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ABSTRACT
We study the asymptotic behavior to the incompressible Navier-Stokes equations in two
and three space dimensions 4, =uVu + Vp = Au, divu =0. We show that for an appropriate

class of initial data the solutions admit a lower bound on the L2 decay rates.
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INTRODUCTION

We study the asymptotic behavior of solutions to the Navier-Stokes equations in two and

three space dimensions.

+uVu +Vp =Au
T v =0 (L1

Our earlier work [4] and [5] dealt with the upper bounds on the L? decay rates of solutions to the

Navier-Stokes equations in three space dimensions with large data. It was established that if
uge L2NLP,1<p <2then

luC, )| SC 1+

where a(p) = %(2/p - 1) and the constant C depends on the L2 and L? norms of the initial data
uyp.

This paper deals with more subtle problems of deriving lower bounds on the energy decay
rates. We show that for a certain class of initial data the solutions u(x, ) to the 2D and 3D
Navier-Stokes equations admit an algebraic lower bound on the energy decay. Specifically,
there are two cases to consider. In the first case, the average of the initial data Iuodt is nonzero.

This case was treated in the earlier paper [5] where it was established that
lut, ) fhzca+om? | (1.2)

for n = 2, 3. In the second case the average is zero, i.e., the Fourier transform at the origin is
zero. Here the lower bound on the velocity of decay rate depends on the order of the zero of the
initial data. More precisely, if the zero is of order one and the data ug e L'~ H! and certain

weighted L? spaces described below there is a lower bound of the form
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where o(n) =-'2'-+ 1 and C depends on a few parameters of the data. If the zero is of order

greater than one and the data is taken outside of a set M of radially equidistributed energy then
in two dimensions the lower bound will be described by (1.3). The lower bound obtained in 2D
is uniform, the one in 3D is not. The estimate in two dimensions is sharp. An example
suggested by A. Majda shows that there are solutions to the Navier-Stokes equations with data in
M which decay exponentially.

The algebraic lower bound is a consequence of the nonlinear structure of the equations. In
contrast, solutions to the heat equation decay at an exponential rate if the initial data is highly
oscillatory. The inertial term div (u ® «) in the Navier-Stokes equations appears to convert
short waves into long waves, reducing the decay rate. Even for most cases of highly oscillatory
initial data (i.e., containing just short waves), energy will be transmitted to the lower end of the

scale, thereby producing long waves redﬁci.ng the decay rate of the solutions.

Our approach in the case of zero average data is first to find conditions for the data such
that the corresponding solution to the heat equation decays at a very slow rate. These conditions
will be met by the solution u(x, t) of the Navier-Stokes at some time 1y 2 0. That is, short
waves are transformed into long waves. Hence the solution to the heat equation which takes on
as initial data u (x, ry) for some appropriate #5200 has a lower bound on their rate of decay.

Specifically, if v is a solution of v, = Av, v(x, 0) =u(x, tg) then |v(, )| H 2 (1 + )™,

This information is used to insure that the solutions to the Navier-Stokes equations cannot
decay any faster. The result follows using Fourier analysis of the Navier-Stokes equations. The
argument relies on a technique which involves splitting the frequency space into two time-

dependent sets. This technique was developed in [4] to study the upper bound.
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For solutions in two spatial dimensions, the results are valid for classical solutions. For
three dimensions, the results are valid for suitable Leray-Hopf solutions in the sense of
Caffarelli, Kohn and Nirenberg [1]. We expect that the results can be extended to n dimensions,
n > 3, using the results of Wiegner [6], Kayikiya and Miyakawa [3].

2. Estimates on solutions to the heat equations

In this section we describe a class of initial data D, for which the solutions to the heat
equations admit a lower bound on the L? decay rate. In section 3, it is shown that if u (x,¢) is a
.solution to Navier-Stokes in two spatial dimensions with data outside a set M of radially
equidistributed energy, then there is 1y 2 0 for which u(x, rg) € D. Hence if u(x, t) is taken as
initial data, the corresponding solution to the heat equation will have a lower bound on the L?
decay. This information will be used to obtain a lower bound on the L2 rate of decay for
solutions to the Navier-Stokes equations. For data in M an example is given in section 5 of a

- solution to the 2D Navier-Stokes equation which decays exponentially fast.

The section concludes with a lemma establishing an upper bound on the L* rate of decay
for the gradient of the solutions to the heat equation for solutions which decay in L2 at a given

rate.

THEOREM 2.1

Let vge L%R"). Letv be a solution to the heat equation with data v, Suppose that there
exist functions / and A, such that the Fourier transform of v, for {&] <3, 8 >0 admits the

representation

Vo) =EIE) +hE,  [=(y..., )
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where / and 4 satisfy the following conditions:
i.  [h(E)| SMojglz,forsomeM0>0;
ii. [ is homogeneous of degree zero.

i ooy= [ |@l@]|%de>0.
|o|=1

Let M= sup {{(y)|, M= sup |Vi(y)|, K =max(MyM,;,M,), then there exists
iy1=1 25|y|sl
constants Cg and C| such that
Cole + )20 < |y (-, )| 2, C (e + 1y 2D

where Cy and C both depend on n, My, M, & and |vol :and Cqalso depends on X and o
PROOF: Note first that condition iii is not necessary for the upper bound |v(, )] E,.

UPPER BOUND. By Plancharel’s theorem
J1vi%ax = [ |v1%dg = [ v)% 28 ag
R* R* R*

LetA ={E: |E]| <&} then

[ 1vI%dx = [1vg| % 281% G + [ 1vy|2e 281 dE < [1v) 2218k + e v &
R* A Af A

To estimate the integral on the right-hand-side use the representation of v in terms of / and 4.

