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ABSTRACT

We study the asymptorlc behavior to the incompressible Navier..Stokes equations in two

and three space dimensions llt = u Vu + Vp =.6u, div u =O. We show that for an appropriate

class of initial data the solutions admit a lower bound on the L2 decay rates.
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ToRon

INTRODUcrION

We study the asymptotic behavior of solutions to the Navier-Stokes equations in two and

three space dimensions.

u,+uVu+Vp=6u
div u = 0 (1.1)

Dur earlier work [4] and [5] dealt with the upper bounds on the L 2 decay rates of solutions to the

Navier-Stokes equations in three space dimensions with large data It was established that if

u 0 e L2 ~ LP J 1 S P < 2 then

where a.(p ) = Jt,(21p - 1) and the constant C depends on tbe L2 and LP norms of the initial data

This paper dea1s with more subtle problems of deriving lower bounds on the energy decay

rates. We show that for a certain class of initial data the solutions u (x J t) to the 2D and 3D

Navier-Stokes equations admit an algebraic lower bound on the energy decay. Specifically,

there are two cases to consider. In the first case, the average of the initial data Juodx is nonzero.

This case was treated in the earlier paper [5] where it was established that

(1.2)

for n :c 2, 3. In the second case the average is zero, i.e., the Fourier transfonn at the origin is

zero. Here the lower bound on the velocity of decay rate depends on the order of the zero of the

initial data. More precisely J if the zero is of order one and the data u 0 E L 1 n H 1 and certain

weighted LP spaces described below there is a lower bound of the fonn

~
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lu (., t)l i1 ~ C (1 + 1)-a(n) (1.3)

n
where a.(n) = "2 + 1 and C depends on a few parameters of the data. If the zero is cf order

grcater than one and thc data is taken outside of a set M of radially equiciistributed energy then

in two dimensions the Iower bound will be described by (1.3). The Iower bound obtained in 2D

is uniform., the one in 3D is noL Thc estimate in two dimensions is sharp. An example

suggested by A. Majda shows that there arc solutions to the Navier-Stokcs equations with data in

M which decay exponentially.

Tbc algebraic lower bound is a consequence of the nonlinear structure of the equations. In

contrast, soluöons to the heat equation decay at an exponcntial rate if the initial data is highly

oscillatory. The inertial term div (u @ u) in the Navier-Stokes equations appears to convert

short waves into lang waves, reducing the decay rate. Even for most cases of highly oscillatory

initial data (Le., containing just short waves), energy will be transmitted to thc lower end of the

scale, thereby producing long waves reducing the decay rate of the solutions.

Out approach in the case of zero average data is first to find conditions for the data such

that the corresponding solution to the beat equation decays at a very slow rate. These conditions

will be met by the solution u (x, t) of the Navier...Stokes at some time t 0 ~ O. That is, short

waves are transfonned into long waves. Rence the solution to the heat equation which takes on

as initial data u (x, to) for some appropriate 10 ~ 0 has a lower bound on their rate of decay.

Specifically, ifv is a solution afvI =~v, v(x, 0) =u(x, to) then Iv(·, t)jt2 ~ (1 + t)-a(n).,

This infonnation is used to insure that the solutions to the Navier-Stokes equations cannot

decay any faster. The result follows using Fourier analysis of the Navier-Stokes equations. The

argument reHes on a technique which involves splitting the frequency space into two time-

