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On the set-theoretic complete intersection
problem for monomial curves in A" and P"

Ap-ostolos Thoma

Department of Mathematics, University of loannina, Ioannina 45110, Greece.

Abstract

In this paper we deal with the problem of the expression of mono-
mial curves in the affine or projective n-dimensional space as set-
theoretic complete intersections. We develop two techniques for find-
ing monomial curves which are set-theoretic complete intersections.
Using these two techniques we are able to generalize all previous known
results and give infinitely many examples of monomial curves which
are set-theoretic complete intersections in an affine or projective n-
dimensional space, for any n.

1 Introduction

Let K be a field of characteristic zero and m; < ms < -+ < m,, be positive
integers, the g.c.d. of which equals 1. By an affine monomial curve C =
C(my,my,---,m,) we mean a curve with generic zero (¢™,¢™2 ... t™") in
the affine n-dimensional space A", over the field K. By a projective monomial
curve we mean a curve with generic zero

(umn, umn-ml vml R vmn)

in the projective n-dimensional space P*, over the field K.



An ideal I in a Noetherian ring R is called a set-theoretic complete inter-
section (s.t.c.1., for short), if there are s = height(I) elements fi, fo, -+, f, €
I, such that Rad(I) = Rad(f\, f2, -, fs). In particular, a curve C in A™ or
in P", is called a set-theoretic complete intersection if its defining ideal I(C)
1s generated by n — 1 elements up to radical.

The general problem of whether all monomial curves are set-theoretic
complete intersections is still open. There are nevertheless some partial re-
sults in this direction.

It is well known that:

(¢) all monomial curves in A are s.t.c.i. (see [1], [11], [21]),

(#2) in A%, if the numerical semigroup < my, mq, m3, m4 > is symmetric, then
the monomial curve C(my, my, m3, my) is a s.t.c.i. (see (2], [T]),

(z22) in A™, if n — 1 numbers among my, ma, -+, m, form an arithmetic se-
quence, then C(my,mq, -+, my) is a s.t.c.i. (see [15]).

Correspondingly, in the projective space case, it is known that:

(1v) the arithmetically Cohen-Macaulay curves are s.t.c.i. in P? (see [16],
[17], [18]) and

(v) the rational normal curves are s.t.c.i. in P*, for any n (see [17], [22]).

The purpose of this paper is to develop two techniques, which are applied to
prove that a large number.of monomial curves in A™ or P*, are s.t.c.i.. The
first technique starts with a projective monomial curve which is a s.t.c.i. and
produces infinitely many monomial curves that are s.t.c.i. in affine or projec-
tive space of one dimension higher. This technique has an inductive power.
The second technique starts from an affine curve which is a s.t.c.i. and pro-
duces infinitely many affine monomial curves in the same space, which are
set-theoretic complete intersections. Using this technique we can generalize
all previous known results in the affine space and the results that we are
getting using the first technique. Note also that, in both techniques, we get
explicitly the defining equations of the curves, provided that we know the
defining equations of the first curve.

The first technique will be developed in sections 2 and 3, and the second
in section 4.
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2 The main Theorem

In this section we associate to each monomial curve in A™ a projective mono-
mial curve in P*~'. The monomial curve C = C(m;,my,---,m,) is associ-
ated to the projective monomial curve P(C') with generic zero

(u(mn—m1)°, . ’u(mn—m-‘)‘v(mi—ml)" e ,v(’"n""‘l)')

of P"~1, where (m; —m;)* are the numbers (m; —m;) divided by their g.c.d..
From now on we shall denote this g.c.d. by g¢.

Theorem 2.1. Let C be a monomial curve C(my,mq, -+ ,m,) in A", such
that:

a) P(C) is set theoretic complete intersection and

b) a power of the binomial (u™ — v™!) belongs to the ring

]([u(mn—ml)" . ,u(mn—me)'v(me—mx)" v U(mn—mxr]‘

Then:

(i) C is set theoretic complete intersection,

(ii) The projective closure C of C is set theoretic complete intersection, and
(11i) The affine counterpart of C, C(my,my, — my, -, My — Mp_1) , is set
theoretic complete intersection.

Proof. (i) From condition (a) we deduce that there exist homogeneous
polynomials Fy, Fy, -+, Fl,_2, such that

I(P(C)) = rad(Fy, Fy, -+, Froy).

