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1. Introduction

Computational complexity issues in algebraic geometry necessitate two refinements in the
notion of degree of a projective scheme, namely, the geometric degree and the arithmetic
degree (cf. [Har|, [B-M], [Kol]). Given a homogeneous ideal I in S := k[zy,...,z,], k any
field, a fundamental problem is to bound these refined degrees in terms of the generators
of I.

The main results in this paper give bounds for the arithmetic degree of a monomial
ideal (Theorem 3.1) and for the geometric degree of an arbitrary ideal (Theorem 4.3). One
novelty of independent interest is a combinatorial construction (called standard pairs) for
these degrees in the case of monomial ideals. In §5 we present applications to the effective
division problem and to extensions of Bezout’s Theorem. In §2 we discuss two theorems
which relate the arithmetic degree to the Nullstellensatz and to Grobner bases. These
two are essentially due to Kollar [Kol] and Hartshorne {Har|, while our contribution lies in

providing new, self-contained proofs.

In this section we recall the basic definitions. Let I = g Nq@ N...Ng bea
primary decomposition of I, with associated primes p; := /g;, defining (irreducible)

varieties Z; := V(p;) in P,?—l for ¢« > 0, while py = (%1,...,2z,) and thus Zy := V(po) = 0.
Suppose that q;,...,qs are the isolated components of I, so that V(I) = Z, U ... U Z,
is set-theoretically the minimal decomposition of V(I) into varieties. Let mulf(g;) be the
classical length-multiplicity (see, e.g. [Gro]), that is, mult(¢;) is the length [ of a maximal

strictly increasing chain of p;-primary ideals:
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¢ = i C iy C oo CJ o= pi

Equivalently, mult(g;) is the length of the local ring (S/1),,.
The usual geometric degree of Z; is the cardinality of Z; N L for almost all linear

subspaces L of complementary dimension. It is denoted by deg Z;. The degree of I is

deg(I) := Z - mult(q;) - deg Z;.
di';nlzu;cgdti'::zl)

This is also the normalized leading coefficient of the Hilbert polynomial of S/I. By contrast,

the geometric degree of I is defined by taking the sum over all isolated components:

L]

geom-deg(I) = Z mult(q;) - deg Z;,

=1

This degree is at the heart of the so-called refined Bezout’s Theorem (see e.g. [Ful], [Vo)).

The two notions of degree defined so far ignore the embedded components ¢;, @ €
{0,8+1,...,t}. To measure their contributions to I, we need to recall the notion of length
multiplicity relative to I (see e.g. [B-M, §3], [E-H, p. 61]). Given any homogeneous prime
ideal p in S, we consider the ideal J := U;so (I : p’). This is the intersection of the
primary components of I with associated primes not containing p. We define multj(p) to

be the length € of a maximal strictly increasing chain of ideals
(1.1) I=JeC Jimy C--CJoC i CJ,

where each Ji equals ¢ N J for some p-primary ideal ¢. Equivalent definitions are:
(1.2) mult;(p) is the length of the module JS,/IS,;
(1.3) mult;(p) is the length of the largest ideal of finite length in the ring S,/IS,.

We have multi(p) > 0 if and only if p is an associated prime of I. If ¢; is an isolated

component of I, then mult;(p;) = mult(q;). The arithmetic degree of I is now defined as

(1.4) : arith-deg(I) := Z mult;(p) - deg(p),

where p runs over all homogeneous primes in 5. (Note: this includes the irrelevant ideal.)

The following simple example may serve as an illustration. Let n = 3 and
(1.5) I = (z%y,2%2,29%,zy2?) = (22,42, 2%) N (2) N (y,2) N (22, y).
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Then deg(I) = 1, geom-deg(I) = 2, and arith-deg(I) = 5. The contributions of the two
embedded components are mult 1((:1:, y)) =1 and mult I((rs,y, z)) = 2. That the irrelevant

ideal (z,y, ) has multiplicity 2 in I can be seen from the maximal sequence

J = Ui(I:(zy,2)) = (ez,5y) D> Jn(hy’2) D Jn(e?y?2) = 1

Acknowledgements. We are grateful to D. Brownawell, J. Kollar, and L. O’Carroll for
helpful discussions, and to D. Eisenbud and A. Reeves for pointing us to Hartshorne’s work
[Har]. We acknowledge partial support for Bernd Sturmfels by NSF grants DMS-9201453
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by the US Army Research Office through the Center of Excellence for Symbolic Meth-
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2. On the arithmetic degree

The importance of the concept of arithmetic degree for computational problems in algebraic
geometry is highlighted by the following version of the Nullstellensatz.

ith-d
Theorem 2.1. Let I be a homogeneous ideal of S. Then /I arsth-gegl) c I

This theorem had been stated as a conjecture in an early draft of this paper. J. Kollar
kindly informed us that a proof can be gotten from his approach describing mult;(p) in
[Kol, Remark 1.12]. Subsequently, we found the following direct proof. It starts out with
an easy splitting property of the arithmetic degree.