dependent sets. This technique was developed in [4] to study the upper bound.

~~~ ~ ... __ ~ __, ~ ~ __ ........ _ ..... _.... '_.__ ~~ ......__-.- .. __ .~, ._~_ .... _.~~ .... " ...._.... _._~.. _,~ ~ .. _~~ ,._~~~~ .. _....__ ..... ~_ ........ r·._~.~ .. _
. .



•__ ~~ _ .... .. __ ~~ _ .••• _._. ~~_. ~ __ ~. ~ ~ -r· •• " ~ __ ~ ~ ••••••• ~ ••• _. ~ ......

- 5 -

For solutions in two spatia! dimensions, the results are valid for classical solutions. For

three dimensions, the results are valid for suitable Leray-Hopf solutions in the sense of

Caffarelli, Kahn and Nirenberg [1]. We expect that the results can be extended to n dimensions,

n > 3, using the results ofWiegncr [6], Kayikiya and Miyakawa [3].

2. Estimates on solutions to the beat equations

In this seetion we describe a class of initial data D, for which the solutions to the heat

equations admit a lower bound on the L 2 decay rate. In seetion 3, it is shown that if u (X, t) is a

solution to Navier-Stokes in two spatial dimensions with data outside a set M of radially

equidistributed energy, then there is 10 ~ 0 for which u (x, to) e D. Hence if u (x, to> is taken as

initial~ the corresponding solution to the heat equation will have a lower bound on thc L 2

decay. This information will be used to obtain a lower bound on the L 2 rate of decay for

solutions 10 the Navier-Stokes equations. For data in M an example is given in section S of a

solution to the 2D Navier-Stokes equation which decays exponentially fast

The seetion concludes with a lemma establishing an upper bound on the L - rate of decay

for the gradient of the solutions to the heat equation for solutions which decay in L 2 at a given

rate.

THEOREM 2.1

Let Va e L 2(R"). Let V be a solution to the heat equation with data vo. Suppose that there

exist functions I and h, such that the Fourier transfonn of v0 for I~ I s 8, Ö> 0 admits the

representation

..... - ..... _...... - ~&_--- .. & ..- -""._~... "": ....... - ... -.-.-- ----.-~ ~~--:---.~......
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where L and h satisfy thc following conditions:

ü. L is homogeneous of degree zero.

üi a1= J Iro-l(0l)!2dco>O.
Iml=1

Let M 1=Sup IL(y) I, M 2 = sup IVI(y) I, K =max(MOt M l' MV, then there exists
1,1=1 &2Sly1S1

constants C 0 and C 1 such that

where Co and C 1 both depend on n , Mo, M 1, 5 and Iv0 IL' and Co also depends on K and q..

PROOF: Note first that conditian ili is not necessary far the upper bound Iv (', t) I'f.,.

UPPER BOUND. By Plancharel's theorem

J Ivl 2dx = f Iv 12d~ = f IvoI2e-21~I'td~
R- R- R.II;

Let A = {~: I~ I s;, B} then

f Iv 12dx =fIva 12e-21~I't d~ + JIVo 12e-21~12t d ~ s;, f IVo 12e-21~12t d~ +e-olr IVo IZ,
R.II; A A~ A

Ta estimate the integral on the right..hand-side use the representation of v0 in tenns of I and h.

JI Vo 12e-21~12r d~ = f1~·l (~) 12e-21~1:' d~ + 2Re( f~·l (~)h(~)e-21~IZt d~] + (2.2)
A A A

f I h (~) 12e-21;I'td ~ :s 2f I ~'l (~) 12e-21~12t d~ + M 6f I~ 14e-21~11t d~
A A A

Recall that I (~) is homogeneous of degree zero. Combine (2.1) and (2.2) and make the change

of variables y =VZ; ~, then
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f I v 1
2dx S 2(21 )-1112+1f IY ./ (y ) 12e_y1dy + M o(2t )-1112-2 f Iy 14e_y1dy (2.3)

R" A A(t)

where A (r) = {y: Iy I S s{2;}. Since M 1 = sup / (y) and / is homogeneous of degree zero
IYI:::lI

Hence from (2.3)

f 2 C
IvldxS 121'

R" (21)11 +

where C depends on Mo, M I' Öand n. R~all that

f IvI 2
dx S Ivolt2'

RA

hence

J1v 12dx SC 1{t + 1)-(n12+1),
R·

LOWER BOUND Choosc Sl < S with 4MoM 1Sl S CXI and let A 1=~: I~ I S Sv. Then

JIvl 2dx;:: JI'voI2e-21~I1rd~;::
R" At

f (I ~.J (~) 12 -1J,;foM 11 ~ j3)e-2Ilillrd~ =
At

Öt

0)" fr"+I(CXI - 2M(jI.\1 l r )e-2rz, dr ~
o

-2roll cxle
--- t-(nl2+l) for t 2: ö- l

2(n+2) 1

-_1.....--7 ~ - ... ~-- ..... _ .......- '"::.-~ .... - -~ ~-,.,~ .. ~ •• -. r •• _ - -~. ~,._- • __ • -, - "_ .~, •• -_ """'7'" I._'_'~ ~ ~ ~. __ &..... _ ~ _.. ~.. ~ _ . ~ ,_ .. ~.~. _ ~ _.. ' ~
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Since for t < Bi'"2 we have

f Iv 12dx =JIva j2e-21;12r d~ ~ JIva j2e-21~1~Ö,-~d ~
R· R" R·

(1+1 )-<,,12+1) f IVo 12e -21~1 ~511d ~ .
R"

Tbc lower bound follows for

co= .

CoroJlary (2.2)

-=---~--- .- --- --- - ., ,
.......... ~ ... ~.~ ... ~

Let v bc a solution to the heat equation with data v 0 E L 2(Rn
) where v 0 has the Fourier

reprcsentation described in Theorem (2.1) and 1 and h satisfy i, ü. lf in addition 1 satisfies

1. 000'1 (COo) = a ~ 0, for some CIlo e S,,-1

then the conclusion of Theorem (2.1) holds.

PROOF: It is necessary to show that 1 and 2 imply conditions of theorem 2.1. Note that if

COo'1 (000) = a ~ 0 fot some Olo E S,.-1 and ~'I (~) E C 1(Rn \0) it follows that there exists an open

ball centered at 000, B,(roij) ofradius r > 0, such that fot 00 E B,(Olo), 00'/(00) ~ aJ2. Hence

f I oo'l (co) 1
2d ro > f j co"l (00) j 2d co ~ a/2L > 0

Icol=1 Sf"'lB,(~

where L :::Il f dw andS = {co: Icol = I}.
t; S f"'lB,(~

.- ~"':' .. :.....- -+-...- _.... ._........----. --.-._-~- _...". -- ..' -- ... -
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Thc ncxt lemma establishes an upper bound on L .. rate of decay for gradient of solutions to

the heat equation which decay at a given rate in L 2•.

LEl\1MA (2.3)

