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Abstract.

In this paper we study the topology of the spaces of base point preserving degree k& holomorphic maps
from the complex projective line CP! into the infinite dimensional homogeneous manifold Sp/U and the loop
groups (Sp (n). Using the results and methods of [CLS] we prove a holomorphic analogue of one of the real
Bott periodicity equivalences showing that Holg(CP?,Sp/U) ~ Holz(CP?,Sp) ~ BO(k). We apply these
results to study the stabilized space of Sp (n)-monopoles on S* proving an analogue of the Kirwan-Sander’s
theorem for instantons [K],[S].

Introduction.

One of the most fundamental theorems in Topology is the Bott Periodicity Theorem [B59]. This theorem
identifies the topology of the loop spaces of the classical infinite rank Lie groups U, Sp and O. In the case
of U =lim_,, U(n) is states that there is a natural homotopy equivalence,

B:Z x BUSQU
where X = C(S!, X) denotes the space of smooth basepoint preserving maps from the unit circle $? to
X. .
In [A68] Atiyah uses elliptic operators to define a homotopy inverse

9: QU ~ C2(5%, BU) —» Z x BU.
What he does is to use the 8 operator coupled to each element of Cf‘jk(Sz, BU) and takes the index. This
implies that there exist a natural homotopy equivalences for the degree k components of the mapping spaces,
and the classifying space BU 5 s
BU+—Co% (52, BU)——)C‘,’?k(S2, Qu). (0.1)
In [CLS] R. Cohen, G. Segal and the author prove an analogue holomorphic version of this theorem,

Theorem A. [CLS] There are natural homotopy equivalences

BU(k)«2-Holt (CP!, BU)-23Hol (CPY, QU) (0.2)
for every natural number k.

The maps O and 8 extend to the smooth mapping spaces to give (0.1). In fact, as we let £ — co (0.2)
becomes (0.1). In [CLS] a strongest result is proved determining the homotopy type of Holi (CP!, BU(n)) as
that of the Mitchell-Segal filtration for the loop group QU (n) [M86]. This theorem is proved there identifying
the holomorphic mapping space as a moduli space of negative holomorphic bundles (as defined later) over
CP! with some additional data, then we identify a corresponding portion of the loop group with other moduli
space of holomorphic bundles with additional data and compare both. We sketch the main argument for the
proof of Theorem A in section 1, we refer the reader to [CLS] for the details.

In [C97] this theorem was used to understand periodicity properties of Cohen’s holomorphic K-theory.

The periodicity theorem has a more complicated statement for the case of the orthogonal group O. The
“Real” Bott periodicity Theorem establishes several homotopy equivalences and in particular that we have
natural homotopy equivalences

BO-0%,(8?,8p/0)-25C35(S%,95p). (0.3)

In this case the 8 operator has a real structure.
The main theorem of this paper is the following holomorphic version of (0.3)
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Theorem B. The spaces BO(k),Holg(CP!,Sp/U) and Hol,(CP*,(2Sp) are homotopy equivalent for all
natural numbers k. Moreover there are natural homotopy equivalences

BO(k)«2-Hol, (CP!, Sp/U) -5 Hol, (CPY, QSp) (0.4)
for every odd natural number k.

We prove this theorem in chapter 2 using the constructions and methods of [CLS] to reduce it to the
complex case of Theorem A.
Observe that this theorem implies that the inclusion that forgets complex structures

Holy(CP*,Sp/U) — C&(S%,8p/U)
and
Hol, (CP!, QSp) — C5.(S?,QSp)
are simply (up to homotopy) the inclusion
BO(k) — BO.

Let I, ;. denote the moduli space of based SU (n)-instantons with charge k over S§%. There is a natural
map
6:1, r — BU(k) (0.5)

given by the index bundle of the Dirac operator coupled to the instanton.
The following theorem due to F. Kirwan [K] and M. Sanders [S] answer the question of stabilization
with respect to the rank n of the Lie group

Theorem C. (Kirwan [K], Sanders [S]) There is a homotopy equivalence

8: Too t—BU(K) (0.6)
given by the Dirac operator. The composition
Lok = Tnt1,k = -+ = Lo =~ BU(K) (0.7)

is h(;motopy equivalent to (0.5) for every k € R.

Let My, & denote the moduli space of Sp (n)-monopoles on R3. In this case the Dirac operator has a
real structure as proved in {CJ93] giving a map

&: My . — BO(K) (0.8)

Using Theorem B together with results of Sanders we prove in chapter 3 the following analogue of the
Kirwan-Sanders’ result

Theorem D. There is a homotopy equivalence

8: Moot —BO(K) (0.9)
given by the Dirac operator. The composition
Mu,k - Mn+1,k — e > MOQJ; ~ BO(k) (0.10)

is homotopy equivalent to (0.8) for every odd natural number k.

In [CCMM91] it is proven that the space of Sp (1)-monopoles of charge k, My is stably homotopy
equivalent to the classifying space of the braid group

Mk g Bﬂgk.

In {CJ93] R. Cohen and J. Jones investigate further the relation between monopoles and braids. In [FC] Fred
Cohen defines braid cobordism and computes the spectrum for it. He proves that stable braid cobordism
has as associated spectrum the Eilenberg-McLane spectrum KZs. In chapter 3 we define stable monopole
cobordism and we use a theorem of Mahowald and elementary arguments to prove
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Theorem E. For any space X we have a natural isomorphism
OM=X = H.(X,Zs)

in particular any element of H.(X,Z,) is represented by a monopole oriented manifold uniquely up to
monopole cobordism.

Finally we use Theorems of R. Cohen [C76] and the results of section 3 to prove the following unstable
version of Theorem E.

Theorem F. Consider the monopole filtration for 2S? given by
Mi = Mg = oo My = - = Mg = 0252 55B0

where -y is the unique 2-fold that sends the generator S C Q252 of w1 (§2252) to the generator of m; BO = Z».
Let X} be the 2-localization of the Thom spectrum of the stable vector bundle vy over My which is classified
by the map

T My = 025215 BO.

Then each Yy ~» By where By, is the 2-local Brown-Gitler spectrum [BG].

The author would like to use this opportunity to thank M. Sanders, G. Valli, S. Mitchell and G. Segal
for useful conversations regarding this work. Special mention is due to Ralph L. Cohen, who suggested many
parts of this project.

I would also like to thanks the always cheering support of M. Alba, O. Borobio, A. Ergiin, J. Patean
and E. Usi during my stay in Germany.

This work was realized at the Cinvestav-Mexico, the Universities of Stanford and Cambridge and the
Max-Planck Institute for Mathematics in Bonn. I use this oportunity to thank their support and hospitality.
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§1. COMPLEX HOLOMORPHIC BOTT PERIODICITY.

§1.1. The Loop Group.

In this section we recall some basic results from the theory of loop groups. We follow the notation of
our main reference for this, [PS86).
Let G be a classical finite dimensional Lie group, and let G be its complexification. The loop group
LG is the group of smooth maps from the circle S* into G, with group law coming from that in G. The
group LG has several important subgroups,
i) the group £+ G of maps v: S! — G which extend to holomorphic maps of the closed unit disk to G,
ii) the group L,nG of loops whose matrix entries are finite Laurent polynomials in z and 27! i.e. the loops
of the form

N
@)= ) Ad*
k=N

for some N, where the A; are n X n matrices.
iii) the base group QG of based maps 7v: (§*,%) — (G, *); and its subgroup (,aG.

We specialize now to the group G = SU(n), even when some of the results can be stated in a more
general manner. We have the following relation between some of those subgroups.

Theorem 1.1.1. (cf. [A84 (2.10)], [PS86, 8.1.1]) Given a loop v € LGl, (C) we can write it as
V=0 Vs
with v, € QU (n) and v4 € LTGl, (C) in a unique way. Moreover the product map
’ QU (n) x £+Gl, (C) = LGL, (C)
is a diffeomorphism, giving a natural identification
QU (n) = LGL, (C) /L*TGL, (C).

Actually this theorem can be further refined to get the Birkhoff Factorization Theorem, which in turn
rapidly implies the following result, due to Grothendieck, that classifies holomorphic vector bundles over
CP!, and that we will use later.

Theorem 1.1.2. ([G57], cf. [P586, (8.2.4)]) Any holomorphic vector bundle over CP! is isomorphic to a
sum H* @---@ H*~ where H¥ is the k-th tensor power of the Hopf bundle. The set of integers {ky, - - .,kn}
is a complete invariant for this classification.

To understand better Theorem 1.1.1 we need to introduce the Grassmannian model for the loop group.
Let H = HM = L?(S'; C) be the Hilbert space of square Lebesgue integrable complex functions on S, and
let H(® = [2(S'; C") be the analogous space of vector valued functions. We will identify H with H™ in
the following way, given f = (f1,.-., f2) € H™ we associate to it the function

FQ) = A +CARE™ + -+ HalC™. (1.2.1)

Conversely, given the function f € H we recover (f;) € H (™) with the formula

@) =2 Y .