Let f be the ring homomorphism from K[X;, X, -+, X,] to K[u,v], given
by f(X;) = wlmn=mi) ylmi-mi)™ p =1 ... p,
The kernel of f is the defining ideal I(P(C')) of the projective monomial curve
P(C). According to condition (b), there exists at least one polynomial F,_q,
such that f(f,-;) = (u™ —v™)" for some r.

We claim that C is the s.t.c.i. of Fy, 5, -+, F_;.

We shall prove the claim by considering a common zero of Fy, Fy, - - -, Fo_4,
say X = (21,2, -, 2,) in K™, where K denotes the algebraic closure of K.
This x is also a common zero of Fy,---, F,_;. Therefore it can be written as

X = (u(m"—m1)°’ co {memmi)(mimma)t ,v(mn—ml)')
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for some u,v in K. Furthermore, since x is a zero of F,_; too, it is f(Faa(x)) =
(um™ — v™) = 0. Thus v and v satisfy the relation u™" = v™. Setting

u = t™, we get v = wt™, where w is a my-root of unity. The g.c.d. of

g and m, is 1, which means that there exist £ and [, such that k is pos-

itive and kg + Im; = 1. Replacing the values of v and v in x, we get

x = (IT™,T™,.-.,T™), where T = wktmn=m1)*,

(i1) We claim that the projective closure

C — (umn’umn—ml vml, e ’u"nn—mn—lvmn—l , .vmn)
of C is the s.t.c.i. of Fy, Fy,---,F"_|, where F* is equal to
XEFE(X/ Xo,- -, Xn/Xo).
Note that Fy,-- -, F,,_, are already homogeneous.
To prove the claim we only need to show that, for Xy = 0, the above
polynomials have only one common zero, namely the point (0,0,---,0,1),

because we know from (1) that C is the s.t.c.i. of Fy, Fy, -+, Fyy.
The highest degree term in Fy,_; is X{*". Therefore, by setting Xo = 0 in
F,{‘_l, we get X; = 0. But the common zeros of Fy,---, F,,_, are in the form

(u(m"“ml)‘, Ty u(mn_mi).v(m‘._ml)‘, sy U(mn_ml)‘)

and thus, if X, =0, u=0and Xo=X3=---=X,_, =0.
(iii) It follows from (ii).

Example 2.2 In [9] S. Eliahou proves that the curve (t4,1%,¢7,1%) is s.t.c.i.
in A2, by using a refinement of Cowsik’s Lemma for monomial curves, which
says that: if the symbolic Rees algebra of a monomial curve C' is finitely
generated, then C is globally a s.t.c.i. (see [5], [8]).

Using Theorem 2.1, we see that the curve (t4,1%,¢7,1%) is associated to
the curve (v®, ©?v?, v*v?®,v®) and the binomial (v® — v*). The curve is arith-

metically Cohen-Macaulay and it is therefore the s.t.c.i. of X3 — X} X? and
X5 = 3XFXIX4 +3X, X Xa X2 - X2X3.

On the other hand, (u® — v*)5 belongs to K[u®,u®v?, u?v?, v®]. Therefore, the
Eliahou’s curve is the s.t.c.i. of X3 — X1 X7 | X3 -3X2X2X, 43X, Xo X3 X7 —
X2X3 and

X _5X8 X2 410X X, X2 — 10X2X3 +5X2 X2 - X1,
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From Theorem 2.1 we conclude also that the projective closure of the Elia-
hou’s curve, (u®?, u5v*, ©®v® u?v7, v?), and the affine counterpart, (#2,t3,1%,%),
are s.t.c.1..

Example 2.3. Let C be the monomial curve (¢,£%¢%). C is the s.t.c.i. of
Xz — X and X3 — X{. By the method introduced in this section, C is as-
sociated with the projective monomial curve (u®, uv? v®) and the binomial
(u* — v). No power of (u! — v) belongs to K{u® uv? v?], since 1 does not
belong to the semigroup generated by 2 and 3. Hence, by the use of Theorem
2.1, we can not prove that (¢,¢%,%) is s.t.c.i.. But that was not unexpected,
since the projective closure of C is (u*, u’v, uv?,v*), which is not a bihomo-
geneous s.t.c.i. (see {19], [20]).

