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Abstract. In 1987 Kharshiladze introduced the concept of type for an element in

a Wall group, and proved that the elements of the first and second types cannot be
realized by normal maps of closed manifolds. This approach is sufficiently easy for

computation and sometimes very effective. In this paper we give a geometrical inter-
pretation of this approach by using the Browder-Quinn surgery obstruction groups

for filtered manifolds. Then we study some algebraic and geometrical properties of

the elements of the second type, and apply the obtained results for computing the
assembly map for some classes of groups. Further applications about the realization

problem of the surgery and splitting obstructions complete the paper.

1. Introduction.

Let Xn be a closed connected topological n–dimensional manifold with funda-
mental group π = π1(X) and orientation homomorphism w : π1(X)→ {±1}. The
structure set STOP (X) is the set of s–cobordism classes of closed connected topo-
logical n–dimensional manifolds which are simple homotopy equivalent to X (see
[25], [26], and [31]). A representative of an element from STOP (X) is given by a
simple homotopy equivalence f : Mn → X of n–dimensional manifolds, and it is
called an s–triangulation of the manifold X. For n ≥ 5, the set STOP (X) fits into
the surgery exact sequence (see [25], [26], and [31])

(1.1) · · · → Ln+1(π)→ STOP (X)→ [X,G/TOP ]
σn→ Ln(π)→ · · ·

The groups L∗(π) denote the surgery obstruction groups up to simple homotopy
equivalence, the set [X,G/TOP ] is the set of normal invariants, where TOP is the
stable group of homeomorphisms of R

n with a base point and G is the monoid of
stable homotopy self–equivalences of spheres. To classify the manifolds which are
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simple homotopy equivalent to X, one must compute all groups and maps in the
surgery exact sequence.

To know the map σn, it is sufficient to consider it only for closed manifolds (see
[31, §13B]). Let Cn(π) be the subgroup of Ln(π) generated by the images of type
σn(f, b), where

(1.2) (f, b) : Mn → Xn

is a closed manifold surgery problem. There exists a geometrical approach for
computing the map σn. It is based on the investigation of the problem of splitting
a simple homotopy equivalence f : M → X along a one-sided submanifold Y ⊂ X
(see [4], [6], [8], [10], [15], [16], [17], [20], [22], and [23]).

Let (Xn, Y n−q) be a pair of closed manifolds, and U a tubular neighborhood of
Y in X with boundary ∂U . Let

(1.3) F =





π1(∂U) → π1(X \ Y )
↓ ↓

π1(Y ) → π1(X)





be the square of the fundamental groups together with the natural maps.
Recall that a simple homotopy equivalence f : M → X splits along the sub-

manifold Y if it is homotopic to a map g : M → X which is transversal to the
submanifold Y with N = g−1(Y ), and the restrictions

(1.4) g|N : N → Y and g|(M\N) : M \N → X \ Y

are simple homotopy equivalences (see [26, §7] and [31, §11]). The splitting obstruc-
tion groups LSn−q(F ) are well defined (see [26, §7] and [31, §11]). These groups
depend functorially on the square F and on the dimension n− q modulo 4.

A pair of closed topological manifolds (X,Y ) is called a Browder-Livesay pair

if Y n−1 is a one–sided submanifold of codimension one, n ≥ 6, and the horizontal
maps in the square F are isomorphisms. In this case, the square F has the following
form

F =





π1(∂U) → π1(X \ Y )
↓ ↓

π1(Y ) → π1(X)



 =





ρ
∼=
→ ρ

↓ i− ↓ i+

π−
∼=
→ π+



 .

The vertical maps in this square are inclusions of index 2, and the orientation
homomorphisms on the groups π1(X) = π+ and π1(Y ) = π− coincide on the
images of vertical maps and differ outside these images. This change of orientations
is denoted by the symbols ”+” and ”−” in the square F . We shall omit ”+” if this
does not lead to any confusion.

The splitting obstruction groups for a Browder-Livesay pair are denoted by

LNn−1(π1(X \ Y )→ π1(X)) = LNn−1(ρ→ π) = LSn−1(F )

and are called the Browder–Livesay groups (see [6], [8], [11], [20], [26, §7], and [31,
§11]).

Let i : ρ → π be an inclusion of index 2 between oriented groups. Then an
algebraic definition of the Browder–Livesay groups LNn(ρ → π), n = 0, 1, 2, 3
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(mod 4), can be found in [11] and [27]. These groups are related to the surgery
obstruction groups by means of the following braid of exact sequences (see [11], [26,
§7], [27], and [31, §11])

(1.5)

→ Ln(ρ)
i∗−→ Ln(π)

∂
→ LNn−2(ρ→ π) →

↗ ↘ s↗ ↘ ↗ ↘
Ln(i

!
−) Γ ↓ Ln(ρ→ π)

↘ ↗ q ↘ ↗ ↘ ↗

→ LNn−1(ρ→ π)
c−
−→ Ln−1(π

−)
i!
−

−→ Ln−1(ρ) →

In Diagram (1.5), the groups L∗(ρ→ π) are the relative groups for the induced
map i∗ : L∗(ρ) → L∗(π), and the groups L∗(i

∗
−) are the relative groups for the

transfer map i!− : L∗(π
−)→ L∗(ρ). The rows of Diagram (1.5) are chain complexes,

and the maps Γ provides isomorphisms of the corresponding homology groups. If
an element x ∈ Ln(π) represents a homology class [x] ∈ Ker ∂/ Im i∗, then the class
Γ([x]) is represented by an element q(y), where y ∈ Ln(i

!
−) and s(y) = x. Thus

the class Γ([x]) consists of the elements qs−1(x). Note that the maps c and ∂ have
a good algebraic description on the level of rings with antistructures (see [11] and
[27]).

In the case of a Browder-Livesay pair Y ⊂ X, there are isomorphisms

Ln(i
!
−) ∼= LPn−1(F ),

where LP∗(F ) are the surgery obstruction groups for the manifold pair Y ⊂ X (see
[26, §7]). Note that there exist also isomorphisms

(1.6) LNn(ρ→ π) ∼= LNn+2(ρ→ π−)

of the Browder-Livesay groups.
It was proved in [8] that if x ∈ Ln(π) and ∂(x) 6= 0, then the element x ∈ Ln(π)

cannot be realized by a normal map of closed manifolds. Thus the map ∂ is the
first obstruction for realizing an element of the group Ln(π) by a normal map of
closed manifolds. This map is called the Browder–Livesay invariant.

Let us denote by Cpn(π) the image of the group Cn(π) in the projective Novikov
group Lpn(π) under the natural map Ln(π)→ Lpn(π). In [11] Hambleton constructed
the second Browder-Livesay invariant and, using these two invariants, he described
the subgroup Cpn(π) for any finite abelian 2-group π. Kharshiladze (see [16] and [17])
introduced the concept of iterated Browder-Livesay invariants, which generalize the
first and the second invariants. Then he applied them to the investigation of a closed
manifold surgery problem. Note that in the original definitions (see [11], [16] and
[17]) the k-invariant is defined if and only if the (k − 1)–invariant is trivial.

To study the behaviour of the elements in a Wall group relatively to the iterated
Browder-Livesay invariants, Kharshiladze defined three possible types of elements
in a Wall group. The elements of the first type are the elements for which one
of the iterated Browder-Livesay invariants is nontrivial. All the Browder-Livesay
invariants of the elements of the second type are trivial but they are nontrivial in the
homology groups of a certain chain complex, up to infinity. The remaining elements
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of the Wall group are of the third type. According to [16] and [17], the elements
of the first and the second types cannot be realized by normal maps of closed
manifolds. Sometimes this approach becomes very effective (see [17]). For example,
let π be an elementary abelian 2-group with nontrivial orientation. Then all the
elements of the groups L2n+1(π) are of the second type. There exists also a natural
problem concerning with the realization of the elements in a Browder-Livesay group
by simple homotopy equivalences of closed manifolds (see [1] and [4]). In this
paper we define the types of elements in a Browder-Livesay group, and describe
connections between these concepts and the realization problem mentioned above
(see Section 1). In Section 2 we define the elements of the first and second types
in a Wall group following the original definition given by Kharshiladze in [16] and
[17]. In Section 3 we illustrate some necessary technical results in algebraic surgery
theory (see [2], [12], [14], [22], [25], and [34]) and their relations to surgery on filtered
manifolds (see [3], [4], [7], [18], [19], [24], and [34]). Then we give another definition
of elements of the second type, and prove that it is equivalent to the original
one. Our definition is more algebraic and describes a level of indeterminate for the
algebraic passing to surgery on a codimension k submanifold of a given filtration.
In Section 4 we apply the previous results to describe some algebraic properties
of the elements of various types. In Section 5 we establish deep relations between
the properties of the elements of various types and the Browder-Quinn surgery
obstruction groups for filtered manifolds. Then we give a necessary condition for
an element in a Wall group to lie in the image of the assembly map. This condition is
formulated on the level Browder-Quinn surgery obstruction groups. In Section 6 we
apply our results to the problem of realizing the surgery and splitting obstructions.
For some classes of fundamental groups, we obtain very explicit and full results.

2. Types of elements in Wall’s groups.

First we recall the definitions of elements of the first and second types in a Wall
group Ln(π) according to [16] and [17].

Let i : ρ→ π be an inclusion of index 2 between oriented groups. This inclusion
induces Diagram (1.5) [27] which we shall denote by D. Let π− be the group π
whose orientation is changed outside the image of i. We obtain another inclusion
i− : ρ → π of oriented groups, which coincides with i as inclusion of groups.
Similarly to i, the inclusion i− yields the diagram
(2.1)

→ Ln(ρ)
i−
∗−→ Ln(π

−)
∂−

→ LNn−2(ρ→ π−) →
↗ ↘ ↗ ↘ ↗ ↘

Ln(i
!) Γ ↓ Ln(ρ→ π−)

↘ ↗ ↘ ↗ ↘ ↗

→ LNn−1(ρ→ π−) −→ Ln−1(π)
i!
−→ Ln−1(ρ) →

which we shall denote by D−. In general, the diagrams D and D− are different.
They have period 4, and their subscripts are defined modulo 4. Using the diagrams
D and D− we can write down the following diagram which is infinite in two vertical
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directions:

(2.2)

...
‖

i∗−→ Ln(π)
∂0→

s↗ ↘
Ln(i

!
−) Γ ↓ Ln(ρ→ π)

q ↘ ↗
−→ Ln−1(π

−) −→
‖

−→ Ln−1(π
−)

∂1→
s↗ ↘

Ln−1(i
!) Γ ↓ Ln−1(ρ→ π−)

q ↘ ↗
−→ Ln−2(π) −→

‖

−→ Ln−2(π)
∂2→

s↗ ↘
Ln−2(i

!
−) Γ ↓ Ln−2(ρ→ π)

q ↘ ↗
−→ Ln−3(π

−) −→
‖
...

This diagram has period 4 in the vertical direction. We shall continue to denote
by s and q the similar maps in different dimensions. In fact, it is clear from the
groups in what dimension we consider the map.

Let us consider the infinite part of Diagram (2.2) starting from the group Ln(π)
and going down toward the bottom. Let x ∈ Ln(π) be an element. If ∂(x) = 0 and
x /∈ Im i∗, then it represents a nontrivial homology class [x] of the chain complex
given by the row.

Definition 1. For an element x ∈ Ln(π), set Γ0(x) = {x}. Then Γ0(x) is trivial
if x = 0, and nontrivial otherwise. If Γ0(x) is nontrivial, then the first Browder-
Livesay invariant of the element x with respect to the inclusion i : ρ → π is, by
definition, the set

(2.3) ∂0(Γ
0(x)) = {∂0x}.

It is nontrivial if ∂0x 6= 0.

Note that the condition x = 0 is equivalent to the condition 0 ∈ Γ0(x), and the
condition ∂0x 6= 0 is equivalent to the condition 0 /∈ ∂0(Γ

0(x)). Later we shall use
similar properties to define the iterated Browder-Livesay invariants.

