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Abstract

In this paper we deal with the problem of the expression of mono­
mial curves in the affine or projective n-dimensional space as set­
theoretic complete intersections. We develop two techniques for find­
ing monomial curves which are set-theoretic complete intersections.
Using these two techniques we are able to generalize all previous known
results alld give infinitely man)' examples of monomial curves which
are set-theoretic complete intersections in an affine or projective n­

dimensional space, for an)' n.

1 Introduction

Let K be a field of characteristic zero and 7111 < m2 < ... < m n be positive
integers, the g.c.d. of which equals 1. By an affine 7nonomial curve C =
C(mI, m2, ... , 71ln) we mean a curve wi th generic zero (im 1 , tm'J, ... , tmn ) in
the affine n-dimensional space An, over the field K. By a projective 1nonomial
curve we mean a curve with generic zero

in the projective n-dimensional space pn, over the field K.
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An ideal I in a Noetherian ring R is called a set-theo1'etic comp/ete inter­
seetion (s. t.c.i., for shol't), if there are s = height(I) elements 11,12, ... ,I~ E
I, such that Rad(I) = Rad(ll' 12,' .. ,I~). In partieular, a curve C in An 01'

in P"', is called a set-theoretic comp/ete interseetion if its defining ideal I(C)
is generated by n - 1 elements up to radical.

The general problern o[ whether all Inonolnial eurves are set-theoretie
eomplete interseetions is still open. There are nevertheless some partial re­
sults in this direetion.

It is weIl known that:
(i) all monoInial eurves in A3 are s.t.e.i. (see [1], [11], [21]),
(ii) in A4, if the lllunerical semigroup < ml, mz, m3, m4 > is symmetrie, then
the monomial eurve C(rnI, 11~2, 1n3, m4) is a s.t.e.i. (see [2], [7]),
(iii) in An, if n - 1 nUlnbers among ml, m2, ... ,mn form an arithmetie se­
quence, then C(ml' m2," . ,mn) is a s.t.c.i. (see [15]).
Correspondingly, in the projeetive spaee ease, it is known that:
(iv) the arithlnetieally Cohen-Maeaulay eurves are s.t.c.i. in p 3 (see [16],
[17], [18]) and
(v) the rational normal eurves are s. t.c.i. in pn, for any n (see [17], [22]).

The purpose of this paper is to develop two teehniques, whieh are applied to
prove that a large nun1ber.of monon1ial eurves in An or pn, are s.t.c.i .. The
first teehnique starts with a projeetive, monomial eurve whieh is a s.t.e.i. anel
produees infinitely many monomial curves that are s.t.e.i. in affine or projec­
tive spaee of one dimension higher. This teehnique has an inductive power.
The second technique starts from an affine eurve whieh is a s.t.e.i. and pro­
duces infinitely many affine monomial curves in the same space, which are
set-theoretie eomplete intersections. Using this teehnique we can generalize
all previous known results in the affine space and the results that we are
getting using the first technique. Note also that, in both teehniques, we get
explieitly the defining equations of the curves, provided that we know the
defining equations of the first curve.

The first technique will be developed in sections 2 and 3, and the seeond
in seetion 4.
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2 The main Theorem

In this section we associate to each monomial curve in An a projective mono­
mial curve in pn-l. The monomial curve C = C(lnl, ln2,' .. ,mn) is associ­
ated to the projective monomial curve P(C) with generic zero

of pn-l , where (l1li -lnj)* are the nUlnbers (lni - mj) divided by their g.c.d ..
From now on we shall denote this g.c.d. by g.

Theorenl 2.1. Let C be a mononüal curve C(mllln2l' .. ,mn) in An, such
that:
a) P(C) is set theoretic c01nplete intersection and
b) apower 0/ the bin01nial (um" - vm}) belongs to the ring

Then:
(i) C is set theoretic complete int.ersection,
(ii) The projective closure t 0/ C is set theoretic complete intersection, and
(iii) The affine counterpart 0/ C, C(m n , m n - ml, ... ,1TIn - mn-d , is set
theoretic complete intersection.