Let v (x, t) be a solution to the heat cquation. Suppose that Iv (', t) 1Z2 '5', C (t + l)-{nl2+l).

Then

IVv (', t) 1_ < C (t)-(II12+1)

PROOF:

CI v (., tl2) IL2t-{II12+1)12 '5', Ct-{III2+1) •

3. THE INITIAL DATA

In this section a class of initial data is found for which the solutions to thc Navier-Stokes

equations admits the Fourier representation

for same to ~ O. Herc [t and hJe satisfy the conditions given in Theorem 2.1. Hence the solution

to the heat equation started at u (x, to) has a lower bound for L 2 decay.

Tbc iniiiaI data will belang to the interseetion of LI, H 1, some weighted spaces and the

complement of a set of radially equidistribution energy. The condition of not having

equidistributed energy is essential in two dimensions. Specifically, an exarnple will be given

where the data has radially equidistributed energy and solution decays exponentially.
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Tbe data 10 be considcrcd has Fourier transform vanishing at the origin. Far nonvanishing

data, the reader is referred ta [4]. There are two cases. Case 1: Tbc zero of the origin is of order

one. Case 2: The zero is of order greater than one. In case one, the data can have

equidistributed energy and t 0 is O. For case two, the data has to lie outside a set of

equidistributed energy.

We define the following weighted spaces and no~.

W1 ={u : j.'XI 2I u 1dx < GO}

W 2 ={u : J.I u 12 1xldx < oo}

lulw1 =JIxl 2 1uldx
R-

f Ix 1Iu Idx = f Ix I Iu Idx + f Ix I 1u 1dx S f (I X 12 + lu12)dx + f Ix 12 1u Idx < 00,

R- IxlSl Izi ~l . Ixlsl Izl~l

H =H(RII
) = closure of V in L 2,

Note that the choice of the wcighted spaces, insures that the data has at least two Fourier

derivatives inL 2,
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THEOREl\t13.1:

Let geH () W 1 f1 W2(Rn
), n = 2, 3. If g has a zero of order one at thc origin, then there

exists ö> 0 such that for I~ I s Ö

sincc I and h satisfy thc hypothesis of theorem (2.1), with M 0 = sup IV2g(~) I and Cl depending
IxlSli .

only on ~g (0).

PROOF: Since g e W 1 t'1 W 2

Since g(0) = 0 for I~ I S Ö, ö > 0,

Since Vi (0) ;c 0 by hypothesis. To finish the proof let

l (~) = Vg(Q)

h (~) =Vg(~) ~2.

Here Mo ::I MO::l sup IV2j (~) I and Olo E S"-1 is chosen so that 000· Vd" *' O.
IxlSö .

Tbc following notation will be used.

/0

aiet(pu)= f J IUi r
2 -luj 1

2dx eil,
°R"

lO

ß!(to, u) = JJuiujdx dt,
o R"

. - .-..... -_. 1
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The two-dimensional case is considered first For notation sake let M = A f (') B t..

THEOREM 3.2

Let gEH 1 (') H (') W 2 (') Me (R2). Let u (x, t) be a solution to the Navier..Stokes

equations with data g. If g has a zero of order greater than one there exists to and 0> 0 such

!hat for I~ I S ö

where to =to( Igl H I , Igl w), Ij:(", to) and hJ:('J to) satisfy

,
Ü. Ik is homogeneous of degree zero;

üi COo'Ij:(CIlo) =CX:#f. 0 for same COo E S,.-1 and at least one component Ik •

The constant M 0 depends only on Ig IL b Ig Iw1 and Ö. The constant a is a multiple of al(t0, g ).

PROOF: Take the Fourier transfonn of the Navier..Stokes equations

2 -"""""..-..... ...ut + I~l u =-uV'u - Vp =-H

zi(~, 0) = g(~)

Hence

,_ ,i,

t

u.t(~J t) =gJ:(~)e-I~IZt - fHk(~' s)e-I~IZ(I-S)ds
o

w.Lo.g. choose k =1. Recall that

so that

(3.1)
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Let a·· =u·u·· thenI) I) ,

--_ .. ---_.~~._, ~ -- --- -- -._----
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~ ~.~. /"...a D =-i~l ~ _'_'1 u·u·
Xr ~ IJ: 12 I J

~~I ~

-----_._.- - -- .._-, ..

(3.2)

Note tbat 1- ~t/I ~ 12 = ~1/1 ~ 12, hence

Proposition (A.I) (see appendix), establishes tbat for I~ I s Ö

where C (r) dcnotes constant in ~ which depends on 1g 1L 11 Ig IWl' Sand t .

Let ai7 =aij (0, t). Thus aij can be represented as

(3.3)

o -a·· = Q .. + j:·V.t:a··(J:)
I) IJ "=' .., IJ "=' ,

By (3.3)

(3.4)

and by (3.3) and (3.4)

From (3.1) and (3.5)

........... _ ......... _ ••• ~._-~__....- .........- _ .... - __ "r_ ••• _ ..... _ .- __ ._ ,~~~ ........ ................. w_ ..._+_ .... _....... I ~~__••• .. ..... __ ....... ~~.~ _~. _ .... _ ......... ' •• ,
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,
~.f(-i )HPds + h 1(~, S ),

o

where

Since

We first show that for some to > 0 and same COo e 52, COo-[l(OO(p to);t O. If Uo e: Ar choose

COo = (1, l)m,

'0
-i JJ 2 2COo'll(ooev to) = _~ Ul - U2 dx dy ds ;t O.

2""2 0 R1

If Uo E B f choose 000 = (1,0) then

'0
0)0'[1(<:00, to) = f Ju lU2dx dy cis ;J!: O.

o R1

(3.6)

(3.7)

By lemmas (A.l) and (A.2) of the appendix since g E 1Wc there exists to=to(jgIL:t Iglw
1
, a)

such that RHS of (3.6) and (3.7) are not zero. Hence

Wo-'I (Wo, t 0) ;t 0

- .... ~ .. _ ..... _.------ .. -,.--~ _ •• -_ ••._-.... -~.----...._~---- ..... -- ~- -~~ __ ,-- ~r· _ ,- ....~ _~ - __ • •• - _..... .... ~ h r _. ~ ~ ~.... ~ r ~
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Conditions i, ü and iv are trivially satisfied for 11(~' (0) and hl(~' (0).

THEOREM (3.3)

Let gEH (J W2(R3). Let u (x, t) be a suitable Leray-Hopf solution in the sense of

Caffarelli, Kohn and Nirenberg with data g. Let g have a zero at the origin of order greater than

one. If there exists t 0 such that

'
0

a!(tQt 3) =JJ1Uj 1
2

- 1Uj 1
2dxdt ;e 0

o R3

then there exists 0 > 0 such that for I~ ISS

'
0