Let us consider the following part of Diagram (2.2):

(2.4)

Lj(π
±)

∂
→

s↗ ↘
Lj(i

!
∓) Γ ↓ Lj(ρ→ π±)

q ↘ ↗
Lj−1(π

∓)

where ∂ = ∂n−j .
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Definition 2. Let B ⊂ Lj(π
±) be an arbitrary subset. We say that Γ(B) is unde-

fined if 0 /∈ ∂(B); otherwise, a set Γ(B) ⊂ Lj−1(π
∓) can be defined as

(2.5) Γ(B) = {qs−1(x)|x ∈ B, ∂(x) = 0}.

Following [16] and [17], we now give an inductive definition of the iterated

Browder-Livesay invariants and the sets

(2.6) Γj(x) ⊂ Ln−j(π
∗)

where ∗ = − for j odd and ∗ = + for j even, for any j ≥ 0. In this definition, we
have fixed an inclusion i : ρ→ π of index 2.

Definition 3. For an element x ∈ Ln(π), set Γ0(x) = {x}.
Let the set Γj−1(x), j ≥ 1, be defined. It is called trivial if 0 ∈ Γj−1(x).
If Γj−1(x) is defined and nontrivial, then the j − th Browder-Livesay invariant

with respect to the inclusion i is the set ∂j−1(Γ
j−1(x)). The j− th Browder-Livesay

invariant is nontrivial if 0 /∈ ∂j−1(Γ
j−1(x)).

If the j − th Browder-Livesay invariant is defined and trivial, then the set
Γ(Γj−1(x)) is well defined by Definition 2. So we can define the set Γj(x) as

(2.7) Γj(x) = Γ(Γj−1(x)).

By Definitions 2 and 3 the set ∂j(Γ
j(x)) is defined and nonempty if the j − th

Browder-Livesay invariant is trivial. Note that the j−th Browder-Livesay invariant
is defined only if the (j − 1) − th Browder-Livesay invariant is defined and trivial
and the set Γj(x) is nontrivial.

Definition 4. An element x ∈ Ln(π) is of the first type with respect to an inclusion
i : ρ→ π if there exists a nontrivial Browder-Livesay invariant of x with respect to
the same inclusion.

Definition 5. An element x ∈ Ln(π) is of the second type with respect to an
inclusion i : ρ→ π if all the j − th Browder-Livesay invariants of x with respect to
the same inclusion are trivial for every j ≥ 1 and all the sets Γj(x) are defined and
nontrivial for every j ≥ 0.

It follows from Definition 3 that the existence of the sets Γj(x) for all j ≥ 0
implies that they are nontrivial and all Browder-Livesay invariants of x with respect
to i are trivial.

Definition 6. An element x ∈ Ln(π) is of the first type if it has the first type with
respect to an inclusion i : ρ → π. An element x ∈ Ln(π) is of the second type if
it is not an element of the first type and it has the second type with respect to an
inclusion i : ρ→ π.

Theorem 1. [17] Any element x ∈ Ln(π), n ≥ 5, of the first (resp. second) type
cannot be realized by a normal map of closed manifolds.
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3. Algebraic surgery theory and iterated Browder-Livesay invariants.

The algebraic surgery theory of Ranicki provides a realization of various groups
in surgery theory and natural maps between them on the spectra level (see [2],
[4], [10], [12], [14], [19], [24], [25], [26], [31], and [34]). In this section we illustrate
some necessary results in algebraic surgery theory and use this approach to give
another definition of elements of the first type (see [10] and [11]). Then we prove
the equivalence of these definitions. Theorems 2 and 3 describe the main algebraic
properties of the iterated Browder-Livesay invariants.

Let π be a group with an orientation homomorphism w : π → {±1}. Let us
denote by

(3.1) L(π,w) = L(π) = {L−k(π) : k ∈ Z}

the surgery obstruction group Ω-spectrum whose homotopy groups πn(L(π)) =
Ln(π) are the surgery obstruction groups of π (see [25]). An orientation preserving
homomorphism π → π′ induces a cofibration of spectra

(3.2) L(π)→ L(π′)→ L(π → π′)

whose homotopy long exact sequence is the relative exact sequence of L–groups for
the map π → π′ (see [2], [12], and [26]). In particular, we have

πn(L(π → π′)) = Ln(π → π′).

For any block bundle

(3.3) (Dq, Sq−1)→ (E, ∂E)
p
→ X

over a closed topological manifold X, there is a homotopy commutative diagram of
spectra (see [2], [12], [26], and [31, p.253]):

(3.4)
L(π1(X))

p]

→ ΩqL(π1(∂E)→ π1(E))
↘ ↓ δ]

Ωq−1
L(π1(∂E))

where the maps p] and δ]p] are the transfer maps on the spectra level and δ] is the
connecting map in the cofibration sequence for the natural map π1(∂E)→ π1(E).

¿From now on, we assume that all considered closed manifold pairs (Xn, Y n−q)
are manifold pairs in the sense of Ranicki [26, p.570]. In particular, Y is a locally flat
submanifold of X, and it is endowed with the associated normal block bundle ξ. Let
(X,Y, ξ) be a closed manifold pair of codimension q. Then a tubular neighborhood
U = E(ξ) of Y in X with boundary ∂U = S(ξ) is a disk bundle as in (3.3) [26].
Moreover, we have a homotopy commutative diagram of spectra (see [2] and [3]):

(3.5)
L(π1(Y ))

p]

→ ΩqL(π1(∂U)→ π1(U))
α
→ ΩqL(π1(X \ Y )→ π1(X))

↘ ↓ δ] ↓ δ]1

Ωq−1
L(π1(∂U))

β
→ Ωq−1

L(π1(X \ Y ))
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where the right horizontal maps are induced by the natural inclusions, and the
vertical maps are the connecting maps in the cofibration sequences for the inclu-
sions ∂U → U and X \ Y → X. For the manifold pair (Xn, Y n−q) the splitting
obstruction groups LSn−q(F ) and the surgery obstruction groups LPn−q(F ) have
been defined (see [26] and [31]). The spectra LS(F ) and LP (F ) for these groups
fit in the following homotopy commutative diagram (see [2-4]):

(3.6)

L(π1(Y ))
αp]

→ ΩqL(π1(X \ Y )→ π1(X)) → Ω−1
LS(F )

‖ ↓ δ]1 ↓

L(π1(Y ))
βδ]p]

→ Ωq−1
L(π1(X \ Y )) → Ω−1

LP (F )

in which the rows are cofibrations and the right square is a pullback.

Now let (X,Y ) be a Browder-Livesay pair of manifolds. Setting ρ = π1(X \Y ) =
π1(∂U) and π = π1(X) = π1(Y ), the map i : π1(X \ Y ) = ρ → π = π1(X) is an
inclusion of index 2. We denote LN(ρ→ π) = LS(F ). Then we have

πn(LN(ρ→ π)) = LNn(ρ→ π) = LSn(F ), πn(LP (F )) = LPn(F ) = Ln+1(i
!
−).

Diagram (3.6) provides a homotopy pullback square of spectra (see [2-4] and [14]):

(3.7)

L(π)
↗ ↘

ΣLP (F ) L(ρ→ π)
↘ ↗

ΣL(π−)

where Σ is a suspension functor (see [30]). Diagram (3.7) realizes on the spectra
level the diagram D in (1.5). Using the same arguments, we can realize on the
spectra level the diagram D− in (2.1). Putting such diagrams together and using
the suspension functors, we obtain the following infinite homotopy commutative
diagram of spectra (see [2], [10], [14], and [19]):
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(3.8)

L(π)
↗ ↘

ΣLP (F ) L(ρ→ π)
↘ ↗

ΣL(π−)
↗ ↘

Σ2
LP (F−) ΣL(ρ→ π−)

↘ ↗
Σ2

L(π)
↗ ↘

Σ3
LP (F ) Σ2

L(ρ→ π)
↘ ↗

Σ3
L(π−)
...
...

Σ2k
L(π)

↗ ↘
Σ2k+1

LP (F ) Σ2k
L(ρ→ π)

↘ ↗
Σ2k+1

L(π−)
...

which realizes Diagram (2.2). For our purposes we do not mention in Diagram
(3.8) the equivalences of spectra that correspond to the vertical equalities in (2.2).
Now we briefly recall the main steps of [14] (see also [2], [4], [10], and [19]) for
constructing a surgery spectral sequence.

Let

(3.9) Xj,j = ΣjL(π∗), Xj+1,j = Σj+1
LP (F ∗), Xj,j+1 = ΣjL(ρ→ π∗), j ≥ 0,

where ∗ = + for j even and ∗ = − otherwise. For j ≥ 1, Diagram (3.8) provides
the maps of spectra

Xj,j−1

↓
Xj+1,j → Xj,j .

For j ≥ 1, we define the spectra Xj+1,j−1 which fit in the pull-back squares

(3.10)
Xj+1,j−1 → Xj,j−1

↓ ↓
Xj+1,j → Xj,j .

Iterating this construction for j ≥ 3 and j − k ≥ 3, we can define the spectra Xj,k

which fit in the pull-back squares

(3.11)
Xj,k → Xj−1,k

↓ ↓
Xj,k+1 → Xj−1,k+1.



10 A. CAVICCHIOLI, YU. V. MURANOV, F. SPAGGIARI

Thus we have extended Diagram (3.8) toward the left direction. Using similar
arguments and pushout squares, we can extend Diagram (3.8) toward the right
direction, too. As a consequence, we obtain the following homotopy commutative
diagram of spectra

(3.12)

X0,0

↗ ↘
X1,0 X0,1

↗ ↘ ↗ ↘
X2,0 X1,1 X0,2

↗ ↘ ↗ ↘ ↗ ↘
. . . X2,1 X1,2 . . .

↗ ↘ ↗ ↘
. . . X2,2 . . .

...

whose squares are all pullback.

Following [10], we now give another definition of elements of the first type, and
prove that it is equivalent to the definition of Section 2. Let

(3.13) ϕj : Xj,0 → X0,0 and ψj : Xj,0 → Xj,j, j ≥ 0

be the maps of spectra that are compositions of maps from Diagram (3.12). For
j ≥ 0, we denote by Fj a homotopy fiber of the map ϕj and by Hj a homotopy
fiber of the map ψj . Thus, for j ≥ 0, we obtain the cofibrations

(3.14) Fj → Xj,0 → X0,0 and Hj → Xj,0 → Xj,j.

Proposition 1. There exists a homotopy commutative diagram of spectra

(3.15)

Hj Hj




y





y

Fj −−−−→ Xj,0
ϕj

−−−−→ X0,0
∥

∥

∥





y
ψj





y
µj

Fj −−−−→ Xj,j
νj

−−−−→ X0,j

whose rows and columns are all cofibrations.

Proof. All the small squares in Diagram (3.12) are pullback. Hence the right bottom
square in Diagram (3.15) is a pullback, too. �

The cofibrations in (3.14) provides the homotopy long exact sequences

(3.16) · · · → πn(Fj)
fj
→ πn(Xj,0)

ϕj
∗→ πn(X0,0)→ · · ·
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and

(3.17) · · · → πn(Hj)
hj
→ πn(Xj,0)

ψj
∗→ πn(Xj,j)→ · · ·

where the map ϕj∗ is induced by ϕj and the map ψj∗ is induced by ψj.

Let

(3.18) ∂j : Ln−j(π
∗)→ LNn−j−2(ρ→ π∗), j ≥ 0

be the map fitting in the diagram D+ for j even and in D− otherwise.
The exact sequence in (3.16) and the commutative diagram in (3.15) provide the

composite map

(3.19) cj = ψj∗ ◦ fj : πn(Fj)→ πn(Xj,j) = Ln−j(π
∗)

with

(3.20) Im cj = Cj ⊂ Ln−j(π
∗).

Let us denote by dj the composition

(3.21) πn(Fj)
cj
→ Ln−j(π

∗)
∂j
→ LNn−j−2(ρ→ π∗)

and by pj the natural projection

(3.22) LNn−j−2(ρ→ π∗)→ LNn−j−2(ρ→ π∗)/{Im dj}.