Lemma 2.2. Let I be a homogeneous ideal of S and P a maximal associated prime of I.
Let J be the intersection of the primary components of I with associated primes different

from P, in any primary decomposition of I. Then
arith-deg(I) =  arith-deg(J) + mult;(P) - deg(P).

Proof: In view of the maximality hypothesis, no associated prime of I or J strictly
contains P. In other words, we have mult;(p) = mult ;(p) = 0 for any homogeneous prime
ideal p in S which strictly contains P. Since P"J C I C J for sufficiently large integers
r > 0, we have IS, = JS, for any prime p not containing P. By (1.3), this implies
mult;(p) = mult j(p) for any prime p other than P. Finally, since P is not an associated
prime of J, we have mult ;(P) = 0. Evaluating the sum (1.4) for both I and J, we obtain
the desired result. m



We note that Lemma 2.2 is false if P is not a maximal associated prime of I. (In this

case the ideal J and its arithmetic degree depend on the chosen primary decomposition.)
For instance, taking P = (z,y) in (1.5), we find arith-deg(J) = arith-deg(I) = 5, where

(2.1) Jo= @A N @) N () = (sfyats eyt est).

Proof of Theorem 2.1: Let P and J be as in Lemma 2.2. Then we may split
\/jarith-deg(f) _ \/j_aﬂth—deg(.]) ‘ ﬁmulu(P)deg(F‘)

C VT patey(p)

By induction on the number of the associated primes we may assume that

ﬁanth-deg( J) cJ

It remains to show that JP™**(P) C I This can be done locally at every associated
prime p of I. For p # P, the inclusion is immediate because JS, = IS,. For p = P we
assume, on the contrary, that JP™*“(P)§p oL [Sp. Then (JP? +I)Sp # (JP/H' +1)Sp

for j =0,...,mult;(P). For, otherwise we would have

JPm(Pg, C (JPI 4+ )Sp = ﬂ(JP'-{-I)Sp:ISP,

T>j

by Krull’s Intersection Theorem. We get a strictly increasing chain of mult;(P) + 2 ideals
ISp ¢ (JP™MP) L NSp C...Cc (JP?+1)Sp C (JP+I)Sp C JSp,

which gives a contradiction to the definition (1.2) of mult;(P). =

We next establish a connection to Grobner bases theory by showing that the arithmetic
degree of a homogeneous ideal is bounded above by that of any initial ideal, and, moreover
this inequality holds for the contributions in each dimension. Theorem 2.3 is a special
case of a more general result due to R. Hartshorne. Indeed, in [Har, Theorem 2.10] it is
shown that arith-dcg,( -) is upper-semicontinuous with respect to flat families of projective
schemes, and a well-known result of Grobner basis theory states that, for any term order,
the initial ideal in([) is a flat deformation of I (see e.g. [B-M], [Eis]). We write arith-deg, (I)

for the subsum over all terms in (1.4) where p has (affine) dimension r, for r = 0,1,...,n.
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Theorem 2.3. Fix any term order on S, and let I C S be any homogeneous ideal. Then
arith-deg, (I) < arith-deg, (in(])) forall r=0,1,...,n

The following self-contained proof uses a different characterization of the arithmetic
degree, which is purely enumerative and, in fact, serves as the definition in [Har]. Let I

be a homogeneous ideal in S. For each integer r =.0,1,...,n we consider
Iy, = {feS:dm{I:f)<r}. (2.2)

Using elementary properties of ideal quotients (as in e.g. [Grol), it can be verified that the
set I>, is an ideal in S, containing I, and that it equals the intersection of all primary
components of dimension > r in any primary decomposition of I. We also find that the

Hilbert polynomial of the graded S-module I>,/I has the form
arith-deg (1)
(r - 1)!

Proof of Theorem 2.3: We claim the following inclusion of monomial ideals:

(2.4) in(I».) C (in([))Zr.

(2.3) By, 1(d) A1+ O(dTY).

