Moduli of Abelian Surfaces with a (1, p^{2}) Polarisation

V.A. Gritsenko *
G.K. Sankaran **

*St. Petersburg Department of theSteklov Mathematical InstituteFontanka 27
191011 St. Petersburg Russia

**

Department of Pure Mathematics and Mathematical Statistics
16, Mill Lane
Cambridge CB2 1SB
England

Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
53225 Bonn
Germany

Moduli of Abelian Surfaces with a (1, p^{2}) Polarisation

V.A. Gritsenko *
G.K. Sankaran **

```
*
St. Petersburg Department of the
Steklov Mathematical Institute
Fontanka 27
191011 St. Petersburg
Russia
**
Department of Pure Mathematics and
Mathematical Statistics
16, Mill Lane
Cambridge CB2 1SB
England191011 St. PetersburgRussia
```

*

```Department of Pure Mathematics andMathematical Statistics16, Mill LaneCambridge CB2 1SBEngland
```

```Max-Planck-Institut für MathematikGottfried-Claren-Straße 2653225 BonnGermany
```


MODULI OF ABELIAN SURFACES WITH A ($1, p^{2}$) POLARISATION

V.A. Gritsenko \& G.K. Sankaran

The moduli space of abelian surfaces with a polarisation of type ($1, p^{2}$) for p a prime was studied by O'Grady in [O'G], where it is shown that a compactification of this moduli space is of general type if $p \geq 17$. We shall show that in fact this is true if $p \geq 11$. Our methods overlap with those of [O^{\prime} ' $]$, but are in some important ways different. We borrow notation freely from that paper when discussing the geometry of the moduli space.

1. Methods

Let $\mathcal{A}_{2}(p)$ denote the moduli space of abelian surfaces over \mathbb{C} with a polarisation of type $\left(1, p^{2}\right)$. We denote by $\overline{\mathcal{A}}_{2}(p)$ the toroidal compactification of $\mathcal{A}_{2}(p)$ and by $\hat{\mathcal{A}}_{2}(p)$ a partial desingularisation of $\overline{\mathcal{A}}_{2}(p)$ having only canonical singularities.

To show that $\hat{\mathcal{A}}_{2}(p)$ is of general type (that is, roughly, that the pluricanonical bundles have many sections), one chooses an $\mathcal{E} \in \operatorname{Pic} \hat{\mathcal{A}}_{2}(p) \otimes \mathbb{Q}$ such that $n \mathcal{E}$ (which is a bundle if n is sufficiently divisible) is not too far from the pluricanonical bundle $n K_{\mathcal{A}_{2}(p)}$, and such that the space of sections $H^{0}(n \mathcal{E})$ can be calculated or at least estimated by some method. Then by knowing about the geometry of $\hat{\mathcal{A}}_{2}(p)$ one can estimate the plurigenera, because the difference between $n K_{\mathcal{A}_{2}(p)}$ and \mathcal{E} is known. In [O'G] the bundle used to play the rôle of $n \mathcal{E}$ arises from pulling back powers of the Hodge bundle on the moduli space $\overline{\mathfrak{M}}_{2}$ of semi-stable genus 2 curves via the map $\hat{\mathcal{A}}_{2}(p) \rightarrow \overline{\mathfrak{M}}_{2}$ constructed there. Here, by contrast, we consider $\mathcal{A}_{2}(p)$ as a Siegel modular variety, i.e., as a quotient
of the Siegel upper half-space by the paramodular group $\Gamma_{p^{2}}$ (an arithmetic subgroup of $\operatorname{Sp}(4, \mathbb{Q})$), and obtain a suitable bundle $n \mathcal{E}$ by considering cusp forms of weight $3 n$ for $\Gamma_{p^{2}}$. A similar procedure is adopted in [HS] for a different Siegel modular variety. But here we do not use all cusp forms of weight $3 n$. Instead, we use the cusp form F_{2} of weight 2 for $\Gamma_{p^{2}}$, constructed by the first author in [G], and we consider modular forms of weight $3 n$ of the form $F_{n} F_{2}^{n}$, where F_{n} is a modular form of weight n. The bundle that results has fewer sections than the one arising from all cusp forms but is much closer to $n K_{\tilde{\mathcal{A}}_{2}(p)}$ and this turns out to give a better bound on the plurigenera for small p. Hulek and the first author have applied this idea to the situation of [HS] and the improvement that results is described in [GH].

