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THE EIGENFORMS OF THE COMPLEX
LAPLACIAN FOR A HERMITIAN SUBMERSION

PETER B. GILKEY?, JOHN V. LEAHY, AND JEONGHYEONG PARK]

ABsTRACT. Let m: Z = Y be a Hermitian submersion. We study when the pull-
back of an eigenform of the complex Laplacian on ¥ is an eigenform of the complex
Laplacian on Z.

§1 INTRODUCTION

1.1 The real Laplacian. We introduce the following notational conventions. We
assume that all manifolds are compact, connected, smooth, without boundary, and
Riemannian. Let Afiw = dpdpr + dprdas be the Laplace-Beltrami operator on the
space of smooth p forms C(APM). Let E(A, AY,) C C=(A? M) be the eigenspaces
of A%,; the eigenvalues X of A}, are non-negative. We may decompose L?APM as
a direct sum @x>0F(A, A%,). Let m: Z = Y be a submersion. This means that
m is a smooth surjective map and that =, : T,Z — T,.Y is surjective for all
z. Let m := dimgY and n := dimg Z; we assume n > m. Let V := ker(m.,)
and H := VL be the vertical and horizontal distributions of 7. We say 7 is a
Riemannian submersion if 7, is an isometry from H, to' T,,Y for all z. We shall
use capital letters for tensors on Y and lower case letters for tensors on Z. We
shall use indices i, j, and k to index local orthonormal frames {e;}, and {e'} for
the vertical distributions and co-distributions V and V* of 7; we shall use indices
a, b, and ¢ to index local orthonormal frames {f,}, {f*}, {F.}, and {F°} for
the horizontal distributions and codistributions H and H* of m as well as for the
tangent and cotangent bundles TY and T*Y of Y. We shall adopt the Einstein
convention and sum over repeated indices. Let ext(€) and int(¢) be exterior and
interior multiplication by a covector £. Let I' be the Christoffel symbols of the
Levi-Civita connection. Let

0 := —gz([e, fo),€:) f* = “Tiiaf",

wabi = 9z (€, [far fo])/2 = (*Tapi = Toai) /2,
£ = wapiextz(e') intz(f*) intz(f°)

= intz(0) + &;

(1.2)

[1]
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g is the unnormalized mean curvature co-vector of the fibers of 7, w is the enrvature
of the horizoutal distribution, and £ is an endomorphism of the exterior algebra.
The anti-symmetric V* valued 2-tensor w(f,, f3) is the metric dual of the projection
my of [fa, f5]/2 on the vertical distribution V. The fibers of 7 are minimal <=

f =0 <= wisaharmonic map. Let 1 <p < dimgY. The horizontal distribution
H is integrable <= w = 0; this implics £ = 0 on APH*. Pullback 7" defines a
natural map from C®Y to C*Z.

1.3 Theorem. Let m: Z — Y be ¢ Riemannian submersion.
(1) dzm* — 7*8y = 27" and Azn* — 1Ay = (dzZ + Zdz)n* on C®(APY).
(2) If0#£ D e E(N\AY) and if 7@ € E(pu, AY), then X < p.
(3) Fizp with 0 <p < dimgrY. The following conditions are equivalent:
i) ALrt =t AL
i) VA > 0,3p(A) > 0 so n*E(X, AL) C E(u()), AY).
1ii) The fibers of ™ are minimal and:
a) tf p =0, there is no condition on w.
b) if p >0, w =0 s0 H is integrable.
(4) If0#® € E()NAY) and if n* D € E(u, AY), then A = p.

(5) Let 0 € A < pu< oo and let p > 2. There exists a Riemannian submersion
m:V 5 U and 0# ® € E(A, A}) so that 7*® € E(i, A}).

For a generic Riemannian submersion, the pullback of an cigenform on Y will
no longer be an eigenform on Z. We say that an eigenvalue changes if there exists
0# @€ E(M\AY) so n*® € E(p, AY) with A # p; this is a comparatively rare
phenomena. Theorcin 1.3 shows that eigenvalues can change if p > 2 and that
eigenvalues cannot change if p = 0; we do not kuow if eigenvalues can change if
p = 1. Furthermore, if 7* preserves all the eigen p forms, then cigenvalues can not
change.

Theorem 1.3 (1) for p = 0 and Theorem 1.3 (3) for p = 0 was proved by Watson
[13]; Theorem 1.3 (1) for p > 0 and the equivalence of (i) and (iii) in Theorem 1.3
(3) for p > 0 was proved by Goldberg and Ishihara [7]. The remaining assertions
of Theorem 1.3 were proved by Gilkey, Leahy, and Park [4, 5] and by Gilkey and
Park [6]. Bergery and Bourguignon [1] gave a careful discussion of the relationship
between the complete spectrum of A% and AY if the fibers of m are totally geo-
desic. We also refer to Burstall [2] for related work on this subject; Gudimundsson
[8] has compiled an excellent bibliography of harmonic morphisms which contains
additional related references. We also refer to related work of Park {12].

§1.4 The complex Laplacian. In this paper, we generalize Theorem 1.3 to the
complex setting. Some of this generalization is straightforward, but many of the
arguments given in the real case either need substantial modification or must be
replaced entirely when passing to the cotuplex case. We introduce some notational
conventions. Let w = (wy,...,wm) for w; := u; + v/=Iv; be local holomorphic
coordinates on a complex manifold M of complex dimension m. The almost complex
structurc J is given by J(8}) := 9} and J(&}) := —3}. We say that a Riemannian
metric gas on M is Hermitian if gp(X,Y) = gm(JX,JY) for all real tangent
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vectors; we restrict to such metrics henceforth. We complexify the exterior algebra
to decomposec AM = ®, ,A”?(M) into forms of bidegree (p,q). Let #4;" be the
corresponding orthogonal projections. We decompose d = 0 + 0 and § = §; + do;
8y is the formal adjoint of . The complex or Dolbeault Laplacian is then defined
on C®(APIM) by AR = 86y + 6,8. This is a self-adjoint elliptic non-negative
partial differential operator; 2A%¢ is of Laplace type. If M is Kachler, then we
have A%y = 2 @, 4q=n ALY,