(n=z

For more on this identification we refer the reader to [PS86 §6.5].
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We will be using the standard polarization of H(™, i.e. we will decompose H(™ as HS™ & H™ where
H{™ and H™ are the closed subspaces

Hi") = { functions whose negative Fourier coefficients vanish }

={f e H™ : f is the boundary value of a holomorphic function in the unit disk}
7Y = (HP)

Taking the local coordinate # on S* given by z = €% for z € S, let J be the infinitesimal rotation operator
—~id/df. Then the polarization H = Hy & H_ corresponds to the +1 and —1 eigenspaces of J respectively.
Let’s write GL(H™) to denote the Banach Lie group of all invertible bounded operators of H(™. We are
able to write now the following definition.

Definition. (cf. [PS86 §6.2]) The restricted general linear group of H, written Glyes(H) is the subgroup
of GL{H) consisting of operators A such that [J, 4] is a Hilbert-Schmidt operator.

In other words, if we write A € GL(H) as

a b
=2 3)

with respect to the polarization H = H; @ H_, then A € Gl {H) if and only if b and ¢ are Hilbert-Schmidt
operators. In that case a and d are Fredholm operators. This fact is very related to a manifestation of the
Bott Periodicity.
Given an element v € £LGl,, (C) we form the multiplication operator M., on H™ given by f +> vf. The
operator M., turns out to be an element of Glres(H (™).
Definition. The restricted Grassmannian Gr(H) = Gr(H) is the set of all closed subspaces W of H
such that
i) the orthogonal projection pr_:W — Hy is a Fredholm operator and its image consists of smooth
functions, and
ii) the orthogonal projection pr_: W — H_ is a Hilbert-Schmidt operator and its image consists of smooth
functions.
We have as well the following submanifolds of Gr = Gr(H),
a) Gro = {W € Gr: 3k > 0 such that (*H, CW C(*H, },
b) Gr{™ = {W € Grp: ("W C W},
¢) Gr'™ ={W e Gr: ("W CW}.
This definition permits us to direct our attention to the natural action of LGl, (C) (and of LU (n))
on Gr™ via the multiplication operator. This action is transitive and its isotropy group is L¥Gl, (C) (the
constant loops in U (n) respectively.) This immediately implies the identification

QU (n) = LU (n) /U (n) = LG, (C) /£L+Gl, (C) = Gr™.

This identification is what we call the Grassmannian Model for QU (n).

Theorem 1.1.3. (cf. [PS86, (8.3.3)]) Under the identification Gr™ & QU(n) the submanifold Grg‘)
corresponds to QpaU (n).

The Bott periodicity theorem can be stated (and proved) very naturally in this context [G75],[PS86
§8.8]. We have the following results.

Proposition 1.1.4. (cf. [PS86, (8.6.6)]) The inclusion map Gr((,") < Gr'™, or equivalently QpaU (n) <
U (n), is a homotopy equivalence.

Theorem 1.1.5. (Bott Periodicity Theorem) The inclusion

QpaU (n) = Gr§™ < Gro
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induces an isomorphism of homotopy groups up to dimension 2n — 2.

Definition. The virtual dimension of an element W € Gr is the Fredholm index of the orthogonal
projection pr,: W — H,, in particular if W € Gro we have

virt.dim W = dim(W/W N H) — dim(H /W N Hy).

Observe that we can write
Gro = | J Gr(¢PHy /¢HY)

r<q

and therefore we can identify Grg with Z x BU where the Z factor indexes the virtual dimension, corre-
sponding with the degree of the corresponding element in 9,6 U (n).

§1.2. The Mitchell Filtration.

In this section we will describe a filtration of QpqSU () (that is homotopy equivalent to QSU (n),) due
to Mitchell [M86], we follow Segal for this [S89].
First we need to define a very useful map A: Gr,,,(C*) = QU (n). For a given m-dimensional subspace
V of C" let pry and pry. be the orthogonal projections of C™ onto V and V' respectively, then we define
Av: St = U(n) by
Av(z) = zpry + pry.. (2.1)

This map has the property that
Avew = AvAw (2:2)

when V and W are orthogonal.

We have in particular a map A: CP™ = Gr;(C") = Qpa.5U (n), and it is well known that A exhibits
H,(QSU (n); Z) as the symmetric algebra on the reduced homology of CP™™1, i.e. a polynomial algebra on
generators by, ...,by,—1 with dimb; = 2i. Let R, ; be the abelian group of polynomials in by,...,bn—y of
degree at most k. The main result of [M86] is then

Theorem 1.2.1. The loop space Q615U (n) has a filtration Fy,  that realizes the filtration R,  in homology.
Furthermore, F, ;, fits in the commutative diagram

Q‘polSU (n) —J—) BU
i h
Yn.k

Fox % BUk)

here j and h are the standard maps, and the quotient F, ¢ /F, 1 is homotopic to the Thom complex of
Tn—1,& over Fp_1 k.

In the case n = oo, j becomes the Bott Periodicity map and « x is a homotopy equivalence, and then
we recover the stable splitting of Snaith {Sn79].

The following loop group description of this filtration will prove useful later. Denote by € the loops of
winding number k in QparU (n). Let V be the subspace of C* consisting of vectors of the form (a,0,...,0),
and let A denote the loop Ay, defined by (2.1). Then for all k£ > 1 we can write

Fpp = X750, (2.4)

Observe that via the identification (1.3) we have that () is a subspace of Grg(H,) ~ BU(k). Identifying

Fox with Q the map Y,k is the natural inclusion into Gri(H,) and the bundle that it classifies has fibre
H+ / W at W



COMPLEX HOLOMORPHIC PERIODICITY | 7

Remark 1.2.2. There is a interesting grassmannian model for the space QU {n)/ V n, and a corre-
sponding filtration as was pointed out by Crabb and Mitchell [CM87]. Tt is obtained as follows. For a given
involution 7 in U (n) one can associate a corresponding involution in the loop group QU (n) by

(0M)(2) = 7(7(2))

and we will have

(QU (n))” =~ QU (n) /U (n)").

In particular if we take 7 to be complex conjugation we see that we can think of QU (n) / V n as a subspace
of the loop group QU (n), that is, the fixed point set under o,

(eM)(2) = ¥(2).

This in turn produces the desired grassmannian model and filiration. Only restrict yourself to those v(2)
with real fourier coefficients, and to those subspaces on the grassmannian model that are real. The notions
of polynomial loops and polynomial grassmannian are similarly defined in this case. The corresponding
filtration is written F&k. Observe that the inclusion

F CFup
becomes in the limit over n the classical inclusion
BO(k) c BU(k).

We refer the reader to [CM87) for details.

§1.3. Construction of the Map g.

We will proceed now to construct the map 8:Z x BU — QU with the promised properties. The map
will be very related to the loop-group version of Bott pericdicity (theorem 1.1.5 above,) but we have to be
careful. We state the result that we want to prove.

Proposition 1.3.1. There exists a realization of the Bott periodicity map
B8:Z x BU =+ QU

that restricts to a map
B3: BU - Q5U,

with the following “holomorphic” property. If X is a compact complex manifold and we have a holomorphic
map X — Gr, (C"), then the composition

X = Gr(C™) < BU(n) » BU-5Q8U
is also holomorphic. Moreover we have the following formula for 8. If (k, V') € k x Gr,(C") C k x BU then
| Bk, V) =Ammrey, L
Remark 1.3.2. The map QSU (n) — QSU (n + 1) is holomorphic. If X is a complex compact manifold,
the space of holomorphic maps Hol(X, 25U) is the limit of the spaces Hol(X, QSU (n)). Is in this sense that

we refer to the map X — QSU being holomorphic in the previous proposition.
We prove this theorem in several steps.
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Lemma 1.3.3. For a given loop ¢ € Q01U (1) the map
Be ki Gre(C™) = Q01U (1)
given by
Vi & dpe
is holomorphic.

Proof: We use the twisted Cauchy-Riemann equations that appear in the proof of proposition 1.3.1 of
[V91] (in our case a = 0.) Let 8 be the (0,1) component of the d operator in Grg(C"). Let f: Gry(C") -
Q01U (n) be any holomorphic function. Let A(2) the holomorphic extension of f~18f to the unit disk in
C. Then Valli proves that the function V — f(V)Ay . is holomorphic if and only if

pry. Opry + pry L A(Q)pry = 0.
If f is constant 0f = 0, and this condition is equivalent to
pry . dpry =0

that in turn is equivalent to V - Ay. being holomorphic and this is well known (see [V91] Lemma 1.1.)y

Corollary 1.3.4. The map
Brn: Gre(C™) — QpatU (n)

given by _
: Vs Ammtk

is holomorphic.
Now we define a natural inclusion i: Gr™ < Gr**Y. First we see H™ as H ® C*, and HJ(F") as
H, ® C™. Then For W € Gr™ we define
iW)y=WeoH,.

‘We have

Lemma 1.3.5. The following diagram commutes

QalUm) L Gl

J H
QaUn+1) L gr{td

Here j is the canonical inclusion, and v is the identification (1.3).