Indeed, suppose m € in(I»;). Then m = in(f) for some f € I>,, and therefore r >
dim(I: f) = dim in(I: f). Since in(I : f) is contained in (zn(I) : in(f)) = (in(I) : m),
we conclude dim (in(I):m) < 7, and therefore m € (in(I )

Whenever we have an inclusion of homogeneous ideals I C I' in S, then their quotient
I'/I is isomorphic as a graded vector space to in(I")/in(I). To see this, it suffices to note
that the canonical monomial basis for in(I')/in(I) lifts to a basis for I'/I. Applying this

observation to I' = Is,, and using (2.4), we obtain the inclusion of graded vector spaces:

(2.5) I /I =~ ain(Iy.)/in(I) < (in(I))zr/in(I).

The leading term of the Hilbert polynomial of the right hand side in (2.5) exceeds that of
the left hand side. By (2.3), this proves Theorem 2.3. =

Theorem 2.3 shows that in bounding the arithmetic degree it makes sense to concen-

trate on the case of a monomial ideal. This is what we will do in the next section.

Example 2.4. Let n = 4 and let I be the prime ideal of the monomial curve given
parametrically by (s7 : s%t2 : s2¢5 : ¢7). Clearly, deg(I) = geom-deg(I) = arith-deg(I) = 7.
Using the methods in [Tho, §3], we find that I has the universal Grébner basis

3.2 5 2.5 7 4 6
{$1$4 132, 3:13:314 3:2, :L‘I'L‘3 $2, T1Ty — Ty, T1T2T4 — T3,

! 2 4 4 3,2 ,.2.3 5
T1x4 — T3, :c1:c3 — ToT4, T1Tg3 — THTy, ToTy — :1:3},

)



and that there are precisely 14 distinct initial ideals. All of them fail to be square-free,
which implies that the inequalities arith-deg(in(I)) > 7 are strict. The gap can vary widely:

the arithmetic degrees of the 14 initial monomial ideals are between 9 and 18.

3. The arithmetic degree of a monomial ideal

The objective of this section is to prove the following lower and upper bounds.

Theorem 3.1. Let I be a proper monomial ideal in S = k[z,,...,z,] with minimal set

of monomial generators {my,mg,...,m,}, and let e := dim(I)+ s —n. Then

maz {deg(m;):1=1,...,8} < arith-deg(I) < Hdeg(m;) — e.

=1

The upper bound in Theorem 3.1 is false for a general homogeneous ideal which is not
generated by monomials, even if we delete the excess dimension term e. We do not know

whether the lower bound generalizes to arbitrary homogeneous ideals.

Example 3.2. (see also [Kol, p. 966]) Let I be the ideal generated by the forms
fi=zi24 — 2223, ¢ := mg_arz:g —zb, hi=af — .’L‘giﬂz_a,

for any integers b > a > 0. It follows from [S-V, p. 171 and Prop. 1.9, p. 162] that

b—a—l—l)

geom-deg(I) =deg(I)=a+b and arith-deg(I)=a+b+ ( 5

For b >> a, the arithmetic degree of I exceeds deg(f) - deg(g) - deg(h) = 2b*. m

The key idea in proving Theorem 3.1 i1s to give a combinatorial rule for the length-
multiplicity mult;(-) of a monomial ideal I. Each associated prime of I has the form
Pz = (z; : z; € X\Z), where Z is a subset of X = {z1,...,2,}. Let M denote the
set of all monomials in k[X]. There is a natural map M — 2% m — supp(m), which
takes each monomial to its set of variables. A pair (m,Z) in M x 2V is called admissible

if Z Nsupp(m) = 0. We define a partial order “<” on the set of all admissible pairs by
(3.1) (m,Z2) < (m',2'Yy < mdividesm' and supp(m'/m) U Z' C Z.

The condition (3.1) is equivalent to the inclusion of graded vector spaces m' - k[Z'] C
m - k[Z]. An admissible pair (m, Z) is called standard (with respect to the monomial ideal
I) if m-k[Z]nI = @, and (m,Z) is minimal with this property in the partial order
(8.1). Let std(I) denote the number of all standard pairs of a monomial ideal I.
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Lemma 3.3. Every monomial ideal I in S satisfies arith-deg(I) = std(I). More precisely,
for fixed Z € 2%, mult;(Pz) equals the number of standard pairs of the form (-, Z).

Proof: Our monomial ideal has the following decomposition into irreducible ideals:

(3.2) I =) (=™ 5 e x\2),
where the intersection is over all standard pairs (m, Z). Split this intersection with respect

to the different sets Z and apply the definition of mult;(-) given in the introduction. =

Note that any monomial ideal can be recovered from its standard pairs using (3.2).

For an example consider the ideal I in (1.5). Its standard pairs are

(3.3) (zy,{}), (zyz,{}), (L{v,z}), (1,{=}), (=, {z}).

