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Introduction

A normal projective surface S over C is called a log del Pezzo surface if
S has at most quotient singularities and —Kg is ample, where K¢ denotes
the canonical divisor of §.
In part I {cf. [2]) of this paper we set out to prove the following :

Main Theorem. The fundamental group of the space of smooth points
of a log del Pezzo surface is finite.

In this part IT, we will complete the proof of this result. We will use
the notations and results from part I freely. Recall from part I that if S
is a minimal resolution of singularities of S, then we can find a “minimal”
(-1)-curve C on S (cf. Lemma 3.1 and Prop. 3.6 of part I). In §3, §4, §5 of
part I, we reduced to consider the cases (II-3) and (II-4) there. As remarked
in the Introduction of part I, it suffices to consider the case (II-4) (the “2-
component case”), to complete the proof of our Main Theorem. This will be
done in this part II of our paper. As in part I, our proof for the case (11-4)
gives quite precise information about the configuration of C U D.

After the results of parts I and IT of our paper were announced in a conference
in Kinosaki, Japan, A. Fujiki, R. Kobayashi and S. Lu have found another
proof of our Main Theorem using differential geometric methods (cf. [1]).



Their proof of the Main Theorem is short, but it does not seem to give as
precise information about the singular locus of S as our proof.

§1. The proof of the Main Theorem in the case (II-4).

In this section, we consider the case(Il-4) in Remark 3.11 of part I. We
employ the notations there. So, the (—1)-curve C meets exactly a (—2)-curve
D, and a (—n)-curve Dy with n > 3. Let A; be the connected component of
D containing D;.

Our aim is to prove the following Theorem 1.1, which will imply the Main
Theorem in the case (I1I-4).

Theorem 1.1.  Suppose that the case (II-4) in Remark 3.11 occurs.
Then one of the following four cases occurs :

(1) A; is a linear chain with D; as a tip fori =1 or 2. Hence m(S°) s
finite (c¢f. Lemma 1.2 below).

(2) There are irreducible components A;(i=1,---,a),B;(j =1, --,b) of
D, there is a (—1)-curve E on § and there is a P -fibration ¢ : § — P! such
that

(2-1) a singular fiber of ¢ has support equal to Supp E + 3; A;,

(2-2) every irreducible component of D —3; Bj; is contained in a singular
fiber of o, and

(2-3) $1.%; B; £ 2 for a general fiber Sy of .

In particular, there is a C*-fibration on S° and hence m,(S5°) is finite (cf.
Lemma 2.2 of part I).

(3) There is a (—1)-curve E, there are two connected components ©;(i =
1,2) of D, there is an irreducible component B; in ©; and there is a twig
E+T; in E+ ©; such that

(3-1) ED=E.(0,4+0;)=E.(B1+ B;)=2,EB;=1 fori=1 and 2.
Hence T; = 0 if B; is not a tip and a twig of ©; containing B; otherwise, and

(3-2) Fori=1landj=2o0ri=2andj=1, E+T;+0; has a positive
eigenvalue and hence k(5 E + T; + ;) = 2.

In particular, m(S°) is finite (cf. Lemma 1.12).

(4) There is a P'-fibration ¢ : § — P such that C + D and all singular
fibers of ¢ are given in one of the Figures 1, 2, 8 or 4 (cf. end of the paper).

Hence m,(5°) is finite. (cf. Lemma 1.18).
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(5) One of two cases in Lemma 1.11 occurs. Hence m1(5°) is finite. (cf.
lemma 1.14).

Theorem 1.1 is a consequence of the following Lemmas 1.2, 1.3, 1.8, The-
orems 1.9 and 1.10, and Lemmas 1.11, 1.12, 1.13, 1.14.

Lemma 1.2.  Suppose that A; is a linear chain with D; as a tip for
1 =1, or2. Then m(S°) is finite.