We say that 7 + Z — Y is a Hermitian submersion if Z and Y are complex
manifolds, if 7 is a complex analytic, if the metrics on Z and on Y are Hermitian,
and if 7 is a Riemannian submersion. We refer to work of Johnson [9] and Watson
[14] for a discussion of some of the geometry which is involved; these authors also
consider the almost complex and the Kachler categories. We complexify 7* to define
7t C®(APY) = C(AP9Z). We then have the relations m*7]? = #h%7* and
n*0y = Oz7n*. We extend interior multiplication, exterior multiplication, and w to
be complex linear. Note that JH C H. We define J*w(&y, &) := w(J&;, J€). This
paper is devoted to the proof of the following theorein which generalizes Theorem
1.3 to the comnplex setting. '

1.5 Theorem. Let7:Z — Y be ¢ Hermitian submersion.
(1) dgz7* ~ 1oy = 759 1Z0* and AR — AR = 19(20z + 9zE)n
on C®(AP?Y).
(2) If0# ® € E(A AV and if *® € E(u, ALY), then A < p.
(3) Fiz (p,q) with 0 < p,q < dimcY. The following conditions are equivalent:
i) AR = nr ADY.
i) YA > 0,3u()) > 0 so 7 B(\, ALY) C E(u()), ALY).
i} The fibers of m are minimal and:
a) if p=0 and if ¢ = 0, there is no condition on w.
b) ifp >0 and if g =0, then J*'w = —w.
c) ifp=0and if >0, then J'w =w i.e. Hyg is integrable.
d) ifp>0and if >0, then w =0 i.e. H is integrable.
(4) If0#® € E(\ ALY and if 7°® € E(u, AD°), then A = 4.
(5) Let 0 < A < p < o0, let ¢ > 1 and let p+ q > 2. There exists a

Hermitian submersion m : V. = U and 0 # ® € E(\ADY) so that
T ® € BE(u, AY).

In Theorem 1.3 (5), we showed eigenvalues could change if the degree was at
least 2; in Theorem 1.5 (5), we deal with forms of total degree at least 2 and anti-
holomorphic degree at least 1. In the real case, we do not know if a single cigenvalue
on 1 forms can change; in the complex case, we do not know if a single eigenvalue
on (0,1) forms can change. Both theorems are incomplete in this respect.

Here is a brief outline to the paper:

§2 Equations of structure (proof of Thm. 1.5 (1)).
§3 Fiber products (proof of Thm. 1.5 (2)).
84 Rigidity of eigenvalues (proof of Thm. 1.5 (3)).
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§5 Forms of type (p,0) (proof of Thm. 1.5 (4)).
§6 Hermitian submersions where eigenvalues change (proof of Thin. 1.5 (5)).
87 Examples where J*w = +w.

The material of §2 and §3 is a fairly straightforward extension of the correspond-
ing results in the real case. Although Theorem 1.5 (3,4) looks quite similar to
Theorem 1.3 (3,4), the proofs given in §4 and §5 are quite different as certain tech-
niques do not generalize from the real to the complex setting. The examples given
in §6 to prove Theorem 1.5 (5) are, of course, quite different from those chosen in the
real context. In §7, we give examples of Hermitian submersions where J*w = +w
for w non-trivial; this gives examples where eigen {p,0) forms are preserved and
where eigen (0, ¢) forms are not preserved and similarly where eigen (p,0) forms
are not preserved but eigen (0, q) forms are preserved for p > 0 and ¢ > 0.

§2 EQUATIONS OF STRUCTURE

Proof of Theorem 1.5 (1). This is a straightforward application of Tlleorun 1.3 (1).
Let i5;7 denote the natural inclusion of AP?(M) in A(M). Dually let 757 := (}7)”
denote orthogonal projection from A(M) to AP9(M). We have

5)\.{ :-—Jfr To dp © ’Lp’[" on CW(AP‘Q_IM)

02,01 :=(3M) =757 0 dp 0 on C°(APIM).
Since pullback commutes with both 79 and 779, we compute that

1 1 .
(52 Zmt — 71"52 y = ﬂ_p,q 631”“1 * W"J’T;j’q (5)!?{_!‘1

2.1
( ) g~ 1(

g Py—le *.p.q

=m dzm™ — w oy )iy = YT T Ew

on C®(AP9M). We suppress the role of "% to complete the proof of the first
identity; we use the identities dz7* = 78y and 73?9z = Bz'.rr‘:’z’q_l and cquation
{2.1) to complete the proof of Theorem 1.5 (1) by computing:

ALt — AR = 32(52 2m = w by + (Ba,2m" — m by By

=0zmh T Ent + 7D IEnt Py = 7UIZE + Edz)r*. O

§3 FIBER PRODUCTS

We adopt the following notational conventions. Let 7, : U, — Y be Riemannian
submersions with horizontal and vertical distributions H, and V,. Let W be the
fiber product;

(31) W .= {w = (ul,ug) el xUsy: 1r1(u1) = Wg(ﬂ.g)}.

Define a submersion myy from W to Y by mw (w) := m1(uy) = ma(ug). The vertical
space is Vi (w) = V(1t1) @ Va(ug) where we embed TW in TU, @ TU,. Let

Hw(w) = {(£1, &) € Hi(ur) ® Haluz) : (m1).61 = (m2).&2}
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define a complementary splitting; we define a new metric on W by requiring that
Hyw, Vi, and Vs are orthogonal, that the metrics on V; and V; are induced from
the metrics on Uy and Us, and that mw (w). : Hw (w) = TY (w{w)) is an isometry.
Let 04(uy, 1) := ¢, define Riemannian submersions from W to U,. If m; and 7
are Hermitian submersions, then oy, g, and my arc Hermitian submersiouns.

Let {F,} be a local orthonormal frame for TY. Let f& and f}¥ be the horizontal
lift of F, with respect to the submersions 7, and 7w . Note that f;v is also the
horizontal lift of f& with respect to the submersion o,. Let {e;} and {¢&;} be local
orthonormal frames for the vertical distributions of m; and 73 and let {e!'} and
{éw} be horizontal lifts to W with respect to the submersions oy and o3. Then
{elv, &} is a local orthonormal frame for V(mw), {e!V} is a local orthonormal
frame for V(o2), and {&}} is a local orthonormal frame for V{a,}.

