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O. INTRODUCTION.

Throughout this paper, we assume that X is a nonsingular
n~-dimensional toric Fano variety (defined over C), i.e., X is

an n-dimensional connected projective algebraic manifold éatisfying

the following conditions:

(a) X admits an effective almost homogeneous algsbraic group

action of (Em)n (=(c*)" as a complex Lie group).

(b) The set & of all Kahler forms on X in the De Rham cohomology

class 2% c1(x--)R is hon-empty.

For each wé}(, by writing it as w= »/T'TZQ(G))«F- dz“/\dza in terms

2

of holomorphic local coordinatses (21, 27, eee zn) of X, we

have the corresponding Ricci form Ric(w) cohomologous to w :

Ric(®) i= /7T 32 log dat(g(w)g).

Then an element w of ¥ is called an Einstein-Kahler form if

Ric(w) =w. Uue now pose the following:

(0.1) PRUELEN*L Classify all X which admit, at least, ons

Einstein-KZhler form.

Obviously, the Fubini-Study form on P?(C) is a typical Einstein-

Kdhler form. This settles Problem (0.1) for n = 1, because

. %K) This is also posed by T. Uda and Y. T. Siu.



the 6nly possible X with n = 1 is P1(E). However, the real

difficulty comes up even at n = 2: Leat Si be the projective

algebraic surface obtained Fromlpz(m) by blowing up i points

A

in general position (where 1 £ i 3). Then, in spite of lots
of efforts of diffsrential geameters, it is still unrknown whether
or not the nonsingular toric Fano variety S3 admits an Einstein-

Kahler form,.

The purpose of this paper is to give a brief survey of racent
praogress on Problem (0.1) together with our related new results.
Especially, in Sections 1~ 6 (though they are somewhat of expository
nature), saeveral ksy ideas are introduced often without proofs,
while technical details are given in the subssquent four appendices.
In particular, in Appendix C (ses (9.2.3) for the most gsesneral
statement), we shall shou that the Futaki invariants of an anti-
canonically (relatively) polarized toric bundle Y over W can be
regarded as ths barycentre of m(Y) in tarﬁs of "Duistermaat=Heckman's
measure®, wherem : Y= R" (n = dimg Y = éimm W) denotes the associ-
ated "relative" moment map defined, in Appendix B, without any ambi-
guity of translations (cf. (8.2)). Finally, in Appendix D, a very
explicit description of Einstein-Kahler metrics for Sakans=Kgisa's

examples will be given (cf. (10.3.2), Step 4 of (10.3)).

Parts of this paper are given as a lecture at Ruhr-Uniuefsitét,
Bochum in April, 1986. Ths author uishesﬂto £hank Professors
G. Ewald and P. Kleinschmidt who invited me to give a talk an
this subject. He is also grateful to Professors T. Oda,
He Ozeki and I. Satake for helpful suggestions and encouragaements
during the preparation of this paper. finally, he wishes to thank

the Max-Planck-Institut fdr Mathematik for constant assistance

all through his stay in Bonn.



1. NOTATION, CONVENTIONS AND PRELIMINARIES.

Let 2 (resp. 20) be the set of positive (resp. non-negativa)
integers and R (resp. Ro) be the set of positive (rasp. non-

negative) real numbers. Wa now put:

[7p}
.
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(Gm)n ='[(t1’ tzr voe g tn)| tiG E*},

» a,) |a;ez} (22,
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b.e2b (x2M).

For a¢éM and b €N as above, we define (a,b) ¢ 2, ’,\’,ale Hom

(Gm’G) by

alg gp(G’Gm)

and ,\me Homalg ap

' n
(a,b) .= Zi=1 aibi )

a 31 a a
X ((t19 tz: eoe g tn)) = t1 tz

2 .o tn n ,

b b b
Ap(t) := (677, €4, o, v M),

wherse t, t1, ...m,'tne Em_(a E*), Then the correspondence a;_¢jxa'
(resp. bk—?)wb) canonically induces an iéomqrphism between the
additive group M (resp. N) and the multiplicative group

Hom

(G,mm) (resp. Hom (mm,c)). Note that

alg gp alg gp

Xa(/\b(t)) = t(a’b) for all t €G_ (= u:*).

(1.17) DEFINITION: A non-empty subset g of N is called a cone if .

the following conditions are satisfied:

(a) .IF b &N satisfies gb €0 for soms f£€2, then b€ 0,

(b) If 0 &b €o-, then -b & 0.

(c) 0eo0.

(d) In terms of the natural additive structure of N, 0 is a

semigroup generated by its finits subset.



For a cone ¢, there exists a uniqgue irredundant finite subset
{6, %, ..., 8™} of & such that o=, " 2,6 . Theseb',
b2 '

"y eee b" are called the fundamental generators of the cone ¢-.

(1.2) DEFINITION: A non-empty subset T of a cone O is called
a face of 0~ , denoted by T S0, if there exists an element a of
M such that (a,b) 2 0 for all b in O and that T ={!beo-' | (a,b)

= 0} . A finite polyhedral decomposition of N is a finite set A

of cones in N such that

(a) if T<a€el, then TEA;
~(b) if 0, T €A, then CNT ST and TNT ST ;

(C) N = UG-GAO'.

For every finite polyhedral decomposition A of N, we put

A(i) :={0'6A|dim°' = i}_. a-

where dim 0~ denotes the dimension of the real vector space spanned

A

isn,

by ¢ in Nm t= N®ZR’

(7.3) DEFINITION: A finite polyhedral decomposition A of N is

said to be nonsingular if for sach o€ /\(n), the set of fundamental

generators of o consists of n elements and forms a 2-basis for N.
For every nonsingular [S, the set of fundamental generators of
each element of [L(i) consists of exactly i elements and is com=-

pleted to a 2~basis for N.

We shall now quote the following fundamental results due to

Demazure[ﬁj, Miyake and Qda ﬁﬁ], and Mumford et al. [19] :



(1.4) THEOREM: To every nonsinqular finite polyhedral decom-

position A af N, one can uniguely associate an n-dimensional

irreducible nonsingular G-equivariant compactification GA of G

possessing the following two propertiss:

(a)

(b)

To each o€/A(i), 0 € i S n, there corresponds a unigue

(n-i)-dimensional G-orbit, denoted by ﬂr, such that GA

is expressible as

Gy = o™ (disjoint union).
TEA

Furthermore, the closure O(o) of 07 in G, is an irreducible

nonsingular (n-i)-dimensional G-stable subvaristy of G,

written in the form

Do) = Uﬂt (disjoint union).
Tzo

For sach o€¢A(n), U“'::’U-cso-ut forms an affine open G-stable

neighbourhood of 0 in G, satisfying the conditions

6 ¢ Us ¥ AT(T)

geA(n)
Let {ﬂ:(o-)1, Ib(o-)z, cee [t:(o-)n} be the set of fundamental

—

generators of ¢ (which forms a 2-basis for N), and let

{ a;(tr)1, a(o~)2, ses ,~a(a~)n}r be the dual basis for M defined

by the relation (a(e)?,b(e)d) = Sij' Then the corresponding

characters

i
'xv;i i= xa(o-) € Haom

i <
alg gp(GsBp)s 13130,

extend to rational functions gn G, ,-uhich are all reqular




the

On Uy , forming a system of coordinate functions on Uy by

isomorphism

U. ~ A'(LC)
u H(?CO_;1(U)J xm’z(u), oo ’XG';H(U))'

In terms of these coordinates, the G-action on U, is described

by

(Xgoq(geuds X p(geu)s vee s X (geu))
(Xgy1(9) oKy (0)s Xpon (@) o X n(u)y ey X (9) X (U)),

where both g¢ G and ué€ U, are arbitrary.

(1.5) THEGREM: Every n-dimensional irreducible nonsingular complete

variety endowed with an effective regular G-action is G-equivariantly

isomorphic to qa faor some nonsingular finite polyhedral decomposition

A of N.

Finally, we remark the following:

)

(1.6) In terms of the holomorphic coordinates (t1, by eee s b

for G = {(t1, cee tn)l tiE E*} , the G-invariant vector fields

£,9/9t, , i =1,2,...,0,

on G form. a-E-basis for Lie(G). Furthermore, these naturally

extend to. holomorphic vector fields on %ﬁ .



2, DEMAZURE'S RESULTS UN TURIC VARIETIES.

Throughout this section, we fix a nonsingular finite polyhedral
decomposition A of N. Put Mg := M®,R . Furthermore, for each
P eA(1), let bF denote the unique fundamental generator of P.
Ue now considaf the divisor
K 1= = Z D(P)‘
peA()

on Gy . Recall the following fact dus to Demazure (6] :

(2.1) THEOREM: K is a canonical divisor of G, . [Moreover, the

following are squivalent: -

(a) Gy is a toric fang varisty.

(b) -K -j_-_s_ amEch

~(c) -K is very ampls.

(d) Z—K = { a€ My | (a,bP) <1 for all PEA(1 } is an

n-dimensional compact convex polyhedron whose vertices are

exactiz'{at | Irélx(n)} , where sach a, denotes the unigue

element of M such that (ay,b) = 1 for all fundamental

generators b of T.

(2.2) REMARK: It is easily seen that P2 (z), pl(c)xp (E), §; (18i83)
are the only possible 2-dimensional nonsingular toric Fano:
variet;es. Recently, For;dimension'threa also, all nonsingular toric
Fano.varieties are completely classified (cf. Batyrev [4],

K. Watanabe and M. Uatanabav[23]).

(2.3) DEFINITION (Demazure [6; p.571)): An slement a of M is
called a root if there exists p € A(1) such that (a’§P) = 1 and
that (a,b.) S 0 for all c€/A(1) uwith @ £ p. Let R(A) be the set

of all roots in M.



Now, as an immediate consequsnce of a result of Demazure [?;

Pe 5813, one obtains:

(2.4) THEQREM: et Aut(q&) be the group of all holomorphic auto-

morphisms of Gp . Ihen Aut(Gp) is a reductive algebraic group

if and only if - R(4):= {-a |a€R(A)} coincides with R(A).

(2.5) REMARK: In visw of this theorem and (2.2), it is now
possible to determine all 3-dimensional nonsingular toric Fano
varieties QQ with reductive Aut(qa). Such‘a q&~is, actually,

isomorphic to one of the following (we owe the computation to

Dr. T. Ashikaga):

p3(e), P2(E)xp (c), B (e)xp" (C)xp ' (T), |
P1(D)x55, P(Op1 1 @ Gpl ,1(1,-1)), o,

where we used the notation of K. Watanabe and M. Watanabe [23].
Obviously, the first thrse varieties admit an Einstein-K&ahler
-form. Note that, for the laét three varieties, Aut(qﬂ) cannot
~act transitively on Gy . However, P(Gpl,,1 @(9p1xp1(1,-1))
still admits an Einstein-Kdhler form by virtue of a result of
Sakane[22], partly because in tﬁis case, every maximal compact
subgroup of Aut(QA) acts on qﬁ with principal orbits of

real codimension one (cf. Appendix D).

