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THE EIGENFORMS OF THE COMPLEX

LAPLACIAN FOR A HERMITIAN SUBMERSION

PETER B. GILKEvt, JOHN V. LEAHY, AND JEONGHVEONG PARKt:

AßSTRACT. Let 11" : Z -+ Y bc fl. Hermitian submersion. We study when thc pull­
back of an eigenform of the complex Laplacian Oll Y is an eigenform of the complex
Laplaciau on Z.

§1 INTRODUCTION

1.1 The real Laplacian. We iutroducc thc following notational conveutions. We
(l.•',sumc that all mauifolds are cOlupact, connccted, smooth, without boundary, and
Rieluannian. Let ß~[ := dMoM + 0MdM be the Laplace-Beltrarni operator on the
space of smooth p forms Coo (AP M). Let E(A, ß~~J) C Coo (AP M) be the eigellspaces
of ß~J j the eigenvallles A of ß~J are non-negative. We nlay deCOlupose L 2 AP M as
a direct sum EB >. 2: 0E (A, ß ~J ) . Let 1r : Z --+ Y be a submersion. This mcans tImt
1r is a smooth surjcctive map allel that 1r* : TzZ --+ T1rz Y is surjective for all
z. Let 7n := dimR Y and n := dilllIR Zj wc assume TI. > rn. Let V := ker(1r*)
a.nd 'H := V..l be the vertical alld horizontal distributions of 1r. We say 1r is a
Riemannian submersion if 7r* is an isollletry from 'Hz to 'T1TZ Y for all z. We shall
use capit.al lctters for t.ensors ou Y anel lowcr case Ictters for tellsors ou Z. Wc
shall use indices i, j, and k to index loeal orthonoflllal frames {ed, and {ei} for
the vertieal distributions aud co-distributions V and V* of 7r; we shall use indices
a, b, alld c to index loeal orthonormal frames {Ja}, {Ja}, {Pa}, anel {pa} für
t.he horizontal distributions anel eodist.ributiolls 'H and 1{* of 7r as weIl as für the
tangent and cotangcnt blllldies TY and T*Y of Y. We shall adopt the Einstein
convention aud SUll1 over repeatcd indices. Let ext(~) anel int(O be exterior anel
illterior lnultiplication by a coveetor ~. Let r be tbc Christoffel syrnbols of thc
Lcvi-Civita connectiün. Lct

(1.2)

B:= -gz([ei,Ju),edJu = ZriiaJ a,

W(lbi := f}Z(ei, [Ja, Jb])/2 = (Zrabi - Zrbai )/2,

[ := Wabi extZ(ei
) intz(Ja) intz(Jb)

:::: := intz(B) + C;
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B is the uIlnonIlalized meall curvat.ure co-vector of thc fibers of 7r, w is the Cllrvat.ure
of the horizontal distribution, anel [ is an endomorphism of the exterior algebra.
The anti-synuuetric V* vailled 2-tcnsor w(fa, !b) is tho metric dual of the projection
7rv of [Ja., fb]/2 on the vertical diHtriblltioIl V. The fibers of 7r are minimal {::::::::}
() = 0 {::::::::} rr is a hanllonic lIlap. Let 1 S; 1) ::; dill1R Y. The horizontal distributiQn
7i. is int.cgrable {::::::::} w = 0; this illlpliC'.,8 [ = 0 on A1J 7i.*. Pullback 7r* deRnes a
natural Inap früln cooy to COO Z.

1.3 Theorem. Let rr : Z -)- Y be a Riemanniau subrnen;ion.

(1) OZ7r* - 7r* Ol' = 3rr* and .6 zrr* - rr*.6 y = (dz 3 + '5.d z )7r* on Coo(APY).

(2) 11°f:- <p E E(.-\, .6~) and ij rr* CI! E E(JI., .6~) 1 then .-\ :::; 11,.

(3) Fix p with °:::; p :::; din11R Y. The following conditions are equivalent:

i) .6i7l"* = rr* .6V.

ii) 'V.-\ ~ 0, 3It(.-\) ~ °so 71"* E("\, .6~) c E(Jl(.-\) , .6i).
iii) The fibers oj rr are minirnal (lnd:

a) ij p = 0, there is no conditi01t on w.

b) if p > 0, W = °so 1l is integrable.

(4) IfO f:- CI! E E(.-\,.6~.) and ijrr*CI! E EÜt,.6~), then.-\ = It.

(5) Let 0 S; .-\ < Jl < 00 lLnd let p ~ 2. Thc1'e exists (J, RiemannilLTL submersion
rr : V -)- U and 0 f:- <P E E("\, .6t) so thai 7I"*q. E E(/J" .6t·).

For 1:1 generic Riemannian subulCfsion, the pllllback of an eigenform on Y will
no longer be an eigenform on Z. We say that an eigenvaille changes if there exist.s
o f:- CI! E E(.-\,.6~) so 7r* <.D E E(JI".6~) with .-\ f:- J-L; this is a eOlIlparatively rare
phenomcna. Theorem 1.3 shows t.hat cigenvailles can change if p ~ 2 alld that
eigenvailles callnot change if p = 0; we do not know if eigenvalucs can eha.nge if
1) = 1. Fllrthermorc, if 7r* presefveH all thc eigen p fOrIns , thCll eigellvalues can not.
change.

Theorenl 1.3 (1) for]J = 0 and Theorem 1.3 (3) for 1) = 0 was proved by WatRon
[13]; Theorem 1.3 (1) for p > 0 and the equivalence of (i) and (iii) in Theorem 1.3
(3) for p > 0 was proved by Goldberg and Ishihara [7]. Thc remaining asRertions
of Theorem 1.3 were proved by GilkcYl LeahYl and Park [4, 5] and by Gilkey and
Park [6]. BergCI'Y and Bourgllignon [1] gave a careful diseuRsion of t Itc relat.ionship
between the complct.c spectrllm of .6~ and .6~ if thc fiberH of rr are t.otally geo­
desie. Wc also refer to Burstall [2] for.rclated work on this slibjeet; Glldmundssoll
[8] has compiled an cxcellcnt bibliography of harmonie IllorphiRIlls which eOlltains
additional related refcrenccs. We also refer to relat.ed work of Park [12].

§1.4 The complex Laplacian. Iu this paper, we gelleralizc Theorcm 1.3 to thc
complex setting. Some of this gencralization is straightforward, but Illany of the
argulnellts givell in the real case either ueeel substantial modifieation 01' must be
replaeed cntirely when pa...:;sing to t.he complex ca.."le. Wc introduee some notat.ional
convent ions. Let W = (Wl""l Wri"l) for Wi := Ui + A Vi bc Ioeal holomorphic
coordinates on a complcx mallifold M of complex dimension 771,. Thc ahnost cOlnpIcx
s tructure J is giyen by .J(BiL

) : = ai' aud .J(af) := - ar. We say timt Cl Ricnmnniall
metric g111 on M is HeNnitian if 9AI ( ..YI Y) = f) AI (J X I JY) for all real tangent.
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vectorSj we restrict to such llietrics henccforth. We cOlllplexify thc cxteriol' algebra
to dccompose AM = EBp,qAV,q(M) into fonns of bidegree (p, q). Let 1r~,jJ be the
corresponding orthogonal projections. We decompose d = fJ + [; aud b = 81 + ()2i

02 is the fonual adjoint of 8. The complex or Do'lbeault Laplacian is then defilled
on COO(AP,q A1) by 6.~/ := ß82 + 02ß. This is a self-adjoint elliptic non-negative
partial differential operator; 26.~1q is of Laplace type. If M is Kaehler, then wc
have 6.M= 2 ffi11+q=n 6.~'/ .