3.2 Lemma.

(1) Let # : Z — Y be a Riemannian submersion and let f, be the horizon-
tal lift of vector fields F, from Y to Z. Then m.[f1, f2] = [F1,F2] and

QZ([flafZ]rfS) = W.{QY([FI:F2LF3)}'

(2) Let =, be defined by Riemannian submersions m, and let Eyw be defined by
the fiber product my . Then Ewmyy = o]Z17] + 035075,

(3) Let my : Uy — Y be Hermitian submersions. If & € E(A AV} and if
Ta® € E(A+ €4, ALY), then miy® € E(A + 1 + e2, AR).

Proof. Let o;(1) and ¥;(#) be the flows of the vector fields f;, and F;. By assumption
o fi = F; so ny(t) = ¥ (t)m. For 29 € Z, let

h(t) =1 (~ VA2~ VO (VB2 (V) (26), and
H(t) :=rh(t) = U1 (—VD)To(—V) T (VE) Ua(VE)(m20).

Then h(0) = [fi1, f2)(20) and 7, i(0) = H(0) = [Fy, Fa)(72) so the first identity
of assertion (1) follows. Let py be orthogonal projection on the horizontal space.
Since f3 is horizontal and since 7, is a Riemannian submersion,

z([f1, f2l, J3)(z0) = 9z(pu[f1, f2], f3)(20) = gy (mepulfr, f2], F3)(m20)
= gy {m.[f1, f2], F3)(w20) = gy ([F1, Fa], F3)(nzp).
Note that f}¥ is the horizontal lift of f! and e} is the 1101 izontal lift of ¢; with
respect to o;. Similarly £}V is the horizontal lift of 2 and é J is the horizontal lift

of é; with respect to op. Thus by assertion (1) and thL definition in equation (1.2)
we have

Ow = —{gw (e, [, F17 ) + gw (& w [ew SNy (F)

—01{!11(611[@1‘3 faDmi(F) }—02{92 (&5, &5, F2Dm3 (F*)}
= 0';91 +O’592.

. A r . . . .
Since f¥ and e}" are the horizontal lifts of f! and e; with respect to ¢, and f}¥
and é}v arc the horizontal lifts of f2 and é; with respect to oq, assertion (1) and
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the definition in equation (1.2) implies

a.bi. _gI’V [f‘v H,])/Q _Ul{Jl(etJ[fa7fb])}/2 - leﬂ-bﬂ

G = gw (&5, [f 117 ))/2 = 03192085, [S2, FEDY /2 = 0305
Since pullback L0m11111t.es with ext and int, assertion (2) now follows from equation
(1.2). .
Pullback commutes with 9. We usc assertion (2) and Theorem 1.5 (1) to prove
assertion (3) by computing:

AR — m* ADT = 7)1 (8w Evw + Ew 0w )
=00 Ty, B + Baly,)Te = Saoh( A, — ALY, O

Proof of Theorem 1.5 (2). Let 7 : Z — Y be a Hermitian submersion. Let 0 #
¢ € E(A\,AY?) and let 7*® € E(A + ¢, ARY). Let Zg = Z and inductively let
Zm =W(Z,-1,Z,-1) be the fiber product of Z,,_; with itself as defined in equation
(3.1). Let m, : Z, = Y be the associated projection. By Lemma 3.1, #® €
E(X+2"¢, A7), Since the Laplacian on Z, is a non-negative operator, A+2%¢ > 0.
Since this holds for all n, £ > 0 as desired. O

3.3 Remark. The proof of Theorem 1.5 (2} uses in an essential fashion the com-
pactness of ¥ and Z through the assertion that A%? is a non-negative operator. In
fact, Theorem 1.5 (2) fails if this hypothesis is omitted. Let

Y :=(0,7/2) x (0,7/2) CC
with the flat metric. Then 2/.\0 0 = —02 — 92, Let F(y1,y2) = cos(y1); 2 AO °F=F
so F € E(I/Q,AE,O). Let Z := C x Y with the metric ds% := e%ds + ds? wherc
G = G(y1). It is then an easy exercise to compute § = —dy- G, sce, for example, [5)].
Then ~
(AY 7 — 2 AY)F = —n* {inty (dy Q)3 F} = 8,G sin(y,)/2.

For any ¢ € R, we may choose G¢(11) so 81G(y1) = 2e cot(y;). This gives a metric
so that 7 F € E(1+¢, AOZ'O). Thus Theorem 1.5 (2) fails if Y is not compact; there
is no local proof of Theorem 1.5 (2).

RIGIDITY OF EIGENVALUES

This section is devoted to the proof of Theorem 1.5 (3). The techniques used in
[6] to prove Theorem 1.3 (3) do not gencralize easily to the complex setting so we
must use a quite different approach.

Let 7 be a Hermitian Riemannian submersion. Then H and V are invariant
under the almost complex structure .J. The canonical decomposition of TZ ®
C =T2,,®TZy,; thereforc induces a decomposition H ® C = H, o ® Ho, and
VO®C = V& VW,1. Choose a local orthonormal frame field for H of the form
{fr,. s fus Jf1,., Jfu} where v = dimg Y. The corresponding dual coframe field
for H* is then given by {fl ., f, =JfY o, =Jf"} Let G = (fa — V=1 fa)/2
and dually (% := (f*—/—=1Jf). The {(,} and {(,} are frames for H; o and H, ,
and the {¢*} and {¢°} are the corresponding dual frames for AYOH* and A® 194,
Interior multiplication by ¢* lowers the bi degree by (0,1); interior multiplicaton
by ™ lowers the bi degree by (1,0). We let indices @ and 3 range from 1 to dimg ¥
and sum over repeated indices.



4.1 Lemma. Let 7:Z — Y be a Hermitian submersion.

(1) We have w(Ca,Cg) € AVIV.
(2) We have 75%n" = extz(w((a, () int z(¢*) intz(¢P)

+2extz (15 w(Ca, p)) intz(CY) intz(CP) on AP4HLY .
(3) We have w({q,(p) =0 forallx and f = J'w=w.
(4) We have w((q,Cg) =0 for all a and B = J'w = —w.