i, j = 1,2,3 or ß!(to, 3) = JfUjUjdxdt ~ 0 i ~ j
o R3

where /k(~' to) and h.t(~, to) satisfy the same conditions as in Theorem (3.2).

PROOF. Recall that a weak solution with data g satisfies

'{ a . }(u(t), ~(t» -l (u (s) os ~(s» +(Vu (s), V~(s» + «u (s)"V)u(s), ~(s» ds - (g. ~(O»=0 (3.8)

for al1 smooth vectors $ with compact support and divep =O. Following Wiegncr's argument

[6], we choose $ to be the solution 10 the heat equation with data q»o E C Ö(R3) and div q»o = o.

This $ is smooth and bounded in L - and (3.8) holds for ep by approximation. Let to > 0 fixed

and t· > t o. Far 0 S s S t let

which is the solution to the homogeneous heat system with data <Po at time t* - s. It is easy to

show that for such a choice of 4>, (3.8) yields

(3.9)

__-_,..... ........_ _, •.• _ ~ _. • _.~ .. ~ _ ••• _ , __ • _. ~ .... ~ ..... __ ......~ __ r __ ~_ ••__ .+ .......... __ • __ •• ,_~ •• ~ ... _ ~~.. .r ~ ~ ... __ • ~ ~. -~.~ • •• ~ r__ ~••-_ -......- _--__ - ~~ -- ... -_ ..... ~ + ..... _._ ~
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For more details we refer the reader to [6]. By hypothesis

Hence we ooly have to consider the terms in

10

L(8.tj _~;j)I~I-2J~j(s)e-I~I~/a-$)ds'
'j=l 0

By note A.l (see appendix) the last expression can be bounded by

10

-i :I: (ö.tj - ~.t~j) I~ ,-2J L ~i a;J(s)ds +KI ~ 1
2

j=1 0 iJ=1

(3.10)

with K depending only on the L 2, W2 DOrms of the data and t o. Tbc vector function

l.t =(1.t1, 1.t2, I,?> can be chosen so that thc components have the form

10

11=-i I: (Okj -(~k~j)ISI-2 J ~ ai7(s)ds
j=1 0 ij=1

From (3.9) and (3.10) it follows that

with Ihk, (;, t 0) I S K0 I; 12, and K0 depends only on sup IV2g(;) I, the L 2, Lw nonns of g and
I~ISS 1

to. Conditions i, ü and iv af Theorem 3.2 follow trivially. Ta establish ili choose

Cllo = ~ (ei + ej) ifai .. 0 with ei j -th element o( the canonical basis of R3• If ßi .. 0
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4. THE KEY THEOREM

Thc decay rates for L 2 nonns of solutions to the heat equation are compared co the decay

rates of L2 nonns of solutions co the Navier-Stokes equations. It is shown that if the upper

bounds and lower bounds of decay rates of solutions 10 the heat equation are of order

(1 + l)-{II/4+lJ2) the same rates are valid for solutions co the Navier-Stokes equations startcd with

ehe same data.

A fonnal argument is given for solutions in 11 dimension 11 ~ 2. Tbc proof is rigoraus for

n =2. For n =3, thc rigorous resu1ts are less strong since they are obtained only under the

supposition of the existencc of a sequcnce of approximate solutions (such as those constructed

by Caffarelli, Kohn and Nirenberg [1]) which converge strongly in L 2([0, 1] X R3
). Passing to

the limit a lowcr bound will be obtained for almost al1 t. We expect that thc result for n =3 can

bc improved. For n > 3, it is expected that the proof can be applied 10 the approximatc solutions

constructed by Kayikiya and Miyakawa [3] and passing to thc limil Tbe upper lirnits of ehe

rates of dccay are includcd for complcteness. The bounds for n =2 were established by

Wiegner in [6]. The boUDels for n =3 wcrc established in [5] and [6].

Tbc proof for the lower bound is based on an analysis of ehe Fourier transfonn of the

difference between ehe solutions to the heat equation and ehe Navier-Stokes equations started

with the same data. The argument is by contradiction.

THEOREM 4.1

Let Uo e LI r""a W2 r""a H (Rn), n =2, 3. Let v be a solution to the heat equation with data

"0' Supposc

(4.1)

For n =2, let u (., t) be a solution to the Navier-Stokes equations wich data Uo, then there exists

.. ~_._.- -_.. '- _._ ~-~-_ .. " ~ _. -~. + ~ _. _.. , . _.... " -- ,- .'- _. ~ '-" ~ " _.. .. . .. - ~ '. +_-_.. __ _.__ ..- - _-_. _._ - ......,.
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·constants M 0 and M 1 such that

(4.2)

where Mo and M 1 depend on Cl' n and the L L and L 2 norms cf u 0 and Mo depends also on Co

and the W 2 nonn of uo. .
- .... ._-----

J

- •. - __-..r-""""'-.•

-. For n = 3 ~-. (4.2) holds for a.e. t, where u (x , t) is a Leray-Hopf solution in the sense

of Caffarellit Kohn and Nirenberg.

PROOF.

UPPER BOUND.

See [5] and [6].

LOWER BOUND.

We first present a proof which is rigoraus for n =2 and fonnal for n ~ 3. We will indicate

the modifications necessary to make the proof rigorous for n = 3.

·Owline 0/ the proof:

There are two cases to consider. Let ß be a fixed constant which will be defined below.

For n =2 the cases are the following.

,ease 1:

Given t there exists T > t such that

T

If f Iu rl 2
- Iu21 2 LU ds I < ß~c0 and

o R"



___________ • .....-. ...... .......~ ...._._~._.. ... _ .. _I~.... r~__ • _~ ..... _ ... _._~~~~.+ ... _ .~_._J ........ _ .... __.~.~ ....• _._~ ._ .. __ ~_ +.~._~, .,.I,..I' __ ... -.-- ........ ~~ .• '"

- 19 -

T

If f U1U2 dx cis 1 < ß~CO'
oR"

Case 2:

There exists T 0 such that for all t 2: T 0

I

If f lu tl 2 -l u 21
2 cU cisl2:ß"CeP or

oR-

I

If f uIU2 drds i ~ß"'Ccr
oR-

Ir n > 2 the two cascs are slightly different.

Case 1*:

Given t thcre cxists T > t such that

T

IJJ I Ui /2 - IUj 1
2

dx cis I < ß'"C0 1 Si, j Sn, and
oR-

T

IJ JUiUj dx ds I< ß""CQt 1 Si,) Sn,i ~j.
oR-

Case 2*:

There exists T0 such that for all I ~ T0

t

IJf I ui 1
2

- I Uj 1
2

dx dr I ~ ß'"c 0 for at least one pair i ,j or