2. Modular forms

If t is a positive integer, the paramodular group is defined to be the arithmetic subgroup of $\operatorname{Sp}(4, \mathbb{Q})$

$$
\Gamma_{\mathfrak{t}}=\left\{\gamma \in \operatorname{Sp}(4, \mathbb{Q}) \left\lvert\, \gamma \in\left(\begin{array}{rrrr}
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} & t \mathbb{Z} \\
t \mathbb{Z} & \mathbb{Z} & t \mathbb{Z} & t \mathbb{Z} \\
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} & t \mathbb{Z} \\
\mathbb{Z} & \frac{1}{t} \mathbb{Z} & \mathbb{Z} & \mathbb{Z}
\end{array}\right)\right.\right\}
$$

It acts on the Siegel upper half-plane

$$
\mathbb{H}_{2}=\left\{\left.Z=\left(\begin{array}{cc}
\tau & z \\
z & \tau^{\prime}
\end{array}\right) \in M_{2 \times 2}(\mathbb{C}) \right\rvert\, Z={ }^{T} Z, \operatorname{Im} Z>0\right\}
$$

by fractional linear transformations, i.e.,

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right): Z \longmapsto(A Z+B)(C Z+D)^{-1}
$$

The quotient $\Gamma_{t} \backslash \mathbb{H}_{2}$ is a coarse moduli space for abelian surfaces over \mathbb{C} with a polarisation of type $(1, t)$. The group Γ_{t} is conjugate to a subgroup of $\operatorname{Sp}(4, \mathbb{Z})$ only if t is
a perfect square: in particular, if p is a prime and $t=p^{2}$, then $\Gamma_{p^{2}}$ is conjugate to $\Gamma_{p^{2}}^{\prime}<\operatorname{Sp}(4, \mathbb{Z})$, where

$$
\Gamma_{p^{2}}^{\prime}=\left\{\gamma \in \operatorname{Sp}(4, \mathbb{Z}) \left\lvert\, \gamma \in\left(\begin{array}{rrrr}
\mathbb{Z} & p \mathbb{Z} & \mathbb{Z} & p \mathbb{Z} \\
p \mathbb{Z} & \mathbb{Z} & p \mathbb{Z} & \mathbb{Z} \\
\mathbb{Z} & p \mathbb{Z} & \mathbb{Z} & p \mathbb{Z} \\
p \mathbb{Z} & \mathbb{Z} & p \mathbb{Z} & \mathbb{Z}
\end{array}\right)\right.\right\}
$$

We denote $\Gamma_{p^{2}} \backslash H_{2}$ by $\mathcal{A}_{2}(p)$. This moduli space is a finite covering of the rational variety of abelian surfaces with principal polarisation. Let $\overline{\mathcal{A}}_{2}(p)$ be the toroidal compactification and $\hat{\mathcal{A}}_{2}(p)$ the canonical partial resolution described in [O'G]. If we can show that $h^{0}\left(n K_{\hat{\mathcal{A}}_{2}(p)}\right) \sim n^{3}$ we shall have shown that $\hat{\mathcal{A}}_{2}(p)$ is of general type. For that we shall use special examples of modular forms of weight 2 with respect to $\Gamma_{p^{2}}$, which we now describe. We first define the so-called Jacobi forms (see [EZ]).

Definition: A holomorphic function $\varphi(\tau, z): \mathbb{H}_{1} \times \mathbb{C} \rightarrow \mathbb{C}$ is called a Jacobi form of index $m \in \mathbb{N}$ and weight k if for any $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})$ and any $\mu, \lambda \in \mathbb{Z}$ it satisfies the two functional equations

$$
\begin{aligned}
& \varphi(\tau, z)=(c \tau+d)^{-k} \exp \left(-\frac{2 \pi i c m z^{2}}{c \tau+d}\right) \varphi\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d}\right) \\
& \varphi(\tau, z)=\exp \left(2 \pi i m\left(\lambda^{2} \tau+2 \lambda z\right)\right) \varphi(\tau, z+\lambda \tau+\mu)
\end{aligned}
$$

and it has a Fourier expansion of the type

$$
\varphi(\tau, z)=\sum_{n=0}^{\infty} \sum_{\substack{l \in \mathbf{Z} \\ 4 n m \geq l^{2}}} f(n, l) \exp (2 \pi i(n \tau+l z))
$$

We call the function $\varphi(\tau, z)$ a Jacobi cusp form if we have the strict inequality $4 n m>l^{2}$ in the last summation. We shall denote the space of all Jacobi cusp forms of index m and weight k by $\mathfrak{S}_{k, m}^{J}$.