Proof. Since Z is a complex manifold, the almost complex structure J is integrable
and [Cq,Cg] € TZ16. Since H and V arc J invariant, py[(a, (3] € V1,0. Let §z be
the extension of gz to be complex bilinear; w is the dual of py[-, -] with respect
to gz. The first assertion now follows since the dual of V; ¢ with respect to gz is
A%tVY*. To prove the second assertion, we compute:

(4.2) E= extz(w(a,(p))intz(¢*)intz(¢?)

(4.3) + extz(w((a, Cp)) intz(C?) intz ({P)
(4.4) + extz{(w((a, {p)) ntz(¢*) intz((P)
(4.5) + extz(w(la, ¢p)) intz((*) intz(¢P).

The terms in (4.2} lower the horizontal bi degrec by (0,2), the terms in (4.3) lower
the horizontal bi degree by (2,0), and the terms in (4.4) and (4.5) lower the hor-
izontal bi degree by (1,1); the symmetrics involved permit us to combine these
two terms. Thus in (4.2) we must use exterior multiplication by wg’lw(cmgﬁ); n
(4.4) and in (4.5) we must use exterior multiplication by ﬂ‘lz’ow(cﬂ(:ﬁ); (4.3) plays
no role. By the first assertion, we may replace w%’lw(ct,,gg) by w({a,Cg); this
proves the second assertion. The final assertions are immediate consequences of
the definition. O

Suppose that assertion (3-iii) of Theorem 1.5 holds. We apply assertion (1) of
Theorem 1.5. Since 8§ = 0, = is determined by £. If p = 0 and if ¢ = 0, £ acts
trivially on A®!'Z so (3-i) follows. If p > 0 and if ¢ > 0, we assume w = 0 and
£ =0 Ifp>0andif g =0, we need only consider the action of W%’Ogﬂ* ol
APty Thus ounly the termns in (4.4) and (4.5) above are relevant and these
vanish since we assumed J'w = —w. If p = 0 and ¢ > 0, then we need only consider
the action of ﬂoz’*f,'?r' on A%*Y. Thus only the terms in (4.2) are relevant. These
vanish since we assumed J*w = w. This shows assertion (3-ii1) implics assertion
(3-1). It is immediate that assertion (3-1) implies assertion (3-ii). The remainder of
this section is devoted to the proof that (3-ii) implies (3-iii); Theorem 1.5 (2) will
play a crucial role in the proof.

We begin with a technical Lemma in the theory of PDE’s.

4.6 Lemma.
(1) Let R be any operator on C°(APY) so that (R®,®)rz = 0 for all ® in
C*(AP?Y). Then R=0.
(2) Let P be a 1*" order partial differential operator on C®(APY). Suppose
that P is non-negative, i.e. (P®, ®)2 > 0 for oll © € C®(A”?Y). Then
P is a O order operator, i.c. if ®(yg) = 0, then P®(yy) = 0.
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Proof. Let € be a real paramcter. Since (R(®; + £®3), Py + ePy) = 0 for all ¢,
(R®y, ®;) + (RD,, @y) = 0; replacing e by /—1¢ yields (R®1, ®3) — (R®, 1) = 0.
Thus (R®, ®3) = 0 for all &;; we take 5 = RP; to see R =10.

We use the method of stationary phase to prove the second assertion. Decompose
P = E,P%0 4+ Q. We must show P® = 0 for all a. Let ¥ € C(Y) and let
By € C®(APY). Let B(t) := eV~ ¥ ®y. Let R(¥) := T,8¥(T)Pe. Then

PO(t) = eV 1Y Pdy + By /=18 (F) P2eV ¥ @) s0

(Pq)(t), ‘I’(t))Lz = (P®q, Pg) 2 + tV —I(R(\I’)‘I)g, (I’Q)Lz > 0.
This inequality holds for all £ so (R(¥)®g, ®p)r2 = 0 and thus R(¥) = 0 for all T.
This implies P* =0 for all a. O

4.7 Remark. This Lemma fails in the real setting. Let M = S and let P = .
Then (Pf, f)r2 = 0 for any real smooth function on S*.

4.8 Integration over the fiber and pushforward. We adopt the following
notational conventions. Let X (y) := 7~ 1y be the fiber of 7 over a point y € Y, let
m:=dimp Y, let n:= dimg Z, let X(y) := 77 (y), and let vy := el A ... Ac*™™,
Then dvolz = vx A m*dvoly and the restriction of vx to X(y) is the Riemannian
volume element of the fiber. Let V(y) = fn:eX(u) vx(x) be the volume of X(y).
We average over the fibers to define push forward

7, : C®(APZ) = C(APY)

as follows. Let ¢ € C(APZ) and let F, ..., F}, be tangent vectors at y € Y. Let
f1,.., fp be the corresponding horizontal lifts. We define

(W*¢)(F1) "‘?FIJ) = V(y)—l sz.X(y) ¢(fl) ] fp)(xl .U)VX ("E)‘

Alternatively, let 77 be orthogonal projection of APZ on 7*APY. Decompose
e = E|A|=pcA(:n,y)7r‘dyA. Then

e = Dia=p{V )™ frex(y cals, v)vx (@) hdy.

It is immediate from the definition that 7.7* is the identity on C®(A?Y).
We may decompose any real covector § into complex covectors of degrees (1,0)
and (0,1) to express & = £10 4 £01; 1,0 — ¢0,1

4.9 Lemma. Lel m: Z — Y be a Hermitian submersion. Fiz (p,q) and assume
that for all A, w* E(A, AV?) C E(A +¢(A), A%Y). Then for any £ € H* and for any
® € APYY | we have

0 = ¥ extz ("ME + € extz (€%1))n* B, and
0 = 7% (extz(¢%1) intz(8) + intz(8) ext z (€O1))n* .

Proof. We define a 1** order differential operator on C®(AP9Y) by:
P i=n,ay0z5 + E0z}r".
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Let &5 € E(A\, AY). By Theorem 1.5 (1),
E(A)W“I’,\ = ﬂ%’q{éza + Eéz}?‘[“@,\.

