Bubbling out of Einstein Manifolds

Shigetoshi Bando

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 5300, Bonn 3, BRD.

and

Mathematical Institute Tohoku University Sendai, 980, Japan

,

MPI/89-10

Bubbling out of Einstein Manifolds

Shigetoshi Bando

— in memory of late Dr. Osamu Tezuka

In [1], [8], and [4] the following compactness theorem of the space of Einstein metrics is obtained in the spirit of Gromov theory.

Theorem A. Let (X_i, g_i) be a sequence of n-dimensional $(n \ge 4)$ smooth manifolds and Einstein metrics on them with uniformly bounded Einstein constants $\{e_i\}$ satisfying

diam
$$(X_i, g_i) \le D$$
, $\operatorname{vol}(X_i, g_i) \ge V$ and $\int_{X_i} |R_{g_i}|^{n/2} dV_i \le R$

for some positive constants D, V and R, where we denote curvature tensor of a metric g by R_g . Then there exist a subsequence $\{j\} \subset \{i\}$ and a compact Einstein orbifold (X_{∞}, g_{∞}) with a finite singular set $S = \{x_1, x_2, \ldots, x_s\} \subset X_{\infty}$ (possibly empty) for which the following statement holds:

- 1) (X_j, g_j) converges to (X_{∞}, g_{∞}) in the Hausdorf distance.
- 2) There exists an into diffeomorphism $F_j: X_{\infty} \setminus S \longrightarrow X_j$ for each j such that $F_j^* g_j$ converges to g_{∞} in the C^{∞} -topology on $X_{\infty} \setminus S$.
- 3) For every $x_a \in S$ (a = 1, 2, ..., s) and j, there exist $x_{a,j} \in X_j$ and a positive number r_j such that
 - 3.a) $B(x_{a,j};\delta)$ converges to $B(x_a;\delta)$ in the Hausdorff distance for all $\delta > 0$.
 - 3.b) $\lim_{j\to\infty} r_j = \infty$.
 - 3.c) $((X_j, r_j g_j), x_{a,j})$ converges to $((M_a, h_a), x_{a,\infty})$ in the pointed Hausdorff distance, where (M_a, h_a) is a complete, non-compact, Ricciflat, non-flat n-manifold which is ALE of order n-1 in general, of order n if (M_a, h_a) is Kähler or n = 4.
 - 3.d) There exists an into diffeomorphism $G_j : M_a \longrightarrow X_j$ such that $G_i^*(r_j g_j)$ converges to h_a in the C^{∞} -topology on M_a .
- 4) It holds

$$\lim_{j \to \infty} \int_{X_j} |R_{g_j}|^{n/2} \, dV_j \ge \int_{X_{\infty}} |R_{g_{\infty}}|^{n/2} \, dV_{\infty} + \sum_a \int_{M_a} |R_{h_a}|^{n/2} \, dV_{h_a}.$$

Moreover if (X_i, g_i) are Kähler, then (X_{∞}, g_{∞}) and (M_a, h_a) are also Kähler.

Here we call a smooth *n*-dimensional complete Riemannian orbifold (X, g) asymptotically locally Euclidean (ALE) of order $\tau > 0$, if there exists a

compact subset $K \subset X$ such that $X \setminus K$ has coordinates at infinity; namely there are R > 0, $0 < \alpha < 1$, a finite subgroup $\Gamma \subset O(n)$ acting freely on $\mathbf{R}^n \setminus B(0; R)$, and a C^{∞} -diffeomorphism $\mathcal{Z} : X \setminus K \longrightarrow (\mathbf{R}^n \setminus B(0; R)) / \Gamma$ such that $\varphi = \mathcal{Z}^{-1} \circ \text{proj satisfies}$ (where proj is the natural projection of \mathbf{R}^n to \mathbf{R}^n / Γ)

$$\begin{aligned} (\varphi^*g)_{ij}(z) &= \delta_{ij} + O(|z|^{-\tau}), \qquad \partial_k(\varphi^*g)_{ij}(z) = O(|z|^{-\tau-1}), \\ \frac{|\partial_k(\varphi^*g)_{ij}(z) - \partial_k(\varphi^*g)_{ij}(w)|}{|z - w|^\alpha} &= O(\min\{|z|, |w|\}^{-\tau-1-\alpha}) \\ &\text{for } z, w \in \mathbf{R}^n \setminus B(0; R). \end{aligned}$$

(For simplicity we assumed that (X, g) has only one end. So is our case.)