The next theorem was proved in [G, Theorem 3].

Proposition 2.1. Let $\varphi(\tau, z)$ be a Jacobi cusp form of weight k and index t with the Fourier expansion

$$
\varphi(\tau, z)=\sum_{n \in \mathbb{N}} \sum_{\substack{l \in \mathbf{Z} \\ 4 n t>I^{2}}} f(n, l) \exp (2 \pi i(n \tau+l z))
$$

Then the following function

$$
F_{\varphi}\left(\tau, z, \tau^{\prime}\right)=\sum_{n, m \in \mathbb{N}} \sum_{\substack{l \in \mathbf{Z} \\ 4 t m n>l^{2}}} \sum_{a \mid(n, l, m)} a^{k-1} f\left(\frac{n m}{a^{2}}, \frac{l}{a}\right) \exp \left(2 \pi i\left(n \tau+\frac{l z}{t}+\frac{m \tau^{\prime}}{t}\right)\right)
$$

is a nontrivial cusp form of weight k with respect to the group Γ_{t}.

This result gives us, for example, a differential 3-form on a smooth model of $\Gamma_{t} \backslash \mathbb{H}_{2}$. As a corollary we have irrationality of the moduli space of abelian surfaces with polarisation ($1, t$) for $t \geq 13$ and $t \neq 14,15,16,20,24,30,36$ (see [G] for details). To construct pluricanonical forms on $\hat{\mathcal{A}}_{2}(p)$ we use

Corollary 2.2. If $p \geq 11$ is a prime then there exists a nontrivial cusp form F_{2} of weight 2 for $\Gamma_{p^{2}}$.

Proof: The dimension of the space of Jacobi cusp forms of weight k and index t is well known (see [EZ] and [SZ]). In our particular case

$$
\operatorname{dim}_{\mathbb{C}} \mathfrak{S}_{2, p^{2}}^{J}=\sum_{j=1}^{p^{2}}\{1+j\}_{6}-\left\lfloor\frac{j^{2}}{4 t}\right\rfloor
$$

with

$$
\{m\}_{6}= \begin{cases}\left\lfloor\frac{m}{6}\right\rfloor & \text { if } m \neq 1 \bmod 6 \\ \left\lfloor\frac{m}{6}\right\rfloor-1 & \text { if } m=1 \bmod 6 .\end{cases}
$$

This formula shows that $\mathfrak{S}_{2, p^{2}}^{J}$ is nontrivial for $p \geq 11$.
It is not known whether such a cusp form F_{2} exists for $\Gamma_{p^{2}}$ if $p \leq 7$.

Proposition 2.3. The space $\mathcal{M}_{n}^{*}\left(\Gamma_{p^{2}}\right)$ of cusp forms of weight n for $\Gamma_{p^{2}}$ satisfies

$$
\operatorname{dim} \mathcal{M}_{n}^{*}\left(\Gamma_{p^{2}}\right)=\frac{p^{2}\left(p^{2}+1\right)}{8640} n^{3}+\mathrm{O}\left(n^{2}\right)
$$

for any prime p.

Proof: $\Gamma_{p^{2}}$ is conjugate to a subgroup of $\operatorname{Sp}(4, \mathbb{Z})$ so we may as well work with $\Gamma_{p^{2}}^{\prime}$. Exactly as in [HS] (cf. also [T]) we obtain, for l large

$$
\operatorname{dim} \mathcal{M}_{n}^{*}(\Gamma(l)) \sim \frac{n^{3}}{8640}[\Gamma(1): \Gamma(l)]
$$

and if $p \mid l$ then $\Gamma(l) \subseteq \Gamma_{p^{2}}^{\prime}$ and the cusp forms for $\Gamma_{p^{2}}^{\prime}$ are the $\Gamma_{p^{2}}^{\prime} / \Gamma(l)$-invariant cusp forms for $\Gamma(l)$. Using the Atiyah-Bott fixed point theorem, as in $[T]$, we obtain

$$
\operatorname{dim} \mathcal{M}_{n}^{*}\left(\Gamma_{p^{2}}^{\prime}\right) \sim \frac{2}{\left[\Gamma_{p^{2}}^{\prime}: \Gamma(l)\right]} \operatorname{dim} \mathcal{M}_{n}^{*}(\Gamma(l))
$$

