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TIGHT SURFACES AND REGULAR HOMOTOPY 

1) INTRODUCTION 

If f M2 --> R3 is an immersion of a compact surface M2 

then 

( 1 ) 

is called the total absolute curvature of f. Here K denotes 

the Gaussian curvature of f. 

In the theory of total absolute curvature there is a basic 

inequality, essentially due to Chern and Lashof [4]: 

(2) , 

where ~ denotes the sum of the z2-Betti numbers. 

If equality holds in (2) then the immersion f is called 

tight. Tight surfaces are characterized by many interesting 

properties. See [3] for a good introduction to this topic. 

Nearly all compact surfaces admit tight immersions into R3 • 

There are only the following exceptions: 

1) There is no tight immersion into R3 of the projective 

plane and the Klein bottle [8]. 

2) It is still unknown whether there exists a tight surface 

in R3 of Euler charakteristic - 1 • 
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The estimate (2) involves only an assumption on the intrinsic 

topological type of M2 • One might ask whether it is 

possible to improve (2) if one is given further topological 

information about the immersion f • For example one can 

restrict attention to embeddings and ask for lower bounds 

of T(f) in a giv~n isotopy class of embeddings. A typical 

result in this direction is the following 

THEOREM: a) [12,13] If an embedding f: M2 __ >.3 is 

knotted (i.e. not isotopic to a standard em-

bedding}' then 

(3) 

b) [ 11] If the_,genus 9 of M2 is greater than 

two, then there are knotted embeddings 

f : 2 
K -> .. 3 for which equality holds in (3) • 

For 9S2 there are no such embeddings. 

Further details can be found in [11]. 

If one does not restrict f to be an embedding it is natural 

to ask for the infimum of T(f) within a given regular 

homotopy class t of immersions f: M2 --> .3 . In some sense 

the regular homotopy classes are the connected components 

of the space of immersions. Thus we have the following problem, 

which was formulated by Kuiper in 1960 [9]: 

tA regular homotopy is a smooth homotopy that is an immersion 
at each stage 
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a) In each regular homotopy class of immersions 

f : M2 --> R3 determine the infimum of ~(f) • 

b) Determine those regular homotopy classes in 

which this infimum is attained. 

In this paper we will solve part a} of the problem completely: 

THEOREM 1: In each regular homotopy class F of immersions 

f : M2 --> R3 we have 

(4) inf ~(f) = tHM2) • 
fEF 

A complete solution of part b) of the above problem seems 

to be very difficult. Such a solution would involve for 

example an answer to the question whether there exists in 

R3 a tight surface of Euler characteristic -1 • At least 

we are able to show that the infimum is attained i~ all 

but a finite number of regular homotopy classes: 

THEOREM 2: If the Euler characteristik of M2 is less than 

-9 then every immersion f: M2 __ >.3 is 

regularly homotopic to a tight immersion. 

On the other hand there are immersions 
2 3 

f:M. ->. 
which are not regularly homotopic to a tight immersion. For 

example this is always the case if M2 is the projective 

plane or the Klein bottle. Beyond this we can show for 

example: 
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THEOREM 3: Every tight iDaera..ion of the torus '1'2 is 

regularly homotopic toa· standard embedding. 

Thus in the nonstandard regular homotopy class of immersed 

tori [14] there are no tight surfaces. 

Here is an outline. of the paper: Theorem 1 is proved in 

section 2. Section 3 contains the proof of Theorem 3 and 

some further relations between tightness and regular homotopy. 

In section 4 we construct some explicit examples of tight 

surfaces and prove Theorem 2. 

2) ALMOST TIGHT SURFACES 

In this section we will construct in each regular homotopy 

class of immersions f: M2 __ >.3 (M2 a compact surface) 

an "almost tight" immersion. "Almost tight" means that 

~(f) comes arbitrarily close to t€M2 ) • The main idea 

is contained in the following lemma, that is a special 

case of a more general result [7,10,15]: 

LEMMA: 2 3 Let f: M -> Jl be an immersion, e 1 ,e2 ,e3 an 

orthonormal basis of 2 3 such that the height 

function x ~> <e3 ,f(x» on M2 has exactly k 

critical points, all of them nondeqenerate. Then 

2 3 for the immersions fA : M -> .. ,).€ (O,lJ , 
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we have lim ~(fA) = k 
A+O 

By this lemma it is sufficient to find in each regular 

h t 1 . . f: M2 --> R3 h th t omo opy c ass an ~mmers~on suc a 

2 the height function h: M --> R, h(x) = <e 3 ,f(x» has 

exactly a(M2 ) critical points, all nondegenerate. 

The required property of f depends only on the "immersed 

surface If [f] corresponding to the immersion f (see [14] 

for a definition). Thus it suffices to construct in each 

regular homotopy class of immersed surfaces an example of 

the desired type. We construct such surfaces M by 

describing the intersections of M with planes orthogonal 

to (i.e. the level curves of the height "function h). 