If we replace (z,{z}) by (zz,{}) in (3.3) then we get precisely the standard pairs of the

ideal J in (2.1). We need three more lemmas for the proof of Theorem 3.1.

Lemma 3.4.
(a) For a principal monomial ideal I = (m), we have std(I) = deg(m).
(b) For any two monomial ideals I} and I, we have std(I} + I;) < std(l))- std(lz).

Proof:

(a): The standard pairs are (2!, X \ {2}) where z € supp(m) and 0 < i < deg.(m).

(b): For each standard pair (my, Z;) of I and each standard pair (mgq, Z3) of I3, determine
their supremum in the partial order (3.1). In the resulting poset of < std(ly) - std(I;)

pairs select the minimal elements. They are precisely the standard pairs for I) +1;. =

Lemma 3.5. Let I C k[zy,...,z,] be any monomial ideal, and P = (x1,...,zq). Then

P is an isolated prime of I if and only if (1,{zg+1,...,2%n}) is a standard pair of I.

Proof: The inclusion I C P is equivalent to the condition k[zg441,...,2.] NI = {0}.
This means there exists a standard pair (m, Z) smaller or equal to (1, {z4+1,...,2x}) in
the partial order “<”. In this case we must have m = 1 and {z44;,...,2,} C Z.

We conclude that I is contained in P if and only if there exists a subset Z of variables
such that (1, Z) is standard and {2g41,...,2,} € Z. If this inclusion is proper, then the
ideal (z; : z; € X\ Z) contains I and is properly contained in P, so that P is not a
minimal prime of I. On the other hand, if {z441,...,2,} = Z then no other ideal of the
form (z; : ;€ X\ 2'), 2’ D Z, contains I. m
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Lemma 3.5 implies that the geometric degree geom-deg(I) equals the number of
standard pairs (m, Z) for which (1, Z) is also standard.

Lemma 3.6. Let I be a mononual ideal, let m be a monomial of degree at least 2 and
suppose that dim(I) = dim(I + (m)). Then std(I +(m)) < std(I)-deg(m) — 1.

Proof: Since dim(I) = dim(I + (m)), the monomial m is contained in a minimal prime
P of I. We may assume P = (z1,...,24), m = xi‘:cé‘ ~.zi» and 7; > 1. By Lemma 3.5,
II:=(1,{zd441,-..,Zn}) is a standard pair of I. We need to show that two of the crosswise
suprema formed in the proof of Lemma 3.4 (b) are comparable in the poset (3.1), which

means one of them is discarded when passing to minimal elements.

Case 1: dy > 2. Then (1,{z2,...,2,}) and (zy, {z2,...,2n}) are standard pairs of (m),

giving the same supremum:
Iv (1,{zz,.,2:}) = IV (z1,{22,..,2a}) = (L, {2a41,.--,@n})

Case 2: di =1 and d; > 1. Then (1,{z2,...,z,}) and (1, {z1,23,...,2n}) are standard

pairs of (m), giving comparable suprema:

OV (1,{ze,.za}) > (L{Tmaez(s,as1}s-->2n}) = TV (L {z1,235,...,2a})

Case 3: d =1 andd, > 1. Then (1,{z2,...,2z,}) and (1, {z1,22,...,2n-1}) are standard

pairs of (m), giving comparable suprema:
I v (1,{z2,...,za}) > IV (L,{z1, - 2Zn=1}) = (1, {zas1, -, Zn-1}).
This exhausts all cases up to relabeling. =

Proof of Theorem 3.1. We first remove all variables which appear in the set {m,,...,m,}.
This does not alter any of the three expressions in the two claimed inequalities. So, we
may assume deg(m;) > 2 for7=1,...,s. Starting with Lemma 3.4 (a), we apply Lemma
3.4 (b) and Lemma 3.6 iteratively to I = (m,,...,m;—1) and m =m;, for i =2,...,s.
The excess dimension e equals the number of indices 7 for which the dimension hypothesis
of Lemma 3.6 is satisfied. This proves the asserted upper bound for arith-deg(I).