since there is a contribution from $\gamma=-I$ as well as from $\gamma=I$. But

$$
\begin{aligned}
\frac{2}{\left[\Gamma_{p^{2}}^{\prime}: \Gamma(l)\right]} \operatorname{dim} \mathcal{M}_{n}^{*}(\Gamma(l)) & \sim \frac{2}{\left[\Gamma_{p^{2}}^{\prime}: \Gamma(l)\right]} \cdot \frac{n^{3}}{8640}[\Gamma(1): \Gamma(l)] \\
& =\frac{1}{\left[\Gamma_{p^{2}}^{\prime} / \pm I: \Gamma(l)\right]} \cdot \frac{n^{3}}{8640}[\Gamma(1): \Gamma(l)] \\
& =\frac{n^{3}}{8640}\left[\Gamma(1): \Gamma_{p^{2}}^{\prime} / \pm I\right] \\
& =\frac{n^{3}}{8640} \operatorname{deg}\left(\pi: \mathcal{A}_{2}(p) \rightarrow \mathcal{A}_{2}\right) \\
& =\frac{p^{2}\left(p^{2}+1\right)}{8640} n^{3}
\end{aligned}
$$

by [O'G, Lemma 2.1].

3. Pluricanonical forms and extension to the boundary

Choose a cusp form F_{2} of weight 2 for $\Gamma_{p^{2}}, p \geq 11$; we can do this in view of Corollary 2.2. Suppose F_{n} is a modular form for $\Gamma_{p^{2}}$ of weight n : then $\Phi=F_{n} F_{2}^{n}$ is a cusp form of weight $3 n$. Let $\omega=d \tau \wedge d z \wedge d \tau^{\prime}$ be the standard 3 -form on \mathbb{H}_{2}. The form $\Phi \omega^{\otimes n}$ is invariant under $\Gamma_{p^{2}}$ and therefore descends to give a pluricanonical form on $\mathcal{A}_{2}(p)$ except at the branch locus of $\mathbb{H}_{2} \rightarrow \mathcal{A}_{2}(p)$. If Φ were a general element of $\mathcal{M}_{3 n}^{*}\left(\Gamma_{p^{2}}\right)$ we should expect this form to have logarithmic poles at the boundary $\overline{\mathcal{A}}_{2}(p) \backslash \mathcal{A}_{2}(p)$, but because the cusp form we have chosen is special these poles do not occur. That is because Φ vanishes to high order (at least order n) at the cusps.

Proposition 3.1. The differential $3 n$-form coming from $\Phi \omega^{\otimes n}$ extends over the generic point of each codimension 1 boundary component of $\overline{\mathcal{A}}_{2}(p)$.

Proof: According to [SC, Chapter IV, Theorem 1] (see also [HS, Proposition 1.1]), we need to check that in the Fourier-Jacobi expansion

$$
\Phi(Z)=\sum_{m \geq 0} \theta_{m, \Phi}^{D}\left(\tau_{D}, z_{D}\right) \exp \left\{2 \pi i m \tau_{D}^{\prime}\right\}
$$

near the boundary component D, the coefficients $\theta_{m, \Phi}^{D}$ vanish for $m<n$. But we can write the expansion of $\Phi(Z)$ as a product of expansions of $F_{2}(Z)$ and $F_{n}(Z)$: we have

$$
F_{2}(Z)=\sum_{m>0} \theta_{m, F_{2}}^{D}\left(\tau_{D}, z_{D}\right) \exp \left\{2 \pi i m \tau_{D}^{\prime}\right\}
$$

(with $\theta_{0, F_{2}}^{D}\left(\tau_{D}, z_{D}\right) \equiv 0$ as F_{2} is a cusp form), and similarly for F_{n}. Hence

$$
\theta_{m, \Phi}^{D}=\sum_{m_{0}+\cdots+m_{n}=m} \theta_{m_{0}, F_{n}}^{D} \prod_{i=1}^{n} \theta_{m_{i}, F_{2}}^{D}
$$

which is zero if $m<n$ as then $m_{i}=0$ for some $i \geq 1$.
$\overline{\mathcal{A}}_{2}(p)$ is smooth in codimension 1 , but the quotient map $\mathbb{H}_{2} \rightarrow \mathcal{A}_{2}(p)$ is branched along two divisors (Humbert surfaces). These are the divisors whose closures in $\overline{\mathcal{A}}_{2}(p)$ are denoted $\widetilde{\Delta}_{1}$ and $\widetilde{\Delta}_{2}$ in $\left[O^{\prime} G\right]$. At a point of \mathbb{H}_{2} lying over a general point of $\widetilde{\Delta}_{1}$ or $\widetilde{\Delta}_{2}$ the isotropy group in $\Gamma_{p^{2}}$ is $\mathbb{Z} / 2$ and it acts by a reflection, so $\overline{\mathcal{A}}_{2}(p)$ is smooth at a general point of $\tilde{\Delta}_{1}$ or $\tilde{\Delta}_{2}$.