The importance of (2.4) comes from the following theorsm

in differential geometry due to Matsushima [17]:

(2.6) THEOREM: Let Y be a compact complex connected manifold

with dimg, Aut®(Y

Eﬂ the group Aut

admits an Einstein-Kdhler form, then Aut(Y) is a reductive alge-

> 0 (where Aut®(Y) denotss the identity component
Y)

P

of holomorphic automarphisms of Y). If v




braic group and furthermore, the group of holomorphic isometries..

in AutD(\{) is a - maximal compact subgroup of Auto(Y).
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3. EINSTEIN EQUATIUNS.

For X as in Introduction, there exists a nonsingular finite
polyhedral decomposition [ of N such that X = QA and that [&
satisfies the condition (d) of (2.1) (see (1.5) and (2.1)).

In view of the inclusion

{tys eee s t)) [tyect)=0Co0,,

we may regard each ti as a rational function on N Consider

the real-valued C* functions Xqs X5 ese , X_ 00 G defined by

n

- S
(%) t .t o= |ti] = exp(-x,), 1€ i ¢S n.
Since 9ti = dti , we have axi = = dti/ti and ax, = - dti/ti .

Therefore, for each C* function u ;-u(xq, sow ,.xn)-deﬁinad'on
g - {(x1, ey xp) | x; ¢ R}, the following identity holds:
- 2 - -
(3.1) 22U =Zi,j(a U/axiaxj)(dti/ti)/\(dtj/tj)‘_
Let G be the maximal compact subgroup

{ters vee s £ )€ (€M)

b=} (= (shH™

of G. Since the anti-canonical bundle K -1 of X is ampls,

X
thare exists a Gc-inuariant fibre maetric JL for K

X
the corresponding first Chern form is a positive definite (1,1)-form.

such that

Namely, there exists a real-valued C™ function u = u(x1, oo xn)

on R" such that:

(3.2) GXp(-u)w_ri:1(f:T'dtiAdEi/ltﬂz) extends to a volume

form on the whole X = qﬂ R

(3-3) /=1 27u extends to a Kéhler form on G, .

Note that the volume form in (3.2) is naturally identified

with ., above (and is denoted by the same.) ). In vieu of (3.1),
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the statement (3.3) in particular implies:

) is’

(3.4) At esach point of Hn, the matrix (Bzu/axiaxJ

positive definite.

Suppose now that X admits an Einstein-Kéhler form W € M.

Then by Theorem (2.6), we may assume that W is G,-invariant.
Applying the above argument to () = w" , we obtain a real-

valued C® function u = u(x1, oo xn) on R" satisfying ths
conditions (3.2), (3.4) and furthermors, by Ric(w) = w ,

(3.9) det(azu/axiaxj) = exp(-u) on R".

Conversely, suppose that a real-valued C” function u on R"
satisfies (3.2), (3.4)‘and (3.9), where we return.to our.original
situation that X (= GA) is just a nonsingular n~dimensional

toric Fano variety without any assumption of the sexistence of
Einstein-Kdhler forms, Then (W := J:T 93u is still shown to be an

Einstein-Kahler form on X. We now define: . ,f : V-

(3.6) DEFINITION: The eqguation (3.5) above (together with the
"boundary" condition ‘(3.2) and the convexity (3.4) for u) is called

the Einstein equation for the toric Fano variety X = K
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4., MOMENT MAPS ON TORIC VARIETIES.

. Fix a nonsingular finite polyhedral decomposition A of N.
In this section, we study the moment map (cf. Atiyah [1],
Guillemin and Steinberg [11]) of the toric variety Ga in terms-

ef a.suitable Kahler metric, if any, on %ﬁ .

(4.1) We First assume that qﬁ is a (toric) Fano variety. Then in
view of Section 3, there exists a real~valued C™ function u on R"
satisfying (3.2) and (3.3). Now, by the relation () of that

section, we write each x; as xi(t) with t = (t1, oo tn) €G.

Hence, every C” function f = F(x1, ses xn) on R" is regarded as
a C* function on G by setting f(t) := F(x1(t), ‘e ,,xn(t)) for

R
We now define the mapping m,;, : G- N

t € G. Recall that M_ is naturally identified with R" (cf. Section 1).

R(=Rn) by
my(t) := ((u/ax;) (1), ...y (Qu/ax ) (1)),  teG.

Then the work of Atiyah [ 1] is reformulated in the following

slightly stronger form:

4.2) THEUREM*% Assume that G, is a nonsingular toric Fano varisty.

(
Let Q be the closure of the image m (G) in Mg+ Then 0 =3, (cf.

2.1)). Furthermore, m

~—

: G, continuously extends to a c*

map m, : G,—> My . This m, satisfies

u

(a) the inverse image ﬁu-q(cj of each open face o of ¥, is a

single G-orbit;

(b) ﬁu induces a diffeomorphism (including boundaries) between

manifolds Ga/G, and Z_g uwith corners.

¥) A more general statement will be proven in (8.2).
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(4.3) REMARK: (i) It is easily checked that ébove‘coincides.
with the moment map: Gy—>Lis(G)*% My (cf. Atiyah [1], Guillemin
and Steinberg [11]) associated with the Kahler form y=7 23u éX.

' (See Appendix B for ths proof.)

. B . ' A n
(1i) Consider the subgroup Gg := {(t1, cee , £ )EG |ti€ R+}(=(R+) )
of G. Then by the.natural inclusions'GRc;GC:gi , we may regard
GFR as a subset of Gp - Then the closure‘GR of GR in Ga, is a

manifold with corners in the sense of Borel-Serre (cf. Oda [20] )

and has a natural differentiable structure as described in
Step 3 of (8.2). Note that GA/GC above is endowed with such a

structure via the natural identification of GA/Gc with ER .

(iii)--A differencs of (4.2) from Atiyah's result [1; Thearen 2]
is that the mapping between qﬁ/cc and  is, in our.cass, a .
diffeomorphism (instead of a homeomorphism) even .along their
boundaries. This diffeomorphism is essentially obtained from
the ampleness of Kq;1 by the fact that a combination of (3.2)

and (3.3) kseps the Jacobian of au.ﬁ : ER ->{WR nonvanishing
R .

also along the boudary ER - Gg -

(4.4) We now assume that Gp is a projective variety (uhers qﬁ
is not necessarily a Fano varisty). Note that the corresponding
hyperplane bundle L := @86(1)' is written as QGA(ZO"GA(1) Ve D(07))

for some Y € Zd « Then
ZL :={aemR |(a,b°.) S ¥~ for all 0‘6[_\(1)}

is an n-dimensional compact convex polyhedron (cf. Oda [?ﬂ ).
Since L is ample, there exists a'Gc-inuariant fibre metric h for L

such that the corresponding first Chern form is. positive definits.



Therefore, we obtain a real valued C* function u on K" satisfying
the condition (3.3) and also
¥ _ Tk

hlG = exp(-u)i®} ,
where } denotes the unique holomorphic section to L over Y:
identified, over G, with the trivial section of constant valus
1 in (QG via the natural isomorphism @GA(ZGGA(”A)U.D(O-))IG x (9[3 .
Then by exactly the same formula as in (4.1), we have a mapping
myL ot G = My (we put L as a subscript to emphasize the line
bundle L). Now, in Theorem (4.2), replacs the assumption .of

-1 '

ampleness of KG& by that of L. Then (4.2) is still valid when

we further replace n ., 'T'u ’ Z-K -, respectively by m | i

u, i ? Ty, L
ZZL (cf. (8.2)).

14
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5. FUTAKI INVARIANTS FOR TUORIC VARIETIES.

In [‘lU],, Futaki introduced an.obstruction to the existence of
Elinstein-K’cihler forms as follous: Let Y be a compact connected
complex manifold and W be a Kahler form on Y, if. any, in.the
cohomology class Zth:1(Y)P .. Note that the space X (Y) of all
holomorphic vector fields on Y forms a Lis algebra. Then a‘.

fundamental theorem of Futaki [’IU],states.the following:

(5.7) THEOREM:  Let f, be the real-valued C” function on Y defined

uniquely, up to constant, by Ric(w) - w =/-133f, . Put c :=

((2m c,].(Y))n[Y,])q, where n = dim, Y. We further define a linear
map F = F, : ¥X(Y) >R by

F(u) := -ch e w" , v EX().

Then this map F does not depend on the choice of W, [Moreover,

(a) F is trivial on [X(Y), X(Y)].

(b) I1f Y admits an Einstein-K&hler form, then F is trivial.

In .order to.cempute this.F for toric varieties, we introduce

the following guantities:

(5.2) DEFINITION: Let A be a nonsingular finite polyhedral
decomposition of N. If GA is a Fano variety {(resp. a projective
variety with its ._h'yperplane bundle L), then ws defins an element
a, (resp. aA’L) of M, as the barycentre of the polyhedron Z-K (resp.
%)+ Namely, the i-th component of the vector a, .(resp. aA’,‘L) in -

the vector space g (= R") is

f xidx1f\dx2/\ cee Adxn /& AxgAdX oA L. Adx_
2K ~K

(resp. &

xidx,ll\oxzf\ oo Adx /& dx,Adx, A ... /\dxn),.
L. L
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where (X1, Xos eve s xn) is the system of standard coordinates

n . L
of Mg (=R). 'UbU1ously, a, (resp. aA,L) is in M

l} = m@zﬂ.

- For toric Fano varieties, we can deduce from (4.2) the following

simple formula:

(5.3) THEOREM: Let Gy be a nonsingular toric Fano variety. In terms

of the notation of (1.6) and (5.1), we put E} 1= F(tia/ati)

FDI‘ eaCh i = 1,2’ ‘:..o. ,r_‘_o Then

(5.4) REMARK: (i) In Appendix C, we shall prove a more general

version of (5.3) above (cf. (9.2.3)).

(ii) We identify each element a = (aq, Ay vee an)'OF Mg with
2_121 aidti/tié Lie(G)*. Then Theorem (5.3) shows that, for any.
nonsingular toric Fano variety qﬁ, the restriction F'Lie(G) of

F o %(qa)-—>R to Lie{G) coincides with a, -

In view of (5.3) and (5.4), we call the slement 2, of Mg the

Futaki invariant of the toric Fano variety NE Now, (a) of

(5.1) together with (5.3) implies

(5.5) COROLLARY: Let G be a nonsingular toric Fano variety

such that Aut(qﬁ) is reductive., Then F:_%&QA)-é-m is trivial

if and only if a, = O.



Finally, note the following:

(5.6) REMARK: Suppose that Gy is a nonsingular projective variaty
with the corraesponding very ample line bundle L (uﬁera Gp is not
necessarily a Fano varisety). Even in this case, we have a theorem

similar to (5.3). Actually, a, _ coincides with -
»

(2 e, (L))" [6,] )-1(1‘1_)34 |Lie(G)

in terms of the notation in Appendix A (see also (9.2.4)).

17
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6. CONCLUDING REMARKS.

A finite polyhedral decomposition A\ of N ié called caﬁonically

symmetric if the following conditions are satisfied:

(1) A is nonsingular;
(ii) A has the property.-(d) of (2.1);
(iii) - R(A) = R(D);

(iv) a, = 0.

Nou, combining (1.5), (2.1), (2.4), (2.6), (b) of (5.1), (5.5), we

obtain:

(6.1) THEOREM: Let X be as in Introduction. If X admits an

Einstein-Kahler form, then there exists a canonically symmstric

finite polyhedral decomposition A of N such that X is .