Proof.  Suppose A, is a linear chain with D; as a tip. As rankS =
1,C + Ay + A, supports a divisor with strictly positive self-intersection. By
Lemma 1.10 of part I, we have a surjection m (U — Ay — Ag) — 71(S — D),
where U is a small tubular neighborhood of C U A; U A;. We can write
U = U,UU;, where U; is a small neighborhood of CUA;. Tt is easy to see that
U;— A, — A, contains a small neighborhood N; of A, as a strong deformation
retract for ¢ = 1,2. By assumption, m1(N; — 4;) is finite for 7 = 1,2 and by
Mumford’s presentation (cf. [3]), m (N1 — A,) is a cyclic group generated
by “the” loop v in C — A; — A; around the point C N A;. Now an easy
application of Van-Kampen’s theorem for the covering U; — Ay — A, and
Uy — A1 — Az of U— Ay — A; shows that 7 (U — Ay — A;) is finite and hence
so is 7y (S — D).

Lemma 1.3.  Suppose that A, contains Gi(1 = 1,+--,8;8 > 3) such
that G? = —2,G1 = D1,Gj.Gj+1 = G,_g.G, = 1(_? = ].,"' 8 — 2) (ThlS is
the case if Ay consists of only (—2)-curves but D, is not a tip of Ay). Then
Theorem 1.1, (2) or (8) is true with E = C.

Proof. Let So=2(C+G1+4 - +Guez)+Ge1+ G5 and let ¢ : 5§ P!
be the P!-fibration with Sy as a singular fiber. If A} = ¥_; G;, then Theorem
1.1,(2) is true with B = C,¥; A = Y G, % Bi = By = D,. Otherwise,
Theorem 1.1, (3) is true with E = C,0; = A;, Ty = 0; indeed, C + A; has a
positive eigenvalue.

From now on till the end of the section, we shall assume the following
hypothesis :
(%) neither the case of Lemma 1.2 nor the case of Lemma 1.8 occurs.



Let C + T; (i = 1,2) be the maximal twig of C + A;. Hence T; = 0 if D;
is not a tip of A; and 7; is the maximal twig of A; containing D; otherwise.
By the maximality of C + T; and by the hypothesis(*), there are irreducible
components H;, H;y, Hiy in A; — T such that

Ti(A;i=T) =T;.Hi = 1,H;.Hyy = H;.Hyy = 1.

Let 0 : S — T be the smooth blowing-down of curves in C + Ty + T3 such
that

(1) o(C + Ay + Ay) consists of ezactly one (—1)-curve €, with C <
o(C + T + T2), and several (—n;)-curves with n; > 2, and

(2) the condition(1) will not be satisfied if o is replaced by the composite
of o and the blowing-down of C.

Thus, o = id if and only if D, is not a tip of A;. If ¢ # id, then C is
contracted by ¢ and 0’(@ <D. N .
_ Let D = D (resp. A;:=0(A;))if o =1d, and D = o(D) — C (resp.
A; := o(A;) — C) otherwise. Let H; = o(H;), H;; = o(H;;), etc. By the
definition of o there is an irreducible component J; in T; + H; such that

C.D= 6’(.71 +j2) =2, éj, =1.

T is contractible to quotient singularities with, say g : T — T the contraction
morphism, and T is again a log del Pezzo surface of rank one with g as a
minimal desingularization (cf. [4, Lemma 4.3]). So, Lemma 1.1 of part I is
true for T. In particular, we have

¢'Kr=Kz+D*, ~E(Kz+D") >0

for every (—1)-curve E on T'. Here M* is an effective Q-divisor with support
contained in M.

Suppose that there are two smooth blowing-downs ¢ : S — §1, op: 8, —
T such that o = 03 - 0. Let E be the unique (~1)-curve in o1(C + Ay + Ay).
Let M := D if 0y = id and M := 01(D) — E otherwise. The same result [4,
Lemma 4.3] implies the following :



Lemma 1.4. M is contractible to quotient singularities with, say
fi + 81 — §; the contraction morphism, and Sy is again a log del Pezzo
surface of rank one with f; as a minimal desingularization. In particular, we
have

fiKs, = Kg +M*,—E.(Kz, + M") > 0,

where M* is an effective Q-divisor with support contained in M.

Suppose that for @ = 1 or_2, we have J, = H, and H? = —2. Let
G ~ Kz + 2(C + H, )+ Hy + HaZ + J, where {a b} = {1,2} as sets. Note
that f;[z(T G) = HYT 2@ + Hl,+ Ha1 + Ha + Jy)) = 0. Note also
that G.B = 0 for B = C H, H,, H,, J. Hence G2 = G.K;. Now the
Riemann-Roch theorem implies that

R(T,G) > GG~ Kz)+1=1.

