π_1 of Smooth Points of a Log Del Pezzo Surface is Finite : II

R. V. Gurjar D.-Q. Zhang

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3

Germany

π_1 of Smooth Points of a Log Del Pezzo Surface is Finite : II

R.V. Gurjar and D.-Q. Zhang April 21, 1993

Introduction

A normal projective surface S over C is called a log del Pezzo surface if S has at most quotient singularities and $-K_S$ is ample, where K_S denotes the canonical divisor of S.

In part I (cf. [2]) of this paper we set out to prove the following:

Main Theorem. The fundamental group of the space of smooth points of a log del Pezzo surface is finite.

In this part II, we will complete the proof of this result. We will use the notations and results from part I freely. Recall from part I that if \tilde{S} is a minimal resolution of singularities of S, then we can find a "minimal" (-1)-curve C on \tilde{S} (cf. Lemma 3.1 and Prop. 3.6 of part I). In §3, §4, §5 of part I, we reduced to consider the cases (II-3) and (II-4) there. As remarked in the Introduction of part I, it suffices to consider the case (II-4) (the "2-component case"), to complete the proof of our Main Theorem. This will be done in this part II of our paper. As in part I, our proof for the case (II-4) gives quite precise information about the configuration of $C \cup D$.

After the results of parts I and II of our paper were announced in a conference in Kinosaki, Japan, A. Fujiki, R. Kobayashi and S. Lu have found another proof of our Main Theorem using differential geometric methods (cf. [1]).

Their proof of the Main Theorem is short, but it does not seem to give as precise information about the singular locus of S as our proof.

§1. The proof of the Main Theorem in the case (II-4).

In this section, we consider the case(II-4) in Remark 3.11 of part I. We employ the notations there. So, the (-1)-curve C meets exactly a (-2)-curve D_1 and a (-n)-curve D_2 with $n \geq 3$. Let Δ_i be the connected component of D containing D_i .

Our aim is to prove the following Theorem 1.1, which will imply the Main Theorem in the case (II-4).

Theorem 1.1. Suppose that the case (II-4) in Remark 3.11 occurs. Then one of the following four cases occurs:

- (1) Δ_i is a linear chain with D_i as a tip for i = 1 or 2. Hence $\pi_1(S^o)$ is finite (cf. Lemma 1.2 below).
- (2) There are irreducible components $A_i (i = 1, \dots, a), B_j (j = 1, \dots, b)$ of D, there is a (-1)-curve E on \tilde{S} and there is a \mathbf{P}^1 -fibration $\varphi : \tilde{S} \to \mathbf{P}^1$ such that
 - (2-1) a singular fiber of φ has support equal to Supp $E + \sum_i A_i$,
- (2-2) every irreducible component of $D \sum_j B_j$ is contained in a singular fiber of φ , and
 - (2-3) S_1 , $\sum_j B_j \leq 2$ for a general fiber S_1 of φ .

In particular, there is a C*-fibration on S^o and hence $\pi_1(S^o)$ is finite (cf. Lemma 2.2 of part I).

- (3) There is a (-1)-curve E, there are two connected components $\Theta_i(i = 1,2)$ of D, there is an irreducible component B_i in Θ_i and there is a twig $E + \tilde{T}_i$ in $E + \Theta_i$ such that
- (3-1) $E.D = E.(\Theta_1 + \Theta_2) = E.(B_1 + B_2) = 2$, $E.B_i = 1$ for i = 1 and 2. Hence $T_i = 0$ if B_i is not a tip and a twig of Θ_i containing B_i otherwise, and
- (3-2) For i = 1 and j = 2 or i = 2 and j = 1, $E + \tilde{T}_i + \Theta_j$ has a positive eigenvalue and hence $\kappa(\tilde{S}, E + \tilde{T}_i + \Theta_j) = 2$.

In particular, $\pi_1(S^{\circ})$ is finite (cf. Lemma 1.12).

(4) There is a \mathbf{P}^1 -fibration $\varphi: \tilde{S} \to \mathbf{P}^1$ such that C+D and all singular fibers of φ are given in one of the Figures 1, 2, 3 or 4 (cf. end of the paper). Hence $\pi_1(S^\circ)$ is finite. (cf. Lemma 1.13).

(5) One of two cases in Lemma 1.11 occurs. Hence $\pi_1(S^o)$ is finite. (cf. lemma 1.14).

Theorem 1.1 is a consequence of the following Lemmas 1.2, 1.3, 1.8, Theorems 1.9 and 1.10, and Lemmas 1.11, 1.12, 1.13, 1.14.

Lemma 1.2. Suppose that Δ_i is a linear chain with D_i as a tip for i = 1, or 2. Then $\pi_1(S^\circ)$ is finite.

Proof. Suppose Δ_1 is a linear chain with D_1 as a tip. As $rankS=1, C+\Delta_1+\Delta_2$ supports a divisor with strictly positive self-intersection. By Lemma 1.10 of part I, we have a surjection $\pi_1(U-\Delta_1-\Delta_2)\to\pi_1(\tilde{S}-D)$, where U is a small tubular neighborhood of $C\cup\Delta_1\cup\Delta_2$. We can write $U=U_1\cup U_2$, where U_i is a small neighborhood of $C\cup\Delta_i$. It is easy to see that $U_i-\Delta_1-\Delta_2$ contains a small neighborhood N_i of Δ_i as a strong deformation retract for i=1,2. By assumption, $\pi_1(N_i-\Delta_i)$ is finite for i=1,2 and by Mumford's presentation (cf. [3]), $\pi_1(N_1-\Delta_1)$ is a cyclic group generated by "the" loop γ_1 in $C-\Delta_1-\Delta_2$ around the point $C\cap\Delta_1$. Now an easy application of Van-Kampen's theorem for the covering $U_1-\Delta_1-\Delta_2$ and $U_2-\Delta_1-\Delta_2$ of $U-\Delta_1-\Delta_2$ shows that $\pi_1(U-\Delta_1-\Delta_2)$ is finite and hence so is $\pi_1(\tilde{S}-D)$.

Lemma 1.3. Suppose that Δ_1 contains $G_i (i = 1, \dots, s; s \geq 3)$ such that $G_i^2 = -2$, $G_1 = D_1$, G_j . $G_{j+1} = G_{s-2}$. $G_s = 1 (j = 1, \dots, s-2)$ (This is the case if Δ_1 consists of only (-2)-curves but D_1 is not a tip of Δ_1). Then Theorem 1.1, (2) or (3) is true with E = C.

Proof. Let $S_0 = 2(C + G_1 + \cdots + G_{s-2}) + G_{s-1} + G_s$ and let $\varphi : \tilde{S} \to \mathbf{P}^1$ be the \mathbf{P}^1 -fibration with S_0 as a singular fiber. If $\Delta_1 = \sum_i G_i$, then Theorem 1.1,(2) is true with $E = C, \sum_i A_i = \sum_i G_i, \sum_i B_i = B_1 = D_2$. Otherwise, Theorem 1.1, (3) is true with $E = C, \Theta_i = \Delta_i, \tilde{T}_2 = 0$; indeed, $C + \Delta_1$ has a positive eigenvalue.

From now on till the end of the section, we shall assume the following hypothesis:

(*) neither the case of Lemma 1.2 nor the case of Lemma 1.3 occurs.

Let $C + T_i$ (i = 1, 2) be the maximal twig of $C + \Delta_i$. Hence $T_i = 0$ if D_i is not a tip of Δ_i and T_i is the maximal twig of Δ_i containing D_i otherwise. By the maximality of $C + T_i$ and by the hypothesis(*), there are irreducible components H_i, H_{i1}, H_{i2} in $\Delta_i - T_i$ such that

$$T_i \cdot (\Delta_i - T_i) = T_i \cdot H_i = 1, H_i \cdot H_{i1} = H_i \cdot H_{i2} = 1.$$

Let $\sigma: \tilde{S} \to \tilde{T}$ be the smooth blowing-down of curves in $C+T_1+T_2$ such that

- (1) $\sigma(C + \Delta_1 + \Delta_2)$ consists of exactly one (-1)-curve \tilde{C} , with $\tilde{C} \leq \sigma(C + T_1 + T_2)$, and several $(-n_i)$ -curves with $n_i \geq 2$, and
- (2) the condition(1) will not be satisfied if σ is replaced by the composite of σ and the blowing-down of \tilde{C} .

Thus, $\sigma = id$ if and only if D_1 is not a tip of Δ_1 . If $\sigma \neq id$, then C is contracted by σ and $\sigma'(\tilde{C}) \leq D$.

Let $\widetilde{D} = D$ (resp. $\widetilde{\Delta_i} := \sigma(\Delta_i)$) if $\sigma = id$, and $\widetilde{D} = \sigma(D) - \widetilde{C}$ (resp. $\widetilde{\Delta_i} := \sigma(\Delta_i) - \widetilde{C}$) otherwise. Let $\widetilde{H_i} = \sigma(H_i)$, $\widetilde{H_{ij}} = \sigma(H_{ij})$, etc. By the definition of σ there is an irreducible component J_i in $T_i + H_i$ such that

$$\widetilde{C}.\widetilde{D} = \widetilde{C}.(\widetilde{J}_1 + \widetilde{J}_2) = 2, \quad \widetilde{C}.\widetilde{J}_i = 1.$$

 \tilde{T} is contractible to quotient singularities with, say $g: \tilde{T} \to T$ the contraction morphism, and T is again a log del Pezzo surface of rank one with g as a minimal desingularization (cf. [4, Lemma 4.3]). So, Lemma 1.1 of part I is true for T. In particular, we have

$$g^*K_T \equiv K_{\widetilde{T}} + \widetilde{D}^*, -E.(K_{\widetilde{T}} + \widetilde{D}^*) > 0$$

for every (-1)-curve E on \tilde{T} . Here M^* is an effective \mathbb{Q} -divisor with support contained in M.

Suppose that there are two smooth blowing-downs $\sigma_1: \widetilde{S} \to \widetilde{S}_1, \ \sigma_2: \widetilde{S}_1 \to \widetilde{T}$ such that $\sigma = \sigma_2 \cdot \sigma_1$. Let E be the unique (-1)-curve in $\sigma_1(C + \Delta_1 + \Delta_2)$. Let M := D if $\sigma_1 = id$ and $M := \sigma_1(D) - E$ otherwise. The same result [4, Lemma 4.3] implies the following:

Lemma 1.4. M is contractible to quotient singularities with, say $f_1: \tilde{S}_1 \to S_1$ the contraction morphism, and S_1 is again a log del Pezzo surface of rank one with f_1 as a minimal desingularization. In particular, we have

$$f_1^*K_{S_1} \equiv K_{\widetilde{S}_1} + M^*, -E.(K_{\widetilde{S}_1} + M^*) > 0,$$

where M* is an effective Q-divisor with support contained in M.

Suppose that for a=1 or 2, we have $J_a=H_a$ and $\widetilde{H}_a^2=-2$. Let $\widetilde{G}\sim K_{\widetilde{T}}+2(\widetilde{C}+\widetilde{H}_a)+\widetilde{H}_{a1}+\widetilde{H}_{a2}+\widetilde{J}_b$ where $\{a,b\}=\{1,2\}$ as sets. Note that $H^2(\widetilde{T},\widetilde{G})\cong H^0(\widetilde{T},-(2(\widetilde{C}+\widetilde{H}_a)+\widetilde{H}_{a1}+\widetilde{H}_{a2}+\widetilde{J}_b))=0$. Note also that $\widetilde{G}.B=0$ for $B=\widetilde{C},\widetilde{H}_a,\widetilde{H}_{a1},\widetilde{H}_{a2},\widetilde{J}_b$. Hence $\widetilde{G}^2=\widetilde{G}.K_{\widetilde{T}}$. Now the Riemann-Roch theorem implies that

$$h^0(\tilde{T}, \tilde{G}) \ge \frac{1}{2}\tilde{G}.(\tilde{G} - K_{\tilde{T}}) + 1 = 1.$$

We may assume that $\tilde{G} \geq 0$.

Lemma 1.5. Assume the above conditions and notations. We have:

(1) \tilde{G} is a nonzero effective divisor.

- (2) $\tilde{G} \cap (\tilde{C} + \widetilde{H}_a + \widetilde{H}_{a1} + \widetilde{H}_{a2} + \widetilde{J}_b) = \phi$. In particular, $\tilde{G}_1 \cdot \tilde{G} = \tilde{G}_1 \cdot K_{\tilde{T}}$ for every $\tilde{G}_1 \leq \tilde{G}$.
- (3) We can decompose \tilde{G} into $\tilde{G} = \tilde{\Sigma} + \tilde{\Delta}$ such that Supp $\tilde{\Delta}$ is contained in Supp \tilde{D} and $\tilde{\Sigma} = \sum_{i=1}^{r} \tilde{\Sigma}_{i}$ $(r \geq 1)$ where $\tilde{\Sigma}_{i}$ is a (-1)-curve.
- (4) Write $\sigma^* \tilde{G} \sim \sigma^* (K_{\widetilde{T}} + 2(\tilde{C} + \widetilde{H}_a) + \widetilde{H}_{a1} + \widetilde{H}_{a2} + \widetilde{J}_b) = K_{\widetilde{S}} + sC + (an effective divisor with support in D). Then <math>r \leq s 1$.
- (5) Let $B \leq \widetilde{D} (\widetilde{H}_a + \widetilde{H}_{a1} + \widetilde{H}_{a2} + \widetilde{J}_b)$. Then $B.\widetilde{G} > 0$ if and only if $B^2 \leq -3$ or $B.(\widetilde{H}_{a1} + \widetilde{H}_{a2} + \widetilde{J}_b) > 0$.
- (6) If $\tilde{\Sigma}$ is a reduced divisor, then $\tilde{G} = \tilde{\Sigma}$ and $\tilde{\Sigma}$ is a disjoint union of $\tilde{\Sigma}_i$'s.