And also.
Lemma 1.3.6. The following diagram commutes
mxGr(C") L Qpa, U(n)

i

m X Grg41 (C*H) N o1, U (n+ 1)

The proofs are straightforward. We need more lemmas.
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Lemma 1.3.7. The composition
Gre(C™ 500U (n) LGri™ < Gro = Z x BU

classifies the tautological stable bundle over the Grassmannian.

Proof. 1t is easy to check that the composition
nyAvL 4 (n) —
Gri(C™) =3 QpatU (n) —Gry”’ < Grg =Z x BU

classifies the tautological bundle (here Ay . represents V + Ay..)
Claim. Multiplication by X! seen as a map

Z x BU = Gro—3Gro = Z x BU

classifies the canonical stable bundle over Z x BU.

This claim is valid since multiplication by A® seen as an operator in H is just a reordering of the canonical
orthonormal basis.

Taking t = m — n + k and composing finishes the proofy

Lemma 1.3.8. The following diagram is homotopy-commutative

Grg,") LN Grf)"“)
S
Gl‘g
Note: This diagram is not commutative.

Proof. The maps '
Gr{™ Gr{"Y < Grg = Z x BU

and
Gr{™ < Grg = Z x BU

represent the same element in K (Gr‘g")) since

wo_ ) _ wem ™
wne® WwWnE® WeH)nH" WeH)nHIY

They are therefore homotopic.g
The next lemma will be very useful.

Lemma 1.3.9. Let p(z) = z™q(z) where ¢(z) is a polynomial of one complex variable and m is any integer.
Suppose that p(z) has the following properties,

i) p(1) =1, _ .

i) |p(z)] = 1 for all z such that |z| = 1. If k is the degree of the polynomial g(z) then we can write

p(z) = 2™

Proof. First we consider the case in which m = 0, that is the case in which p(2) is a polynomial. We
only need to prove that all the roots of the polynomial are equal to 0. Let a;,..., o be the roots of the
polynomial. Let r(z) be the following Blaschke product,

T(Z)=H 2z —

1 -z

1
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and let u = 1/r(1). We now consider the following function

It is a holomorphic function from the Riemann sphere to itself. Now by the maximum modulus principle
p(z) has also the following property,
iit) p(z)] <1 forall |z} < 1.

It is clear that f has also properties i), ii) and iii). But f has no zero in the closed unit disk. Considering
the function 1/f and using again the maximum modulus principle we conclude easily that f must be a
constant function, but by property ii), it must be f(z) = 1. Then

p(z) = ur(z).

But the only way in which r(2) can be a polynomial is if all the a;’s are 0.
Now for the general case m € Z, we apply the case m = 0 to ¢(z), and then we multiply by 2™ g

Corollary 1.3.10. Let Qp0,U (n) be the set of loops in QpaU (n) of degree 0. Then
QpaSU (n) = QpaU (n).
Proof. Let v € Qpo1yU (n). Apply the previous lemma to the following polynomial f(z) = dety(z)4
We are now able to prove the main result of this section.
Proof of Proposition 1.3.1. We obtain maps
Z x BU = QpotU = Gr{™ — Gro = Z x BU

The first arrow is the limit of lemma 1.3.6, the second arrow is the limit of lemma. 1.3.5, and the third is the

limit of lemma 1.3.8.
That the composition .

Zx BU—~ZxBU

is homotopic to the identity is a consequence of lemma 1.3.7.
The composition
QiU = G — Grg = Z x BU

is the Bott periodicity map due to the theorem 1.5. -
;From this we can see that the composition :

Z x BU = QpqU = QU

is the Bott periodicity equivalence.
That thig map restricts to
BU — QSU

follows from corollary 1.3.10.
The holomorphicity is the content of the corollary 1.3.4.
Finally the explicit formula follows from the construction.g

Corollary 1.3.11. The map {3 induces a map
Hol(CP*, BU) — Hol,(CP?, QSU)
that we call again f, that fits in the following commutative diagram
Hol(CP,BU) < QiBU
Holx(CP,QSU) < 03SU
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§1.4. The Spaces Hol;(CP!, Gr,(C"t™)).

We denote by M7, the space Holk (CPY,Gr,(C™™)) of degree k base point preserving holomorphic
maps from the Riemann sphere CP! to the complex grassmannian manifold Gr,(C™*™). (cf. Definitions
1.5.1 next section for notion of degree.) In this section we describe some results of B. Mann and J. Milgram
[MMO1]. We will use later the description of M, explained there.

The spaces M™, have been extensively studled for example due to its natural appearance in control
theory. Some of the fundamenta.l papers describing the geometry and topology of these spaces are [C76],
[S79] {CCMM] and [MMB91].

In [CT76] it is proved that M}, is a smooth complex manifold of complex dimension k(n + m). Clark
gives there explicit charts for th.lS manifold. However for us it will be more convenient to use the chart
structure described in [MM91].

Remember that the grassmannian Gr,(C™*™) can be seen as equivalence classes matrices of rank n
of the form [A : B] where A € Mat, n{C) and B € Mat, »n(C). Here [A : B] ~ [UA,UB] for every
U € Gl, (C). The equivalence class [A : B] is identified with subspace of C**™ that is the image of the
linear map C™ — C™*™ given by the matrix {4 : B] written on the canonical basis.

A holomorphic map f: CP! = Gr,(C™™) of degree k can always be written in the form

f(z)=[D(z): N(z)]

where
a) N(z) € Maty, ,(C[z]) and D(z) € Mat, »(C[z]) are both polynomial matrices.
b) The matrices N(z) and D(z) are coprime, that is, there are polynomial matrices A(z) € Matn,n(C[ 1))
and B(z) € Maty, »(C[z]) such that

N(2)B(z) + D(z)A(2) =

In consequence the matrix {D(u) : N{u)] has full rank n for all u € C.
c) deg(det(D(z))) =k
d) We have the base-point condition
zli_)nolo D7 Y2)N(z) =0

coming from the condition f(oo) =[I: 0].
The following is proved in [MM91].

Proposition 1.4.1. After left multiplication by a unitary unimodular polynomial matrix U € Maty, ,(C{z2])
one can always bring f € M}, to the unique canonical form

fz) =[P(2) : Q(2)] =

pu(z) pa(z) ... pal?) qu(z) ... qum(2)
0 paz(z) ... pon(2) @ui(2) ... @2m(2)
6 0 . pm;(z) qnl.(z) .. qm,;(z)

where in addition to conditions a),b)c) and d) above, one also has
i) P is upper triangular and each pi;(2) is monic.
ii) deg(pji(2)) < deg(pii(2)) = ki
i) Y ki=k
iv) deg(gn;(2)) < deg(Pnn(2))
v) In general the entries of () are well defined modulo polynomials of degrees that are determmed inductively
row by row by the degrees of the polynomials p; j(z) and the earlier determined rows of Q.

A sequence K = (ki,...,kn) such that > 11 k; = k, k; > 0 is called a partition of &. We order such
partitions lexicographically as follows, if K’ = (k},...,k},) is another such partition we say that K' < K if
there is a j such that k; < k; and ki =kifori> ] We denote the set of all such partitions by K
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For every partition K € K of k welet Xx = X(k1,...,kn) be the subspace of M7, of all elements such
that the integers appearing as deg(pi;) in the canonical form are precisely %i,..., k&, in that order. Mann
and Milgram define the following stratification of M7, by open manifolds,

Tr(M;rtk) = U X(kl,. . ~7kn)

kn2>r

then they prove the following

Proposition 1.4.2. X(ki,...,ks) is a complex submanifold of M7}, of complex dimension (m + 1)k +
Y iea(i — 1)ki, moreover the normal bundle vk of X (ki,...,ks) inside M7, is trivial.

The family {vk } ek is a set of open charts for MT},. In fact vk is obtained by carefully adding a lower
triangular matrix to P which degrees hold similar conditions to b) above. The “change of chart” gluing
maps are given then by the algorithm that takes the resulting matrices to the canonical form.

Example 1.4.3.

The structure of M7}, for n =1 is given by the following proposition due to Mann and Milgram.

Proposition 1.4.4. Let m&,; ! be the complex vector bundle over CP™ given by

(@oy -+ vy An3 W1y e -y W) ~ (280, .-, 2050, 27wy, . .., 27 wy,)

n
2€C", [ao,...,an] € CP™, Y [as|* #£0
=0

then
M7y~ C x (m&)”
is a homeomorphism where (mé&,1,)* is the complement of the zero section of me.
Proof. We will give the map
T:C x (mg;l)* - MT,
realizing this homeomorphism. First observe that C x (m&,;!,)* can also be described as C x (C™)* x
(C™)*/ ~ where

. . . PV | -1
(A;a1,...,8n;w1,..., W) ~ (A;2a0,...,205—1; 2wy, ..., 27 0y,

2€C, Y el #0, Y w2 #£0

We also know that
m1 = (Matn,n(C[2]) x Matn,m(Clz]))*/ ~'

where the bullet indicates conditions a)-d) above.

We give a map Cx(C™)*x(C™)* = (Matn,»(C[z])xMatn, . (C[z]))* that descends to T : C x (mf;_l_l)* —>l
M7, and represents the desired homeomorphism.