‘G-equivariantly isomorphic to QA .

In view of this theorem, (0.1) in Introduction is divided

into the following two problems:

(6.2) PROBLEM: Classify all canonically symmetric finite

polyhedral decompositions of N {up to-isomorphism).

(6.3) PROBLEM: Let A be a canonically symmetric finite

polyhedral decomposition of N. Then does %ﬁ admit an Einstein-

Kahler metric.?

For (6.2), if n2Z 4, no definitive results are known so far.
In the case n §-3, uwe can classify all canenically -symmetric
finite polyhedral decompositions A of N. Namely, the corre-

sponding QA is one of the following:



pq(m).

]
-
“

(a) For n

(b) For n

i
N

p2(c), P(C)xp" (L), S, -
(c) For n = 3:  ®(r), PA()xp'(€), P (e)xp’ (0)xp (L), #'(L)xs, ,

P(Optp! & Oplp1(1,-1)).

If n = 3, for instance, this classification easily follows from
(2.5),. since we can eliminate the possibility of F> as follous:

Let.b', b", b(k) (0$k$.6) be vectors in N(= Rs) defined as

b =.(8)' o = [0 B(O 26 7] (). 3)
0/, =1 » 0/, 1 ]

0(2) _ (?) b(3) (?) NO (8) NOM (“)
1/, 0/, =1/, -1/,

In terms of these vectors, [X for F? is characterized by
_ (k=1) (k) " (k=1) (k) <
AB) = { 2b'+2 b +2. 627, 2 b"+Z b *2 b | 15k $6 ),

and hence the associated compact convex polyhedron Z:-K has exactly

12 vertices:

(1’1”1)1 (1’0’1)3 (1’_1’0)! (1’;1!-'1)’ (1’0’_1)’-(1’1DU)’

(‘2:111): (72;031)s ('11'1:0): (U,'1:'1): (090:'1): (‘1:190)'

It then follows that a, £ 0.

For (6.3), we have some results on S5, and P1(E)x53 (cf. [7])

by the method of Section 3, though we do not go into details.






7. APPENDIX A.

We here fix, once for all, a holomorphic line bundle L over a

d-dimensional compact complex connected manifold Y. Assume that a

complex Lie subgroup S of Aut(Y) acts holoworphically on L as bundle

-1
Y )

action on L is always assumed to be the standard one on KY_1.) Let

isomorphisms covering the S-action on Y. (If L = K then our 5-

H be the set of all C® Hermitian fibre métrics of the line bundle L
over Y. For sach h€ H, we denote by c1(L;h) the first Chern form
(f-1/21) 33 log(h) of the metric h. Furthermore, note that S acts
on H (from the right) by

H x5 3 (h, s)—>s*h € H,

where s*h is defined by (s*h)(ﬁ1,22) 1= h(s(Q1),s(Q2)) for all
11, 226 L in the same fibres of L over Y. Now, to each pair

(h',h") € HxH, we associate the real number R, (h',h") € R by

L
b/, -1 9hg d
a(nnnt) o= (3] 0T b2 (sn)? et
a\2Jy at .
{ht | a<t$ b} being an arbitrary piecewise smooth path
X
in H such that ha = h'! and hy = hY. Then by a result of 0Oonaldson

applied to the line bundle L, the number RL(h',h")Aaboua is inde-
pendent of the choice of the path £ht| a§t:§b} and therefore

waell-defined. Moreovsr, RL is S-invariant, i.e.,

RL(s*h',s*h") = R (h',n")  for all s €S and all h', h" €H,

and satisfies the 1-cocycle condition, i.e.,

(i) RL(h',h") + R, (h",h') = 0 and

L
(ii) RL(h,h') + RL(h',h") + HL(h",h) = u,

for all hy, ht, h*€H. In particular, the number RL(h,s*h)

%) See Proposition 6 of S. K. Donaldson's paper "Anti-self-dual
Yang-Mills connections over complex algebraic surfaces and stable
vector bundles", Proc. London Math. Soc. 50 (1985), 1-26.



depends only on s and is independent of the choice of h€& H.
Now, by setting
r (s) := exp(HL(h,s*h)), s€S,

one essily .obtains (see, for instance, [14; §5]):

(7.1) PROPOSITION: r, : 5—>Rs is a Lie group homomorphism

from S to the multiplicative group R4+ of positive real numbers,

Let (rLL:: Lie(S) > R be the Lie algebra homomorphism associated

with I s where we always regard Lie(5) as a Lie subélgsbra

of X (Y) (cf. §5). For each holomorphic vector field Ve ¥X(Y), we

denote by V, the corresponding real vector field V+V¥ on Y. Then,

(7.2) PROPOSITION: (i) Let D ( § Y ) be an S-stable closed analytic

subset of Y. Suppose there exists an S~invariant holomorphic

section b over Y- D to the dual bundle L* f L. for sach

hé&H, let u be the real-valued c® function on Y -0 such that
h = exp(-u, ) b®b on Y -D. Then

(7.2.1) (), (V) = -%IY_D U (u) (/=T 23 up)°

for all heH and all ve Lie(S).

(1i) Under the same assumption as in (i) above, we consider tha

-1
case where L = KY . Suppose further that L is ample. Then the

restriction Fy|Lie(s) 2f Fy (cfe (5.7)) to Lie(S) satisfies
S d ~1

(7.2.2) Fy|Lie(s) = ((2re (L) YD )" (x)y -

PROOF: Since (7.2.71) is straightforward from the definition

L

ampleness of L, there exists a metric héH for L = KY_‘I such that

extends to a kdhler form on Y in the cohomology

{1:= (J:T)d(-])d(d_1)/2exp(-uh)bAE.

b

of R, , it suffices to show (7.2.2). From the assumption of

W := V—'l 09 Uh

class ZTtt:q(Y)[H . Put



Then JL is a volume form on Y satisfying
Ric(w) - w = {1227,

where f := log(JL/qu). In view of wd

exp(=-fF){l, we obtain

0 = - (Lie deriv. of exp(-f)d) w.r.t. UR)
Y

= Jﬁ UR(F)UJd - JF exp(~f)(Lie deriv. of () w.r.t. V)
Y Y R
d d d d
=fY UR(F)LO +j; UR(Uh)w = 2JY V(F)w +jy uﬂ(uh)w .
This together with (7.2.1) implies (7.2.2).

(7.3) REMARK: In a forthcoming paper (cf. Bando.and Mabuchi [3] ),

we shall give a little more systematic treatment of (7.2) above.

(7.4) REMARK: In view of the definition of R, , it is easy to ex-
L Y

tend the formula (7.2.1) to the following slightl} general case:

FACT: Let D, b, h, u_ be the same as in (i) of (7.2). We further

—— — S—— — —

assume that there exists an S-invariant morphism g: Y = U

of Y into a complex manifold W. Fix an arbitrary line bundle L'

on W and let h' be a C™ Hermitian metric for L'.., Put L"

D

g*L'@L.. Then for all heH and all V€ Lie(S), we have:

3 * 1 pry))d
(o6 () ) = = [ (o) (FTaBu eznge, (L)

(7.5) REMARK: We here dﬁnote (rL)# by (rL,sz to emphasize

fhe base space Y. Furthermore, assume that there exists a:
surjective S-equivariant morphism k:'Y-Q Y from a compact
complex connected manifold Y endowed with a holoﬁorphic S-action.
Put U := XL. Note that the S-action on L naturally induces

the one on tf Then obviously,

(7‘5'1) (rt"\?)* = (deg A)(rL,Y)* .






B. APPENDLIX B.

The purpose of this appendix is to prove a relative version of
(4.2) and (4.4). Let G (resp. G.) be as in Section 1. (resp. 3),
and P be a holomorphic principal bundle over a compiex connected
manifold W with structure group G. (Recall that, by standard
definition, G acts on P from the right.) 1In our case, however,

G acts on P from the left by
6 x P3(g, p)i—>g+p := p-g € P.

(since G is abelian, there is no essential difference bstween left
and right G-actions.) Note that P is locally trivial, i.e., U is
written as a union of its open neighbourhoods Wy , ® €A, such

that for each €, we have a (G-eguivariant isomorphism
., P > W, x G,
Tu |uq Y

Let pr, : h&x G —G be the natural projection to the second

factor and urite G as {(t1, cee tn) [tie Ef}(CF. Section 1),

(8.1) Let Y be a complex manifold with an effective holomorphic
G-action containing P as a G-stable Zariski-open dense subset.
We further assume that there exists a G-invariant morphism g: Y

—> W satisfying the following conditions:

(8B.1.1) The restriction 'élp : P— U coincides with the original

principal bundle P over Q;

(8.1.2)' P, = (glp)iq(u) is Zariski-open and dense ;n Y, :='€_1(u)

for each wé€ W;



(B.1.3) é is a projective morphism with the corresponding “€~very

ample line bundle L := (9Y(1)6 Pic(Y);

(8.1.4) L is expressible as Gk(D) for some effective divisor O

on Y with Supp(D)Cvy-pP .

We fFirst observe that the G-action on Y naturally lifts to a linear

G-action on the line bundle L such that the following holds:

(8.1.5) Let 3 be the holomorphic section*) to L over Y which is
identified, over P, with the trivial section of constant

value 1 in @$ via the natural isomorphism G%(D)lp g'a% .

Then G acts identically on 3 .

Note also that the cohomology class 27T C1(L)R is represented by a
G -invariant C*® (1,1)=form w on Y such that the pullback of W
to YU , denoted by w, s is a Kahler form on Yu for each we UW.

Then thers exists a Bc-inuariant Hermitian C™ metric h for L

satisfying

exp(—u)‘f®§*, and
(8.1.7) Cd|p = [~123u

(8.1.6) hlp

for some G_-invariant C*® functiom u on P. We shall now define

m: P>Mp A:Au y =2 (welW) as follous: For each «€ A, put

®) * W & s
6 t= (pryely) (t;), 1 &1 S,
and consider the real-valued C™ functions xqﬂ xgi f.; , xﬁ)on

p defined by
Wt

=)
e =
1 1

't?ﬂz = exp(-x?), 1 g i< n.

%) This section 3} vanishes along Supp(b) so that zero(3}) = 0.



~Now, on Plud u above is regarded as a function u(u, W ee X

X1 n
in w, x(,l) eee xt:”. By the same argument as in Section 3,

- 2 (d . T, T
(8.1.8) 23u, =3; (2 u/ax*{’axj’) (dt‘f/t‘;’)/\(dtg"/t‘g’), on P (we€u),

.= G
where u, ¢ ulp . Let af; pl -

H( =k") be the mapping defined by
U .

m9(p) = ((@u/ax§)(p)s .o, (2u/ox®)(p)), peEP.

Then it is easily seen that w®, «€A, are glued together defining

a global mapping m: P—)MH(=Hn) such that the restriction of m

to each P o coincides with m*. Nouw,

point of W and choose an o € A such that wely .

let w be an arbitrary

We can then

regard Yw as a nonsingular toric variety by

63 (tF(P)s «ov s tAR)) e——pEr O v

Hence, there exists a unmigque nonsingular finite polyhedral decom-

position A=A of N such that

(1) [x can depend only on w and is independent of the choice of & ,

(2) Y, F GA as a toric variety.