Proof. From the definition of \tilde{G} , one can calculate that :

Claim(1). $\widetilde{G}.B = 0$ if B is one of $\widetilde{C}, \widetilde{H}_a, \widetilde{H}_{a1}, \widetilde{H}_{a2}$ and \widetilde{J}_b . Moreover, $\widetilde{G}.B \geq 0$ for every irreducible component B of \widetilde{D} .

Claim(2). $|K_{\widetilde{T}} + \widetilde{C} + \widetilde{D}| = \phi$.

This follows from that $|K_{\widetilde{S}} + C + D| = \phi$ and the definition of σ .

(1) By the hypothesis(*) after Lemma 1.3, \tilde{J}_b meets an irreducible component B of $\tilde{\Delta}_b$. So, $\tilde{G}.B = (K_{\tilde{T}} + \tilde{J}_b).B \geq 1$. Hence $\tilde{G} > 0$.

(2) Suppose $\tilde{G} \cap \tilde{C} \neq \phi$. Then $\tilde{C} \leq \tilde{G}$ by Claim(1). Now, $\widetilde{H}_a \leq \tilde{G} - \tilde{C}$ because $\widetilde{H}_a.(\tilde{G} - \tilde{C}) = -\widetilde{H}_a.\tilde{C} = -1 < 0$. This leads to $0 \leq \tilde{G} - \tilde{C} - \widetilde{H}_a \in |K_{\widetilde{T}} + \tilde{C} + \widetilde{H}_a + \widetilde{H}_{a1} + \widetilde{H}_{a2} + \widetilde{J}_b| \subseteq |K_{\widetilde{T}} + \tilde{C} + \widetilde{D}|$, a contradiction to Claim(2). So, $\tilde{G} \cap \tilde{C} = \phi$. One applies this argument and can prove (2).

(3) Decompose \tilde{G} into $\tilde{G} = \tilde{\Sigma} + \tilde{\Delta}$ where Supp $\tilde{\Delta} \subseteq \operatorname{Supp} \tilde{D}$ and $\tilde{\Sigma}$ contains no irreducible components of \tilde{D} . First, by $\operatorname{Claim}(1)$, we have $\tilde{G}.\tilde{\Delta}_i \geq 0$ for every $\tilde{\Delta}_i \leq \tilde{\Delta}$. Hence $0 \leq \tilde{G}.\tilde{\Delta} = \tilde{\Sigma}.\tilde{\Delta} + \tilde{\Delta}^2 < \tilde{\Sigma}.\tilde{\Delta}$ because Supp $\tilde{\Delta} \subseteq \operatorname{Supp}$

 \overline{D} and \overline{D} is negative definite. This proves that $\Sigma \neq 0$.

Let $\widetilde{\Sigma}_i$ be an irreducible component of $\widetilde{\Sigma}$. Note that $\widetilde{\Sigma}_i.K_{\widetilde{T}} \leq \widetilde{\Sigma}_i.(K_{\widetilde{T}} + \widetilde{D}^*) < 0$ (cf. Lemma 1.1). So, if $\widetilde{\Sigma}_i^2 < 0$, then $\widetilde{\Sigma}_i$ is a (-1)-curve. Suppose that $\widetilde{\Sigma}_i^2 \geq 0$. Then, by (1), $\widetilde{\Sigma}_i^2 \leq \widetilde{\Sigma}_i.\widetilde{G} = \widetilde{\Sigma}_i.K_{\widetilde{T}} < 0$. We reach a contradiction. This proves (3).

(4) By Claim(2), $\sigma^* \widetilde{\Sigma}_i$ is again a (-1)-curve and $\sigma^* (\widetilde{\Delta}) \subseteq D$. Write $f(C) \equiv c(-K_S)$, $f(\sigma^* \widetilde{\Sigma}_i) \equiv e_i(-K_S)$, where c > 0, $e_i > 0$. Then $(sc - 1)(-K_S) \equiv f(\sigma^* \widetilde{G}) \equiv \sum_{i=1}^r e_i(-K_S)$. Since $K_S^2 > 0$, we have

$$sc - 1 = \sum_{i} e_i \ge rc$$

by the minimality of $-C(K_{\widetilde{S}}+D^*)=c(K_{\widetilde{S}}+D^*)^2=c(K_S)^2$. Hence $(s-r)c\geq 1>0$. (4) then follows.

- (5) follows from the following calculation: $B.\tilde{G} = B.(K_{\tilde{T}} + \widetilde{H}_{a1} + \widetilde{H}_{a2} + \widetilde{J}_b).$
- (6) By the condition, $\tilde{\Sigma}_i \neq \tilde{\Sigma}_j$ if $i \neq j$. So,

$$-1 = \widetilde{\Sigma}_{i}^{2} = \widetilde{\Sigma}_{i}.\widetilde{G} - \widetilde{\Sigma}_{i}.(\widetilde{\Delta} + \sum_{j \neq i} \widetilde{\Sigma}_{j}) \leq \widetilde{\Sigma}_{i}.\widetilde{G} = \widetilde{\Sigma}.K_{\widetilde{T}} = -1.$$

Thus, $\widetilde{\Sigma}_{i\cdot}(\widetilde{\Delta} + \sum_{j\neq i} \widetilde{\Sigma}_{j}) = 0$ for every i. So, $\widetilde{\Sigma}$ is a disjoint union of $\widetilde{\Sigma}_{i}$'s and $\widetilde{\Sigma} \cap \widetilde{\Delta} = \phi$. In particular, $\widetilde{G}.\widetilde{\Delta} = \widetilde{\Delta}^{2}$. By Claim(1), we have $\widetilde{G}.\widetilde{\Delta} \geq 0$. So, $\widetilde{\Delta}^{2} \geq 0$. Since $\widetilde{\Delta}$ is contained in \widetilde{D} and \widetilde{D} is negative definite, we have $\widetilde{\Delta} = 0$. This proves (6).

Lemma 1.5 is proved.

Corollary 1.6. Assume that σ is the contraction of curves in $C+T_1$. Assume further that $J_1=H_1$ and $\widetilde{H}_1^2=-2$ (hence $J_2=D_2$ and the hypothesis

in Lemma 1.5 is satisfied with a=1). Then $K_{\widetilde{T}}+2(\tilde{C}+\widetilde{H}_1)+\widetilde{H}_{11}+\widetilde{H}_{12}+\widetilde{J}_2\sim \tilde{G}=\tilde{\Sigma}=\tilde{\Sigma}_1,$ i.e., \tilde{G} is reduced and a (-1)-curve.

Proof. We apply Lemma 1.5 to $\tilde{G} \sim K_{\widetilde{T}} + 2(\tilde{C} + \widetilde{H}_1) + \widetilde{H}_{11} + \widetilde{H}_{12} + \widetilde{J}_2$. By the hypothesis, $\sigma^* \tilde{G} \sim K_{\widetilde{S}} + 2C +$ (an effective divisor with support in D). Then Corollary 1.5 follows from Lemma 1.5.

Lemma 1.7. Assume that σ is the contraction of curves in $C+T_2$. Assume further that $J_2=H_2$ and $\widetilde{H}_2^2=-2$ (hence $J_2=D_2$ and the hypothesis in Lemma 1.5 is satisfied with a=2). Then $\sigma^*\widetilde{G}\sim\sigma^*(K_{\widetilde{T}}+2(\widetilde{C}+\widetilde{H}_2)+\widetilde{H}_{21}+\widetilde{H}_{22}+\widetilde{J}_1)=K_{\widetilde{S}}+sC+$ (an effective divisor with support in D) with $s=-D_2^2$.

Proof. The result follows from the hypothesis on σ .

Lemma 1.8. Suppose the case (II-4) in Remark 3.11 occurs. Then one of the following two cases occurs:

(1) Theorem 1.1,(2) or (3) is true with E = C.

(2) $(\tilde{J}_a^2, \tilde{J}_b^2) = (-2, -2), (-2, -3)$ or (-2, -4) where $\{a, b\} = \{1, 2\}$ as sets. If $\tilde{J}_k^2 = -2$ (this is the case if k = a), then $J_k = H_k$ and $H_{kj}^2 \leq -3$ for j = 1 or 2.

Proof. By [4, Lemma 4.4], $\tilde{J}_a^2 = -2$ for a = 1 or 2. Let $\{a, b\} = \{1, 2\}$ as sets.

Case(1) $\tilde{J}_b^2 = -2$. If \tilde{J}_s is a tip of $\tilde{\Delta}_s$, say s = b, i.e., $J_b \neq H_b$, then Theorem 1.1,(3) occurs with E = C. Indeed, $\tilde{C} + \tilde{J}_b + \tilde{\Delta}_a$ has a positive eigenvalue and so does $C + T_b + \Delta_a$. Thus, may assume $J_a = H_a$, $J_b = H_b$.

Suppose $H_{s1}^2 = H_{s2}^2 = -2$ for s = a or b, say s = a. Let $S_0 := 2(\tilde{C} + \widetilde{H}_a) + \widetilde{H}_{a1} + \widetilde{H}_{a2}$ and let $\psi : \tilde{S} \to \mathbf{P}^1$ be the \mathbf{P}^1 -fibration with S_0 as a singular fiber. If $\tilde{\Delta}_a = \widetilde{H}_a + \widetilde{H}_{a1} + \widetilde{H}_{a2}$, then Theorem 1.1,(2) is true with $E = C, \varphi = \psi \cdot \sigma, \sum_i B_i = B_1 = H_b$. If $\tilde{\Delta}_a > \widetilde{H}_a + \widetilde{H}_{a1} + \widetilde{H}_{a2}$, Theorem 1.1,(3) is true with E = C. Indeed, $\tilde{C} + \tilde{\Delta}_a$ then has a positive eigenvalue and so does $C + T_b + \Delta_a$. Thus, may assume that $H_{aj}^2 \leq -3$ for j = 1 or 2. The same argument works for s = b. So, Lemma 1.8 is true in this case.

Case(2) $\tilde{J}_b^2 \leq -3$. Then by the definition of σ (cf. the second condition), $J_a = H_a$, i.e., \tilde{J}_a is not a tip of $\tilde{\Delta}_a$. If $H_{a1}^2 = H_{a2}^2 = -2$, then by the arguments

in the above paragraph, Theorem 1.1,(2) or (3) is true with E = C. So, may assume that $H_{aj}^2 \leq -3$ for j = 1 or 2, say j = 1.

To finish the proof, it remains to prove that $d:=-\widetilde{J}_b^2\leq 4$. Since it is impossible that $\widetilde{\Delta}_b$ is a linear chain with \widetilde{J}_b as a tip (cf. the hypothesis(*) after Lemma 1.3), we have $\widetilde{D}^*\geq (d-2)/(d-1)\widetilde{J}_b+3/7\widetilde{H}_{a1}+2/7\widetilde{H}_a+1/7\widetilde{H}_{a1}$. So, $0<-\widetilde{C}.(K_{\widetilde{T}}+\widetilde{D}^*)\leq 1-\widetilde{C}.((d-2)/(d-1)\widetilde{J}_b+2/7\widetilde{H}_a)=1/(d-1)-2/7$. Hence $d\leq 4$. This proves Lemma 1.8.

Theorem 1.9. Suppose the case(2) in Lemma 1.8 occurs. Then it is impossible that $\tilde{J}_1^2 = \tilde{J}_2^2 = -2$.

Proof. We consider the case where $\tilde{J}_1^2 = \tilde{J}_2^2 = -2$. By the hypothesis, we have $J_i = H_i$, $\tilde{H}_i^2 = -2$ for i = 1, 2 and may assume that $H_{11}^2 \le -3$, $H_{21}^2 \le -3$.

Case(1) σ is the contraction of curves contained in $C + T_1$.

Then the conditions of Corollary 7.6 are satisfied. Hence $K_{\widetilde{T}}+2(\widetilde{C}+\widetilde{H}_1)+\widetilde{H}_{11}+\widetilde{H}_{12}+\widetilde{H}_2\sim\widetilde{G}=\widetilde{\Sigma}$ where $\widetilde{\Sigma}$ is a (-1)-curve. Note that $\widetilde{\Sigma}.\widetilde{H}_{21}=\widetilde{G}.\widetilde{H}_{21}=(K_{\widetilde{T}}+\widetilde{H}_2).\widetilde{H}_{21}\geq 1+1$ (cf. Lemma 1.5, (2)). Let $\Sigma:=\sigma^*(\widetilde{\Sigma}).$ Then Σ is again a (-1)-curve (cf. Lemma 1.5,(2)) with $\Sigma.H_{21}\geq 2.$ On the other hand, $D^*\geq 1/2D_2+1/2H_{21}$ because $D_2^2\leq -3,H_{21}^2\leq -3.$ This leads to $0<-\Sigma.(K_{\widetilde{S}}+D^*)\leq 1-\Sigma.1/2H_{21}\leq 0,$ a contradiction. So, the case(1) is impossible.