Now we give an inductive definition of the iterated Browder-Livesay invariants with
respect to an inclusion i : ρ→ π of index 2 (see [10]). In this definition the inclusion
i is fixed.

Definition 7. [10] For an element x ∈ Ln(π), let B0 = {x} be a set. This set
is trivial if x = 0. If the set B0 is nontrivial, then the set ∂0B0 consisting of the
element ∂0x ∈ LNn−2(ρ → π) is called the first Browder-Livesay invariant of the
element x with respect to the inclusion i. It is trivial if ∂0x = 0.

For any j ≥ 2, we define inductively the sets Bj and the j − th Browder-Livesay

invariants of an element x ∈ Ln(π) with respect to the inclusion i. Let a set Bj−1

be defined. It is called trivial if Bj−1 ⊂ Cj−1, and nontrivial otherwise. If the set
Bj−1 is defined and nontrivial, then the j − th Browder–Livesay invariant of x is
the subset

pj−1∂j−1(Bj−1) ⊂ LNn−j−1(ρ→ π∗)/{Im dj−1}.

It is trivial if and only if it equals {0} in LNn−j−1(ρ→ π∗)/{Im dj−1}.
If the j − th Browder–Livesay invariant is defined and trivial, then we consider

the subset
B′j−1 ⊂ Bj−1 ⊂ Ln−j+1(π

∗)

defined by

(3.23) B′j−1 = {x ∈ Bj−1|∂j−1(x) = 0}.
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If the set B′j−1 is defined and nonempty, then we define the set Bj by

(3.24) Bj = qs−1
(

B′j−1

)

where q and s are the maps arising from Diagram (2.4).

Let x ∈ πn(X0,0) = Ln(π) be an element. Now we define the sets Aj , for any
j ≥ 0 [10]. Let A0 = {x}. For j ≥ 1, we define Aj by setting

(3.25) Aj = (ϕj∗)
−1(x) ⊂ πn(Xj,0).

Note that if the set Aj is empty for some j, then all the sets Ak, k ≥ j, are empty,
too.

The following theorem describes some algebraic properties of the Browder-Livesay
invariants with respect to an inclusion i in the sense of Definition 7.

Theorem 2. [10]
i) Let the j − th Browder-Livesay invariant, j ≥ 1, of an element x ∈ Ln(π)

with respect to the inclusion i be defined. Then it is trivial if and only if

(3.26) x ∈ Imϕj∗ ⊂ Ln(π).

ii) Let the j − th Browder-Livesay invariant, j ≥ 1, of an element x ∈ Ln(π)
with respect to the inclusion i be trivial. Then the set B′

j−1 is nonempty and

(3.27) Bj = ψj∗(Aj).

iii) Let the j − th Browder–Livesay invariant, j ≥ 1, of an element x ∈ Ln(π)
with respect to the inclusion i be trivial. Then the set Bj is trivial if and only if

(3.28) x ∈ Im(ϕj∗ ◦ hj).

In the next theorem we prove the equivalence between Definition 3 and Definition
7 of Browder-Livesay invariants and the equality of the sets Γj(x) and Bj given in
these definitions. In particular, the concepts of triviality for these sets coincide.

Theorem 3. Let i : ρ→ π be an inclusion of index 2 and x ∈ Ln(π) an element.
i) The sets Bj and Γj(x) coincide, that is, one of them is defined if and only if

the other is defined, and in this case the sets are equal.
ii) The set Γj(x) is trivial in the sense of Definition 3 if and only if the set Bj

is trivial in the sense of Definition 7.
iii) The element x has nontrivial j−th Browder-Livesay invariant with respect to

i in the sense of Definition 3 if and only if it has nontrivial j− th Browder-Livesay
invariant with respect to i in the sense of Definition 7.

Proof. (By induction on j ≥ 1). For j = 0 we have B0 = {x} = Γ0(x) by definition.
The set Γj(x) is trivial if and only if x = 0. The set B0 is trivial if and only if
x = 0. The first Browder-Livesay invariant in the sense of Definition 7 is defined
and it is trivial if and only if ∂0(x) = 0. This is equivalent to the condition
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0 ∈ {∂0(x)} = ∂0Γ
0(x), that is, the triviality of the first Browder–Livesay invariant

in the sense of Definition 3.

i) Let Bj−1 = Γj−1(x) be defined and nontrivial. The j − th Browder-Livesay
invariant is defined in the sense of the two definitions, and it is trivial in the sense
of Definition 3 and in the sense of Definition 7. Then it follows immediately from
Definition 3 and Definition 7 that

(3.29) Bj = Γj(x) = {qs−1(y)|y ∈ Bj−1 = Γj−1(x), ∂j−1(y) = 0}.

ii) Let Γj(x) be trivial. Then, by definition, 0 ∈ Γj(x) and by (3.29) 0 ∈ Bj . By

Theorem 2, we have Bj = ψj∗(Aj) and

(3.30) 0 ∈ ψj∗(Aj) = ψj
(

(ϕj∗)
−1(x)

)

.

Let a ∈ Aj be an element such that

(3.31) ψj∗(a) = 0 and ϕj∗(a) = x

by definition of Aj. Let z ∈ Bj be an element. By Theorem 2, we have

(3.32) z = ψj∗(b) and ϕj∗(b) = x

by definition of Aj. Now it follows from (3.31) and (3.32) that

(3.33) ϕj∗(b− a) = 0 ∈ πn(X0,0) = Ln(π) and z = ψj∗(b− a).

By the exact sequence in (3.16) there exists an element t ∈ πn(Fj) such that

fj(t) = b− a. From (3.19) and (3.33) we obtain cj(t) = ψj∗ ◦ fj(t) = ψj∗(b− a) = z.
Hence any element z ∈ Bj lies in the set Cj = Im cj , so Bj is trivial in the sense of
Definition 7.

Now we prove the reverse implication. Let the set Bj be trivial in the sense of
Definition 7, that is, Γj(x) = Bj ⊂ Cj = Im cj . Let z ∈ Γj(x) = Bj be an element
satisfying the conditions in (3.32). Since the set Bj is trivial, we have

(3.34) z = cj(t), t ∈ πn(Fj).

Hence, by (3.32), (3.19), and (3.34),

(3.35) ψj∗(b− fj(t)) = ψj∗(b)− ψ
j
∗ ◦ fj(t) = z − cj(t) = z − z = 0

and, by (3.16) and (3.32),

(3.36) ϕj∗(b− fj(t)) = ϕj∗(b)− ϕ
j
∗ ◦ fj(t) = x− 0 = x.

It follows from (3.35), (3.36), and (3.25) that 0 ∈ ψj∗(Aj). Hence by Theorem 2, we
get 0 ∈ Bj = Γj(x), so the set Γj(x) is trivial in the sense of Definition 3.

iii) Let Bj−1 = Γj−1(x) be defined and nontrivial in the sense of the correspond-
ing definitions. Let the j− th Browder-Livesay invariant of the element x be trivial
in the sense of Definition 7. Then, by Theorem 2, we have

(3.37) x ∈ Imϕj∗, x = ϕj∗(a).
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Let us consider the following commutative diagram fitting in Diagram (3.12):

(3.38)

Xj−1,0
ψj−1

−−−−→ Xj−1,j−1

γ

x





x





Xj,0 −−−−→ Xj,j−1 −−−−→ Xj,j

where the right upper map fits into the cofibration

(3.39) Xj,j−1 → Xj−1,j−1 → Σj+1
LN(ρ→ π∗).

This follows from the construction of (3.12) and from Diagrams (1.5) and (2.1).
The right map in (3.39) induces the map ∂j−1. It follows from Theorem 2, (3.37),
and (3.39) that

(3.40) ψj−1γ∗(a) ∈ Bj−1 = Γj−1(x),

where γ∗ : πn(Xj,0) → πn(Xj−1,0) is the map induced by γ. ¿From commutative
Diagram (3.38) and from the cofibration in (3.39) we get

∂j−1(ψ
j−1γ∗(a)) = 0 ∈ πn(Σ

j+1
LN(ρ→ π∗)) = LNn−j−1(ρ→ π),

and hence 0 ∈ ∂(Γj−1(x)). Thus the j − th Browder-Livesay invariant is trivial in
the sense of Definition 3. Now we prove the reverse implication. Let Bj−1 = Γj−1(x)
be defined and nontrivial, and assume that the j− th Browder-Livesay invariant of
the element x is trivial in the sense of Definition 3. This means, by definition, that

(3.41) 0 ∈ ∂j−1(Γj−1(x)) = ∂j−1(Bj−1).

By Theorem 2 and the definition of Aj−1 there exists an element a ∈ Aj−1 ⊂
πn(Xj−1,0) with the following properties:

(3.42) ∂j−1(ψ
j−1
∗ (a)) = 0 and ϕj−1

∗ (a) = x.

Let us consider the homotopy commutative diagram of spectra

(3.43)

Xj,0
γ

−−−−→ Xj−1,0 −−−−→ Σj+1
LN(ρ→ π∗)





y





y
ψj−1

∥

∥

∥

Xj,j−1 −−−−→ Xj−1,j−1 −−−−→ Σj+1
LN(ρ→ π∗)

which arises from the left pullback square in Diagram (3.38) and from the cofibration
in (3.39). The left square in (3.43) is a pullback. It follows from (3.42) and (3.43)
that there exists an element b ∈ πn(Xj,0) such that γ∗(b) = a. Then we get

(3.44) x = ϕj−1
∗ γ(b) = ϕj∗(b), b ∈ πn(Xj,0).

Thus, by Theorem 2(i), the j − th Browder-Livesay invariant of the element x in
the sense of Definition 7 is trivial. �
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4. On the elements of the second type.

In this section we give an equivalent definition of elements of the second type in a
Wall surgery obstruction group. Then we describe some algebraic and geometrical
properties of such elements. We shall use notations from the previous sections. Let
i : ρ → π be an inclusion of index 2 between groups with orientations. For an
element x ∈ Ln(π), we define the sets Bj according to Definition 7. By Definition
7 and Theorem 2, the set Bj (j ≥ 1) is defined and nonempty if and only if the set
Bj−1 is defined and nontrivial and the j − th Browder-Livesay invariant is trivial
(see [10]).

Definition 8. An element x ∈ Ln(π) is an element of the second type with respect
to the inclusion i if the sets Bj are defined for all j ≥ 0.

For the element x of the second type in Definition 8, all the sets Bj are nontrivial
and all the Browder-Livesay invariants are trivial with respect to the inclusion i.
The following result is an immediate consequence of Theorem 3.

Theorem 4. An element x ∈ Ln(π) is of the second type with respect to the
inclusion i in the sense of Definition 8 if and only if x has the second type with
respect to the inclusion i in the sense of Definition 5.

Let us consider the commutative diagram (induced by Diagram (3.15))

(4.1)

πn(Hj) πn(Hj)




y

hj





y
ϕj

∗
◦hj

πn(Fj) −−−−→ πn(Xj,0)
ϕj

∗−−−−→ πn(X0,0)
∥

∥

∥





y
ψj

∗





y
µj
∗

πn(Fj) −−−−→ πn(Xj,j)
νj
∗−−−−→ πn(X0,j)

in which the map ϕj∗ splits into the composition

(4.2) πn(Xj,0)
γ∗
→ πn(Xj−1,0)

ϕj−1
∗→ πn(X0,0).

Theorem 5. Let x ∈ Ln(π) be an element of the second type with respect to the

inclusion i. Then the sets Aj = (ϕj∗)
−1(x) ⊂ πn(Xj,0) are nonempty for all j ≥ 0

and γ∗(Aj) ⊂ Aj−1 for all j ≥ 1. If a ∈ Aj, then the element µj∗ ◦ ϕ
j
∗(a) =

νj∗ ◦ ψ
j
∗(a) ∈ πn(X0,j) is nontrivial.