If a; # 0 then

T(4;a1,...,80W1,. .., Wy) =
z2—A 0 0 0 aGWwr ... GWy
ag/al -1 ... 0 0 0 0
Gpifaz 0 ... =1 0 0 0

Gaf 0 .. 0 -1 0 ... 0
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and in general if a; # 0 then

T(A;ala""a'ﬂ;wlu"waH)=
-1 0 al/ai 0 0 0
0 -1 ... ag/a,- ... D 0 0
0 0 ... z—A ... 0 aqw ... awn
0 0 ... apfa; ... =1 0 ... o
1

Here the chart structure of M7?, is clear from the previous proposition.
Observe that M7, =S (m&1,) the associated sphere bundle. Therefore we have

§2m=1l 5 MP*, - Cp™!
and as we let m — oo we get
Mip~ cpr!

To conclude this section we state the main result of [MM91].

Theorem 1.4.5. Let t(K) = (n— 1)k — Y p_,(j — 1)k; for all K € K. Then for every coefficient ring A we
have
H (M, A) = @ H*(Zzt(K)(MZ:,l X o X MP )43 A),
Kek

moreover, the map induced by the inclusion
L"*"”":Mg’fn = Hol (5%; Gr,, (C™™)) — Q3 (Gr,,(C™t™))

namely
Lf,ﬂ,m: H*(M;c':n; A) - H*(Q% (Grn(cn+m)); A)

is an injection in homology for all coefficients.

The case n = 1 is taken care of in [CCMM]. Let Fi(C) be the configuration space of k distinct points
in C and
D; = Fx(C)y s, S*

then ¥. Cohen, R. Cohen, B. Mann and J. Milgram prove
Theorem 1.4.6. The following spaces are stably homotopy equivalent

M-ir:k ~, 2(211—2)ij

We refer the reader to the original paper and also [CCMM?2] for details.
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§1.5. Stabilization for High Rank Instantons.

The space of G-instantons over the 5% is important for us due to the following theorem of Atiyah and
Donaldson [A84a], [D84a],

Theorem 1.5.1. The Space of charge k G-instantons over the four-sphere is homeomorphic to

Hol, (CP*; QG).

The problem of studying the topology of moduli spaces of instantons over 4-manifolds have been studied
in various cases by Cohen [CR94], Kirwan [K], Sanders [S], Bryan-Sanders [BS97], and Norbury-Sanders [NS].
In particular in [S] the following is proved.

Let Iks U(") denote the moduli space of based SU (n)-instantons with charge k over S*. There is a natural
map

§: '™ - BU(K)

given by the index bundle of the Dirac operator coupled to the instanton. For I,f P" there is correspondingly
a map

5:T2°™ 5 BO(k)
Then the following is true.

Theorem 1.5.2. There are homotopy equivalences
5: T3V 2, BU(k)
§: ;"™ -2, BO(k)
given by the Dirac operators. The compositions
9 o U 5 78V ~ BU(K)

Isp(n) BN I P ~ BO(k)

are homotopy equivalent to the dirac maps for every k € N.
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§1.6. Holomorphic Bott Periodicity: The complex case.

In this paragraph we sketch the argument used in [CLS] to prove Theorem A in the introduction. In fact
in [CLS] a more refined result is proved involving the identification of the topology of Holx(CP!, BU(n)) as
that of the Mitchell-Segal filtration F,, ;. We only state this result at the end. In fact we only use Theorem
A in what follows and we don’t need the full strength of the method. We originally wanted to relate the
Mitchell filtration of SU/O with some spaces of holomorphic maps, but it seems that in the real case the
relation is not as direct.

The general strategy of the proof is as follows. We define a subspace C, , of the loop group QU (n) that

is the analogue to F}, ; inside Qpq1U (n). This space C,, has the property that in the limit over n we have
7}320 Cox = BU(K).

Then we define an itermediate space xn r with maps
Mn,k — Xnk = C;’k

and prove that both arrows are homotopy equivalences.

Proposition 1.6.1. There is a homotopy equivalence
Mo = BU(E)

Once we have that using corollary 1.3.11, the usual Bott periodicity theorem and the fact that the map
BU(k) — BU is injective in homology Theorem A follows directly from this proposition.
Now we sketch the proof of proposition 1.6.1. For this we set some notation and definitions.

Definitions 1.6.2. The space of all basepoint preserving holomorphic maps from CP* to BU, Hol(CP!, BU)§
is the direct limit lim_, Hol(CP!, BU(n)) of holomorphic maps from CP' to the grassmannian of all n-
dimensional complex vector subspaces of C®°, BU(n) = Gr,(C®). In this section we write V = C™ a fix
infinite dimensional complex vector space. We write I, to denote the universal canonical n-dimensional
holomorphic vector bundle over Gr, (V).

The space Hol(CP!, Gr,,(C™*™)) has countably many components indexed by the degree k € Z where
k is the value of the first Chern class ¢ (f*T'") of the pull-back under f of the canonical bundle I'7? over
Gr,(C™™) evaluated on the basic generator [CP!] € Hy(CP?),

= —a(f*T7)[CP'].
We denote the k-th component by
= Hol,(CPY, Gr, (C™T™)).

If we omit one of the indices on the notation M7, we mean that we are stabilizing that index to infinity.

For example .
My = lim Holy(CP*, Gr,(C™™)) = Holy(CP', BU())
mM-—=0C

and
M;, = Holx(CP!, BU).

Our first remark is that My, ; can also be interpreted as a space of holomorphic bundles over CP1 with
additional structure. Let

E e'é+m
< = l l . 1 is holom., &1 (E) = —k, t(Ee) = (C" & 0)co

cpt! = CpP!
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consisting of isomorphism classes of pairs (F,:) where E is an n-dimensional complex holomorphic bundle
over CP! and i is a holomorphic inclusion into the trivial complex holomorphic vector bundle e"‘L'" of
dimension 1 +m over CP! such that ¢(Ey) = C* @ 0™ C C™™ = (&™) 0.

Proposition 1.6.3. The spaces M, and Y], | are homeomorphic.

Proof. Given an element f: CP! — Gr,(C™t™) in M,, ; we define the pair (E,:) as follows,
E = fT
and ¢ is defined by the commutative diagram
fTr = fregm™ = ™
|
m — &g

where €5 is the trivial bundle over Gr,,(C™™).
Conversely given the pair [E,:] we define f by the rule

f(z) = u(E;) cC™m

where E, is the fiber of E at z € CPL.

Definition 1.6.4. We define the spaces Cpx and C_; as follows.

a) The space C, is defined as the moduli space of isomorphism classes of pairs (E, ) where E is a holo-
morphic bundle of rank n over CP! with, and # is a holomorphic trivialization of E|p,_ .

b) The space Cp t will be the moduli space of isomorphism classes of pairs (E,8) where E is a holomorphic
bundle of rank n over CP! with ¢;(E) = —k , and 6 is a holomorphic trivialization of E|p_,

¢) The space C, ; C Cp is defined as the space of pairs (E, 8) such that E is negative (i.e. E =0k)®

- @ O(ky,) with all k <0)
Both spaces Cn and C, can be interpreted as subspaces of the loop group due to the following
proposition taken from [PS86].

Proposition 1.6.5. ([PS86 (8.10.1)]) The loop group QU (n) is homeomorphic to Cy,.

Proof. To define the homeomorphism F : C, — QU (n), given any element (E,8) € C, choose any
trivialization 7 of E|p,, the corresponding attaching map v(2) € LGl,, (C) is well defined up to an element
T € LTGl, (C) therefore v(z) € LG1,(C) /LG, (C) = QU (n) defines F(E,8) € QU (n). The inverse
F~1(v) is given by the isomorphism class of the pair (F,§) where the bundle E = (D x C*)U, (Do, x C™)
and @ is the obvious trivialization. g

Observe that the set of isomorphism classes of bundles E is a the discrete set X defined in section 1.4,
and that the map C,, = K is discontinuous.
Corollary 1.6.6. The space C, can be identified with the grassmannian Gr(™.

Now observe that for elements in ., H°(CP'; E* ® O(-1)) is a k-dimensional complex space (by
Kodaira’s vanishing theorem and the Rlemman-Roch theorem for example) that can be interpreted as pairs

of polynomials on z and 2~ (that is on Dp and D) related by y(z). Let W = v(z)H}" (™) be the corresponding
element on the grassmannian model. With this interpretation and the Birkhoff Factorization theorem one
sees that we have the following isomorphism

HY(CPLE* @ O(-1)=WnH_

. Therefore the corresponding interpretation on the grassmannian model for C. . is
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Corollary 1.6.7. The space C,, x is homeomorphic to the subspace of Gr™ congsisting of those W such that
dm(WnH_)=k

In particular as we let n — co we have
Coox = BU(E)

Now we make a very important definition.

Definition 1.6.8. The space X is defined as the space of isomorphism pairs of triples (E, +, ) where E is
a holomorphic bundle of rank n over CP* with, 8 is a holomorphic trivialization of E|p_ and s: E — CPxV
is a holomorphic bundle immersion of E into the trivial infinite dimensional holomorphic bundle over CP!.