Case(2) σ contracts at least one irreducible component of the maximal twig T_2 of Δ_2 .

By noting that $D_1^2 = -2$, $D_2^2 \le -3$, there are two smooth blowing-downs $\sigma_1 : \tilde{S} \to \tilde{S}_1, \sigma_2 : \tilde{S}_1 \to \tilde{T}$ such that $\sigma = \sigma_2 \cdot \sigma_1$ and that :

- (1) $\sigma_1(T_1+C+T_2) = T_1'+E+T_2'$ where E is a (-1)-curve and $T_i' \leq \sigma_1(T_i)$,
- $(2) T'_1 + \sigma_1(H_1) = \sum_{i=1}^{s} L_i, E.L_1 = L_i.L_{i+1} = 1 (i = 1, \dots, s-1; s \ge 1)$
- 2), $L_s = \sigma_1(H_1), L_1^2 = -2, L_2^2 = -(t+1), L_j^2 = -2(j > 2, j \neq s)$, and
- (3) $T'_2 + \sigma_1(H_2) = \sum_{i=1}^t M_i, E.M_1 = M_i.M_{i+1} = 1 (i = 1, \dots, t-1; t \ge 2), M_t = \sigma_1(H_2), M_1^2 = -3, M_t^2 = -s, M_i^2 = -2 (j \ge 2, j \ne t).$

Now applying Lemma 1.4, we get $-E.(K_{\widetilde{S}_1} + M^*) > 0$. Since $\sigma_1(\Delta_1 + \Delta_2) - E$ can be contractible to quotient singularities (cf. Lemma 1.4), we have (s,t) = (2,2), (2,3), (3,2).

Case(2-1) (s,t) = (2,2). Then $M^* \ge 2/5L_1 + 4/5\sigma_1(H_1) + 3/5\sigma_1(H_{11}) + 2/5\sigma_1(H_{12}) + 3/5M_1 + 4/5\sigma_1(H_2) + 3/5\sigma_1(H_{21}) + 2/5\sigma_1(H_{22})$. This leads to

 $0 < -E.(K_{\widetilde{S}_1} + M^*) \le 1 - E.(2/5L_1 + 3/5M_1) = 0$, a contradiction. So, the case(2-1) does not occur.

Case(2-2) (s,t)=(2,3). Then $M^*\geq 7/16L_1+14/16\sigma_1(H_1)+10/16\sigma_1(H_{11})+7/16\sigma_1(H_{12})+10/17M_1+13/17M_2+16/17\sigma_1(H_2)+11/17\sigma_1(H_{21})+8/17\sigma_1(H_{22})$. This leads to $0<-E.(K_{\widetilde{S}_1}+M^*)\leq 1-E.(7/16L_1+10/17M_1)=1-7/16-10/17<0$, a contradiction. So, the case(2-2) does not occur.

Case(2-3) (s,t)=(3,2). Then $B^*\geq 9/23L_1+18/23L_2+22/23\sigma_1(H_1)+15/23\sigma_1(H_{11})+11/23\sigma_1(H_{12})+7/11M_1+10/11\sigma_1(H_2)+7/11\sigma_1(H_{21})+5/11H_{22}$. This leads to $0<-E.(K_{\widetilde{S}_1}+B^*)\leq 1-E.(9/23L_1+7/11M_1)=1-9/23-7/11<0$, a contradiction. So, the case(2-3) does not occur.

This proves Theorem 1.9.

Theorem 1.10. Suppose that the case in Corollary 1.6 occurs. Suppose further that the case(2) in Lemma 1.8 occurs with $(\tilde{J}_a^2, \tilde{J}_b^2) = (-2, -3)$ or (-2, -4) (hence $a = 1, b = 2, J_1 = H_1, J_2 = D_2$). Then either Theorem 1.1 (3) is true with E = C, or Theorem 1.1,(4) is true.

Proof. By the hypothesis, may assume that $H_{11}^2 \leq -3$. By Corollary 1.6, $K_{\widetilde{T}} + 2(\widetilde{C} + \widetilde{H}_1) + \widetilde{H}_{11} + \widetilde{H}_{12} + \widetilde{J}_2 \sim \widetilde{G} = \widetilde{\Sigma}$ where $\widetilde{\Sigma}$ is a (-1)-curve.

Claim(1). (1) $\widetilde{D}^* \geq 3/7\widetilde{H}_{11} + 2/7\widetilde{H}_1 + 1/7\widetilde{H}_{12} + (a-2)/(a-1)\widetilde{J}_2$. Here $a := -\widetilde{J}_2^2 \geq 3$ and hence $(a-2)/(a-1) \geq 1/2$.

- (2) $\tilde{\Delta}_1$ is a linear chain.
- (3) Either $\widetilde{\Delta}_2$ is a linear chain or $\widetilde{\Delta}_2$ is a fork with \widetilde{J}_2 as a tip.
- (4) $\tilde{\Delta}_1 \widetilde{H}_{11}$ consists of (-2)-curves.
- (5) $\tilde{\Delta}_2 \tilde{J}_2$ consists of (-2)-curves.

Since $\widetilde{H}_{11}^2 \leq -3$ and since it is imposible that $\widetilde{\Delta}_2$ is a linear chain with \widetilde{J}_2 as a tip (cf. the hypothesis(*) after Lemma 1.3), (1) follows.

If $\widetilde{\Delta}_1$ is not a linear chain, then also $\widetilde{D}^* \geq 1/2\widetilde{H}_1 + 1/2\widetilde{H}_{11}$. This leads to $0 < -\widetilde{C}.(K_{\widetilde{S}} + \widetilde{D}^*) \leq 1 - \widetilde{C}.(1/2\widetilde{H}_1 + 1/2\widetilde{J}_2) = 0$, a contradiction. So, (2) of Claim(1) is true.

Suppose (3) of Claim(1) is false, then $\widetilde{\Delta}_2$ contains $L_i(i=1,\cdots,s;s\geq 4)$ such that $L_2=\widetilde{J}_2, L_i.L_{i+1}=L_{s-2}.L_s=1 (i=1,\cdots,s-2)$. So, we have $\widetilde{D}^*\geq 1/3L_1+2/3\sum_{i=2}^{s-2}L_i+1/3L_{s-1}+1/3L_s$. On the other hand, for i=1,3 (and also for i=4 if s=4), we have $L_i.\widetilde{\Sigma}=L_i.(K_{\widetilde{T}}+\widetilde{D}_2)\geq 1$ (cf. Lemma 1.5). This leads to $0<-\widetilde{\Sigma}.(K_{\widetilde{T}}+\widetilde{D}^*)\leq 1-\widetilde{\Sigma}.(1/3L_1+2/3\sum_{i=2}^{s-2}L_i+1/3L_{s-1}+1/3L_s)\leq 0$. We reach a contradiction. Thus, (3) of Claim(1) is

true.

Suppose $\tilde{\Delta}_1 - \widetilde{H}_{11}$ contains a (-n)-curve B with $n \geq 3$. If B and \widetilde{H}_{12} are in the same connected component of $\tilde{\Delta}_1 - \widetilde{H}_1$, then $\widetilde{D}^* \geq 1/2\widetilde{H}_1 + 1/2\widetilde{J}_2$ and hence $0 < -\widetilde{C}.(K_{\widetilde{T}} + \widetilde{D}^*) \leq 1 - \widetilde{C}.(1/2\widetilde{H}_1 + 1/2\widetilde{J}_2) = 0$, a contradiction. If B and \widetilde{H}_{11} are in the same connected component of $\tilde{\Delta}_1 - \widetilde{H}_1$, we let $L_1 + \cdots + L_s$ be a linear chain in $\tilde{\Delta}_1$ such that $L_1 = \widetilde{H}_{11}, L_s = B, L_i, L_{i+1} = 1 (i = 1, \cdots, s-1)$. Then one has $D^* > 1/2\sum_i L_i$. Moreover, $L_i.\widetilde{\Sigma} = L_i.(K_{\widetilde{T}} + \widetilde{H}_{11}) \geq 1$ for i = 2, s and $L_2.\widetilde{\Sigma} \geq 2$ if s = 2. This leads to $0 < -\widetilde{\Sigma}.(K_{\widetilde{T}} + \widetilde{D}^*) \leq 1 - \widetilde{\Sigma}.1/2\sum_i L_i \leq 0$, a contradiction. Therefore, (4) of Claim(1) is true.

Suppose that $\tilde{\Delta}_2 - \tilde{J}_2$ contains a (-n)-curve B with $n \geq 3$. Let $L_1 + \cdots + L_s$ be a linear chain contained in $\tilde{\Delta}_2$ such that $L_1 = \tilde{J}_2, L_s = B, L_i.L_{i+1} = 1 (i = 1, \cdots, s-1)$. Then we have $\widetilde{D}^* \geq 1/2 \sum_i L_i$. Note that for i=2,s, we have $L_i.\tilde{\Sigma} = L_i.(K_{\tilde{T}} + \tilde{J}_2) \geq 1$. Moreover, $L_2.\tilde{\Sigma} \geq 2$ if s=2. This leads to $0 < -\tilde{\Sigma}.(K_{\tilde{T}} + \widetilde{D}^*) \leq 1 - \tilde{\Sigma}.(1/2 \sum_i L_i) \leq 0$. We reach a contradiction. Therefore, (5) of Claim(1) is true.

This proves Claim(1).

Claim(2). Suppose that $\tilde{J}_2^2 = -4$. Then Theorem 7.1,(3) is true with E = C.

We consider the case $\widetilde{J}_2^2 = -4$. Then $\widetilde{D}^* \geq 2/3\widetilde{J}_2$ by $\operatorname{Claim}(1)$. If \widetilde{H}_{11} is not a tip of $\widetilde{\Delta}_1$ (resp. \widetilde{H}_{12} is not a tip, or $H_{11}^2 < -3$) then $D^* \geq 6/11\widetilde{H}_{11} + 4/11\widetilde{H}_1 + 2/11\widetilde{H}_{12}$ (resp. $D^* \geq 4/9\widetilde{H}_{11} + 3/9\widetilde{H}_1 + 2/9\widetilde{H}_{12}$, or $D^* \geq 3/5\widetilde{H}_{11} + 2/5\widetilde{H}_1 + 1/5\widetilde{H}_{12}$). Either of the three cases implies that $0 < -\widetilde{C}.(K_{\widetilde{T}} + \widetilde{D}^*) \leq 1 - (1/3\widetilde{H}_1 + 2/3\widetilde{J}_2) = 0$, a contradiction.

 $1-(1/3\widetilde{H}_1+2/3\widetilde{J}_2)=0$, a contradiction. Thus, $\widetilde{\Delta}_1=\widetilde{H}_1+\widetilde{H}_{11}+\widetilde{H}_{12}$ and $\widetilde{H}_1^2=-2, H_{11}^2=-3, H_{12}^2=-2$ (cf. Claim(1)). If \widetilde{J}_2 is a tip of $\widetilde{\Delta}_2$, i.e., if $J_2\neq H_2$, then Theorem 7.1,(3) is true with E=C. Because $\widetilde{C}+\widetilde{J}_2+\widetilde{\Delta}_1$ and hence $C+T_2+\Delta_1$ have a positive eigenvalue.

We may assume that $J_2 = H_2$. Then $\widetilde{D}^* \geq 2/3\widetilde{H}_2 + 1/3\widetilde{H}_{21} + 1/3\widetilde{H}_{22}$ (cf. Claim(1)). We shall show that this would lead to a contradiction. By Claim(1), $\widetilde{\Delta}_2$ is now a linear chain. If H_{2j} is not tip of $\widetilde{\Delta}_2$ for j=1 and 2, then $D^* \geq 2/4\widetilde{H}_{21} + 3/4\widetilde{H}_2 + 2/4\widetilde{H}_{22}$. This leads to $0 < -\widetilde{C}.(K_{\widetilde{T}} + \widetilde{D}^*) \leq 1 - \widetilde{C}.(2/7\widetilde{H}_1 + 3/4\widetilde{H}_2) = 1 - 2/7 - 3/4 < 0$, a contradiction.

So, may assume that H_{21} is a tip of $\widetilde{\Delta}_2$. If $\widetilde{\Delta}_2$ has more than four irreducible components, then $D^* \geq 4/11\widetilde{H}_{21} + 8/11\widetilde{H}_2 + 6/11\widetilde{H}_{22}$. This leads to $0 < -\widetilde{C}.(K_{\widetilde{T}} + \widetilde{D}^*) \leq 1 - \widetilde{C}.(2/7\widetilde{H}_1 + 8/11\widetilde{H}_2) = 1 - 2/7 - 8/11 < 0$, a

contradiction. Therefore, $H := \widetilde{\Delta}_2 - (\widetilde{H}_{21} + \widetilde{H}_2 + \widetilde{H}_{22})$ is zero or a (-2)-curve adjacent to \widetilde{H}_{22} (cf. Claim(1)).