Proof. (i) FrOIn condition (a) we deduce that there exist homogeneous
polynomials FI, F2 , ••• ,Fn - 2 , such that

Let f be the ring homolllorphislll froll} j([X1, X 2 ,' •• ,Xn ] to j([u, v], given
by f(Xd = u(mn-mj)· v(mi-mt}·, i = 1,' .. ,n.
The kernel of f is the defining ideal I(P(C)) of the projective monomial curve
P(C). According to condition (b), there exists at least one polynolnial Fn-t,
such that f(Fn-d = (um" - v ml r for SOlne r.

We claim that C i8 the s. t.c.i. of F1 , l~, ... , Fn - 1•

We shall prove the claim by cOllsidering a common zero of F1l F2 ,' .. ,Fn - 1l

say x = (XI l X2, •.• , x n) in .i?n, where }? denotes thc algebraic closure of J(.
This x i8 also a common zero of FI," . 1 Fn - 2 . Therefore it can be written as
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for sonle U,V in R. Furthennare, since xis a zero of Fn - 1 too, it is f(Fn - 1 (x)) =
(u mn - vm) r = 0. Thus u and v satisfy the relation umn = vm). Setting
u = tm), we get v = wt mn , where w is a rnrroot of unity. The g.c.d. of
9 and ml is 1, which means that there exist k and I, such that k is pos­
itive and kg + 17nl = 1. Replacing the values of u and v in x, we get
x = (Tm!, Tm), ... ,Tmn), where T = wkt(mn-ml)·.

(ii) We claim that the projective closure

of C is the s.t.c.i. of FI, Fz,' .. ,F!:_l' where ph is equal to

X degFF(X IX ... X IX )o I 0, ,n o·

Note that FI,' .. ,Fn - 2 are already hOlnogeneous.
Ta prove the claim we only need to show that, for X o = 0, the above

polynomials have only one COlllffion zero, namely the point (0,0"",0,1),
because we know from (i) that C is the s.t.c.i. of FI, F2 ,'" ,Fn - l •

The highest degree tenn in Fn - l is X;nn. Therefore, by setting X o =°in
F!:_l1 we get Xl = 0. But the COlTIlnOn zeros of FI,' .. ,Fn - 2 are in the form

and thus, if XI = 0, U = 0 and X 2 = X 3 = ... = X n - I = O.
(iii) It follows fronl (ii).

Example 2.2 fn (9) S. Eliahou proves that the curve (t 4
, t6

, t7
, t9

) is s.t.c.i.
in A~, by llsing a rcfinelnent of Cowsik's Lemma for Inonomial curves, which
says that: if the symbolic Rees algebra of a monomial curve C is finitely
generated, then C is globally a s.t.c.i. (see [5], [8]).

Using Theorem 2.1, we see that the curve (t\ t6
, t7

, t9
) is associated to

the curve (u 5
, '113V 2, U 2 V 3 , v 5

) and the binomial ('ll9 - v4
). The curve is arith­

metically Cohen-Macaulay and it is therefore the s.t.c.i. of X~ - XtXj and

X~ - 3xix;x4 +3Xt X2X3X: - X; X~.
On the other hand, (u9 - V

4
)5 belangs ta J{ [u 5 , u3V Z , uzv3 , v 5]. Therefore, the

Eliahou's curve is the s.t.c.i. of X~ -XIXj , X; -3XiXjX4 +3XI X ZX 3X;­
X;XJ and

X~ - 5X~xi + 10X: X 2X; - lOX;xi + 5X~xi - x:.
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From Theoreln 2.1 we conclude also that the projective closure of the Elia­
hou 's curve (u9

U
5

V
4

U
3

V
6 u2v7 v9

) anel the affine counterpart (t 2 t3 t 5 t9
), , , , , , , , , , ,

are s.t.c.i ..