For the lower bound we may assume that deg(m;) > deg(m;} for all z, and my =

at a2

zyzy? -z, where 0 < r < n and a4,...,a, > 0. Consider the following sequence of

deg(my) = Y a; standard monomials (i.e. monomials not in I'), arranged in r groups:

iy @ a L ay 12 a S
(3.4) zyireg?ezy, 1 =0,1,...,a1 — 1, zylayt-xlt, i =0,1,.0.,a2 = 1,
: ay a2 Qry 1 L.
ey ziteyt e a4 =0,1,00 0,0, — 1
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For each monomial m' in (3.4) there exists a standard pair (m, Z) which is a cover of m/
in the sense that m' € m - K[Z], or, equivalently, m divides m' and supp(m’/m) C Z.
In view of Lemma 3.3, it suffices to show that the covers (m, Z) of any two monomials
in the list (3.4) are distinct. We proceed by contradiction and assume there exist two
standard monomials m';m" in (3.4) which have the same cover (m, Z).
Case 1: m' and m' are from the same group, say m' = 'L'l‘:cg’
.1:{‘ za? -z, 11 < j1. Then {z;} = supp(m”/m') C supp(m'/m) C Z. Writing
U = {z3,...,2,} \ Z, this implies m = [];c, #{*. Therefore my € m - k[Z], which is

~z% and m" =

a contradiction to the fact that my = z7'z3? -~ - 2% lies in I.
Case 2:  m' and m" are from different groups, say m' = =zi'z3*.--2% and m” =

a1 iz a
zilzy - -z2r. Then

{z1,22} = supp(m/ged(m',m")) U supp(m'/ged(m',m"))
C supp(m” /m) U supp(m'/m) C Z.

Writing U := {z3,...,2,} \ Z, this implies m = [[;cy =i, and hence m; € m - k{Z], in

P
contradiction to m; = z7'z5? - - x% € I. This completes the proof of Theorem 3.1. =

4. On the geometric degree

The geometric degree behaves quite differently from the arithmetic degree. For instance,
while the arithmetic degree goes up under Grébner basis computations (Theorem 2.3), it

turns out that the geometric degree goes in the opposite direction.

Proposition 4.1. Let I be a homogeneous ideal in k[z1,...,z,) and in(I) its initial ideal

with respect to any term order. Then
(4.1) geom-deg(I) > geom-deg(in(I)).

Proof: First suppose that I is pure d-dimensional, that is, each isolated prime of I has
dimension d. Then n([I) is pure d-dimensional as well (see e.g. [I{-S]). Since the degree is
preserved under taking initial ideals, and since degree and geometric degree coincide for
pure ideals, we have geom-deg(I) = deg(I) = deg(an(l)) = geom-deg(zn(I)).
Suppose now that I has dimension d but is not pure. Write I = J NI, where J 1s
pure d-dimensional and each isolated prime of K has dimension < d — 1 and is isolated in
I as well. We have deg(I) = deg(J) and geom-deg(I) = deg(J)+ geom-deg(K). If in(I)
is pure, then we are done since geom-deg(in(I)) = deg(in(I)) = deg(I) < geom-deg(I). If

in(I) is not pure, then write n(l) = J' N K' where J' is a pure d-dimensional monomial
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ideal and each isolated prime of K’ has dimension < d — 1 and is isolated in in(I). By
induction on the dimension we have geom-deg(in(K)) < geom-deg(I{), and therefore it
suffices to show geom-deg(K') < geom-deg(in(I)). This follows from our construction

because each isolated prime of I is isolated and of the same multiplicity in in(K). =

Example 4.2. Let I’ be any ideal which has an isolated component of dimension less
than dim(I'), and let I be obtained from I' by a generic linear change of coordinates. For

the lexicographic term order (coordinate projection) we get the sharp inequality in (4.1):
(4.2) geom-deg(in(I)) = deg(in(I)) = deg(I) < geom-deg(I).

The main goal of this section, however, is to prove the following Bezout-type result.

Theorem 4.3. Let I C J be homogeneous ideals in S = k[z1,...,z,) such that S,/IS,
1s Cohen-Macaulay for every isolated prime P of J. Let fi,..., fm be forms in J such that
J =1+ (fi,...,fm). Set d; :=deg(f;) and suppose that dy > dy > -+ > dp,. Then

(4.3) geom-deg(J) < didy---d, - geom-deg(I),

where t := max{ht(P/I) | P is an isolated prime of J}.

Remarks: (a) The inequality (4.3) fails to hold if the degrees of the generators are not
sorted decreasingly: For instance, if I = (0), J = (z%y,zy?,2™,y™) then deg(J)=2m >
deg(z%y) - deg(zy®) =9, which leads to a violation of (4.3) for m > 5.

(b) Example 3.2 shows that Theorem 4.3 does not hold for the arithmetic degree.

(¢) The case where S/I is a Cohen-Macaulay ring was already considered by P. Philipon
[Ph, Prop. 3.3] and D. Brownawell [Br2]. They proved that geom-deg(J) < df - deg(I).

Before embarking on the proof of Theorem 4.3 we derive two lemmas.

Lemma 4.4. Let I be a homogeneous ideal and f a form in S such that Sp/ISp is
Cohen-Macaulay for all isolated associated prime ideals P of (I, f}. Then

geom-deg(I, f) < deg(f) - geom-deg(I).