Corollary 3.2. If n is sufficiently divisible then $n\left(K_{\mathcal{A}_{2}(p)}+\frac{1}{2} \widetilde{\Delta}_{1}+\frac{1}{2} \tilde{\Delta}_{2}\right)$ is a bundle and if $\Phi=F_{n} F_{2}^{n}$ is a cusp form of the type described above then $\Phi \omega^{\otimes n}$ determines an element of $H^{0}\left(\overline{\mathcal{A}}_{2}(p) ; n\left(K_{\mathcal{A}_{2}(p)}+\frac{1}{2} \widetilde{\Delta}_{1}+\frac{1}{2} \widetilde{\Delta}_{2}\right)\right)$

Proof: $\overline{\mathcal{A}}_{2}(p)$ has only quotient singularities, which are, in particular, Q-Gorenstein. From the description of the action of $\Gamma_{p^{2}}$ above a general point of $\widetilde{\Delta}_{1}$ or $\widetilde{\Delta}_{2}$ it is clear that $\Phi \omega^{\otimes n}$ acquires poles of order $\frac{1}{2} n$ along $\widetilde{\Delta}_{1}$ and $\widetilde{\Delta}_{2}$.

4. Obstructions from elliptic flxed points.

We take a canonical partial resolution $\varphi: \hat{\mathcal{A}}_{2}(p) \rightarrow \overline{\mathcal{A}}_{2}(p)$, as in [O'G], adopting also the notations of [O'G, Definition 3.8] for (Weil) divisors on $\hat{\mathcal{A}}_{2}(p)$.

Proposition 4.1. If n is sufficiently divisible then $\Phi \omega^{\otimes n}$ determines an element of

$$
H^{0}\left(\hat{\mathcal{A}}_{2}(p) ; n\left(K_{\hat{\mathcal{A}}_{2}(p)}+\frac{1}{2} E_{1}^{\prime}+\frac{1}{2} E_{1}^{\prime \prime}+\frac{1}{2} \hat{\Delta}_{1}+\frac{1}{2} \hat{\Delta}_{2}+\left(1-\frac{2}{p}\right) E_{2}-\frac{1}{4} E^{\prime}-\frac{1}{4} E^{\prime \prime}\right)\right) .
$$

Proof: By Corollary 3.2., above, we have a section of $\varphi^{*}\left(n\left(K_{\mathcal{A}_{2}(p)}+\frac{1}{2} \widetilde{\Delta}_{1}+\frac{1}{2} \widetilde{\Delta}_{2}\right)\right)$, and the formulae for $\varphi^{*} K_{\mathcal{A}_{2}(p)}, \varphi^{*} \widetilde{\Delta}_{1}$ and $\varphi^{*} \widetilde{\Delta}_{2}$ given in [O'G] provide the required expression.

We assume henceforth that n is sufficiently divisible, so that everything we have written so far is a bundle (in fact it is enough that $24 p \mid n$). For the rest of this section we assume that $p \geq 5$, as in [$O^{\prime} G$, but we shall need $p \geq 11$ in the end in order to apply Corollary 2.2.

$$
\text { Put } \mathcal{E}=K_{\dot{\mathcal{A}}_{2}(p)}+\frac{1}{2} E_{1}^{\prime}+\frac{1}{2} E_{1}^{\prime \prime}+\frac{1}{2} \hat{\Delta}_{1}+\frac{1}{2} \hat{\Delta}_{2}+\left(1-\frac{2}{p}\right) E_{2}-\frac{1}{4} E^{\prime}-\frac{1}{4} E^{\prime \prime} \text {. We want }
$$ to make use of O'Grady's calculations (and to avoid either resolving the singularities of $\hat{\mathcal{A}}_{2}(p)$ or using adjunction and Riemann-Roch on singular varieties), so we express \mathcal{E} in terms of the pullback of the Hodge bundle λ on $\overline{\mathfrak{M}}_{2}$ via the map $\pi \varphi: \hat{\mathcal{A}}_{2}(p) \rightarrow \overline{\mathfrak{M}}_{2}$.