A

flvgl2e 8% ag = | |&-zc§)ize*"§"’dé+2f<e[ j&-z@)fT(a)e"z“‘*"‘dé] +@2)
A A

[1nE) 12280 aE <2f |81 (E)1 2720 aE + MG[ 1] %2181 at
A A A

Recall that /() is homogeneous of degree zero. Combine (2.1) and (2.2) and make the change
of variables y = V2t &, then

e it T 8 e A s A $ = a8 P et | L o ) i e = R Mt S i Mt A
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[ 1v1%dx <20 [1y-1(y) [P dy + Mo(26)" 22 | |yl%e ™ ay 2.3)
R* A A(r)

where A(t)={y: |yl S 8*/2_:}. Since M| = |51|1pxl(y) and / is homogeneous of degree zero
y ==

ly-1@)I1%s |y|2M}E

Hence from (2.3)

where C depends on My, M|, 8 and . Recall that

[ ivitdx s ivol ks,
Rl

hence

' f1viPax sC (e + 1702,
Rl

WithC1=C1(M0,M1, 8, n, [V0|L1).

LOWER BOUND Choose 8, < 5 with 4M M5, S &, and let A, = (E: |E| < 8,). Then

J1v1%dx 2 [ [vg12%e 281 qg 2
R* Ay

Aj(l&-l(&)iz-wwl 1€]%)e~2181 g =

5
@, [r" oy = 2M M ) ¥ ar >
0

5
2
Yo, e [r*tle ™ dr 2
"0
mnale_z

~(n12+1) -1
20042) t fort 2 &;
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Since for r < 872 we have
. - . -2 is~1
[ IviZ%dx = [ 1¥ol2e 2817 dE 2 [ [vg(2% Mo ¥ gt
R* R" R*
- 25-2
(1+r)—(u/2+l)'[ Iﬁ0|2e 2181%; dE_,
Rl

The lower bound follows for

. ig-1

Corollary (2.2)
Let v be a solution to the heat equation with data vge L?(R") where v, has the Fourier
representation described in Theorem (2.1) and ! and 4 satisfy i, ii. If in addition / satisfies
1.  wgl(wg) =00, for some wye S*!
2. ElE)e C!R™O)

then the conclusion of Theorem (2.1) holds.

PROOF: Tt is necessary to show that 1 and 2 imply conditions of theorem 2.1. Note that if
0! () = ¢ # O for some wge $™~! and &-1(E) € C1(R™\0) it follows that there exists an open

ball centered at @y, B, (®g) of radius r > 0, such that for @ € B, (wy), @/ (w) 2 /2. Hence

[ lot@)deo> [ |ol@l*do2 w2l >0
|o|=1 S N8B, (wy

where L = j dw and § ={w: |®| =1).
< S N B, (w)

et —— Ay A 1 s = = ety e ks bp L = A= . [ . ————— e N
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The next lemma establishes an upper bound on L rate of decay for gradient of solutions to

the heat equation which decay at a given rate in L%

LEMMA (2.3)
Let v(x, t) be a solution to the heat equation. Suppose that {v (-, t) |2, SC (@ + 1)y 2+l

Then

IVV(, 2) | < C(2) 02D

PROOF:
199601 199,01 S [IEPED1e 28248 < v, e | 1512228 ag) =

CI Vv (.’ ”2) Ith-(u12+1)/2 < C:-(n12+1) .

3. THE INITIAL DATA

In this section a class of initial data is found for which the solutions to the Navier-Stokes

equations admits the Fourier representation

@y (&, 1) =1 (§, 1g) + M (€, 1¢)

for some ¢5 2 0. Here /, and A, satisfy the conditions given in Theorem 2.1. Hence the solution

to the heat equation started at u (x, rg) has a lower bound for L? decay.

The initial data will belong to the intersection of L!, #!, some weighted spaces and the
complement of a set of radially equidistribution energy. The condition of not having
equidistributed energy is essential in two dimensions. Specifically, an example will be given

where the data has radially equidistributed energy and solution decays exponentially.
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The data to be considered has Fourier transform vanishing at the origin. For nonvanishing
data, the reader is referred to [4]. There are two cases. Case I: The zero of the origin is of order
one. Case 2: The zero is of order greater than one. In case one, the data can have

equidistributed energy and ¢4 is 0. For case two, the data has to lie outside a set of

equidistributed energy.

We define the following weighted spaces and norms.

W1={u: lelz.luldx <m}
2e

W2={u : | lul?|x|dx <u}
Rl

lulw, = [ |x1%uldx
Rl

A
luIW,=[I|u12|xzdx]
3

Note thatif u € W, anan Lhcnﬂxl lujdx < oo, since

[Ixlluldx = | ixlluldc+ [ |x[luldxs | (Ix1®+julDdx+ [ |x]?|ulde <o
&

ix|sl Ixj2l - |x|<1 ixf21
VR")=CyR")YN{u:Vu=0}
H =H(R")=closure of V in L2.

Note that the choice of the weighted spaces insures that the data has at least two Fourier

derivatives in L2,
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THEOREM 3.1:

Letg e HNW  NnW,R"),n =2,3. If g has a zero of order one at the origin, then there

exists & > O such that for |§] <8
E€)=81Q)+h®)
since / and A satisfy the hypothesis of theorem (2.1), with My = Isnitga | V3¢ (€)| and o depending
X .

only on Vg (0).

PROOF: Sinceg e W nW,

agis(ﬁ)l <flxl(gldx sC

&
08 G;

e 431 Sjlx x; Ilgidxsjlxlzlgldx sC.
Since §(0)=0for |&| £§,8>0,
£&) = VSOt + Vi E)EL
Since V£'(0) # 0 by hypothesis. To finish the proof let
1(§) =V (0)
h(E)=VEE) &

Here Mg=M,= ]SIIIESI V2§ (E)| and wg e S"!is chosen so that 0y Vg, = 0.
x «

The following notation will be used.

to to
ai,(fo, u)=j I ]ui Iz... [uj lzdx dI, Bf(to’u)-_-j J.“i“jdx dr,
OR" 0 R*

A{(R”):{u: KRN Iujlzdx}, B{:B{'(R"):{u: [ wu;dx =0}
R" R" R*

AT et e s o - et e ew it e e = mmamoe T R e e T T . . e

e - e s S ik« o 7 A ot by b, A Ak mta S g et = T At e L % 4 a8 St = e %8 o A e T s b Sk AL W e 4wl s et m b
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The two-dimensional case is considered first. For notation sake let M =A? NB{.