The critical points of h can be seen from the behaviour of 

the level curves: In a maximum of h there appears in the 

moving plane a small convex curve. In a minimum such a 

curve shrinks to a point and then disappears. In the neigh-

borhood of a regular value of h the level curve only 

performs a regular homotopy. Finally near a nondegenerate 

critical value of index 1 the level curve behaves as in-

dicated in figure 1. 

)(~X 
," 
Figure 1 
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Figure 2a, which is from the oriqinal paper [1] of Boy, 

shows the level .curves of a heiqht function with three 

nondegenerate critical points on a riqht-hand.ed Boy surface 

B (concerning immersed surfaces we adopt the terminology 

of [14J). In figure 2b we indicate a height function on 

an immersed torus of type 

o 
C>O 

a' 

T with four critical points. 

Piqure 2 

• 
• 
• 

• 
• 360

0 

• 

CX) 00 

b) 
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This torus is essentially the same as the one pictured in 

figure 1 of [141,. In the part of figure 2b indicated only 

by dots the right hand lemniscate rotates by 360°. 

We obtain a height function of the required kind on a left

handed Boy surface B by considering the mirror image of 

figure 2a. Nearly all height functions on a tight torus S 

meet our conditions. Thus we have found a surface with the 

desired properties in all four "basic" homotopy classes 

S,T,B and B. 

By Theorem 4 of [14J every regular homotopy class of immersed 

surfaces in R3 can be represented by a connected sum of 

several copies of S,T,B and B. Now it is easy to 

construct such connected sums together with the desired 

height functions by "stacking" several diagrams as those 

in figure 3. This completes the proof of Theorem 1. 

3) REGULAR HOMOTOPY CLASSES OF TIGHT SURFACES 

On every tight surface in R3 which is not homeomorphic 

to s2 there is a homologically nontrivial untwisted annulus 

(we use the terminology of [14], section 4). This fact 

was already used in [8J to show that the projective plane 

~2 does not admit a tight immersion into R3 • Suppose 

now we are given a regular homotopy class of immersions 

f : M2 --> R3 (M2 ~ S2) such that for the corresponding 

quadratic form qf [14] we have 
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(6) 

Then this regular homotopy class cannot contain tight 

immersions. An easy consequence of this is the following 

extended version of Theorem 3: 

THEOREM 3': a) Every tight torus in .3 is regularly 

homotopic to a standard torus S . 
b) There are no tight surfaces in • 3 of 

type B,S'S or i,alii . 

We obtain further restrictions on the regular homotopy 

class of a tight surface if we make assumptions on the 

number of top-cycles. For the definition of a top-cycle 

we refer to the paper [2] of Cecil and Ryan, where also 

the following theorem is proved: 

THEOREM [2 J : Let M2 be a compact surface of Euler 

characteristic X, f : M2 __ >.3 a tight 

~rsion, a(f) the number of top-cycles 

of f. Then 

a) 2 $ a ff) ~ 2-X • 

b) If M2 1a nonorientable then 

(l (f) ~ 1-X 
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Cecil and Ryan give examples of tight surfaces with the 

maximal number of top-cycles (2-X if M2 is orientable, 

1-X otherwise) for all even values of X. It is unknown 

whether there exist tight surfaces with odd X having 1-X 

top-cycles. It is shown in [2] that this problem is equivalent 

to the question whether there is a tight surface with X == - 1. 

By part b) of the following theorem such surfaces can exist 

only in certain regular homotopy classes: 

THEOREM 4; Let M be a tight inunersed surface in R3 of 

Euler characteristic X, a(M) the number of 

top-cycles of M. Then 

a) If a(M) == 2-X then M is regularly homo

topic to the standard surface S fI ••• fI S • 

b) If X is odd and a(f) == 1-X then M is 

regular ly homotopic to B # S # ••• # S or to 

Bf/SfI ••• flS. 

PROOF: In the proof of Theorem 1 in [2] it is shown that 

under the assumptions of a) M can be decomposed as 

M = U U V 1 U ••• U V k I where 

(i) U == K- (D, U 15, u ••• U Dk U 15k ) • Here K is the boundary 

of the convex hull of M and Di ,15
i 

c K are plane 

convex disks. 

(ii) For i = l / ••• / k Vi is an inunersed annulus and 

aVi = aD i U 3Di 
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It is obvious that such a surface i~ cobordant to an 

immersed sphere [14], and therefore regularly homotopic 

to S II ••• II S • This proves a). 

In the proof of Theorem 2 in [2] it is shown that under 

the conditions of b) M admits a decomposition 

M = U U v, U •• ,UV
k 

' where U,V
1

, ••• 'Vk are defined as above, 

with one exception: V
1 

is not homeomorphic to an annulus 

but to the projective plane with two holes. Obviously such 

an immersed surface is cobordant to B or to B. 