Lemma 4.2. In $\operatorname{Pic} \hat{\mathcal{A}}_{2}(p) \otimes \mathbb{Q}$ we have

$$
\mathcal{E}=3 \varphi^{*} \pi^{*}(\lambda)-\frac{1}{p} \varphi^{*} \pi^{*}\left(\Delta_{1}\right)-\frac{p-1}{p} \hat{\Delta}_{0}-\frac{p-1}{p} \hat{\Delta}_{0} .
$$

Proof: See [O'G, Theorem 3.1].

We have

$$
\begin{aligned}
h^{0}\left(n K_{\mathcal{A}_{2}(p)}\right) & \geq h^{0}\left(n K_{\mathcal{A}_{2}(p)}-\frac{n}{4} E^{\prime}-\frac{n}{4} E^{\prime \prime}\right) \\
& =h^{0}\left(n \mathcal{E}-\frac{n}{2} E_{1}^{\prime}-\frac{n}{2} E_{1}^{\prime \prime}-\frac{n}{2} \hat{\Delta}_{1}-\frac{n}{2} \hat{\Delta}_{2}-n\left(1-\frac{2}{p}\right) E_{2}\right)
\end{aligned}
$$

so we want to estimate the five obstructions coming from $E_{1}^{\prime}, E_{1}^{\prime \prime}, \hat{\Delta}_{1}, \hat{\Delta}_{2}$ and E_{2}. Our \mathcal{E} plays the rôle of $\varphi^{*} \pi^{*}\left(\alpha_{p} \lambda\right)$ in [O'G]: by comparison, we have replaced $\alpha_{p}=3-\frac{10}{p}$ by 3 , which makes some of the obstructing sheaves more positive, but we also have vanishing to order $\frac{p-1}{p}$ along the boundary components $\hat{\Delta}_{0}$ and $\hat{\hat{\Delta}}_{0}$, which makes them more negative. So much more negative, in fact, that we have the following result.

Theorem 4.3. All the obstructions vanish: that is, every section of $n \mathcal{E}$ gives a section of $n K_{\dot{\mathcal{A}}_{2}(p)}$ if $p \geq 5$ and n is sufficiently divisible.

Proof: We prove this in five steps, taking each obstruction separately. Only E_{1}^{\prime} and $E_{1}^{\prime \prime}$ require much attention.

1. The obstruction from E_{1}^{\prime}.

We need (cf. [O'G], p. 146) to estimate $h^{0}\left(\left.\left[n \mathcal{E}-i E_{1}^{\prime}\right]\right|_{E_{1}^{\prime}}\right)$ for $0 \leq i \leq \frac{n}{2}-1$. Using (\star) we get

$$
\begin{aligned}
& h^{0}\left(\left.\left[n \mathcal{E}-i E_{1}^{\prime}\right]\right|_{E_{1}^{\prime}}\right)= \\
& h^{0}\left(\left.3 n\left[\varphi^{*} \pi^{*}(\lambda)\right]\right|_{E_{1}^{\prime}}-\left.\frac{n}{p}\left[\varphi^{*} \pi^{*}\left(\Delta_{1}\right)\right]\right|_{E_{1}^{\prime}}-\left.n \frac{p-1}{p} \hat{\Delta}_{0}\right|_{E_{1}^{\prime}}-\left.n \frac{p-1}{p} \hat{\tilde{\Delta}}_{0}\right|_{E_{1}^{\prime}}-\left.i E_{1}^{\prime}\right|_{E_{1}^{\prime}}\right) \\
& \leq h^{0}\left(\left.3 n\left[\varphi^{*} \pi^{*}(\lambda)\right]\right|_{E_{1}^{\prime}}-\left.n \frac{p-1}{p} \hat{\Delta}_{0}\right|_{E_{1}^{\prime}}-\left.i E_{1}^{\prime}\right|_{E_{1}^{\prime}}\right) .
\end{aligned}
$$

Replacing α_{p} by 3 in [$O^{\prime} G$, Corollary 4.1 et seq.] gives

$$
\left.3 n\left[\varphi^{*} \pi^{*}(\lambda)\right]\right|_{E_{1}^{\prime}}-\left.i E_{1}^{\prime}\right|_{E_{1}^{\prime}}=3 i \Sigma+\left(\frac{n}{4}+4 i\right) L-3 i G .
$$