Proof. The first statement follows from the definition of the sets Aj and Theorem

2 (ii). Let µj∗ ◦ ϕ
j
∗(a) = 0 ∈ πn(X0,j). Since ϕj∗(a) = x by definition of Aj , we get

(4.3) µj∗(x) = 0 ∈ πn(X0,j).

The right vertical row in Diagram (4.1) is exact. Hence, it follows from (4.3) that

x = ϕj∗ ◦ hj(b), where b ∈ πn(Hj). By Theorem 2 (iii), this implies that the set Bj
is trivial. We have a contradiction which proves the statement. �
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Now we illustrate further algebraic properties of the elements of the first and
second type with respect to the inclusion i. They are closely related with Diagrams
(3.12) and (3.15), and allow us to study some functorial properties of the concept
of types of elements in a Wall group. For an inclusion i : ρ → π of index 2, we
can write down the following homotopy commutative diagram of spectra (compare
with Diagrams (3.12) and (3.15)):

(4.4)

. . . −−−−→ Xj,0 −−−−→ Xj−1,0 −−−−→ . . . −−−−→ X2,0 −−−−→ X1,0




y
ϕj





y
ϕj−1





y
ϕ2





y
ϕ1

. . . −−−−→ L(π) L(π) . . . L(π) L(π)




yτj





yτj−1





yτ2





yτ1

. . . −−−−→ ΣFj −−−−→ ΣFj−1 −−−−→ . . . −−−−→ ΣF2 −−−−→ ΣF1

where L(π) = X0,0, the columns are cofibrations, and the bottom horizontal maps
are induced by upper horizontal maps and central equalities (see [30]). Let us
denote by

(4.5) τ j∗ : Ln(π)→ πn−1(Fj)

the maps induced by τ j . In particular, we have

τ1
∗ = ∂0 : Ln(π)→ LNn−2(ρ→ π).

These maps are equivalent to the iterated Browder-Livesay invariants in the sense
precised by the next proposition (which follows from Diagram (4.4) and Theorem
2(i)).

Proposition 2. The j − th (j ≥ 1) Browder-Livesay invariant of an element

x ∈ Ln(π) with respect to the inclusion i is nontrivial if and only if τ j∗(x) 6= 0 and
τk∗ (x) = 0 for every k < j.

Note that, on the contrary to the iterated Browder-Livesay invariants, the maps
τ j∗ are defined for all j ≥ 1, and the condition τ j∗(x) 6= 0 implies that τk∗ (x) 6= 0 for
k ≥ j.

Corollary 1. An element x ∈ Ln(π) is of the first type with respect to the inclusion

i if and only if there exists an index j ≥ 1 such that τ j∗ (x) 6= 0.

Similarly to Diagram (4.4) we can write down a homotopy commutative diagram
of spectra

(4.6)

H1 −−−−→ H2 −−−−→ . . . −−−−→ Hj−1 −−−−→ Hj −−−−→ . . .




y





y





y





y

L(π) L(π) . . . L(π) L(π) . . .




y
µ1





y
µ2





y
µj−1





y
µj

X0,1 −−−−→ X0,2 −−−−→ . . . −−−−→ X0,j−1 −−−−→ X0,j −−−−→ . . .
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where the columns are cofibrations and the top horizontal maps are induced by
bottom horizontal maps and central equalities (see [30]). For any j ≥ 1, we have a
commutative diagram

(4.7)

X0,0

‖

Xj,0 −→ L(π)
τj

−→ ΣFj

↓ µj ↗
X0,j

where the horizontal row is a cofibration. Let us denote by

(4.8) µj∗ : Ln(π)→ πn(X0,j)

the maps induced by µj .

Theorem 6. An element x ∈ Ln(π) is of the second type with respect to the

inclusion i if and only if µj∗(x) 6= 0 and τ j∗(x) = 0 for every j ≥ 1.

Proof. If the element x is of the second type with respect to i, then the statement
of the theorem directly follows from Theorem 5 and Proposition 2. Now we prove
the reverse implication. If τ j∗ (x) = 0 for all j ≥ 1, then all the Browder-Livesay

invariants are trivial by Proposition 2. For j ≥ 1, the sets Aj = (ϕj∗)
−1(x) ⊂

πn(Xj,0) are nonempty, as follows from (4.4). Hence, for j ≥ 0, the sets Bj = ψj∗(Aj)

are defined. The condition µj∗(x) 6= 0 and Diagrams (4.1) and (4.6) imply that x

does not lie in the image of the map ϕj∗ ◦ hj . Hence, by Theorem 2(iii), the set Bj
is nontrivial. �

Now we describe some functorial properties of the elements of various types. Let
i : ρ → π and i′ : ρ′ → π′ be two inclusions of index 2 between oriented groups.
These inclusions provide the short exact sequences

(4.9) 1 −−−−→ ρ
i

−−−−→ π −−−−→ {±1} −−−−→ 1

and

(4.10) 1 −−−−→ ρ′
i′

−−−−→ π′ −−−−→ {±1} −−−−→ 1.

Definition 9. A morphism (f, g) from the inclusion i to the inclusion i′ is given
by a commutative diagram

(4.11)

1 −−−−→ ρ
i

−−−−→ π −−−−→ {±1} −−−−→ 1
∥

∥

∥





y
f





y

g

∥

∥

∥

∥

∥

∥

1 −−−−→ ρ′
i′

−−−−→ π′ −−−−→ {±1} −−−−→ 1

in which the homomorphisms f and g agree with respect to the orientations.

As follows from the definition, the morphism (f, g) is also a morphism from the

inclusion i− : ρ→ π− to i′− : ρ′ → π′−. Note that a commutative diagram

(4.12)

ρ
i

−−−−→ π




y
f





y

g

ρ′
i′

−−−−→ π′

with orientation preserving homomorphisms is not a morphism of the inclusions in
the general case.
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Theorem 7. Let (f, g) be a morphism from i to i′, where i : ρ→ π and i′ : ρ′ → π′

are inclusions of index 2. Let x ∈ Ln(π) be an element and g∗(x) = x′ ∈ Ln(π
′),

where g∗ is the induced map of L–groups.
If the element x′ is of the first type with respect to the inclusion i′, then x has

the first type with respect to the inclusion i.
If the element x′ is of the second type with respect to the inclusion i′, then x may

have either the first or the second type with respect to the inclusion i.

Proof. The morphism (f, g) induces a commutative diagram that is given by the
maps from the groups of Diagram (1.5) for the inclusion i to the corresponding
groups of Diagram (1.5) for the inclusion i′. A similar commutative diagram arises
from Diagram (2.1). These two diagrams can be realized on the spectra level. Thus,
as follows from the construction of Diagram (3.12), the morphism (f, g) induces a
homotopy commutative diagram of spectra. This is given by the maps from the
spectra of Diagram (3.12) for the inclusion i to the corresponding spectra of the
similar diagram for the inclusion i′. By [30], we obtain a homotopy commutative
diagram of spectra

(4.13)













X0,0

‖

Xj,0 −→ L(π)
τj

−→ ΣFj


yµj ↗
X0,j













−→

















X
′
0,0

‖

X
′
j,0 −→ L(π′)

τj ′

−→ ΣF
′
j





y
µj

′
↗

X
′
0,j

















that is given by the maps from the spectra of Diagram (4.7) to the corresponding
spectra of the similar diagram constructed for the inclusion i′.

Let an element x′ be of the first type with respect to the inclusion i′. By
definition, this means that a Browder-Livesay invariant of x′ with respect to i′

is nontrivial. Then, by Proposition 2, τ j
′
∗(x

′) 6= 0 for some j′ ≥ 1. ¿From the
homotopy commutative diagram in (4.13) we obtain a commutative diagram of
groups

(4.14)

Ln(π)
g∗

−−−−→ Ln(π
′)





yτj
∗





y
τj ′

∗

πn−1(Fj)
ς

−−−−→ πn−1(F
′
j)

in which the horizontal maps are induced by the morphism (f, g).

¿From the commutativity of (4.14) we get ς
(

τ j∗ (x)
)

= τ j
′
∗ (g∗(x)) = τ j

′
∗(x

′) 6= 0.

Hence τ j∗(x) 6= 0, and by Corollary 1 the element x is of the first type with respect
to the inclusion i.

Now let the element x′ be of the second type with respect to the inclusion i′.

By Theorem 6, we have µj
′
∗(x

′) 6= 0 and τ j
′
∗(x

′) = 0 for all j′ ≥ 1. Using the same
arguments as above, we can conclude from Diagram (4.13) that µj(x) 6= 0 for all

j ≥ 1. If there exists an index j such that τ j∗ (x) 6= 0, then, by Corollary 1, the

element x is of the first type with respect to the inclusion i. Otherwise, if τ j∗(x) = 0
for all j ≥ 1, then, by Theorem 6, the element x is of the second type with respect
to the inclusion i. �



ON THE ELEMENTS OF THE SECOND TYPE IN SURGERY GROUPS 19

Remark 1. Let S denote Diagram (3.12) for an inclusion i of index 2. Any
morphism (f, g) from i to another inclusion i′ of index 2 defines a diagram Sr

of spectra, that is similar to Diagram (3.12), and consists of the spectra of the
corresponding relative groups. This follows from the existence of the diagrams D

and D− of relative groups. The top spectrum in the diagram Sr is Ln(π
g
−→ π′).

Similarly to the above definitions, we can define the elements of the first and second

type in the group Ln(π
g
−→ π′) with respect to the pair of inclusions (i, i′).

Let us denote by E = πn(S) the commutative diagram of groups obtained from
Diagram (3.12) applying the functor πn. Note that the central vertical row of
squares in E coincides with the vertical row of squares from Diagram (2.2).

Corollary 2. Under the assumptions of Theorem 7, suppose that (f, g) has a left
inverse morphism (retraction) (r, p) from i′ to i. Then the diagram E ′ splits into
the direct sum of the diagram E, that corresponds to the inclusion i, and the relative

diagram Er = πn(S
r) with the top group Ln(π

g
−→ π′). The element

(4.15) x′ = x⊕ y ∈ Ln(π)⊕ Ln(π → π′) = Ln(π′)

has the first type with respect to the inclusion i if and only if one (or both) of the
elements x and y has the first type with respect to i and (i, i′), respectively. The
element x′ in (4.15) has the second type with respect to the inclusion i if and only
if both x and y are not elements of the first type and one of them (or both) has the
second type with respect to i and (i, i′), respectively.

Proof. The functoriality of the diagram E and of the relative groups provides the
exact sequence of diagrams

0→ E → E ′ → Er → 0

where the map E → E ′ has a left inverse. Thus we obtain a direct sum decomposition
E ′ = E ⊕ Er. Now the statement of the corollary follows from Theorem 7. �

5. Elements of the second type and Browder-Quinn surgery obstruction

groups.

In this section we describe some relations between the elements of the second type
and the Browder–Quinn surgery obstruction groups for manifolds with a filtration
(see [4], [6], [10], [19], and [34]). The main results of this section are Theorems 8
and 9. In Theorem 8 we obtain some braids of exact sequences which interpret in
geometrical sense the pullback squares

(5.1)
Xi,0 → X0,0

↓ ↓
Xi,i → X0,i

fitting in Diagram (3.12). In Theorem 9 we give a geometrical formulation of the
necessary condition for an element in a Wall group to lie in the image of the assembly
map. This condition is equivalent to the conditions for an element in a Wall group
to have the first or the second type.
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Let i : ρ → π be an inclusion of index 2 between groups, and X a closed
connected topological n–dimensional manifold with fundamental group π1(X) = π.
Let us consider a map

(5.2) φ : Xn → RPN

from X to a real projective space of high dimension which induces an epimorphism
of the fundamental groups π → Z/2 with kernel ρ. Let k be a natural number
such that n − k ≥ 5. Changing the map φ in its homotopy class, we can make it
transversal to all the submanifolds fitting in the standard filtration

(5.3) RPn−k ⊂ RPn−k+1 ⊂ · · · ⊂ RPN−1 ⊂ RPN

of the projective space RPN . Let Xj = φ−1(RPN−j) be the transversal preimage
for k ≥ j ≥ 0. Then we obtain a filtration X

(5.4) Xk ⊂ Xk−1 ⊂ · · · ⊂ X2 ⊂ X1 ⊂ X0 = X

of X by means of locally flat embedded submanifolds. Moreover, every pair of
manifolds Xj+1 ⊂ Xj is a Browder-Livesay pair with respect to the inclusion i for
j even, and it is a Browder-Livesay pair with respect to the inclusion i− for j odd.
Note that every pair of manifolds fitting in the filtration X (5.4) is a topological
manifold pair in the sense of Ranicki [26, §7.2]. The obtained filtration X in (5.4)
will be called the Browder–Livesay filtration with respect to the inclusion i (see [4],
[10], and [19]).