‘We have obvious maps .
n,k

Xn g~ Y5 & Mp g = Holg (CP!, Gr,, (V)
(E,1,8) v (B, 1)
and
Xt Z25C, © LG, (C) /LG, (C)
(E,1,0) = (E,0).

Proposition 1.6.9. The maps
K k=5 My i = Holi (CPY, Gro (V)

and
X1 Z23C;, € LG, (C) /LG, (C)

are quasifibrations.

Proof.
We can identify X, x as a set with the family of commutative diagrams,

Deo —= Fro(V)

Xnp = l ] l : 8, f are holomorphic
cpt L Gr.(v)
Observe that M, x is the limit of the connected complex manifolds
M7, = Holg(CP?, Gry, (C™*™)).

We define

Do -5 Fr,(Crm)
= : 8, f are holomorphic

cp! Ly Gr,(Ccrtm)
Now we prove that .

Mo

is a local fibration. That is enough to conclude that « is a local fibration.

In [MM91] Mann and Milgram prove that M7, is a connected complex manifold of dimension k(n+m)
giving explicit charts [cf. §1.4]. To prove that 7, is a local fibration we take a chart &/ and construct a
bijection .

¥ : U x Hol(Dwo, Gly, (C)) = 7, (U)
and define the topology in X, by asking those maps to be homeomorphisms. Then r, is a fibration along
U for all Y. We proceed now to define .
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Given f € M7}, Mann and Milgram use results from control theory to show that f has a unique
canonical representation as a polynomial matrix of the form

palz) pi2(z) ... pin(2) @ui(z) ... qum(2)
0 0@ ... pa(z) @z ... @)

fz) = : : : : :
0 0 ‘e pnn(z) qni (Z) cevo Onm (Z)

with certain additional conditions. When we vary the coefficients of the polynomials within these conditions
we get a chart U containing f with complex dimension k{n 4 m) as explained in section 1.4. This, of course,
endows U with a local section v : U — (/) simply by taking

pi(z) pa(z) ... pn(z) qu(z) ... @m(2)
p22(z) ... pm(2) @u(z) ... @m(2)
0(z) = : - : : :
6 O coe Dan(2) @ (2) .. @um(2)
and
¥(f) = (f,9).

To define ¥ we write
¥(f,r)=7-9(f)
in pther words, if f(z) = [P(2),Q(z)], then ¥(f, ) will be the pair

(£(2),0(2)) = ([P(2), Q(2)], 7(2) - (P(2),Q(2)))-

Now we prove that p is a continuous map, we keep the notations. Given a point (f,8) € X, ¢ then there
exists a neighborhood U around it in X, ; so that pl; can be factored as

U4-25£Gl, (C) - LG, (C) /£+CL, (C)

and hence we only need to prove that the map © is continuous.
We choose U = 7~ (U) as above and then we write

8 : U x Hol(Dwo, G, (C)) = £LGl, (C)

O(f(2),7(z)) = 1(2) - P(z)

this is just the attaching map induced by the “canonical” trivialization given by the local section 1. This
implies that © is continuous.

Finally we need to show that p is a quasifibration. This is a consequence of the proof of proposition
(8.10.1) in [PS86) (or of the factorization theorem). For given v(z) € Ck, , this proof gives a canonical way
of choosing an isomorphism E 2 O(k1) @ -+ - ® O(k,) in a neighborhood of y fixing the Grothendieck type
where E is the holomorphic bundle associated to the principal bundle P of that proposition. Then the fiber
is of course canonically identified with the linear embeddings of Ok, ., into the infinite dimensional trivial
bundle in that neighborhood of y proving the proposition. That can be said more explicitly, v gives a bundle
with a trivialization at infinity, with this trivialization we can identify T(E*)* = C"** with the classic spaces
of polynomials in z~! in a coherent way close to v(z). This proves that we have a fibration at every strata
and this implies that we have a quasifibration. We refer the reader to [CLS)] for details. g
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Proposition 1.6.10. The maps p, x and 7, are homotopy equivalences.

Proof. The homotopy fiber for 7y, x is the space Hol(D, Gl, (C)) which is contractible. The homotopy
fiber for the map py, ;. is the space of bundle injections :: E — €X. Let’s denote this space by Zo, = lim_, Z,,.
But given a point space Z,, contracts to a point inside Zy,. This is true for if i;: €G €L X €5 — e%“ is the
inclusion into the first n components and i, is similarly the inclusion into the second n components, then
for any two elements (1,1 € T, the line

tiltl + (1 - t)izl;g

is completely contained in Z»,,. Thus Z, is contractible.g
Proof of Proposition 1.6.1. We have

Mﬂ,k & Xn,k C;,k
and both arrows are homotopy equivalences. Moreover

Coo,k s BU(k)

Remark 1.6.11. In [A68] Atiyah defines a map
8:C (8%, BU) - Z x BU.

twisting the 0 elliptic operator with each element of % (S%, BU) tensored with O(—1) and taking the index.
He also points out that _
Ker(8g) = H°(CPL; E* ® O(-1))

and _
Coker(fg) = H(CPY; E* @ O(-1))

He then proves that this map is a homotopy equivalence. By Kodaira’s vanishing theorem and an elementary
Riemann-Roch computation this map restricts to the holomorphic mapping space as follows

8:Holx(CP!, BU) —» BU(k)
and from the arguments above we know that this map is a homotopy equivalence.

Observe that Fy, . the Mitchell filtration is a polynomial version of what we have called C ;. In [CLS]
we use a morse theoretic argument to prove the analogue of Proposition 1.1.4.
Proposition 1.6.12, F, ; and C;,  are homotopy equivalent.

This proves the following conjecture of Mann and Milgram

F,; ~ Holx(CP!, BU(n)).
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§2. REAL HOLOMORPHIC BOTT PERIODICITY.

In this section we prove Theorem B using the results and methods of the previous section.

§2.1 Quaternionic Holomorphic Bundles.

In this section we define and investigate several interpretations of the space of holomorphic maps
Hol,(CP?, Sp (n) /U (n)), and some spaces related to it. We begin with the definitions.

Definitions 2.1.1. As before, E always represents a negative holomorphic bundle over CP!.

A guaternionic linear trivialization ¥ of E®@ H

¥ EQH — cfy
is said to be H-holomorphic if the map
E—E®E~E®H ey =CP! x H*

is holomorphic. We define H,, 1, as the space of base point preserving degree k holomorphic maps from CP!
to Sp (n) /U (n). For this we write

i = Hol (CPY,Sp (n) /U ().

We define N, ; is the space of isomorphism classes of pairs (E, ¥) where E is a negative holomorphic
bundle of rank n over CP! with first chern class ¢;(E) = —k and ¥ is a quaternionic linear trivialization
that is H—holomorphic.

We say that the pair (E1, ¥,) is isomorphic to the pair (E3, ¥5) if there exits an isomorphism T': By, — Es
such that the following diagram is commutative

We also define as an auxiliary device the following space,

Tn,k =
| B L o
L | | +iis holom.,e1(E) = —k, 5B = B, i(Foo) = (C" © 0)cs
CP! = CP!

in other words, this space consists of isomorphism classes of pairs (E,i) where E is as before, and i is a
} holomorphic inclusion into the trivial bundle e} (of complex dimension 2n) such that once we see E as a
P sub-bundle i(E) of e it has the property that the fiber at z € CP! {(E,) c H” holds

j-i(B;) = (E.)*.

We prove now that these three spaces are actually the same.
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Proposition 2.1.2. The spaces Hy,, g, Ny and Ty, ;. are homeomorphic.

Proof. The proof consist of two parts.

Part 1. The spaces H, and T, x are homeomorphic.

That this is the case is given by the fact that we can use the following model for the homogeneous space
Sp (n) /U (n),

Sp (n) /U (n) = {Complex subspaces V C H" = C?" : jV = V1} C Gr, (C?™").

where if A € Sp(n) then the class [A] € Sp(n) /U (n) is represented by the subspace of H" given by
V = A(C™ @ 0). Here of course j is the quaternionic imaginary unit, and H = C & jC.
When we are given an element f: CP1 — Sp (n) /U (n) in H,, x we define E by

E=f"vT,

where ¢ is the canonical inclusion Sp (n) /U (n) —+Gr,(C?") given above and T',, is the tautological n-
dimensional complex holomorphic vector bundle over Gr,(C?"). With this definition E has an associated
inclusion i into the trivial bundle.

Conversely given a pair [E, i], we define f by

f(z) =iE,) c C*™

where E, denotes the fiber of E at z € CPL.
Part 2. The spaces N, x and [, 1 are homeomorphic.
We construct a bijection Ny, x ¢ Tp k. First, given [E, ¥} € Ny, » we define i by

PE—> E®E>E®H L.
Conversely given [E,i] € Ty we define ¥ by
T=iQL:EQH — ey ® H = €f.

This finishes the proof of the proposition.y

Remark 2.1.3. The H-holomorphicity of ¥ is a somewhat strong condition and has to be taken
with care. Given two of those trivializations ¥1: E @ H — ey and ¥,: E @ H — €}y then the composition
Ty 0 U7 e}y = € is an isomorphism but in general it is not holomorphic — so it is not necessarily given by
a constant matrix in GICn.