THEOREM 3.2

Let ge H'NH annM"(Rz). Let u(x,t) be a solution to the Navier-Stokes

equations with data g. If ¢ has a zero of order greater than one there exists ¢y and 8 > 0 such
that for |E| £ 8
@€, o) =S4 (&, 1) + M (§, ¢0)
where to=20(18 14t 181w, L C, 1o) and A, (:, rg) satisfy
i @ SMolEl%
ii. ! is homogeneous of degree zero;
Hi. oyl () = % 0 for some g € S"‘.l and at least one component /.
iv. E1.() e CHR™0)).

The constant M 4 depends only on | g| (v 181w, and 8. The constant a is a multiple of atZ(zg, g).

PROOF: Take the Fourier transform of the Navier-Stokes equations

Py

G+ |E|2 = -4 Vi - Vp =—H
4E,0=£(¢)

Hence

t
i, 1) = g B)e 81T ~ [H (&, 5)e 181 E)as (3.1)
0

w.Lo.g. choose £ = 1. Recall that

82
ox; 9x;

sp=-3

u‘-uj

so that
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/\ = = glé} /’\
&lézgf E_,IZ 11

Let a;; = u;u;; then

H(E,s5)= -i[Z§ias1 -&V1E1Y §:§jaij] =

2 2 e G153
=—if &(1 =& 181Day - Ex(1 ~ 2818 1Day, - E202

Note that 1 - &%/ (E[2 = E3/|& |2, hence
H\@&, ) =-i&E3/181%ayy - ag), (1~ 28%/1E1Day,
Proposition (A.1) (see appendix), establishes that for |&| < §
I Vea;; (€, 0)[ SC ()
where C (z) denotes constant in & which depends on 1812 18lw, ands.
Leta;) =a;;(0, £). Thus a;; can be represented as
aj =a +&Vea;€), 0<EsE
By (3.3)
H\G 5)=-i&{EH 1810 ~af), (1 - 28F181Dady +h1E 5)] =
IBHP G, s)+ 1 1E 5)),
and by (3.3) and (3.4)
18,&, $)| SC()IE].

From (3.1) and (3.5)

4 t
4@ 0 ==i%| [H] & )e s + [fE, 5)e™ 805 o181 58] =
0 ]

e e e g St @4 © mmiia e ik e el 4 A bmmEmatm am i = CC it mmam mamsmn 4 e s | de mee . b sim = e me o o mme e

3.2)

(3.3)

(3.4)

(3.5)
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t
Ef=H] ds +hy(E, 5),
0

where

H t
hyE s)=—i&| [HPE, ) 10— 1)as + [)(&, s 187 Cds + e~ 181 g &)
0 0

Since
eI _ 1 =018 1)
|841(s)| SM|E|? form |§| S8, M depending on C (r),

£E)=0(/& ),

it follows that | 4 (E, )| < My1E|% M, depending only |gi,;and Sand r. Let
t 4 ]
WG =1, 1f) = =i €218 —ad)ds, (1 -28%18|Pa Las
0 0

We first show that for some ¢4 >0 and some wg & 52, Wgly(wg, tg) #0. If u, & A12 choose
@y =(1, V2,
. b
— 2 2
(g, tg) = —= ui —us de dyds =0. 3.
o'l 1 (@, 29 2‘5_!;&[1 3 dx dy (3.6)
Ifuge B choose wy = (1, 0) then
{o
gl (@, tg) = [ [uuqdx dy ds #0. (3.7
0 R?
By lemmas (A.1) and (A.2) of the appendix since g € M there exists to=1to(lg| L 181w, @)

such that RHS of (3.6) and (3.7) are not zero. Hence

wg'! (g, tg) 20



R —— e 1= w =+ = e eaa4 = aeim i S e e tmm mwamem e tam e Sima YA et = sk mms mey m e A - an

-15 -

Conditions i, ii and iv are trivially satisfied for { (€, ¢o) and 4 (&, g).

THEOREM (3.3)

Let g € H N W,(R®. Let u(x,t) be a suitable Leray-Hopf solution in the sense of
Caffarelli, Kohn and Nirenberg with data g. Let g have a zero at the origin of order greater than
one. If there exists ¢q such that

ty fo

ol )= [lu 12— |u;\2dxdr 20 i,j=1,2,30rBlltg,3) = [ [wjujdxds 20 i =}
0 R? oR

then there exists § > O such that for |§] <&

W&, tg) =EL (€, .fo) +he (€, 1g)

where {, (€, tq) and 4, (€, 1) satisfy the same conditions as in Theorem (3.2).

PROOF. Recall that a weak solution with data g satisfies
I . .

(u (), o)) - f{(u (s )—%q;(s N +{Vuls), Vos)) + ((u(s)Vu(s), (s ))}df ~(£,9(0))=0@.8)
0

for all smooth vectors ¢ with compact support and div ¢ =0. Following Wiegner’s argument
(6], we choose ¢ to be the solution to the heat equation with data ¢ge Cq’ (R?) and div do=0.
This ¢ is smooth and bounded in L™ and (3.8) holds for ¢ by approximation. Let 4> 0 fixed

andr* >y ForO<Ss <t let

0(s) = F~H(F (0glexp(—1E|% 1" = 5)),

which is the solution to the homogeneous heat system with data ¢g at time ¢~ — 5. It is easy to

show that for such a choice of ¢, (3.8) yields

1)

3 _(E(2 —— £t —g

0, t0) = 3B — EENIEIY gre7 ™ = [(ls) Ty (s)e ™ s (3.9)
i=l 0
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For more details we refer the reader to {6]. By hypothesis

§;€)=4;(0) + V5, (01 + V¥, B)E, &) = V2§, E)(&, &).