Furthermore, L, := LlY is written in the form

Lu = GA( ZPGA(” U(P)) for saome ).)P 's in 20

’
via the identification of Y with GA . Lsetting bP be as in

Section 2, we now define an n-dimensional compact convex

polyhedron J = ZU in Mg by

(8.1.9) Z:= <[a.6|‘|R | (;l,bﬂ) éyp for all fGA('])} .

Since L  is ample, the vertices of Z are exactly {ao,|0"€ A(n)},
where each a, denotes the unique element of M such that (a_,b,)

= ¥ for all pe A(1) with P£ 9 (cf. Oda [21]). Then we have:



(8.2) THEOREM: Let Q be the closure of the image m(P) in NH .

Then @ = >, for all wé€ W. (In particular, 2 = Z and A_ A

u-—u—-—-—-———n

both independent of w.) Ffurthermore, m: P — M, naturally

(2] - ;
extends to a C” map wm : Y—>¥, . Let wbe an

arbitrary point

of W. Then m satisfies

(a) 6-1(60{\YL’ is a single G-orbit for sach open face ¢ of 2_;

(b) m induces a diffeomorphism (including boundaries) between

manifolds Yu/Gc and 2 (= Z:u) with corners;

(c) EIY I g coincides with the mapping ﬁu in (4.4)

L
w? tw
via the identification af YU with Qﬁ and EE

Jjust the moment map: Y, Lie(GC)*(; NR)‘ associated with

the Kahler faorm w, (= J-135uu) on Y, .

(B.2.1) REMARK: Consider the case where W consists of a single
point. Then (8.2) above implies (4.4). If we Furthef assume

-1
L = Ky ', then (8.2) shows nothing but (4.2) and (4.3).

PROOF OF (B8.2): Step 1. Fix an o« € A such that we¢ Wy . For °

(o)

simplicity, put z, i= tT’and X; o= X0 i=1,2,...,n. Let 0 % 91 <2m

be such that z, = exp((-xi/2)+J-1 Qi). Thean (21, oo zn) (resp.

(xq, cee s X 61, cee s Qn)) forms a system of holomorphic local

coordinates (resp. real local coordinates) of YU . Note that

(8.2.2) zia/azi + zi’c)/azi = - ZEVaxi , 1

nAa
=
nA
7

We now write the Kdhler farm w, aS‘/:T:Si j Y53 dziAdEj on P
’ .

whers uj3 i= 25 a (u ) Put

V, := t;9/9t, € Lie(G) C X(Y), 1£i¢€n,

i

in terms of the coordinates t1, vae tn for G = {(t1, cee tn)l

t,€ E*}. Then there exist real-valued C® functions 9L ;o0 =12,
’

seeyN, 0N Yu such that
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A

(8.2.3) iy = Ty (o5 P, )o/mz, 1 E1 S,

W
(u 3k ) being the inverse matrix of (u. -) (see, for instancs,

Kobayashl[jZ; p.94]). On the other hand, by (B.2.2), the raal

vector field (Ui)H (cf. Appendix A) is written as

i~
-
o~

Ny

(8.2.4) (Ui)R = = 2 9/2x%; 1

on Y . Now, OR P, (8.2.3) above implies
W

(Lie deriv. of (o  w.r.t. (Vi)R)

2 V=1 aé}’ou’i .

Moreover, by (8.2.4),

[

(Lie deriv. of w  w.r.t. (Ui)H) -2 <7 aﬁ(auu/axi).

Therefore, auu/axi = -(fu,i + Cu,i on PU for some real constant -

C ,ie R. Hence mlpu and =~ ( ?u,1 y ces yL,n)

coincide up to translation, which implies the latter. half. of (c).

Since the former half of (c¢) is obvious, this proves (c).

-~ .
Step 2. Put 9Lui = - Tu,i *Cy,i Note that, for each i,

"

o o . £
fFu,i depends smooth%y on w, because boUw‘aaym’i (= Lie deriv, ©
-1 o~ _
=27 @ werst. (V;)p) and ?u,i|Pu (=9u /ox;) depend smoothly
on Ww. We then have a natural extension of m to a C* mapping

m o Y — by setting, for each fibre Y, (we€ W), as follows:

W) = (Py () ee s B ), vy

W
Let Q, be the image ﬁ(Yu) of Y under this mapping m. Then by a
result of Atiyabh [1; Theorem 2] applied to the compact Kahler
manifold (Yu,cuw), our Uu forms a compact caonvex polyhedron in

MR such that

(a)’ 6-1(¢)r\Yu is a single G-orbit for each open face ¢ of g,

(b)? m induces a homeomorphism of Yu/U; onto Qu .



(Without using Atiyah's result, we can prove this by modifying
the arguments in Steps 3 and 4.) \We now observe fhat z:u is
an n-dimensional compact convex polyhedron in MH only with integral
vertices € M, Therefore, if Q = Ezu (W€ W), then.the C” dependence
of le on w implies that Z:u does not depend on w at all. Thus,

W :

the proof of (8.2) is reduced to showing the following: -
n — .
(&) o, =X,

(b)" m induces a diffeomorphism (including boundaries) between

A ¢ _ .
manifolds Yu/Gc and q, wi h corners

Step 3. We may now assume without loss of generality that U
consists of a single point. Therefore, we may further assume
P=0CandY =G0, . LetG, and ER be the sawe as in (ii) of (4.3).

Then Gn is naturally identified with Y/G_. Note that

= _ R
oy = \UJ s
ceAln) _
in terms of the notation in (1.4), where Uﬁ := U-NG, is a coordi-

"R
nate open subset of Em (diffeomorphically) identified with the

product (RD)n of n-copies of K by

Uy

= m)", v (X N X ] e X g e )

Now, fix an arbitrary element o of 1§U1). Recall that

the real-valued C® functions x; = xi(t), i=1,2,...4n, on G are

defined by |tJ2-= exp(-x;) for t = (t,, ... , t ) €G. Similarly,

to the function x_ . = X _ .(t), we associate a neuw function
g;i o3 i -

~ ~

X, = xi(t) on G by

|${¢;i(t”2 = exp(-?}), t €G.



Then, in terms of the notation in (1.4), we have

HA

My

(8.2.5) %, = (a(@*, x), . 1Si

where

Furthermore, put
PLoi= 2z b € AL, 1<i<n.

Since axp(-u)}ﬂagx(cf. (8.1.6)) extends to a C* Hermitian

metric for L = GQQQ(ELPGA(1))¢ 0(p)), there exists a real-valued
C*® function H : (Mo)n—éb{ such that

R

- !

n ~
u = 'Zli=1 Yy X, o H(r1, cee rn) on U

“zr;i

give a closer study of the function u = u(x,, ... , X ) = u(i},

i

where T, ‘2
i

= exp(=%.)) and ». = ¥ . We can now
i i Pi

cee ?%). For example, their first and second derivatives

with respect to 21, cee ?; are computed immediately:

. n . r~ - - _ _ : .
(1) §:i=1(au/axi)(axi/axj) = Ou/axj = vj (‘aH/erj)rj s
(ii) 2 u/axiaxj = (2 H/ariarj)rirj + 5ij(3H/arj)rj .
Recall that (a(c)i,b(W)J) = éij . Hence, combining (i) with

(8.2.5), we obtain

A

(1) (R)b(e)) = »y = (an/or )y, 1

j S on.

Let p_ be the pointé€ UE corresponding to the origin of (R )n
T 0

(i.e., r1(pr) = rz(pw) = oaee = rn(pw) = 0). Then by (i)',

(7 (pg.) »b (o))

It

Vj for all j. Thus,

(é.?.ﬁ) ﬁ(py) = ag -



Now, fix an arbitrary point y of U? and put 1 :=-{i€{1,2,..,n}l
ri(y) =0 }. Then we may assume without loss of geherality

that I = {1,2,..,q} for some g with 0 € q £ n (where if g = 0, ue

aluays assume-l =¢ ). In view of (8.1.7) and (8.1.8),

n
2 ~ — ~ vy
W = ‘/_—TZ (a U/axiaxj)(d‘xﬁ";i/ /x'o‘;l)/\(d%()’;:]/x )

l,j=1 N |

on Ug in terms of holomorphic local coordinatss (j£¢-1, see
ch-n)' Rewrite this identity, using (ii) above. Then, when

evaluated at vy,
W(y) = T2 (OM/ar)) (Y)ex (AT,

2 ~ ~t ~ v
+ «f?£§g>éa W/ 2% ) (y) (0% /2 INX . /7 5) s
where the last summation is taken over all i, j é{1,2,..,n} such

that i> g and j> g. Since ¢ is a Kahler form, it follous that:
(8.2.7) (aH/ari)(y) > 0 for all i€ I, and

2 ~ o~ . s _ .
(8.2.8) ((2 U/@xiaxj)(Y))q<i,j§n 1s a positive definite matrix.

On the other hand, the Jacobian J(l?l)y of the mapping m : UE-—>MH

at the poinf y in terms of the coordinates (r1, . ; rn) for Uf is

computed as follouws:

. ~
- _ a(au/ax;) - + det 3 (du/ax,)
@), = det [——_—Br' (y)J1§i’jén roer | 20|

h) J

/~(aH/9r1)(y) )
' -(aH/ar,) (v) U

| ~(2H/21 ) (¥)

= tdet




where the last identity follous from

d3(au/ax,) 2 ) .
Wa-f"‘j_(y) = —(D H/Briarj)ri - biJ(QH/arj), (Cf‘- (ll))c
Now, in view of (8.2.7) and (8.2.8), we obtain J(l'r'l)y # 0. This
together with (b)' (cf. Step 2) yields (b)". Hence, it suffices
to show (a)", i.e., Q =2 . For each j, let Y; be the point in

R : . .

Us such.thaf ri(yj) = (1 - Sij)ri(y), 1$£iSn. Then by (i),
(ﬁ(yj),b(ojj) = 53 . 0On the other hand, by (i), (i)' and (8.2.8),

o almb@)d) o amb@)d)
PoomEy °%;

2%u/e%.% ) 20 on R,

J o

Therefore, we havs

(8.2.9)  (i(y),b(e)3) € (ilyp,b(md) = 2, 13

Step 4. In this final step, we complete the proof of Q = 2 ,
assuming that W is a single point. Let y be an arbitrary
point of G + Then y € Ug.For all c¢A(n). Hence, by (8.2.9),
(ﬁ(y),b(v)j) S Vj for allg and j, i.e., m(y) €2.. Since { is
the cleosure of E(GR)(= m(G)) in Ml » ue nou obtain @ C 2 . '
Recall that @ is a compact convex polyhedron in MR (cf. step 2).

Therefore, (8.2.6) immediately implies Q =2. .






9. APPENDIX C. -

In this appendix, by using a measurs d}h of Duistermaat-Heckman's
type (cf. [ 7] ), we shall generalize the integral formula of
Koiso and ‘Sakane [13] on Futaki invariants. Our present result
includes, at the same time, (5.3) and (5.6) in the earlier section

as special casss.