For 0 ≤ j ≤ k, let Xj denote the restricted filtration

(5.5) Xj ⊂ Xj−1 ⊂ · · · ⊂ X2 ⊂ X1 ⊂ X0 = X.

The filtration X yields a filtration of manifolds with boundary
(5.6)
(Xk−1 \Xk, ∂(Xk−1 \Xk)) ⊂ (Xk−2 \Xk, ∂(Xk−2 \Xk)) ⊂ · · · ⊂ (X \Xk, ∂(X \Xk))

which is a C-stratified manifold with boundary (see [4], [7], [10], [19], and [34]). We
denote the filtration in (5.6) by Xk = X . Let ∂X denote the filtration

(5.7) ∂(Xk−1 \Xk) ⊂ ∂(Xk−2 \Xk) ⊂ · · · ⊂ ∂(X1 \Xk) ⊂ ∂(X0 \Xk)

of the boundary ∂(X0 \ Xk) which arises from (5.6). There is a natural inclusion
∂X → X of stratified spaces.

Similarly, any subfiltration Xj (1 ≤ j ≤ k) defines the filtrations Xj and ∂Xj.
The filtration X is a stratified manifold in the sense of Browder-Quinn (see [7]

and [34]) and hence the groups LBQ∗ (X ) are defined. These groups are realized on

the spectra level by a spectrum L
BQ
∗ (X ), and there are isomorphisms

(5.8) πi
(

L
BQ
∗ (X )

)

= LBQi (X ).

In our notations the subscript ∗ in the obstruction group LBQ∗ (X ) of the filtration
in (5.4) equals the dimension n− k of the smallest manifold of the filtration.
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Now we recall the inductive definition of the spectra L
BQ(X ) that realizes the

Browder–Quinn surgery obstruction groups LBQ(X ) [34, p.129] (see also [4], [10],
and [19]).

By definition, we have L
BQ(X0) = L(π). The spectrum L

BQ(X1) is defined as a
homotopical fiber of the composition

(5.9) L(π1(X1))→ L (π1(∂U))→ L(π1(X0 \X1))

where ∂U = ∂(X0 \ X1), the first map is the transfer map as in (3.5), and the
second map is induced by the inclusion ∂(X0 \X1) ⊂ X0 \X1. It follows from (3.6)
and (5.9) that there exists a homotopy equivalence

(5.10) L
BQ(X1) ' LP (F )

where F is the square in the splitting problem for the pair (X0, X1).

Let us consider the filtration X in (5.4) consisting of k+ 1 manifolds. By induc-
tive assumption, we suppose that the spectra L

BQ(Y) are already defined for any
filtration Y consisting of i manifolds (1 ≤ i ≤ k) with

(5.11) π∗(L
BQ(Y)) = LBQ∗ (Y)

where LBQ∗ (Y) is the Browder–Quinn surgery obstruction group for the stratified
space Y.

The stratified spaces ∂Xk and Xk consists of k manifolds. Hence, by inductive
assumption, the spectra L

BQ(∂Xk) and L
BQ(Xk) have been defined. The transfer

map

Ln−k(π1(Xk))→ LBQn−k(∂Xk)

is realized on the spectra level (see [34]) by a map of spectra

(5.12) L(π1(Xk))→ L
BQ(∂Xk).

By definition, the spectrum L
BQ(Xk) fits into a cofibration

(5.13) L
BQ(Xk)→ L(π1(Xk))→ L

BQ(Xk).

The second map in (5.13) is the composition

(5.14) L(π1(Xk))→ L
BQ(∂Xk)→ L

BQ(Xk)

where the first map is the map in (5.12) and the second map is induced by the
inclusion of filtrations ∂Xk ⊂ Xk. Note that for 1 ≤ j ≤ k we have the following
cofibration sequence

(5.15) · · · → L
BQ(Xj)→ L(π1(Xj))→ L

BQ(Xj)→ ΣL
BQ(Xj)→ · · ·

which follows from the inductive definition.

For 1 ≤ j ≤ k we denote by Yj the subfiltration

(5.16) Xj ⊂ Xj−1 ⊂ · · · ⊂ X2 ⊂ X1
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of the filtration X . Then the filtrations Yj and ∂Yj are defined as before.
By [10] for 1 ≤ j ≤ k we have the following braid of exact sequences

(5.17)

→ Ln+j(π1(X0\X1)) → LBQ
n+1

(Xj−1) → LNn−1(ρ→π1(Xj−1)) →

↗ ↘ ↗ ↘ ↗ ↘

LBQ
n (Xj) LBQ

n+1
(Yj−1)

↘ ↗ ↘ ↗ ↘ ↗

→ LNn(ρ→π1(Xj−1)) → LBQ
n (Yj) → Ln+j−1(π1(X0\X1)) →

which is realized on the spectra level.
Now we recall the definition of spectra LSF (Xj) with homotopy groups

(5.18) πn(LSF (Xj)) = LSFn(Xj)

that are the obstruction groups for splitting a simple homotopy equivalence f :
M → X along the subfiltration Yj ⊂ Xj (see [4]). More precisely, the group
LSFn−j(Xj) is the obstruction group for splitting a simple homotopy equivalence
f : M → X along the subfiltration Yj .

Forgetting the smallest manifold yields the following natural maps of spectra

(5.19) L
BQ(Yk)→ ΩL

BQ(Yk−1)→ · · · → Ωk−2
L
BQ(Y2)→ Ωk−1

L(π1(X1)).

The composition in (5.19) and the transfer map fitting in (3.6) give the compo-
sition (1 ≤ j ≤ k)

(5.20) L
BQ(Yj)→ Ωj−1

L(π1(X1))→ ΩjL(π1(X \X1)→ π1(X)).

We define the spectrum LSF (Xj) as the homotopy fiber of the composition in
(5.20), and let LSF∗(Xj) = π∗(LSF (Xj)).

Lemma 1. [4] The groups LSF∗ = LSF∗(X ) fit in the commutative braid of exact
sequences

(5.21)

→ Ln(ρ) −→ Ln(π) → LSFm−1 →
↗ ↘ ↗ ↘ ↗ ↘

LBQm (X ) Ln(ρ→ π)
↘ ↗ ↘ ↗ ↘ ↗

→ LSFm −→ LBQm (Y) −→ Ln−1(ρ) →

where ρ = π1(X0 \X1), π = π1(X0), X = Xk, Y = Yk, and m = n− k. Diagram
(5.21) is realized on the spectra level.

Note that LSF (X1) = LS(F ). Similarly to the sequence in (5.19), we obtain the
following sequence formed by natural maps of spectra

(5.22) ΣkLBQ(Xk)→ Σk−1
L
BQ(Xk−1)→ · · · → Σ1

L
BQ(X1)→ L(π1(X)).

Let X ij (0 ≤ i ≤ j ≤ k) denote the subfiltration

(5.23) Xj ⊂ Xj−1 ⊂ · · · ⊂ Xi+1 ⊂ Xi

of the filtration X . Forgetting the largest manifold of the filtration yields the
following natural maps of spectra

(5.24) ΣkLBQ(X 0
k )→ ΣkLBQ(X 1

k )→ · · · → ΣkLBQ(X k−1
k )→ ΣkL(π1(Xk)).
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Proposition 3. The sequence of maps in (5.22) coincides with the sequence of
maps of spectra

Xk,0 → Xk−1,0 → · · · → Xk,2 → Xk,k

arising from Diagram (3.12).
The sequence of maps in (5.24) coincides with the sequence of maps of spectra

Xk,0 → Xk,1 → · · · → X1,0 → X0,0

arising from Diagram (3.12).

Proof. The first statement was proved in [19] (see also [10]). The second statement
follows from the realization of the central squares in Diagram (5.17) on the spectra
level. This square coincides with the pullback square

Xj,0 → Xj−1,0

↓ ↓
Xj,1 → Xj−1,1

arising from Diagram (3.12). �

Let Vj (0 ≤ j ≤ k − 1) be the subfiltration

Xk ⊂ Xj ⊂ Xj−1 · · · ⊂ X1 ⊂ X0 = X

of the filtration X . Let Zj = Vj (0 ≤ j ≤ k− 1) be the filtration of manifolds with
boundary obtained by cutting the submanifold Xk from the filtration Vj . Note that

Xk = Zk−1 and L
BQ(Xk) = L

BQ(Zk−1). Similarly to the sequences in (5.19) and
(5.22), we obtain the following sequence of natural maps of spectra

(5.25)
Σk−1

L
BQ(Xk) = Σk−1

L
BQ(Zk−1)→ Σk−2

L
BQ(Zk−2)→ · · · → Σ1

L
BQ(Z1)→ L(π1(X\Xk)).

Thus we can write down the composition

(5.26) ΣjLBQ(Zj)→ L(π1(X \Xk))→ L(π1(X))

where the second map is induced by the natural inclusion (X \ Xk) ⊂ X. Let us
denote by L

BQ(Zj → X ) a homotopical cofiber of the composition in (5.26), and
by

(5.27) LBQ∗ (Zj → X ) = π∗(L
BQ(Zj → X ))

its homotopy groups.
Let us consider the maps

(5.28)

ΣkLBQ(Xk) −−−−→ L(π1(X))




y

ΣkL(π1(Xk))

which are given by the compositions in (5.22) and (5.24).
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Theorem 8.

i) The spectrum
L
BQ(Zk−1 → X ) = L

BQ(X → X )

fits in the pushout square

(5.29)

ΣkLBQ(Xk) −−−−→ L(π1(X))




y





y

ΣkL(π1(Xk)) −−−−→ L
BQ(X → X )

defined by Diagram (5.28).

ii) The square in (5.29) coincides with the pullback square

(5.30)

Xk,0
ϕk

−−−−→ X0,0




yψk





yµk

Xk,k
νk

−−−−→ X0,k

fitting into Diagram (3.12).

iii) The homotopical fiber of the vertical maps in Diagram (5.29) is the spectrum
Σk−1

L
BQ(X ), the homotopical fiber of the horizontal maps in Diagram (5.29) is

the spectrum ΣkLSF (X ), and there is a homotopy commutative diagram of spectra

(5.31)

Σk−1
L
BQ(X ) Σk−1

L
BQ(X )





y





y

ΣkLSF (X ) −−−−→ ΣkLBQ(X ) −−−−→ L(π1(X0))
∥

∥

∥





y





y

ΣkLSF (X ) −−−−→ ΣkL(π1(Xk)) −−−−→ L
BQ(X → X )

whose rows and columns are cofibrations.

iv) The homotopy commutative diagram in (5.31) coincides with Diagram (3.15)
for j = k.