Example 2.4 In the case, in which the characteristic p of our underlying
field K is positive, all affine (see [6]) and projective (see [4], [10}, [13], [17])
monomial curves are s.t.c.i.. We can use Theorem 2.1 to give an easy proof
of these two results.
Choosing the power of the binomial in the condition () of Theorem 2.1 to
be p*(m, — m,)", where k is big enough, we see that condition (b) remains
always true.

In the projective plane all (monomial) curves are s.t.c.i.. Therefore, The-
orem 2.1 automatically proves that all monomial curves are s.t.c.i. in A® and
P? and, of course, inductively, that all monomial curves are s.t.c.i. in A™ and

P,

3 The first technique

In this section we describe the first technique which is based on Theorem
2.1 and produces infinitely many examples of monomial curves, which are
set-theoretic complete intersections in A™ or P*, for every n. Let us first
introduce some terminology that will help us to give a better expression of
the condition () in Theorem 2.1.

Let N denote the set of nonnegative integers and e; denote the tuple
((mn — m;)",(m; —my)"). Let S be the semigroup in N? generated by the
set {e;]: = 1,---,n}, S; the numerical semigroup generated by the set
{(m; —my)’|i = 1,---,n}, Su the numerical semigroup generated by the



set {(mn—m)"li =1, --,n}, WHi= {w! = (I — D)ma,imy)|i = 1,---,n},
H = {(a,f) € N*|a + 8 = Omod(m, —my)"},

and S’ := {e € Hle+ pje; € S and e + pe, € S for some py,p, € N}.
If z € N?, we write = = ([z];,[z]2). For an element e € H, the number
6(e) = ([e]1 + [e]2)/(mn — m;)" will be called degree of ¢ . For an element
s € Sy, the number g, (s) = min{Ll, ails = T, ai(m; —my)"} will be
called degree of s with respect to S;. Respectively one defines the degree of
an element in S,.

Finally we define ¢{my) := maz{bs,(rmy)|l < r £ (m, —my) }and

1) <
e(my,) = maz{bs,(rm,)|]l <r < (m, —my)"}.

Lemma 3.1. [3], {12) Let e € S" and e # (0,0). Then the following three

conditions are equivalent:

(2) e S.
(22) b(e) 2 bs,(le]2),
(222) 8(e) = 8s,([e]1)-

Proposition 3.2. Ifl= h(m, —my)", then W' C H.

Proof. If 1 < i < n, then w! = (({ — #)mn,im;) and (I — i)m, + imy; =
Imy, — i(my, —my) = (hm, — 1g)(m, — my)". Therefore W' C H.

Proposition 3.3. The condition (b) of Theorem 2.1 and the following two
conditions are equivalent.

(b1) W!'C S for some |

(b2) my € 5; and m, € S,,.

Proof. Rephrasing condition (b) in terms of the previous terminology we
get condition (b;). So, in fact, we only have to prove that conditions (,),(bs)
are equivalent.

Suppose that () is true. Then ({I{ — 1)m,,m) is an element of S and
m, € S;. Similarly we get m, € S,.

Suppose that (b;) is true. Set { = h(m, — m;)", where

h > maz{2e(my)/mn, 2e(my,)/my }.



According to proposition 3.2, w! belongs to H. Since m; € Sjand m, € S,,
there exist a;,b;, such that m; = ¥7_, a;(m; — m;)" and

n

my, = ij(mn — m,-)',

j=1

which means that w! can be written as

n n
!
wi = zier + Y aje; = yien + 9 bje;.

i=1 i=1

If one of z;,y; is nonnegative, then w! € S and therefore w! € S’. If both of
them are negative, then w! — z;e, = 2i=1a5€; € Sl —yien = Y1 bie; €S
and —z;,—y; € N. Thus w! € 5.

We have to distinguish between two cases. First consider the case when
[/2 > 1 and write 1 = g;(m, — m1)" + i, where 0 < r; < (m,, —my)".

We have §(w!) = ki, —ig > hmp,—h(my, —m)"g/2 = hm, 24+ hmy /2 >
e(m1) + gimy > 85, (rim1) + ¢y = 8s,(imy) = 6s, ([w!],). Hence, from the
Lemma 3.1, we conclude that w! € S.

The second case, i.e. when {/2 < ¢, can be treated similarly.