4) TIGHT SURFACES IN PRESCRIBED REGULAR HOMOTOPY CLASSES 

In [14] it is shown that the immersed,surfaces [f] in R3 

of intrinsic type M2 are classified up to regular homotopy 

by the Arf-invariant a f € Z8 ' where CJf is subject only 

to the following conditions: 

(ii) CJ
f

• 0 mod 4 

(iii) lafl ~ 2-X(M
2

) 

if M2 is orientable 

Here for t € a8 we have defined 

(7) I t I = inf {I x I I x € a I X. t mod 8 } • 
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(iii) is a real restriction only in case M2 is the 

projective plane or the Klein bottle. 

Fig. 3 (which is taken from [9) shows two tight surfaces 

with trivial Arf-invariant of = 0 . 

a) b) 

Figure 3 

By adding further handles to these surfaces (preserving 

tightness) one easily obtains 

THEOREM 5: Let M2 be a compact surface, not homeomorphic 

to the Klein bottle. Then every immersion 

0=0 f 
is regularly 

homotopic to a tight immersion. 

Since the Klein bottle does not admit tight immersions into 

R3 [8] part b) of Kuipers problem stated in the introduction 

is solved for regular homotopy classes with trivial Arf-invariant. 
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We noW construct a tight orientable surface in .3 of 

genus 4 with Arf-invariant Of = 4 • This construction is 

based on a polyhedral surface due to T. Banchoff. We only 

have modified here this surface slightly in order to be able 

to apply the smoothing procedure developed in [6]. 

The starting point for the construction is the polyhedral 

immersed torus pictured in figure 4 b. This torus is built 

with the help of four figure eight-shaped polygons that 

lie in the planes indicated in figure 4b by arrows 

a) 

.. ~ .. -... - -..::.. .... ---~ -

b) 

F1qure 4 
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(the planes are orthogonal to the drawing plane). These 

four polygonal figure eights are then connected by four 

polyhedral cylinders as indicated in figure 4b. Figure 4a 

shows the upper one of the two horizontal cylinders in a 

slightly different view. The two boundary curves of the 

cylinder in Figure 4a are two of the four mentioned 

polygonal figure eights. 

Note that figure 4b shows in some sense a "plaster model" 

of the surface, that is we did not attempt to indicate in 

the middle of figure 4b the self-intersections. 

As a second step we now displace the four faces indicated 

in figure 4b by shading slightly towards the interior 

(keeping them parallel to the original faces). In other 

words along these faces we "grind off" a thin layer of the 

mentioned plaster model. During that process each of the 

eight vertices at maximal distance from the center of the 

surface splits into two vertices of valence three (figure 5). 

Figure 5 
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The four displaced faces are then cut out and the remaining 

surface is "inserted" into a suitable convex polyhedron 

(into which four corresponding holes have been cut). It 

is not necessary to describe here the latter convex surface 

in detail. All strict local support planes of the constructed 

surface of genus four are strict global support planes. 

Hence this polyhedral surface is tight [6J. 

All non-convex vertices of the above surface are either 

3-valent or standard saddle vertices [6]. Thus by [6] this 

surface can be approximated by a tight 
co 

C -surface. It is 

easy to see that this smooth surface is of type 

Tflsflstls and therefore has Arf-invariant a f = 4 • 

It is now easy to attach to this surface further handles 

without violating the tightness or changing the Arf-invariant. 

Thus for orientable surfaces we have a sharper version of 

Theorem 2: 

THEOREM 6: If M2 is an orientable surface of genus 

g I! 4 then every immersion f: M2 -> Jl3 is 

regularly homotopic to a tight immersion. 

Kuiper described in [9] a tight surface with Euler charac

teristic - 3 • In [6] one can find a more symmetric version 

of such a surface. The regular homotopy type of both surfaces 

1s that of a Boy surface with two handles, hence the Arf-

invariant af is :t 1 • By adding further handles to such 
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a surface we obtain for all odd numbers X::i -3 tight sur-

faces with Euler characteristic X and a f = ± 1 • 

By gluing two of the polyhedral surfaces with X = -3 

described in [6] together we obtain a tight polyhedral 

surface with X = -8 • The smoothing procedure of [6] applies 

to this surface and the resulting smooth surface has 

a f = ± 2 • By adding handles we obtain tight surfaces with 

a f = ± 2 for any even Euler characteristic X;:;;-8 

Tight nonorientable surfaces with a
f 

= 4 can be constructed 

for any even Euler characteristic X::i -8 by adding non-

orientable handles of the kind indicated in figure 3b to 

the orientable surface with a = 4 f 
constructed above. 

Finally we obtain a tight surface with a f = ±3 and X = -11 

by considering a tight connected sum of a surface with 

a = 4 and X = -6 and another surface with a = ±1 and 

X = -3 Adding handles then yields tight surface with 

a f = ± 3 for any odd X::i -11 • This completes -the proof of 

Theorem 2. 
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