e1 = i, e2 = i(j − 1)/2 and e3 = (j + 1)/2. A
maximal order Λ in A is given by Λ = R + Re2 + Re3 + R(e1 − re2)/2. The
discriminant is d(Λ) = p3p3 = (3). The order Λτ = Z[i, (1 + j)/2] is a maximal
order over Z with discriminant 6. It is clear that no optimal involution exists
on the algebra A.

We have the following Z-basis β0, . . . , β3 for L:

2, r −
√

13e3,
√

13e1,
√

13e2.

The form q on L is given by q(β) = 1/2 nr(β), and we get

q(t0β0 + · · · + t3β3) = 2t0 + t0t1 + 5t21 − 13(t22 − t2t3 + t23).

One checks that a given integer is primitively represented by q if and only if
it is not divisible by 9 and its class modulo 13 is not a non-zero square. So,
since

(
3
13

)
=

(
−1
13

)
= 1, there exists an optimally embedded order Λβ with

discriminant N (with N = |q(β)| or N = 3|q(β)|) if and only if v3(N) = 1 and(
N
13

)
6= −1. We will see in the next section that the orders Λβ can be completely

described up to genus.

5 Genera of optimally embedded orders

As an application of our results, we are now going to determine the local iso-
morphism classes of optimally embedded orders in Λ, i.e. determine the genera
of the orders Λβ. Since, as we have seen, the choice of special involution τ is
not essential, from now on we will fix the choice of one involution τ and we will
drop it from our notations. Take a primitive element β ∈ L and consider the
order Λβ. Let p be a prime ideal in P . We want to determine (Λβ)p.

If p | d(Λ), then we already know that (Λβ)p
∼= Ωp by lemma 12 so nothing

more needs to be done in this case.
Assume now that p - d(Λ). First we will show that there is a non-degenerate

hermitian form compatible with the involution. We have Ap
∼= M2(Kp) by

19



H. Granath

lemma 9. Consider the 2-dimensional Kp-module Vp = Kp ⊕ Kp, and the Rp-
module Mp = Rp ⊕ Rp ⊂ Vp. We identify Ap with EndKp

(Vp), and Λp with
EndRp

(Mp).

Lemma 28. There exists a non-degenerate hermitian form h : Vp × Vp → Kp

such that

h(av, u) = h(v, τ(a)∗u) for all a ∈ Ap, u, v ∈ Vp.

In other words, the hermitian form h has the map a 7→ τ(a)∗ as its adjoint

involution. Furthermore, h is uniquely determined up to a non-zero factor in Fp.

Proof. Let g be a non-degenerate hermitian form on Vp. Then g(au, v) =
g(u, ν(a)∗v) for all u, v ∈ Vp, where ν is some involution of type 2 on Ap. Now,
by lemma 11, there exists an invertible element γ ∈ Ap such that ν(γ)∗ = γ
and τ(a) = γ−1ν(a)γ for all a ∈ Ap. Let h(u, v) = g(γu, v). We have
h(u, v) = g(γu, v) = g(u, γv) = τ(g(γv, u)) = τ(h(v, u)), so h is a hermitian
form. Furthermore, we get h(au, v) = h(u, γ−1ν(a)∗γv) = h(u, τ(a)∗v) and
hence h has the required properties. The uniqueness is clear.

Choose now one form h as in lemma 28. Given an element β ∈ A with
τ(β)∗ = β, we define

hβ(v, u) = h(βv, u),

for v, u ∈ Vp. It is readily verified that hβ is a hermitian form on Vp.

Lemma 29. βa = τ(a)β if and only if hβ(av, u) = hβ(v, a∗u) for all u, v ∈ Vp.

Proof. hβ(av, u) = hβ(v, a∗u) if and only if h(βav, u) = h(βv, a∗u) if and only
if h(βav, u) = h(τ(a)βv, u). The claim follows.

We have thus shown

Proposition 30. (Λβ)p is isomorphic to the order constructed from the hermi-

tian Rp-plane (Mp, hβ) by (4).

If we combine this with theorem 17, we get:

Proposition 31. If p - d(Λ), then (Λβ)p is Rp-primitive.