We say that 1r : Z --+ Y is a Herrnitian submersion if Z and Y are complex
manifolds, if 7f is a complex analytic, if the 1118trics on Z and on Y are Hel'mitian,
and if 1r is a Riemalluian sublnersion. We refer to work of .1011l1S011 [9] and Watson
[14] for a disCllssion of SOHle of the geollletry which is involvcd; these authors also
consider the almost complex and the Kachler categories, We complexify 7f* to define
1r* : Coo (AP,qy) --+ COO (AP,q Z). We then have the relations 1r*7f~q = 1ri'q1r* allel
1r* [)y = BZ 1r*. We extend interim' multiplicatioll, exterior Illultiplication, a.nd w to
be complex lillear. Note that J?-l C ?-l. We defille J*W(~I, ~2) := w(J6, J~2)' This
paper is devoted to t.he proof of the following theorem which genera.li~es Theorem
1.3 to the complex setting.

1.5 Theorem. Let 1r : Z --+ Y be a Hennitian submersion.

(1) J2,Z7f* - 7f*02,y = 1r~q-l=1r* and 6.~q1r* - 1r* ~~;q = 1ri'Q(S8z + ßZ =)7f*
on COO(AP,QY).

(2) IJ 0 i= cI> E E(>', 6.~)q) and iJ 1r*cI> E E(JL, ~~q), then >. S; p.

(3) Fix (p, q) with 0 S; ]J, q ::; dime Y. The Jollowing condit-lons (L1'C equivalent:

i) ~~q1r* = 1r. 6.~Q.

ii) V>. 2:: 0, :3tt(>') 2:: 0 so 1r* E(>'l6.~/J) C E(tL(>'), ~~q).

iii) The fibers oJ 7f are minimlLl lLnd:

a) iJ p = 0 and ij q = 0, there is no condition on w.

b) iJp > 0 and iJq = 0, then .J*w = -wo

c) iJ p = 0 and iJ q > 0, then J*w = w i.e. ?-l1,0 is integrab'le.

cl) iJ P > 0 and iJ q > 0, then w = 0 i.e. ?-l is integ1'able.

(4) 1J 0 i= <I> E E(>', 6.~/») and iJ 1r*~ E E(J-ll 6.~o), then >. = J-.L.

(5) Let 0 ~ >. < J-l < 00, let q ;:::: 1 and let p + q ;:::: 2. The1'c exists (L

Hermitian submersion 7f : V --+ U and 0 f. cI> E E(>'l6.ft) so that
1r*ep E E(p, ~~q).

In Theorelll 1.3 (5L we showed eigenva.lues could change if the clegree was at
least 2; in Theorem 1.5 (5), we deal with fonns of total degree at least 2 anel anti­
holOlllorphic degree at least 1. In thc real case, we do not know if a single cigcnvaluc
Oll 1 fOrIlls ca.n change; in the complex case, wc do not know if a single eigcnvaluc
Oll (Oll) forms cau change. Both theorems are inCOlnpletc ilJ tltis respect.

Here is abrief outline to the paper:

§2 Equations of structllre (proof of Thm. 1.5 (1)).
§3 Fiber products (proof of Thm. 1.5 (2)).
§4 Rigidity of eigenvalucs (proof of Thm. 1.5 (3)).
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§5 FOrnlS of type (P,O) (proof of Thm. 1.5 (4)).
§6 HernIitian sllbrnersions where eigenvalues change (proof of Tlun. 1.5 (5)).
§7 Examples where J*w = ±w.

The material of §2 and §3 is a fairly straightforward extension of the correspolld­
ing results in the real case. Although Theorem 1.5 (3,4) looks quite sinülar to
Theorem 1.3 (3,4), the proofs given in §4 aud §5 are quite different as certain tcch­
niques do not generalize frmll the real to the cmuplex setting. The examples given
in §6 to prove Theorem 1.5 (5) are, of course, quite different from thosa chosen in the
rea.l context. In §7, we give examples of Hermitian submersions where J*w = ±w
for w non-trivial; this gives examples where eigen (P,O) forms are prescrved anel
where eigen (0, q) forms are not preserved and similarly where eigen (p,O) forms
are not preserved hut eigen (0, q) forms are preserved for p >°aud q > O.

§2 EQUATIONS OF STRUCTURE

Proof of Theorem 1.5 (1). This is a straightforwarcl application of Theorem 1.3 (1).
Let i~'/ denote the natural inclusion of AP,q(M) in A(M). Dllally let 1f~:/ := (i~lq)*

dcnote orthogonal project.ion from A(M) to AP,q(M). We havc

[hf :=1f~'/ 0 dAf 0 i~lq-l on COO(Al),q-l M)

-' ._(!l)* _ 7TP,q-l 0 l' 0 ~'P,fJ Oll COO(AP'fJM)U2,M .- UM - 1.1 UM ~M .

Since pullback commutes with both iJl,q and 7TP ,q 1 we cmnputc that

(2.1 )
l' * * -' _ .-J),q-l -' 'p,q _ _ I J,q-l -' 'P,q
U2,Z1f - 1f u2,Y - 71Z uzl,Z 7T - 7T 1f1" uyl,1"

=7Ti,q-l(6Z7T- -7T-6y)i~;q = 1fi,q-l37T*i~~q

on COO(AP,q M). Wc suppress the role of iP,q to cmuplete the proof of the first
idcntity; we use the iclentities 8Z7T* = 1f-~" and 7TVZq [)Z = [)Z7T~,q-l auel equation
(2.1) to complete the proof of Theorem 1.5 (1) by cmnpllting:

.6.i'Q1f- - 1f- .6.~// = Bz (62,Z1T- - 7T*62,y) + (62,Z1f- - 1f-62,Y)8y

=BZ7Ti,q-137T* + 7Ti,q37T*8y = 1f~,q(ßz3 + 3ßZ )7T-. 0

§3 FIBER. PR.ODUCTS

We adopt the following not.ational convent.ions. Let 7Tn : UQ ---7 Y be Ricmannian
submersions with horizontal and vertical distributions Ha and Va' Let. ~V be the
fiber procluct;

(3.1)

Define a sublllersion 7T11' from W to Y by 1fw(w) := 7Tr(Ur) = 1f2('lt2)' The vert.ical
space is Vw(w) = V1(1l.r) EB V2(U2) where wc embcd TW in TUl EB TU2. Lct
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define a cm11plcmentary splitting; we elefine a llew metric Oll vV by rcquiring that
H H', VI, anel V2 are orthogonal, timt the rnetries on VI and V2 are induceel from
the metries on Ul anel U2 , allel timt 7rw(w) .. : Hvv(w) -+ TY(7r(w)) is an ismnctry.
Let aoJ 'U1, 'll.2) := U o deRne Riemannian submersions frOl11 W to Uo' lf 7rl and 7r2

are Herrllitian subrnersions, then a1, a2, a.nd 7rlV are Hermitian subnwrsions.
Let {Fa} be a loeal orthonormal frame for TY. Let I;: anel f~v be thc hori~orlta.l

lift of Fa with respeet to the S11brllcrsions 7r0 anel 7rw. Note timt f ~v is also thc
horizontal lift of j~ with rcspcet to thc submersion a o' Let {ed and {Cj} bc loeal
orthonormal frames for the vertical distribut.ions of 7rl allel 7r2 auel let {e~V} alld
{c}"} bc horizontal lifts to W wit.h respect to the submersions al anel a2. Thcn
{c~V ,cj"'} is a Ioeal ort.hollol'mal frame for V( 7rw ), {eJ'l'} is a loeal orthonormal

frame for V(a2L emd {cjV} is a loeal orthonormal fralne for V(al)'