NJII—'

We may assume that G > 0.

Lemma 1.5. Assume the above conditions and notations. We have :

(1) G' is a nonzero effective divisor.

(2) an (C+H +Hay + Hyy + Jb) = ¢. In particular, G1.G = Gi. Kz for
every G, <G.

(8) We can decompose ¢ GintoG =%+ 5 such that Supp A is contained
in Supp D and E=YI_, & > > 1) where Siisa a (—1)-curve.

(4) Write 0*G ~ o (K~+2(C +HY+ Hay+Ha 4+ Jy) = Kz+sC+ (an
effective divisor with support in D). Thenr < s —1.

(5) Let B <__19 (H + Ha + Ha‘z + Jb) Then B.G > 0 if and only if
B*< -3 or B.(Hy + Hao+ Jz,) > 0.
_(6) If % is a reduced divisor, then G = £ and ¥ is a disjoint union of
2,‘ ’s.

Proof. From the defnition of G' one can calculate that :

Claim(1). G.B = 0 if B is one of C, Ha,Hal,Hag and J,. Moreover,
G.B > 0 for every 1rredu01ble component Bof D.

Claim(2). Kz + C+D|=

This follows from that |Kz + C + D| = ¢ and the definition of o.



(1) By the hypothesis(*) after Lemma 1.3, Jy meets an irreducible com-
ponent B of As. So, G.B = (I(~+ jb) B > 1. Hence G > 0.

(2) Suppose Gﬂ C # ¢. Then C < G by Claim(1). Now, H, < G C
because HJG C’) —~H,.C =—-1<0. Thisleads to 0 < G ~C — H, €
|K~+C +H, +H, +Haz+Jbl C |K~+C+D|, a contradiction to Claim(2).
So, GNC = ¢. One applies this argument and can prove (2).

(3) Decompose G into G = 2+A where Supp A C Supp D and E contains
no irreducible components of D. First, by Clalmil , we have G.A; > 0 for
every A < A.Hence0<GA=EA+A%< %.A because Supp A C Supp
D and D is negative definite. This proves that ¥ s 0.

Let E be an irreducible component of 5. Note that f).-.Ki < f),-.(Kf +
D*) <0 (cf. Lemma 1.1). So, if 52 < 0, then 5, is a (—1)-curve. Sup-
pose that £? > 0. Then, by (1), f)? < 5.6 = E;.Kf < 0. We reach a
contradiction. This proves (3).

(4) By Claim(2), a_"f].- is again a (—1)-curve and o*(A) C D. Write
f(C) = o(=Ks), f(o7%;) = ei(—Ks), where ¢ > 0,e; > 0. Then (sc —
)(—Ks) = f(o*G) = ¥7_, ei(—Ks). Since K% > 0, we have

sc——l:Zc;Zrc
i

by the minimality of ~C.(Kz+D") = ¢(K3+D*)? = ¢(Ks)*?. Hence (s—r)c >
1 > 0. (4) then follows. _ .
(5) follows from the following calculation : B.G = B.(K:;:-{-Hﬂ-i-Haﬁ-Jb).

(6) By the condition, &; # £, if ¢ # ;. So,

-1= i? = i,é - E,(A + Z EJ) < E,é = fj.f(f = —1.
J#i
Thus, £;.(A + Z:#, 2} = 0 for every i. So, & is a disjoint union of £;’s and
ENA=¢ In . _particular, G.A = A% By Claim(1), we have G.A > 0. So,
A? > 0. Since A is contained in D and D is negative definite, we have A = 0.

This proves (6).
Lemma 1.5 is proved.

Corollary 1.8. Assume that o is the contraction of curves in C+1;. As-
sume further that J, = Hy and H} = —2 (hence J; = D, and the hypothesis



in Lemma 1.5 is satzsﬁed witha = 1). Then K~+2(C+H1)+H11+H12—I—Jz ~
G=% 21, ie., G is reduced and a (—1)-curve.

Proof. We apply Lemma 1.5 to G ~ K+ 2(6' + E]) + ﬁu + f-fn + .72.
By the hypothesis, ¢*G ~ K3z + 2C+ (an effective divisor with support in
D). Then Corollary 1.5 follows from Lemma 1.5.