Note that $\widetilde{\Sigma}.\widetilde{H}_{2j}=(K_{\widetilde{T}}+\widetilde{H}_2)=1$ for j=1 and 2 (cf. Lemma 7.5). If $B.\widetilde{\Sigma}>0$ for some irreducible component B of $\widetilde{D}-(\widetilde{H}_{21}+\widetilde{H}_{22})$, then B is not contained in $\widetilde{\Delta}_1$ or $\widetilde{\Delta}_2$, $B^2\leq -3$ and $B.\widetilde{\Sigma}=B.K_{\widetilde{T}}$ (cf. Lemma 1.5,(5)). Hence $\widetilde{D}^*\geq 1/3B$. This leads to $0<-\widetilde{\Sigma}.(K_{\widetilde{T}}+D^*)\leq 1-\widetilde{\Sigma}.(1/3B+1/3\widetilde{H}_{21}+1/3\widetilde{H}_{22})=0$, a contradiction. So, $\widetilde{\Sigma}$ meets only \widetilde{H}_{21} and \widetilde{H}_{22} in \widetilde{D} .

Let $S_0' := 2\widetilde{\Sigma} + \widetilde{H}_{21} + \widetilde{H}_{22}$ and let $\psi : \widetilde{T} \to \mathbf{P}^1$ be the \mathbf{P}^1 -fibration with S_0' as a singular fiber. Let S_1' be the singular fiber containing $\widetilde{C} + \widetilde{\Delta}_1$. Then there is a (-1)-curve E such that $E.\widetilde{H}_{11} = 1$ and $S_1' = 2(\widetilde{C} + \widetilde{H}_1) + \widetilde{H}_{11} + \widetilde{H}_{12} + E$. Since $\rho(\widetilde{T}) = 1$ and since every irreducible component of $\widetilde{D} - (H + \widetilde{H}_2)$ is contained in singular fibers of ψ , every singular fiber S_2' other than S_1' consists of one (-1)-curve and several irreducible components of \widetilde{D} (cf. Lemma 1.1,(4) of part I). Here $H := \widetilde{\Delta}_2 - (\widetilde{H}_{21} + \widetilde{H}_2 + \widetilde{H}_{22})$. Moreover, $H \neq 0$. So, H is a (-2)-curve adjacent to \widetilde{H}_{22} . Since H is a cross-section H.E = 1 and S_0', S_1' are the only singular fibers of ψ for otherwise H would meet a (-1)-curve F in some singular fiber S_2' and F has multiplicity at least two.

Let $\tau: \widetilde{T} \to \Sigma_2$ be the smooth blowing-down of curves in singular fibers of ψ such that $\tau(H)^2 = -2$. On the one hand, \widetilde{H}_2 is a 2-section with $\widetilde{H}_2 \cap H = \phi$ and hence $\tau(\widetilde{H}_2)^2 = 8$. On the other hand, a calculation shows that $\tau(\widetilde{H}_2)^2 = \widetilde{H}_2^2 + 1 + 7 = 4$. We reach a contradiction.

This proves Claim(2).

In view of Claim(2), may assume that $\tilde{J}_2^2 = -3$. If \tilde{J}_2 is a tip of $\tilde{\Delta}_2$, i.e., if $J_2 \neq H_2$, then Theorem 1.1,(3) is true with E = C. Indeed, then $\tilde{C} + \tilde{J}_2 + \tilde{\Delta}_1$ and hence $C + T_2 + \Delta_1$ have a positive eigenvalue.

Thus, may assume that $J_2 = H_2$. Then $\tilde{\Delta}_2$ is a linear chain (cf. Claim(1)). We have also

$$\widetilde{D}^* \ge 3/7\widetilde{H}_{11} + 2/7\widetilde{H}_1 + 1/7\widetilde{H}_{12} + 1/4\widetilde{H}_{21} + 2/4\widetilde{H}_2 + 1/4\widetilde{H}_{22}.$$

Note that $H.\widetilde{\Sigma} = H.(K_{\widetilde{H}} + \widetilde{H}_{11} + \widetilde{H}_{12} + \widetilde{H}_{2}) = 1$ (cf. Lemma 1.5) if H is an irreducible component of $\widetilde{D} - \widetilde{H}_{1}$ adjacent to one of $\widetilde{H}_{11}, \widetilde{H}_{12}$ and \widetilde{H}_{2} . In particular, $\widetilde{\Sigma}.\widetilde{H}_{21} = \widetilde{\Sigma}.\widetilde{H}_{22} = 1$.

Claim(3). $\widetilde{D} - (\widetilde{H}_{11} + \widetilde{H}_2)$ consists of (-2)-curves.

Suppose to the contrary that Claim(3) is false. Then $\overline{D} - (\tilde{\Delta}_1 + \tilde{\Delta}_2)$ contains a (-n)-curve B with $n \geq 3$ (cf. Claim(1)). By Lemma 1.5, we have

 $B.\widetilde{\Sigma} = B.K_{\widetilde{T}} = n-2$. Note that $\widetilde{D}^* \geq (n-2)/nB$ and $0 < -\widetilde{\Sigma}.(K_{\widetilde{T}} + \widetilde{D}^*) \leq 1 - \widetilde{\Sigma}.(n-2)/nB = 1 - (n-2)^2/n$. So, n = 3 and $B.\widetilde{\Sigma} = 1$.

If $\widetilde{D} - \widetilde{H}_1$ has an irreducible component H adjacent to \widetilde{H}_{11} , then $\widetilde{D}^* \geq 3/11H + 6/11\widetilde{H}_{11} + 4/11\widetilde{H}_1 + 2/11\widetilde{H}_{12}$. This leads to $0 < -\widetilde{\Sigma}.(K_{\widetilde{S}} + \widetilde{D}^*) \leq 1 - \widetilde{\Sigma}.(1/3B + 3/11H + 1/4\widetilde{H}_{21} + 1/4\widetilde{H}_{22}) = 1 - 1/3 - 3/11 - 1/4 - 1/4 < 0$. We reach a contradiction. So, \widetilde{H}_{11} is a tip of $\widetilde{\Delta}_1$.

If $\widetilde{D}-\widetilde{H}_1$ has an irreducible component H adjacent to \widetilde{H}_{12} but H is not a tip of $\widetilde{\Delta}_1$, then $\widetilde{D}^*\geq 2/11H+3/11\widetilde{H}_{12}+4/11\widetilde{H}_1+5/11\widetilde{H}_{11}$. This leads to $0<-\widetilde{\Sigma}.(K_{\widetilde{T}}+\widetilde{D}^*)\leq 1-\widetilde{\Sigma}.(1/3B+2/11H+1/4\widetilde{H}_{21}+1/4\widetilde{H}_{22})=1-1/3-2/11-1/4-1/4<0$. We reach a contradiction again. Thus, $H:=\widetilde{\Delta}_1-(\widetilde{H}_{11}+\widetilde{H}_1+\widetilde{H}_{12})$ is zero or a (-2)-curve adjacent to \widetilde{H}_{12} (cf. Claim(1)).

Let $S_0' := 2\widetilde{\Sigma} + \widetilde{H}_{21} + \widetilde{H}_{22}$ and let $\psi : \widetilde{T} \to \mathbf{P}^1$ be the \mathbf{P}^1 - fibration with S_0' as a singular fiber. Let S_1' be the singular fiber containing $\widetilde{C} + \widetilde{H}_1 + \widetilde{H}_{11} + \widetilde{H}_{12}$.

Suppose $H_{11}^2 = -3$. Then there is a (-1)-curve E such that $E.\widetilde{H}_{11} = 1$ and $S_1' = 2(\widetilde{C} + \widetilde{H}_1) + \widetilde{H}_{12} + \widetilde{H}_{11} + E$. Since B is a 2-section, we have B.E = 2. This leads to $0 < -E.(K_{\widetilde{D}} + D^*) \le 1 - E.(1/3B + 3/7\widetilde{H}_{11}) = 1 - (1/3) \cdot 2 - 3/7 < 0$, a contradiction. So, $H_{11}^2 \le -4$.

Suppose $\sigma \neq id$. Let $\sigma_2: \widetilde{S}_1 \to \widetilde{T}$ be the blowing-up of the point $P_2:=\widetilde{C} \cap \widetilde{H}_2$ and set $E:=\sigma_2^{-1}(P_2)$. Then by the hypothesis, there is a smooth blowing-down $\sigma_1: \widetilde{S} \to \widetilde{S}_1$ such that $\sigma = \sigma_2 \cdot \sigma_1$. Now we apply Lemma 1.4. In particular, we have $-E.(K_{\widetilde{S}_1} + M^*) > 0$. On the other hand, $M^* \geq 2/3\sigma_2'\widetilde{H}_{11} + 2/3\sigma_2'\widetilde{H}_1 + 1/3\sigma_2'\widetilde{H}_{12} + 1/3\sigma_2'\widetilde{C} + 1/3\sigma_2'\widetilde{H}_{21} + 2/3\sigma_2'\widetilde{H}_2 + 1/3\sigma_2'\widetilde{H}_{22}$. This leads to $0 < -E.(K_{\widetilde{S}_1} + M^*) \leq 1 - E.(1/3\sigma_2'\widetilde{C} + 2/3\sigma_2'\widetilde{H}_2) = 0$, a contradiction. So, $\sigma = id$. Hence $\widetilde{T} = \widetilde{S}, H_i = D_i(i = 1, 2)$.

Let $S_0 := 3C + 2D_1 + H_{12} + D_2$ and let $\varphi : \tilde{S} \to \mathbf{P}^1$ be the \mathbf{P}^1 - fibration with S_0 as a singular fiber. Then $\tilde{\Sigma}$ and the (-3)-curve B are contained in the same singular fiber of φ , say S_1 . By the minimality of $-C.(K_{\tilde{S}} + D^*)$ and by noting that C has multiplicity 3 in S_0 and the summation of the multiplicities of (-1)-curves in S_1 is at least 3

(cf. [4, Lemma 1.6]), every (-1)-curve F in S_1 , especially Σ , satisfies $-F.(K_{\widetilde{S}}+D^*)=-C.(K_{\widetilde{S}}+D^*)$. So, every singular fiber of the previous fibration ψ defined above has one of two types in Lemma 6.12, part I. However, S_1' above contains a curve H_{11} with $H_{11}^2<-3$. We reach a contradiction.

This proves Claim(3).

Let

$$S_0 := 3\widetilde{C} + 2\widetilde{H}_1 + \widetilde{H}_{12} + \widetilde{H}_2$$

and let $\varphi: \widetilde{T} \to \mathbf{P}^1$ be the \mathbf{P}^1 -fibration with S_0 as a singular fiber. $\widetilde{H}_{21}, \widetilde{H}_{22}$ (resp. \widetilde{H}_{11}) is a cross-section (resp. 2-section). Denote by S_1 the singular fiber containing $\tilde{\Sigma}$. Let

$$S_i \ (i=0,1,\cdots,r)$$

be all singular fibers of φ . By Claim(3), every singular fiber S_i ($i \geq 1$) consists of only (-1) or (-2)-curves. So, S_i has one of two types in Lemma 6.12, part I.

Claim(4). Suppose that S_k has the second type in Lemma 6.12 of part I for some $k \geq 1$. Then Case(4-1) of Theorem 1.1 occurs.

Suppose S_1 has the second type in Lemma 6.12, part I. Then Σ is the unique (-1)-curve in S_1 . Then the 2-section H_{11} meets two multiplicity-one or one multiplicity-two irreducible component(s) other than Σ in S_1 . This leads to that Δ_1 is a fork (cf. Lemma 1.1,(4), part I), a contradiction to Claim(1). So, S_1 consists of two (-1)-curves Σ , E and several (-2)-curves.

Suppose that S_k has the second type in Lemma 6.12, part I for some $k \geq 2$, say k = 2. Let F be the unique (-1)-curve in S_2 . Since \overline{H}_{2j} . $S_2 = 1$ (j = 1)(1,2), there are two (-2)-curves $G_j(j=1,2)$ such that $F_jG_j=1, \overline{H}_{2j}, G_j=1$ $H_{11}.F = 1$ and

$$S_2 = 2F + G_1 + G_2.$$

Now we have (cf. Claim(1)):

$$\widetilde{\Delta}_2 = G_1 + \widetilde{H}_{21} + \widetilde{H}_2 + \widetilde{H}_{22} + G_2.$$

We have also $\widetilde{D}^* \geq 1/5G_1 + 2/5\widetilde{H}_{21} + 3/5\widetilde{H}_2 + 2/5\widetilde{H}_{22} + 1/5G_2$. If H is an irreducible component of $\widetilde{\Delta}_1 - \widetilde{H}_1$ adjacent to \widetilde{H}_{12} , then His a cross-section and $H.G_j = 1$ for j = 1 or 2. This leads to $\tilde{\Delta}_1 = \tilde{\Delta}_2$, a contradiction. So, H_{12} is a tip of Δ_1 .