3.2 Lemma.

(1) Let 1r : Z -+ Y be a Riemannian submersion and let f v be th e horizon-
tal lift oj veetor jielrls Fv f1'om Y to Z. Then 7r.. [Jl, f2J [PI, F2 ] and

gz ([11,/21,13) = 1r" {gy ([FI, F2LF3)}·
(2) Let 3 0 be defined by Riemannian subrnc1'sions 1ro and let 3 w be defined by

the fiber product 7rur· Then 3l\, 7riv = ai 3 l 7ri + a2321r2'
(3) Let 7r0 : Uo -+ Y bc Hermitian submersions. If cI> E E(A, .6.~;q) and i1

1r~ <lJ E E( A + co, .6.D:), then 7riv<p E E(A + Cl + C2, .6.f~J)·

Prooj. Let 'l/Ji(t,) anel Wi(t) be the ftows ofthe vector fields 1" anel Fi . Bya..<;suluption
1r.. h = Pi so 7r'I/Ji(t) = Wi(t)7r. For Zo E Z, let

h(t) :='l/Jd- vt)'l/J2( - Vt)'l/Jr( vt)1/J2 (Jt)(zoL and

H(t) :=1rh(t) = Wt{-vt)W2(-Vt)Wl(Vt)W2(Vt)(1rZO)'

Thcn h(O) = [11, 12J(Zo) allel 1r..i~(O) = H(O) = [Fl , F2J( 1rZo) so the first idcntity
of assertion (1) folIows. Let P1i be orthogonal projeet.ion on the horizontal spaee.
Since 13 is hori7,ont.al and siuce 1r.. is a R.iemannian ~mbInersion,

gZ([/l, 12], 13)(ZO) = gZ(P1i[/I, 12], 13)(ZO) = gy (1r .. P1d/1 , 12], F3 )(7rZo)

= gY(7r. [Jl, 12], F3)(1rZo) = gy([FI1 F2], F3)(1rZo).

Note tImt f~v is t.he horizontal lift of J~ and cIv is the horizontal lift of Ci with
respect to al. Similarly J~V is the horizontal lift of f(~ and c}l' is t.lIe horizontal lift
of Cj with respect to a2. Thus by a.."'isertion (1) and the definition in eqlla.tion (1.2)
we have

O { ( \V [ Hf fW]) (AW [AW j\V])} .. (Fa)W = - giV Ci , Ci 'a + gw Cj , Cj 'a 7rW

= -a; {gdei, [e
"

1~J)1r; (Fa)} - a; {g2(Cj, [Cj, 1~J)7r2 (Fa)}

= ai8l + a;82 .

Since f~v and eJ!' are tlle horizontal lifts of f~ and C, with rcspect to al anel 1~v

and cjV are the horizolltallifts of /; and Cj with respect to a2, a.ssertion (1) anel
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thc definition in eqllation (1.2) implies

W ( W [jW j'W])/2 "'{ ( [fl fl])}/2 "'Wabi = 9111 Ci , n '/1 = ul 91 ei, a' b = U1Wrtbi,

"lV ("n' [fH' fH'])/2 "'{ (" [f2 j2])}/2 "'"Wjab = gw Cj' a' b = U2 g2 ej, Il' b = U2 W jab·

Since pllllback comnuü,es with cxt and int, assertion (2) now follows from equation
(1.2).

Pullback COllunut.es with ä. We use <:l..-qsertion (2) anel Theorem 1.5 (1) to provc
assertion (3) by compllting:

L\t{:'7r"' - 7r"' D.~q = 1rfirq(8w2w + Bwäw )1r"'
-" "' p,q(B- '= += B- )"' -" *(AP,q * * AP,q) 0
-~oUo1rUa ua .......... O .......... 0 U a 7r0 - ~ouo: 0Uu 7ro - 7rO'0Y .

PTOOJ oJ TheoTe1n 1.5 (2). Let 7r : Z -t Y be a Hermitian submersion. Let 0 "#
<P E E().., L\~;q) and let 7r*<I> E E()" + c, L\i'q). Let Zo = Z and indllet.ively let
Zn = Hf (Zn-I, Zn-I) be the fiber produet of Zn-l with itsclf as defined in equatioll
(3.1) . Let 7rTl : Zn -t Y he t.he associatcd projcct.ion. By Lellllll a 3.1, 7r~ <P E
E()..+2n c, L\i':). Since the Laplacian on Zn is Cl non-negative operator, )..+2nE 2: 0.
Sincc this holds for all 71., c 2: 0 as dcsircd. 0

3.3 Remark. The proof of Theorem 1.5 (2) uses in an essential fashion the cOln­
pactness of Y alld Z t.hrollgh t.he assertion that L\i'q is a non-negative operator. In
fact, Theorem 1.5 (2) fails if this hypothesis is oillitted. Let

Y := (0, 7r/2) X (0,7r/2) C C

with the Hat mctrie. Then 2D.~,:o = -Bl- Bi. Let F(Yl' 112) = COS(11l); 2L\~.;0 F = F
so F E E(1/2, L\~o). Let Z := C X Y with the rnetrie d.9~ := cGd.9~ + ds~ where
G = G(Yd. It is then an easy exercise to compnte 8 = -dyGj sec, for example, [5].
Thell

(L\~o1r* - 1r" L\~o)F = -w"' {inty (dy G) 81F} = BI G Sill(Yd /2.

For any c E IR, we may choose G~(yd so 8lG(Yl) = 2ccot(Yd. This gives a lIwt.l'ic

so that 7r" F E E( 1 + c, D.~o). Thus Theorenl 1.5 (2) fails if Y is not COlllPact.; there
is HO loeal proof of Theorem 1.5 (2).

RIGIDITY OF EIGENVALUES

This sectiml is devoted t.o the proof of Theorem 1.5 (3). Thc techn iques used in
[6] t.o prove Theorem 1.3 (3) da not gCllcralize easily to tbc cOlIlplex setting so wo
must use a quitc different approach.

Let 7r be a Hennitian RiClnanllian submersion. Thell 1-l allel V are invariallt
uuder the almost complex struet t1 re .1. The canonical dccomposi t ion of. TZ 0
C = T Zl,O EB T ZO,l thereforc illduces a decomposition 1-l 0 C = Hl,o EB HO,l and
V 0 C = V1,o EI) VO,l' Choose a local ol't.honormal [raIne field for 1-l of the form
{f1, ... , f v, .1f 1 , ',., J f v} w here 1/ = dime Y. The correspollding dual cofraII le field
for 1e is t.hen given by {jl, .", fV, -J fl, "', -.1 fV}. Let (0 := (fa - H.J jo)/2
and dually (a := (fa - H.JjO). Thc {Co} and {(al are frames for Hl,a anel Hü,l
allel the {(Cl} and {(O} are the corresponding dual frames for Al ,0 H" and A0, l1-l* .
Intcrior 1ll11ltiplicatioll by (0 lowers thc bi degree by (0, 1); interim' 1ll11ltiplicatoll
by ca lowers the bi degree by (1,0). We let indices a and ß range frolll 1 to dime Y
and StIlllOVer repeated indices.
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4.1 Lemma. Let 1r : Z --+ Y lJe a HCTfnitian s1lbmen;ion.

(1) We Iwve w((cn(ß) E AO,lV*.

(2) We have 1r~,qE1r" = extZ(w(cn (ß)) intz(a) intz(ß)

+2 extz (1r1,ow(a, (ß)) intz (a)intz ((ß) on AP,q+l y.

(3) We IULVe w(a, (ß) = °JOT aU a und ß <=> J*w = w.