Example 2.1.4. Here we take a closer look at the case n = 1, k = 1. In this case Gl; (H) = H*,
Gl (C) = C*, Sp (1) is the group of unit quaternions and U (1) is the unit circle in C. The map

U(1) = Sp(1) =+ Sp (1) /U(1)

is the Hopf fibration and Sp (1) /U (1) ~ 52, in fact we have that it is a complex manifold, and therefore
CP! = Sp(1) /U (1). The inclusion Sp (1) /U (1) C Gr;(C?) = CP?! is actually an equality. We can therefore
write

#1 3 = Hol; (CP!, CPY).

If we choose the base point condition f(co) = 0o, we know that all such maps are given by
f@)=az+ P
where « is a nonzero complex number and g is any complex number. That fact implies that we have the

following homeomorphism
Hy1~C*xCx St
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This space Now we write an explicit formula for ¥ in terms of @ and 3. Observe that in this example there
is only one possible bundle E for all the elements in #; ;, namely the canonical Hopf bundle O(—1) over
CP,
We start with an element f € H; 1
fZ)=az+p

We can realize E as follows
E={(zAMz+4) €CP'xH: e C}

Then T will be given by left multiplication by (z + 7)72(f(2) + j), and we have that
f(z) =¥.(E.)
In this case we can encode ¥ as a function
¥:CP! - Gl (H) = H”
U(z) = (2 + )7 (f(2) + 1)
We define ¥(o0) = a. More explicitly we can write

_azP+B2+1 | —az+z-p
¥(z) = 22 +1 TR+ 1

this is neither holomorphic nor constant.
Even with those consideration ¥ keeps some holomorphicity properties. We have, for example, the
following identity property.

Proposition 2.1.5. Given [E, ¥.],[E, ¥,] € Ny 4,y if ¥1 and ¥, coincide over an open set U in CP! then
they are identical.

Proof. Observe that
V. E,.H - H"

determines completely the corresponding f(z), for writing E, C E, ® H we have

f(z) =9,(E,).
Therefore ¥|y defines f|y and vice versa. g

We consider some additional definitions.

Definition 2.1.6. We define the space YV, as the space of isomorphism classes [E, ¥, §, g] where
E is a negative holomorphic bundle of rank n over CP! with first chern class —k.
¥ is an H-holomorphic trivialization ¥: £ ® H = €f.
# is a holomorphic trivialization of E|p_, 8: E|p., = Do % C™.
g is an isomorphism g: D, X H* — D, x H™ such that

Up. =g0 (B0 1). @1)
Remark 2.1.7. Observe that g is not necessarily holomorphic.

We have a very natural map
Xn,k — Nn,k

[E,¥,0,9] — [E, ¥]

we would like to understand this map.
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Example 2.1.8. The case n = 1, £ = 1. In this case we know that ¥ can be identified with a map of
the form
¥:CP! - H*

U(z) = (z+5) Moz + B +3)
where a € C*, § € C. Similarly § can be identified with a holomorphic map 8: Doy — C* as follows,

Bz Mz +37) = (z; é(z)%) € Dy x C

or with the change of variable y = 1/z, p = Az

1 1 -/71
()= G435
(y u(1+ 57) S\

Then # ® 1 can be encoded as a map ‘

f®1:D,—~H*

(6®1)(2) =8(2)
we have that g in turn can be thought of as a map

g:CP! - H*

and in fact the condition (2.1) can be written in this case as

¥(z) = 0(z)g(2)

therefore for any pair [E, ¥] and any 0 there is a unique g with this property. As we can see any two of ¥,
6, g determine the remaining one completely in view of the last proposition.

From this we see that the map A3 — .N'l,l is a fibration with fiber homeomorphic to the space
Hol{D, Gl; (C)). Hence we have a homotopy equivalence

Xl,l > Nl,]_.

This holds in general.

Proposition 2.1.9. The maps
Xn,k - Nn,k

are homotopy equivalences.

Proof. The argument is essentially the same as above, g can be identified naturally with a map
g: Do = G, (H)

and then we have
W, = g(z) ) (02 ® 1)

therefore by the previous proposition any two of ¥, § and g determine the third. Hence the map X, x — Ny &
is a fibration with fiber Hol(Dq, Gl, (C)) therefore is a homotopy equivalenceg
We make one more definition.
Definition 2.1.10. We define K, x as the space of equivalence classes [E, 8, g] where
E is a negative holomorphic bundle of rank n over CP' with first chern class —k.
6 is a holomorphic trivialization of E|p_,, ¢: E|p., = Deo x C™.
g 18 an isomorphism g: Do, x H* = Dy, x H™ such that

¥|p, =go (I ®1).
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We have the following proposition concerning the map
Xn,k i )Cn,k

(E,¥,0,9] = [E, 6, 4]

Proposition 2.1.11. The map
Xng = Knk

is a homeomorphism.

Proof. The formula
¥,=g(2)-0,01)

prove that § and g completely determines ¥ g

§2.2. Real Holomorphic Bott Periodicity.
In this section we prove the following theorem

Theorem 2.2.,1. There are homotopy equivalences
BO(k)+—Holx(CP*, Sp/U)—sHol, (CP*, QSp)

for every natural number k.
The first step in doing so is to prove the following

Theorem 2.2.2. There is a holomorphic map Sp/U — QSp that realizes the Bott homotopy equivalence
Sp/U ~ QSp.

Proof. We set some conventions first. Here we interpret Sp (n) /U (n) as the fixed set Gr,(C?") under
the involution V — jV1 where j is the quaternionic unit when we identify C?* with H” in the usual
way H* = C™ @ jC". We can do that because the spaces belonging to that fixed set constitute the
orbit of C™ @ 0 C H" under the standard action of Sp (n) on H®. By Sp/U we mean the direct limit
lim.; 8p (n) /U (n), when we take the stabilization maps Sp(n) /U(n) — Sp(n+1) /U{rn+1) given by
V =V & (C @ j0). Now we use the Grassmannian model of section 8.5 in [PS86} for the algebraic loops
QpaiSp (m). Again we define Q,,1Sp as the direct limit lim_, 2,6:Sp () under the obvious stabilization
maps. We claim that both spaces ,,1Sp and Sp/U are homeomorphic. To see this what we do is to define
maps

T»:Sp (n(2n — 1)) /U (n(2n — 1)) = QpaiSp (n)

that defines the homeomorphism in the limit. For that we write down maps
i—n: Cn(2n—1) = Hn(2n—1) - L2(Sl; Hn) — L2(51;C2n)
inducing diagrams in which Z,, fits

Gran—1 (CZn(2n—1)) —_— Gr(zn)

U U

Sp(n(2n~1)) [U@@n~1)) I (G = QpaSp(n)

We choose the following basis over H for the spaces H™2?7~1) and L2(S'; H") respectively

Fn = {.}?la.f;: cen 7ﬁ1(2n—1)}
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-2

274 2-151 ZO€1 Zlgl Z2€1
2—252 Z_lgz Zogg zlé’z Zzgz
Z, =4 28 zla P8 e 28
2728, 278, 2%, z'&, 226,

Here the quaternionic structure on H™?"~1) is the usual one, but on the space L2(S'; H) we define
it as J = 27'j. The following formulas describe the maps Z,,. Here we indicate where every element of the
basis Fy, is sent to in Z, — that is enough to completely specify Z,,.

s fa s le

.10 f1 fz s lél 2%¢ z'a
2. 7 P e 05
2 Z €y Z €3
. [)i; -f@ f_; f; f;5 Z”2€1 z‘lé’l 2051 zlé’l Z2€1
: Is )

Lo d

fs f4 f3 f14 Z~2é’2 Z-1€2 ZO€2 2162 2262
fo fio fu fiz fis

2 1z L0
Following that pattern we define I, inductively. Then we write

z7%ey z7ley 28 z'E; z0e

Ta(V) = In(V) @ " H{™
With that definition we have that for every V € Sp (n(2n — 1)) /U (n(2n — 1)} it is verified that
2T LL(V)E = Ta(V)
achieving the desired result.g
Corollary 2.2.3. There is a map
Sp/U — QSp

that is holomorphic, realizes the Bott homotopy equivalence and induces a commutative diagram

Hol(CP!,Sp/U) — Q2Sp/U

Bott.
Holg(CPL,QSp) — 3Sp
The map Sp/U — 1Sp that we are referring to is the inclusion of ,,Sp into 2Sp.

Theorem 2.2.4. The spaces BO(k), Holi(CP!,Sp/U) and Hol;(CP?, QSp) are homotopy equivalent.
Moreover there are natural homotopy equivalences

BO(k)«2-Holx(CP!, Sp/U) -+ Hol,(CP, 0Sp)

for every odd natural number k.

Proof. With all the preliminaries ready we proceed to prove the theorem. The idea is to look at diagrams
we use in section 1.6, ~ ~
Holx(CP?, BU)¢—Xoo0,t—Coo,k

and
Coo,k o~ BU(k)

and find Z,-involutions that make both diagrams commutative. Then we observe that all the equivalences
above are Z,-homotopy equivalences, and finally taking fixed points to the diagrams above we get the desired
result,.