As a set, $\hat{\Delta}_{0} \cap E_{1}^{\prime}$ consists of the fibres of $\varphi_{2}: E_{1} \rightarrow \tilde{\Gamma}$ over the points where $\tilde{\Gamma}$ meets the boundary. These fibres are smooth, so $\left.\hat{\Delta}_{0}\right|_{E_{1}^{\prime}}$ is a positive integer multiple of the general fibre L. Hence

$$
\begin{aligned}
h^{0}\left(\left.3 n\left[\varphi^{*} \pi^{*}(\lambda)\right]\right|_{E_{1}^{\prime}}-\left.n \frac{p-1}{p} \hat{\Delta}_{0}\right|_{E_{1}^{\prime}}-\left.i E_{1}^{\prime}\right|_{E_{1}^{\prime}}\right) & \leq h^{0}\left(3 i \Sigma+\left(\frac{n}{4}+4 i-n \frac{p-1}{p}\right) L-3 i G\right) \\
& \leq h^{0}\left(3 i \Sigma+\left(\left(\frac{1}{p}-\frac{3}{4}\right) n+4 i\right) L\right)
\end{aligned}
$$

But

$$
\begin{aligned}
\Sigma \cdot\left(3 i \Sigma+\left(\left(\frac{1}{p}-\frac{1}{4}\right) n+4 i\right) L\right) & =\left(\frac{1}{p}-\frac{3}{4}\right) n+i \\
& \leq\left(\frac{1}{p}-\frac{1}{4}\right) n-1
\end{aligned}
$$

which is negative if $p \geq 5$, so there are no sections and no obstructions.

2. The obstruction from $E_{1}^{\prime \prime}$.

The calculation here is very similar: this time it is $\hat{\hat{\Delta}}_{0}$ that plays a part. We need to estimate $h^{0}\left(\left.\left[n \mathcal{E}-\frac{n}{2} E_{1}^{\prime}-i E_{1}^{\prime \prime}\right]\right|_{E_{1}^{\prime \prime}}\right)$ for $0 \leq i \leq \frac{n}{2}-1$, and (\star) and [O'G, Corollary 4.2] together give

$$
\begin{aligned}
h^{0}\left(\left.\left[n \mathcal{E}-\frac{n}{2} E_{1}^{\prime}-i E_{1}^{\prime \prime}\right]\right|_{E_{1}^{\prime \prime}}\right) & \leq h^{0}\left(\left.3 n\left[\varphi^{*} \pi^{*}(\lambda)\right]\right|_{E_{1}^{\prime \prime}}-\left.\frac{n}{2} E_{1}^{\prime}\right|_{E_{1}^{\prime \prime}}-\left.n \frac{p-1}{p} \hat{\Delta}_{0}\right|_{E_{1}^{\prime \prime}}-\left.i E_{1}^{\prime \prime}\right|_{E_{1}^{\prime \prime}}\right) \\
& \leq h^{0}\left(3 i \Sigma+\left(4 i-\frac{n}{4}\right) F-\left.n \frac{p-1}{p} \hat{\Delta}_{0}\right|_{E_{1}^{\prime \prime}}\right)
\end{aligned}
$$

(note that Lemma 4.7.(i) of $\left[O^{\prime} G\right]$ should read $\left.\varphi^{*} \pi^{*}(\lambda)\right|_{E_{1}^{\prime \prime}} \cong \frac{1}{12} F$). As above, $\left.\hat{\hat{\Delta}}_{0}\right|_{E_{1}^{\prime \prime}}$ is a positive integer multiple of F, so the obstruction becomes $h^{0}\left(3 i \Sigma+\left(4 i+\left(\frac{1}{p}-\frac{5}{4}\right) n\right) F\right)$. But

$$
\begin{aligned}
\Sigma \cdot\left(3 i \Sigma+\left(4 i+\left(\frac{1}{p}-\frac{5}{4}\right) n\right) F\right) & =i+\left(\frac{1}{p}-\frac{5}{4}\right) n \\
& \leq\left(\frac{1}{p}-\frac{3}{4}\right) n-1
\end{aligned}
$$

which is negative for all p, so again there are no sections and no obstructions.
3. The obstruction from $\hat{\Delta}_{1}$.

All we have to do is replace α_{p} by 3 in [$O^{\prime} G$, Corollary 4.4]. The conclusion (Theorem 4.3 in [$\left.O^{\prime} G\right]$: the coefficient of $L^{\prime}+L^{\prime \prime}$ should be $\left.\frac{\alpha_{p}}{n}+i\right)$ that the obstruction vanishes is unaltered.
4. The obstruction from $\hat{\Delta}_{2}$.