Proof: Let I, resp. I, denote the intersection of all isolated primary components of I

whose associated prime ideals contain resp. do not contain f. Then

geom-deg(I) = geom-deg(Iy) + geom-deg(I2).

10



Similarly, let J; and J; be the intersection of all isolated primary components of (I, f)

whose associated prime ideals are resp. are not associated isolated prime ideals of I. Then
geom-deg(I, f) = geom-deg(J1) + geom-deg(Jz2).

It suffices to prove the two inequalities geom-deg(J,) < deg(f)- geom-deg(I,) for v =1, 2.
The set of isolated prime ideals P of I which contain f is exactly the set of prime ideals
P which are isolated prime ideals of both I and (I, f). Hence

geom-deg(l;) = ZE(SP/ISP)-deg(P)
> > USp/(I,f)Sp)-deg(P) = geom-deg(Js).

Let U; denote the intersection of all :~dimensional isolated primary components of I,
(Ui = S in the absence of such components). Then geom-deg(I>) =3 . deg(U;). Since U;
is an unmixed ideal and f is relatively prime to U;, all isolated primes of (U;, f) have the
same dimension and geom-deg(U;, f) = deg(Ui, f) = deg(f) - deg(U;). Therefore,

> geom-deg(Ui, f) = deg(f) - geom-deg(,).
The proof will be completed if we can show that

geom-deg(Jy) < Zdeg(U,-,f).

For this we only need to show that every isolated primary component U of J; is also an
isolated primary component of some ideal (U;, f). Let P be the radical of U. By the
definition of J,, the prime P is not an isolated prime of I. Hence any isolated prime ideal
of I contained in P does not contain f. Since Sp/ISp is a Cohen-Macaulay ring, ISp
is an unmixed ideal. Hence all associated prime ideals of ISp come from isolated prime
ideals of I which have the same dimension dim.S/P + 1 and which do not contain f. So we
can conclude that ISp = U;Sp for ¢ = dimS/P + 1. Since USp = (I, f)Sp = (Ui, f)Sp,
the ideal U must be an isolated primary compounent of (U;, f), as required. m

The Cohen-Macaulay condition of Lemma 4.4 cannot be replaced by the condition
that f ¢ P for any minimal prime P of I. For example, let I = (23,2122) and f = z,.
Then (I, f) = (z},22) and geom-deg(I, f) = deg(I, f) =2 > 1 = geom-deg(I).

For the proof of Theorem 4.3 we also need the following lemma which shows that J

can be approximated by a sequence of extensions as in Lemma 4.4.
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Lemma 4.5. Let I and J = (I, f1,...,fm) and the integer t be as in Theorem 4.3.
Suppose that k is an infinite field and that fy,..., f,, define a minimal k-basis for J/I.
Then there exist forms g¢1,...,9¢ in J with deg(g;) = d; = deg(f;) which satisfy:
(1) The ring Sp/{I,g1,...,9i—1)Sp is Cohen-Macaulay for any isolated prime ideal P of
(I,g1,-..,9i),t=1,...,t
(ii) Every isolated prime ideal of J is also an isolated prime ideal of (I,g1,...,¢t).

Proof: We may assume that t > 0. For any integer d > 0 let J4 denote the ideal generated
by I and the homogeneous elements of degree d of J. Put d = d;. Since any homogeneous
minimal basis for J/I contains at least an element of degree d, Jq is not contained in the
ideal I + M J, where M denotes the irrelevant ideal (z;,...,z,). Moreover, since Jg has
the same radical as J, any prime Q 2 J of S does not contain Jq. Thus, (I +MJ)N Jq4
and Q N Jy are proper subideals of J4. Since k is infinite, we can find a form ¢; € Jg,
g1 ¢ I+ MJ, with deg(g1) = d such that ¢, ¢ @ for any associated prime @ 2 J of I.

We will show that Sp/ISp is Cohen-Macaulay for any isolated prime P of (I,¢).
If P is also an isolated prime of I, then dimSp/ISp = 0 and we are done. If P is not
an isolated prime of I, we may assume that P 2 J. For, if P D J, then P must be an
isolated prime of J because (I, ¢;) C J, and in this case, Sp/ISp is Cohen-Macaulay by
the assumption of Theorem 4.3. If P 2 J, by the choice of gy, the form g; does not belong
to any associated prime of I contained in P. Hence ¢; is a non-zero-divisor of Sp/ISp.
Since dimSp/ISp =1, Sp/ISp is a Cohen—-Macaulay ring.