Lemma 1.7. Assume that 0'~is the contraction of curves in C +T,. As-
sume further that J, = H; and H3 = —2 (hence J2 = D, and the hypothesis
in Lemma 1.5 is satisfied with a = 2). Then 0*G ~ o (K5 + 2C + Hy) +
Hy + Hyp + Jy) = Kz + sC+ (an effective divisor with support in D) with
s=—-D2

Proof. The result follows from the hypothesis on o.

Lemma 1.8.  Suppose the case (II-4) in Remark 8.11 occurs. Then
one of the following two cases occurs :

(1) Theorem 1.1,(2) or (8) is true with E = C.

(2)( IR = (=2,-2),(=2,-3) or (—2,—4) where {a,b} = {1,2} as
sets. If Jk = —2 (this is the case if k = a), then Jx = H} and HfJ < =3 for
j=1or2.

Proof. By [4, Lemma 4.4], J? = —2 for a = 1 or 2. Let {a,b} = {1,2}
as sets.

Case(1) JZ2 = —2. If J, is a tip of A,, say s = b, i.e., Jy # Hp, then
Theorem 1.1,(3) occurs with E = C. Indeed, C + J; + A has a positive
eigenvalue and so does C + T + A,. Thus, may assume J, = H,, J, = Hg,

Suppose H = H% = —2for s = a or b, say s = a. Let S5 := 2(C +
H, )+ Haoy + Hag and let ¢ : S - P1 be the P!- ﬁbratlon with Sp as a
singular fiber. If Ay = H, + Ha + Haz, then Theorem 1.1,(2) is true with
E=C,p=19-0,%; B; =B, = H,. IfA > H +H.,1-|-Hag,Theorem 1.1,(3)
is true with B = C. Indeed, C + A, then has a positive eigenvalue and so
does C + Ty + A,. Thus, may assume that Hfj < -3 for 7 =1 or 2. The
same argument works for s = 4. So, Lemma 1.8 is true in this case.

Case(2) J} < —3. Then by the definition of o (cf. the second condition),
Jy = H,,i.e., J, is not a tip of A,. If H2, = H?, = —2, then by the arguments



in the above paragraph, Theorem 1.1,(2) or (3) is true with E = C. So, may
assume that H2; < -3 for j =1 or 2, say j = 1.

To finish the _proof, it remains to prove that d := —j2 < 4. Since it is
impossible that Ab is a lmea.r chain with Jb as a tip (_gf the hlpothesL_(*
after Lemma 1.3), we have D* > (d—2)/(d— 1)Jb+3/7Ha1 +2/THs+1/THg.
S0, 0 < —C.(Kz+D*) <1-C.((d—2)/(d=1)J, +2/TH,) = 1/(d—1)-2/1.
Hence d < 4. This proves Lemma 1.8.

Theorem 1.9.  Suppose the case(2) in Lemma 1.8 occurs. Then it is
impossible that J} = J} = —

Proof. We consider the case where J2 = J2 = —2. By the hypothesis,
we have J; = H,,H2 —2for 7 = 1,2 and may assume that H, < -3, HZ <
-3.

Case(1) o is the contraction of curves contained in C + Ty.

Then the conditions of Corollary 7.6 are satisfied. Hence Kz + 2(C’ +
f::’l):l- Hy + Hia -!:__Hg__": G =% whereEisa (—1)-curve. Note that 5. H21~—
G.Hy = (Kz+ Hp).Hpn 2 1+ 1 (cf. Lemma 1.5, (2)). Let X := o*(X).
Then ¥ is again a (—1)-curve (cf. Lemma 1.5,(2)) with X.Hy > 2. On the
other hand, D* > 1/2D, + 1/2Hj; because D? < —3, H}, < —3. This leads
to0 < =E.(K3+ D) £1—-5.1/2Hy <0, a contradicion. So, the case(1) is
impossible.

Case(2) o contracts at least one irreducible component of the maximal
twig T3 of A,.

By noting that D} = —2, D} < -3, there are two smooth blowing-downs

5= 51,0'2 S, — T such tha.t o = 050, and that :

( o (Th+C+T2) =T|+ E+T,; where E is a (—1)-curve and T! < 01(T3),

(2) T{ -+ Jl(Hl) = :=1 L,‘,E.L] = L;’.LH.] = 1(1 = 1 8 — 1,3 Z
2),Ly=01(H),Li=-2, L =—(t+1),L}=-2(;> 2,5 # ) and

(3) Té' +O’1(Hz) = E::l M,',E.Ml = M M+1 = 1(2 = 1 ',t haet l,t 2
2), M, = o1(H2), M} = =3, M} = —s, M? = —2(j > 2,7 # 1).