Kronheimer classified all ALE hyper-Kähler surfaces of order 4 in his thesis [6], he calls such manifolds ALE gravitational instantons. In particular he proved the following;

Theorem B. An ALE gravitational instanton is diffeomorphic to a minimal resolution of \mathbb{C}^2/Γ , where Γ is a finite subgroup of SU(2).

We remark that a simply connected Ricci-flat Kähler surface is hyper-Kähler. Thus in Einstein-Kähler surfaces case we have rather good understanding on the nature of degeneration. Only missing point is the knowledge of the neck $B(x_{a,j}; \delta) \setminus B(x_{a,j}; r_j)$, i.e. how an instanton is glued to a singular point on X_{∞} . The purpos of this paper is to clarify it, namely we get the following theorem stated in terms of the above notations.

Theorem. Assume that the sequence (X_i, g_i) consists of Einstein-Kähler surfaces. If we fix a sufficiently small constant $\delta > 0$, then for sufficiently large j, the geodesic ball $B(x_{a,j}; \delta)$ in X_j is diffeomorphic to a cyclic quotient of ALE gravitational instanton.

Remark. In 4-dimensional case, for a compact Einstein manifold X the curvature integral $\int_X |R|^2 = \text{const } \chi(X)$ is a topological invariant.

The author would like to express his thanks to Prof. M. T. Anderson. He got the idea of the proof in the enlightening discussion with him. And he would like to thank Prof. Furushima and Prof. Ohnita for helpful discussions. He also would like to acknowledge his gratitude for the hospitality of Max-Planck-Institut für Mathematik. This work is done during his stay there.

1. Preparation from Analysis

Let M be a complete n-dimensional $(n \ge 3)$ Riemannian manifold with a fixed point $o \in M$. For $0 < r_1 < r_2$ we denote $B(o; r_2) \setminus B(o; r_1)$ by $D(r_1, r_2)$. We assume that there is a domain $D = D(r_0, r_\infty)$ in M with $0 \le r_0 < r_\infty$ which satisfies the following conformally invariant conditions:

$$\left\{ \int_{D} v^{2\gamma} \right\}^{1/\gamma} \leq S \int_{D} |\nabla v|^{2} \quad \text{for all } v \in C_{c}^{1}(D),$$
$$\operatorname{vol}(D(r_{1}, r_{2})) \leq V r_{2}^{n} \quad \text{for all } r_{0} \leq r_{1} \leq r_{2} \leq r_{\infty}$$

with some positive constants S, V and $\gamma = n/(n-2)$. Let u be a nonnegative function defined on D which satisfies

$$\Delta u \ge -fu$$
 on D

with a non-negative function f. Then we have following lemmas. Proofs are essentially same as those of corresponding lemmas in [4; §4], so we omit them.

Lemma 1. Suppose $f \in L^{n/2}$, and $u \in L^p$ for some $p \in [p_0, p_1]$ where $p_0 > 1$. Then $u \in L^q$ for all $q \ge p$, and there exists $\epsilon_1 = \epsilon_1(S, V, p_0, p_1) > 0$ such that if

$$\int_{D(r,8r)} f^{n/2} \le \epsilon_1 \qquad \text{with} \ r_0 \le r < 8r \le r_\infty,$$

then we have

$$\left\{\int_{D(2r,4r)} u^{p\gamma}\right\}^{1/\gamma} \leq C_1 r^{-2} \int_{D(r,8r)} u^p,$$

where $C_1 = C_1(S, V, p_0)$. Moreover if $r_0 = 0$ and

$$\int_{B(o;2r)} f^{n/2} \le \epsilon_1 \qquad \text{with} \ 2r \le r_{\infty},$$

then it holds that

$$\left\{\int_{B(o;r)} u^{p\gamma}\right\}^{1/\gamma} \leq C_1 r^{-2} \int_{B(o;2r)} u^p.$$

Lemma 2. Suppose $f \in L^{n/2}$, and $u \in L^p$ for some $p \in [p_0, p_1]$ where $p_0 > \gamma$. Then there exists $\epsilon_2 = \epsilon_2(S, V, p_0, p_1) > 0$ such that if

$$\left\{\int_D f^{n/2}\right\} \le \epsilon_2,$$

then it holds that for $r_0 \leq r_1 < 2r_1 < r_2 < 2r_2 \leq r_\infty$

$$\int_{D(2r_1, r_2)} u^p \le C_2 \int_{D(r_1, 2r_1) \cup D(r_2, 2r_2)} u^p,$$
$$\int_{D(r_1, r_2)} u^p \le C_2 \max\left\{ \left(\frac{r_0}{r_1}\right)^{\epsilon_3}, \left(\frac{r_2}{r_\infty}\right)^{\epsilon_3} \right\} \int_D u^p,$$