REAL HOLOMORPHIC PERIODICITY 26

More explicitly, observe that we can define an involution p on the space Holg (CP!, Gr,(C?")) (if we fix
an identification C?" & H") by
p()z) =7 f(2)"

The map
p:Hol(CP!, Gr,,(C?") — Holi(CP?, Gr,(C?™)

is well defined because the following maps are anti-holomorphic.
Gr,(C?")-L5Gr, (C?™), Gr, (C*™)—5Gr, (C?7)

From the model used in the previous proposition for Sp/U we can see that the fixed point set for this
involution p is
Holg (CP!, Gr,,(C?™))? = Holx(CP!, Sp (n) /U (n))

The involution ¢ that we will use in Co 1 is given by

o(7)(2z) =7(2)
Now from the Crabb-Mitchell model (cf. remark 1.2.2) for the space Q{0 /U) we have that
Co%,x = BO(k)

because as explained before we end with a real grassmannian model of k-planes in R*. The two involutions
match nicely in Xi?k (here we use the notation of proposition 1.6.9). By this we mean that we can define an

involution 7 in x2% so that for a given element (E,¢,6(2)) it is sent to (E,j - 1-,6(2)). The reason why this
S——
involution exists is that the function 7f(z) is holomorphic, and the canonical forms from control theory

(the same we used to prove the quasifibration properties in last chapter) are compatible with this action. In
any case we define the involution T as above and we obtain the following diagram of Z,-maps

Holy, (CP?, Gr,, (C*™) &2 x2  25¢,, 4
of course only one of the arrows above is a homotopy equivalence. Restricting to the fixed points we get
Dok

Holg(CP?, Gr,, (C?%))P &2 (x2 ) 225¢2

We only need to prove that both arrows become homotopy equivalences in the limit over n. From the proof
of proposition 1.6.9 and the fact that in the factorization theorem the factors of «(Z) are related to ~(z)
in a compatible way we conclude that in the previous diagram both arrows are quasifibrations. Now we
observe that the proof of proposition 1.6.10 remains valid in this case. The homotopy fibers are now the
space Hol(Deo, Gl, (R)) of real analytic maps, and the space of holomorphic bundle immersions with the
additional property given by j -+ = ¢, this condition is convex in the space of bundle immersions. Therefore

we can take fixed points and get the homotopy equivalence
Holx (CPY,Sp/U) ~ BO(k)
We also know from the previous argument that the map
Holx(CP', Sp/U) - Hol(CP?, BU)
is homotopic to the map of Mitchell filtrations
FB . = Fuu

that is in turn
BO(k) —» BU(k).
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From what we pointed out in the remark 1.6.11, this implies that the § map

Hol (CP*, Sp/U)-2s BU(k)
factors as

Hol (CPY,Sp/U) — BO(k) — BU(k).

This can be proved more directly, of course. In any case we write from now on

Hol, (CP*,Sp/U)-2 BO(k).
From the corollary before this theorem, Sander’s theorem 1.5.2 we obtain the following commutative diagram

Holi(CP,Sp/U) =» BO(k) — BO

(*)
Hol,(CPL,QSp) =» BO(k) — BO

It is known that for every homotopy commutative diagram

BO(k) — BO
h =
BO(k) — BO
the map A is homotopic to the identity whenever k is odd.g

Combining this theorem with the results from section 2.1 we obtain,

Corollary 2.2.5. The spaces Xp k, Np i and Ky in the limit as n — oo have the homotopy type of the
classifying space BO(k).

3. THE SPACE OF MONOPOLES AND THE DIRAC OPERATOR.

In this chapter we study some properties of the dirac operator defined over the spaces of monopales.

27
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§3.1. Stabilization of Sp (n)-monopoles

Consider the space of configurations (A4, ¢) where
i) The gauge field A is a smooth connection on the trivial Sp (1) bundle over R® denoted by P.
ii) The Higgs field ¢ is a smooth section of the vector bundle associated to P via the adjoint representation.

#:R>® — sp(n).

iii) Define ds: R® — R by taking dy(z) to be the distance inside sp(n) from ¢(z) to the adjoint orbit of I,
in sp(n) (this orbit is homeomorphic to Sp (n) /U (n)). Then we require dy € L5(R3).
iv) The Yang-Mills-Higgs energy of the pair (4, ¢) is finite

UA,8) = 3 [ (PP + |Dadlyivol < o

Here F4 is the curvature of A and D, is the covariant derivative associated to A.
v) The pair (4, ¢) satisfies the Bogomolnyi equation

*FA = DA¢7

where * is the Hodge star operator on R3.

vi) We define the charge k € Z associated to every such pair and every number R € R. This number & will
not depend on R if R is sufficiently large. Since the orbit Sp (n) /U (n) C sp(n) is compact for every
point in the sphere centered at the origin of radius R in R3, z € $%(0; R) we can choose the closest
point ¥(z) € Sp (n) /U (n) to ¢(z) € sp(n). Then

¥:8% = Sp(n) /U (n).
Let k be the class of ¥ in m2(Sp (n) /U (n)) = Z.

Definition 3.1.1. The space of Sp (n)-monopoles of charge k denoted by M7% is defined as the space
of configurations (A, @) satisfying the conditions i) to vi), modulo the action of the gauge group of automor-
phisms of P whose restriction to the fiber over the origin is the identity.

The topology of these spaces has been extensively studied. Some of the fundamental results can be
found in [A84b], [AHS8], [BM88al, [D84b], [T84], [$79], [CCMM] [H89], [HM89] and [G]. Ik is known from
that work that there is 2 homeomorphism between the space of monopoles M7 and the space of holomorphic
maps Hol,(CPY;Sp (n) /U (n)). In [CJ90] it is proved that the Dirac operator has a real structure and defines
a real dirac bundle over the space M%. In fact the results therein relating this bundle with the real Bott
periodicity theorem imply that this bundle corresponds exactly with the k-dimensional real bundle over

Holx (CP%;Sp (n) /U (n)) defined by the J operator. Combining these results with theorem 2.2.4 we obtain
the following theorem.

Theorem D. The space My has the homotopy type of the classifying space BO(k) Moreover, for every k
odd there is a homotopy equivalence

8: Moo i~ BO(k) (%)

given by the Dirac operator. The composition
Mn,k s Mn+1,k — e —> Moo,k ~ BO(k)

is homotopy equivalent to (*) for every odd natural number k.
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§3.2. COMPUTING QM= X, THE MONOPOLE COBORDISM.
In this section we define and compute the monopole cobordism. In [D84b] Donaldson proved that

M, ~ Ratg
where Raty = Holx(CP!; CP!). We will need to define a version of Segal’s stabilization map
My = Raty < Ratpyr & Mgy
as follows, by [Lemma 11.7, C91] we have the gluing map p making the following diagram commutative,

Raty x Rat, -+ Ratgi,

0252 x 028 L 2 57

Here o is the usual loop-sum operation in {1252, and we are considering a rational function as a con-
figuration of roots and poles. We glue them taking a fixed diffeomorphism between the complex plane, and
the upper and lower open half planes in C. Then we define

Raty —Rateys,
a—ru(a, Bo).

Here fy is the rational function that as a configuration of poles and roots in the lower half plane C_ = {z:
&(z) < 0}, is the pole —i and the root —(i + 1). In other words, given r(z) = p(2)/q(z) € Raty, using the
fixed diffeomorphism of C with C; we think of it as having its original poles and roots in C, and then we
identify it with p(z)(z + i + 1)/q(2)(z + i) € Ratg. This gives us the desired definition for

Jk
MS Miyy

Lemma 3.2.1. The Dirac bundle is compatible with this inclusion, i.e. j;8k+1 = 0 © €', as stable bundles.

Remark. We will prove later that this lemma remains valid unstably, this is, the unstable bundles are

compatible with the inclusion.
First Proof. What we need to show is that we have the homotopy commutative diagram

Mz j-k—) BO

j’ (I

Mgy — BO
Now, from [CJ90] we have the diagram

M = Ratg (—1-/)— Rat% = Bfay = C’k X5, (C*)k

I
£
A
Te
5
i

My
So that

KOMy) L KO (é'k X% (C*)k)
Tj,*. la
KOMip) L KO (Crn Xz (C)

The horizontal arrows being injective. . .
In [CJ92] 4*8; is described as follows. Let & — $* be the real Hopf bundle over §*, and £ — C* its

pull back to C* 5 S, Then,
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¥o = Cexz (O

Ci x5, (C*)*
We need to show then that

3 (Curs X @) = G, (9 @ ¢ (3:21).

Now, we can write explicitly the formula for jz in the following terms. Consider a generic element in
Cr Xz, (C*)k:
E
aq 2 *
r@) = o= = a1, b0 (o, b)) € O x (C )

< z
=1

where a; € C* and b; € C.. are k distinct points. Then, computing the appropriate residues we get,
jk [(0‘17 bl) PR (a'ka bk)]:

[(m (21_;_;—1) ,bl),...,(ak (”%}J_l_) )6 (—z’),—z’)]

Considering the homotopy Ji : Ci X3, (C*)* x [0,1] = Cri1 x5, . (C*)F+

']k([(ah b1)7 sy (ak7 bk)]; t) =

(o (B2 1) ) o
(ak ((f’-’ig}%—l) t4 (1 t)) ,bk> (re (=), —i)}

where we define 7;(—4) as follows. If r(—i) = pe®®, then

, given by

p i0

Tt(""l:) = me .