Hence we only have to consider the terms in

to
P -
X8y =88 IEI [ uVuj(s)e 181
=1 0
By note A.1 (see appendix) the last expression can be bounded by

g

~i 38y - &E)IEI T &iaf(s)ds +KIE|? (3.10)
j=l 0i,j=1

with K depending only on the L%, W, norms of the data and ry The vector function

Iy = (lkl, 12, 1,3) can be chosen so that the components have the form

=i TG —CENIEIT ] T af(s)ds
=l

0 ij=1
From (3.9) and (3.10) it follows that
de G t0) =& (8, 1) + Ay (§, 19)
with | A (E, 20)| SKolE|2, and Ky depends only on Isgfgsl V3§ (E)l, the L2, Ly, norms of g and
to. Conditions i, ii and iv of Theorem 3.2 follow trivially. To establish iii choose

Wy = Tj%'(ei +e;)if a/ # 0 with e; i-th element of the canonical basis of R3. If B,j #0

letwg=e;if j 2k orwg=¢; if i k.
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4. THE KEY THEOREM

The decay rates for L2 norms of solutions to the heat equation are compared to the decay
rates of L2 norms of solutions to the Navier-Stokes equations. It is shown that if the upper
bounds and lower bounds of decay rates of solutions to the heat equation are of order
(t + 1)'(""‘*”2) the same rates are valid for solutions to the Navier-Stokes equations started with

the same data.

A formal argument is given for solutions in » dimension n 2 2. The proof is rigorous for
n =2. For a =3, the rigorous results are less strong since they are obtained only under the
s._upposition of the existence of a sequence of approximate solutions (such as those constructed
by Caffarelli, Kohn and Nirenberg [1]) which converge strongly in L2([0, 1] x R®). Passing to
the limit a lower bound will be obtained for almost all 1. We expect that the result for n =3 can
be improved. For n > 3, it is expected that the proof can be applied to the approximate solutions
constructed by Kayikiya and Miyakawa [3] and passing to the limit. The upper limits of the
rates of decay are included for completeness. The bounds for n =2 were established by

Wiegner in [6]. The bounds for n = 3 were established in [5] and [6].

The proof for the lower bound is based on an analysis of the Fourier transform of the
difference between the solutions to the heat equation and the Navier-Stokes equations started

with the same data. The argument is by contradiction.

THEOREM 4.1

Letuge L'nW,NH(R™), n =2,3. Let v be a solution to the heat equation with data
ug. Suppose

Coll + 6y 2V < v, )1 B < C (1 + 0y 20, (4.1)

Forn =2, let u (-, t) be a solution to the Navier-Stokes equations with data u , then there exists
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constants M and M, such that
Mo+ 02D < fu(, )| L sM (1 + 0y 2D (4.2)

where M and M| depend on C, » and the L' and L? norms of uq and M 4 depends also on C

and the W, norm of u,.

e

~ Forn =3 - (4.2) holds for a.e. r, where u(x, t) is a Leray-Hopf solution in the sense

of Caffarelli, Kohn and Nirenberg.

PROOF.
UPPER BOUND.

See [5] and [6].

LOWER BOUND.

We first present a proof which is rigorous for # = 2 and formal for n 2 3. We will indicate

the modifications necessary to make the proof rigorous for n = 3.

Qutline of the proof:

There are two cases to consider. Let § be a fixed constant which will be defined below.

For n =2 the cases are the following.

Case 1:

Given ¢ there exists 7 > ¢ such that

T
|II lug12 = uq)? dx ds| < PVCqy and
0R
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T
IJ' I wuydx ds | <[3\]C—0

OR*

Case 2:

There exists T such that for all 2 T

¢
If | 1uy1?~ |uzi?dx ds| 2BVCo, or
OR*

|| [ wyuydx ds| 2 pNCo.

oR*

If n > 2 the two cases are slightly different.

Case 1*:

Given ¢ there exists T > ¢ such that

T
If [ lug12=|uj|2dx ds| <BVCy 1Si,j<n,and
OR*

T
iju,-ujdxdsl <B\/C—0, 1<€i,jsn,i=]
oR

Case 2*:

There exists T such that forall ¢+ 2T

t
[ | 14;1%= |u;|* dx ds| 2 BVC for at least one pair i, j or
OR*

4
II f upu; dx ds | 2 BVC, for at least one pair i, j withi = /.
oR

Ca e e M et ey ¢ e i s = P T N

P e



Case l:

In this case an increasing sequence (7,}), 7m =7rn(B), rn == as m — o, can be

constructed such that

| [ luyl?=juzi®dx ds| <pVCoand

0 R*

’m (4.3)
|f I Uy, dx| ds < BVC,.

0 R*

Let m=v - u be the difference of the solution to the heat equation and the solution to the

Navier-Stokes equations with the same data ug. It will be shown first that for ¢ sufficiently large

s

laC, )| < C e + 172 +0(e + D (4.4)

where = n/4 + 4, ¥> 2a and C < Cy4. Brefly, inequality (4.4) is obtained as follows. The

difference @ can be considered as a solution to an inhomogeneous heat equation
o =A0+A,

where A = —(uVu + Vp). Using the Fourier splitting method [4, 5], it follows that the L? norm
of ® is bounded by three terms. Two of these terms come from the inhomogeneous part and
decrease at a faster rate than o This faster decay is a consequence of the terms being either

cubic in (®, 4) or involve the gradient v which improves the decay rate. The third term is the

critical one and has the form

[ 1o 612

S®)

where S(¢) is a ball of radius (¢ + 1™ and as such decay like (¢ + 1)™2. The hypothesis of

case 1 is used {or 1* if n > 2) to show that
|OE, £)| S[2BVCo+Co(l +r,) " 1IEI +O(IE]D)

where s 2 2 and C, is an appropriate constant. Hence
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[ 10E, £)1%dE S [BBC+2CH (1 +ra) 2 1¢ + 2 10 (™)
S

where &> n/2+1. Here C, and C; depend on the L% and L! norms of ug. Choosing B
sufficiently small and r,, sufficiently large, (4.4) will yield for ¢ 2Tq, To=To(lugl 2 |uglp,
n,CqCy)

|, )] 2 S Cy/d(e + 172D,

Hence the lower bound of |« (', ¢)] L follows for ¢t 2 Ty Forr <T the bound is a consequence

of the decay of energy of u.