where $C_2 = C_2(S, V, p_0), \epsilon_3 = \epsilon_3(S, V, p_0) > 0.$

Lemma 3. If $f \in L^q$ for some q > n/2, $u \in L^p$ for some p > 1, and it holds that for any r such that $r_0 \le r < 8r \le r_\infty$

$$\int_{D(r,8r)} f^q \le Ar^{-(2q-n)}$$

with some constant A, then we have

$$\sup_{D(2r,4r)} u^p \leq C_3 r^{-n} \int_{D(r,8r)} u^p,$$

where $C_3 = C_3(A, S, V, p, q)$. Moreover if $r_0 = 0$ and

$$\int_{B(o;2r)} f^q \le Ar^{-(2q-n)},$$

Then it holds that

$$\sup_{B(o;r)} u^p \leq C_3 r^{-n} \int_{B(o;2r)} u^p.$$

Let (M,g) be an *n*-dimensioal Einstein manifold, then applying the Weitzenböck formula we get

$$\Delta |R| \ge -C_4 |R|^2.$$

Moreover we have the following inequality using Yau's trick. For the proof see [2], [4], [9].

Lemma 4. There exist positive constants $\delta = \delta(n)$ and $C_5 = C_5(n)$ such that

$$\Delta |R|^{1-\delta} \ge -C_5 |R|^{2-\delta}.$$

If n = 4 or (M, g) is Kähler we can take $\delta = 4/(n+2)$.

One can show the following lemma via L^2 -Hodge theory.

Lemma 5. Let (X, g) be an *n*-dimensional $(n \ge 4)$, complete, non-compact, Ricci-flat, ALE orbifold. Then its first cohomology group $H^1(X; \mathbf{R})$ vanishes.

Here we recall the existence theorem of Ricci-flat Kähler metrics on open Kähler orbifolds in [3], which is stated in the case of manifolds but its proof equally works for orbifolds.

Definition. A complete *n*-dimensional Riemannian orbifold (X,g) is called of $C^{k,\alpha}$ -asymptotically flat geometry if for each point $p \in X$ with distance from a fixed point o in X, there exists a quasi-coordinate map $\phi : B^n \longrightarrow X$ centered at p from the unit ball B^n in the Euclidian space (i.e. ϕ gives a local uniformization and $\phi(0) = p$), such that with respect to the standard coordinates $x = (x^1, x^2, \ldots, x^n)$ of the Euclidian space it satisfies the following conditions:

- (i) If we write $\phi^* g = \sum g_{ij}(x) dx^i dx^j$, then the matrix $(r^2 + 1)^{-1}(g_{ij})$ is bounded from below by a constant positive matrix independent of p.
- (ii) The $C^{k,\alpha}$ -norms of $(r^2 + 1)^{-1}g_{ij}$, as functions in x, are uniformly bounded.

On such a orbifold we can define the Banach space $C_{\delta}^{k,\alpha}$ of weighted $C^{k,\alpha}$ -bounded functions: The norm of a function $u \in C_{\delta}^{k,\alpha}$ is given by the supremum of the $C^{k,\alpha}$ -norms of $(r^2+1)^{\delta/2}u$ with respect to the coordinates x.

Theorem C. Let (X, ω) be an *n*-dimensional $(n \ge 2)$ complete open Kähler orbifold of $C^{k,\alpha}$ -asymptotically flat geometry with $k \ge 2, 0 < \alpha < 1$. Assume that the singuralities sit in a compact set and there exists a barrier function ρ . If X admits a Ricci-flat volume form V such that $\omega^n = e^f V$ with $f \in C^{k,\alpha}_{\delta+2}$ and $\delta > 0$, then X admits a complete Ricci-flat Kähler metric asymptotically equal to ω .

Here a barrier function ρ means that outside a compact set ρ satisfies the following conditions:

- (i) ρ is compatible to the distance function d from o; there exists a positive (i) μ = triangle for the constant c₁ such that c₁d ≤ ρ ≤ c₁⁻¹d.
 (ii) The function ρ^{-δ} belongs to C_δ^{k+2,α}.
 (iii) There exists a positive constant c₂ such that

1

$$\Box \rho^{-\delta} \leq -c_2 \rho^{-2-\delta}.$$

(iv) There exists a positive constant c_3 such that for any positive number K and sufficiently large d

$$\left(\omega + \sqrt{-1}\partial\bar{\partial} K\rho^{-\delta}\right)^{n} \leq \left(1 - c_{3}K\rho^{-2-\delta}\right)\omega^{n},$$

$$\left(\omega + \sqrt{-1}\partial\bar{\partial} - K\rho^{-\delta}\right)^{n} \geq \left(1 + c_{3}K\rho^{-2-\delta}\right)\omega^{n}.$$

2. Einstein Manifolds

Let (X_j, g_j) be a sequence of Einstein manifolds which enjoyes the properties stated in Theorem A. Then by [5] we have the Sobolev inequality on (X_j, g_j) with uniform Sobolev constants, and the following proposition holds. For the proof see [1], [8].