Exanlple 2.3. Let C be the monomial curve (t, t3 , t4
). C is the s.t.c.i. of

X 2 - X~ anel X3 - X:. By the n1ethod introduced in this section, C is as­
sociated wi th the projective Illononlial curve (u 3

, uv2
, v3

) anel the binamial
(u4

- v). No power of (u4
- v) belongs to J([u3

, uv 2
, v3

], since 1 does not
belong to the semigroup generated by 2 and 3. Hence, by the use of Theorem
2.1, we can not prove that (t, t3

, t4
) is s.t.c.i .. Eut that was not unexpected,

since the projective closure of C is (u4 , u3v, U'l}3, v4 ), which is not a bihomo­
geneous s.t.c.i. (see [19], [20]).

Example 2.4 In the case, in which the eharacteristic p of our underlying
field K is positive, all affine (see [6)) anel projective (see [4], [10], [13], [17])
Inonomial curves are s.t.e.i .. We can use Theorem 2.1 to give an easy proof
of these two results.
Choosing the power of thc binomial in the candition (b) of Theorem 2.1 to
be pk(mn - md*, where k is big enough, we see that condition (b) reIllains
always true.

In the projective plane all (Illononlial) eurves are s.t.c.i.. Therefore, The­
orem 2.1 automatically proves that all monolnial curves are s.t.c.i. in A3 and
p3 and, of course, induetively, that all monOlnial curves are s.t.c.i. in An and
pn.

3 The first technique

In this section we describe the first technique which is based on Theorem
2.1 anel produces infinitely many examples of monomial curves, whieh are
set-theoretic complete intersections in An or pn, for every n. Let us first
introduce some terminology that will help us to give a bettel' expression of
the candition (b) in Theorem 2.1.

Let Pi denote the set of nonnegative integers and ei denote the tuple
((mn - 1nir, (rni - 1nd*). Let S be the semigroup in N 2 generated by the
set {eili = 1,"', n}, SI the numerical semigroup generated by the set
{(mi - rnlr li = 1,"', n}, Sn the nurnerical semigroup generated by the
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set {(mn - rn'ir li = 1, ... , n}, W l := {w~ = (( I - i)mn, irnd li = 1,' .. , n},

H := {(a, ß) E N 2 1a + ß =Omod(mn - n~I)*},

and S' := {e E Hle + Plel E Sand e + Pnen E S for some PI,Pn E N}.
If x E N 2

, we write x = ([xh, [xh). For an element e E H, the number
8(e) = ([e]t + [eh)/(n~n - 111. I) * will be called deg1'ee of e. For an element
s E SI, the number 8S1 (s) = 1nin{L:~1 ads = L~l O'i(1ni - m·d*} will be
called degree of s with respect to 51' Respectively one defines the degree of
an element in Sn.

Finally we define E(md := max{8St (1'1ndI1 ~ r ~ (mn - ml)*}and
E(mn) := max{8Sn (rmn)jl ~ r ~ (l1~n - l1~lr}.

Lemma 3.1. [3], [12] Let e E 5' and e i= (0,0). Then the jollowing three
conditions are equivalent:
(i) e ES.
(ii) 8(e);::: 8st ([eh),
(i i i ) 8(e) ;::: 8Sn ( [eh) .

Proposition 3.2. Ij I = h( rnn - mt r) then W l eH.

Proof. If 1 ~ i ~ n, then w~ = (( I - i)n~n, i1nt) and (I - i)m n + im!
ln~n - i(mn - 1nt} = (h1nn - ig)(1nn - 1121)*' Therefore W 1 c H.

Proposition 3.3. The condition, (b) oj Theorem 2.1 and the following two
conditions are equivalent.
(bI) W f C S j01' S011te I
(b2 ) ml E SI anfl m n E Sn.