Proof. Let us consider the diagram

(5.32)

Σk−1
L
BQ(X )




y

ΣkLSF (X ) −−−−→ ΣkLBQ(X ) −−−−→ L(π1(X))




y

ΣkL(π1(Xk))

which arises from (5.15) and Diagram (5.21) on the spectra level. The composite
map

(5.33) Σk−1
L
BQ(X )→ ΣkLBQ(X )→ L(π1(X))
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from (5.32) fits in the following homotopy commutative diagram of spectra

(5.34)

Σk−1
L
BQ(X ) −−−−→ ΣkLBQ(X ) −−−−→ L(π1(X))
∥

∥

∥

∥

∥

∥

∥

∥

∥

Σk−1
L
BQ(Zk−1) −−−−→ ΣkLBQ(Vk−1) −−−−→ L(π1(X))




y





y





y

Σk−2
L
BQ(Zk−2) −−−−→ ΣkLBQ(Vk−2) −−−−→ L(π1(X))




y





y





y

· · · · · · · · ·




y





y





y

ΣL
BQ(Z1) −−−−→ ΣkLBQ(V1) −−−−→ L(π1(X))




y





y





y

L
BQ(Z0) −−−−→ ΣkLBQ(V0) −−−−→ L(π1(X))

∥

∥

∥

∥

∥

∥

∥

∥

∥

L(X \Xk) −−−−→ ΣkLP (Fk) −−−−→ L(π1(X))

in which the rows are defined for the filtrations Vj similarly to (5.33) and Fk is
the square in the splitting problem for the manifold pair Xk ⊂ X. The vertical
maps are the natural maps induced by forgetting the submanifold in the passing
from Vj to Vj−1. The commutativity of each square follows from the functoriality
of the transfer maps in (5.12). Hence the composition in (5.25) coincides with the
composition in (5.33). The row and the column of Diagram (5.32) are cofibrations,
and hence the cofibres of the sloping maps

Σk−1
L
BQ(X )→ ΣkLBQ(X )

and
ΣkLSF (X )→ ΣkL(π1(Xk))

are naturally homotopy equivalent (see [2], [3], and [22]). Thus we obtain Diagram
(5.31) in which the right bottom square is a pushout (and pullback). Now the
theorem follows from the unity property for pushout squares and from Proposition
3. �

The left vertical column of squares in (5.34) comes from pushout squares since the
fibers of the horizontal maps are naturally homotopy equivalent. We now describe
the cofibres of the vertical maps in these squares.

Proposition 4. Let F
j−1

k be a square in the splitting problem for the manifold pair
(Xj \Xk) ⊂ (Xj−1 \Xk). Then the cofiber of the map

ΣjLBQ(Zj)→ Σj−1
L
BQ(Zj−1)
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from Diagram (5.34) is Σj+1
LS(F

j−1

k ).

Proof. For the filtration X we can construct a diagram which is similar to Diagram
(3.43) obtained for the filtration X . Now the result follows. �

Now we describe some relations between various spectra L
BQ(X j → Xj) and

L
BQ(X j) for a given Browder-Livesay filtration X = Xk as in (5.4).

Proposition 5. Let X be the Browder-Livesay filtration defined above. Then we
have the following homotopy commutative diagram of spectra
(5.35)

L(π1(X \X1)) → ΣL
BQ(X 2) → · · · → Σk−1

L
BQ(X k)

↓ ↓ ↓
L(π1(X)) = L(π1(X)) = · · · = L(π1(X))
↓ ↓ ↓

L(π1(X \X1)→ π1(X)) → L
BQ(X 2 → X2) → · · · → L

BQ(X k → Xk)

whose vertical columns are cofibrations.

Proof. By Theorem 8, Diagram (5.35) coincides with the left part of Diagram (4.6),
so the result follows. �

Proposition 6. Under the assumptions of Proposition 5, we have the following
homotopy commutative diagram of spectra

(5.36)

L(π1(X \X1)) → ΣL
BQ(X 2) → · · · → Σk−1

L
BQ(X k)

↓ ↓ ↓
ΣL

BQ(X1) ← Σ2
L
BQ(X2) ← · · · ← ΣkLBQ(Xk)

↓ ↓ ↓
L(π1(X)) = L(π1(X)) = · · · = L(π1(X))

whose vertical composite maps coincide with the vertical maps in (5.35) and the
maps in the middle row are induced by the natural forgetful maps.

Proof. The result follows from Theorem 8 and Diagrams (3.12), (4.6), and (5.35). �

To complete the section, we give a necessary geometrical condition for an element
in a Wall group to lie in the image of the assembly map.

Theorem 9. Let an element x ∈ Ln(π) be realized by a normal map of closed
manifolds. Then for any inclusion ρ → π of index 2 there exist a closed manifold
Xn with π1(X) = π and a Browder-Livesay filtration X = Xk with respect to the
inclusion i such that

(5.36) x ∈ Im
(

LBQn−k+1(X k)→ Ln(π)
)

.

Proof. Let an element x be realized by a normal map of closed manifolds. Then
for any inclusion i : ρ → π of index 2 and for any integer k ≥ 1 there exists a
Browder-Livesay filtration Xk with respect to i such that (see [10] and [19])

(5.37) x ∈ Im
(

LBQn−k(Xk)→ Ln(π1(X))
)

.

But x cannot have the second type with respect to i. Hence, by Theorem 6, there
exists an integer j ≥ 1 such that µj∗(x) = 0 and

x ∈ Im(πn(Hj)→ Ln(π)).

Now the result follows from Theorem 8, part iv. �
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6. Realizing surgery and splitting obstructions.

In this section we apply the obtained results for computing the assembly map for
various cases of groups. Then we obtain further applications on the problem of re-
alizing various surgery and splitting obstructions by simple homotopy equivalences
of closed manifolds. The main result of the section are Theorems 10-15.

The representation of an element x in a Wall group Ln(π) as a surgery ob-
struction of a degree-one normal map (f, b) : Mn → Xn between closed manifolds
with π1(X) = π is one of the basic problems in Surgery Theory. This is equiv-
alent to the fact that the element x belongs to the image of the assembly map
A : Hn(Bπ,L•)→ Ln(π), where Bπ = K(π, 1) is the classifying space of the group
π (see [31]).

Let Y n−q ⊂ Xn be a submanifold of codimension q in a closed connected topo-
logical n-manifold X, n− q ≥ 5. Then the splitting obstruction groups LSn−q(F )
are defined (see [26] and [31]), where F is the square in (1.3).

Let
(f, b) : (Mn, νM )→ (Xn, νX)

be a degree-one normal map. It is defined an obstruction to the existence of a
simple homotopy equivalence which splits along Y

f ′ : M ′n → Xn

in the class of the normal cobordism of (f, b). This obstruction lies in the surgery
obstruction group LPn−q(F ), where F is the square in (1.3). This group depends
as well only on F and on the dimension n− q (mod4). It follows from geometrical
definitions that there are obvious maps [31]

(6.1)
LSn−q(F )→ LPn−q(F ), LPn−q(F )

p0
→ Ln(π1(X))

LPn−q(F )
p1
→ Ln−q(π1(Y )), LSn−q(F )

s
→ Ln−q(π1(Y ))

.

All the elements of the groups LS∗(F ) and LP∗(F ) are realized by maps of
manifolds with boundary (see [26] and [31]). For a manifold pair Y n−q ⊂ Xn we
have a commutative diagram

(6.2)
· · · → Ln+1(π) → STOP (X) → [X,G/TOP ] → Ln(π)

↘ ↓ θ ↓ ↗
LSn−q(F ) → LPn−q(F )

in which the upper row is the surgery exact sequence in (1.3), and the other row
lies in the following braid of exact sequences (see [26] and [31])

(6.3)

→ Ln(π1(X\Y )) −→ Ln(π1(X)) → LSn−q−1(F ) −→

↗ ↘ p0↗ ↘ ↗ ↘

LPn−q(F ) Lrel
n

↘ ↗ ↘p1 ↗ ↘ ↗

→ LSn−q(F )
s

−→ Ln−q(π1(Y )) −→ Ln−1(π1(X\Y )) →

where Lreln = Ln(π1(X \ Y )→ π1(X)).

All the maps from (6.1) fit into Diagram (6.3). Note that Diagrams (6.2) and
(6.3) are realized on the spectra level (see [2], [3], [25], and [31]).
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It follows from Diagram (6.2) that the problem of realizing the splitting obstruc-
tions by homotopy equivalences of closed manifolds closely relates to the computa-
tion of maps in the surgery exact sequence. In particular, for a given manifold X
it relates to the computation of the map θ : STOP (X)→ LSn−q(F ) from Diagram
(6.2). The simplest cases for realizing the splitting obstructions in Browder-Livesay
groups are considered in [1] and [20].

Lemma 2. i) Let x ∈ LSn−q(F ) be an element such that y = s(x) ∈ Ln−q(π1(Y ))
is not realized by a normal map of closed manifolds. Then x cannot be the splitting
obstruction of a simple homotopy equivalence of closed manifolds.

ii) Let x ∈ LPn−q(F ) be an element such that y = p1(x) ∈ Ln−q(π1(Y )) is not
realized by a normal map of closed manifolds. Then x cannot be the obstruction to
surgery on a closed manifold pair.

iii) Let x ∈ LPn−q(F ) be an element such that y = p0(x) ∈ Ln(π1(X)) is not
realized by a normal map of closed manifolds. Then x cannot be the obstruction to
surgery on a closed manifold pair.

Proof. The results follow from the geometrical definitions of the maps s, p1, and
p0 in Diagram (6.3) [31]. �

According to notations in [20], we have isomorphisms LN∗(1→ Z/2±) ∼= BLn+1(±)
and the map s : LN∗(1→ Z/2±)→ Ln(Z/2

∓) in Lemma 2 coincides with the map
ln+1 : BLn+1(±) → Ln(Z/2

∓) from [20]. The results of [20, Chapter III.3.2] pro-
vides some realization theorems for the elements of the groups LN∗(1→ Z/2±).

Below we shall give several examples in which the splitting obstruction groups
are very large but the image of the map θ is trivial or very small.

Now we discuss the realization of the splitting obstructions for manifolds X
such that π1(X) = π is an elementary abelian 2-group of positive rank r + 1. Let
i : ρ→ π be an inclusion of index 2. Then the group ρ is an elementary 2-group of
rank r. Denote by π− the group π equipped with a nontrivial orientation. Up to
isomorphism of inclusions, we have two oriented subgroups of index 2 of the group
π. The first one is given by an inclusion

(6.4) i : ρ→ π−

where the subgroup ρ has a trivial orientation. In this case, π− ∼= ρ⊕ Z/2−. The
second one is given by an inclusion

(6.5) j : ρ− → π−

where the subgroup ρ− has a nontrivial orientation, and

(6.6) π− ∼= ρ− ⊕ Z/2− ∼= ρ− ⊕ Z/2.

Note that in (6.5) the subgroup ρ− has a direct summand Z/2 with a nontrivial
orientation. Recall that there are the following isomorphisms [31]

(6.7)
LNn(ρ→ π−) ∼= LNn+2(ρ→ π) ∼= Ln(ρ),

LNn(ρ
− → π−) ∼= LNn+2(ρ

− → π−) ∼= Ln(ρ−).
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The surgery and splitting groups for elementary 2-groups are well known (see, for
example, [17], [23], and [33]). In the oriented case we have the following isomor-
phisms

(6.8) Ln(ρ) = Z
2r

⊕ (Z/2)2
r−r−1−(r

2), (Z/2)2
r−r−1−(r

2),Z/2, (Z/2)2
r−1

for n = 0, 1, 2, 3 (mod4), respectively. In the nonoriented case we have

(6.9)
Ln(π

−) = (Z/2)2
r−r, (Z/2)2

r−r−1

Ln(ρ
−) = (Z/2)2

r−1−r+1, (Z/2)2
r−1−r

for n = 0, 1 (mod2), respectively. In particular, we get

(6.10) Ln(Z/2
−) = Z/2, 0, Z/2, 0,

for n = 0, 1, 2, 3 (mod4), respectively.

For every r ≥ 1, the natural inclusion Z/2− → ρ− induces an inclusion

(6.11) δ : Z/2 = LN2k(Z/2
− → Z/2− ⊕ Z/2±)→ LN2k(ρ

− → ρ− ⊕ Z/2±)

of a direct summand.