If H is an irreducible component of $\widetilde{\Delta}_1 - \widetilde{H}_1$ adjacent to \widetilde{H}_{11} , then $\widetilde{D}^* \geq$ $3/11H + 6/11\widetilde{H}_{11} + 4/11\widetilde{H}_{1} + 2/11\widetilde{H}_{12}$. This leads to $0 < -\widetilde{\Sigma}.(K_{\widetilde{T}} + D^*) \le$ $1-\widetilde{\Sigma}.(3/11H+2/5\widetilde{H}_{21}+2/5\widetilde{H}_{22})=1-3/11-2/5-2/5<0$, a contradiction. So, H_{11} is tip of H_1 .

Therefore,

$$\widetilde{\Delta}_1 = \widetilde{H}_1 + \widetilde{H}_{11} + \widetilde{H}_{12}.$$

In particular, $\widetilde{\Sigma}$ meets only $\widetilde{H}_{2j}(j=1,2)$ in \widetilde{D} (cf. Lemma 1.5 and Claim(3)). So,

 $S_1 = \tilde{\Sigma} + E$

with $\widetilde{\Sigma}.E = 1$ and $\widetilde{H}_{11}.E = 2$.

If $\widetilde{H}_{11}^2 \leq -4$, then $D^* > 1/2\widetilde{H}_{11}$ and $0 < -E.(K_{\widetilde{T}} + \widetilde{D}^*) \leq 1 - E.1/2\widetilde{H}_{11} = 0$, a contradiction. So, $\widetilde{H}_{11}^2 = -3$.

For every $i \geq 3$, since \widetilde{H}_{21} meets a (-1)-curve of multiplicity one in S_i , S_i has the first type in Lemma 6.12, pat I. Since $\widetilde{D} - (\widetilde{H}_{21} + \widetilde{H}_{22} + \widetilde{H}_{11})$ are contained in singular fibers of φ and since $\rho(T) = 1$, r = 3 and

$$S_i$$
 $(i = 0, 1, 2, 3)$

are all singular fibers of φ (cf. Lemma 1.5(1) in [4]). Let $E_j(j=1,2)$ be the two (-1)-curves in S_3 .

Let $\tau: \widetilde{T} \to \Sigma_2$ be the smooth blowing-down of curves in singular fibers such that $\tau(\widetilde{H}_{21})^2 = -2$. Then $\tau(\widetilde{H}_{22}) \sim \tau(\widetilde{H}_{21}) + 2\tau(S_0)$ and $\tau(\widetilde{H}_{11}) \sim 2\tau(\widetilde{H}_{21}) + 4\tau(S_0)$. In particular, $\tau(\widetilde{H}_{22})^2 = 2$ and $\tau(\widetilde{H}_{11})^2 = 8$. So, may assume that $\widetilde{H}_{2j}.E_j = \widetilde{H}_{11}.E_j = 1$ (j = 1, 2). Moreover,

$$S_3 = E_1 + G_3 + G_4 + E_2$$

where $G_3 + G_4$ is a connected component of \widetilde{D} with two (-2)-curves (cf. Lemma 1.1,(4), part I) and with $E_j.G_{j+2} = 1$.

Now $\widetilde{H}_{11}^2 = -3$, and

$$\tilde{\Delta}_1,\,\tilde{\Delta}_2,\,G_3+G_4$$

are all connected components of \widetilde{D} (cf. Lemma 1.1, (4), part I). To show that Case(4-1) of Theorem 1.1 occurs, it suffices to show that $\sigma=id$. Let $\sigma_2:\widetilde{S}_1\to \widetilde{T}$ be the blowing-up of the point $P_2:=\widetilde{C}\cap\widetilde{H}_2$ and let $L:=\sigma_2^{-1}(P_2)$. Suppose to the contrary that $\sigma\neq id$. Then by the hypothesis, there is a smooth blowing-down $\sigma_1:\widetilde{S}\to\widetilde{S}_1$ such that $\sigma=\sigma_2\cdot\sigma_1$. Now applying Lemma 1.4, we get $-L.(K_{\widetilde{S}_1}+M^*)>0$. On the other hand, $M^*=1/2\sigma_2'\widetilde{H}_{11}+1/2\sigma_2'\widetilde{H}_1+1/4\sigma_2'\widetilde{H}_{12}+1/4\sigma_2'\widetilde{G}_1+2/4\sigma_2'\widetilde{H}_{21}+3/4\sigma_2'\widetilde{H}_2+2/4\sigma_2'\widetilde{H}_{22}+1/4\sigma_2'G_2$. This leads to $-L.(K_{\widetilde{S}_1}+M^*)=1-L.(1/4\sigma_2'\widetilde{C}+3/4\sigma_2'\widetilde{H}_2)=0$. We reach a contradiction. So, $\sigma=id$ and Case(4-1) of Theorem 1.1 occurs.

This proves Claim(4).

In view of Claim(4), may assume that each singular fiber S_i ($i = 1, \dots, r$) has the first type in Lemma 6.12, part I. Then the number of singular

fibers containing two (-1)-curves is one less than the number of sectional-components of \widetilde{D} because $\rho(T)=1$. So, r=2 and S_0, S_1, S_2 are all singular fibers if \widetilde{H}_{12} is a tip of $\widetilde{\Delta}_1$, or r=3 and S_0, S_1, S_2, S_3 are all singular fibers otherwise. Let

$$\mu: \widetilde{T} \to \Sigma_2$$

be the smooth blowing-down of curves in singular fibers of φ such that $\mu(\widetilde{H}_{21})^2 = -2$. Write $\mu(\widetilde{H}_{ij}) = \overline{H}_{ij}, \mu(S_i) = \overline{S}_i$, etc. Then $\overline{H}_{22} \sim \overline{H}_{21} + 2\overline{S}_0$ and $\overline{H}_{11} \sim 2\overline{H}_{21} + 4\overline{S}_0$. In particular, $\overline{H}_{22}^2 = 2$, $\overline{H}_{11}^2 = 8$, \overline{H}_{22} . $\overline{H}_{11} = 4$.

Claim(5). Suppose that \widetilde{H}_{11} is not a tip. Then Case(4-2) of Theorem 1.1 occurs.

One can see that H_{11} is a (-3)-curve, as in the proof of Claim (4) above. Note that $r \geq 2$ and we can write

$$S_1 = \tilde{\Sigma} + \sum_{i=1}^s G_i + E$$

such that $E^2 = -1$, $G_i^2 = -2$, \widetilde{H}_{11} . $G_1 = \widetilde{\Sigma}$. $G_1 = G_j$. $G_{j+1} = G_s$. E = 1 $(j = 1, \dots, s-1)$ (cf. Lemma 1.5),

$$S_2 = E_1 + \sum_{i=s+1}^{s+t} G_i + E_2$$

such that $E_i^2 = -1, G_j^2 = -2, E_1.G_{s+1} = G_j.G_{j+1} = G_{s+t}.E_2 = 1(j \le s+t-1)$. Note that $\widetilde{H}_{11}.E = 1$ for $\widetilde{H}_{11}.S_1 = 2$. Note that $\widetilde{D}^* \ge 2/11\widetilde{H}_{12} + 4/11\widetilde{H}_1 + 6/11\widetilde{H}_{11} + 3/11G_1$. If $F.\widetilde{H}_{11} \ge 2$ for

Note that $\widetilde{D}^* \geq 2/11\widetilde{H}_{12} + 4/11\widetilde{H}_1 + 6/11\widetilde{H}_{11} + 3/11G_1$. If $F.\widetilde{H}_{11} \geq 2$ for some (-1)-curve F, then $0 < -F.(K_{\widetilde{T}} + D^*) \leq 1 - F.6/11\widetilde{H}_{11} \leq 1 - (6/11) \cdot 2 < 0$, a contradiction. So, $F.\widetilde{H}_{11} \leq 1$ for every (-1)-curve F and the equality holds if F is in S_i $(i \geq 2)$ because $\widetilde{H}_{11}.S_i = 2$ (cf. Claim(1),(2)).

Case(5.1) \widetilde{H}_{12} is a tip of $\widetilde{\Delta}_1$ while \widetilde{H}_{2j} is not a tip of $\widetilde{\Delta}_2$ for j=1 or 2, say j=1. Then r=2. May assume $\widetilde{H}_{21}.G_{s+1}=1$. Since $\overline{H}_{22}^2=2$, one gets $\widetilde{H}_{22}.E_2=1$ and t=4. This leads to $\widetilde{D}^* \geq 1/10G_{s+4}+2/10G_{s+3}+3/10G_{s+2}+4/10G_{s+1}+5/10\widetilde{H}_{21}+6/10\widetilde{H}_2+3/10\widetilde{H}_{22}$ and $0<-\widetilde{\Sigma}.(K_{\widetilde{T}}+D^*)\leq 1-\widetilde{\Sigma}.(5/10\widetilde{H}_{21}+3/10\widetilde{H}_{22}+3/11G_1)=1-5/10-3/10-3/11<0$, a contradiction. So, Case(5.1) is impossible.

Case(5.2). \widetilde{H}_{12} is a tip of $\widetilde{\Delta}_1$ and both \widetilde{H}_{21} and \widetilde{H}_{22} are tips of $\widetilde{\Delta}_2$. Then r=2, i.e.,

$$S_i \ (i=0,1,2)$$

are all singular fibers of φ , and

$$\widetilde{\Delta}_1 = \widetilde{H}_{12} + \widetilde{H}_1 + \widetilde{H}_{11} + \sum_{i=1}^s G_i, \ \widetilde{\Delta}_2 = \widetilde{H}_{21} + \widetilde{H}_2 + \widetilde{H}_{22},$$

because $\tilde{\Delta}_i$'s are linear chains. Moreover,

$$\tilde{\Delta}_1, \ \tilde{\Delta}_2, \ \sum_{i=s+1}^{s+t} G_i$$

are all connected components of \widetilde{D} (cf. Lemma 1.1, (4), part I). We shall show that Case(4-2) of Theorem 1.1 occurs. May assume that $\widetilde{H}_{21}.E_1=1$. By the same reasoning as in the previous case, we have $\widetilde{H}_{22}.E_2=1$ and t=3. Then $8=\overline{H}_{11}^2=\widetilde{H}_{11}^2+2+(s+4)+4$. Hence $s=-\widetilde{H}_{11}^2-2$. If $s\geq 2$, then $\widetilde{H}_{11}^2\leq -4$ and $\widetilde{D}^*\geq 1/4\widetilde{H}_{12}+2/4\widetilde{H}_1+3/4\widetilde{H}_{11}+2/4G_1+1/4G_2$. This leads to $0<-\widetilde{C}.(K_{\widetilde{T}}+\widetilde{D}^*)\leq 1-\widetilde{C}.(1/2\widetilde{H}_1+1/2\widetilde{H}_2)=0$, a contradiction. So, $s=1,\widetilde{H}_{11}^2=-3$.

Now $s=1, t=3, \widetilde{H}_{11}^2=-3$. To show that $\operatorname{Case}(4\text{-}2)$ of Theorem 1.1 occurs, it is sufficient to show that $\sigma=id$. Let $\sigma_2:\widetilde{S}_1\to\widetilde{T}$ be the blowing-up of the point $P_2:=\widetilde{C}\cap\widetilde{H}_2$ and let $F:=\sigma_2^{-1}(P_2)$. Suppose to the contrary that $\sigma\neq id$. Then by the hypothesis, there is a smooth blowing-down $\sigma_1:\widetilde{S}\to\widetilde{S}_1$ such that $\sigma=\sigma_2\cdot\sigma_1$. Applying Lemma 1.4, we get $0-F.(K_{\widetilde{S}_1}+M^*)>0$. On the other hand, $M^*=1/3\sigma_2'G_1+2/3\sigma_2'\widetilde{H}_{11}+2/3\sigma_2'\widetilde{H}_1+1/3\sigma_2'\widetilde{H}_{12}+1/3\sigma_2'\widetilde{H}_{21}+2/3\sigma_2'\widetilde{H}_{21}+2/3\sigma_2'\widetilde{H}_{21}+1/3\sigma_2'\widetilde{H}_{22}$. Hence $0<-F.(K_{\widetilde{S}_1}+M^*)=1-F.(1/3\sigma_2'\widetilde{C}+2/3\sigma_2'\widetilde{H}_2)=0$. We reach a contradiction. Therefore, $\sigma=id$ and $\operatorname{Case}(4\text{-}2)$ of Theorem 1.1 occurs.

Case(5.3). \widetilde{H}_{12} is not a tip of $\widetilde{\Delta}_1$. Let H be the irreducible component of $\widetilde{D}-\widetilde{H}_1$ adjacent to \widetilde{H}_{12} . Then $\widetilde{D}^*\geq 1/7H+2/7\widetilde{H}_{12}+3/7\widetilde{H}_1+4/7\widetilde{H}_{11}+2/7G_1$. Note that H is a cross-section and $H.\widetilde{\Sigma}=H.(K_{\widetilde{T}}+\widetilde{H}_{12})=1$ (cf. Lemma 1.5).