Now applying Lemma 1.4, we get E‘ (Kz + M~*) > 0. Since o1(Ay +
A3z) — E can be contractible to quotient smgulla.rltxes (cf. Lermnma 1.4), we
have (s,t) = (2,2),(2,3),(3,2).

Case(2-1) (s,t) = (2,2). Then M* > 2/5L, + 4/501(H1) + 3/501(Hn1) +
2/50'1 (HIQ) + 3/5M] - 4/50’1(H2) + 3/50’1(H21) + 2/50’1(H22). This leads to



0<—E.(Kz +M")<1-E.(2/5L1+3/5M,) =0, a contradiction. So, the
case(2-1) does not occur.

Case(2-2) (s,1) = (2,3). Then M* > 7/16L,+14/160, (H,)+10/160 (Hy )+
7/160’1 (H12)+10/17M]+13/17M2+16/170’1 (H'))+11/170'1(H21)+8/170'1(HQQ)
This leads to 0 < —E.(Kg +M*) <1-E.(7/16L, +10/17M;) = 1-7/16 ~
10/17 < 0, a contradiction. So, the case(2-2) does not occur.

Case(2-3) (s,t) = (3,2). Then B* > 9/23L; 4+ 18/23L, + 22/2304(H,) +
15/2301(H11)+11/2301 (H12)+7/11M1+10/110'1(H2)+7/110'1(H21)+5/11H22
This leads to 0 < —E.(Kz + B*) <1- E.(9/23L, + 7/11M;) =1 - 9/23 —
7/11 <0, a contradlctlon So, the case(2-3) does not occur.

This proves Theorem 1.9.

Theorem 1.10.  Suppose that the case in Corollary 1.6 occurs. Suppose
further that the case(2) in Lemma 1.8 occurs with (J2,J2) = (=2,-3) o
(—2,—4) (hence a = 1,b=2,J; = H\,J, = D;). Then ezther Theorem 1I. 1
(3) is true with E = C, or Theorem 1.1,(4) is true.

Proof. By the hypothesis, may assume that H? < < —3. By Corollary
1.6, Kz + 2(C + Hl) + Hy+Ha+Jo~G=% where S is a (—1)-curve.

Cla.un(l) (1) D* > 3/7Hy; +2/7H, + 1/THya + (a — 2)/(a — 1)J;. Here
a:= —j > 3 and hence (a — 2)/(a — 1) > 1/2.

(2) A1 is a linear chain.

(3) Either Ag is a linear chain or A, is a fork with J; as a tip.

(4) Al Hu consists of (—2)-curves.

(5) Ay — Jy consists of (—2)-curves.

Since H2 < —3 and since it is imposible that A, is a linear chain with
Jz as a tip (cf. the hypothesis(+) after Lemma 1.3), (1) follows.

If A1 is not a linear chain, then also D~ > 1/2H, + 1/2H11 This leads to
0<-C. (K~+D‘) <1-C (1/2H1 +1/2J3) = 0, a contradiction. So, (2) of
Claim(1) is true.

Suppose (3) of Claim(1) is false, then A, contains Li(i =1,---,8;8 > 4)
such that L, = Jg,L Liyy = Ly2. L, =1z = 1,---,5 — 2). So we have
D* >1/3L, +2/3Z‘_2 Li+1/3L,-1+1/3L,. On the other hand, fori=1,3
(and also for: =4 if s = 4), we have ;.8 = L;. (K +D)>1 (cf Lemma,
1.5). This leads to 0 < —£.(Kz + D*) < 1 — £.(1/3L, + 2/3 %222 L
1/3L,-1 + 1/3L,) < 0. We reach a contradiction. Thus, (3) of Claim(1 ) is



true,

Suppose A, — Hy; contains a (—nl—curve B with n > 3. If B and Hm are
in the same connected component of A; — Hy, then D" > 1/2H1 4 1/2Jg and
hence 0 < —C. (I(~+D"‘) <1-C. (1/2H1+1/2J2) = 0, a contradiction. If B
and Hu are in the same connected component of A, ——Hl, welet 1+---+L,
be a linear chain in A1 such that L; = HH,L =B, L Liti=11=1,- ,S—
1). Then one has D* > 1/2%; L;. Moreover, L; 5= L;. (K~+ H11)
for 7z = 2,s and L5 > 2if s = 2. This leads to 0 < E.(I{f-i—D*) <
1-5.1/2%; L; €0, a contradiction. Therefore, (4) of Claim(1) is true.