Proposition 1. There exist constants ρ , C_6 and ϵ_4 such that if

$$\int_{B(x;2r)} |R_{g_j}|^{n/2} \le \epsilon_4$$

with $2r \leq \rho$, then we have that

$$\sup_{B(x;r)} |R_{g_j}| \le C_6 r^{-2} \int_{B(x;2r)} |R_{g_j}|^{n/2}$$

Now we take a positive constant $r_{\infty} < \rho$ sufficiently small, so that we can assume that for all a

$$\sup_{B(x_{a,j};r_{\infty})} |R_{g_j}|^2 = |R_{g_j}|^2(x_{a,j}) \longrightarrow \infty \quad \text{as } j \longrightarrow \infty$$

and

$$\int_{B(x_a, r_\infty)} |R_{g_\infty}|^{n/2} \le \frac{\epsilon}{2}$$

with a positve number $\epsilon \leq \epsilon_4/2$ to be determined later. From now on we fix an arbitrary singular point x_a and look at the blowing up process. Since (X_j, g_j) converges to (X_{∞}, g_{∞}) in C^{∞} -topology exept at the singular points, for sufficiently large j we can find a positive number $r_0 = r_{0,j}$ such that

$$\int_{D(r_0,r_\infty)} |R_{g_j}|^{n/2} = \epsilon,$$

where we denote a subset $B(x_{a,j};r_2) \setminus B(x_{a,j};r_1)$ in X_j by $D(r_1,r_2)$. Then we get that

 $r_0 \longrightarrow 0$ as $j \longrightarrow \infty$.

Proposition 2. There is a subsequence $\{k\} \subset \{j\}$ such that the sequence of pointed Einstein manifolds $((X_k, r_0^{-2}g_k), x_{a,k})$ converges to $((Y, h), y_{\infty})$

in the pointed Hausdorrf distance, where (Y, h) is a complete, non-compact, Ricci-flat, non-flat n-orbifold only with finitely many isolated singular points. (Y, h) is ALE of order n-1 in general, of order n if n = 4 or (Y, h) is Kähler. The convergence is actually in C^{∞} -topology except at the singular points.

The proof is same as that of Theorem A. We refer to [1], [8] and [4].

Thus we know that for large $1 < K_1 < K_2$ two subsets $D(K_1r_0, K_2r_0)$ and $D(K_2^{-1}r_{\infty}, K_1^{-1}r_{\infty})$ in X_k are very close to portions of flat cones \mathbb{R}^n/Γ_0 and $\mathbb{R}^n/\Gamma_{\infty}$, respectively. To show that $\Gamma_0 = \Gamma_{\infty}$ and $D(K_1r_0, K_2^{-1}r_{\infty})$ is also close to a portin of the flat cone, we need the following curvature estimate.

Proposition 3. There exist positive constants C_7 and ϵ_5 such that for $4r_0 \leq r < 4r \leq r_{\infty}$ it holds that

$$r^2 |R_{g_j}| \le C_7 \max\left\{ \left(\frac{r_0}{r}\right)^{\epsilon_{\mathfrak{s}}}, \left(\frac{r}{r_{\infty}}\right)^{\epsilon_{\mathfrak{s}}}
ight\}.$$

Proof. First apply Lemma 1 to the equation $\Delta |R| \ge -C_4 |R|^2$ on $R = R_{g_j}$, assuming $C_4^{n/2} \epsilon \le \epsilon_3$. Then we get that for $2r_0 \le r < 2r \le r_\infty$

$$\int_{D(r,2r)} |R|^{n/2} \le Ar^{-(2q-n)}$$

with a constant A and $q = \gamma n/2$. Next we apply Lemma 2 and Lemma 3 to the equation $\Delta |R|^{1-\delta} \geq -C_5 |R|^{2-\delta}$ with $p = (1-\delta)^{-1}n/2 > \gamma$. If $C_5^{n/2}\epsilon \leq \epsilon_2$, we get that for $4r_0 \leq r < 4r \leq r_{\infty}$

$$r^{2}|R_{g_{j}}| \leq C_{3}^{2/n} \left\{ \int_{D(r/2,4r)} |R|^{n/2} \right\}^{2/n} \leq C_{3}^{2/n} (3C_{2}2^{\epsilon_{3}})^{2/n} \max\left\{ \left(\frac{r_{0}}{r}\right)^{\epsilon_{5}}, \left(\frac{r}{r_{\infty}}\right)^{\epsilon_{5}} \right\}$$

with $\epsilon_5 = 2\epsilon_3/n$. We choose ϵ by $\epsilon = \min\{\epsilon_3 C_4^{-n/2}, \epsilon_2 C_5^{-n/2}, \epsilon_4/2\}$, then the proof is complete.