Proof. Rephrasing condition (b) in terms of the previous terminology we
get condition (bI)' So, in fact, we only have to prove that conditions (b! ),( b2 )

are equivalent.
Suppose that (bd is true. Then ((l - 1)ntn , 1121) is an element of S aud

ml E SI' Similarly we get nl-n E Sn'
Suppose that (b2 ) is true. Set I = h( 112n - mlr, where
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According to proposition 3.2, w~ belongs to H. Since ml E Sland m n E Sn,
there exist aj, bj , such that 1nl = Li=l aj(mj - 1nd· anel

n

ffi n = L bj(mn - mjr,
j=l

which means that w~ can be written a.s

n n

w~ = Ziel + L ajej = Yien +L bjej.
j=l j=l

lf one of Zi, Yi is nonnegative, then w! E S alld therefore w! ES'. If both of
them are negative, then w! - ziel = Ei=l ajej E S,w~ - Yien = L:i=l bjej E S
and -Zi, -Yi E N. Thus w: ES'.

We have to distinguish between two ca.ses. First consider the case when
//2 2: i and write i = qi(mn - 1nd* + Ti, where 0 ~ Ti ~ (mn - 1111r.

We have 8(w:) = h1Ttn - ig 2: h1Ttn - h(1Ttn - n11r9 /2 = hmn /2 +hn1] /2 2:
((md + qim l 2: 851 (Timd + C[i 111 1 = 851 (imd = 851 ([w:l 2 ). Hence, from the
Lemlna 3.1, we conclude that w~ E S.

The second case, i.e. when 1/2 ~ i, can be treated silnilarly.

Combining Theorem 2.1 and the Proposition 3.3 we get the following Theo­
rem:

TheorelTI 3.4. IJ C = (ud, ua1 vb1 , ... ,vd ) is a projective 1non01nial CU1've
in po, which is set-theoretic complele interseetion, then
(i) J01" any k, I, such that k E< bt, ... , bn - 1 , d > and k+ld E< ah ... ,an-I, d >,
the affine mononlial curves (t k t k + 1b1 ••. t k + 1d ) (t lan - 1 ..• t lal t 1d t k+ 1d ) as, " , ""
weIl as their projective closu1'e

(
k+ld Id k u1a1 Vk+lb1 lan_l k+lbn _ 1 k+ld)u ,u v , ,'.',1l V ,v

are set-theoretic comp/ete inte1'seetions, and
(ii) tor any k, I, such that k E< at,"', an-I, d > und k+/d E< bl ,"', bn-I, d >,
the affine 1nonolnial curves (t k tk+lan-l •.• t k+ ld ) (t ibl .•• t lbn - I t ld tk + ld ), " , " "
as weIl as their projective closure
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are set· th eoretic compIeteinterseet.ions.

Starting froln any given exaluple of a projective monomial curve, which is
s.t.c.i., and llsing Theorem 3.4, we can get infinitely Inany examples of affine
and projective monomial curves, which are s.t.c.i. in the affine 01' projective
space ofone dimension higher. For instance, one could consider as starting
point of this procedllre any 1110nomial Cllrve in p2 01' any arithmetically
Cohen-Macaulay IDonolllial curve in P3.

Exanlple 3.5. In this example we are going to start fronl the arithmetically
Cohen-Macalllay Inono1l1ial curve (u 7

, u6v, U 4V 3 , v 7
) in p3 and use Theoren1

3.4 to deduce that certain monomial curves in A4
01' p4 are s.t.c.i.. This curve

is thes.t.c.i. of xg-xlx3 and X~ -3XiXjX4+3XlX2X;;Xl-xtx~,(see
[16] ,[17] ,[18]). Theorem 3.4 says that for any k, I, such that k E< 1,3,7 >
and k + 71 E< 4 6 7 > the affine monoluial curve (t k t k+1 tk+31 t k+71 ) and" , , , ,
its projective closure

are s. t.c.i ..
The only values of k and I, for which this does not happen, are k == 2 and
I == 1. These lead to the curve (t 2

, t3
, t5

, t9
). But even this curve as weH

as its projective closure (u9 , U
7v 2, u6v3, u 4v 5, v 9 ), are s. t.c.i., according to our

previous Example 2.2.
SUffiluarising our results, we see that all affine monolnial curves of the

form (t \ tk+l , tk+3l , tk+ 71) and all pro jective Inonomial cu rves of the form

are indeed s.t.c.i ..
We should also lnention, that for all, up to the last one, of the cu1'ves of the
above type, two of the three clefining equations are exactly the same.