We remark that the global orders Λβ are in general not R-primitive. If
p | d(Λ), then it is impossible to embed Rp

∼= Pp × Pp in (Λβ)p
∼= ΩFp

.
If we apply proposition 5, we get the following corollary of proposition 31:

Corollary 32. The Eichler number of the order (Λβ)p is given by

i ) e((Λβ)p) = 1 if p is split and p - d(Λ),

ii ) e((Λβ)p) = −1 if p is unramified and p | d(Λβ),

iii ) e((Λβ)p) = 0 if p is ramified and p2 | d(Λβ).

Now we want to determine whether (Aβ)p splits or not. If p splits in K (and
p - d(Λ)), then we know from lemma 9 that (Aβ)p splits.

Assume that p is unramified in K. Then, by proposition 3, we have that
(Aβ)p splits if and only if vp(d(Λβ)) = vp(q(β)) is even.
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Assume that p is ramified in K. According to proposition 14, we have that
(Aβ)p is a split algebra if and only if

− det(hβ) = − det(h) nr(β)

defines a trivial class in F ∗
p / nrKp/Fp

(K∗
p). If β = 1, then Aβ = B, so Aβ splits

since the involution τ is assumed to be special. We conclude that − det(h) ∈
nrKp/Fp

(K∗
p). We summarise:

Proposition 33. Let p be a prime. If p is split in K, then (Aβ)p is split if

and only if p - d(Λ). If p is unramified in K, then (Aβ)p is split if and only

if vp(q(β)) is even. If p is ramified in K, then (Aβ)p is split if and only if

nr(β) ∈ nrKp/Qp
(K∗

p).

By theorem 8, we have now completely determined the genus of the order Λβ .

Theorem 34. If p is split in K and p | d(Λ), then (Λβ)p
∼= ΩFp

. Otherwise

(Λβ)p is the unique Bass order, which allows an embedding of Rp, has discrimi-

nant given by theorem 27 (or proposition 26) and splitting behaviour as described

in proposition 33.

6 Spinorial kernel groups

In [7] James showed, in some situations, that the group Λ1 maps surjectively
onto the spinorial kernel group O′(L) for a an explicitly given lattice L. As
a second application of our previous work we now prove an extension of those
results to the general setting, in particular we have no dyadic restrictions.

Consider the quadratic space (W, nr). If γ ∈ A with nr(γ) ∈ F ∗, then the
map φγ given by (cf. (10))

φγ(w) = τ(γ)wγ−1,

is an element of the orthogonal group O(W, nr). The so called spinor norm of
φγ is nr(γ)F ∗2 ∈ F ∗/F ∗2. Hence we get a map

Φ : A1 → O′(W ),

given by Φ(γ) = φγ , where O′(W ) denotes the subgroup of the special orthogo-
nal group of (W, nr) consisting of elements with spinor norm 1. It is known (see
e.g. [7]), that the sequence

1 → {±1} → A1 Φ−→ O′(W ) → 1 (19)

is exact.
For a lattice L in W , we let O′(L) denote the subgroup of O′(W ) of elements

preserving L. In [7], James constructed in some cases an explicit lattice L such
that the sequence (19) induces an exact sequence

1 → {±1} → Λ1 Φ−→ O′(L) → 1. (20)

It turns out that our previously constructed lattice L always has this property.

Theorem 35. With L defined as in (11), the sequence (20) is exact.
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Proof. Take an element γ ∈ A1 such that Φ(γ) ∈ O′(L). We need to show
that γ ∈ Λ. This only has to be shown locally so we assume from now on that
we are in the local case, and use the notations from section 4. It is clear that
the subgroups O′(L) and O′(L#) of O′(W ) are equal, so Φ(γ) ∈ O′(L#), i.e.
τ(γ)L#γ∗ = L#. But applying this to our Clifford algebra construction, we get
that γΘγ∗ = Θ, which in turn implies that γΛ = Λγ by (18). Hence γΛ is a
two-sided Λ-ideal, and we get γΛ = xΛ for some x ∈ K. We conclude that
x−1γ = ε for some ε ∈ Λ∗. Using that nr(γ) = 1 we get x2 = nr(ε−1) ∈ R∗, so
x ∈ R∗. Hence we get γ ∈ Λ∗, and we are done.
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