(4) We have w(a, (ß) =°for aU a and ß <=> J*w = -wo

P7·OOf. Since Z is a complex manifold, thc almost complex structure J is integl'able
aud [(a,(ß] E TZ1,0. Siuce 11. and V are J inva.riant, PV[(a,(ß] E Vl,o. Let 9z bc
the extension of 9z to bc complex bilinear; w is the dual of pv(·,·] with respect
to 9z· The fi rs t assertion now follows sillce thc dual of V1,0 with respect. to 9z is
A0,1 V*. To prove the second assertion, wc compute:

(4.2)

(4.3)

(4.4)

(4.5)

E = extz (W(a 1 (ß)) intz ((I') intz ((ß)

+ extz(w((ctJ (ß)) intz((a) intz((ß)

+ extz (w( (0" (ß)) intz (0') intz ((ß)

+ extZ(w((a, (ß)) intz((a) intz(ß).

The tenns in (4.2) lower the horizontal bi degree by (0,2), the tenns iIl (4.3) lower
the horizontal bi degree by (2,0), and thc terms in (4.4) and (4.5) lower the hor­
izontal bi degrce by (1,1); thc sYlllmetries involved permit HS to cOlllbine these
two terms. Thus in (4.2) we lUust use extel'ior multiplication by ll"~lW((a,(ß); in

(4.4) and in (4.5) we Blust use exterior multipIicat ion by 1l"~oW (0' (ß ); (4.3) plays

no role. By the first a.ssertion, we may replace ll"~lw(a,(ß) by w(en (ß); UJis
proves thc second assertion. The final a...,;;;sertions a.rc immediate consequences of
the definition. 0

Suppose that assertion (3-iii) of TheoreIll 1.5 holds. Wc apply assertion (1) of
Theorem 1.5. Sillce () = 0, S is deternlined by E. If p = °allel if q = 0, [ acts
triviallyon A0,1 Z so (3-i) folIows. If p > 0 and if q > 0, we ;L<.;sume W = 0 and

E = O. If]J > 0 and if q = 0, we need only consider the action of 7f~'0Ell"* Oll

Ap, q+ 1Y. Thus ouly thc terms in (4.4) and (4.5) above a.re rclevan t. and these
vauish since wc assllIned .]" W = -wo If p = 0 and q > 0, t.hen we Ilced ollly consider
t.he action of 1r~'"Ell"* on A0," Y. Tlms only the terms in (4.2) are relevant. These
vanish since we a.."sllmed ]*w = W. This shows assertion (3-iii) iInplics assertion
(3-i). It is immediate timt asscrt ion (3- i) implies assert iOll (3-ii). Thc rmuainder 0 f
this section is devotcd to the proof t.hat (3-ii) implies (3-iii)j Theorem 1.5 (2) will
playa crllcial role in thc proof.

We begin with a technical LeIuma in the theOI'y of PDE's.

4.6 Lemma.

(1) Let R be any 0lJC7'ator on COO(AP,qy) so that (Rip, ip)L2 = 0 for aU ip in
COO(AP,qy). Then R = 0.

(2) Le t P be a 1th order pa,rtial differc71 tial ope7'f1, t01' on Coo (Ap,q Y) . Suppo.<; c
that P is non-negative) i. e. (pip, ep) L2 2:: 0 for alt <D E Coo (Ap,qY) . Then
P is (L °th o7'der operator, i. e. if <P (Yo) = 0, then P<D (Yo) = O.
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Pro01. Let. c be areal paranICter. Since (R(<P1 + C<P2), <PI + C<P2) = 0 for all c,
(R<I>l, <P2) + (R<I>2, <PI) = 0; replacillg E-by AE yields (R<P1, <1>2) - (R<P2, <Pd = O.
Thlls (RcI>11 <P2) = 0 for all cI>i; we take cI>2 = Rip1 to sec R = O.

Wc use thc methoel of statiollary phase to provc the second assertion. DecOlupose
p = Eapaa~ + Q. We 1uust show pa = 0 for all a. Let ,v. E Coo(y) aud let
<Po E Coo(AP,qy). Let <I>(t) := ev'=1t 'ltcI>o. Let. R(\IJ) := Eaa~(\J!)pa. Then

P<p(t) = eFftlllP<I)o + EavCIta~ ('l')paeFft'lt <Po so

(P<p(t), cI>(t))L2 = (P<Po, <PO)L2 + tyC1(R(\IJ) <I> 0 , <I>0)L2 ~ O.

This inequality holds for all t so (R(w)<po, <Po) L2 = 0 and t.hus R(w) = 0 for aB \J!.
This implies pa = 0 for all a. 0

4.7 Remark. This Lemma fails in the real setting. Let. M = SI anel let P = Oe.
Then (PI, I) L 2 = 0 far any rea.l smooth fu llction an S I .

4.8 Integration over the fiber and pushforward. We adopt the follawing
notat. ional conveut ions. Let X (y) := 7r -1 Y bc the fiber of 7r over a poi nt y E Y, let
171 := diIUR Y, let 11, := elimR Z, let X(y) := 7r- 1(y), anel let Vx := Cl A ... /\ en - m .

Then dvolz = Vx A 7r*dvoly auel thc restrietion of Vx t.o X(y) is the Riemannian
vohuue element of the fiber. Let V (y) := JXE X (y) v X (x) be the voltllue of X (y ).
We average over t.he fibers to elefine push forward

as folIows. Let <p E Goo (AP Z) and let PI, ... , Fp be tangent vectors at y E Y. Let.
11,,,., I 1J be the corresponding horizontal lifts. We define

Alt.ernat.ively, let 7r1i be orthogonal projection of AP Z on 7r* APY. DecOlupose
7r1i <jJ = EIAI=pCA (x, Y)7r*dyA. Thon

It is iuunediate from the definition t.hat 7r*7r* is the identity Oll Coo(APY).
Wo Iuay decompose any real covect.or € into complex covect.ors of clegrees (1,0)

and (0,1) t.o express ~ = ~l,O + ~o,\ (1,0 = €0,1.

4.9 Lemma. Let 7r : Z -+ Y be a Hermitia1l submersion. Fix (p, q) mul fLssume
that Im' alt A, '7r* E(A, .6~;q) t;;; E(A + c(A), .6i'Q). Then lor any ~ E 71.* and fo1' any
<P E AP,qy, we have

o= 7ri,q (extz (~0,1)[ + [ cxt.z (€o, 1) )7r* <P 7 aud

0= 7ri,q(extZ(€O,l) intz(8) + intz(8) ext.z(€O,l ))7r*<P.

Proof. We define a 1th order differential operator on Coo(AP,qy) by:

P p'q{!:i..........!:i } '":=7r",7rz uz=. + =.uz 7r .
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Let cP,\ E E(A, ß~~). By Theoreul 1.5 (1),

c(A)7r"ip,\ = 7ri'Q{ßz3 + S8z }7r"cp.\.

Since 7r" 7r" is the identi t.y, we sec pip,\ = c (A) <I>,\. Tlms {E( A, ß~q)} are eigenspaces
of P. Sillce these eigellspaces are orthogonal and thc eigenvalues are real P is self­
adjoint. By Theorenl 1.5 (2), c(A) ~ 0 so P is a non-negative first order self-adjoint
different.ial operator. Thus P has order O. If q> E COO(AP,qy), we may exp;l.nd
q> = L;,\ q>,\ for <P.\ E E (A, 6.~;q). This series cOllverges in the Coo topology; see
Gilkey [3] for example. Then pq> = :L:,\,s(A)<I> .\ so

(ß~q7r" - 7r"6~.!q)<I> = 7r~,q(ßz:=: + :=:az)7r"<I> = :L:.\7r"c(A)<I>.\ = 7r" P(<I».