Case 2:

Here we study the difference W =U -V where U =u(x,t +T) with T > T for some

appropriate T and V is the solution to the heat equation
Vix,0)=ukx,T)

By theorems (3.2) and (2.1) and the hypothesis of case 2 (or 2* if # > 2) the L2 norm of V has

the following upper and lower bounds.
CoPi(r + V< |V, )| s K (e + 172D

for some appropriate constant 3;,. As is case 1, W satisfies an inhomogeneous heat equation.

Again using the Fourier splitting method the critical term to bound is

[ IWE ).

S@)

Hypothesis of case 2 yields

|W(E, 1) SCT+1)™?|E]
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and as in case 1 if T sufficiently large and ¢ > T it will follow that

’ C
JIWE, 1% SCT+D)™2(¢ + 1y 2D g —-°—4?l(: + 1y 24D,

Rl

The details of the proof are given next. We give the proof for n =2, if n >2 the

hypotheses are given by Cases 1* and 2* and (3.5) needs to be modified appropriately.

Case 1.

Let {r,} be an increasing sequence such that (4.3) holds. Let @ =v —u be the difference

between the solution to the heat equation and the solution to Navier-Stokes then
W, =Aw - wuVu +Vp) 4.5)

Multiplying (4.5) by @ and integrating in space yields after some integration by parts

%g‘ =_ﬁ[‘ | Voo 2x - j(u—v)uvudx ﬁ[mVpdx

Since div @ = 0, the last integral vanishes. Moreover since div u =0, _[uu Vudx =0. Hence

J

d n LI
j@|%dx =2 [|Vo|2dx -2 v, (u; u; )dx
dt ﬁ[ J Jr;l l{' x§1 ax;

d
==2 _[ |Vm|2dx +2}§l§[(uluj)-aTv -dx

s-zj | Voo | 2dx +K1vv[_|j lul2dx
R* R*

where K =2n2. Using Planchere!’s theorem the last equality reads

L [ 161G <-2 [ 151216145+ K|y |.. [ ful%de
RI Rl Rl

Let
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sonfsms[ 2]

Splitting the frequency domain to sets S (¢) and S(z)°, arguments of previous work done in [5],

yield
%[(:+1)4" | |m|24x] 5(r+1)4"*1[4 | |01 dE+K|Vv .. fiulzd.x] =I,+I, (4.6)
R" 5() R*

Consider first /5. By Lemma (2.1):

I, SKC e + 11 [ ju|?dx 4.7
Rl

Recall that by the results of Wiegner [6] there is a constant C 'dcpending only on the norms of
the initial data such that

lol B sC @+ 1702,
since |
vIZSC@ + 102D,
it follows that if C,=C +C,
u(, £)] 5 S Coe + 1) 2D (4.8)
Hence by (4.8) and lemma (2.1) there is a constant M such that for¢ 2 1
I, SM(t +1)33 (4.9)

where M| =KC,C,. To bound integral [, the following estimates on @(&, r) are necessary.

Taking the Fourier transform on the equations for the difference yields

- 9 — N .
@ & 1)+ 1&|“0p =~uVu, -V, p =-H, k=1,2
W (8, 0)=0

For notation sake let w, =, H, = H. Since

o E———— oy e o r— A s e
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| =uVu-Vp ==i| T Ein ﬁtzé’g’ i

Jj=l l&!z i

it follows that

|HE 0 SK 18 uC 01k

with Ky =n(n + 1). Hence for¢ 2 r,,, where r,, will be chosen below,

4
|GG, )] S 10G ra)le ™S ™ 4 iy 18] [, )| Zds =1 +11

Tm

Bound for I. Hypothesis of Case 1 (Case 1* if n > 2) is used to show that (&, 7,,) is sufficiently
small. Then r,, is chosen so large that the decay of the energy will imply that the coefficient of

II is sufficiently small. Since r,, was chosen so that

| f ] 1112 = 1ug)%dx | SBVC,

oR?
and
[ fuyuqde | SVCB
OR?
and by (3.5)
. 2 2tl
HE s)=i& -I—?l;(aﬁ —ad)1- szaxz +0(lE]3

(Recall if n > 2, H will be modified appropriately.) It follows that

|OE, ra)| < [1HE, s)lds S2BVC4IE] + O (1E1Dr,
0
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Bound for II.
From (4.8)
:
b/ sxllélczr{ E—:}I-)mds <
— K1 [81CK(1 4 7)™ S 20(1 4 7)"C, 161

Hence 7, S (¢ + )™ [ (1 +111%dE <
Y ()]

Sdn(e + 1)1 4p2Co2 [ (E1%dE+4n*(1+r,)™"CF [ 1E1%dE+ [ O(IE]%)r2dE
S() S(t) S

C
<@+ 1)4"-1—89-0 + 172 L 0 (¢ + 1YY

where we let B be so that 1624, = 1/16 with A, = 27(2)*?*!/(n+2) and then chose r,, so that

16n%(1+r,)™"C# SCy16. Integrate (4.6) over [1,] and use the bounds for I, and I, to

obtain
fla, % <@+ 0™ [ |o@, )% + (4.10)
Rl Rl
Co 1241
M@+ D4 S+ 1)y 20 L HOT.
Recall that

loe, DI 5S 1l DA+ Ive D12 S20uel b

Hence (4.12) implies

o
[loe,)1%x < -8—°(: + 1D goT.
R.

Note that by (3.5) and Lemma A1l from the appendix
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4
HOT. =| [(s + )" [ O(|&]")d&dsr,| (¢ + 1)
0 S()
MG+ 107D 2 i) B + 1)

SC (s lugl,, lugly lugl, Mt + 1)

where 02 n/2 +2. Hence for t 2 T with T depending only on 7,,, |ugl 1, lugl, 2 luolw,

andCo
2 Co 2+l
[ log, r)|2dx S —( + 1)72*D)
R" 4
Thus fort 2T
luC, )l = vl = ol 2VC2( + 12!
Ift <Tythen

R L 1 ni2+1
\ 2 . 2 —_—
lu(,t),l‘zaIu(lTO)ILZZCO/4[ TO‘*‘I} [f+1] 2

> ﬂ(TO + l)ﬁ(nﬁi'l)(t + 1)—(n12+1)
4

and this proves Case 1 since T depends only on lugl o |“0|Ln Iuolw,s" and C.