Since w.m* is the identity, we see P®y = e(A)®,. Thus {E(A, A}T)} are eigenspaces
of P. Since these eigenspaces are orthogonal and the eigenvalues are real P is self-
adjoint. By Theorem 1.5 (2), e(A) > 0 so P is a non-negative first order self-adjoint
differential operator. Thus P has order 0. If ® € C*®(AP7Y), we may expand
® = £,9, for &) € E(A, A}?). This series converges in the C*® topology; see
Gilkey [3) for example. Then P® = E,e(A)®d ) so

(AR = ARN® = 709 (02E + E0z)m"® = Tyn"e(A) 0y = m* P(D).

Since P is a 0** order operator, P(F®) = FP(®) for any F € C®(Y) so the
derivatives of F' do not enter into this equation. This implies

(4.10) ¥ (extz (7" Oy F)E + Zextz (7" Oy F))n* @ = 0.

The definition given in equation (1.2) permits us to decompose E = intz(8) + £
where intz(6) does not involve any vertical covectors and where £ does involve
vertical covectors. Thus equation (4.10) decouples into two scparate equations
involving intz(¢) and & separately. If £ is a horizontal covector at zp, we can
choose F so n*dy F(z9) = €. Then 7* 8y F(20) = £%! and the Lemma follows. O

Proof of Theorem 1.5 (8). We must show (3-11) inplies (3-iii). Recall that

intz(&) intz(€2) + intz(€2) intz (&) =0,
extz(£1) extz(€2) + extz(€2) extz(&1) = 0, and
intz(€1) extz(€2) + extz(€2) intz (&) = g(&1, &2).

Recall that gz is the extension of gz to be complex bilinear. Suppose the hypothesis
of Theorem 1.5 (3-ii) hold. To simplify notation, let 7 = £91 ) let BT = extz(n),
let 79 := intz (), let £* := extz(e*), and let I* := intz(f*). By Lemma 4.9,

0= Y (B + B = 20,0
This implies § = 0 since 0 is horizontal. We also compute: .
0 =wepiny {B"E I*I* + E*I*I°E" }r*
—wainy {~E BT + B TPE
=wapny {ECE" " + B I*IPE" — gz (n, [*) BT }*
=watity { =Gz (1, [VE I + Gz (n, f)E I} 0t

on AP9Y. We take 7 = (®. The dual of (* with respect to jz is (4. Thus by

equation (4.11), 0 = extz(7®w(Ca, () intz((?) + ext z (71 0w(C,,, {p)) intz(CP) on
AP2H* for all @ and 8. These equations decouple and we have:

(4.12) 0 = extz(m" ' w((a, Cp)) intz(¢P)
(4.13) 0 =extz (" w(lq, () intz(C).

(4.11)
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If p = 0, we can draw no conclusion from equation (4.13); if ¢ = 0, we can draw no
conclusion from equation (4.12). If p > 0, equation (4.13) shows 73%w(C,,(s) = 0
for all o and f; by Lemma 4.1, this implies J'w = —w. If ¢ > 0, equation (4.12)
shows 721w ((y,¢s) = 0 and hence w((q,(g) = 0 for all @ and B; by Lemma 4.1,
this implies J*w = w. If p > 0 and ¢ > 0, we combine these two identities to see
w = 0. This shows the conditions of (3-iii) are satisfied. O

§5 FORMS OF TYPE (P,0)

Suppose that there exists 0 # ® € E(\, A}) with n*® € E(A+¢, AY). Since A}
is a real operator, we may assume that ® is real. We apply Theorem 1.3 (1) to see
that en*® = intz(8)7"dy ®. Choose yp so P(yo) is maximum; by replacing & by — &
if necessary, we may assume ®(y9) > 0. Then dy ®(y) = 0 s0 ex* ®(yo) = 0 implies
€ = 0. This argument shows that a single eigenvalue can not change in the real
context for the scalar Laplacian. In the complex case, we can not use this argument
since the operator in question is not real; instead, we use the push-forward defined
in §4.8 and apply Theorem 1.5 (2).

Give the fiber X(y) := 7~ (y) of 7 over y the orientation induced from the
complex structures. Let vx := e' A ... Ae™ ™. Then V(y) := f‘\,(y) vy is the
volume of the fiber. We begin our discussion with the following technical Lemma.

5.1 Lemma. Let 7: 24 =Y be a Riemannian fubmersion

(1) We have dvx = —0 Avyx — wapieztz(f*)extz(fP)intz (e )vx.

(2) Let O be a neighborhood of yo in Y. We can find a local diffeomorphism T
from X x O to Z so that T(z,0) = z, so that 7(T(z,y)) = y, and so that
T.(0Y)(z,0) = H(8).

(3) We have © := 1,0 = —dy log(V).

Proof. We compute:

(5.2) dvyx =D extz(e’) extz(e®) intz(e? )y
(5.3) + (Tija — Taji) ext‘.z(ei) extz(e?) int.z(ej)dux
(5.4) + Dugpextz(e®) extz(e®) intz (f7)dvx.

The termns in (5.2) yield 0. In (5.3), we must set 1 = 5. Since Tyo — Tasi = Tida,
equation (5.3) yields —f Avy. The terms in (5.4) yield —(Tapj — Tpaj)/2 = —wapi-
This proves the first identity.

We choose coordinates on a neighborhood O of 45 € Y to identify O with R™
and yg with zero. If y € R™, y determines a vector field on @ and the horizontal lift
H(y) determines a vector ficld on #~10. Let ¢(t,y,2) be the corresponding flow
from a point £ € X. There is a constant C so that ¢ is a smooth map defined for
lty| < C. Noie that ¢(ts,y,z) = ¢, sy, x); we set T(z,y) = ¢{1,y, ) and restrict
to [y] £ C~! to prove the sccond assertion.