Suppose that A,—J, contains a (—n)-curve B with n > 3. Let Ly +---+1,
be a linear chain contained in A, such that L, = J3, L, = B, L; L,_H =1(z =
1,---,5 — 1). Then we have D > 1/2Y°; L;. Note that for 1 = 2,8, we
have L =1L (K~ + Jp) > 1. Moreover, L;.£ > 2 if s = 2. This leads
to 0 < ——E.(K~ +D*) <1-5.(1/25; L;) < 0. We reach a contradiction.
Therefore, (5) of Claim(1) is true.

This proves Claim(1).

Claim(2). Suppose that J2 = —4. Then Theorem 7.1,(3) is true with
E=C.

We consider the case J2 = —4. Then D* > 2/3J2 by Claim(1). If Hu is
not a tip of Adresp Hy; is not a tip, or H}; < —3) then D* > 6/11H11 +
4/11H1 +2/11H12 (resp D > 4/9H11 +3/9H1 +2/9H12, or D* > 3/5H11 +
2/5H, +1/5H12) Either of the three cases implies that 0 < —C. (K~+D") <
1— (1/3H1 + 2/3.]2) = 0, a contradiction.

Thus, A, = H; -I-Hu +H12 and H? = —2, HY = —3 HZ, = —2 (cf.
Claim(1 )) If Jpis a tip of Ag, Le., if J; # Ha, then Theorem 7.1,(3) is true
with £ = C. Because C + J; + A1 and hence C' + T, + A, have a positive
eigenvalue. _

We may assume that J, = H;. Then D > 2/3H; + 1/3521 + 1/3:‘1722
(cf. Claim(1)). We shall show that this would lead to a contradiction. By
Claim(1), A is now a linear chain. If Hy; is not tip of A, for j = 1 and 2,
then D‘ > 2/4H21 + 3/4H2 + ‘2/4H22 This leads to 0 < =C. (K5 + D’)

C.(2/TH, + 3/4H,) =1 — 2/7—3/4 <0, a contradiction.
So, may assume that Hy; is a tip of Ag If Ag has more than four irre-
ducible components, then D* > 4/11H21 + 8/11H2 + 6/11H22 This leads to
0 < —C.(Kz+D*) < 1—C.(2/TH, +8/11H,) =1 —2/T—8/11 < 0, a
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contradiction. Therefore, H := A, — (ﬁgl + H, + ﬁzz) is zero or a (—2)-
curve adjacent to Hg'z (cf. Claim(1)).

Note that &.Hy; = (K5 + Hy) = 1for j =1 and 2 (cf. Lemma 7.5). If
B.E > 0 for some irreducible component B of D - (HQ] + Hgg) then B is
not contained in A; or A,, B2 < —3 and B.E = B. Kz (cf. Lemma. 1.5,(5)).
Hence D* > 1/3B This leads to 0 < —X. (Kz + D ) <1~ (1/3B +
1/3H21 + 1/3H22) = 0, a contradiction. So 3 meets only Hy and Hyp in D.

Let S := 28 + Hyy + Hyp and let o : T — P be the P-fibration with S,
as a singular fiber. Let S} be the singualr fiber contam1ng_C+ A, Then there
isa(— 1) curve E such tha.t E.H;; =1 and S| = 2(C+H1)+Hn +H12+E
Since p(T) = 1 and since every irreducible component of D — (H + H) is
contained in singular fibers of 1, every singular fiber S; other than 5] consists
of one (—1)-curve and several irreducible components of D (cf. Lemma1.1,(4)
of part I). Here H := Az (Hn + H, + Hn) Moreover, H # 0. So, H is a
(—2)-curve adjacent to Hy,. Since H is a cross-section H.E = 1 and S, 5!
are the only singular fibers of ¢ for otherwise H would meet a (—1)-curve F
in some singular fiber 53 and F has multiplicity at least two.