OR-

t

IJf Ui Uj dx ds I ~ ß"C 0 for at least one pair i, j with i ;c j.
oR-

•• ~ •• --..-.--:- ..... '~ __ • _ .... -..,..,._ .... _ .. __~~ ••_. • _. ~ ...... _~_.__ .' __ ._~ ................ _" _ •• __ .," -.._ ~_ ~.r'" • ~ _ ... _,~ ~~ ,.", ,. _ ~ +~ __ r
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Case 1:

In this casc an increasing sequence (rm ) , 'm = 'm(ß), 'TrI -;>00 as m -+ 00, can be

constructed such that

.. ~ ~-~- ..-._ ..... - ...

r.

I f f IU11 2
- IU21 2 dx dsl < ß~Coand

o R-

r.

1 f f ulu zdxl ds <ß~Co·
o R-

(4.3)

Let Q) =v - u be the difference of the solution to the heat equation and the solution to the

Navier-Stokes equations with thc same data Uo. It will be shown first that for t sufficiently large

(4.4)

where a = n/4 + 1fl, 'Y> 2a and C SC014. Briefly, inequality (4.4) is obtained as follows. The

differencc CI) can be considered as a solution to an inhomogcneous heat eq~tion

00, =6w+A,

where A = -(u Vu + Vp). Using the Fourier splitting rnethod [4,5], it follows that the L 2 norm

of CI) is bounded by three tcrms~ Two of these terms corne from the inhornogeneous part and

decrease at a faster rate than a.. This faster decay is a consequence of the terms being either

cubic in (co, u) or involvc the gradient v which improves the decay rate. The third tenn is the

critical one and has the fonn

J loo(~,t)12d~
S(t)

where S(t) is a ball of radius (t + 1)-1112 and as such decay like (r + l)-nl2. The hypothesis of

case 1 is used (or 1* if n > 2) to show that

where s :2: 2 and C2 is an appropriate constant Hence

_____ .... .,_........,..~ -. __ _ .... ..... _. ~~_, r_ .. ."__ .• __ • __ • r •••• _.__ _ .,_~_ ~.,.~~~_ .... ~. ~ r.. _ ... r _.. ~.. _. -.-_ ~~. ~ ". ~ ~ - _ ~ r ~, .. __ •• ~.
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f I ro(~, t) 12d ~ S [8ß2Co+2C2(1 + rnt )-2n](t + 1)-(1112+1) + 0 «(-<1)
Set)

where (X > n 12+ L Hefe C 2 and C 3 depend on the L 2 and L 1 norms of U o. Choosing ß

sufficiently small and rm sufficiently large, (4.4) will yield for t ~ T 0' T 0 =T o( IUo IL1J IUo ILI,

n, Co' C 1)

Hence the lower bound of Iu (', t) IL1 follows for t ~ T<r For t S T 0 the bound is a consequence

of the decay of energy of u .

Case 2:

Here we study the difference W =U - V whcrc U =u (x, t + T) with T > T 0 for some

appropriate T and V is the solution to the beat equation

VI =aV

By theorems (3.2) and (2.1) and thc hypothesis of case 2 (or 2* if n > 2) the L 2 nonn of V has

the following upper and lower bounds.

for some appropriate constant ßl' As is case 1, W satisfies an inhomogeneous heat equation.

Again using the Fourier splitting method the critical term to bound is

f llV(~, t)12d~.
S(i)

Hypothesis of case 2 yields

~ ._~__ .. ~~__ ._~_..... ~ ..... "'_._~",.__ ."r. ~ ~~ ..• ~.,~~~~_~r,__· .. __ 0 .~_ ••~_ .. ~~ ....... _ ..... - ... __ ",:""_,,__~.,,,_•• ~ • __.-_- _. -~,._~._- ---.., ....



_ •• ~~ ... ~~ ..._._~ ..... _4.'~ ..... ~ ._ ••• ~._._. '-. "'~_~__ .. ~~ .........__;~ :.. .......... ------- 4'_

- 22-

and as in case 1 if T sufficiently large and t > T it will follow that

Tbe d.etails of the proof are given next We give the proof for n = 2, if n > 2 the

hypotheses are given by Cases 1* and 2* and (3..5) needs to be modified appropriately.

Case 1:

Let {rl:} be an increasing sequence such that (4.3) holels. Let 0> =v - u be the difference

between the solution to the heat equation and the solution to Navier-Stokes then

co: =L\ro- (uV'u + Vp)

Multiplying (4.5) by ro and integrating in space yields after some integration by parts

d J 1(1)1 2
.- --dx=- J IVco1 2dx- J(u-v)uVUtU- froV'pdx

dt R- 2 a- R- R"

Since div ro = 0, thc last integral vanishes. Moreover since div u= 0, Juu Vudx = O. Hence

S-2 f IVco I2dx +KIVv I_I f jul 2dx
R· R"

where K = 2n 2• Using Plancherel's theorem the last equality reads

~ f IcO 1
2
d ~ ~ - 2 f I~ 12 1cO 1

2d ~ + K 1V'v 1_ f Iu12d:t
w r r

Let

(4.5)
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Splitting the frequency domain to sets S (r) and S (r)C , arguments of previous work done in [5],

yield

!!.-[(t + 1).... J ICJ), 2dx1S (t + 1)411-1[4 J 1ool2d~ +KI VV 1_ JIu, 2dx1=11+12 (4.6)
dt R- J S (I ) R- J

Consider first 12• By Lemma (2.1):

12 S KC 1r-"12-1(r + l)4n-l J lu 12tU
R-

(4.7)

Recall that by thc results of Wiegner [6] there is a constant C depending only on the norms of

tbe initial data such tbat

sincc

it follows that if C 2 =C + C 1

(4.8)

Rence by (4.8) and lemma (2.1) there is a constant M such that for t ~ 1

(4.9)

where M 1 = KC 1C 2. To bound integral 11 the following estimates on c.ö(~, t) are necessary.

Taking the Fourier transfonn on the equations for the difference yields

k =1,2

For notation sake let COk =co, Hk =H. Since

.~_ - ~ ...__ """- ............... ~ •• __....~_ ~ ._.___ P .... '_,_ - ...... ~~__ ~ .~ ~ - ,~r~, ..-"~_ ....... ~_ - __ ~ ._~ ....._. ....... ~ .... ~ .......~ _... ____._ ~-._- .~ •• , •• ,_~ ~ _ •.• ~ _.-.-,. + ..... - ......~ .......... _ •. ..,..
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" ~ "'" .( n............... ~,~j ..-....]H =uVu - Vp =-t ~ ~.u.u.t -~.t ~ -- u u·
(- J J ~ 1.t:1 2 r J

JeL 'J ""1

it follows that

with K 1 = n (n + 1). Hence for t ~ rm' where r111 will bc chosen below,

I

Iro(~, t) I s Iro(~, rm) Ie -1~I~t-r.) + K d ~ I Je-I~I~I-S) Iu (., s) IZz ds = I + 11