We decompose AZ = @, ,APH" @ AV* and let p, , be the corresponding or-
thogonal projections. Fix yg € ¥. We usc assertion (2) to assume that Z = X x O
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and that H(x,yo) = span{d?}. We choose local coordinates z, = (z3) on X and
let ¢ be a partition of unity subordinate to this cover. Let

Xgo 1= popdzy, = dzg — CF ,dy®, and
vx = oz, y) X AL AXTT™,

We use asssertion (1) to see that p; ,_mdvxy = —0 A vx We evaluate at a point
(:r,0) and use the fact Ci(z,0) = 0 to compute p1 ,—mdvx = (9520%ga)dy" Arvx.
Consequently —6(8%)(z,0) = g, '8Yg,. We compute:

FAV(Y) = Za [ bags ' (OUga)vx = Bo [ 0aB(O)}vx = V(y)O(3Y). O

Proof of Theorem 1.5 (4). Let 0 # ® € E(A\, AR®) and let 7°® € E(X + ¢, A°).
Since A?"? = 6,8, we use Theorem 1.5 (1) to see en™ ® = W%’OET(*({_)Y(I’. Since & has
a non-irivial vertical component, 0 = :rr’z’;oé'ﬂ"‘éyd? so em*d = '.rr%’o intz(8)7* Oy D.
We apply 7, to see that

(5.5) ed = Wf)o inty (©)dy ®.

Let g(t)z := V*ds} +ds3, define a conformal variation of the metric on the vertical
distribution and leave the metric on the horizontal distribution unchanged. Then
7 : Z(1) = Y is a Hermitian submersion and £ is unchanged. We use Lemma 5.1 to
see 8(t) = (1 + ¢t dim(X))@ and conscquently #*® € E(A + (1 + tdim(X))e, A’;’?t)).
Thus by Theorem 1.5 (2), A + {1 + ¢tdim(X))e > 0 for all t € R This shows
e=0 0

§6 HERMITIAN SUBMERSIONS WHERE EIGENVALUES CHANGE

We begin by reducing the proof of Theorem 1.5 (5) to the special case A = 0 and
(r,q) = (1,1) or (p,q) = (0,2):
6.1 Lemma. Suppose there is a Hermitian submersion my : Z; = Y7 and 0 #
®; € E(0,A}) so mj &y € E(0,A}) for some a > 0. Let 0 < A < p, let v < p,
and let s < g be given. Then there is a Hermitian submersion m : Z = Y and
0#® e E(\AYY) son*® e BE(u, ARY).

Proof. If M is a complex manifold with a Hermitian metric, let M(c) denote M
with the scaled metric ¢=?ds%,. Since Al = 2 AR,

B(X ARf) = B(S*M\ A,

Give M = M; x M, the product metric and product holomorphic structure. Then
E()\l,Aﬁ};ql) A E()\Z,Aﬁ;-;qz) C E(M+ ’\2>Afn,7,;l +1’2.01+f12))_

Assume the conditions of the Lemma hold. Choose ¢ > 0 so that g = o + A.
Let W be a holomorphic flat torus of complex dimension at least max(p —r, ¢ — s).
By rescaling the metric on W, we may choose 0 # ®, € E(A\ AL "97°). Let
Y := Yi{e) x W, let Z := Z1(¢) x W, and let n(z1,w) = (m1(21),w). Then =
is a Hermitian submersion. Let ® := & A ®,. Then 0 # & € E()\ AVY) and
P = (] ®1) APy € E(cPo+ A= p,AR%). O

11



6.2 The geometry of principal S! bundles. Let L be a complex line bundle
over Y. We supposc that L is equipped with a smooth fiber metric and a unitary
connection £V, Let 7 : S(L) = Y. Then 7 defines a Riemannian principal $*
bundle; this is also the circle bundle of the underlying real 2-plane bundle.

6.3 Lemma. Let s be a local orthonormal section to L. Let 'Vs = /=1 A,s define
the normalized connection 1-form A,. Let (t,y) — e‘/__“s(y) give local coordinates

(t,y) to S = S(L).

(1) The fibers of w are totally geodesic.

(2) We have 3y is an invariantly defined unit tangent vector spanning V.

(8) If5=eV=1%s, then O, = 8;, ¥ = OF — YD, and A, = A, + dy ®.

(4) The horizontal lift of a vector field ¥ on'Y is given by HV¥ := ¥ — A (V).
(5) We have €' :=dt + n* A, is dual to §; and spans V*.

(6) The normalized curvature F := dy A, is tnvartantly defined.

(7) We have de! = n*F and £ = —cxtg(e!)n” inty (F).

Proof. The flow v = eV~y for v € S(L) and ¢ € R is invariantly defined; 8, is

the associated unit vertical Killing vector field. Assertions (1} and (2) now follow.

Since ¥V is unitary, A, is a real 1-form. If § = em¢(y)s, then (7,%) = (y,t — ®);

assertion (3) now follows. We show that H is invariautly defined by computing;:
BY — A (OY)D, = BY — BV DDy — A,(8Y)0, = O — Az(8Y)0,.

Fix 49 € Y and choose ® so (A, + dy®)(yo) = 0. Since Az(yo) = 0, the §Y are
horizontal. Thus at g, HEY = 97 is horizontal. Since HV is invariantly defined,
HU is the horizontal lift. Since e!(H¥) = 0 for all ¥ and since e!(dt) = 1, e! is
the vertical projection of dt and is invariantly defined. By (3), dy A; = dy A, so
the curvature F is invariantly defined. Clearly de! = n*F. We compute:

£ =cxtgs(e!)gs(0y, [HO¥, HOY)w™ inty (dy®) inty (dy®) /2
=cxtg(el)m* {—0Y A, + OY A, } inty- (dy®) inty (dy®) /2
= —extg(e)m*inty (F). O
At this point, we shall digress briefly. Muto [10, 11] gave examples of Riemannian

principal S bundles where eigenvalues change. The following Lemma follows from
his calculations and forms the basis for the proof of Theorem 1.3 (5).

6.4 Lemma. Let L'V be a unitary connection on a complez line bundle over Y
with associated curvature 2-form F = F(L'V) and associated principal civcle bundle
S = S(L). Let ® € E(A\,AY). Assume that dy® = 0, that dy inty (F)® = 0, and
that —exty (F) inty (F)® = €@ for € constant. Then n°® € E(A +¢,A%).