Once we get the curvature estimate, we can construct coordinates as in the proof of the existence theorem of coordinates at infinity [4]. We need only minor changes, so we omit the proof of the following proposition. **Proposition 4.** If one take $1 < K_1 < K_2$ sufficiently large, then the subset $D(K_1r_0, K_2^{-1}r_\infty)$ is close to a portion of a flat cone \mathbb{R}^n/Γ for large j.

Thus if (Y, h) has no singularity, then the ball $B(x_{a,k}; r_{\infty})$ is diffeomorphic to the smooth manifold Y which bubbles out of X_k .

If (Y, h) has a singular point y_s , then we choose a sufficiently small number r'_{∞} and the corresponding point $x_{s,k}$ in X_k such that

$$\int_{B(y_s,r'_{\infty})} |R_h|^{n/2} \leq \frac{\epsilon}{2}$$
$$\sup_{B(x_{s,k};r_0r'_{\infty})} |R_{g_k}|^2 = |R_{g_k}|^2(x_{s,k}) \longrightarrow \infty.$$

Choose $r'_0 = r'_{0,k}$ such that

$$\int_{D'(r_0r'_0,r_0r'_\infty)} |R_{g_k}|^{n/2} = \epsilon,$$

with $D'(r_1, r_2) = B(x_{s,k}; r_2) \setminus B(x_{s,k}; r_1)$, and consider a sequence of pointed Einstein manifolds $((X_k, (r_0r'_0)^{-2}g_k), x_{s,k})$. Then we have the same situation as before, and we get a complete, non-compact, Ricci-flat, non-flat, ALE *n*orbifold (Y', h') only with finitely many isolated singular points. By the same way we can show the neck is diffeomorphic to a flat cone. If (Y', h')again has a singular point, we repeat the argument. And also we apply the same process at every singular point which appears at each repeated step. Since each singular point contributes at least ϵ to the curvature integral $\int |R|^{n/2}$, the process terminates at finite steps. In this way we get a picture of the small ball $B(x_{a,j}; r_{\infty})$.

Theorem 1. The small ball $B(x_{a,j}; r_{\infty})$ in X_j corresponding to a singular point x_a of the limit orbifold X_{∞} is defined to a connected sum of finite number of complete, non-compact, Ricci-flat, non-flat, ALE *n*-orbifolds only with finitely many isolated singular points, whose singular points are glued to the infinities.

Remark. We may also use the following gap theorem to show the process terminates at finite steps.

Theorem 2. Let (X,g) be an n-dimensional $(n \ge 4)$, complete, noncompact, Ricci-flat Riemannian orbifold, which satisfies

$$\left\{\int v^{2\gamma}\right\}^{1/\gamma} \le S \int |\nabla v|^2 \quad \text{for all } v \in C^1_c(X)$$

with a constant S > 0. There exists a constant $\epsilon_6 = \epsilon_6(n, S) > 0$ such that the inequality

$$\int_X |R|^{n/2} \le \epsilon_6$$

implies that (X, g) is the Euclidian space.

Proof. Apply Lemma 1.

3. Einstein Kähler Surfaces

In this section we assume that all manifolds (X_j, g_j) are Einstein-Kähler surfaces. Since the limit space X_{∞} is an orbifold, there is a neiborhood U of the singular point x_a which is biholomorphic to a quotient B/Γ of the unit ball $B \subset \mathbb{C}^2$ with a finite subgroup $\Gamma \subset U(2)$ acting freely on $\mathbb{C}^2 \setminus \{0\}$. Let det : $U(2) \longrightarrow S^1$ be a group homomorphism defined by the determinant. Then the image det (Γ) is a finite cyclic group, say, \mathbb{Z}_m . Then U has a branched \mathbb{Z}_m -covering: $\tilde{U} \longrightarrow U$ with a branched point x_a such that \tilde{U} has trivial canonical line bundle $K_{\tilde{U}}$. Namely, set $\tilde{\Gamma} = \ker \det \cap \Gamma \subset SU(2)$. Then we have a natural projection $\tilde{U} = B/\tilde{\Gamma} \longrightarrow U$ and a non-vanishing holomorphic 2-form $\omega = dz^1 \wedge dz^2$ descends to \tilde{U} , where (z^1, z^2) is the standard coordinates in \mathbb{C}^2 . We have the corresponding result on $x_{a,j} \in X_j$ for large j.