If \widetilde{H}_{2j} is not a tip of $\widetilde{\Delta}_2$ for j=1 or 2, say j=1, then also $\widetilde{D}^* \geq 4/11\widetilde{H}_{21}+6/11\widetilde{H}_2+3/11\widetilde{H}_{22}$, this leads to $0<-\widetilde{\Sigma}.(K_{\widetilde{T}}+\widetilde{D}^*)\leq 1-\widetilde{\Sigma}.(4/11\widetilde{H}_{21}+3/11\widetilde{H}_{22}+1/7H+2/7G_1)=1-4/11-3/11-1/7-2/7<0$, a contradiction. So, \widetilde{H}_{2j} 's are tips of $\widetilde{\Delta}_2$ and hence $\widetilde{\Delta}_2=\widetilde{H}_{21}+\widetilde{H}_2+\widetilde{H}_{22}$.

If G_1 or H is not a tip of $\widetilde{\Delta}_1$ (resp. if $\widetilde{H}_{11}^2 \leq -4$), then $\widetilde{D}^* \geq 3/19H + 6/19\widetilde{H}_{12} + 9/19\widetilde{H}_1 + 12/19\widetilde{H}_{11} + 8/19G_1$ or $\widetilde{D}^* \geq 4/17H + 6/17\widetilde{H}_{12} + 8/17\widetilde{H}_1 +$

 $\begin{array}{ll} 10/17\widetilde{H}_{11}+5/17G_1 \ (\text{resp.} \ \widetilde{D}^* \geq 2/11H+4/11\widetilde{H}_{12}+6/11\widetilde{H}_1+8/11\widetilde{H}_{11}+4/11G_1) \ \text{and hence} \ -\widetilde{\Sigma}.(K_{\widetilde{T}}+\widetilde{D}^*) \leq 1-\widetilde{\Sigma}.(3/19H+8/19G_1+1/4\widetilde{H}_{21}+1/4\widetilde{H}_{22}) = 1-3/19-8/19-1/4-1/4<0, \ \text{or} \ \leq 1-\widetilde{\Sigma}.(4/17H+5/17G_1+1/4\widetilde{H}_{21}+1/4\widetilde{H}_{22}) = 1-4/17-5/17-1/4-1/4<0 \ (\text{resp.} \ \leq 1-\widetilde{\Sigma}.(2/11H+4/11G_1+1/4\widetilde{H}_{21}+1/4\widetilde{H}_{22}) = 1-2/11-4/11-1/4-1/4<0. \ \text{We reach a contradiction in either of the cases. So,} \ s=1, \widetilde{\Delta}_1=H+\widetilde{H}_{12}+\widetilde{H}_1+\widetilde{H}_{11}+G_1, \widetilde{H}_{11}^2=-3. \end{array}$

Note that r=3. Let E_1 , E_2 (resp. E_3 , E_4) be the (-1)-curves in S_2 (resp. S_3). Let t_i+2 be the number of irreducible components of S_i . May assume that $\widetilde{H}_{21}.E_j=1$ for j=1 and 3. Note that $8=\overline{H}_{11}^2=\widetilde{H}_{11}^2+2+(1+4)+(t_1+1)+(t_2+1)$. So, $t_1+t_2=2$. $\overline{H}_{22}^2=2$ implies that $\widetilde{H}_{22}.E_j=1$ for j=2,4. But then it is impossible that $\overline{H}^2=\overline{H}.\overline{H}_{22}=2$. So, Case(5-3) is impossible.

This proves Claim(5).

In view of Claim(5), may assume that

$$\widetilde{H}_{11}$$
 is a tip of $\widetilde{\Delta}_1$.

Thus,

$$S_1 = \tilde{\Sigma} + E$$

where E is a (-1)-curve such that $E.\widetilde{\Sigma} = 1$ and $E.\widetilde{H}_{11} = S_1.\widetilde{H}_{11} = 2$ (cf. Lemma 1.5,(5)). If $\widetilde{H}_{11}^2 \leq -4$, then $\widetilde{D}^* \geq 1/2\widetilde{H}_{11}$ and $0 < -E.(K_{\widetilde{T}} + \widetilde{D}^*) \leq 1 - E.1/2\widetilde{H}_{11} = 0$, a contradiction. So,

$$\widetilde{H}_{11}^2 = -3.$$

Claim(6). Suppose that \widetilde{H}_{12} is a tip. Then Case(4-3) of Theorem 1.1 occurs.

In this case, we have r = 2, i.e.,

$$S_i$$
 $(i = 0, 1, 2)$

are all singular fibers of φ and

$$\widetilde{\Delta}_1 = \widetilde{H}_1 + \widetilde{H}_{11} + \widetilde{H}_{12}.$$

Hence $\widetilde{\Sigma}$ meets only \widetilde{H}_{2j} (j=1,2) in $\widetilde{D}(\text{cf. Lemma 1.5,(5)})$ and $\widehat{Claim}(3)$.

Write

$$S_2 = E_1 + \sum_{i=1}^t G_i + E_2$$

such that $E_1.G_1 = G_i.G_{i+1} = G_t.E_2 = 1 (i = 1, \dots, t-1)$. May assume that \widetilde{H}_{2j} does not meet $\sum_i G_i$ for j = 1 or 2, say j = 1. May assume also that $\widetilde{H}_{21}.E_1 = 1$. $\overline{H}_{22}^2 = 2$ implies that either t = 3 and $\widetilde{H}_{22}.E_2 = 1$, or t = 4 and $\widetilde{H}_{22}.G_4 = 1$. Since $\overline{H}_{11}^2 = 8$, we must have t = 4 and $\widetilde{H}_{11}.E_j = 1$ for j = 1 and 2. Now $\widetilde{H}_{11}^2 = -3$,

$$\widetilde{\Delta}_2 = \widetilde{H}_{21} + \widetilde{H}_2 + \widetilde{H}_{22} + G_4 + G_3 + G_2 + G_1$$

and

$$\tilde{\Delta}_1, \; \tilde{\Delta}_2$$

are all connected components of \widetilde{D} (cf. Lemma 1.1,(4), part \mathbf{I}).

To prove that Case(4-3) of Theorem 1.1 occurs, it is sufficent to show that $\sigma=id$. Let $\sigma_2:\widetilde{S}_1\to \widetilde{T}$ be the blowing-up of the point $P_2:=\widetilde{C}\cap\widetilde{H}_2$ and set $F:=\sigma_2^{-1}(P_2)$. Suppose to the contrary that $\sigma\neq id$. Then by the hypothesis, there is a smooth blowing-down $\sigma_1:\widetilde{S}\to\widetilde{S}_1$ such that $\sigma=\sigma_2\cdot\sigma_1$. Applying Lemma 1.4, we get $-F.(K_{\widetilde{S}_1}+M^*)>0$. On the other hand, $M^*=1/2\sigma_2'\widetilde{H}_{11}+1/2\sigma_2'\widetilde{H}_1+1/4\sigma_2'\widetilde{H}_{12}+1/4\sigma_2'\widetilde{C}+1/8\sigma_2'G_1+2/8\sigma_2'G_2+3/8\sigma_2'G_3+4/8\sigma_2'G_4+5/8\sigma_2'\widetilde{H}_{22}+6/8\sigma_2'\widetilde{H}_2+3/8\sigma_2'\widetilde{H}_{21}$. This leads to $-F.(K_{\widetilde{S}_1}+M^*)=1-F.(1/4\sigma_2'\widetilde{C}+3/4\sigma_2'\widetilde{H}_2)=0$, a contradiction. Therefore $\sigma=id$ and Case(4-3) of Theorem 1.1 occurs.

This proves Claim(6).

Claim(7). Suppose that \widetilde{H}_{12} is not a tip. Then either Theorem 1.1,(3) is true with E = C or Case(4-4) of Theorem 1.1 occurs.

Then r = 3, i.e.,

$$S_i$$
 $(i = 0, 1, 2, 3)$

are all singular fibers of φ . Write

$$S_2 = E_1 + \sum_{i=1}^{t_1} G_i + E_2,$$

$$S_3 = E_3 + \sum_{i=t_1+1}^{t_1+t_2} G_i + E_4$$

such that $E_j^2 = -1$, $G_i^2 = -2$, $E_1 \cdot G_1 = G_{t_1} \cdot E_2 = E_3 \cdot G_{t_1+1} = G_{t_1+t_2} \cdot E_4 = G_i \cdot G_{i+1} = 1$.

Let H be an irreducible component of $\widetilde{\Delta}_1 - \widetilde{H}_1$ adjacent to \widetilde{H}_{12} . If H is not a tip of $\widetilde{\Delta}_1$ then $\widetilde{C} + \widetilde{\Delta}_1$ and hence $C + T_2 + \Delta_1$ have a positive eigenvalue. So, Theorem 1.1,(3) is true. Thus, may assume that H is a tip of $\widetilde{\Delta}_1$. Hence $\widetilde{\Sigma}.H = 1$ and

$$\widetilde{\Delta}_1 = \widetilde{H}_1 + \widetilde{H}_{11} + \widetilde{H}_{12} + H.$$

Note that

$$\widetilde{D}^* = 1/9H + 2/9\widetilde{H}_{12} + 3/9\widetilde{H}_{1} + 4/9\widetilde{H}_{11} + (other terms).$$

Now one may assume that $E_j.H=1$ for j=2,4. Let $\varepsilon:\widetilde{T}\to\Sigma_2$ be the smooth blowing-down of curves in the singular fibers of φ such that $\varepsilon(H)^2=-2$. Then $\varepsilon(H_{2j})^2=2$ (j=1,2) and $\varepsilon(H_{11})^2=8$.

If $\widetilde{H}_{11}.E_i = 2$ for i = 1 or 3, say i = 1, then $S_2 = E_1 + E_2$, $S_3 = E_3 + E_4$ and $\widetilde{H}_{11}.E_k = 1$ for k = 3 and 4 because $\varepsilon(H_{11})^2 = 8$. But then $\varepsilon(H_{2j})^2 \leq -2 + 3$ (j = 1, 2), a contradiction. If $\widetilde{H}_{11}.E_i = 2$ for i = 2 or 4, then $-E_i.(K_{\widetilde{T}} + \widetilde{D}^*) \leq 1 - E_i.(1/9H + 4/9\widetilde{H}_{11}) = 1 - 1/9 - (4/9) \times 2 = 0$, a contradiction. So, $\widetilde{H}_{11}.E_j = 1$ for j = 1, 2, 3 and 4. Now $\varepsilon(H_{11})^2 = 8$ implies that $t_1 + t_2 = 3$.

If \widetilde{H}_{2j} is not a tip of $\widetilde{\Delta}_2$ for both j=1 and 2, then one may assume that $(t_1,t_2)=(1,2)$ and $\widetilde{H}_{21}.G_1=1$. Then it is impossible that $\varepsilon(H_{21})^2=2$. So, one may assume that \widetilde{H}_{21} is a tip of $\widetilde{\Delta}_2$.

Since $\varepsilon(H_{21})^2=2$, one may assume that $(t_1,t_2)=(1,2)$ and $\widetilde{H}_{21}.E_j=1$ for j=2 and 3. Now $\varepsilon(H_{22}).\varepsilon(H_{21})=2$ implies that $\widetilde{H}_{22}.E_1=\widetilde{H}_{22}.G_3=1$. So,

$$\widetilde{\Delta}_2 = \widetilde{H}_{21} + \widetilde{H}_2 + \widetilde{H}_{22} + G_3 + G_2,$$

and

$$\tilde{\Delta}_1, \tilde{\Delta}_2, G_1$$

are all connected components of \widetilde{D} (cf. Lemma 1.1,(4), part \mathbf{I}).

Now $(t_1, t_2) = (1, 2)$ and $\widetilde{H}_{11}^2 = -3$. To prove that Case(4-4) takes place, we have only to show that $\sigma = id$. Let $\sigma_2 : \widetilde{S}_1 \to \widetilde{T}$ be the blowing-up of the point $\widetilde{C} \cap \widetilde{H}_2$ and set $F := \sigma_2^{-1}(P_2)$. Suppose to the contrary that $\sigma \neq id$. Then by the hypothesis, there is a smooth blowing-down $\sigma_1 : \widetilde{S} \to \widetilde{S}_1$ such that $\sigma = \sigma_2 \cdot \sigma_1$. Applying Lemma 1.4, we get $-F \cdot (K_{\widetilde{S}_1} + M^*) > 0$. On the

other hand, $M^* = 2/9\sigma_2'H + 4/9\sigma_2'\widetilde{H}_{12} + 6/9\sigma_2'\widetilde{H}_1 + 5/9\sigma_2'\widetilde{H}_{11} + 3/9\sigma_2'\widetilde{C} + 4/11\sigma_2'\widetilde{H}_{21} + 8/11\sigma_2'\widetilde{H}_2 + 6/11\sigma_2'\widetilde{H}_{22} + 4/11\sigma_2'G_3 + 2/11\sigma_2'G_2$. This leads to $-F.(K_{\widetilde{S}_1} + M^*) = 1 - F.(1/3\sigma_2'\widetilde{C} + 8/11\sigma_2'\widetilde{H}_2) = 1 - 1/3 - 8/11 < 0$, a contradiction. Therefore, $\sigma = id$ and Case(4-4) of Theorem 1.1 occurs.