Combining Theorem 2.1 and the Proposition 3.3 we get the following Theo-
rem:

Theorem 3.4. [fC = (u?,u®v®, - v%) is a projective monomial curve
in P", which is set-theoretic complete intersection, then

(i) for any k, 1, such thatk €< by, -+ by_y,d > and k+ld €< ay, -+ ,ap_1,d >,
the affine monomial curves (%, 5411 ... gkHd) (glan—y L gler gld ghdld) g
well as their projective closure

(uhHE gk lo1gftihy g lennybtlbnoy  hd)
are set-theoretic complete intersections, and

(ii) for any k, 1, such thatk €< ay, -, an-1,d > and k+Id €< by, -+ -, byv,d >,
the affine monomial curves (t*,tF+en-1 .. ghHldy - (gth L glbans gld gkeld)
as well as their projective closure

(WF I gk g lonmtyhtlancy Lt ke kd)

, U



are set-theoretic complete intersections.

Starting from any given example of a projective monomial curve, which is
s.t.c.i., and using Theorem 3.4, we can get infinitely many examples of affine
and projective monomial curves, which are s.t.c.i. in the affine or projective
space ofone dimension higher. For instance, one could consider as starting
point of this procedure any monomial curve in P? or any arithmetically
Cohen-Macaulay monomial curve in P3.

Example 3.5. In this example we are going to start from the arithmetically
Cohen-Macaulay monomial curve (u’, uv,uv®,v7) in P? and use Theorem
3.4 to deduce that certain monomial curves in A* or P* are s.t.c.i.. This curve
is the s.t.c.i. of X3 — X2 X3 and X] —3X2XIX, +3X7 X, X2X2 — X X3, (see
[16] ,[17] ,(18]). Theorem 3.4 says that for any k,[, such that k €< 1,3,7 >
and k + 71 €< 4,6,7 >, the affine monomial curve (¥, ¢5+! ¢¥+31 ¢5+71) and

its projective closure

(7 4Ty

K qBlpktl dlht3l o kel
are s.t.c.i..
The only values of & and [, for which this does not happen, are £ = 2 and
I = 1. These lead to the curve (t2,¢%,1%,¢%). But even this curve as well
as its projective closure (u®, u"v?, u®v3, u'v® v?), are s.t.c.i., according to our
previous Example 2.2.

Summarising our results, we see that all affine monomial curves of the

form (t*,#%+! t5+3! ¢#+7!) and all projective monomial curves of the form

(uk+7l 7.k 6] k+l,

LU 'U.,'U, v £41Uk+SI,Uk+7l)

1
are indeed s.t.c.i..

We should also mention, that for all, up to the last one, of the curves of the
above type, two of the three defining equations are exactly the same.

Example 3.6. In this example we prove that all normal curves are s.t.c.i.
(see [17] ,[22]). We are going to prove it by induction. For P? the proof is
obvious. Suppose we know that (u,u” 'v,---,v") is s.t.c.i.. Then, applying
Theorem 3.4 to this curve, we conclude that (u"t',u"v,---,uv™ v"*!) is

s.t.c.1., since both 1 and n 4 1 belong to the semigroup < 1,2,---,n >.



4 The second technique

In this section we first prove a Lemma concerning the arithmetical ranks
of certain types of monomial curves. Based on this Lemma, we develop a
second technique by means of which one can find infinitely many examples
of set-theoretic complete intersection monomial curves in A", just starting
from a given one.

Consider an affine monomial curve C = C(my,---,m,) and the monomial
curve Cig 4y = Clamy, - -+ ,ami_y, m;, amitq, -+ ,am,), where g.c.d.(a,m;) =
1. Note that, in this section, we do not assume necessarily that m; < m, <
<+ < my, holds.

If fis an element of K'[X;, X, -, X,], we denote by f(4,i) the polynomial
X1, Xa, o, X2 X).

Let R be the polynomial ring K(Xi, -+, X,], S the graded polynomial
ring K[Xo, X1, -, Xn] with the usual grading, Rc the polynomial ring R
with the o-grading: o —deg(X;) = m;, and S¢ the ring S with two gradings,
namely: the usual grading and the o-grading: o—deg(Xo) = 0,0 —deg(X;) =
m;.