r".

Boundfor I. Hypothesis of Casc 1 (Casc 1* if n > 2) is used co show that ro(~, rm) is sufficiently

smal1 Then r111 is chosen so large that the decay of the energy will irnply that the coefficient of

II is sufficiently smalL Since rm was chosen so that

'.
IJf lutl 2-l uzI 2

d1: I sß"Co
OR2

and

f,.

I JJuluZd1: I s "Coß
oR2

and by (3.5)

(Recall ifn > 2,11 will be modified appropriately.) Ie follows that

f,.

100(;, rm) I S JI11 (~, s) Ids S 2ß"i'C 0 I~ I + 0 (I ~ 12)r111

o
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Boundfor IJ.

From (4.8)

Hence 11 S (t + 1)411-1 f [I + 11]2d~ S
S(I)

S 4n (t + 1)4n-1[4ß2C02 f I~12d~ + 4nz(1 + rm)-"ci f I~ 12d~ + f 0 (I ~ 14)r";d~]
S (t) S (I) S (t)

wherc we let ßbe so that 16ß2A" =1/16 with An = 21t(2n )nl2+1/(n+2) and then chose rm SO that

16nZ(1 +rm)-IlCi SCrl16. Integrate (4.6) over [1,t] and use the bounds for 11 and 12 10

obtain

__.... .. __ .,_.t

f lm(x,t)IZdx S(t + 1)-411 f jro(x, l)lzdx +
Ra Ra

Co
M (t + 1)-<"+2) + -(t + 1)-(nl2+1) +H.O.T.

8

Recall that

Hcnce (4.12) implies

Cof I oo(x , t) 12dx S -(t + 1)-(11/2+1) + H.O.T.
Ra 8

Note that by (3.5) and Lemma Al from the appendix

(4.10)
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H.O.T. = [fes + l)4m-l f Oel~14)d~lUrm] (t + l)'~n
o Set)

andCo

Cof Ico(x, t) ,2dx S -(t + 1)-(nJ2+1)
R- 4

Thus for t ;a: T 0

lf t < Ta then

C
~ _0(T0 + l)--(nl2+I)(t + 1)--(nl2+1)

4

and this proves Case 1 since Todepends only on 1"0 ILI, 1"0 IL1' IUo Iw
1

, n and C Ir

The following auxiliary computations will be needed for Case 2.

1. Lower bound for (11

Recall from theorems (2.1) and (3.2) thut

(Xl = f 100"1(0) 1
2da,

Iwl::1

where

--~,- ._.- --'--- ••• < .--.~ •. --.---.- _., ----.-.-.-,.-,.-'-------.- -_.- -- -_•• ' -_•••••• ,-- ••--~- •••• --._-- .~. t
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aij = f uiujdx .
R·

Hence

Since by hypothesis of Case 2 for t ~ T 0

t t

JaPl - a~ds =Jf ut - uidxds ~ ß"Co
o 0 R·

t t

Ja P2ds =ffulu2dxds ~ ß"C0
o OR"

it follows that

(Xl ~ ß2C0 f 0>[0>4 + (1 - 20>t)2roid Cl =ß2coY.
10)1=1

2. Lower bound for the solution to heat equation V (x, t) with data u (x, Tl), Tl;:: T 0' T 0 given

by hypothesis of case 2. By theorems (2.1) and (3.2)

-1
(Xl (i)n e

where Xo = 2 . By the computatians far CIl it follows that
(n +2)
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Hence for t ~ a= 81(T 1)

(4.11)

and Xl is independent of Tl.

Case2

Let V be the solution to the heat equation with data V (x, 0) = u (x, TI)' for TI satisfying

i. Tl> T 0, T 0 given by hypothesis of case 2;

where Xl is given by the auxiliary computations L The constant C is such that

Iu (', tl i.2 SC (t + 1)-{1I12+1) and All = 21t(2n )1I12+1/(n + 2). Thus by theorems (2.1) and (3.2) it

follows for t ~ Öl = B(T1)-1

(4.12)

where K0 depends on the L 2 norm of u 0 and Xl depencls on ß and C er Note that Xl is

independent of Tl' but if TI tends to infinity the 10wer bound of (4.12) is only valid for

t ~ Öl = B(T)-1 and ö(T1)-1 tends to infinity as Tl tends to infinity. Let

u (x , t) = u (x , t +Tl)

We study the difference W =V - U. Here the hypothesis of case 2 (case 2* if Tl > 2) togethcr

with the decay of energy of the solutions to Navier-Stokes will imply that IW(', t) IZz.

SC (t + 1)-{nl2+1) with C sufficiently small. As in case 1, W satisfies an inhomogeneaus heat

equation. Tbe Fourier splitting method will yield

!!...[e( + 1)411 JIw, 2d:c1~ (t + 1)411-1 J IW r2d~ +KI VVI_ J lu12d:c e4.13)
dt R. J S(l) R·
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The second tcrm can bc bounded as in case 1 for t ~ 1

KI vrvl_ J IUI 2dx 'S M (t + 1)3(n-1)
R-

-
+ •• - ..........._----_....-~_ •• - ~.,

(4.14)

•••• -6

To bound thc first tenn note that the Fourier transform of the equation for W yields

where P (x , t) =P (x , t + Tl)' as before IH(;, t) I S K 11 ~ I 1u(', t) Ii z, hence

t t

IW(~, t)1 s fIH(~, s) Ids SK 11~lflU(x, s) It~ =
o 0

t t+T1

K 1I; IJIu (x ,s +Tl) It~ = K 1I; I J 1u (x , s ) Il2lb
o TI

Hence the first renn in (4.13) can be bounded as folIows.

(t + 1)4n-1 J IW 12d; S 4n 2C 2(1 + T l)-n (t + 1)411-1 J I; 12d~ S !!.(t + 1)712n-2.
Sv) Sv) 8

Tbe last inequality follows by the choice of T 1 made at the beginning of case 2. Combining this

last bound with (4.13) and (4.14) yields

Integrating over [BI' I] gives

J IW 1
2dx S .!!..(t + 1r"I2-1 + LW (t + 1)-11-2 + JI W(x, BI) J 2dx, (t + 1)-211"

~ 8 ~

Note that
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J IW(X,Öl)lzdx S J IV(x,O)1 2cU + J IU(x,O)!zdt- SZfl u (x,T l )1 2dr S2fl u o(x)l zdt-.
R- R- R-

Hence

(4.15)

for t !arge enough. That is for t ~ max(T0' Tzi, where Tz 1:: Tz( IUo ILI, IUo ILb n, (Xl' Öl' ßl'

CO>. Thc last inequality combined with (4.11) yields

~lu(·, t)I L1 c: -2-(t + 1)-(1I12+1)~

For t < T 3 the decay of energy of u yields

Thus for case 2 let Mo = ~1 (1'3+ 1)-(1112+1) and the lower bound follows. In order to give the

fonnal argument when n = 3, the hypotheses needed are given by Case 2* and (3.5) has 10 be

modifieci adequately.

In order 10 make the proof rigorous for n = 3, apply the fonnaI proof with appropriate

modifications to the subsequence U ö of approximate solutions which ·converges strongly. "IJ'\~

L~Cit...i.. ~;) • For n > 3, a' sirnilar argument should work if applied to the approximate solurions