The following auxiliary computations will be needed for Case 2.
1. Lower bound for o,

Recall from theorems (2.1) and (3.2) that

o= | |ol(w)lds,
jw|=1

where
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t 3
I, 1) = =i [(0i/le|Hal —ag)ds, [(1-20¥|alhalds|,
0 0

a,-j = J'u,-ujdx .
Rl

Hence

2 2

t f
o= [ ofef]fal —apds| +(-20}ef|[ads| do.
|ay =l 0 0

Since by hypothesis of Case 2 fort 2T
4

t
fad ~adds = [ u? - uddrds 2 VC,
0 OR*

t t
Ia?zds =Iju1u2dtds 28VC,
0 OR*

it follows that

o 2P, [ wle'+ (1 -20dH’ewlds=pAC,y.
jo|=1

2. Lower bound for the solution to heat equation V (x, ¢) with data u (x, T,), T, 2 T, T given

by hypothesis of case 2. By theorems (2.1) and (3.2)
W& TY=80,¢& T+ (§T))
and |V (x, )|, satisfies for t 2 8y, 8, = (8(T;))™" (where 43M oM S avy),
[V C, )| 2 gole + 1)

(110),, e-l

where Xo= m

. By the computations for ¢, it follows that

2 -1
S B COYmne

%o 2 2(n +2) =X

e  p—— ey A ey WY ————————  —— . = i et s e ey



Hence fort 28 =8,(T)
IV Co iz + 172, (4.11)

and xl is mdepcndmt of Tl'

Case2
Let V be the solution to the heat equation with data V (x, 0) =u(x, T ), for T, satisfying
i. T,>T, Tygiven by hypothesis of case 2;

XIAn—l

i, 4n2C%(1+T)™" < 3

where X, is given by the auxiliary computations 1. The constant C is such that

lu(, el < C (e + 172D and A, = 21(28)*?*!/(n +2). Thus by theorems (2.1) and (3.2) it

follows for r 2 8, = §(T )"
00+ 1P <V 0 L sKge + 170D (4.12)

where X, depends on the L? norm of ug and y; depends on 3 and Cy Note that ¥, is
independent of Ty, but if T, tends to infinity the lower bound of (4.12) is only valid for
t 28, =8T) ! and 8(T)™! tends to infinity as T, tends to infinity. Let

Ux,t)=u(x,t+T))
We study the difference W =V ~ U. Here the hypothesis of case 2 (case 2* if n > 2) together

with the decay of energy of the solutions to Navier-Stokes will imply that |W(, )] Ez

SC (¢ +1)™"2*Y) with C sufficiently small. As in case 1, W satisfies an inhomogeneous heat

equation. The Fourier splitting method will yield

4 G+D" [ 1w s+ D™ [ (W2dE+KIVVIL [ |ul?dx (4.13)
dt R* S() R®

H
o ater i
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The second term can be bounded as in case 1 forr 21

KIVV|. [ U} dx sM (@t + 1)) (4.14)
R.

To bound the first term note that the Fourier transform of the equation for W yields
W+ |E1°W=-UVU -VP =H

where P (x, 1) =p(x, 1 +T), as before |H &, £)| SK|E]1UC,1)] 2, hence

t t
IWE I SJIHE s)ds K [EI[IUx,5)) 2ds =
0 0

t+T,

' -
Ky IEIfluG,s +T )| 2ds =K [E] [ lu(x,s)ifuds
0 T,

t+T 1 ni2+l .1 n2 1 n2
sCK -— ds 2 - =2
11| le[m} nc.|5,|[ 1+r1] "C'F"[Hrl]

Hence the first term in (4.13) can be bounded as follows.

¢+ )" [ |WI2dE<4n®CHL+T )" (e + ™! | 181248 s 2 + 17202,
S() S(t) 8

The last inequality follows by the choice of 7| made at the beginning of case 2. Combining this
last bound with (4.13) and (4.14) yields

%[(‘ +D* | ”Vlzd’f} < %(t + )24 M (¢ + 130D
R.

Integrating over [J,, ¢] gives

[1Wi%dx < %(: + e M+ ) [ (W, 8)) ) e (e + 1)
R* R*

Note that
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[IWe,8)1%dx s [ |V, 0% + | |Ux,0)|%dx s2flux, Ty)|%dx $2f|ugx)|%dx.
Rl R. Rl
Hence

f1wi%dx < %‘—(r + ) gor. | (4.15)
RI

for ¢ large enough. That is for ¢ 2 max(Tq, Ty), where T = To(luglpn, luol s n, 0y, 8y, By,

Cp). The last inequality combined with (4.11) yields
UG 21V001 = IWED 20 %)\lx—x(f + 1)2+D%

henccfort2T3=Tl+T2

\/_
e (-, :)[Lz 2> —2&"(: + 1)-{m'2+1)v&

For ¢t < T4 the decay of energy of u yields

3 2, K| 1+t na —(r72+1)
G 0152 uG Tl L2 2 (1+1)

4 1+T3

Thus for case 2 let Mg = ‘i_l(T 3+ 12D and the lower bound follows. In order to give the

formal argument when # =3, the hypotheses needed are given by Case 2* and (3.5) has to be
modified adequately.

In order to make the proof rigorous for n =3, apply the formal proof with appropriate
modifications to the subsequence u 5 of approximate solutions which -€ONVerges girongly. !m:
Nl :
Ll(R *;;R y.For n >3, a similar argument should work if applied to the approximate solutions
Vot

constructed by Kayikiya and Miyakawa. Let n =3. Let us recall that the approximation

solutions u 5 constructed by Caffarelli, Kohn and Nirenberg satisfy

u, +YsVu +Vp = Au
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divu =0
ux,0)=g
where g = §~*y*& and
veC®, w20, [[wddr=1
suppy < {(x, t): | x| <z, 1<t <?2)

andletD =R3x (0, T)

_ u(x,t), (x,t)e D
¥=1 0 otherwise

Suppose that ug is a subsequence which converges strongly to u in I;Z(D) where u is a Leray-
<
Hopf solution of Navier-Stokes equations. The steps to show that the approximate solutions

satisfy
|ug(, £)1 L? 2My(r + 1)-(n!2+l)

are obtained combining the arguments of [5] with the formal proof. The lower bound for
the limiting Leray—Hopf solution u(x,t) follows, a.e. in t, taking the limit as § — 0.
The details are omitted.