Example 3.6. In this exaIl1ple we prove that all normal curves are s. t.c.i.
(see [17] ,[22]). We are going to prove it by induction. For p2 the proof is
obvious. Suppose we know that (un, un-Iv, ... ,vn) is s. t.c.i .. Then, applying
Theorem 3.4 to this curve, we conclude that (un+1, unv, ... , uvn, v n+I ) IS
s.t.c.i., since both 1 anel n + 1 belong to the semigroup < 1,2,· .. ,n >.
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4 The second technique

In this section we first prove a Lelnma concerning the aritlunetical ranks
of certain types of lnonomial curves. Based on this Lemlna, we develop a
second techllique by means of which one can find infinitely many examples
of set-theoretic cOlllplete intersection mononlial curves in An, just starting
from a given one.
Consider an affine 1110nOInial curve C = C(mb"', m n ) and the monOInial
curve C(a,i) = C(ar11I" .. ,am'i-b r11i, an1i+b' .. ,amn ), where g.c.d.(a, mi) =
1. Note that, in this section, we do not asslune necessarily that 1111 < mz <
... < m n holds.

If f is an element of j([Xb X z," . ,Xn ], we denote by f(a,i) the polynomial
j(X1, X z , ... ,Xt" .. ,Xn ).

Let R be the polynomial ring j([XI," . ,Xn ], S the graded polynomial
ring j([Xo, Xl,' .. ,Xn ] with the llsual grading, Re the polynomial ring R
with the a-grading: a - deg(Xj ) = mj, and Sc the ring S with two gradings,
namely: the usual grading and the a-grading: a-deg(Xo) = 0, (T- deg(Xi ) =
mi·

If I is an ideal of R (respectively of S), we will write rad(I) for the radical
of I. The arithnletical rank of I, written ara(I), is the smallest integer s for
which there exist elements (resp. h0I110geneous elements) 11, fz,' .. ,f~ in I,
such that rad(I) = rad(IJ, Iz, ... ,/~).

If I is an ideal of Re (respectively of Sc), then the hOInogeneous arith­
metical rank of J, written arah(J), is the sInallest integer s for which there
exist a-homogeneous elements (resp. bihomogeneous elements) f1, fz,' .. ,f~

in I, such that rad( I) = rad(fl, /z, ... , /~).
If I is the ideal of a monomial curve, we shall use the notation ara(C)

insteed of ara(I(C)) and arah(C) insteed of arah(I(C)).

Lemma 4.1. LeI. C be a lnonolnial CUTve in the affine n-space. The
arithmetical Tanks of C and C(a,i) are related by the following inequalities:
(i) . ara(C) :::; aTah( C)
(ii) ara( C(a,i)) :::; al'a(C)
(iii) al'a(C) :::; al'o.h(C(a,i))

Proof. (i) It follows from the definitions.
(ii) Suppose that ara(C) = s, i.e. that there exist f}, Iz,' .. ,I:., such that
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I(C) = rad(fI, f2,' .. ,f~). Then we claim that

Let h be an element of I( C(a,i») C Rc(a,i)' This element h can be written in
the form h = hO+X}l.1 +.. .+Xr-I1ta_1, in which the exponents of the variable
Xi in the polynomials ltj are multiples of a. Note that the a-homogeneous
terms in X(h j have different a-degrees frOlll those in X(h t , when j =J. t,
because the a-degree of hj is a multiple of a, for every j. Therefore, each xlhj

belongs to I(C(a,i»)' Note that I(C(a,i») is a priIlle ideal and Xi (j. I(C(a,i»)'
Thus, each ll.j belongs to I(C(a,i») and, for each j, there exists an hj in I(C),
such that _k j = hj(a,i)' Now hj belongs to 1'ad(fl' /2,"', f~). This means,
that each hj belongs to rad(j(a,i)l,' .. ,f(a,i)II)' Bence the last inclusion is also
valid for the whole h.
(iii) Suppose that a1'ah(C(a,i») = s, i.e. that there exist 91,'" ,g~, such that
I( C(a,i)) = rad(f/l,' .. ,g~). Since gll ... ,g~ are a-homogeneous and none of
them has Xi as a factor, there are elements 91,' .. ,911 of I(C), such that