If 7 is an ideal of R (respectively of §), we will write rad(]) for the radical
of I. The arithmetical rank of /, written ara([), is the smallest integer s for
which there exist elements (resp. homogeneous elements) fi, fo,- -+, f, in I,
such that rad(l) = rad( f1, f2, -, fs)-

If I is an ideal of R¢ (respectively of S¢), then the homogeneous arith-
metical rank of [, written arah([l), is the smallest integer s for which there
exist o-homogeneous elements (resp. bihomogeneous elements) fi, f2,---, fs
in I, such that rad(!) = rad(f1, fo, -+, f»)-

If I is the ideal of a monomial curve, we shall use the notation ara(C)
insteed of ara(I(C)) and arah(C) insteed of arah(I(C)).

Lemma 4.1. Let C be a monomial curve in the affine n-space. The
arithmetical ranks of C' and C(, ;) are related by the following inequalities:
(1) . ara(C) < arah(C)

(i) ara(Cqy) < ara(C)

(iii) ara(C) < arah(Cla)

Proof. (i) It follows from the definitions.
(i1) Suppose that ara(C) = s, i.e. that there exist fi, fo, -, fs, such that



I(C) = rad(fy, f2,- -+, fs). Then we claim that

I(Clay) = rad(frqaiys > fataiy)-

Let h be an element of I{C,,iy) C R (a,i). This element b can be written in
the form A = ho-}-)s h1+ + X7 lha_l, in which the exponents of the variable
X; in the polynomials hJ are multiples of a. Note that the o-homogeneous
terms in A’h have different o-degrees from those in X}'h;, when j # 1,
because the o- degree of k; is a multipleof a, for every j. Therefore, each X7 #;
belongs to I(Ca ). Note that I{C(s4) is a prime ideal and X; ¢ (C(w)
Thus, each %; belongs to I(C(a,y) and, for each j, there exists an h; in I(C'),
such that h; = hjai)- Now h; belongs to rad(fi, f2,---, f;). This means,
that each ?zj belongs to rad(fa, -, fla.i)s). Hence the last inclusion is also
valid for the whole h.

(iii) Suppose that arah(C, ;) = s, i.e. that there exist §1,- -+, d,, such that

I(C,y) = rad(gy,---,§,). Since §1,---,§, are o-homogeneous and none of
them has X; as a factor, there are elements gy,---,g, of I{C), such that
9i(a.i) = Gj-

We claim that I(C') = rad(gy,-- -, gs). Let g be a o-homogeneous element
of I(C). Then g, belongs to I{C i) = rad(gy,---,§,). This means, that
there exist an m, such that (gu)" = A +--- + A,3,. On the other
hand, (9(,n)", g1, -+, 3, are all o-homogeneous. Therefore, by forgetting
the terms T occuring in Aj;, for which ¢ — degree(T') + o — degree(§;) #
o —degree(g,i)", the above equality still holds and the new A; turn out to
be o-homogeneous. Note firstly that the o — degree(g(,,)) is a multiple of «,
since it is the image of a o-homogeneous element of I(C'), and secondly that
the o-degrees of g1, -+, g, are multiples of a, since they are o-homogeneous
and none of them has X; as factor. Hence, there exist By,---, B,, such that
9" = Big1 + - + By,

The proof follows from the fact that every element in I(C) is a sum of
o-homogeneous elements.

For more informations about the ideals of C and Cj, ;) we refer to [14].

Remark 4.2. We do not know any example of an affine or projective mono-
mial curve, for which are(C) is different from arah(C). We nevertheless

know some monomial curves in P, like the Macaulay curve (u*, v?v, uv3,v?),
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which have arah(C) = 3 (not o-homogeneous s.t.c.i.), but it is still uknown
if ara(C) is exactly 2 or exactly 3, (see [20]).

Theorem 4.3. Let C be a monomial curve in the affine n-dimensional
space.
(1) If C is a set theoretic complete intersection, then C(, ;) 1s a set theoretic
complele intersection, for every a,i, such that1 <1 < n and g.c.d.(a,m;) = 1.
(1) If Ciayy is a o-homogeneous set theoretic complete intersection, then
C is a set theoretic complete intersection.

Proof. The proof follows from Lemma 4.1 and the generalized Krull’s Prin-
cipal Ideal Theorem.

Definition 4.4 A monomial curve C(my,mq, -, m,) is called minimal if
g.c.d(my,mg, .-+ My, - my) =1
forany 1 <1 < n.

By a series of applications of operations Ty : € — C(a,:), we can obtain
any monomial curve starting from a minimal one. We shall say that two
monormial curves belong to the same class, if both can be obtained from the
same minimal curve.