This proves Claim(7) and also Theorem 1.10.

Lemma 1.11. Suppose that the case (2) in Lemma 1.8 occurs with $(\tilde{J}_a^2, \tilde{J}_b^2) = (-2, -3)$ or (-2, -4) but the case in Corollary 1.6 does not occur. Then either Theorem 1.1,(3) is true with E = C, or one of the following two cases occurs:

Case(1) Δ_1 is a fork with 4 or 5 irreducible components, and T_1 , a maximal twig of Δ_1 consists of a single (-2)-curve D_1 . H_1 is the central component of Δ_1 and $H_1^2 = -3$. Every irreducible component of $\Delta_1 - H_1$ is a (-2)-curve. Thus, $\Delta_1 = D_1 + H_1 + H_{11} + H_{12} + H$ where H = 0 or an irreducible component adjacent to H_{12} .

 Δ_2 is a linear chain with three irreducible components and with D_2 as the middle one. Hence $J_1=H_1, J_2=H_2=D_2, \Delta_2=D_2+H_{21}+H_{22}, D_2^2=H_{21}^2=-3, H_{22}^2=-2$. Moreover, σ is the blowing-down of C, $\widetilde{C}=\sigma(D_1), \widetilde{J}_1^2=-3, \widetilde{J}_2^2=-2$.

Case(2) Δ_1 is a fork with 5 irreducible components, and T_1 , a maximal twig of Δ_1 consists of two (-2)-curves, say $T_1 = D_1 + B_1$. H_1 is the central component of Δ_1 and $H_1^2 = -3$. Every irreducible component of $\Delta_1 - H_1$ is a (-2)-curve. Thus, $\Delta_1 = D_1 + B_1 + H_1 + H_{11} + H_{12}$.

 Δ_2 is a linear chain with three irreducible components and with D_2 as the middle one. Hence $J_1 = H_1, J_2 = H_2 = D_2, \Delta_2 = D_2 + H_{21} + H_{22}, D_2^2 = -4, H_{21}^2 = -3, H_{22}^2 = -2$. Moreover, σ is the blowing-down of $C, D_1, C = \sigma(B_1), \tilde{J}_1^2 = -3, \tilde{J}_2^2 = -2$.

Proof. By the hypothesis, $J_a = H_a$ and may assume that $\widetilde{H}_{a1}^2 \leq -3$. Claim(1). It is impossible that $\widetilde{J}_b^2 = -4$.

We consider the case $\tilde{J}_b^2 = -4$. Since the case in Corollary 1.6 does not occur, we have $\sigma \neq 1$. Let $\tau_i : \tilde{S}_i \to \tilde{T}$ be the blowing-up of the point $P_i := \tilde{C} \cap \tilde{J}_i$. Let $E_i := \tau_i^{-1}(P_i)$. Then for t = a or b, there is a smooth blowing-down $\sigma_i : \tilde{S} \to \tilde{S}_t$ such that $\sigma = \tau_t \cdot \sigma_t$. Now we apply Lemma 1.4. In particular, we have $-E_t \cdot (K_{\tilde{S}_t} + M^*) > 0$.

Case t=a. Then $M^*\geq 8/13\tau_a'\widetilde{H}_a+7/13\tau_a'\widetilde{H}_{a1}+4/13\tau_a'\widetilde{H}_{a2}+2/5\tau_a'\widetilde{C}+1$

 $4/5\tau_a'\tilde{J}_b$. This leads to $0 < -E_a.(K_{\tilde{S}_t} + M^*) \le 1 - E_a.(8/13\tau_a'\tilde{H}_a + 2/5\tau_a'\tilde{C}) =$ 1 - 8/13 - 2/5 < 0, a contradiction. So, this case is impossible.

Case t = b. Then $M^* \ge 1/4\tau_b'\widetilde{C} + 1/2\tau_b'\widetilde{H}_a + 1/2\tau_b'\widetilde{H}_{a1} + 1/4\tau_b'\widetilde{H}_{a2} + 3/4\tau_b'\widetilde{J}_b$. This leads to $0 < -E_b(K_{\widetilde{S}_t} + M^*) \le 1 - E_b(1/4\tau_b'\widetilde{C} + 3/4\tau_b'\widetilde{J}_b) = 0$, a contradiction. So, this case is impossible.

This proves Claim(1).

Therefore, $J_b^2 = -3$.

Claim(2). (1) $\tilde{\Delta}_a$ is a linear chain and the connected component of $\tilde{\Delta}_a$ – \bar{H}_a containing H_{a2} is a (-2)-chain.

Since it is impossible that $\tilde{\Delta}_b$ is a linear chain with \tilde{J}_b as a tip (cf. the hypopthesis(*) after Lemma 1.3), we have $\widetilde{D}^* \geq 1/2\widetilde{J}_2$. If Claim(2) is false, then we have $\widetilde{D}^* \geq 1/2\widetilde{H}_{a1} + 1/2\widetilde{H}_a + 1/2\widetilde{H}_{a2}$. This leads to $0 < -\widetilde{C}.(K_{\widetilde{\tau}} + 1/2\widetilde{H}_{a2})$. \widetilde{D}^*) $\leq 1 - \widetilde{C}.(1/2\widetilde{H}_a + 1/2\widetilde{J}_b) = 0$, a contradiction. So, Claim(2) is true.

Thus, $\widetilde{H}_{a2}^2 = -2$. If \widetilde{J}_b is a tip of $\widetilde{\Delta}_b$, i.e., if $J_b \neq H_b$, then Theorem 1.1,(3) is true with E=C. Indeed, $\tilde{C}+\tilde{J}_b+\tilde{H}_a+\tilde{H}_{a2}$ is a support of a singular fiber of a \mathbf{P}^1 -fibration; hence $\tilde{C} + \tilde{J}_b + \tilde{\Delta}_a$ and $C + T_b + \Delta_a$ have a positive eigenvalue.

Therefore, we may assume that $J_b = H_b$. Since the case in Corollary 1.6 does not occur, there are two smooth blowing-downs $\sigma_1: \tilde{S} \to \tilde{S}_1, \sigma_2: \tilde{S}_1 \to \tilde{S}_1$ T such that $\sigma = \sigma_2 \cdot \sigma_1$ and that :

- (1) $\sigma_1(T_a+C+T_b) = T'_a+E+T'_b$ where E is a (-1)- curve and $T'_i \leq \sigma_1(T_i)$,
- (2) $T'_a + \sigma_1(H_a) = \sum_{i=1}^s L_i, E.L_1 = L_i.L_{i+1} = 1(i = 1, \dots, s-1; s \ge 1), L_s = \sigma_1(H_a), L_1^2 = -t 1 \le -3, L_j^2 = -2(j > 1),$
- (3) $T'_b + \sigma_1(H_b) = \sum_{i=1}^t M_i, E.M_1 = M_i.M_{i+1} = 1(i = 1, \dots, t-1; t \ge 1)$
- 2), $M_t = \sigma_1(H_b)$, $M_i^2 = -2(j < t)$, $M_t^2 = -s 2 \le -3$, and
- (4) σ_1 does not factorize through the blowing-up of the point $P_a := E \cap L_1$. In particular, we see that $\sigma_1(\Delta_b)$ is a fork and hence Δ_b is a linear chain. Now we apply Lemma 1.4. In particular, we have $-E(K_{\widetilde{S}_1} + M^*) > 0$.

Claim(3). $\sigma_1 = id$. Hence $a = 2, b = 1, C = E, D_1 = M_1, D_2 = L_1, D_2^2 = -t - 1 \le -3, H_{21}^2 \le -3$ and $T_1 = \sum_{i=1}^{t-1} M_i$ is a (-2)-twig. Let $\tau_2 : \widetilde{X} \to \widetilde{S}_1$ be the blowing-up of the point $P_b := E \cap M_1$ and set

 $F:=\tau_2^{-1}(P_b)$. Suppose that Claim(3) is false. Then by the definition of σ_1 (cf. the above condition(3)), there is a smooth blowing-down $\tau_1:\widetilde{S}\to\widetilde{X}$ such that $\sigma_1 = \tau_2 \cdot \tau_1$. Now we apply Lemma 1.4. In particular, we have $-F(K_{\widetilde{Y}}+N^*)>0$, where N=D if $\tau_1=id$ and $N=\tau_1(D)-F$ otherwise.

Since $\tau_1(C + \Delta_1 + \Delta_2) - F$ can be contractible to quotient singularities

(cf. Lemma 1.4), we have s = 1 or 2, and if s = 2 then t = 2, $\widetilde{H}_{a1}^2 = -3$ and $\tau_1(\Delta_a) = \tau_2'(E + \sum_i L_i) + \tau_1(H_{a1} + H_{a2})$.

Suppose s = 1. Then $N^* \ge (3t-2)/(6t-2)\tau_2'E + 2(3t-2)/(6t-2)\tau_1(H_a) + (4t-2)/(6t-2)\tau_1(H_{a1}) + (3t-2)/(6t-2)\tau_1(H_{a2}) + \sum_i (t+i)/(2t+1)\tau_2'(M_i) + t/(2t+1)\tau_1(H_{b1}) + t/(2t+1)\tau_1(H_{b2})$. This leads to

$$0 < -F.(K_{\widetilde{Y}} + N^*) \le 1 - F.((3t - 2)/(6t - 2)\tau_2'E + (t + 1)/(2t + 1)\tau_2'M_1) = 0$$

$$1 - (3t - 2)/(6t - 2) - (t + 1)/(2t + 1) = 1/(6t - 2) - 1/2(2t + 1) = (-2t + 4)/2(6t - 2)(2t + 1) \le 0,$$

because $t \geq 2$. We reach a contradiction.

Suppose that s = 2. Then $N^* \ge 9/23\tau_2'E + 18/23\tau_2'(L_1) + 22/23\tau_1(H_a) + 15/23\tau_1(H_{a1}) + 11/23\tau_1(H_{a2}) + 10/16\tau_2'(M_1) + 14/16\tau_1(H_b) + 7/16\tau_1(H_{b1}) + 7/16\tau_1(H_{b2})$. This leads to

$$0 < -F.(K_{\widetilde{\mathbf{x}}} + N^*) \le 1 - F.(9/23\tau_2'E + 10/16\tau_2'M_1) = 1 - 9/23 - 10/16 < 0.$$

We reach a contradiction.

So, Claim(3) is true.

Claim(4). s = 1. Hence Δ_2 is a linear chain, $H_2 = D_2$ and $H_1^2 = -s - 2 = -3$.

Suppose $s \ge 3$. Then $s=3, t=2, H_{21}^2=-3, \Delta_2=D_2(=L_1)+L_2+H_2(=L_3)+H_{21}+H_{22}$ because Δ_2 is contractible to a quotient singularity. So, we have $D^*\ge 3/7D_1(=M_1)+6/7H_1(=M_2)+3/7H_{11}+3/7H_{12}+10/17D_2(=L_1)+13/17L_2+16/17H_2(=L_3)+11/17H_{21}+8/17H_{22}$. This leads to $0 < -C.(K_{\widetilde{S}}+D^*) \le 1-C.(3/7D_1+10/17D_2)=1-3/7-10/17<0$, a contradiction.

Suppose s=2. Then $D^* \geq \sum_i 2i/(2t+1)M_i + t/(2t+1)H_{11} + t/(2t+1)H_{12} + (7t-5)/(7t+1)D_2(=L_1) + 4(2t-1)/(7t+1)H_2(=L_2) + (5t-1)/(7t+1)H_{21} + 2(2t-1)/(7t+1)H_{22}$. This leads to $0 < -C.(K_{\widetilde{S}} + D^*) \leq 1 - C.(2/(2t+1)D_1 + (7t-5)/(7t+1)D_2) = 1 - 2/(2t+1) - (7t-5)/(7t+1) = -2/(2t+1) + 6/(7t+1) = (4-2t)/(2t+1)(7t+1) \leq 0$, because $t \geq 2$. We reach a contradiction.

This proves Claim(4).

Claim(5). t = 2, 3. Hence $D_2^2 = -t - 1 = -3, -4$.

Note that $D^* \ge i/(t+1)M_i + t/2(t+1)H_{11} + t/2(t+1)H_{12} + (6t-4)/(6t+1)D_2(=L_1) + (4t-1)/(6t+1)H_{21} + (3t-2)/(6t+1)H_{22}$. So, $0 < -C.(K_{\widetilde{S}} + D^*) \le 1 - C.(1/(t+1)D_1 + (6t-4)/(6t+1)D_2) = 1 - 1/(t+1) - 1$

(6t-4)/(6t+1) = -1/(t+1) + 5/(6t+1) = (4-t)/(t+1)(6t+1). Hence $t \le 3$. This proves Claim(5).

Claim(6). Case (1) or (2) in Lemma 1.11 occurs.