9j(a,i) = 9j'
We claim that I(C) = rad(91"" ,98)' Let 9 be a a-homogeneous elenlent

of I(C). Then 9(a,i) belongs to I( C(a,i») = 7'ad(gl' 1 g~). This means, that
there exist an 1n, such that (g{a,i»)m = Al 91 + + A~g~. On the other
hand, (g(a,i»)m 1 91, ... ,g~ are all a-h0I11ogeneous. Therefore, by forgetting
the tenllS T occuring in Aj , for which t7 - degr'ee(T) + a - degree(gj) =J.
er - deg1'ee(g{a,i»)m, the above equality still holds and the new Aj turn out ta
be a-homogeneous. Note firstly that the er - degree(g(a,i») is a multiple of a,
since it is the image of a a-homogeneous eleIllent of I(C), and secondly that
the a-degrees of gl, ... ,gll are llluitipies of a, since they are a-homogeneous
and none of them has Xi as factor. Bence, there exist Bt ,' .. ,BII , such that
gm = B t 9I +... +BIIgII .

The proof follows frOlll the fact that every element in I( C) is a sum of
a-homogeneous elements.

For more infornlations about the ideals of C and C(a.i) we refer ta [14].

Remark 4.2. We do not know any example of an affine 01' projective mono­
mial curve, for which a1'a( C) 1S different from arah( C). We nevertheless
know some monomial curves in p3, like the Macaulay CU1've (u4, u 3v, uv3, v 4),
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which have arah( C) = 3 (not a-homogeneous s. t.c.i.), hut it is still uknown
if ara(C) is exactly 2 or exactly 3, (see [20]).

Theorem 4.3. Let C be a 1nonornial CUTve in the affine n-dimensional
space.

(i) 11 C is a set theoTetic complete inteTsection) then C(a,i) is a set theoTetic
cO'mplete inte1'section) JOT eve1'Y a)i) such that 1 ~ i ::; n and g.c.d,(a, mi) = 1.

(ii) 11 C(a,i) is a a-ho'mogeneous set theoTelic complele inteTsection) lhen
C is a set theoTelic co'mplete inteTsection.

Proof. The proof follows [raIn Lelnlna 4.1 and the generalized Krull's Prin­
cipal Ideal Theorem.

Definition 4.4 A 1non01nial curve C(ntI, m2,' .. ,mn) is called minimal if

101' any 1 ::; i ~ n.

By aseries of applications of operations T(a,i) : C ---+ C(a,i), we can obtain
any monomial curve starting frol11 a miniInal one. We shall say that two
monomial curves belong to the sa1ne class, if both can be obtained from the
same n1inilnal curve.

Theoren1 4.5. lf a 'monomial CUTVe C is a-ho1nogeneous set theoTetic
cornplete inteTsection) then eveTy mono17üal curve within the class 01 C is
also set-the01'etic complele interseetion.

Proof. The proof follows inlInediately frOln Theoreln 4.3,

Example 4.6. Theorem 4.5 generalizes all known results in the affine space
( see Introduction), as weil as the results we get {rom sections 2 and 3. And
this is due to the fact, that all the cases which are known to be s.t.c.i., are
also a-homogeneous s.t.c.i. For instance, D. Patil proves in [15], that any
affine monoInial curve C(1nl' 1TI2,"', 1TI n ), for which n - 1 numbers among
7nI, m2, ... ,nln form an arithlnetic sequence, is s.t.c.i. Using thc Theorem
4.5 we can generalize this result:
Every monolllial curve within the dass of a monolnial curve for which n - 1
nUlnbers aInong 1n1, ... ,1nn form an arithlnetic sequence, is s.t.c.i ..
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Example 4.7. One of the simplest open cases for the set theoretic complete
intersection problem for affine InonoInial curves, was the curve (t 5

, t6
, t 8

, t 9
).