For t = 1, we have just proved (i). To see (ii) let P now be an arbitrary isolated prime
of J. If ht(P/I) = 0, then P is an isolated prime of I. Since I C (I,¢1) € J, P must be
an isolated prime of (I,¢,). If ht(P/I) = 1, any isolated prime of I contained in P does
not contain J. The form g¢; does not belong to any such prime ideal. Hence ht(P'/I) =1
for any isolated prime P’ of (I,g¢;) contained in P. Now, if P is not an isolated prime
of (I,¢1), there exists an isolated ideal P’ of (I, g1) properly contained in P. This would
imply ht(P/I) > ht(P'/I) = 1, a contradiction.

If t > 2, we can show similarly as above that Sp/(1,¢1)Sp is Cohen-Macaulay for
any isolated prime P of J. It is easily seen that J/(I,¢;) can be minimally generated by

m — 1 homogeneous elements of degree d; > -+ > d,;; and
t—1 = max{ht(P/(I,¢:)) | P is an isolated prime of J}.

Therefore, using induction, we may assume that there exist forms g1, ..., g, with deg(g;) =
d; which together with ¢, satisfy the conditions (i) and (ii). The proof of Lemma 4.5 is

now complete. m
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Proof of Theorem 4.3: Clearly, the geometric degree is preserved under base field exten-
sion. So we may replace k by a field of rational functions k(u) in order to get an infinite
base field. Now we can apply Lemma 4.5 to find homogeneous polynomials ¢y,...,¢¢ in J

satisfying the conditions (i) and (ii). Using (ii) of Lemma 4.5 we get
geom-deg(J) < geom-deg(L, g1, - .,g0)

By successively applying Lemma 4.4 we obtain from (i) of Lemma 4.5 our desired bound:

geom-deg(I,g1,...,9:) < dy---dy- geom-deg(I). m

We close with a variant of Theorem 4.3 for the case when I is a prime ideal. In that
case we may choose ¢ with deg(g1) = min deg(f;). Applying Lemma 4.5 we then find the

other elements gz, ..., ¢:. Notice the change in the ordering of the degrees of f;, fa,..., fm.

Corollary 4.6. Let I be a homogeneous prime ideal and J O I a homogeneous ideal in
S such that Sp/ISp is Cohen-Macaulay for any minimal prime P of J. Let fi,..., fm
be forms in J such that J = (I, f1,...,fm). We set d; := deg(fi) and suppose that
dy>2d3 > - >dm >di. Lett = max{ht(P/I)| P is a minimal prime ideal of J}. Then

geom-deg(J) < dydy---dy-deg(I).

5. On the division problem and extensions of Bezout’s Theorem.

In computational algebra there is great interest in the effective Nullstellensatz and the
effective division problem. For the history and the general state of the art of these problems
we refer to the literature, which includes [Brl], [C-G-H], [Kol], [Amo], [B-Y], [Sch]. Our

contribution in this section i1s an application of the results on the geometric degree in §4.

Theorem 5.1. Let f, f1,..., fin be polynomials in S := kl[z,,...,z,] such that f €
(fi,.--, fm) and the homogenized ideal I := ("f,,... ") in R := k[z¢,21,...,2,] has no
embedded components containing 9. Put d; = deg(f;) and suppose d, > ... > dp, > d;.
Then there exist gy,...,gm € S such that f = ¢p1fi+... 4+ gmfm with
(i) deg(gifi) < max {d;+...+dn+1, deg(f)} if dim(R/I)=0.
(ii) deg(gifi) < didy---dy — geom-deg(I) + deg(f) if dim(R/I) > 0, where t is
the maximal height of an isolated prime of I and I is the intersection of all primary

components of I whose associated primes do not contain zg.

Here the homogenization of a polynomial f is defined in the usual way as

hf = mgeg(f) - flz1 /20y T [T0).

13



Part (i) of Theorem 5.1 is an easy consequence of a classical result of Macaulay, see e.g. [Sch,
Proposition 1]. Part (ii) was proved by Schiffmann [Sch] in the special case where I is a

complete intersection. Here is the more general situation.

Proof of part (ii): Suppose dim(R/I) > 0. We have geom-deg(I) < dida---d, by
Corollary 4.6. Let Iy be the intersection of all isolated primary components of I which
contain zg. Note that arith-deg(ly) = geom-deg(ly), and hence a:g“""deg“"’ €I by
Theorem 2.1. Then

geom-deg(Ily) = geom-deg(I) — geom-deg(I).

dy-d, —geom-deg(I) .

Hence we have ' hf € I, and the conclusion follows. m

For the Bezout version of the Nullstellensatz we obtain the following corollary.