Consider first the case $D_2^2 = -t - 1 = -3$. Then $D^* \ge 1/3D_1(=M_1) + 2/3H_1(=M_2) + 1/3H_{11} + 1/3H_{12} + 7/13H_{21} + 8/13D_2(=H_2) + 4/13H_{22}$. If H_{21} is not a tip (resp. H_{22} is not a tip, or $H_{21}^2 \le -4$), then also $D^* \ge 2/3H_{21} + 2/3D_2 + 1/3H_{22}$ (resp. $D^* \ge 5/9H_{21} + 6/9D_2 + 4/9H_{22}$, or $D^* \ge 2/3H_{21} + 2/3D_2 + 1/3H_{22}$). Either of the three cases leads to $0 < -C.(K_{\widetilde{S}} + D^*) \le 1-C.(1/3D_1+2/3D_2) = 0$, a contradiction. Thus, $\Delta_2 = D_2 + H_{21} + H_{22}$ and $H_{21}^2 = -3$. So, Δ_2 is as described in the case(1) of Lemma 1.11.

Let T_1', T_1 " be twigs of Δ_1 containing H_{11}, H_{12} , respectively. If both T_1' and T_1 " have more than one irreducible components (resp. T_1' or T_1 ", say T_1' has more than two irreducible components), then $D^* \geq 3/7D_1 + 6/7H_1 + 4/7H_{11} + 4/7H_{12}$ (resp. $D^* \geq 2/5D_1 + 4/5H_1 + 3/5H_{11} + 2/5H_{12}$). Either of the two cases leads to $0 < -C.(K_{\widetilde{S}} + D^*) \leq 1 - C.(2/5D_1 + 8/13D_2) = 1 - 2/5 - 8/13 < 0$, a contradiction.

To show that Δ_1 is as described in the case(1) of Lemma 1.11, it remains to show that $\Delta_1 - H_1$ consists of only (-2)-curves. Indeed, if $H_{1j}^2 \leq -3$ for j=1 or 2, say j=1, then $D^* \geq 2/5D_1 + 4/5H_1 + 3/5H_{11} + 2/5H_{12}$. We shall reach a contradiction as in the above paragraph. Note that $H:=\Delta_1-(D_1+H_1+H_{11}+H_{12})$ is zero or a single curve. It remains to show that $H^2=-2$ if exists. Indeed, suppose $H^2\leq -3$ and suppose, without loss of generality, $H\leq T_1'$. Then $D^*\geq 3/7D_1+6/7H_1+4/7H+5/7H_{11}+3/7H_{12}$. We shall again reach a contradiction as in the above paragraph.

We have proved that the case(1) in Lemma 1.11 occurs if $D_2^2 = -3$.

Now we consider the case $D_2^2 = -4$. Let $\gamma_1 : \widetilde{S} \to \widetilde{X}$ be the blowing-down of C. Let $\gamma_2 : \widetilde{X} \to \widetilde{T}$ be the smooth blowing-down such that $\sigma = \gamma_2 \cdot \gamma_1$. Now we apply Lemma 1.4. In particular, we have $-F(K_{\widetilde{X}} + N^*) > 0$ where $F = \gamma_1(D_1)$ is a (-1)-curve and $N = \gamma_1(D) - F$.

Now F meets a (-2)-curve $\gamma(M_2)$ and a (-3)-curve $\gamma(D_2)$. By making use the latter inequality for F and by the arguments for the case $D_2^2 = -3$, we can also prove that $\gamma(\Delta_1 - D_1)$, $\gamma(\Delta_2)$ have the same weighted dual graphs as Δ_1, Δ_2 , respectively in Case(1) of Lemma 1.11. To verify that the case(2) in Lemma 1.11 occurs. It remains to show that $H := \Delta_1 - (D_1 + M_2 + H_1 + H_{11} + H_{12}) = 0$. Suppose $H \neq 0$, say H is adjacent to H_{11} . Then $D^* \geq 2/7D_1 + 4/7M_2 + 6/7H_1 + 2/7H + 4/7H_{11} + 3/7H_{12} + 11/19H_{21} + 14/19D_2 + 7/19H_{21}$.

This leads to $0 < -C.(K_{\widetilde{S}} + D^*) \le 1 - C.(2/7D_1 + 14/19D_2) = 1 - 2/7 - 14/19 < 0$, a contradiction.

This proves Claim(6) and hence Lemma 1.11.

Lemma 1.12 In the Case (3) of Theorem 1.1, $\pi_1(S^0)$ is finite.

Proof. The argument in this case is similar to the proof of Lemma 6.24 at the end of part I. We can assume that $C + \widetilde{T}_1 + \Theta_2$ has a positive eigenvalue. Let $\widetilde{T}_1 = B_1 + L_2 + \cdots + L_r$ be the twig. If U is a nice tubular neighborhood of $C + \widetilde{T}_1 + \Theta_2$, then it is easy to see that U - D has N - D as a strong deformation retract, where N is a tubular neighborhood of $C + \Theta_2$. Now the rest of the argument is exactly as in the proof of Lemma 6.24 in part I.

Lemma 1.13. In the case (4) of Theorem 1.1, $\pi_1(S^0)$ is finite.

Proof. We will use the description of $C + \Delta_1 + \Delta_2$ which occurs in the proof of Theorem 1.10 (cf. Figures 1, 2, 3, 4).

As before, the intersection form on $C + \Delta_1 + \Delta_2$ has one positive eigenvalue and by Lemma 1.10 of part I we have a surjection $\pi_1(U - \Delta_1 - \Delta_2) \to \pi_1(S^0)$, where U is a small neighborhhod of $C \cup \Delta_1 \cup \Delta_2$. We will use the presentation of $\pi_1(U - \Delta_1 - \Delta_2)$ given by Mumford in [3].

Case (4-1) $\pi_1(\partial U)$ is given by generators $e_0, e_1, e_{11}, e_{12}, e_2, e_{21}, e_{22}, g_1, g_2$ corresponding to $C, H_1, H_{11}, H_{12}, H_2, H_{21}, H_{22}, G_1, G_2$ respectively and the following relations:

$$e_{11}^{-3}e_1 = e_{12}^{-2}e_1 = e_{11}e_{12}e_1^{-2}e_0 = e_1e_0^{-1}e_2 = \cdots = 1$$

Hence $e_1 = e_{11}^3 = e_{12}^2$ and $e_{11}e_{12}^{-3}e_0 = 1$.

Now $\pi_1(U-D)$ is obtained by putting $e_0=1$ in the relations above. Hence in $\pi_1(U-D)$

$$e_{11}=e_{12}^3, e_2=e_1^{-1}=e_{12}^{-2}$$

etc. From the remaining relations, we can express g_1 , e_{21} , and e_{22} in terms of g_2 and after putting $e_0 = 1$, $e_2 = g_2^3$ and $g_2^{15} = 1 = e_{12}^7$.

Here, 7 and 15 are the absolute values of the determinants of the intersection forms of Δ_1 and Δ_2 respectively. Hence e_{12} can be expressed in terms

of e_1 and hence $\pi_1(U-D)$ is a finite cyclic group generated by g_2 . Hence $\pi_1(S^0)$ is finite cyclic in this case.

Case (4-2) From the proof of Theorem 1.10, Claim (5), Case (5.2) (cf. Figure 2) we know that $\sigma = identity$. We argue exactly as above. The determinant of $\Delta_1 = \pm 11$ and $\pi_1(U - D)$ is generated by e_{21} (corresponding to H_{21}). Again $\pi_1(U - D)$ is finite cyclic.

Case (4-3) By the proof of Theorem 1.10, Claim (6) we have $\sigma = identity$ and the determinant of $\Delta_1 = \pm 7$ (cf. Figure 3). In this case $\pi_1(U - D)$ is a finite group generated by g_1 (corresponding to G_1).

In the above cases, the crucial fact used was the linearity of Δ_1, Δ_2 .

Case (4-4) By the proof of Claim 7 in Theorem 1.10, $\sigma = identity$. Now the determinants of Δ_1, Δ_2 are $\pm 9, \pm 14$ respectively (both non-primes).

In this case we use the (-1)-curve E in the singular fiber S_1 (cf. Figure 4). Now $E + \Delta_1$ supports a divisor with a positive self-intersection. E intersects only the curve H_{11} from Δ_1 ($E.H_{11} = 2$) which is a tip of the linear chain Δ_1 . Now the proof used for the case $|K + C + D| \neq \phi$ in part I, using Lemma 1.14 in part I proves that $\pi_1(S^0)$ is finite.

Lemma 1.14 In the two cases of Lemma 1.11, $\pi_1(S^0)$ is finite.

Proof. In Case (1) of Lemma 1.11, the determinant of .

 $\Delta_2 = \pm 13$ and Δ_2 is linear (whether or not $H = \phi$ or $\neq \phi$). In Case (2) of Lemma 1.11, the determinant of $\Delta_2 = \pm 19$ and Δ_2 is linear (cf. Figures 5, 6).

If U is a tubular neighborhood of $C \cup \Delta_1 \cup \Delta_2$, then using Mumford's presentation we see that $\pi_1(U-D)$ is a homomorphic image of $\pi_1(U_1-\Delta_1)$, where U_1 is a small tubular neighborhood of Δ_1 . Since Δ_1 defines a quotient singular point, we deduce the finiteness of $\pi_1(S^0)$.

This completes the proof of Theorem 1.1 and also of the Main Theorem.

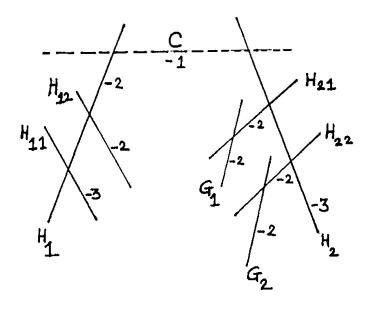


Figure 1

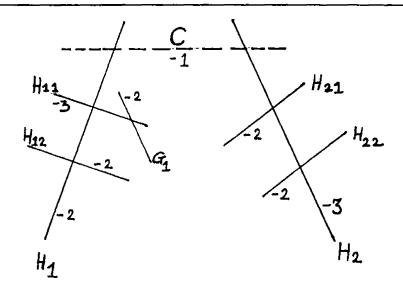


Figure 2

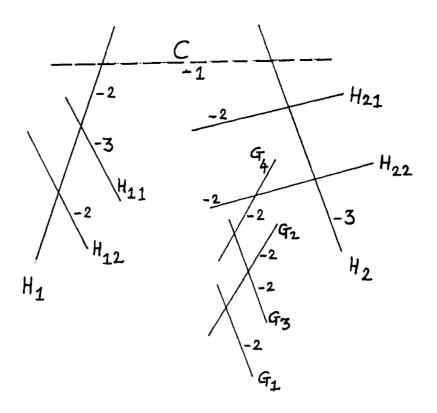


Figure 3

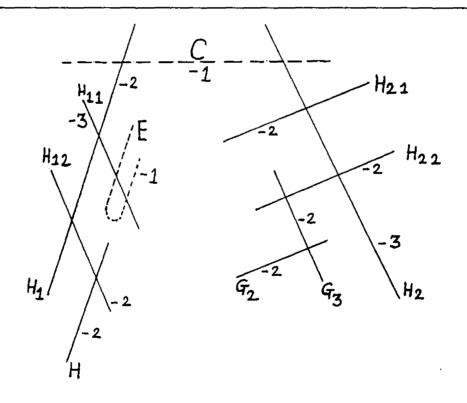


Figure 4

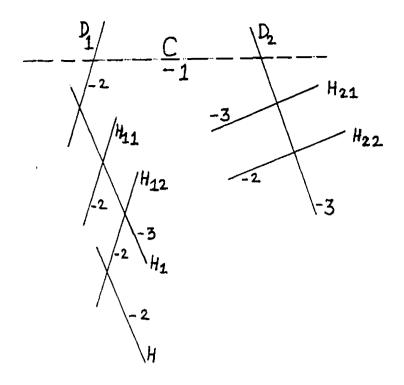


Figure 5

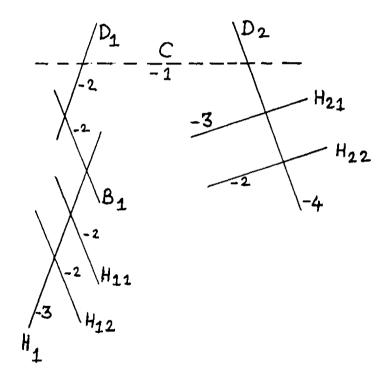


Figure 6

References

- [1] A. Fujiki, R. Kobayashi and S. Lu, On the Fundamental group of Certain Open normal Surfaces, Preprint.
- [2] R. V. Gurjar and D. -Q. Zhang, π_1 of Smooth Points of a Log Del Pezzo Surface is Finite: I, Preprint.
- [3] D. Mumford, The topology of normal singularities of an algebraic surface, Publ. Math. I.H.E.S., no. 9 (1961), 5-22.
- [4] D. -Q. Zhang, Logarithmic del Pezzo surfaces of rank one with contractible boundries, Osaka J. Math. 25 (1988), 461-497.