Proposition 5. There exists a positive constant δ such that for large j there is a smooth \mathbb{Z}_m -covering: $\tilde{U}_j \longrightarrow U_j \supset B(x_{a,j};\delta)$, where \tilde{U}_j has topologically trivial canonical line bundle $K_{\tilde{U}_i}$.

Proof. We may assume the domain $U \subset X_{\infty}$ has smooth boundary ∂U . Then there exists a sequence of neiborhoods $U_j \subset X_j$ of $x_{a,j}$ which have smooth boundaries $\partial U_j = F_j(\partial U)$. We take δ so small that $B(x_{a,j}; \delta) \subset U_j$. Then it is sufficient to show that for large j there are sections θ_j of $K_{U_j}^{\otimes m}$ on U_j such that

$$C_8^{-1} \leq | heta_j| \leq C_8, \qquad ext{and} \qquad |
abla heta_j| \leq C_9,$$

with positive constants C_8 , C_9 .

Define operator $\Box = \Box_j$ acting on the space of sections of $K_{X_i}^{\otimes m}$ by

$$\Box = -\bar{\partial}^* \bar{\partial} = \operatorname{tr} \nabla' \nabla'',$$

where we decompose the covariant differentiation $\nabla = \nabla' + \nabla''$ into (1,0)and (0,1)-parts. Let ψ be the local holomorphic uniformization $\psi : B \longrightarrow B/\Gamma \xrightarrow{\simeq} U$ and η be a radial cut-off function on B such that $\eta = 0$ on B(0; 1/3) and $\eta = 1$ on $B \setminus B(0; 2/3)$. Using ψ the section $\eta \omega^{\otimes m}$ of $K_B^{\otimes m}$ defines a section of $K_U^{\otimes m}$, which we still denote by $\eta \omega^{\otimes m}$. For large j we define sections $\theta_0 = \theta_{0,j}$ of $K_{X_j}^{\otimes m}$ on U_j by $\theta_{0,j} = \operatorname{proj}(F_j^{-1})^* \eta \omega^{\otimes m}$, where $\operatorname{proj} = \operatorname{proj}_j$ is the projection map of tensors to $K_{X_j}^{\otimes m}$. (Note that the maps $F_j : X_{\infty} \setminus S \longrightarrow X_j$ need not to be holomorphic, but become closer and closer to be holomorphic as j tends to ∞ .) We solve the following equation on a section $\theta = \theta_j$ of $K_{X_j}^{\otimes m}$ on U_j

$$\Box heta = 0 \qquad ext{and} \qquad heta ig|_{\partial U_i} = heta_0 ig|_{\partial U_i}.$$

Then θ satisfy

$$\Delta \theta = \operatorname{tr} \nabla \nabla \theta = -2me_{j}\theta.$$

Set $\theta' = \theta - \theta_0$. Then θ' has vanishing boundary value and satisfies

$$\Delta \theta' = -2me_j \theta' + \zeta$$

with $\zeta = \zeta_j$ on which we have good control. We have that

$$\begin{split} \lambda \int |\theta'|^2 &\leq \int |\nabla|\theta'||^2 \leq \int |\nabla\theta'|^2 \\ &= -\int (\theta', \Delta\theta') = 2me_j \int |\theta'|^2 - \int (\theta', \zeta) \\ &\leq 2me_j \int |\theta'|^2 + \left(\int |\theta'|^2\right)^{1/2} \left(\int |\zeta|^2\right)^{1/2} \end{split}$$

with the first eigenvalue $\lambda = \lambda_j$ of the Laplacian acting on functions on U_j with the Dirichlet condition. If we choose U, hence U_j , sufficiently small such that $\lambda \geq 2m|e_j|+1$, we get L^2 -estimates of $\theta', \nabla \theta'$ and those of θ . We apply Lemma 3 to the inequality $\Delta |\theta| \geq -2m|e_j||\theta|$, and get C^0 -estimate on θ .