Proof. We apply Theorem 1.3 (1) and Lemma 6.3. Since & = 0 and since dy ® = 0,
AL ®—m" AL ® = dg€r*® = ~dgs(c' A 7" iuty (F)D)
= — 1" exty (F)inty (F)® =enx*®. O

In the following Lemma, we construct line bundles with non-trivial curvature
over the flat & dimensional torus.
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6.5 Lemma. Let (z},...,2%) for 0 < 2 < 27 be the usual periodic parameters on
the flat k dimensional torus Yy, := S' x ... x §'. Let 1 <1 < j <k be given. Then
there exists o unitary connection “V on a complez line bundle L over Yg so that
F(L) = (dz* Adz?)/2m.

Proof. To simplify the notation, we may assume ¢ = 1 and § = 2. Let W = Y,
and let w := (22, ...,z%). We decompose Yy, = [0, 27| x W/ 2 where the identification
is given by (0,w) = (2w, w). Let L :=[0,2n] x W x C/ = where the identification
is given by (0, w,2) = (27, w, c“f‘—lzzz). Then L is a complex line bundle over Y
which has a natural fiber metric since the clutching function e~V=1z" jg unitary. Let
A(z) = ('dx?) /27 be the connection 1-form. The clutching or transition function,
which describes how fiber at ; = 0 is glued to the fiber at z; = 27, is defined by
® = —z%. Since A(0, e‘/‘_l”z) = A(2~, c‘r‘_l”z) + d®, equation (3) in Lemma 6.3 is
satisfied so A defines a Riemannian connection V on L with associated normalized
curvature {dz! Adz?)/2r. O

6.6 Remark. Let Y = Y5 and choose L so F = (dz A dy)/2n. We use Lemma 6.3
to see that de! = 7n*(dx A dy)/2m and thus £ = —exts(e!)n* inty (dz A dy)/27. 1t
then follows dz A dy € E(0,A%) and 7° (dz A dy) € E(1/47%, A%) so this provides
an example where an eigenvaluce of the real Laplacian on 2-forms changes.

6.7 Forms of type (1,1). Over Y = Ys, let Sg = Y x 8! be the trivial circle
bundle and with Fy = 0. Let S; be a circle bundle with F; = (dz A dy)/2x.
Let Z = W(Sp,S51) be the fiber product discussed in §3. Let €9 and e! be the
corresponding dual vertical covectors; dze® = 0 and dze! = n*(dzAdy)/2x. Define
an alinost complex structure J on Z by requiring that gz is Hermitian, that =
prescrves J, that J(e®) = —c!, and that J(e!) = e’. Let ¢! := € — /=1e! and
€2 := n*(dz — /~1dy) be a frame for A>!'Z. Then

dz€' = —/=17*(de Ady)/2n € C°(AYZ) and dz€2 =0

so the Nirenberg-Neulander theorem shows J is an integrable alinost complex struc-
ture. As the metric gy is flat, de A dy € E(0, A;ll). Note doy (dz A dy) = 0. We
use Theorem 1.5 (1), Lemma 3.2 (2), and Lemma 6.3 (7) to see

by 7z (dx Ady) = —w‘lz'o extz (e)7m* inty (Fi)dz A dy
=nyle!/om = —V/Z1(e® + V—=1e')/an

Alz'lar*(da: Ady) = ézJZ,zﬂ-‘(dm Ady) = w;’ldzel/thr
= n*(dz A dy)/8n>.

This shows dz A dy € E(0,Ay') and 7*(dz A dy) € E(1/87%,A%"). This pro-
vides an example where a harmonic form of type (1,1) pulls back to an eigen form
corresponding to a non-zero eigenvalue.

6.8 Forms of type (0,2). Let z = (z!,2?) for 2 = z* + /—1y' be complex
coordinates on ¥ = Yy. Let

¢ = (da' — V=1dy") A (de? — V=1dy?).
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Then ® € E(0, Aglz) and ® generates the line bundle A%%(Y). Use Lemma 6.5 to
construct line bundles L; over Y so Fi = (dz! Adx?) /27 and Fy = (dz* Ady?)/2m.
These are not holomorphic line bundles since the curvatures are not (1,1} forms. Let
Z = W(S(14),S(L2)) be the fiber product of the associated unit circle bundles.
Let €' be the associated vertical covectors. We define an almost complex structure
J on Z by requiring gz is Hermitian, that 7* preserves J, and that J{e!) = —¢?
and J(e?) = e!. Let £ span AD'Z for £! := =*dZ}, for £? := 7*dz?, and for
& :=e! — /—1e% Then de! =0, d€? = 0, and

dz&3 =n"(dz' A (dz? — V=1dy?)) /2~
(6.9) =" {(dz! + V—1dy") A (dz® — V=1dy?)
+ (dz' — V=1dy") A (dz® — V=1dy*)} /4n

This decomposes dz£® as the sum of forms of type (1,1) and (0,2) so dz&® has
no (2,0) component. Thus the almost complex structure J is integrable and by
the Nirenberg Neulander theorem defines a complex structure on Z. We compute
Em*® = (e! — /=1e?)/27. This is of type (0,1) so

dzwg'lgﬂ"(l) = n*(dz! A dz® — V=1dz! A dy?)/4n?,

We use equation (6.9) to sec my’dzmy Em*® = 73 /87 so 7t ® € £(1/87%, A%%).
This provides an example where a harmonic form of type (0,2) pulls back o an
eigen form corresponding to a non-zero eigenvalue.

Proof of Theorem 1.5 (5). By Lemma 6.1, it suffices to prove Theorem 1.5 (5) in
the special cases (p,q) = (1,1) and (p,q) = (0,2) with A = 0. The first case is
handled in §6.7 and the second casc is handled in §6.8. O

6.10 Forms of type (0,1). If we suppose that 8 = 0, that & € E(A,Ag,’l), and
that 7@ € E(A +¢, AY), we sce that en*® = #%1£x* 3y ®. The left hand side is
a horizontal (0, 1) form; the right hand side is a vertical (0,1} form. Consequently
¢ = 0. Thus to construct an example where an eigenvalue changes for a (0, 1) forn,
we must consider Hermitian submersions where the fibers are not wminimal. We
know of no examples where eigenvalues can change but are unable to prove that
they can not.