Let us denote by S a subgroup of the group L3(ρ) which is generated by the
images of Z/2 under all the inclusions Z/2 = L3(Z/2) → L3(ρ) induced by the
inclusions Z/2 → ρ on the direct summands Z/2 of the group ρ. It follows from
[17], [23], and [33] that S = (Z/2)r. Using the isomorphisms in (6.7), we obtain
the inclusions

(6.12) S → L3(ρ)→ LN3(ρ→ π−) and S → L3(ρ)→ LN1(ρ→ π+).

Theorem 10. i) Any nontrivial element of the groups

LN1(ρ
− → π−) ∼= LN1(ρ

− → π) ∼= LN3(ρ
− → π−) ∼=

∼= LN3(ρ
− → π) ∼= (Z/2)2

r−1−r

and

LN3(ρ→ π) ∼= LN1(ρ→ π−) ∼= (Z/2)2
r−r−1−(r

2)

cannot be realized as a splitting obstruction of a simple homotopy equivalence of
closed manifolds along a Browder-Livesay submanifold of codimension 1.

ii) For every r ≥ 1, the elements of the groups

LN0(ρ
− → π−) ∼= LN0(ρ

− → π) ∼= LN2(ρ
− → π−) ∼=

∼= LN2(ρ
− → π) ∼= (Z/2)2

r−1−r+1

that do not lie in the direct summand Z/2 given by the image of the map δ in
(6.11) cannot be realized as splitting obstructions of simple homotopy equivalences
of closed manifolds along Browder-Livesay submanifolds of codimension 1.
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iii) For every r ≥ 2, the elements of the groups

LN3(ρ→ π−) ∼= LN1(ρ→ π) ∼= (Z/2)2
r−1

that do not lie in the subgroup S = (Z/2)r defined above cannot be realized as
splitting obstructions of simple homotopy equivalences of closed manifolds along
Browder-Livesay submanifolds of codimension 1.

Let (X4k+2, Y 4k+1), 4k+ 1 ≥ 5, be a Browder–Livesay pair of closed topological
manifolds with the square

ρ → ρ
↓ ↓
π− → π

for a splitting problem. Then every element of the subgroup S ⊂ LN1(ρ → π) is
realized as a splitting obstruction of a simple homotopy equivalence f : M 4k+2 →
X4k+2 of closed manifolds along the Browder-Livesay submanifold Y .

iv) Any nontrivial element of the group

LN0(ρ→ π−) = (Z)2
r

⊕ (Z/2)2
r−r−1−(r

2)

cannot be realized as a splitting obstruction of a simple homotopy equivalence of
closed manifolds along a Browder-Livesay submanifold of codimension 1.

v) Let (X4k+3, Y 4k+2), 4k+2 ≥ 6, be a Browder–Livesay pair of closed topological
manifolds with the square

ρ → ρ
↓ ↓
π− → π

for a splitting problem. Then every element of the group

LN2(ρ→ π) = Z
2r

⊕ (Z/2)2
r−r−1−(r

2)

is realized as a splitting obstruction of a simple homotopy equivalence f : M 4k+2 →
X4k+2 of closed manifolds along the Browder-Livesay submanifold Y .

Proof. i) The diagram chasing in Diagram (1.5) and the isomorphisms (6.6)-(6.9)
imply that, in all cases under our consideration, the maps

c± : LN2k+1(ρ
∗ → π∓)→ L2k+1(π

±)

in (1.5) are monomorphisms (see also [23]). By [17] all nontrivial elements of the
groups L1(π

−), L3(π
−), and L1(π) have the second type with respect to some

subgroup of index 2. Hence they cannot be realized by normal maps of closed
manifolds. Now the statement i) follows from the isomorphism in (6.6) and Lemma
2, part i).

ii) The same arguments as in part i) provide that all the maps

c− : LN2k(ρ
− → π±)→ L2k(π

∓)
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in Diagram (1.5) are monomorphisms. Now let us consider the inclusion ρ− →
ρ− ⊕ Z/2 ∼= π−. For r ≥ 1, we have a commutative diagram

(6.13)
Z/2− −→ Z/2− ⊕ Z/2
↓ ↓
ρ− −→ ρ− ⊕ Z/2

where the vertical maps give a morphism of inclusions of index 2. As follows from
Section 4, Diagram (6.13) induces a map of Diagrams (1.5) for the given inclusions.
Thus we obtain a commutative diagram

(6.14)

Z/2 L0(Z/2
−)

∥

∥

∥

∼=





y

LN0(Z/2
− → Z/2− ⊕ Z/2)

∼=
−−−−→ L0(Z/2

− ⊕ Z/2−)




y





y

LN0(ρ
− → ρ− ⊕ Z/2)

mono
−−−−→ L0(ρ

− ⊕ Z/2−)

where the right upper vertical map is induced by a natural inclusion. By [17] only
the direct summand Z/2 ⊂ L0(ρ

− ⊕ Z/2−) given by the right vertical composition
in (6.14) can be realized by normal maps of closed manifolds. Now the statement
ii) for the group LN0(ρ

− → ρ− ⊕ Z/2) follows from Lemma 2 and Diagram (6.14).
The discussion of the other cases is similar.

iii) Let us consider the following part

(6.15) L3(π)→ LN1(ρ→ π)→ L1(π
−)

of Diagram (1.5) for the inclusion ρ → π. By [23, Theorem 4] (see also [21] and
[33]) the image of the left map in (6.15) is (Z/2)r, and the sequence in (6.15) is
exact. All nontrivial elements of the group L1(π

−) cannot be realized by normal
maps of closed manifolds by [17]. Hence it remains only to prove that the image of
the left map in (6.15) coincides with the subgroup S. Let us fix a decomposition

(6.16) ρ = Z/2⊕ Z/2⊕ · · · ⊕ Z/2

into a direct sum, and consider the commutative diagram

(6.17)
Z/2 −→ Z/2⊕ {Z/2}
↓ ↓
ρ −→ ρ⊕ {Z/2}

whose left vertical map is an inclusion of a direct summand into the decomposi-
tion in (6.16). ¿From the functoriality of Diagram (1.5) we obtain a commutative
diagram

(6.18)

Z/2 Z/2
∥

∥

∥

∥

∥

∥

L3(Z/2⊕ Z/2)
Im=Z/2
−−−−−→ LN1(Z/2→ Z/2⊕ Z/2)

∼=
←−−−− L3(Z/2)

mono





y

mono





y

mono





y

L3(π) −−−−→ LN1(ρ→ π)
∼=

←−−−− L3(ρ).



32 A. CAVICCHIOLI, YU. V. MURANOV, F. SPAGGIARI

Now the statement about the nonrealization of the elements for the case LN1(ρ→
π) follows from (6.12) and (6.18). The map L3(π)→ LN1(ρ → π) in (6.18) is the
composition

L3(π)
λ

−−−−→ STOP (X4k+2)
θ

−−−−→ LN1(ρ→ π)

fitting in Diagram (6.2) for the manifold pair (X,Y ). The geometrical definitions of
the action λ and the map θ (see [31]) imply that the elements lying in the image of
θλ are realized as splitting obstruction of a simple homotopy equivalences M 4k+2 →
X4k+2 along Browder-Livesay submanifolds Y 4k+1 ⊂ X4k+2 of codimension 1.

The proof for the group LN3(ρ → π−) is similar. It is necessary to start from
the chain complex

LN3(ρ→ π−)
mono
−−−−→ L3(π)

Image=(Z/2)r

−−−−−−−−−→ L3(ρ)

fitting in Diagram (1.5) for the inclusion ρ → π−. In the group L3(π) only the

elements of the subgroup Z/2
r+1

generated by Z/2 = L3(Z/2)→ L3(π) (which are
induced by the inclusions Z/2→ π on the direct summands) are realized by normal
maps of closed manifolds [18]. Now arguments similar to those used for the group
LN1(ρ→ π) provide the proof.

iv) Let us consider the following composition

(6.19) LN0(ρ→ π−)
c

−−−−→ L0(π)
∂

−−−−→ LN2(ρ→ π)

where the first map lies in Diagram (1.5) for the inclusion ρ→ π− and the second
map lies in Diagram (1.5) for the inclusion ρ→ π. The first map is a monomorphism
[23], the second map is an epimorphism[23], and the composition is the multiplica-
tion by 2 if we use the isomorphism from (6.7) (see [4], [11], and [14]). By [17] only
the elements of a direct summand Z of the group L0(π) can be realized by normal
maps of closed manifolds. Since the map c in (6.19) is a monomorphism, we obtain
by Lemma 2 that only the elements of infinite order in the group LN0(ρ → π−)
can be realized as splitting obstructions for simple homotopy equivalences of closed
manifolds. But any element x ∈ LN0(ρ→ π−) of infinite order maps to a nontrivial
element of the group LN2(ρ → π) since the composition in (6.19) is the multipli-
cation by 2. Hence the element c(x) ∈ L0(π) has a nontrivial Browder-Livesay
invariant ∂ (c(x)) 6= 0 ∈ LN2(ρ→ π+), and the element c(x) cannot be realized by
a normal map of closed manifolds. Now the statement follows from Lemma 2 (see
also [4]).

v) The proof is similar to that in iii) for realizing the elements of S ⊂ LN1(ρ→
π). We remark only that the epimorphism ∂ : L0(π) → LN2(ρ → π) in (6.19) is
the composition

L0(π)
λ

−−−−→ STOP (X4k+3)
θ

−−−−→ LN2(ρ→ π).

Now the result follows. �

Remark 2. Note that we have natural isomorphisms

LN0(ρ→ π) ∼= LN0(1→ Z/2)
s
→
∼=
L0(Z/2

−) ∼= Z/2
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and
LN2(ρ→ π−) ∼= LN2(1→ Z/2−)

s
→
∼=
L2(Z/2) ∼= Z/2.

Now the results of [20, Chapter III.3.2] provide the realization of the elements in
the group

LN0(ρ→ π) ∼= LN2(ρ→ π−) ∼= Z/2.

In case ii) of Theorem 10, Example 2.4 from [1] provides the case of a closed
Browder-Livesay manifold pair when a nontrivial element of the group LN2(ρ

− →
π) is realized as an obstruction to splitting along the submanifold.

In the situation of a manifold pair, we have naturally the problem of realizing
various elements of the group LPn−q(F ) by normal maps of closed manifolds. This
problem is connected with the computation of the map [X,G/TOP ]→ LPn−q(F )
from Diagram (6.2).

Let ρ− → π± = ρ− ⊕ Z/2± be an inclusion of index 2 between elementary
2-groups and r = rank ρ ≥ 1. Let

(6.20) F± =





ρ− → ρ−

↓ ↓
π∓ → π±





denote the various squares in the correspondent splitting problems. We have the
natural isomorphisms π− ∼= π+ and F− ∼= F+ of oriented objects.

Proposition 7. Under these assumptions, there are isomorphisms

(6.21) LPn(F
±) ∼= (Z/2)2

r+2r−1−2r

for every n = 0, 1, 2, 3 (mod4).

Proof. Let us consider Diagram (1.5) for the inclusion ρ− → π−. In this diagram
all the maps

Ln(ρ
−)→ Ln(π

−) and LNn(ρ
− → π−)→ Ln(π

+)

are monomorphisms, and all the maps

Ln(π−)→ LNn−2(ρ
− → π−) and Ln(π

+)→ Ln(ρ
−)

are trivial (see [23]). Now the result follows by a diagram chasing. �

Theorem 11. For every n = 0, 1, 2, 3 (mod4), there exists a direct summand

S = Z/2 ⊂ LPn(F
±) = (Z/2)2

r+2r−1−2r

such that the elements that do not lie in S cannot be realized as surgery obstructions
of normal maps of closed manifold pairs.

The nontrivial element of the direct summand S ⊂ LP2k+1(F
±) is realized as an

obstruction to surgery a normal map f : (Mn, Nn−1) → (X,Y ) on pairs of closed
topological manifolds.
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Proof. We consider only the case LP1(F
−) since the others are similar. Using

Proposition 7, we can write down the following part of Diagram (1.5)

(6.22)

L2(ρ
−) −→ L2(π

−)

mono ↘ ↗epi

LP1(F
−)

mono ↗ ↘epi

LN1(ρ
− → π−) −→ L1(π).