Since P is a oth order operator, P(FcI» = FP(iI!) for any F E COO(Y) so the
derivatives of F do not enter into t.his equation. This iInplies

(4.10)

The definition given in equation (1.2) permits 118 to decompose 2: = illt.z (8) + (;
where intz(8) does not involve any vertical covectors anel where (; does involve
vertical covectors. Thus eqnation (4.10) decoupIes int.o two separate equat.ions
involving intz(O) and [; separately. If ~ is a horizontal covect.or at zo, we can
choose F so 7r"dy F(zo) = t,. Then 7r"[}yF(zo) = ~O,l anel thc Lelluna folIows. 0

Froof of Theo1'em 1.5 (3). We must show (3-ii) implies (3-iii). Recall that

intz(~l) intz(~2) + intz(~2) intz(~d = 0,

extz(~d ext.z(~2) + extZ(~2) extz(~d = 0, alld

intz (~1) extz (~2) + extz (~2) intz (6) = g(~l, ~2)'

Recall timt gZ is the extension of gz to be complex bilinear. Suppose the hypothesis
of Theorem 1.5 (3-ii) hold. To simplify notation, let 1] = ~O,l, let. Erl := extz (11),
let I(} := intz(8), letEi := ext.z(ei ), and let Ja := intz(fn). By Lemma 4.9,

o= 7r~,q (Er] I() + I(} E 7
/) = 7r~,qgZ (fJ, 11);

This implies 8 = 0 sinte 8 is horizontal. We also COlupute:

(4.11)

o=Wabi 7ri,q {E7
/ Ei In I b + Ei Ja I bEr} }7r"

=Wabi7r~:q { - Ei ffI I a[b + Ei In I bE7J }7r*

=Wabi1r~,IJ {Ei ]11 E 7]I b + Ei I a [b E7J - [;Z (1], Jn )Ei]b }7r"

=Wabi1ri,q { -[;Z (1], Jn )Ei I b +9z (Tl, fb) Ei In} 7r"

on AP,qy. We take 17 = (0. The dual of (0 with respect to [;z is (0' Thus by
equatioll (4.11), 0 = extz(7r°,lw((eo (ß)) intz((ß) + extz(1r1,OW((rn (ß)) illt.Z((ß) on
AP, IJ 1C for all a and ß. These cquat.iolls decouple and we have:

(4.12)

(4.13)

o= cxtz(7r°,lw((eo (ß)) illt.Z((ß)

o= extz(7r1,Ow((o, (ß)) intz((ß).
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Ir]J = 0 1 we ean draw no eouclusion from equatioll (4.13); if q = 0, wc can elraw no
cOllclusion frolll cquation (4.12). If]J > 0, equation (4.1:3) shows n1,Ow((Ül (ß) = °
for all 0' aud ß; by Lelluna 4.1, this implies J·w = -wo If q > 0 1 eqllation (4.12)
shows nO,l w((Ül (ß) = °and henee w((Cl'l (ß) = °for all 0' and ß; by Lemma 4.1 1

this implies .rw = w. Ir p > ° anel q > 0, we eombine these two identities to see
w = 0. This shows the conditions of (3-iii) are satisfied. 0

§5 FOR.MS OF TYPE (p,O)

Supposetlmt thereexist.s° -=I- <P E E(),.I..6.~) withn"'<1> E E(),.+Cl..6.~). Since..6.~

is a real operator, we may assuille that <I> is real. We apply Thcorcm 1.3 (1) to sec
tImt cn;<<!> = intz(B)?T"'dy<I>. Choose VO so <I>(yo) is maximum; by replacing <I> by -<1>
if neccssary, we may assume <i-(yo) > 0. Then dy<I>(yo) = °so c?T"'<I>(yo) = ° implics
c = 0. This argumcnt shows that a single eigcllvaluc can not change in the real
context for thc scalar Laplacian. In the complcx ca...,e, wc ean not use this argument
since the opera.tor in question is not real; instead, we use the push-forward elefiucd
in §4.8 and apply ThcoreIn 1.5 (2).

Givc the fiber X(y) := ?T-1(y) of ?T over y thc oricntation induceel [rom thc
eOluplcx structures. Let vx := e1 1\ ... 1\ en

- m . Thcn V (y) := Ix (y) vx is the

voltulle of the fiber. We begin our discussion with the followillg technical Lcunna.

5.1 Lemma. Let?T: Z ---7 Y be a Riemannian fuumersion

(1) ~Ve have dvx = -81\ Vx - Wabicxtz(fa)cxtz(fb)intz(ei)ux.

(2) Let (] !Je a ncighuorhood of Yo in Y. We cun find (J, [ocal dijfcornorphitn71 T
fr'om ~y x (] to Z so that T(x 1 0) = XI so thai n(T(x 1 y)) = y, and 80 that
T. (ax)(x, 0) = H(ax).

(3) We have e := ?T*8 = -dy 10g(V).

Proof. We compute:

(5.2)

(5.3)

(5.4)

. k .
dux =fijk cxtz(e l

) extz(e ) illtz(eJ)vx

+ (f ija - r aji) extz(ei) cxt.z(ea
) illtZ(e1)dl.JX

+ f(ljbcxt.z(efL) cxtz(eb) illtZ(fj)dl.Jx.

The terms in (5.2) yicld O. In (5.3), wo must sot i = j. Sinco f üa - r aii = fÜLl I
cquatioll (5.3) yields -8 1\ vx. The tenns in (5.4) yield -(fabj - f baj ) /2 = -Wabi'

This proves thc first identity.

We choosc coordinates Oll a ncighborhood 0 of Yo E Y to idcntify 0 with lRfIL

and Yo with zero. lf y E IRm, y detcrmines a vectol' field on 0 and thc horizontal lift
H (y) dctenni nes a vcctor field on ?T -10. Let cjJ(t, Y I x) be thc eorrOHponding fiow
frOln a point x EX. Therc is a eonstant C so that cjJ is a SIlloOth map defillcd for
ltyl ~ C. Not.e that cjJ(tS1Y1X) = cjJ(t1sy,:r,); we set T(x,y) = cjJ(l,y,x) auel restrict
to lyl ::; C- 1 to provo the second a..<.:isertion.

vVe decomposc AZ = ffJ1),qAPH· 0 AqV· anel let P]1,q be thc corrcsponeling or­
thogonal projcctioIlS. Fix Yo E Y. Wc use n..'3scrtion (2) to asSlune that Z = X x 0
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and t hat. 1-l (x, 110) = spa.n{8~ }. We choose local coorel inates x 0 = (x~) on )( and
let 1>0: be a partition of unity sllbordina.te to this cover. Let

X ß • - d Il - d Il C Il i a 1
0' .- PO,1 x o - XO' - ek,at: Y , ane

I/X = go (x, y)X I 1\ ... 1\ x n
-

m
.

We use asssertion (1) to see timt PI,n-mdvX = -0 1\ Vx We evaltmte at a point
(:r,,0) alld use the fact C~(x, 0) = 0 to cmnpllte PI,n-mdvX = (g;;lD~go:)d1J(t 1\ I/X.
COllsequcntly -0(8X)(x, O) = g;;;18~gn' We computc:

8~V(Y) = 'Bn Ix cPog;;;1(8~ga)vx = 'Bo Ix cPoo(a~)}I/X = V(y)8(8U)· 0

P1'oof of The01'em 1.5 (4). Let 0 =I- <P E E('\, .6.~o) and let 11'"*cI> E E(>" + c, .6.i'0).
Since .6.1),0 = 82iJ, we usc Thcorem 1.5 (1) to see C:1T* <P = 1Ti,031T* ßy<I>. Since E has
a non- tri vial vertical componcnt, 0 = 11'"~,o [11'" *by cI> so C:1T * cI> = 1T~'O intz (8) 1l" *ßy <1).
We apply 7r* to see that

(5.5)
o -

c:<I> = 11'"~; inty(8)8y cI>.