\x.

constructed by Kayikiya and Miyakawa Let n = 3. Let us recall that the approximation

solutions u /) constructed by Caffarelli, Kohn and Nirenberg satisfy

Ur + 'V'sVu + Vp = LiLt

---~ ~ ---.- -- ,....~ --+ .. - -.."---.~~-----'---~ - - _~ .~-_ _.. ~ . ~. -- -- -. -~ -~ --._~.,
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div u =0

u (x, 0) =g

where 'Va =~ii and

and letD =R3 x (0, T)

sUPP'V c {(x, I): I x 1
2 < t, 1 < t < 2)

__{ u(x,t), (x,t)e D
U - 0 otheIVIise

Suppose that ua is a subsequcnce which converges strongly to u in L 2(D) whcre u is a Leray­
lu;..

Hopf solution of Navier-Stokes. equations. The steps to show that thc approximate solutions

satisfy

are obtained combining the arguments of [5] with the formal proof. The lower bound!cr

the limiting Leray-Hopf solution u(x,t) folIows, &.e. in t, taking the limit as 6 --+ 0 .

The details are omitted.

THE LOWER BOUNDS

Tbc results obtained in the previous seetions are combined to establish the lower bounds for

thc rates of decay for solutions to the Navier-Stokes equations in two and three spatial

dimensions.
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THEOREM (5.1)

LetUQE Li rlH(Rn),n =2. Then

,
-.-..__'-- - .__ -,,' •••~.__'.__~_. •. ~ •.•__ • .:I

i.. If u(0) :::r fu (x, l)dx =fu (x)dx ;t!: 0, there exist constant Co and C 1 depending only on LI

and

If the average fu (x, l)dx =Ju (x)dx =0 there are three cases to consider.

ii. Let u 0 E .W1 .-. W 2. Suppose that Ö>o(~) has a zero of order one at the origin then there

exists constants C2 and C 3 such that

The constants depending only on the L 2, W 1 and W 2 narms of the data.

iii. Suppose that UQ E H 1
(j Me (j W 2. If u(~) has a zero at the origin of order grcater than

one, then there exists constants C4' C 5 such that

where C4 depends ooIy on the LI and L 2 norms of u 0 and C 5 depends on the LI, L 2, H 1,

W 2 nonns of the data and

Cl= J luP 12
_ luf 12ctt, or ß= Jupufdx

R~ R1

PROOF:

UPPER BOUND:

Case i see [5]. Case Ü, rn, iv follow from the theorems (2.1), (3.2), (3.3) and the decay

rates for the difference Ol between the solution to the heat equation and the solution to the

Navier-Stokes equation obtained by Wiegner [6].
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LOWER BOUND:
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Case i: The proof can be found in [5], theorem (4.2). There are a few simple modifications.

1. Tbc more restrictive hypothesis cf theorem (4.2) [5], Iu(~) ~ 0 for I~ I s 8can be deduced

from li(D) ;c 0 since Uo e LI implies u e C 1.

2. Tbe necessary upper bounds for Ctl when n =2 can be found in [6].

Case ü: Fellows from Theorems (2.1), (3.1) and (4.1).

Casc iü: Fellows from Theorems (2.1), (3.2) and (4.1).

THEOREM (5.2)

Let U 0 e L 1 n H (R"), n =3. Let u (.x , t) be a suitable Leray-Hopf solution in the sense of

Caffarclli, Kahn and Nirenberg and the lower bound holds for almost all t. -.

~ .. ~ Thcn i and ü ~f theorem (5.1) hole, where thc upper bound is for al1

t and thc lower beund is for B.C. t .

üi. !fthere exists to such that u e Mt~ and also Uo e W z, then

C6(t + 1)-512 S Iu(·, t) IZl S C,(t + 1)-512

where C 7 depends only on the LI and L 2 nonns of the data and C6 depends on the LI, L 2,

W2 nonns of the data and aj =aJ(to, 3) and ßj =ßj(to, 3), where aj and ß} were defined

in Theorem 3.

PROOF:

Upper Bound: See theorem (5.1) apply proof to approximation solutions and pass to the limit
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Lower Bound:

Case i, ii: Same steps as in theorem (5.1) applied to special subsequence of approximate

solutions which is supposed to exist by hypothesis and pass to lirnit Bound will be valid for a.e.

t.

Case üi: Follows from Theorems (2.1), (3.3), and (4.1) applied to special sequence of

approximate solutions existing by hypothesis and pass to the limit.. Tbe bound will hold far

almost a1l t.

We expect that theorems (5.1) and (5.2) can be extended to n dimensions far all n ~ 4

using the approximate solutions constructed by Kayikiya and ~yakawa. Tbc hypothesis on the

data "0 E Me for 11 = 2 is optimal as the following example shows. In three dimensions wc

expect that the candition " Ei Mt: (R3) is necessary but we have not found an example whcrc the

lower bound falls if U E Mto(R3). The examplc in two dimensions we will present was

suggested by A. Majda.

EXAMPLE (4.1).

Exponentially decaying vorticity in 2 spatia! dimensions with data u 0 E M.

Let u (x , t) be a solution to the 2-D Navier-Stokes equation with radial vorticity. Suppose

also that u 0 E M () L 1 () L 2 is such that curl u 0 = 000 satisfies

üi. ro(~) = 0 for I~ I s 8, some 8> o.
Then

[

-X2Ir
2j r

U (x , t) = 2 fs c:o(s )ds ,
x1lr 0

(5.l)
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where co is the vorticity. Here u o(x ) = u (x , 0) E M (R2) since

JU f (x ,Q)dx = Jui (x , Q)dx ,
R2 R%

and

Ju P(x, O)u~ (x , O)dx = 0
R2

The vorticity equation is reduced to

rot = 6co

Cl>{ Ix I, 0) = O>(x, 0) = eoo{r)

Tbe ternl u .Vco is zero since the vorticity is radial. By üi follows

JIO>(x J t) j2)dx = JIro(~J t) 12)d~= J Iroo(~) 12e-I~I1r d~ S e-a
2
t JIIDo(~) 12d~

Ra Ra R% R2

Hence Icol i: s ke-I~Ia,. We only given an outline for the estimate

J Iu/ 2dx SCOexp(-C lt).
Ra