6.11 Holomorphic line bundles. The examples of §6.7 and §6.8 involved man-
ifolds Y with flat metrics. We conclude this section by constructing other families
of examples where eigenvalues change where the metric on the base is not flat. We
restrict to the case p = ¢ > 1 for the sake of simplicity. Let L be a holomorphic
line bundle over Y. Let (,) be a fiber metric on L. If 55, is a local non-vanishing
holomorphic section to L, let Vs, := 8y log{ss,ss) - s5. Let 3, = efs, be an-
other local non-vanishing holomorphic section to L where F is a locally defined
holomorphic function on Y. Since dy F' = 0, we have

Viin =(dF + 0y log(sh,sh))erh = (Oy F' + Oy log(sh, s1))}3n
=0y log{3n, 31) - 8.

Thus V, is invariantly defined and F = —/=1dy-8y log(ss, sp). We see that Vy
is Riemannian since (Vpsn, su) -+ (sh, VLsp) = d{sp, sp).
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6.12 Hodge manifolds. We say that L is a poesitive line bundle over Y if the
curvature F{L) is the Kachler form of a Hermitian metric on Y; there is a possible
sign convention which plays no role in our development. If M admits a positive
line bundle, M is said to be Hodge. For example, the hyperplane bundle H is a
positive line bundle over complex projective space CP” and the associated metric
is the Fubini-Study metric. More generally, if Y is any holomorphic submanifold
of CP¥, then the restriction of the hyperplane bundle to Y is a positive line bundle
over Y and the metric on Y is the restriction of the Fubini-Study metric to Y.
Conversely, if Y admits a positive line bundle L, then there exists a holomorphic
embedding « : Y — CP” for some v and a positive integer & so that L®* = a*(H).
Thus we may identify the set of Hodge manifolds with the set of simooth algebraic
varieties.

6.13 Other examples where eigenvalues change. Let L be a positive line
bundle over Y and let Z := Z(j, k) := W(S(L®7), S(L®*)) be the fiber product of
the circle bundles defined by the circle bundles of the tensor powers of L. Let €7 be
the corresponding vertical covectors. We extend the almost complex structure from
Y to Z by defining J(e/) = —e* and J(e*) := /. We use the Nirenberg-Neulander
theorem to see that J is integrable; the integrability condition on horizontal covec-
tors is immediate so we must ouly check the vertical component;

dle? —V=1e") = (j — V=1k)n* F.

6.14 Theorem. Let 1 < p < m and let p = (52 + k%)p(m + 1 — p). Then
FP € E(0,AY) N E(0,A") and 7*(FF) € B(u, AF) N E(1/2, ALP).
Proof. We have F? is a harmonic form of type (p,p). Since Y is Kaehler, we have
that E(0, AZ) N C®(AP?Y) = B(0,A}P). so FP € E(0,AD”). We compute

ﬂ%‘p_lgw’}"’ =(j+V=1k)p(m +1 —p)(ej VST W T FPT)2
so drhP T ERT FP = pm* FP/2. Thus 7 FP € E(p/2, ARP); the proof of the corre-
sponding assertion in the real case is similar. O

6.15 Remark. Note that the manifold Z constructed in Theorem 6.14 is in general
not Kaehler. For example, if L is the Hopf line bundle over the Riemann sphere 5?2
and if (4,k) = (0,1), then Z = S x 82 is the Hopf manifold and 7 : S x §% - §2
is essentially just the Hopf fibration where we norinalize the metrics suitably.

§7 MANIFOLDS WHERE J*w = fw.

Let # : Z — Y be a Hermitian submersion with minimal fibers. Let p > 0 and
let ¢ > 0. In Theorem 7.1 (3), we saw that 7* preserves the eigenspaces on forms of

type (p,0) if and only if J*w = —w and that 7* preserves the cigenspaces of forms
of type (0,¢) if and only if J*w = w. In this section, we give examples to illustrate
these two cases. The case J*w = w is relatively easy; the case J*w = —w requires

more work.
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7.1 Hermitian submersions with J*w = w. Let Y be a Rietnann surface so
dimgY = 1. Then H,p is a 1 dimensional complex foliation and hence H, g is
necessarily integrable. Thus J*w = w. The submersion constructed in §6.7 gives
an example 7 : W (S, S1) = S? x 8 with non-trivial curvature tensor w satisfying
J'w =w.

7.2 Hermitian submersions with J*w = —w. We have J = —1 on A?" ¢ A2
and J = +1 on AbL. Let S; be circle bundles over a torus Y, with curvatures
F* and corresponding dual vertical covectors ¢f. We assume that J*F? = —F¢ or
equivalently that we may decompose F* = £+ & for £ € A20. We define an almost,
complex structure on Z = W(Sp,S1) by requiring that gz is Hermitian, that =*
preserves J, that J{(e®) = —e!, and that J(e!) = . We compute

d( ,0 - \/——161) =7 (.7'-() - \/—_1.7‘1)
=n* (€ — V=1¢") + n*(£° - V=181,

The Nirenberg-Neulander integrability condition is satisfied if and only if
(7.3) 0 = /-1
Define horizontal 2-forms w® by the evaluation: w'(fa, fi) = 9z(es, [far fo))/2;

—w (fa, 3} = € ([far A)/2 = d€* (fa, fi) = 7 F(fu, F5)/2.

Thus w! = —7*F*/2 and J*w! = —w'. Thus it suffices to give an example where
equation (7.3) is satisfied.
Let ¢° := (dz! + =1dy') A (dz? + /=1dy?) /4m. Then

FO =(dz' A de® — dy* Ady?) /27, and
F' =(—dz! A dy? + dz® A dyt) /27

We use Lemma 6.5 to construct bundles L; over the torus with

F? = (dz' Adz?))2n, F3 = (dy' A dy?)/2r,
Fl = (dz' Ady?®)/2m, F° = (dz® A dy") /2.

Since F(L;) = —F(L;) and F(L; ® L;) = F(L;) + F(L;), Lo := L, ® L} and
Ly := Lj ® Ly define circle bundles over the torus with the desired curvatures.
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