Let 9 (t) z := V 2tdst +ds~ dcfi ne a confonnal variat ion of t Ite metric on the vertical
distribution anel leave the metric Oll the horizontal distribution unchangeel. Then
7r : Z (t) ---7 Y is a Hermitian Sl1bmcrs ion anel [, is ullchanged. We liRe LenllnC1 5.1 to
sec 8(t) = (1 + telimC.Y))8 and conscquently 1l"*q> E E(>" + (1 + tdim(X))c, .6.~~t)).

Thus by Theorem 1.5 (2), >.. + (1 + t dim(X))c: ~ 0 for all t E III This shows
c: = O. 0

§6 HERMITIAN SUBMERSIONS WHERE EIGENVALUES CHANGE

We begin by rcelucing the proof of Theorem 1.5 (5) to the specia.l case >.. = 0 anel
(p, q) = (1,1) 01' (p, q) = (0,2):

6.1 Lemma. SHppose tILere is a Hermitian subrnersion 11'"1 : ZI ---+ YI and 0 =I­
<PI E E(O, .6.;\Il) so 7ricI>1 E E(a, .6.i;) for same a > O. Let 0 :::; >.. < J-l, let r :::; p,
and let .') ::; q be given. Thcu the1'C is a lIc1'1nitiau subrne1'sion 'Tr : Z ---+ Y und
o f:. <P E E(A, .6.~;q) so 11'". <I> E EU", .6.i'q).

Pr'oa]. If M is a COlllplcx llmllifolel with a Hernütiau Illctric, let A1(c) clcnote M
.tl tl . I I t' - 2d 2 S· t\ p,q - 2 t\ p,qWIlle sca ce me flC C SM' Ince u.M(c) - C UM '

E(A .6.p,q) = E(c2 >.. .6.p,q ), AI , M(c)'

Give M := MI X M 2 thc prodllct metric anel proeluct holoIllorphic structllrc. Thcn

E(>" .6.Pl ,ql ) 1\ E(>" .6.P2 ,q2) C E(>" + >.. .6. (Pt +1)2 ,qt +q2))
1, M l 2, M 2 1 2'!d .

AsslUlle the couelitions of thc Lemma hold. Choose C > 0 so that I" = c2a + >...
Lct W be a holOInorphic Hat torus of complex dinlCusion at least Illax(p - r', q - .9).
By rcscaling thc Inetric on ~IV, wc ma.y choose 0 "# <I>2 E E(>', .6.t\~r,q-Il). Let
Y := Y1(c) X W, let Z := ZI(C) X W, allel let 1l"(ZI,W) = ('Trl(zd,w). Theu 1l"

is a Hermitiau subnlcrsion. Lct. cI> := cI>1 1\ <1>2. Then 0 "# cI> E E(A, .6.~;q) and
'Tr. cI> = ('Tri cI> I ) 1\ <P2 E E( c2a + >.. = I", .6.~q). 0
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6.2 The geometry of principal SI bundles. Lct L bc a complex liuc bUlldle
ovcr Y. ,,,re suppose that L is eqllipped with a smooth fiber lnetric aud a unitary
COllllcction L\1. Let rr : S(L) ~ Y. Then rr defillcs CL Riemannian priucipal 51
buudle; this is also the circle bundlc of the underlying rea.l 2-plane bundle.

6.3 Lemma. Let s be a local orthonormal section to L. Let L\1s = v=TA.'ls define
the normalized connection I-form A s. Let (t, y) f---7 e V=It s (y) give local coordinates
(t, y) to 5 = 5(L).

(1) The fibers of rr are totally geodesie.

(2) We have Eh is (Ln invariantly dcfined unit tangent vector sTJanning V.

(3) IJ s = eV=I'I>s, then at = Bi, ag = ag - a~iIlatl and A.'l = A s + dyiIl.

(4) The horizontalliJt oJ a vector jield W on Y is givcll Dy 1{\J! := \)! - As(\IJ)Ot.

(5) We have el := dt + rr* A 8 is dual to Bt and spans V*.

(6) The n01'1nalized curvature :F := dyA ß is invariantly defined.

(7) We have deI = rr*:F and [ = - cxts (eI )w* iuty (:F).

P1·00f. The ftow v -7 e.;=It v for v E S(L) alld t E IR is invariantly dcfillCd; 0t is
thc a..o;;sociated unit vertical Killing vcctor field. Assertiolls (1) and (2) now follow.
Sillce L\1 is unitary, A s is a real I-form. Ir s = eJ"=1<I>(y)s, then (y, t) = (y, t - <p);
a.ssertion (3) now follows. We show that 1i is invariautly defined by compllting:

ax - A 8 (i)~)at = ag - a~ iDot - A s (oX )Ot = a~ - As(o~ )Öt.

Fix Ya E Y anel choose <P so (A s + dycD)(yo) = O. Since As(Ya) = 0, the ag are
horizontal. Thus at 110, HB~ = aE is horizontal. Sincc H \J! is invariantly definccl,
H \J! is the horizontal lift. Since c l (1-l w) = °for all \J! anel sincc c l (dt) = 1, e1 is
thc vcrtical projection of dt and is illvariantly defincd. By (3), dyAs = dyAs so
thc curvat.ure :F is invariantly dcfillCel. Clearly deI = w*:F. We cOlllpute:

[:=cxts(c1)gs(Ot, [Ha~, Höt])rr* inty(dyU) illty(dyb)/2

=cxtS (c I )rr* { -a~Ab + ogAa } inty (d1JU) inty (dyb) /2

= - exts (eI )7T* inty (:F). 0

At this point, we shall digress bricfty. Muto [10,11] gave examples ofRicmannian
principal SI buncllcs where eigenvalues change. Thc following Lenuna follows frOlli
his calculations anel fonns the basiH for thc proof of Thcorenl 1.3 (5).

6.4 Lemma. Let L\1 be a unitary connection on a complex line Dundle over Y
with associated curvat'1J1'e 2-Jorm :F = :F(L \1) and associated principal cif'cle btlndle
S = S(L). Lei <I> E E(>", ß~). ASS1L1ne thai dy<I> = 0, thai dy inty (F)cI> = 0, and
tlw.t - exty(F) inty(F)<I> = E<I> Jor E constant. Then 1f*q, E E(A + E, ß~).

Proof. We apply Theorclll 1.3 (1) allel Lemlna 6.3. Since 0 = °anel since rly<P = 0,

ß~rr*<I>-rr* ß~<P = ds[rr*i.p = -ds(e l
/\ 1f* iuty(F)iIl)

= - 1f* ext.y(:F) illty(:F)<P = EW*<I>. 0

In the following Lemma, we COllstruct line bundlcs with non-trivial curvature
aver thc fiat k dimensional torus.
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6.5 Lemma. Let (xl, "'1 X
k ) f07' °.:s; :D

i .:s; 27T" bc the U!Hwl periodic panL1fleter's on
the flat k dimensional torus Yk := 51 x ... X SI. Let 1 :::; i < j :::; k be givcn. Thcn
there exists (j unitary connection L'V on a corHplex line bundlc Love?' Yk so that
F(L) = (dxi 1\ dxj )/27T".