We use the explicit form of u and thc decay of I ro IL 2• This estimate will follow from the

explicit form of U J v and the decay of ICl) ILI.

By Jensen inequality and (5.1) it follows that

hence

The L 2 decay of u will follow from a time dependent LI estirnate. wIore precisely from
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I u (', t) 1LI S CI

where C depends on LI, L 2 nonns of u and (z) and also on the L 1 nonn of V(z).

- - .. ~ ...._-- .~-~~ ......_---...- _ ••. ~~ ~"". .---~. + ........ __ ~ ".. .... ~ .... ~ ..... ~ ~_ ... ~ ~._ ., I ~ r ~ ...... r .... __~. -.- _ .... ~ ~ _ r ... _ + .... ~ • ~ _. •
~- .~_ ...._.. _.,
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APPENDIX

Proposition (A.l).

Let Uo e H(R2) ~ W 2. Then if u is a solution ofNavicr-Stokcs with data"o

wherc aij = UtUj and C(t) depends

on IuolLz.

PROOF:

(A.l)

•.. ,__ .---l

Hence wc nced to bound f Ix 11 U 1
2dx in tenns of the initial data. Multiply the N-S equation

RZ

by Ix,t IUj and integrate in space. We do it component-wise and sum

~ f IX.tlujujca=- f IX.tI[u/LUiCJ;Ujdx-
R1 R1 i

(A.2)

1= 'h f Signxi Ut u/ dx s: 1h Jlul 2 + ~ J lul 4
S 1h Jlul 2 + Yz JIVu/ 2 (A.3)

R1 Ra Ra Ra RZ

wherc f I u 1
4 follows by Laclyzenkaya [3], lemma i.

For thc second tenn it is convenient to bound the sum of al.l the tenns and use that u is

divergent free

---_.'_. -----

VI S L J IXk IlljajPdx + f sign(xk) IUj I lp I*, s:
j j R1 Ra

(A.4)

.+0 _ ~~. T-. ..,
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f [uI 2 + J IpI 2 S f lul +4 f lul~S f luj2+ f IVul 2

~ ~ ~ ~ ~ ~

Tbe bound on p above follows by recalling that the pressure satisfies an elliptic equation which

is obtained by taking the divergence of the N..S equation

hence

,and

Finally m is estimated as follows.

111 S:L f sign(x,t)ujOsujdt - J lXi; IIVuj 1
2dt S3 f lul 2dt + f IVu/ 2dt (A.6)

s R:l R1 . R:l R~

Hence integrating over [0, t] (A.2) and combining (A.l), (A.2), (A.3), (A.4) and (A.6)

+ J Ix,t I IUoI 2
SC(t + 1) J luol 2

dx + f Ix;; I luol 2dx
~ ~ ~

where C S40.
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LEMMA (A.l).

Let Uo = (ud, u6) E Me (') H 1(R2). Let ct::2 f I uJ 1
2 - I uJ 1

2dx ~ O. There then exists
R1

t 0 such that if u (x , t) is a solution to the Navier-Stakes equation with data u 0

T

IJ f IUl1
2 -l u 21

2dxdtl ~(aJ2)T
o R2

for a11 T S to. to depending only of the H 1 norm of uo.

PROOF: wJ.o.g. suppose that (X > O. If not take

a = f I uJ1
2

- I uJ1
2
dx

R2

Let

F (r) = J lu 11 2
- Iu21

2dx
R1

Tbe following estimate is needed.

Tbe last cstirnate follows from multiplying the equation for the first component ofN-S by u l' the

second by u2 and integrating in space. Hence

Thus from (A.S)

By lemma (7) in [3] it follows that if Iu (x, t) I -? 0 as Ix I -? 00

• ~ ......... __ . .... _ .. ~ ~~ 1111"1111:....,.-..';:"__ ..... ~ _ ... __ r. &- •• ~ ..... r __~ ........__••• _...-~ ~~ - ..... _ 1_ • •• ~ _ ~

_ • ~ •• ~. _' _ .• __ r ••
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f lul 4dx S2 f IVuj 2dx f luj 2dx SC f IVu 12dx
RZ RZ RZ RZ

........_..~ ... _.__._-----_. ~ . .;

with C = 4nC ()J Co =1"0 IZ1' Recall that solutions to the N-S equations m two spatial

dimensions satisfy

J IVul 2
dx S J IVu ol 2dr

a1 RZ

Tbe last inequality follows from the special relation between the partial differentials of the

components of the gradient This relation is a consequence of the solution being divergence

free. By the mean value theorem it follows that

IF(t) - F(O) I ~ IF'CS) It ~ Ct f 'I Vul 2(S')dx S Ct f IVuol2dx
RZ RZ

Thus F (t) ~ F (0) - eIl, where CI ::J C J I VUo 1
2dx. Integrating over [0, Tl yields

RZ

and for any T S F (0) it follows that
2C 1

T
fF(t)dt ~ F ~)T
o

F(Q)
Let 10 = -c and the lemma follows.

2 1

LEMMA (A..2):

Let "0 =(uJ , uJ) E Ne (1 H I, Let ct = f "a" Idx * O. Then there exists t o> 0 such that
R1

T

JJUo" Idx ~ aJ2T
oRZ

,..
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for al1 T :s; t 0' t 0 depending only on the H 1 nonns of U o.

PROOF:

----'"---~._.- ...

w.l.o.g suppose CL> O. Following the lines of the proof fcr lemma (A.l) we ooIy need to

show that

I ~G(t)1 SC f IVuol2dx
. R1

where

Note that

1- Ju l~Uiaiu~ - Ju la2Pdx + Ju 1~2d:c
R1 i R1 RZ

- Ju2~UiaiU Idx - Ju'2PJPdx + Ju2ßu Idxl S
R1 i RZ RZ

and from the observation in the previous lemma it follows that last tenn in bounded by the L 2

norm of the gradient of u and hence

And the proof now is the same as far lemma (A.1).

__ ~~__ __ .. ._ .. __ ._ ~~ ~ • _ ~~ _" ~ ~. ,.~_ •• _ ••~_ _ • _ ~ _~~ ~ ~.__ _ ~_. ~ ~. __ , _. __ _ r __ .,....~ _r~. ~ ~. _ , •• ~ •••• ~.• r .. ~ ••_.,
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NOTE (A.l):
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~_~_'• , •••• ~ ~ ..... '11"' __ .... --..' -_.-.-......-

We recall that in Lemma (8.2) [1], Caffarelli, Kohn and Nirenberg shown that for a suitable

Leray-Hopf solution for almost al1 t

J Iu (x, I) 12 1x Idx S A (r)
R'

with A (r) depending only on thc L 2 and W 2 norms of the data. Let

where u = U lt u:b "3) is a suitable Leray-Hopf solution to Navier-Stokes. By lemma 8.2 [1]

such set is nonempty. Moreover, A can be chosen so that m (A C ) = O. With the notation

a·· =u· u· a·Q(t) =u·u· (0 t) iff t E AI) I J' I) I J '
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