Again changing α_{p} to 3 makes no difference: we simply get

$$
\begin{aligned}
h^{0}([n \mathcal{E} & \left.\left.-\frac{n}{2}\left(E_{1}^{\prime}+E_{1}^{\prime \prime}+\hat{\Delta}_{1}\right)\right]\left.\right|_{\dot{\Delta}_{2}}\right) \\
& \leq h^{0}\left(\left.3 n\left[\varphi^{*} \pi^{*}(\lambda)\right]\right|_{\hat{\Delta}_{2}}-\left.\frac{n}{2}\left(E_{1}^{\prime}+E_{1}^{\prime \prime}+\hat{\Delta}_{1}\right)\right|_{\hat{\Delta}_{2}}-n \frac{p-1}{p} \hat{\Delta}_{0}+\left.\hat{\hat{\Delta}}_{0}\right|_{\hat{\Delta}_{2}}-\left.i \hat{\Delta}_{2}\right|_{\hat{\Delta}_{2}}\right) \\
& =0 \quad \text { for all } i \geq 0 .
\end{aligned}
$$

5. The obstruction from E_{2}.

This time the restriction of $\varphi^{*} \pi^{*}(\lambda)$ is trivial, so α_{p} does not even appear in the calculation.

Theorem 4.4. $\hat{\mathcal{A}}_{2}(p)$ is of general type if $p \geq 11$.

Proof: This follows from Proposition 2.1, Proposition 2.2. amd Theorem 4.3.
In fact we have shown that $h^{0}\left(n K_{\hat{\mathcal{A}}_{2}(p)}\right) \geq \frac{p^{2}\left(p^{2}+1\right)}{8640} n^{3}+\mathrm{O}\left(n^{2}\right)$ if $p \geq 11$. We do not really need the precise value of the leading coefficient (unless we really want an asymptotic bound on the plurigenera, but O'Grady's bound is better unless $p=11$ or $p=13$), because there are no obstructions to compare it with. Instead, we have an explicit pluricanonical form.

Corollary 4.5. If $p \geq 11$ and F_{n} is any modular form of weight n for $\Gamma_{p^{2}}$, then $F_{n} F_{2}^{n} \omega^{\otimes n}$ gives an n-canonical form on $\hat{\mathcal{A}}_{2}(p)$.

We note that the variety $\hat{\mathcal{A}}_{2}(p)$ is rational for $p=2$ and unirational for $p=3$ (see [$\left.\mathrm{O}^{\prime} \mathrm{G}\right]$). In [G] it was proved that $\hat{\mathcal{A}}_{2}(p)$ is irrational for $p=5$ and $p=7$. More exactly the Kodaira dimension of $\hat{\mathcal{A}}_{2}(p)$ is nonnegative for $p=5$ and is positive for $p=7$. The question of the exact value of the Kodaira dimension for these two primes is open.

Acknowledgement: We should like to acknowledge support from the European Science Project "Geometry of algebraic varieties", under contract no. SCI-0398-C(A), which enabled the second author to visit Cambridge during March, 1994.

References

[SC] A. Ash, D. Mumford, M. Rapoport, Y. Tai, Smooth Compactification of Locally Symmetric Varieties, Math. Sci. Press, Brookline, Mass., 1975.
[EZ] M. Eichler, D. Zagier, The theory of Jacobi forms, Progress in Math. 55, Birkhäuser, 1985.
[G] V. Gritsenko, Irrationality of the moduli space of polarized abelian surfaces, Bonn preprint MPI n-26/1994 (to appear in a short version in Int. Math. Research Notices No. 6 (1994)).
[GH] V. Gritsenko, K. Hulek, Appendix to the paper "Irrationality of the moduli space of polarized abelian surfaces", preprint, 1994.
[HS] K. Hulek, G. K. Sankaran, The Kodaira dimension of certain moduli spaces of abelian surfaces, Compositio Math. 90 (1994), 1-36.
[O'G] K. O'Grady, On the Kodaira dimension of moduli spaces of abelian surfaces, Compositio Math. 72 (1989), 121-163.
[SZ] N-P. Skoruppa, D. Zagier, Jacobi forms and a certain space of modular forms, Invent. Math. 94 (1988), 113-146.
[T] Y. Tai, On the Kodaira dimension of the moduli spaces of abelian varieties, Invent. Math. 68 (1982), 425-439.
V. A. Gritsenko, St. Petersburg Depatment Steklov Mathematical Institute, Fontanka 27, 191011 St. Petersburg, Russia.
G. K. Sankaran, Department of Pure Mathematics and Mathematical Statistics, 16, Mill Lane, Cambridge CB2 1SB, England.