Corollary 5.2. Let fy,..., fin be polynomialsin § which have no common zeros. Set d; =
deg(fi) and supposedy > ... > d,, > dy > 2. If the homogenized ideal I := (hfl,... ,”fm)

has no embedded primes which contain xq, then there exist g1,...,¢m in S such that

1 = glfl + - +gmf1n
with deg(gifi) < di --- d,,, where p = min{m,n}.

Proof: Let t be the maximal height of any isolated prime ideal of /. If t = n + 1, then
dim(R/I) = 0, and we can apply Theorem 5.1 (1) in order to obtain deg(g:f;) < dy---d,
(cf. [Sch]). Note that m > n in this case. If t <n+ 1, then ¢ < min{m,n}. In this case

the conclusion follows from Theorem 5.1 (ii) with f=1. =

Our second application concerns Bezout’s theorem. The intersection theory developed
in [Ful] and [Vo] provides the following refined version: Let I1,..., I, be equidimensional
homogeneous ideals without embedded components in S = k[z1,...,z,] such that Sp/I;Sp

is Cohen~Macaulay for all minimal primes Pof I} +--- + I.,andi=1,...,r. Then
(5.1) geom-deg(ly +--- +I,) < []deg(Is).
i=1

Using Theorem 5.1 we will prove a variant without the equidimensionality hypothesis:

Theorem 5.3. Let Ih,...,I, be homogeneous ideals in S such that Sp/I;Sp is Cohen-
Macaulay for all isolated primes P of Iy + -+ + I, andt = 1,...,r. Then

geom-deg(ly +---+1I,) < H geom-deg(1;).

=1
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Proof: We shall prove only the case » = 2 since the other cases are similar. Let I} be
the image of I under the substitutions z; — y;, where y1,...,y, are new indeterminates.
We denote by I the extension ideal of I} + I} in R = k[z1,...,Zn,¥1,-..,Yn]. Setting
fi=zi—yifori=1,...,n, wehave R/(I, f1,...,fn) = S/(Ii + I2), and hence

geom-deg(I} + I;) = geom-deg(I, f1,..., fn).

Lemma 3 of [A-H-V] implies that Rp/IRp is Cohen—-Macaulay for all minimal primes P
of (I, f1,..., fn). Hence we can apply Theorem 5.1 to get:

geom-deg(I, fi,...,fn) < geom-deg(I).

To complete the proof of Theorem 5.3, it suffices to show that the geometric degree is

multiplicative with respect to taking joins of projective schemes:
(5.2) geom-deg(I) = geom-deg(I,) - geom-deg(I2)

Indeed, by [Vo, Lemma 2.3], every pair (@1, Q2) of minimal primary components of I,
and I, yields a minimal primary component Q1 + Q% of I in R with deg(Qy + @Q5) =

deg(Q1) - deg(Q2), and, moreover, every minimal primary ideal of I arises in this way. =

Corollary 5.4. Let X,Y be locally Cohen-Macaulay subschemes of projective n-space
such that dim(X)+dim(Y) > n. Then geom-deg(X NY) < geom-deg(X)- geom-deg(Y').

Theorem 5.3 and Corollary 5.4 are not true in general without the Cohen-Macaulay
condition. Let X, Y be reduced and irreducible subvarieties of P™ meeting properly. If
there is an irreducible component C of X NY such that Ox ¢ is not Cohen-Macaulay, then
it follows from Bezout’s Theorem (see e.g. [Vo]) that deg(X) - deg(Y) < deg(X NY). In

view of the results in [F-V], it would be nice to improve Theorem 5.3 as follows.

Problem 5.5. Let I, J be homogeneous ideals in S. We set e := dim(I + J) +n -
(dimI+ dimJ) > 0. Assume that S/I and S/J are Cohen-Macaulay k-algebras and
INJ contains no linear forms. Is then deg(I) - deg(J) > geom-deg(I+ J)+e?

All inequalities for the geometric degree which we derive in this section are generally
false for the arithmetic degree (cf. Example 3.2). One promising option in getting Bezout-

type theorem for the arithmetic degree is to use Grobner bases instead of ideal generators.

Corollary 5.6. Let I be any homogeneous ideal in S = k[z1,...,z,], let {g1,92,...,9s}

a Grébner basis for I with respect to any term order, and let e := dim(I) + s — n. Then

arsth-deg(I) < deg(g1)-deg(g2) -+ - deg(gs) — e.
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Proof: This was proved for monomial ideals in Theorem 3.1. Using Theorem 2.3, and

dim(I) = dim(in(I)), deg(g:) = deg(in(g:)), it follows for arbitrary homogeneous ideals.
|
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