(9.17.1) DEFINITION: Let Y be a complex connected manifold endowed
with an effective holomorphic Ge-action, and A be a nonsingular
finite polyhedral decomposition of N, Furthermore, lst ﬁ: YU be
a proper G-invariant morphism of Y onto a connected complex mani-

fold W. Then a pair (g:Y~eu, QA) is called a toric bundle if the

following conditions are satisfied:

(a) ¢ is locally trivial, i.e., W is a union k_} Wy of its open
o €A
subsets Wy ,d€ A, such that for eachd, there exists a

G-equivariant isomorphism g : §-1(Um) Y Uy x Gy -

(b) If&,B€A are such that L&nup # ?, then there exists a holo-
morphic G-valued function ty, = tqﬁ(u) on WA such that
g (s %) = (uy tgg(u)ex)
for all we MUNUP and all x¢ Gp *

1,«‘ U“XQN+QA be the natural
: . . -1

projection to the second factor. Put P := k)deA(pr1’“°1u) (G).

Then €|p : P—>W is naturally regarded as a principal bundle with

(9:1.2) REMARK: In the above, let pr

structure group G.

(9.1.3) DEFINITION: Let (B:Y=>U, Gy) be a toric bundle and L a
line bundle over Y. Then a triple (g:Y—>U, GA, L)'is called a

polarized toric bundle if there exists an effective divisor D on

¥ such that



(a) L= U, (0);
(b) sSupp(D)CY-P, where P is as in (9.1.2);

(c) D‘Y is an ample (or equivalently, very ample) divisor on Y,
w

for each w € U,

(9.1.4) REMARK: For a polarized toric bundle (£:Y->W, Gp, L),
one can easily check that v, W, P, L, D above always satisfy the
conditions (8.1.1)~(8.1.4) in Appendix B. Conversely, let Y, U,
P, L, D be as in Appendix B (satisfying the conditions (8.7.1)~
(8.1.4)). Then by Theorem (8.2), the corrGSpondiné [x=¢ﬁu is
independent of w, and it easily follows that the assobciated.

triple (§:Y->W, Gy, L) forms a polarized toric bundle.

(9.2) We now fix a polarized toric bundle (B:¥—=>W, Gy, L) Then
-1
for each P € A(1), the subsets (prq,q°zd) (D(ﬁ)), de A, of Y
are glued together defining a global prime divisor, denoted by
B(p), on Y. Hence, the divisor O (cf. (a) of (9.1.3)) is written
. _ L -
as ESFGA(T))?D(P) for some )? s in 2_ . UWe thus have the corre

sponding n-dimensional compact convex polyhedron E: in M, defined

by (8.1.9).

R

(9.2.1) REMARK: Let a, , k=0,1,..,s, be the integral points

nA

k = s}. Furthermore, put

in 2, i.e., 20N ={ak IU
%k := X7, 0$k<$s,

where on the right-hand side, we used the notation in Section 1.

Then the mapping
Gt (Ag(): X (1) ... : X (1) € p°(r)

extends to an embedding: Qat:;PS(E) such that the corresponding

hyperplane bundle on Gp is (QGA(ZPH_\(,,))?D(F)) (cf. Oda [21]).
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In particular, the pullback (= V_195‘l°g(2:k20|:nJ2)) of the
Fubini-Study form on PS(E) to CA is positive definite sverywhere

an GA.

(9.2.2) DEFINITION: Since G = (€*)7, we can componentuise express

tqp = tdp(u) in (b) of (9.1.1) in the form |
tag () = (el (), eV, s e ), ey,

Hence for each i, the system of transition functions {t(l

'.)}
) 8 S pen
defines a holomorphic line bundle L(l) over W. Let P'* (:=

L(4)

(zero section)) be the C* -bundle over W corresponding to

L(l). Then, in terms of the natural identification

po= p(My pl2)y

(n)
U un-c XUP

we can write each point p of P as

(p(1), p(2) (n))

3 ees 5 P

with p(l)e P(l), i=1,2,+.yn. For sach i, fix an arbitrary Cc%

Hermitian metric h; on_L(l) and define a c” Functlon x = X, (p)
on P by
exp(-%;(p)) = h (1), p()y,  pep.

We shall now show the following formula:

(9.2.3) THEOREM: Put e := dim. W and X} g = (n+e)!/e!
. s

Let L' be an arbitrary line bundle over W and put L" := g*L’ﬁl_.

We pow assume that W is compact. Furthermore, let x = (x1,

cee xn) be the system of standard coordinates on MR(= Rn),

and T = T(x) be the polynomial in Xqs ees 5 x defined

by T(x):= ¥, el C1(L‘)4-2:j: X €q (L J)) ) e [u] . Then in terms of

the notation in (1.6) and Appendlx A, we have:

C-3



() G Cegorarg) = 0™ [oxau, g
(b) c, (L) [Y] = «EZ Ny

where q}k:= T(x)dx1Adx2A eee Adx_ .

A
=

(9.2.4) REMARK: In (9.2.3) above, assume that W is a single

point. Then by e = 0, T(x) is nothing but the constant function

1 on My . Hence, (5.6) is straightforward from (9.2.3) above.

Ue further obtain (5.3) by setting L = K,™' (see also (7.2.2)).

(9.2.5) REMARK: Note that qu is a polynomial measure on NR .

If L is ample on the whole space Y, then this fact is already

observed by Duistermaat and Heckman [7 ] (see sspecially their

formula (1.11)).

PROOF OF (9.2.3): Step 1. Let u = u(X,(P)s «ov , ;B(p)) be the
C*® function in X, ='§1(p), cee ?; = X_(p) defined by

u := log( E:kio exp(ak,gkp)) ) s

vhere

ngp) 1= (peP).

Let 3 be the holomorbhic section to L over Y as in (8.1.5).

Then, in view of (9.2.1), the metric exp(-u)}*®?* for Llp extends
to a Gc-inuariant c™® Hermitian metric, denoted by h, for the
whole line bundle L such that the pullback of c1(L,h) to each
fibre Y is positive definite. We now have the corresponding
m: P=>M
is just the intarior of 2.. Furthermore, one can easily check

fhat the mapping w is given by

m(p) = (Qu/a%X,)(p)s oo » (QuAX)(P)), ~ pPEP.

g 2as in (8.7). Note that, for each w €\, the image m(Pu)
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Step 2. Fix an arbitrary point w' of W, and let U be its

sufficiently small neighbourhood in W. Over this U, choose

a holemorphic local base s; for each line bundle L(i) and write
(i) % _ =¥ ' c oy A .

h as f;(w) s/ '®@s; for some positive C™ function f, = fi(w)

on U. Note that, by a suitable choice of si's, We may assume

Fi(u') = 1 and (dfi)(uf) = 0 for all i.

We now choose a system (u1, +es 5 W ) of holomorphic local

coordinates on U and write each point w of U as w = (UT?-"°"'N )

e

in terms of these coordinates. Then by the isomorphism

Plu(; P(1)xU cos xUP(n)lu) ~ U XxG

(t1s1(u), cae tnsn(u))f——-i(u, t=(t1, coe ,tn)),

we may regard (u1, cee s Wy Loy el tn) as a system of holo-

morphic local coordinates on P\U . Since .

~ X A _ T T ¥

‘axj = -(dtj /tJ) - ‘é('af‘:}/f‘:]) and aXJ = —(dt_']/tj) - 6 (aFJ/FJ)’
the following holds at each point of the Fibre_Pu,:

- — n ~ s 7 ¥, =
23 u = 2{ 37,7 (au/aX;) (- (aF,/E,)- 55(5e /¢ )}
2 A T T VoL N ~ =
= Zi,j('b u/9x;ox;) (dt /e JA(dE /) + 2521 (2u/2%| )f,’*aalog(fj).

Now, define real-valued functions 0 < Gj<< 2 on P, by

tj = exp((-;’j/Z)-l-,J-'l ej)’ j=1,2’ooo,n’
and set Vl:= tia/?ti . Furthermore, let h' be a C™ Hermitian

metric for L! and put:
Ttss y},g{b1(L"h') + z:qu(au/a§3)01(L(j),h(j))}g ’
Thi= f},e{c1(L',h') + 2:521~xj C1(L(j)’h(j)i}e'°

Then in view of (cf. (8.2.2))

- 2 - ~ i ~
dtj/\dtj/|tj] = ,J—-i'dxj/\dej and  (V7)p(u) = -2 23u/3%; ,



we have: .

(e) (=1/2) jp ,(vi)m(u)(maé u + 2rgfe, (Lf,nt))"Te

I

i}

= (2m)n+e 2:{xit"(u')}dx1Adx2A cee NdX_

where the last identity is obtained by setting x5 = au/ox. ,
J

j=1,2,¢.,n. Similar computations also show that:

2 efF’w(au/agi)dEt(azufarkagi ) (M3 (V=Tat AdE 1/ 1651 ) )ng¥(e)

(27t)n+8<f~xzeﬂn {(’b u/‘ai';)det(’azu/ai'kai}‘ ) e (w! )_} d'i'11'\d2’2/\ e I\d'i’n

(d) J; '((J:T/zn)535U'+ﬁ*c1(L',h'))n+e =J;'C“(u')dx1Adx2A eoe Adx_ .

[N}

Step 3. In view of (7.4.1), an integration of (c) over U yields
(a). Since (/=1/2m)33u + c,(L',h') represents c, (L"), we

obtain (b) by integrating (d) over u.

(9.3) We here assume that n =1, i.e., G = c*. Fix a holomorphic

line bundle L, over a compact complex connected manifold W and
consider the vector bundle E := QUEBL1 of rank 2 err W (where
vector bundles and locally free sheaves are used interchangeably
if there is no fear of confusion). We now put Y := P(E¥) and
let ¥ : Y —> U be the natural projection. Then ¥ = (E - (zero

section))/t* and L, is regarded as a Zariski-open subset of Y by

L1C;_> P{E*)(= Y), {Lr— (1®4L) modulo c*.

Via this inclusion, the zero section of L1 defines an effective
prime divisor, denoted by D0 , on Y, Note that we have another
divisor D := Y - L, € Div(¥) on Y. Put P :=14 - D . Then

the natural C¥-action on the line bundle L1 extends to a holo-

morphic action of G = t* on Y with the fixed point set Doqun.



Furthermore, P is regarded as a principal bundle over W with
structure group G. Let (ntyn").(# (0,0)) be a pair of non=-
negative integers which will be specified later. Put D :=
n'o, + n"D, € Div(Y). Then L := (9Y(D) is a '@-uary ample line
bundle on Y. We thus have a polarized toric bundle (£:Y->U,

P (L), L).

(9.3.1) REMARK: Fix an arbitrary C® Hermitian metric h, for

the line bundle L1 . Now, recall the arguments in Step 1 of
the proof of (9.2.3). Then, in view of (9.2.2), we .can define

real-valued C” functions X = x(p) and u = u(p) on P by

exp(-X(p)) := h.(p, p) ‘ (pePr),
a(p) := 1og<:21 exp(K¥(p)) ) (p&p).
==N .

We also have the corresponding mapping m : P—amR(= R) as in (8.1)

and moreover, it is given by

m(p) = (3u/3X)(p), peP.