Theorem 4.5.  If a monomial curve C is o-homogeneous set theoretic
complete intersection, then every monomial curve within the class of C is
also set-theoretic complete intersection.

Proof. The proof follows immediately from Theorem 4.3.

Example 4.6. Theorem 4.5 generalizes all known results in the affine space
( see Introduction), as well as the results we get from sections 2 and 3. And
this is due to the fact, that all the cases which are known to be s.t.c.i., are
also o-homogeneous s.t.c.i. For instance, D. Patil proves in {15], that any
affine monomial curve C{m,,my,--,m,), for which n — 1 numbers among
™My, Ma, - -, M, form an arithmetic sequence, is s.t.c.i. Using the Theorem
4.5 we can generalize this result:

Every monomial curve within the class of a monomial curve for which n — 1
numbers among my, - - -, M, form an arithmetic sequence, is s.t.c.i..

11



Example 4.7. One of the simplest open cases for the set theoretic complete
intersection problem for affine monomial curves, was the curve (¢°,19,18,19).
This curve is associated to the projective monomial curve (u*,v?v, uv3 v?),
which i1s not arithmetically Cohen-Macaulay and so it is unknown if it is
s.t.c.i. or not. Therefore, none of the Theorems of the sections 2 and 3 can
be applied to conclude that (¢%,1%,1%,4%)} is s.t.c.i..

Using the technique of this section we see that the above curve is re-
lated to (¢°,¢%,¢'%,¢'%). This curve is associated to the projective monomial
curve (u”,ubv, u'v? v") which is arithmetically Cohen-Macaulay. Moreover
(u'® — v?)7 belongs to K[u,ubv, u™? v7). Therefore (12,410,{12,116) can be
interpreted as s.t.c.i. of

X3 — X7 X3,
X7 = 3X2XIX, +3XIX X2X? — X{ X] and of
X1 IXPX2IX, 4 21X X X3 X2 — 35 XBXNZXN2 4+ 35X X, X3
—AXIX XS+ TXIXXT - X3
Its projective closure {u'®, 1 v?, ubv'® uv!?, v'®)
plete intersection, namely of X3 — X2Xj;,

1s also set-theoretic com-

XT — 3X2XIX, + 3X2X, X2X2 — X1X3 and of
X1 T Xo X2 X2X, + 21 X3 XX, X3 X2 — 35 X3 XBX2X2 4+ 35Xy XX X2
—2IXEXI X XS + TASNIX,X] — XJ X7,
From Theorem 4.3, we see that the original curve (¢*,¢5,13,¢°) is s.t.c.i.and
we can get its defining polynomials by changing X? by X4, X, by X;, X3 by

X, and X4 by X3 in the polynomials defining (¢°,¢'?,¢?,¢'€).
Thus, we get the following polynomials:

X? - X4X21
X7 = 3XIXIXN, 43X, X2X2X, — X3X? and
X5 — TXZXa X5 + 21X, X X2X5 = 35X2X3X] + 35X, X5 X3
20X, XEX2 4 TXEX, X] — X5

12



Note that we cannot conclude from these polynomials, that the projective
closure of (¢%,1°,18,%) is s.t.c.i..

Remark 4.8. The trick of the Example 4.7 can be applied always in A* but
not with equal success. With the use of the following Lemma 4.9, we can re-
late any monomial curve in A* to an arithmetically Cohen-Macaulay curve in
P? but, in general, the second condition of Theorem 2.1 will be not satisfied.

Lemma 4.9.[20] Let C be a projective monomial curve (u?, u®1o? u®2ob, vd),

where d > ay > ag. If by belongs to the numerical semigroup < a#, a# —af >

or az belongs to < b3, b5 — b} >, af:, af are the numbers a,, a, divided by their
g.c.d. and by, b} are the numbers by, by divided by their g.c.d., then C is arith-

metically Cohen-Macaulay.

Take, for example, a number { prime to m,. Then it is Cy1)(my, m2, m3,m4) =
C(my,lmq, lmg, lmy). According to Lemma 4.9, this curve is arithmetically
Cohen-Macaulay if Imqy —m; €< (mq —my)#, (ma —ms)#* >, which is always
true for big {. But for this curve to be s.t.c.i., according to Theorem 2.1, we
need at least my €< Imy — my,Ilmz — my,Imy — my >, which is never true
for big 1.
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