THE LOWER BOUNDS

The results obtained in the previous sections are combined to establish the lower bounds for

the rates of decay for solutions to the Navier-Stokes equations in two and three spatial

dimensions.
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THEOREM (5.1)
Letuge L' " H(R™), n =2. Then

i. Ifd@) = Iu (x,t)dx = ju (x)dx =0, there exist constant Cy and C; depending only on L!

and
Colt + V"2 < |u(, )| HSCy(e + )72
If the average [u(x, t)dx = [u (¥ )dx =0 there are three cases to consider.

ii. Letuge W,;NW, Suppose that W) has a zero of order one at the origin then there

exists constants C, and C5 such that
Cie + 1V g u, )| < Coe + 124D
The constants depending only on the L? W, and W, norms of the data.

iii. Suppose that uge H' A MS A W,. If 4(E) has a zero at the origin of order greater than

one, then there exists constants Cy4, C 5 such that
Cat +D2S1uC, ) s Csr + 172

where C, depends only on the L! and L? norms of ug and Cs depends on the L! , L2, H!,

W 5 norms of the data and

o= f iulolz— luzolzdx, or B= j'u?uzodx
R? R?

PROOF:
UPPER BOUND:

Case i see [5]. Case ii, iii, iv follow from the theorems (2.1), (3.2), (3.3) and the decay
rates for the difference w between the solution to the heat equation and the solution to the

Navier-Stokes equation obtained by Wiegner [6].
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LOWER BOUND:
Case i: The proof can be found in [5], theorem (4.2). There are a few simple modifications.
1. The more restrictive hypothesis of theorem (4.2) [5], |#(§) =0 for |§| £ 3 can be deduced
from 4 (0) # 0 since ug e L' implies 4 € C'.
2. The necessary upper bounds for ® when n =2 can be found in [6].
Case ii: Follows from Theorems (2.1), (3.1) and (4.1).

Case iii: Follows from Theorems (2.1), (3.2) and (4.1).

THEOREM (5.2)

Letuge L' H(R™),n =3. Letu(x, r) be a suitable Leray-Hopf solution in the sense of
Caffarelli, Kohn and Nirenberg and the lower bound holds for almost all ¢ . : >
'."> Theniand ii of theorem (5.1) hold, where the upper bound is for all

¢t and the lower bound is for a.e. .

iii. If there exists rg such thatu € M, and alsouge W, then
Colt + ™25 |u(, )| s Colr + 1)
where C5 depends only on the L! and L? norms of the data and C¢ depends on the LY, L2,
W, norms of the data and af = aj(to, 3) and [3;: = B}(to, 3), where oc_f and B} were defined
in Theorem 3.

PROOQF:

Upper Bound: See theorem (5.1) apply proof to approximation solutions and pass to the limit.
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Lower Bound:

Case 1, ii: Same steps as in theorem (5.1) applied to special subsequence of approximate
solutions which is supposed to exist by hypothesis and pass to limit. Bound will be valid for a.e.
r.

Case iii: Follows from Theorems (2.1), (3.3), and (4.1) applied to special sequence of
approximate solutions existing by hypothesis and pass to the limit. The bound will hold for
almost all ¢.

We expect that theorems (5.1) and (5.2) can be extended to n dimensions for all » 24
using the approximate solutions constructed by Kayikiya and Miyakawa. The hypothesis on the
data uge M€ for n =2 is optimal as the following example shows. In three dimensions we

expect that the condition u & M, (R3) is necessary but we have not found an example where the
lower bound fails if u € M,O(R3). The example in two dimensions we will present was

suggested by A. Majda.

EXAMPLE (4.1).
Exponentially decaying vorticity in 2 spatial dimensions with data uge M.

Let u(x, t) be a solution to the 2-D Navier-Stokes équation with radial vorticity. Suppose

alsothatuge M N L'~ L2is such that curl uy = wg satisfies
- 1

L Wg € L

ii. VugelL!

iii. o)=0for |&1 <8, somed>0.
Then -

—xir¥
u(x,t)=[xi 2] Isco(s)dx, r2=x12 +x22 (5.1)
r 0
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‘ where @ is the vorticity. Here ug(x)=u(x,00e M (Rz) since

[ufx,06dx = [ uFx,0)dx,
R? R?

and

[ ul(x,0uf(x,0)dx =0
Rl

The vorticity equation is reduced to
@, =A®
o(|x], 0) = w(x, 0) = wy(r)
The term u -V is zero since the vorticity is radial. By iii follows

[ oG, 01%dx = [ 10E, 01DdE= [ |0y@) 1% B aE se™ [ [ag®)1%d8
R? R} R? R?

Hence {o| E, Ske™ 181 We only given an outline for the estimate

{ lu]dx < Coexp(-C t).
RZ

We use the explicit form of u and the decay of || L This estimate will follow from the

explicit form of u, v and the decay of |w| L
By Jensen inequality and (5.1) it follows that

2% r

szs 1 IjstdS:_l_J‘lmlzdxscoe—azl
00 N g

r r

2 2.1
ul“+ |v[°€—| |swds} S|s‘w— 8 —
lul2+ v r2£ { —~ S —

hence
lul o+ |v]a S Cexp(=8%12)

The L? decay of u will follow from a time dependent L ! estimate. More precisely from

F Gy g R g e T T e e T T R
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|, 1)1 SCt

where C depends on L!, L% nomms of u and @ and also on the L norm of Va.
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APPENDIX

Proposition (A.1).
Letuge H(R%) AW, Thenif u is a solution of Navier-Stokes with data u
|Vea; (8, )| SC(2)

where Qjj = UiU; and C(¢) depends

on |ugl,

PROOF:

19g,3;;& 1 S [ Ixe ] lujujia S [ || |u)%dx (A.1)
R! R1

Hence we need to bound j |x] |u|%dx in terms of the initial data. Multiply the N-S equation
Rz

by |x; |u; and integrate in space. We do it component-wise and sum

d
= [ 1xlujudx == | :x“[ujzu,.a,.ujdx- (A2)
R? R? i
=} |xp |u;0;pdx - Ixp |u;Qpgus;dx| =1 + 1T +1IT
L) et
R s R?