Note that, fdr each w€ W, the image m(PU) is the interior of the

closed interval > = [-n", n'].

(9.3.2) pEFINITION: Let () (resp. v(?)) be a compact complex
connected manifold on which G acts holomorphically and effec-
tively with the carresponding fixed point set D(1) (resp. D(Z)).
Furthermore, let -{D£2) |i€ I} be the set of all connected
components of D(z). Then a surjective G-equivariant marphism X :

Y(1)—9 Y(?) is called a G-collapsing if the Follduing conditions

are satisfied:



) A maps Y(q)- 0(1) isomorphically onto Y(z)— 0(2).

(2) There exists a (possibly empty) subset J of I such that
Az Y(1)—9vY(2) is the.monoidal transformation of Y(z) with
centre . je3 Dgz) . (If 2 is empty, then A is nothing but

an isomorphism of Y(1) onto Y(Z) )

We now fix an arbitrary G-collapsing A: Yy Y for Y above, and let
n', n" be respectively the (complex) codimension of A(DD). A(Dg)
in Y. urite G as {t |tec* . Then, Theorem (9.2.3) allous
us to obtain the following refinmement of the integral formula of

Koiso and Sakane [13] on Futaki invariants:

(9.3.3) THEOREM: Put e := dim. U. Uriting For brevity Ky |

bl
s L, we have:

as ue

(a) (rt’vj*(tﬁvat) = (2m) B+1 a+1)JP c (W) +><c1(L )% [wldx.

Suppose now that Y is a Fano manifold, i By U is ample. Let

FVlLie(G) be the restriction of Fy: :X(?j—}n to Lie(G)- (cf.
(5.1)). Then ;
nt
8
(b) lLle(G) = D if and pnly lfJ[n“x(C1(U)'+XC1(L1)) [Wdx = oo

PROOF: Note that (9, (XL1) = GQ(KY'1)QQ@Q((O‘-1)DD+ (n*=1)0,)

= CDY((g*KU“1)®L). Hence by (9.2.3) applied to L' = KU'1, the

right-hand side of (a) is (r”t.v)*(ta/at). This togsther with
)
(7.5.1) yields (a). 'Now, (b) is strightforward from (a) in view

of (7.2.2) applied to S = G.



(9.4) Now, let Y be a g-dimensional compact complex connected
manifold endowed with a holomorphic effective action of G = (I*)n
Assume that there exists an ample line bundle L on Y endowed with a

linear holomorphic G-action which covers the action on Y. Then ue

have a Kdhler form W on Y representing 2,tc1(L)R . Express W as
/“_:E gqﬁ-dz“/\dzp in terms of holomorphic local coordinatss (2 , 2%,
ee », 29) on y. Let V; € X(Y) bse the image of tia/atié Lie(G)
under fhé natural inclusion Lie(G)C X(Y). Nouw, for each i,

there exists a real-valuad C™ function @i (which is unique up

to an additive constant) such that

v

I

i Zd)pg““aﬁsoia/az“ (cf. Step 1 of the proof of (8.2)).

For sach a = (a,, azs «ee E%Q eR" (= MR), we define a mapping

a
e -
m Y _MR by

mA(y) = (=P, (y)+a,s =% (y)*ay, «ve s =P (y)*ay), yEV.
Then the image Eza := m2(Y) is an n-dimensional compact convex
polyhedron in Mg (cf. Atiyah L1] ). Recall that the push-forward
bylma of the symplectic measure (w/2m)” is a piecewise polynomial
measure, denoted by dM , on 1, of finite total volume c, (L)9[v]

(cf. Duistermaat and Heckman [ 7 ], atiyah and Bott [2] )

(9.4.1) DEFINITION: Let a be the unigue element of M. such that

R
(2E)qj;:axidﬂ = (r),(4/2), 1515,

where (x1, cee s xn) are the standard coordinates on MR(= rR").

We then denote m2 by m. Now, the mapping m : Y-aNR 'is called the

strict moment map associated with the Hodge metric W on Y.

Note that, in view of Theorem (9.2.3), this m is compatible with

the one defined in Appendix B.



(9.4.2) REMARK: Suppose that the Kdhler farm W represents
2?’tc1(Y)IR . In this special case, one has the following fact (which
is essentially pointed out to us by A. Futaki): Let & be the
Kahler form on Y such that Ric(®d) =w and that W is cohomologous
to W . Then the strict moment map m : Y > MR(= R") associated

with w 1is characterized by

m(y) = (=%, (v)s =F )y vee s =8 (), yev,

where egach &; is a real-valued C* function on Y such that the

following conditions are satisfied:

Ll

(a) ?i coincides with ?& up to an additive constant;

)  f, Fe" =



10. APPENDIX D.

In [22], Sakane constructed examples of Einstein-Kahler
metrics on nomhomogeneous Fano manifolds. Afterwards, these were
reformulated and generalized by K0150 and Sakane [13 Theorem 4. 2],
where almost at the saine time, the author found a very ;iﬁéle
proof for their results. (A little later, Bando also obtained
a similar proof independently.) Since this new proof has the
advantage of describing tinstein-Kahler metrics very explicitly,

we here explain the detail.

Aésume now that n =1, i.e., G = t¥. Let ¥ be a compact com=
plex connected manifold endowed with a holomorphic effective
G-action such that the corresponding fixed point set consists of
just two connected components 50 and‘ﬁ;.. Furthermore, assums
thatrYlis of class CZ, i.es., Y is bimeromorphic to a compact Kahler
manifold. Note that, via isotropy representation, our G-action
on Y naturally induces a G-action on the normal bundle N(SD:V)
(resp. N(a;:V)) of 50 (resp. 5;) in Y. We finally assume that
gach elsment of G acts on both N(SD:V) and N(ﬁgz?) as a scalar

multiplication of the vector bundles.

(10.7) REMARK: Blouw up Y along 50 and En, We then have a
G-collapsing A : Y—a?l(cf. (9.3.2)) such that D := _1(5;)'

and D, := -1(6;) are nonsingular irreducible divisors- on Y
fixed by the G-action. Put P =Y - (DDUDN). Then by the
generalized Bialynicki-Birula's decomposition of Fujiki[ 8] (see
also Fujiki [9; (6.10)], Carrell and Sonmese [5]), we have

a natural G-equivariant identification of PUD (resp. PUD)
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with N(DD:Y) (resp. N(D,:Y)) (cf. [15]). Hencs, by reversing the

G-action, one can vieu N(DD:Y) - (zero section) as the Same'c*_

e

Do = Dy e " There

now exists a line bundle L, over W such that L, N(DD:Y) and that

1-1 = N(Dy,:Y)e Put E := Gb(£L1 . We can thus regard Y as P{E¥)

bundle as N(Dg:Y) ~ (zero section) over U := p/ct

L
and furthermore, exactly. the same situation as in (9.3) happens.
(Therefore, until the end of this appendix, we freely use the

notation of (9.3)s) Let s ;= dimg ¥ - 1. Then by (b) of (9.3.3),

n'

(10.1.1) FVILie(G) = 0 if and only if Jr x(c1(u)+-xc1(L1))e[M]dx

-n"
= 0,

where n! and n" are raspectively. the (complex) codimension of

~ ~ . ~
D0 and Dy, in Y.

(10.2) DEFINITION: For simplicity, put ® := A(P). Recall that every
selement of G acts on both N(SO:V) and N(D_:Y) as a scalar
multiplication. Hence, applying again the generalized Bialynicki-
Birula's decomposition of Fujiki [8]) (ses also Fujiki [9; (6.10)]),
we have a natural G-equivariant identification of ﬁ\)ﬁs (resp.

BTJS;) with N(B;:V) (resp. N(ﬁ@:?)). Now, lst h be an arbitrary

C* Hermitian metric dn5L1.. Note that this h naturally induces

1 1

a Hermitian metric, denoted by h ', on the dual bundls L1- of L

1 -
In view of the identifications

o~

ﬁ'; (N(DO:V)- (zero section))

n

(Lq = (zero section)) = P

and,
-] . ~ Ae s
(L1 - (zero section)) = P = P = (N(D,:Y) - (zero section)),
the Hermitian norm | "h (resp. | uh_1) on Lm.(reéﬁ.‘L1-1) induces

a norm on N(ﬁ%:?}y(rasp. N(ﬁgz?)). Then for a Kihler form W on U,

(h,w) is said to be a tight pair if the following conditions

are satisfied:



(1) The norms on N(ﬁ;:?) and N(D,:Y) induced from h are

C*® Hermitian norms of respective vector bundles. .

(2) @ is an Einstein-Kdhler form satisfying Ric{w) = w .
(3) The eigenvalues of c1(L1;h) with respsct to W are constant
on W.
“1x(,2(nt=1 - -1kgo2(n"-1 -
(4) X e ( )(é*w)equAap} (resp. A~ {T (n )(g*w)eAatna;})

on P extends to a c” (nonvanishing) (e+1,e+1)~form on
N(D:Y) (= PUD) (resp. N(T,:¥)(= PUD,)),
where 4 : Y(= P(£*)) > W is ths natural projection and poL,
= R (resp. T : L1_1-+ R) denotes the norm Function defined by F(x)
s= nxﬂh (resp. T(x) := |x|h_1) for x in L, (}esp. LT-1).
In particular, if n' = n" =1, then (h,® ) is a tight pair if and

oanly if (2) and (3) are satisfied.

We shall now give a slight modification of the result of

Koiso and Sakane [13; Theorem 4.2]:

(10.3) THEOREM: Assume that ¥ is a Fano manifold, i.e., Ky @ is

ample. If there exists a tight pair (h, w), then the following

are equivalent:

(a) FelLie(g) = 05

(b) Y admits an Einstein~kdhler form.,

PROOF: . In view of (5.1), it suffices to show that (a) implies
(b) under the assumption that (h, W) as above exists. The proof

consists of four steps.

Step 1. Let M §‘M2 S .. g/Je be the constant eigenvalues of
2mc,(L,3h) with respect to W. Put 0 := n'D_+ n"D, and L := & (D).



1 1

Then A*K;“ = LQ® g*KU'

the identification of D_ (resp. Dy) with W, we have:

(see the proof -of (9.3.3)). Héncse, via

¥, _ ¥, =1 _, @®n! -1
X Ky |DD—L®§Ku |DO_L1 ® K,

- " -
(resp. X‘K'f- = -(.L,I,‘])®n ® K, ! )

1
o
Therefore, via the identification of W with DG (resp. Dw), the
[} - ." : ' s
cohomolegy class n c1(L1)R-+c1(u)R (resp. =n c1(L1)R~+c1(U)R) in
Hz(Do:R) (resp. Hz(Dh:R)) is represented by Afeo (resp. A*6,) for
some positive definite (1,1)-form 60 (resp. 6,) on ﬁ; (resp. D).
0On the other hand, Zitc,l(u)R is represented by the Kidhler form @.

We now have the following:

1) If -n"< x<n!', then (we[u])ﬂk21(1+/ukx)={(2n)(c1(u)+xc1(L1))}e[U]
>0 and in particular 1-vukx;>0 for all k.