This curve is associateel to the projective monomial curve (u\ u3v, uv3
, v4

),

which is not arithmetically Cohen-Macaulay anel so it is unknown if it is
s. t.c.i. 01' not. Therefore, none of the Theorems of the sections 2 anel 3 can
be applied to conclude that (t 5

, t6
, t8

, t9
) is s. t.c.i..

Using the technique of this section we see that the above curve is re­
lated to (t 9

, t10
, t 12

, t16
). This curve is associated to the projective monolnial

curve (u 7, u 6 v, U
4

V
3

, V 7) which is arithmetically Cohen- Macaulay. Moreover
(u 16 _ V 9 )7 belangs to J([u 7 , u6v, u4V 3 , v 7 ]. Therefore (t 9 , t lO , [12, t 16 ) cau be
interpreted as s.t.c.i. of

X 3
- X 2 X2 I 3,

X~ - 3X;xjX 4 +3X;X2X~X~ - xtXt anel of

X: 6
- 7X: 2 X; X 4 +21XloX 2X3 XJ - 35XfX~X:+35X~X 2X:

-21XtX3X: +7X;X3X; - X~.

Its projective closure (U16,U7V9,UGVIO,U4V12,VI6) is also set-theoretic COIll­
plete intersectioll, namely of xg - X; X 3 ,

X~ - 3X;XjX4 + 3Xi X 2XjXl- X: X] anel of

XfG - 7X OXf2 Xi X4 +21XeiX:oXzX 3X1- 35XgX~x~xl+35Xrixfxzx!
-21XgXtX3x~ +7xgx;X3X: - xJx~.

From Theorem 4.3, we see thät thc original curve (t 5 ,t6
, t8

, t9
) is s.t.c.i.and

we can get its defining polynomials by changing xi by X 4 , X2 by Xl, X 3 by
Xz and X 4 by X3 in the polynOInials defining (t 9

, t lO
, t 12

, t 16
).

Thus, we get the following polynomials:

X 3 -XXI 4 Z,

x; - 3X;X~X3+3Xt XiX;X4 - x;x1 anel

X: - 7X;X3X: +21Xt~\'2X~X~ - 35XiX~X1 +35XtX;Xt

-21X2X~x1+ 7X;X2X~ - X5.
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Note that we cannot conelnde from these polynomials, that the projective
elosure of (t 5

, t6
, t8

, t9
) is s.t.c.i ..

Remark 4.8. The trick of the Exalnple 4.7 can be applied always in A4 hut
not with equal success. With the use of the following Lemma 4.9, we can re­
late any monolniaJ curve in A4 to an arithlnetically Cohen-Macaulay curve in
p3 but, in general, the second condition of Theorem 2.1 will be not satisfied.

Lemma 4.9.[20] Let C be a p1'ojectl:ve 1nonomial curve (ud, u G1 v b1 , ua2v~, v d),

where d > (LI > a2' If b1 belangs ta the nun~erical semigraup < af, ar - a~ >
or a2 belongs to < b;, b; - bi >, ar, a~ are lhe nu'mbers ab a2 divided by theü'
g. c.d. and b;, bi a1'e the n7.l1nbers b2, b1 divided by their g. c.d., then C is arith­
metically Cohen-Macaulay.

Take, for example, a number 1prilne to 111.1' Then it is C(l,1)(ml, m2, m3, m4) =
C(ml, 1m2, 1m3, 17n4)' According to Lemlna 4.9, this curve is arithmetically
Cohen-Macaulay if 1nt2 -1nl E< (m4 - m2)#, (m3 -1n2)# >, which is always
true for big 1. But for this curve to be s.t.c.i., according to Theorem 2.1, we
need at least 1nl E< lrn2 - 111.1, 1m3 - ml, lrn4 - ml >, which is never true
for big I.
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