Proof. To simplify the notation, we may assume i = 1 and j = 2. Let W = Yk-l

and let 1.J) := (x2 , ... , x k ). We decompose Yk = [0, 27f] X W / ~ where the idclItifieation
is given by (0, 'W) ~ (21T, w). Let L := [0,21T] x W x C/ ~ whcl'e the idelltifieatioIl
is given by (O,1lJ, z) ~ (2w, 'W, e- FIx2 z). Then L is a eomplex line buuelle over Yk

whieh has a natural fi bel' lnetrie sinee t he clutching function e- FI:z;2 is uni tary. Let
A(x) = (x 1dx 2 )/27T" be the conucction I-form. Thc clutehing or transition fllnction,
whieh deseribes how fiber at Xl = °is glueel to the fiber at x I = 21T: is elefi ned by
<I> = -x2 . Since A(O, cF1x2

) = A(21T, cAX2
) + d<I>, equation (3) in LeIllma 6.3 is

satisficd so Adefines Cl. Riemannian eounection \7 on L with associateel llormalized
curvature (dx l 1\ dx 2 )/27f. D

6.6 Remark. Let Y = Y2 and choose L so F = (dx 1\ dy)/21T. We use Lelnma G.3
to see that deI = w* (dx /\ dy) /27T" anel thus [ = - exts (Cl )w"' inty (dx /\ dy) /21r. It
then follows dx 1\ dy E E(O, 6.~) anel tr· (dx /\ dy) E E(1/4w2

, 6.~) so this provides
an example where an eigenvaluc of thc real Laplacian on 2-fo1'1118 challge~·;,

6.7 Forms of type (1,1). Over Y = Y21 lct So = Y X 51 be the trivial circle
bundle and with :Fo = 0. Let SI be a circle bunellc witb :Fl = (dx /\ rly) / 21r.
Let Z = W (So 1 SI) bc t hc fiber prod ud. discm:sed i1I §3. Let cO auel eI be thc
corrcspond ing elual vert. ical covectors; clZ eO = 0 alld dz Cl = 1r"' (dx /\ dy) / 2w. Dcfine
an ahnost eomplex structure .J on Z by requiring that. 9z is Hcnnitiau, that 7f"'
pre~mrves J, that J(cO) = _Cl, and that J(e 1) = eO. Let ~1:= eO- Ael aud
~2 :~ w"' (dx - y'=Idy) be a frame for A0,1 Z. Then

so the Nirenberg-Neulander theorenl shows J is an intcgrablc ahnost. complex struc­
ture. As thc lIlet.ric [}r- is fta.t., rlx /\ dy E E(O, 6.i;I). Note 02,}'- (rlx 1\ dy) = 0. We
use Theorem 1.5 (1), Lemma 3.2 (2), alld LemlIla 6.3 (7) to sec

02,zw"'(dx /\ dy) = _1r~'o cxtz(c l )1r"' intr-(:Fddx 1\ dy

= w~Oel /27T" = -J=I(eO + J=1c l )/47f

6.~I7f"'(dx /\ dy) = 8Z o2 ,z7T"*(dx /\ dy) = 1T~,ldzel /41T

= 1r"' (dx 1\ dy) /87f2
•

This shows dx /\ dy E E(O, 6.~1) anel 7f* (dx /\ dy) E E(l /87f2 , 6. ~I). This pro­
vieles an example where a harmonie form of type (1,1) pulls back to an eigen form
corrcsponding t.o a non-zero eigenvaillc.

6.8 Forms of type (0,2). Let z = (Zl, Z2) for zi = xi + Ayi be eomplex
coordinates Oll Y = Y4 • Let
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(6.9)

Then .p E E(O, .6.~;2) and .p generates the Ene bundle A0,2 (Y). Use Lemma 6.5 to
construct line bUllelles Li over Y so :Fl = (dx l 1\ dx2)/21r allel :F2 = (dx l 1\ dy2)/21r.
These are not holomorphic line bundles since the curvatures are not (1,1) forms. Let
Z := vV(S(Ld, S(L2 )) be thc fiber product of the associated unit circle bundles.
Let ei be the associated vertical covect.ors. We define an almost complex strllcture
J on Z by requirillg 9z is Hcnllitian, that 1r* preservcs J, and that J(e l ) = -c2

and J(e2) = el • Let ~i span AO,lZ for ~l := 7f*dz l , for ~2 := 1r*dz2, anel for
~3 := e l - Ae2. Then df:l = 0, d€2 = 0, anel

dZ~3 =7f*(rLc l 1\ (dx2 - ~dy2))/27f

=7f*{(dx l + ~dyl) /\ (dx 2 _ ~dy2)

+ (d:c l - yCldyl) 1\ (dx 2 - v=Idy2)} /47f

This decomposes dZ€3 as the surn of fonns of type (1,1) and (0,2) so dZ~3 has
no (2,0) cOlnponent. Thus the almost complex structure J is integrable anel by
the Nirenberg Neulander theorem defines a complex strlletllre on Z. We compllte
[7f*.p = (Cl - Ac2)/27f. This is of type (0,1) so

dZ7f~I[1r*.p = 7f*(dx l 1\ dx2 - Adx l /\ dy2)/47f2.

We llse eqllation (6.9) to sec 7f~,2dz7f~I[7f*.p = 7f*iJ!/87f2 so 7f*<I> E E(1/81r2 , .6.i2
).

This provides an example where a harmonie form of type (0,2) pulls back to an
eigen form corresponding to a non-zero eigenvalue.

P7'oof of Theorem 1.5 (5). By Lemma 6.1, it suHkes to provc Theorem 1.5 (5) in
the special eases (p, q) = (1,1) anel (p, q) = (0,2) with ..\ = 0. The first case is
handled in §6.7 anel the second case is handled in §6.8. D

6.10 Forms of type (0,1). Tf we suppose that () = 0, that <I> E E(..\, .6.~1), anel
that 7f* <I> E E (..\ + €, .6.~1), we sec that €7f* <I> = 7fO' I E7f *ßy <I>. The left hand siele is
a horizontal (0,1) fonn; thc right hand side is a vertical (0,1) fonn. Consequelltly
€ = 0. Thus to construct an example where an eigenvalue changcs for a (0,1) form,
we IllllSt cOllsider Hennitian subnwrsions where the fibers are not. millilnal. We
know of no exmnplcs where eigenvalues can change but. are unable to prove that
they can not.

6.11 Holomorphic line bundles. The eXaInples of §6.7 and §6.8 iuvolved man­
ifolds Y with Hat mctrics. Wc conclude this section by coustructing other families
of examples where eigenvalues change where the metrie Oll t.he base is not flat. We
restrict. to thc casc p = q ~ 1 for the sake of simplicity. Let L 1:>0 a holOlllorphic
line bundle over Y. Let (,) be a fiber metric on L. Ir Sh is a loeal llon-vanishing
holOlllorphic section to L, let \1 LSh := DF 10g(Shl Sh) . Sh. Let Sh = eF Sh bc an'­
ot.her Ioeal non-vanishing hoIoUlorphie section to L whcre F is a Ioeally defillcd
holomorphie function on Y. Since ßF F = 0, wo ha,ve

\1 LSh =(dF + 8)'log(sh, Sh) )eF Sh = (Dy F + cA· log(shl 8h) )~~h

=Dy log(sh, '~h) . Sh·

Thus \1 L is invariantly defilled and :F = -AD}·(h,.. log(sh' Sh). We see that \1 L

is Rielnaunian sincc (\1 LSh, ,sh) + (Sh' \7 LSh) = d(Sh' Sh).
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6.12 Hodge manifolds. We sa.y that L is a positive line buudle over Y if the
curvature F(L) is the Kaehler form of a Hermitian mctric on Y; thcrc is CL possible
sign convention which plays no role in our development.. If M adnüts a posit.ive
line bundle, M is said t.o be Hodge. For example, the hyperplane bundle H is a
positive line bundle over complex projective space ClP'lJ aud the a..<.;sociat.ed metric
is the Fubini-St udy metrie. More generally, if Y is any holomorplüc submanifold
of CIF v

, then thc restriction of the hyperplane bundlc to Y is n positive line bundle
over Y anel the metric Oll Y is thc restriction of the Fubini-Study metric to Y.
Conversely, if Y admits a positive line bundle L, then there exist.s a holOlnorphic
Clnbedding ()' : Y ~ (]Dv for same v alld a positive integer k so t.hat L0k = ()'* (H).
Thus we nlay idcntify the set of Hodge manifolds with the set of smooth algebraic
varieties.