+
2) The smallest nonnegative integer m such that (c1(u)+n'c1(L1))m 1

(resp. (cq(W)-n"c (L))" ")

is numerically trivial is dim; B
. oed 2]
(resp. dim. D,). Hence the order of zeroes of TTk=1(1+ﬂkx)

at x = n' (resp. x = =n") is n'~1 (resp. n"-1),

Step 2. Define a polynomial A = A(x) in x by

A(x) = = Jt:" s]Tkz1(1tﬂks) ds.
Note that, by our condition (a), we have A(n') = A(-n") = 0 (cf.
(10.1.1)). 1In view of 2) of Step 1, the order of zeroes of A(x)
at x = n' (resp. x = =n") is n' (resp. n"). Furthermore, by 1) of
Step 1, both O<:A(x)§ A(0) and A'(x)/x< 0 hold for all nonzsero x
with -n"< x<n'. 1In particular, the rational function A'(x)/(xA(x)3

is free from poles and zeroes over the open interval (-n", n!'),

and has a pole of order 1 at both x = n' and x = -n". Nouw,

X
B(x) := -“[O A'(s)/(sA(s)) ds



is monotone increasing over the interval (-n", n') and moreover, B
maps (-n", n') diffeomorphically onto R, bscause in a neighbourhood
of x = n' (resp. x = -n"), B(x) is written as -log(n’-x) + a real

analytic function (resp. log(x+n") + a real analytic function).

1

Let B : R—= (-n", n') be the inverss function of B : (-n", n') o

R, and define a real-valued C*® function r = r(3) on T by

exp(-x(8)) = {WP)y®} (= {XNFoy®} ), Feb.
Note here that, since (h,w) is a tight pair, (1) of .(10.2) shows
that ()\.-HP)2 (resp. (A-1*t)2) extends to a C* function on B\Jﬁ;

(resp. PUDL). We now define a C™ function x = x(r) in r by

x(r) 87(r).  (i.e., r = B(x(r))).

Then u(r) := -log(A(x(r))) satisfies (cf. (10.3.1))
(k) () TT, 2, (14,0 () = exp(-u(r)),

since we have the identities x'(r) = —%(r)ﬂ(x(r))/ﬂ'(x(r)),

ut(r) = x(r) and A'(x(r)) = -x(r) T, 2, (14p x ().

Step 3. Now, let 77 be thse (et+l,e+l)-form on P defined by

7 := VT a(et)exp(-u(x)) A7 F((5w) Sopnar/p?)
(= V7T 4(e+1)exp(-u(r)) A~ ¥ ((B*w)ratase/T?) ).
In this step, we shall show that 7 extends to a volume form on 7.

First, in visw of Step 2,
r = -log(n'-x(r)) + a real analytic function in x(r),
(resp. r = log(n"+x(r)) + a real analytic function in x(r)).

Henca, (A_1*P)2 (resp. ():1*t)2) is written as a real analytic

function in x(r) with a simple zero at x(r) = n' (resp. =-n").



D=6

On the other hand, Step 2 shows also that exp(-u(r)) is a real ana-
lytic function in x(r) with zeroés of order exactly n' (resp..n") at
x(r) = n' (resp. -n"). Thus, in a neighbourhood of D, (resp. Dy),
(A:1*P)-2n'exp(-u(r)) (resp. (Af1*t)-2n“exp(-u(r))j is written as

a nonvanishing real analytic function in (A:1*P)2 (resp. (A:1*t)2).
Since (h, W) is a tignht pair, (4) of (10.2) now implies that 7

extends to a volums form on ?:

Step 4. Regarding 7, as a volume form on 7'(CF..Step_3), we shall
~ = , ~
finally show that @ := /=132 log 7 is an Einstein-Kkdhler form on Y.
Fix an arbitrary point Wy of We Then over a sufficiently small open
neighbourhood U of W, in W, there exist a holomorphic local base o
for L, and a system (21, Zoy eee Za> of holaomorphic local coordi=-

nates on U such that

1) hiy = H(w)e*® &* for some positive real-valued C® function H =

H(w) on U satisfying both H(w_) = 1 and (dH)(uo) = 0;

B -
2) Ou(uo) = V-1 §:k=1 dz Adz, 3
- e -
3)  (FaH)(u,) = /Ezkﬂ/«ukdzk/\dzk .
Via the identification
¥
UxC™ P'U

(wyt) > teo(u),

we regard (21, Zoy eee 5 Zos t) as a system of holomorphic local

coordinates on the open subset Plu aof Y.. Then over P|U ’
S T 2
7 = J=1(e+1) A*(exp(-u(r))) (g*w) ®*Adtadt/ L]«

Note that Ric(w) = y=1321log w® = W . Hence along the fibre P,
. 8]



N = Y2123 A%u(r)) + £*w
= VST (Ut () atadE/Itl? + VTTAXu(r)) 50 l0g H + £Xw,
(see, for similar computations, Step 2 of the proof of (9.2.3)).

Therefore, when restricted to ,\(Pu ), the (1,1)-form W is
0
written in the form

Tt () AT ¥ eeadE/ P )+ VRTS8 (et (0) AT ¥ (92,805, )

which is positive definite in view of (%) of Step 2. Consequently,

along A(PU ), we can express 0t as
o

V=T(e+1)ut () (TT, 2, (14p ut (1) )))C”‘{(;Z:kj1 V=1dz, AdZ, ) *AdtAdE/Itl*}

~ g+ . .
and hence (U= = 7 (cf. (k) of Step 2). Since w, is an arbitrary
point of W, we now have Ric(®) = @ everywhere on Y. Thus, & is

an Einstein-Kahler form on ?:

(10.3.1) REMARK: Let K€ R, and /AkE R (k=1,2,+4.5,8). Furthermore,
let a, b, ¢ be real numbers such that 1+/ﬂ<c # 0 for all k.

Then, for a sufficiently small € >0, we can here give a complste

solutign of the ordinary differential equation
(") YU TSy Oy 1 (x)) = K exp(=y(x)), a-f<x<a+é,
with the initial conditions

y(a) = b and y'(a) = c.

In order to solve this, we put s := y'(x) and A := exp(-y(x)).
Since y"(x) does not change its sign over the interval (a-f,a+g),
the inverse function theorem allows us to regard x as a C*® function
x(s) in s. Conseguently, A is also regarded as a C*® function A(s)

in s. Then

At(s)y"(x) = (dA/ds)(ds/dx) = dA/dx = =s A(s).



In particular, multiplying both sides of (1) by ﬁ'(s)/ﬂ(s), we have

It

-s T, 2, (144, 8) = KeA*(s).

Thus, x and y(x) are written in terms of the parameter s as follows:

(2) y(x) = - log A(s),

s
where A(s) is the polynomial BXp(-b)-,K-15~ tTTkz1(1ﬁMkt)dt in s.
c

As for x, we have
as/dx = y"(x) = (M2 (14,9) T Kea(s),  (efe (1),

and therefore,

s
8 =i -1
(3) x = a+ 5-C (TTk=1(1tht))K A(t) 'dt.
Now, (x, y(x)) moves along the curve parametrized by (2) and (3)

above.

(10.3.2) REMARK: We apply the above construction of Einstein-Kéhler
metrics to the case where Y = Y = P(EF) with £ := @h$ﬁh(k,—k) and
W= PM(C)xp™(C) (me2.s T < k € m). Note that Lyi= O,(k,-k) denotes
the line bundle pr1*6bm(k)iﬂpr2*6bm(—k) over W, where pr;

P (c)xp™(C) — P™(L) is the natural projection to the i-th factor

m+1 m+1 m+

be the blowing=-up of L

at the origin 0 = (0, +e.. , 0) of Em+1, and let

(i=1,2). Now, let ¢ : Qo(ﬂ: ) —>TC

m

p: e™ - {0} —s  P™(C)

(20’21’f"2m)*“9 (20:21: .o :zm)

. . : +
be the natural projection. Then the rational map peo : uo(mm 1)_9.
Pm(t) easily turns out to be a morphism, and via this morphism, we
can regard Qo(tm+1)‘as the line bundle F := O m(-1) over P (C).

Hence, via the identification of " —{U} with F - (zero section),



the function

€™ 2 {0} 3 (2grzqseenzg) by Jogl gl 2 F en 2’ € R
is viewed as a Hermitian norm of the line bundle F. Since Ly =
prq*(F®-k)<Spr2*(F®k), this Hermitian norm on F induces a nat;}al
norm || "h on L, associated with a Hermitian metric h for L1 .
We can nou define p: L, =R by ﬁ(ﬂ) 1= "E"h (Eélw). Note moreover

that the Fubini-Study form w_ on P"(C) is defined by

"y . = — m 2

pfw, = /-1 92 log(2]; |zi| )a
Then, W := (m+1)(pf1*w0-+pr2*w0) is an Einstein-K&hler form on u
such that (h, w) is a tight pair (cf. (10.2)), because the eigen-

values M, §/u2 € e gjﬁzm of 27E01(L1;h) with respect to W are

all constant. In fact, we have

R T PRI (PR VISP
Recall that G(:= t*) acts on the line bundle L, by scalar multi-

plication and that VY(= V) is naturally a G~equivariant compacti-

fication of L, (cf. (9.3)). Now by

1 1
J‘1V(°1(u)+;YC1(F1))g?LUqu =;(cq(H))zm[ulfi1u(1-k2v2/(mf1)2)Tdu = 0,

we have FYlLie(G) = 0, Hence we can find an Einstein-K&ahler metric
on Y as constructed in the proof of (10.3) (see also Sakane[ZZ]).

Let A(s) be the polynomial in s defined by

A(s) := —J{S u(1-kéu2/(m+1)2)mdv .



Furthermore, defins a C® function x = x(F) in f) by

2:.- --x-252m12m ds (.
o axp{fo(m /(m+1)2)"/a(s) ds |

Then 7 := \/?I-(Bm+4)ﬂ(x(f)))(-t;*w)zm/\apnsp/f)z extends to a volume~form
on Y, where £ : L,;=>u denotes the natural projection (cf. Stép 3 of
the proof of (10.3)). Then in view of Step 4 of the proof of (10.3),
we can now conclude that @ := /—_159 log? is an Einstein-Kzhler form

on Y such that @™ = 7.
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(4.3) REMARK: (i) It is easily checked that m, above coincides '
with the moment map: qa->Lie(GC)*g'NR (cf. Atiyah {1], Guillemin
and Steinberg ﬁT]) associated with the Kahler form y¢-1 aéu'é}<.

(See Appendix B for the proof.)

(ii) Consider the subgroup Cg := {(t1, cre tn)G G ltiG H+}(;(R+)n)

of G. Then by the -natural inclusians GHC;GC:QA , we may regard

G, as a subset of QA . Then the closurs GR of GR in QA is a

R
manifold with corners in the sense of Borel-Serre (cf. Oda [2@ )

and has a natural differentiable structure as described in
Step 3 of (8.2). Note that GA/BC above is endowed with such e

structure via the natural identification of UA/GC with EH .

(iii) --A difference -of (4.2) from Atiyan's result [ 1; Theorem 2]
is that the mapping between QQ/GC and (} 1s, in our.case, a .
diffeomorphism (instead of a homeomorphism) even .along their
boundaries. ThisbdiFFeomorphism is esssentially obtained from
the ampleness of Kq;1 by the fact that'a combina?ion of (3.2)

nonvanishing

and (3.3) keeps the Jacobian of w |z i Gy = My,
R

also along the boudary ER - Glﬂ .