By [17] we have not nontrivial elements in the group L1(π) that are realized by
normal maps of closed manifolds. Furthermore, there exists only one such an
element y in the group L2(π

−). We can realize this element by a normal map
f : M4k+2 → X4k+2. The map φ as in (5.2) with respect to the inclusion ρ− → π−

provides a codimension 1 submanifold Y ⊂ X with the square F− in the splitting
problem. Thus the normal map f to the pair (X,Y ) has an obstruction x to surgery
on manifold pairs in the group LP1(F

−) such that y = p0(x). Hence x 6= 0. Now
the result follows from Diagram (6.22) and Lemma 2. �

Remark 3. Example 2.4 of [1] gives the case in which a nontrivial element z of the
group LN2(ρ

− → π) is realized as the splitting obstruction of a simple homotopy
equivalence of closed manifolds. From a diagram similar to (6.22), we obtain a
monomorphism

(6.23) s1 : LN2(ρ
− → π+)→ LP2(F

+).

¿From the geometrical description of the map s1 in Diagram (6.3), we obtain that
the nontrivial element s1(z) ∈ S ⊂ LP2k(F

+) is realized by a normal map of closed
manifold pairs.

Now we consider the case of the trivial orientation on an elementary 2-group ρ of
rank r ≥ 0. Let ρ→ π± = ρ⊕Z/2± be an inclusion of index 2 between elementary
2-groups, and let

(6.24) F± =





ρ → ρ
↓ ↓
π∓ → π±





denote the various squares in the correspondent splitting problems.

Proposition 8. Let F± be the square in (6.24). Then there are isomorphisms
(6.25)

LPn(F
+) = (Z/2)2

r+1−2r−(r
2)−1, (Z/2)2

r−r, (Z/2)2
r+1−r−1, (Z)2

r

⊕(Z/2)2
r+1−2r−(r

2)−2

for n = 0, 1, 2, 3 (mod4), respectively, and isomorphisms

LPn(F
−) ∼= LPn+1(F )

for n = 0, 1, 2, 3 (mod4).

Proof. The proof is similar to that given in Proposition 7. Let us consider Diagram
(1.5) for the inclusion ρ→ π. By diagram chasing we obtain

LPn(F ) = Ln+1(ρ)⊕ Ln(π
−)

for any n. Now the result follows from (6.8) and (6.9). The consideration of the
case F− is similar. �
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Theorem 12. Let F+ be the square in (6.24).
i) All the elements of the group LP0(F ), except those in the direct summand

Z/2 = Im{Z/2 = LN0(ρ→ π)
mono
−→ LP0(F )},

cannot be realized as surgery obstructions of normal maps of closed manifold pairs.

ii) Only the elements of the direct summand

Z/2 = Im{Z/2 = L2(ρ)
mono
−→ LP1(F )} ⊂ LP1(F )

are realized as surgery obstructions of normal maps of closed manifold pairs.

iii) Only the elements of a direct summand

(Z/2)r = S′ ⊂ LP2(F ) = (Z/2)2
r+1−r−1

are realized as surgery obstructions of normal maps of closed manifold pairs. The
subgroup S′ = p−0 (S) is the preimage of the subgroup S ⊂ L3(π) which is generated
by the images of Z/2 under all the inclusions Z/2 = L3(Z/2) → L3(π) induced by
the inclusions Z/2→ π on the direct summands Z/2 of the group π.

iv) Only the elements of a direct summand

Z = Im{Z = L0(1)→ LP3(F )} ⊂ LP3(F ) = (Z)2
r

⊕ (Z/2)2
r+1−2r−(r

2)−2

are realized as surgery obstructions of normal maps of closed manifold pairs.

Proof. We treat only the case LP3(F ) since the others are similar. Let us consider
the commutative diagram

(6.26)

L0(1)
=
−→ L0(1)

↓ ↓

L0(ρ)
mono
−→ L0(π)

mono ↘ ↗
LP3(F )

mono ↗ ↘epi

LN3(ρ→ π)
mono
−→ L3(π

−)

where the two upper vertical maps are induced by natural inclusions and the bottom
part arises from Diagram (1.5) similarly to (6.22). In the group L0(π) only the
elements of the image L0(1)→ L0(π), that equals Z, are realized by normal maps
of closed manifolds [17]. Denote this image by T ⊂ L0(π). The same arguments as
in Theorem 11 provide that only the elements of p−1

0 (T ) ⊂ LP3(F ) can be realized
by normal maps of closed manifolds. Furthermore, for every element b ∈ T there
exists an element b′ ∈ LP3(F ) (p0(b

′) = b) that is realized by a normal map of closed
manifold pairs. By Lemma 2 p1(b

′) = 0. Then b′ ∈ Im{Z = L0(1) → LP3(F )}
since (6.26) is commutative and the upper horizontal map is a monomorphism. Let
x ∈ LP3(F ) be an other element such that p0(x) = b. If the element p1(x) ∈ L3(π

−)
is not trivial, then it cannot be realized by a normal map of closed manifolds by
[17]. If it is trivial, then x lies in the image Im{Z = L0(1) → LP3(F )} as before,
and hence x = b′. Now the result follows.

For the groups LP∗(F
−), the results are not such explicit in all dimensions. But

in dimension 1 the result is very explicit.
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Theorem 13. Let F− be the square in (6.24).

i) All the elements of the group LP0(F
−), except those in the direct summand

Z = Im{Z = LN0(1→ Z/2−)
mono
−→ LP0(F

−)},

cannot be realized as surgery obstructions of normal maps of closed manifold pairs.

ii) Only the elements of the direct summand

Z/2 = Im{Z/2 = L2(ρ)
mono
−→ LP1(F

−)} ⊂ LP1(F
−)

are realized as surgery obstructions of normal maps of closed manifold pairs.

iii) All the elements of the group LP2(F
−) except the direct summand

Z/2 = Im{LN2(1→ Z/2−)
mono
−→ LP2(F

−)} ⊂ LP2(F
−),

cannot be realized as surgery obstructions of normal maps of closed manifold pairs.

iv) All the elements of the group LP3(F
−), except those in a direct summand

S = (Z/2)r ⊂ LP2(F
−),

cannot be realized as surgery obstructions of normal maps of closed manifold pairs.
The elements of a direct summand Z/2 ⊂ S are realized as surgery obstructions of
normal maps of closed manifold pairs.

Proof. The proofs are similar to those given in Theorem 11 and Theorem 12. �

We note that the developed methods are applicable not only for elementary
2-groups. Let us consider an index 2 inclusion ρ → π− between finite abelian 2-
groups, where ρ has the trivial orientation while the orientation of π− is nontrivial.

Theorem 14. [4] Any element of the group LN2k(ρ→ π−) that does not lie in the
torsion subgroup cannot be realized as the splitting obstruction of a simple homotopy
equivalence of closed manifolds.

Proof. We use here a little changed argument from [4]. Let use consider the com-
position

(6.27) LN2k(ρ→ π−)→ L2k(π)→ LN2k+2(ρ→ π+)
∼=
→ LN2k(ρ→ π−)

where the first map fits in Diagram (1.5) for the inclusion ρ→ π− and the second
map fits in Diagram (1.5) for the inclusion ρ → π. The composition in (6.27)
coincides with the first differential in the surgery spectral sequence (see [4], [11],
and [14]), and hence it is the multiplication by 2. The second map in (6.27) is the
first Browder-Livesay invariant, and any element which does not lie in its kernel
cannot be realized by a normal map of closed manifolds. Now the result follows
from Lemma 2. �
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Corollary 3. [4] Any nontrivial element of the groups

LN2k(Z/2
n → Z/2n+1−) = Z

2n−1

is not realized as the splitting obstruction of a simple homotopy equivalence of closed
manifolds.

The results of Ranicki [29] give a good possibility to apply the given approach to
the computation of the assembly map for infinite groups with nontrivial torsion. For
the splitting obstruction groups in the case of fundamental group with a nontrivial
torsion, the developed methods are applicable, too (as follows from [9] and [26]).

As a final application, we give sufficiently simple and very explicit descriptions
of some assembly maps.

Let π be an elementary finite 2-group with an orientation and G = π ⊕ Z,
where the group Z has the trivial orientation. Let X be a topological space with
π1(X) = π. The algebraic surgery exact sequence

(6.28) · · · → Ln+1(π⊕Z)→ Ssn+1(X×S
1)→ Hn(X×S

1,L•)
Σn→ Ln(π⊕Z)→ · · ·

splits into the direct sum of the exact sequences

(6.29) · · · → Ln+1(π)→ Ssn+1(X)→ Hn(X,L•)
σn→ Ln(π)→ · · ·

and

(6.30) · · · → Ln(π)→ Ssn(X)→ Hn−1(X,L•)
σn−1

→ Ln−1(π)→ · · ·

by [29] (see also [9] and [26]). Note that for a topological manifold Xn the algebraic
surgery exact sequence in (6.29) is isomorphic to the surgery exact sequence in (1.1).

Theorem 15. i) Let X = K(π−, 1), where π− is an elementary 2-group of rank
r ≥ 1 with nontrivial orientation. Then the image of the map Σn in the exact
sequence (6.28) equals Z/2 for every n.

ii) Let X = K(π, 1), where π is an elementary 2-group of rank r ≥ 0 with trivial
orientation. Then the image of the map Σn in the exact sequence (6.28) equals

Z⊕ (Z/2)r, Z, Z/2, (Z/2)r+1

for n = 0, 1, 2, 3 (mod4), respectively.

Proof. We consider only the case π− since the other is similar. As follows from [17]

the image of the map Hn(X,L•)
σn→ Ln(π

−) is trivial for n odd and equals Z/2 for
n even. Now the result follows from the decomposition of (6.28). Note that the
same result implies the existence of an algebraic retraction L∗(π

− ⊕ Z)→ L∗(π
−),

Corollary 2, and the nonrealization of the elements of the second type. �

The classification of the manifolds with a filtration as well as that of the stratified
manifolds demand to know what elements of Browder-Quinn obstruction groups are
realized by normal maps of closed stratified manifolds. A similar question is very
natural for the splitting problem of a manifold with a filtered system of submanifolds
(see [4] and [18]). There are a lot of diagrams that generalize Diagrams (6.2) and
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(6.3) for filtered manifolds (see [3], [4], [10], [18], and [19]). The relations between
LBQ groups obtained in Section 5 and the computational methods developed in
Section 6 allow us to solve such questions. We present here only one simple example.

Consider a triple

(6.31) RP 2k−1 ⊂ RP 2k ⊂ RP 2k+1

of real projective spaces with 2k− 1 ≥ 5. Denote by P the filtration in (6.31), and

by LT∗ = LBQ∗ (P) the Browder-Quinn surgery obstruction groups for the triple P
(see [18], [19], and [24]). These groups fit in the following braid of exact sequences
[21]

(6.32)

→ Ln(1) −→ LPn−1(F ) → LNn+1(1→Z/2−) →

↗ ↘ ↗ ↘ ↗ ↘

LTn−2 Ln−1(Z/2
−)

↘ ↗ ↘ ↗ ↘ ↗

→ LNn−2(1→Z/2−) −→ LPn−2(F
−) −→ Ln−1(1) →

where

(6.33) F± =





1 → 1
↓ ↓

Z/2∓ → Z/2±



 .

In this case, LT2k+1 = Z/2 (see [18] and [24]).

Proposition 9. All the elements of the groups LT2k−1 = LBQ2k−1(P) are realized as
obstructions to surgery on triples of closed manifolds.

Proof. The diagram chasing in Diagram (6.22) provides that the maps

LT2k−1 → LP2k(F
+)

from Diagram (6.32) are isomorphisms. But from a geometrical point of view these
maps are natural forgetful maps. Using Theorem 11 and Remark 2, the same
arguments as in Corollary 2 provide the result. �
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Emilia, Via Campi 213/B, 41100 Modena, Italia;
E–mail: spaggiari.fulvia@unimo.it