I="% [ signy; weude <V [ (ulP+% [ lul®s% [ [ul2+% [ |Vu]2  (A3)
R R? R’ R? R?

where J'] u|* follows by Ladyzenkaya [3], lemma 7.

For the second term it is convenient to bound the sum of all the terms and use that « is

divergent free

SH <Y L |x; |u;0;pdx + j‘z sign(x, ) |u; | |pldx < (Ad)
i R R
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[1a1?+ [1pi*s [ (ul+4 [ luits [ jul®+ [ |Vui?
R? R? R? R? R? R?

The bound on p above follows by recalling that the pressure satisfies an elliptic equation which

is obtained by taking the divergence of the N-S equation

_ ?
Ap _-iZJ ax,-axj uiuj,

hence
§i§j .
ﬁ=-iJ 13k Rk
-and
. ) &L . 4 2
[1piPax = [ 1p1%dEs [ £ —L du;dés4 [ |ul®dx <8 [ |VulZdx (AS)
R} R? R i |6l R? R
Finally I is estimated as follows.

M <Y | sign(ry)u;d,u;dx — [ |x,|[Vu;|%dx <3 [ |ul2dx + [ [Vul’dx (A6)
s R R* R? R?

Hence integrating over [0, ¢] (A.2) and combining (A.1), (A.2), (A.3), (A.4) and (A.6)
[0, a; (8, )] <
I {

S izl lul®ax) sC| [ | (ul®dxds + [ [ | Vi |2dxds| +
Rl 0R2 ORI

+ [ x| lugl?SC@+1) [ lugl®dx + [ 1x¢| lug)?dx
R? R? R?

where C < 40.
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LEMMA (A.]).

Letug=(ug,ud)e M° nHYR?. Leta = f {ud 1% - |ug |%dx #0. There then exists
Rl

to such that if u (x, ¢) is a solution to the Navier-Stokes equation with data u,

T
[ tug)? = lugh?dedr| 2 (w2)T
0 R

for all T < g, 1 depending only of the H® norm of uy,.

PROOF: w..o0.g. suppose that o > 0. If not take

o= [ lud(®- |ug |%dx
RZ

Let
F@)= [ luyl? = fuy|?dx
RI
The following estimate is needed.
.. d 2
|—F ()] SC | |Vu|%x
dr a2

The last estimate follows from multiplying the equation for the first component of N-S by u, the

second by u4 and integrating in space. Hence

d
IZF(t)! < | J;ulzuiaiul—ulalp +u Auqdx - J‘zuzZuia;uz—uzazp + UsAudx |
R i R i

Thus from (A.5)

[%F(t)ISZn [

|Vu 2dx + | |u]%dr.
R? R?

By lemma (7) in [3] it follows that if |u(x,r){ = 0as |x| = e



[ 1ul*de <2 [ |Vul%dx [ (ul?dx SC [ |Vu|dx
RZ RZ RZ Rz

with C =4nCqy, Cy= |ugl E‘,. Recall that solutions to the N-S equations in two spatial
dimensions satisfy
[ 1Vui?dx < [ |Vug|ax
R? R?
The last inequality follows from the special relation between the partial differentials of the
components of the gradient. This relation is a consequence of the solution being divergence

free. By the mean value theorem it follows that

|F(6)=F©)| S |F'®1s $Ct [ [Vu| @z SCr | |Vug|Zx
R? R?

Thus F (1) 2 F (0) - Cyz, where C, = C | |Vug|?dx. Integrating over [0, T yields
Rz

T T2
J'F(r)dt 2FO)T - Ci5

F(0)

2C, it follows that

and forany T <

T
J'F()d:ZF(O)T

Leteg= %é—;)- and the lemma follows.

LEMMA (A.2):

Letug=(ug,ug)e N° NH'. Leta= | uqudx #0. Then there exists zq > 0 such that
RZ

(= I

_[ ugudx 2 /2T
RZ
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for all T <1, o depending only on the H ! norms of u,,

PROOF:

w.l.o.g suppose & > 0. Following the lines of the proof for lemma (A.1) we only need to

show that
1L60)) sC [ 1Vuql2dx
dt o
where
G@)= Iuouldx
RZ

Note that
d
I_G(I)! < | Iuluzt +u1,u2dr| =
ar R?

|- [ uiTwiduzdx = [ udppdx + | ujAuqdx
R? i R? R?

- f uzzu,'a,-uldx - I UZalpdl + I uzAuldx{ <
R* R R}

<Cl [ luldx+ | |Au)dx + | [p]idx
R? R? R?

and from the observation in the previous lemma it follows that last term in bounded by the L2

norm of the gradient of 4 and hence
|iG(:)|sc [ 1Vug|dx
dr R

And the proof now is the same as for lemma (A.1).
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NOTE (A.1):

We recall that in Lemma (8.2) [1], Caffarelli, Kohn and Nirenberg shown that for a suitable
Leray-Hopf solution for almost all ¢

[ lute, )| 1xldx SAQ)
R)

with A () depending only on the L2 and W, norms of the data. Let

A ={:: {sagaiuj(ﬁ,t)l SA(‘)}

where u =u,, uy, u3) is a suitable Leray-Hopf solution to Navier-Stokes. By lemma 8.2 [1]
such set is nonempty. Moreover, A can be chosen so that m(A°)=0. With the notation

a;j = wuj, ae) =w;u;(0, 1) iff r € A

a;; (&, 1) =a(t) + & Vea; €, 1),

———— ——— o AR g 44w b S e % oA mrtme i, e e em = e A b ruraemm Wt e o —— AT et MTm ¢ T T AN fvany iR ctmoeeas s tiee e s e pmemsa At i gras
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