For C^1 -estimate we differentiate the equation on θ and get the following equations

$$\begin{split} & \Delta |\nabla'\theta|^2 = 2|\nabla\nabla'\theta|^2 + 2e_j|\nabla'\theta|^2, \\ & \Delta |\nabla''\theta|^2 = 2|\nabla\nabla''\theta|^2 + 2(-4m+1)e_j|\nabla''\theta|^2, \\ & \Delta |\nabla\theta|^2 \ge 2|\nabla\nabla\theta|^2 - 2(4m-1)|e_j||\nabla\theta|^2, \\ & \Delta |\nabla\theta| \ge -(4m-1)|e_j||\nabla\theta|. \end{split}$$

Then again applying Lemma 3, we get C^1 -estimate away from boundaries. As to near boundaries, we have good control on the smoothness of the boundaries, the boundary values and the equations and also we have C^0 -estimate of θ . So there is no trouble to get C^∞ -estimate on $U \setminus B(x_{a,j}; r)$ for any fixed r > 0. Now consider the sequence $\{\operatorname{proj} \psi^* F_j^* \theta_j\}$ on $B \setminus \{0\}$ which has uniform C^{∞} -estimate away from the origin 0. So it has a convergent subsequence with limit, say, $\tilde{\theta}$ defined on $B \setminus \{0\}$. $\tilde{\theta}$ satisfies the equation $\Box \tilde{\theta} = 0$ and has C^1 -estimate, so it extends to a smooth solution of the equation across the origin. It must coincide with the unique solution $\omega^{\otimes m}$. So the sequence $\{\operatorname{proj} \psi^* F_j^* \theta_j\}$ itself converges to $\omega^{\otimes m}$, and there is a positive constant C_{10} such that for fixed r > 0 we have that for large $j \geq j(r)$

 $|\theta_j| \ge C_{10}$ on $U_j \setminus B(x_{a,j};r)$.

By Theorem 1 there exists a constant C_{11} such that every point in $B(x_{a,j};r)$ can be connected to the boundary $\partial B(x_{a,j};r)$ with a curve of length at most $C_{11}r$. Thus for $j \geq j(r)$ with $r = C_{10}/(2C_9C_{11})$ we have that $|\theta_j| \geq C_{10}/2$ on U_j .

Remark. One can also show that $K_{U_j}^{\otimes m}$ is complex analytically trivial for large j.

Hereafter we work on the covering space U_j , and denote it simply by U_j . Then we have m = 1. We made a trivialization θ of K_{U_j} with uniform C^1 -estimate. Thus if we conformally change it, the triviality is preserved in the process of bubbling out of complete, Ricci-flat, ALE, orbifold Kähler surfaces. So the local fundamental groups of the singular points and the fundamental groups at the infinities are contained in SU(2).

Proposition 6. Let (X,g) be a complete, Ricci-flat, ALE, orbifold Kähler surface. If its canonical line bundle K_X is topologically trivial, then (X,g) is hyper-Kähler.

Proof. By the assumption K_X is flat and defines an element in $H^1(X; S^1)$. The exact sequence

 $H^1(X; \mathbf{R}) \longrightarrow H^1(X; S^1) \longrightarrow H^2(X; \mathbf{Z})$

and Lemma 5 imply that the topologically trivial K_X has trivial connection.

Thus our bubbles are all hyper-Kähler. Hence if there is only one bubble coming out, the proof of the main theorem is done.

Theorem 3. If we take $\delta > 0$ sufficiently small, then for sufficiently large j, the geodesic ball $B(x_{a,j}; \delta)$ in X_j is diffeomorphic to a cyclic quotient of ALE gravitational instanton.

Remark. We conjecture that $B(x_{a,j}; \delta)$ is biholomorphic to a domain of a cyclic quotient of ALE gravitational instanton.

The proof of Theorem 3 is to apply the following theorem inductively.

Theorem 4. Let (X,g) be a complete, hyper-Kähler, ALE, orbifold surface which has a singular point o with local fundamental group $\Gamma \subset SU(2)$, and (Y,h) be an ALE gravitational instanton which is biholomorphic to the minimal resolution of \mathbb{C}^2/Γ . Then we can glue the infinity of Y to the singular point o of X such that the obtained space $X \notin Y$ is again a complete, hyper-Kähler, ALE, orbifold surface.