(4.4) \We now assume that Gn 1s a projective variety (uhere Gp
is not necessarily a Fano variety). Note that the corresponding
hyperplane bundle L := @GA(‘I)' is uritten as G,GA(ZO'Gﬂ(1) Ve D(o7))

for some Y- € 20 . Then
, o= {acry (ot 5 4 for st e A}

is an n-dimensional compact convex polyhedron (cf. Oda [2ﬂ ).
Since L is ample, there exists a Gc-inuariant fibre metric h for L

such that the corresponding first Chern form is. positive definite.






EINSTEIN-KAHLER FURMS, FUTAKI INVARIANTS AND

CONVEX GEOMETRY ON TORIC FANO VARIETIES

by

Toshiki Mabuchi

O. INTRODUCTION.

Throughout this paper, we assume that X is a nonsingular
n-dimensional toric Fano variety (defined over €), i.e., X is

an n-dimensional connected projective algebraic manifold éatisFying

the following conditions:

(a) X admits an effective almost homogensous algebraic group

action of (E[;m)n (2(c*)" as a complex Lie group).

(b) The set & of all Kdhler forms on X in the De Rham cohomology

class 2Tt c1(X~)R is non-empty.

For eachtue}(, by writing it as w= /-1 E:g(w)q,ﬁdz“/\dzB in terms
2 .

of holomorphic local coordinates (21, 27y eee zn) of X, we

have the corresponding‘Ricci form Ric(w) cohomologous to w :
Ric(w) := /=132 log det(g@dkﬁ).

Then an element w of ¥ is called an Einstein-K@hler form if

Ric(w) =w. Uue now pose the following:

(0.1) PROBLEM™: Classify all X which admit, at least, one

Finstein-Kdhler form.

Obviously, the Fubini-Study form on P"(C) is a typical Einstein-

Kdhler form. This settles Problem (0.1) for n = 1, because

%) This is also posed by T. Uda and Y. T. Siu.



the énly possible X with n = 1 is PT(E). However, the real

difficulty comes up sven at n = 2: Let Si be the projective
algebraic surface obtained Fromlpz(m) by blowing up i points
in general position (where 1 £ 1 £ 3). Then, in spite of lots

of efforts of differential geomsetsers, it is still unknown whether
or not the nonsingular toric Fano variety 53 admits an Einstein-

Kahler form,

The purpose of this paper is to give a brief survey of recent
progress on Problem (0.1) together with our related new results.
Especially, in Sections 1~ 6 (though they are somewhat of expository
nature), several key ideas are introduced often without proofs,
while technical details are given in the subsequent four appendices.
In particular, in Appendix C (sees (9.2.3) for the most general
statement), we shall show that the Futaki invariants of an anti=-
canonically (relatively) polarized toric bundle Y over W can be
regarded as the barycentre of m(Y) in ter@s of "Duistermaat-Hseckman's
measure", wherem : Y= R (n = dimm Y - dimm W) denotes the associ=-
ated "relative" moment map defined, in Appendix B, without any ambi-
guity of translations {(cf. (8.2)). Finally, in Appendix D, a very
explicit description of Einstein-K&hler metrics for Sakane-Koiso's

examples will be given (cf. (10.3.2), Step 4 of (10.3)).

parts of this paper are given as a lecture at Ruhr-Univeréitét,
Bochum in April, 1986. The author wishes to thank Professors
G.'Euéld and P. Kleinschmidt who invited me to give a talk on
this subject. He is also grateful to Professors T. 0Oda,
H. Ozeki and I. Satake for helpful suggestions and encouragements
during the preparation of this paper. Finally, he wishes to thank

the Max-Planck-Institut fUr Mathematik for constant assistance

all through his stay in Bonn.



1. NOTATION, CONVENTIONS AND PRELIMINARIES.

Let 2, (resp. 20) be the set of positive (resp. non-negative)

integers and R, (resp. RO) be the set of positive (resp. non-

negative) real numbers. UWe now put:

6= (60" ={(t,, ty, won s t) |t €T,
mi={a=(a), a5, o0, a)) laié 2} (= 2"),
by
N :=lb =] b €2} (2 2").
bﬁ

For &4a€M and b €N ss above, we define (a,b) € 2, ’,\’,Eue Hoin

and ,\bé Hom (Em,G) by

alg gp
(a,b) := 2..", a.b,
’ : i=1 “i°i ?

%a((t,}, t2, ses tn)) = t

)\b(t) = (£ 7, t

where t, t1, "'“?_tne Gm‘(z E*). Then the correspondence

alg gp

(G,6,)

a
ak—>X

(resp. bk—%)wb) canonically induces an isomorphism between the

additive group M (resp. N) and the multiplicative group

Hom (G,G,) (resp. Hom

alg gp (G,,G)). Note that

alg gp

XA (L)) = (@B pop all teg, (= C¥).

(1.1) DEFINITION: A non-empty subset 0 of N is called a cone if

the following conditions are satisfied:

(a) If DEN satisfies Bb €0 for some Fez,, then b €07,
(b) If 0 b €0, then -b § 0.
(¢) o0eaT.

(d) In terms of the natural additive structure of N, 0 is a

semigroup gensrated by its finite subset,



(b)) if 0, T €A, then ¢NAT 20 ang CNT ST

For a cone ¢, there exists a unique irredundant finite subsst

{6", 6%, ..., 6"} of @ such that o= 3, " 2,8 . Thess b’,
2
b

Ty eee b™ are called the fundamental generators of the cone ¢ .

(1.2) DEFINITION: A non-empty subset T of a cone O is called
a face of g~ , denoted by T <0, if there exists an element a of
M such that (a,b) 2 0 for all b in O and that T =-{&Jeo’| (a,b)

= 0} . A finite polyhedral decomposition of N is a Finite set JAY

of cones in N such that

(a) if TS0 €A, then TEA;

(c) N ==L} o,

For every finite polyhedral decomposition A of N, we put
A1) i={ceA |dino =1},  o<ign,
where dim 0~ denotes the dimension of the real vector space spanned

by ¢° in NIR = N@ZR.

(1.3) DEFINITION: A finite polyhedral decomposition A of N is

said to be nonsingular if for sach GG[S(n), the set of fundamental

gensrators of o consists of n elements and forms a Z-basis for N.
For every nonsingular [&, the set of fundamental generators of
geach element of /\(i) consists of exactly i elements and is com-

pleted to a 2-basis for N. U

We shall nouw quote the following fundamental results due to

Demazure[ﬁ], Miyake and Oda DB], and Mumford et al.[1ﬂ :



(1.4) THEOREM:

To every nonsingular finite polyhedral decom=~

position [} of N, one can uniguely associate an n-dimensional

irreducible nonsingular G-~equivariant compactification Gy of G
possessing the following

two propertiss:

(a)

To eachoeA(i), O €

i S n, there corresponds a unique
(n-i)-dimensional

G-orbit, denoted by ©°, such that G,
is expressible as

_ g
Gy = U o

(disjoint uniocn).
TEA
Furthermore, the closure D(o) of €Y in G, is an irreducibls
nonsingular (n-i)-dimensional G-stable subvaristy of Ga
written in the form
Do) = \Jo° (disjoint union).
Tzo

(b)

or eachoé¢A(n), U

T :
¢:=L43wm forms an affine open G-stable

neighbourhood of 87 in G, satisfying the conditions

6 C U ¥ A'(E)

veA(n)

Let {HD(¢)1, b(o&z, cee b(¢)n} be the set of fundamental

generators of ¢  (which forms a 2-basis for N), and let

-{ a(¢)1, a(o)z, oo ,‘a(m)n} be the dual basis for M defined

by the relation (a(w)l,b(ojj) = Sij' Then the corresponding

characters

‘= xa("')le Hom (G,G ) 1
Xy;i 7 alg gp‘*’"m’’

$itn,

extend to rational functions on G, ,.uhich are all regular




2. DEMAZURE'S RESULTS UN TURIC VARIETIES.

Throughout this section, we fix a nonsingular finite polyhedral
decdmhosition A of N. Put NR := N@zﬁ « Furthermore, for each
P 64&(1), let bF denote the unique fundamental generator of F .
Ue nou considef the divisor
K 3= = Z D(F)'
pen()

on QA . Recall the following fact due to Oemazure [6]:

(2.1) THEOREM: K is a canonical divisor of G, . Moreover, the

—_—

following ars squivalent:

(a) Gy is @ toric Fano variety.

(b) =-K is ample,

(c) -K is very ample.

(8) Z_ :={aem|(abp) $ 1 for all peA(1)} is an

n-dimensional compact convex polyhedron whose vertices are

exactlz-{at I Z?GZS(n)} , where sach a, denotes the unigue

element of M such that (a.,b) = 1 for all fundamental

generators b of T.

. . 2 ' )
(2.2) REMARK: It is easily seen that P°(z), P(L)xP (E), S; (1%i%3)
are the only possible 2~dimensional nonsingular toric Fano -
varieties. Recently, for dimension thres also, all nonsingular toric

Fano.varieties are completaly classified (cf. Batyrev [4],

K. Watanabe and M. Watanabe [23]).

(2.3) DEFINITION (Demazure [6; p.571)): An elsment a of M is
called a root if there exists p € A(1) such that (a,PP) = 1 and
that (a,b.) € 0 for all c€/A(1) with @ ¥ p. Let R(D) be the set

of all roots in WM.



Now, as an immediate conseqguence of a result of Demazure [?;

Pe 581], one obtains:

(2.4) THEOREM: et Aut(qd) be the group of all holomorphic auto-

morphisms of QA . Then Aut(GA) is a reductive algebraic group

if and only if - R(A):=-{-a |a.6R(A)} coincides with R(A).

(2.5) REMARK: In view of this theorem and (2.2), it is _.now -
possible to determine all 3-dimensional nonsingular toric Fano
varieties G, with reductive Aut(Gp) - Such .a Gp-is, actually,
isomorphic to one of the following {(we ocwe the computation to

Dr. T. Ashikaga):

P (), p2(@)xe’ (0), PT(o)xe  (0)xp (L), _
PT(E)XS3s POpTp1 @ Upl,pT(1m1))s Py

where we used the notation of K. Watanabe and M. Watanabe [23].

Obviously, the first three varieties admit an Eimstein~Kahler
-foerm. Note that, for the la@t three varieties, Aut(gﬂ) cannot
act transitively on G4 . However, [P(Gpi,,1 @(Pp1xp1(1,-1))
still admits an Einstein-Kahler form by virtue of a result of
Sakane[22], partly because in tﬁis case, every maximal compact
subgroup of Rut(qa) acts on Gy with principal orbits of

real codimension one (cf. Appendix D).

The importance of (2.4) comes from the following theorem

in differential gsometry due to Matsushima [17]:

(2.6) THEOREM: Let Y be a compact complex connected manifold

with dimg Aaut?(Y) > 0 (where Aut®(Y) denotes the identity component

of the group Aut(Y) of holomorphic automorphisms of Y). fy

——

admits an Einstein-K&dhler form, then Aut(Y) is a reductive alge-