_ First, we have to verify that the image of the homotopy Ji is contained, as we already claimed, in
Chkt1 XSipn (C*)*™. For this we only have to verify that for all 0 < ¢ < 1 the following quantities don’t

vanish b+ + 1
m + 1
(W) t+(1—1) #0 (3.2.2)
and
(1—tp+t#0 (3.2.3)

Now, the quantity in (3) can’t be zero since p > 0. On the other hand, the quantity in (2) can only be zero
if the triangle with vertices (b, —i — 1, —1) is degenerate. But recall that b; is in the upper half plane, and
that can’t happen. What all this shows is that up to homotopy we can write

jk[(ahbl)? seny (aka bk)] = [(al’ bl)’ ey (ak,bk), (eiB, ‘“Z)}

and this immediately implies (1). This means that ¥*(j§dg41) = jEY* k41 = (¥*8x) D el = ¢* (6 B €r), but
since ¥* is injective in K O-theory, we have the equivalence of the stable bundlesy
Second Proof of Lemvma 3.2.1. This is an easy consequence of the last diagram in [T84] section A2y
In view of this lemma, we can consider

Moo &= BO (3.2.4)
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Definition 3.2.2 We say that an unoriented smooth compact manifold M has a monopole orientation

if there is a homotopy commutative diagram
%= BO
o

where v classifies the stable normal bundle to M.
This defines QM- X the bordism classes of maps of monopole oriented manifolds into X. Now we want

to prove the following.
Theorem 3.2.3. For any manifold X, we have a natural isomorphism

QM X = H, (X, Zs).
Corollary 3.2.4. Any element of H.(X,Z,) is represented by a monopole oriented manifold uniquely up

to monopole cobordism.

This will be easy once we have proved:
Proposition 3.2.5. The Thom spectrum M(§) for the monopole Dirac bundle (4) is the Eilenberg-McLane

spectrum K(Zs).
For that we will use a beautiful result of Mahowald [M77], [MM74], [P78]. We know that 7; BO = Zs,
choose a generator St > BO, and using the fact that BO is a double loop space we get
263 _ 022 a1 T2
Q°8° = Q°2* SV —="0°2*BO — BO

02521, BO
Theorem 3.2.6. (Mahowald) The Thom spectrum obtained from 7j is K(Z3) localized at the prime 2.

For a very short proof see [P78]. We will prove later the following key lemma,

Key Lemma 3.2.7. There is a homotopy commutative diagram

Mo = BO
lo
Q258

Such that @ is a homotopy equivalence.
Proof of Proposition 3.2.5, Theorem 3.2.3 and Corollary 3.2.4.
We follow an argument of [CF78]. The diagram of Lemma 3.2.7, induces at the level of Thom spectra
M(6) — M(7)

that is an isomorphism on homology groups, hence, at the prime 2 we have
M(8) =(2) K(Z3,0).

We observe now that twice a monopole oriented manifold bounds. Therefore Q= X is all Z-Forsion, proving
proposition 3.2.5. Theorem 3.2.3 and corollary 3.2.4 follow from standard results on cobordism theoryy
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Corollary 3.2.8. If M™ is a closed monopole oriented manifold with n > 1, then M bounds a monopole
oriented manifold.
Proof. We have QM= (x) = 712 K(Z,,0) = 0.q

Let h:S3 — 5% be the Hopf fibration. We need the following lemma, in the proof of the Key Lemma
3.2.7.

Lemma 3.2.9. Consider the composition ¢ = (3:Q2S% — BO given by:
025328 0252~ 0262 5 BO
where the last arrow is the composition
0252 < Q2S? - 02 (Sp(1) /U (1)) = Q* (Sp/U) ~ Z x BO

and recall the Mahowald map,

0258 = 02528150252 B0  BO

025*-1.BO

then ¢ and 7) are homotopic.

Remark: Here we are using the Bott periodicity equivalence Q2 (Sp/U) ~ Z x BO, and the fact that
Sp(1) /U (1) = S2.

Proof of Lemma 9. First we maker an observation (cf. [M72] page 43). I f: X — Q717 is any
continuous map, then there exist a unique continuous map of (n+1)-fold loop spaces g: Q*F1xrtix - Otz
such that the following diagram is commutative:

X std‘igc. QrHisntiy
g

arizg

In our case X = S, n =2 and 02Z = BO. From this we see that it is enough to show that the composites
{81 - 025° 55 BO
: St = *$*- L BO

are homotopic. Observe that ;B0 = mgQ = Z; and by definition 7 is a generator of 71 BO. This reduces

this lemma to prove that is not null-homotopic (i.e. it is a generator for the fundamental group =, BO.)
Let’s study the composition ( step by step:

2 ~ - ~o
st o 2225 P 0s? V50252 ¢, BO = 027
Claim 1. The canonical inclusion y: S — Q22%25? is a generator for the fundamental group 72?525 =
™1 S 3 = Z.
To see this we let £ S* — Q2%2S5! be a generator for the above mentioned fundamental group of
02525t getting the diagram
st Ly rzRst
NE £, unique
02y251
Writing the induced map at the level of the fundamental group for f, we obtain

frem Q2828 o 2525 57,
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and then we easily compute,
fibl=lferl=ll=1€%Z

This is telling us that f:Z — Z is a surjective group-homomorphism, hence an isomorphism (because
Z/kerf = Z,) this in turn implies [y] = £1 € Z, proving Claim 1.

Claim 2. The composition 1 0 Q%h o v: S* — Q252 is a generator for m,25% = Z.

This is because, both Q%A and 9 are homotopy equivalences (the first map 0224 is so because we have
x~ Q25 - 0253280262 )

Claim 3. This Lemma, is valid for the case & = 0.

To prove the validity of this claim we need to understand the action on the fundamental group of the

ma,
P Bott,~

028% < 028% = Q% (Sp (1) /U (1)) = Q2 (Sp/U) —=3"Z x BO

Taking into consideration the previous claims, to prove that 7 is a generator for 7; BO we only need to
verify that Sp (1) /U (1) — Sp/U sends a generator of @3 (Sp (1) /U (1)) = m Q2 (Sp (1) /U (1)) to a generator
of w3 (Sp/U) = m Q% (Sp/U).

For that, consider the homotopy sequence for the fibration

U(1) = Sp(1) = Sp(1)/U(Q)
and remember that m3U (1) = 0, mU (1) =0, msSp (1) = Z, w3 (Sp(1) /U (1)) = Z. From that we deduce
that the map
Sp (1) = Sp(1) /U (D)

induces an isomorphism at the level of 3.
We also have that the map Sp (n) — Sp induces the Bott isomorphisms

r+2J

T (Sp) =7 (Sp(n)), > [

Then the map
Sp(1) - Sp

induces a w3-isomorphism.
To see that Sp — Sp/U sends a generator of m3Sp to a generator of 73 (Sp/U) look at the following
sequence:
mU — wmSp — m (Sp/U) -— mlU

I I I
z — 7 — Zs — 0

Combining that we conclude that the composition Sp (1) — Sp —+ Sp/U sends a generator to a generator,
but this last composition is the same as Sp (1) — Sp(1) /U (1) = Sp/U. This completes the prove of the
Claim 3.

This lemma thus reduces to the commutativity (up to homotopy) of the following diagram:
03s? — 025 — ZxBO
| |ew I
Q3s? — 02§? — ZxBO
That is a known fact.y
Consider the monopole filtration for 2252 given by
My = My = oo Mg = -+ = Moo 253028314 BO

Let X be the 2-localization of the Thom spectrum of the stable vector bundle y, over M, which is classified

b
Y the map e My = 02531 BO.

We state now the following unstable version of the previous results.
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Theorem F. Consider the monopole filtration for 1252 given by
My = Mg == My = - = Moo 230251 BO

Let X, be the 2-localization of the Thom spectrum of the stable vector bundle v over My which is classified
by the map B
ki Mg = Q25% 5 BO.
Then each X}, ~9 By where By, is the 2-local Brown-Gitler spectrum [BG.
The strategy to prove this is to apply the following theorem of R. Cohen [C79]

Theorem. (R. Cohen) Suppose {Xy; k > 0} is a family of 2-local spectra. Then each Xy ~2 By, if and only
if the family satisfies the following properties:

(1) H*(Xy; Z2) = My, generated by a class ug € H(Xy; Zs).

(2) For every pair of integers r,s > 0 there exists a pairing

Ur,st X AXs = Xoys

such that
1,5 (Urts) = ur @u, € HY(X, A X3 Zs).

(3) For every i > 0 there exists a “cup-1 product”:
Gt st X7 Xé,z) = Xoit1

such that ¢} (ugi+1) = ep ®z, Ui @ Uy € HO(S x 7, Xé?); Z-).

Details of this proof will appear elsewhere.
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