Proof. First fix a Kähler structure (X, ω_1) on X, where ω_1 is its Kähler form. We can take a holomorphic local uniformization $\psi_1 : B(0; \delta) \subset \mathbb{C}^2 \longrightarrow U \ni o$ such that

$$\psi_1^* \omega_1 = \sqrt{-1} \partial \bar{\partial} \phi_1, \qquad \phi_1 = |z|^2 + O(|z|^3), \psi_1^* \omega_1^2 = 2(\sqrt{-1} dz^1 \wedge d\bar{z}^1)(\sqrt{-1} dz^2 \wedge d\bar{z}^2).$$

Let $\psi_2 : \mathbb{C}^2 \setminus B(0; K) \longrightarrow Y$ be the holomorphic local uniformization of Y at the infinity. Then by Kronheimer [6] the Kähler form ω_2 of (Y, h) satisfies the following properties. (c.f. [3])

$$\begin{split} \psi_2^* \omega_2 &= \sqrt{-1} \partial \bar{\partial} \phi_2, \qquad \phi_2 = |z|^2 + O(|z|^{-2}), \\ \psi_2^* \omega_2^2 &= 2(\sqrt{-1} dz^1 \wedge d\bar{z}^1)(\sqrt{-1} dz^2 \wedge d\bar{z}^2). \end{split}$$

For sufficiently small positive numbers δ_1 , δ_2 , by the map $\psi(z) = z/(\delta_1 \delta_2)$ we identify two subsets $\psi_1(D(\delta_1, 4\delta_1)) \subset X$, $\psi_2(D(\delta_2^{-1}, 4\delta_2^{-1})) \subset Y$, and get an orbifold suface $Z = X \sharp Y$. In this construction the parallel holomorphic 2-forms on X and Y are glued to give a holomorphic 2-form on Z. We define a Kähler metric ω on Z as follows.

$$\omega = \begin{cases} \omega_1, & \text{on } X \setminus \psi_1(B(0; 4\delta_1)); \\ \sqrt{-1}\partial \bar{\partial} \{\eta_{4\delta_1}\phi_1 + (1 - \eta_{4\delta_1})(\delta_1\delta_2)^2 \psi^* \phi_2\}, & \text{on } \psi_1(D(\delta_1, 4\delta_1)); \\ (\delta_1\delta_2)^2 \omega_2, & \text{on } Y \setminus \psi_2(\mathbf{C}^2 \setminus B(0; \delta_2^{-1})), \end{cases}$$

where $\eta_{\delta}(z) = \eta(z/\delta)$ is a cut-off function. Since $\phi_1 - |z|^2$ and $(\delta_1 \delta_2)^2 \psi^* \phi_2 - |z|^2$ are small on $\psi_1(D(\delta_1, 4\delta_2))$, it is easy to see that ω actually defines a Kähler metric on Z.

By the assumption there is a coordinate $\psi_{\infty} : \mathbf{R}^4 \setminus B(0; K) \longrightarrow X$ at the infinity of X such that

$$\psi_{\infty}^* g_{ij} = \delta_{ij} + O(|x|^{-4}).$$

Then it is easy to see that $\rho = |x|$ makes a barrier function on X, hence on Z. Thus (Z, ω) satisfys the assumption of Theorem C. That means Zadmits a complete, Ricci-flat, ALE, orbifold Kähler metric. It is easy to see that the holomorphic 2-form on Z is parallel, so Z is hyper-Kähler.

Now we prove Theorem 3. Assume the blowing up process of orbifold singular point terminates at *l*-th steps. Then the bubbles coming out in the *l*-th steps are all smooth ALE gravitational instantons. So they are diffeomorphic to the minimal resolutions of \mathbb{C}^2/Γ , $\Gamma \subset SU(2)$. We replace their structrues by those comming from minimal resolutions. Then by Theorem 4 we can glue them to the bubbles of (l-1)-th steps, and get smooth ALE gravitational instantons. Repeating this arguement we finally get a smooth ALE gravitational instanton which is given by glueing all bubbles. This implies Theorem 3.

For examples of bubbling out of ALE gravitational instantons we refer [7].

Reference.

- [1] M. T. Anderson, Ricci curvature bounds and Einstein metrics on compact manifolds, preprint.
- [2] J. P. Bourguignon, The magic of Weitzenböck formulas, preprint.
- [3] S. Bando and R. Kobayashi, Ricci-flat Kähler metrics on affine algebraic manifolds, II, preprint.
- [4] S. Bando, A. Kasue and H. Nakajima, On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, preprint.
- [5] C. B. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. École Norm. Sup. (4) 13 (1980), 419-435.
- [6] P. B. Kronheimer, ALE gravitational instantons, Thesis, Oxford Univ. 1986.
- [7] R. Kobayashi and A. Todorov, Polarized period map for generalized K3 surfaces and the moduli of Einstein metrics, Tôhoku Math. J. 39 (1987), 341-363.
- [8] H. Nakajima, Hausdorff convergence of Einstein 4-manifolds, J. Fac. Sci. Univ. Tokyo 35 (1988), 411–424.
- [9] H. Nakajima, Yau's trick (in Japanese), to appear in "Suugaku".