6.13 Other examples where eigenvalues change. Let L be a positive line
bundle over Y and let Z := Z(j, k) := W(5(L0j), 5(L0k)) 1:>e tbc fiber product of
the circle bundles defined by the circle bundles of the t.cwwr powers of L. Let ej be
the correspollding vcrtical covcctors. We extend the almost complcx structure from
Y to Z by defilling J(c j ) = -ck allel J(c k ) := ei . We usc thc Nirellberg-Neulander
theorenl to see t.hat J is integrable; thc integrability condition Oll horizontal covec­
tors is iInnlediate so we must only cheek the vert.ieal cOlnpollent.;

d(el - J=Iek
) = (j - yClk)7f* F.

6.14 Theorem. Let 1 ~ p ~ ih and let I-h := (j2 + k2)p(1rt + 1 - 1)). Then

FP E E(O: ~~) n E(O, ~~P) and 7f* (FP ) E E(fJ., ~'t) n E(tL/ 2, ~1?zP).

Proof. We havc :FP is a harmonie fOrIn of type (p, p). Since Y is Kachler, we have
timt. E(O, ~~) n COO (AIJ ,PY) = E(O, ß~P). so P E E(O, ~~1)). We cOlnpute

so d7f~,p-1 [1[.P' = tL7f":FP /2. Thus 7r* P E E(fJ./2, ~i'P); t.he proof of the eorre­
spolleling assertion in the real cn..'m is similar. 0

6.15 Remark. Not.e that the manifold Z constructed in Theorem 6.14 is in general
not Kaehler. For example, if L is the Hopf lille bundle over thc Ricmann sphere 8 2

anel if (j, k) = (0,1), then Z = SI X 8 3 is the Hopf ll)anifold alld 7f : 8 1 X 53 ~ 52
is essentially jllst thc Hopf fibration where we normalizc thc metries suitably.

§7 MANIFOLDS WHERE J*w = ±w.

Let 7r : Z -r Y bc a Hel'lIliti:-\lI sul:nuersioll wit.h minimal fihers. Let p > 0 and
let q > 0. In Theorem 7.1 (3L wc saw timt 7f" prcscrvcs thc cigcnspaccs on fonus of
type (p,O) if alld only if .rw = -wand that 7f* preservcs the eigenspaces of fonns
of type (0, q) if alld only if J·w = w. In this seetion, we give cXCLmplcs to illustrate
these two eases. Thc case J*w = w is relatively easy; thc case J·w = -w requires
more work.
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7.1 Hermitian submersions with J*w = w. Let Y bc n Rienmnn surface so
dime Y = 1. Then 1{1,O is a 1 dimensional complex foliation and hencc 1{1,0 is
necessarily integrable. ThllS J*w = w. The sllblnersion constructed in §6.7 gives
an example 1f : W(So, 51) ~ 51 x 51 with non-trivial curvature tensor w satisfying
J*w = w.

7.2 Hermitian submersions with J*w = -wo We have .J = -1 on A 2 ,o EB AO,2

and J = +1 on A1,1. Let Si be circlc bundles ovcr a torus Yk with cllrvatures
F i and corresponding dual vertical covectors ci. We H..o.;sunw that J* F i = -Fi 01'

equivalcntly t. hat. we may decompose F i = ~i +[1 for eE A2,0. We define an almost.
cOlnplex structure Oll Z = W(So,Sd by requiring that gz is Hermitian, that 1f*

preserves J, that J(eO) = -cl, alld that .J(c1) = eO. We cOlnpute

d(eO - Hel) = 7r*(Fo - HF1 )

=1f*(~0 - H~l) + 1r*((O _ yC1(1).

The Nircnberg-Neulander integrability conditioll is satisfied if and only if

(7.3)

ThllS w i = -1f* F i /2 and J*w i = _wi . ThllS it sufficcs to give an eXalnple wherc
cqllation (7.3) is satisfied.

Let ~o := (dx 1+ Hdy1) /\ (dx2 + Hdy2)/41r. Thcn

FO =(dx1 A dx 2
- dyl /\ d1l)/27r, alld

F l =(-rix1 /\ dy2 + dx 2 A dy l)/21f.

We llse Lemma 6.5 t.o construct bUlldles Li over the t.orus wit.h

F 2 = (dx 1 A dx 2 )/21r, F 3 = (dy l A dy2)/27f,

F 4 = (dx 1
/\ dy 2)/21f j F 5 = (dx 2

/\ dy l)/21r.

Since F(L;) = -F(Ld and F(Li 0 L j ) = F(L i ) + F(Lj ), Lo := L 2 0 L; and
LI := L: 0 L 5 deRne circle bundles over the torus with the dcsired curvatures.

REFERENCES

[1] L Berard Bergcry and J P Bourguignon" Laplacians and Riemcmnian submer.sions with
totally geodesie fibers, Illinois J Math 26 (1982), 181-200.

[2] F Bmstall, Non-linear funetional (uwlllsis and harmonie maps, Ph D Thc...'lL<, (Warwiek).
[3] P. B. Gilkcy, Invariance Theonj, the Heat Equation, and the Atiyah-Singer Index theorem

(2 nd edition), ISBN 0-8493-7874-4, eRe Press, Boca Raton, Florida, 1994.
[4] P B Gilkey, J V Leahy, ami .J H Park, Thc spectral gcometT'!J 01 thc Hopl fi/!1'ation, Journal

Physics A 29 (1996), 5645-5656.
[5] __ , The eigenlorn18 01 the Laplaeian lor (I Riemannian submersiun, preprint.



[6] P B Gilkey and J H Park, Riemannian submersions which presenJc the eigen/orms 0/ the
Laplaeian, Illinois J Math 40 (1996), 194-201.

[7] S. I. Goldberg and T. Ishilmra, Riemannian submersions commuting with the Laplacian, J.
Diff. Geo. 13 (1978), 139-144.

[8] S. GlidmundsHon, The Harmonie Morphi,mls BibliogffiphV, (A vailablc on thc internet at
http://www.maUlS.lth.se/matematiklulpersonallsigma/harmonie/biLliography. htrnl.

[9] D. L. Johnson, Kaehler submersions and holomorphic connections, J. Diff. Geo. 15 (1980),
71~79.

[10] Y. MlIto, Some eigen/orms 0/ the Laplace·Beltrami operators in a Riemannian submersion,
J. Korcan Math. Soc. 15 (1978), 39-57.

[11] -, Ricmannian submersion and the Laplace-Bcltrami operator, Kodai Math J. 1 (1978),
329-338.

[12] J. H. Park, The Laplace-Bcltrami operator and Riemaunian submc7'Hion with minimal flwl

not totally geodesie fibers, Bull. Korean Math. Soc 27 (1990), 39-47.
[13] B. Watson, Mani/old maps eommu.ting with the Laplacirm, J. Diff. Geo. 8 (1973), 85-94.
[14] , Almost Hennitian submersions, ,], Diff. Geo. 11 (1976), 147-165.

MATHEMATICS DEPARTMENT, UNIVERSITY OF ÜIWGON, EUGENE Ült 97403 USA

E-mail uddress: gilkey@math.lIoregon.edu

MATHEMATICS DgpAHTMENT, UNIVEH.SITY OF ÜH.EGON, EUGENE ÜR 97403 USA

E-mail address: Icahy@math.lloregon.cdu

DEPARTMENT OF MATHEMATICS, HONAM UNIVKH.SITY, SEOBONGDONG 59, KWANCSANKu,

KWANGJU, 506-090 SOUTH KOREA

E-mail address:jhpark@honam.honam.ac.kr

17