Let 7 : T' — X, be the smooth blowing-down of curves in singular fibers of
3 such that T_(ﬂ')2 = —2. On the one hand, H, is a 2-section with HgﬂH ¢
and hence 7(H;)? = 8. On the other hand, a calculation shows that T(Hg)

H? + 1+ 7 = 4. We reach a contradiction.

This proves Claim(2).

In view of Claim(2), may assume that JZ = —3. If J; is a tip of Ag, ie., if
J2 # Ha, then Theorem 1.1,(3) is true with E = C. Indeed, then C+Jo+ Al
and hence C' + T3 + A, have a positive eigenvalue.

Thus, may assume that J, = H,. Then A, is a linear chain (cf. Claim(1)).
We have also

D* > 3/THy, +2/TH, + 1/THya + 1/4Hy + 2/4H, + 1/4Hy,.

Note that H.E = H(Kg + Hu + H12 + Hy) =1 (cf. Lemma 1.5) if H is
an 1rreduc1ble  component of D— H1 adjacent to one of Hu,Hm and H,. In
particular, T H21 = E H22 =1.

Claim(3). D — (Hy, + Ha) consists of (- 2)—curves.

Suppose to the contrary that Claim(3) is false. Then D~ (51 + Ag)
contains a (—n)-curve B with n > 3 (cf. Claim(1)). By Lemma 1.5, we have
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B.E = B.Kz=n~2. Note that D* > (n—2)/nB and 0 < —E.(Kz+D*) <
1—2_@ A_)/nB-—l—(n— 2)*/n. So,n =3 and B.E = 1.

If D — H, has an irreducible component H adjacent to Hn, then D* >
3/11H + 6/11Hys +4/11H, + 2/11Hy;. This leads to 0 < —£.(Kz + D*) <
1—-5.(1/3B+3/11H + 1/4Hgl_3L 1/4Hy) =1-1/3-3/11-1/4—1/4 < 0.
We reach a contradiction. So, Hyy is a tip of A;. .

f D~ ﬁl has an 1rreduc1ble component H adJacent to Hy, but H is
not a tip of A], then D" > 2/11H + 3/11H12 + 4/11H1 + 5/11H11 This
leads to 0 < —%. (Kz+ D*)<1—-8.(1/3B+2/11H + 1/4Hy + 1/4Hp) =
1—-1/3 —2/11 - 1[& —1/4 < 0. We reach a contradiction again. Thus,
H := Ay — (Hi + Hy + Hi2) is zero or a (—2)-curve adjacent to Hqp (cf.
Claim(1)).

Let S} := 25 + Hy + Hyp and let 1 : T — P? be the P1- fibration with S§
as a singular fiber. Let S be the singular fiber containing C+H1 —I-Hn + Hi,.

Suppose Hf, = —3. Then there is a (—1)-curve E such that E. Hy =1and
St = 2(C+H1)+H12+H11+E Since B is a 2-section, we have B.E = 2. This
lea.ds to0 < —E.(Kz+D*) < 1—-E.(1/3B+3/7Hn) = 1—(1/3)-2-3/7 < 0,
a contradiction. So, HE < -4,

Suppose ¢ # id. Let oy : S, — T be the blowing-up of the point P, :=
C N H, and set E := o3 (P;). Then by the hypothesis, there is a smooth
blowing-down ¢, : § — ) such that ¢ = o0 - 7. Now we apply Lemma
1.4. In particular, we have —E.(K3 + M) > 0. On the other hand, M* >
2304 Hiy +2/30y Hy +1/30, Hiz+1/304,C +1/304 Hy +2/304 Hy +1/304 Hy.
This leads to 0 < —E.(K3 + M*) < 1— E.(1/30;C + 2/303H2) = 0, a
contradiction. So, ¢ = id. Hence T = S H;, = D;(z =1,2).

Let So:=3C + 2D, + Hi2+ D; and let ¢ : § — P be the P!- fibration
with So as a singular fiber. Then ¥ and the (—3)-curve B are contained in
the same singular fiber of ¢, say S). By the minimality of —C.(K5+ D*)
and by noting that C has multiplicity 3 in Sy and the summation of the
multiplicities of (—1)-curves in S is at least 3

(cf. [4, Lemma 1.6]), every (—1)-curve F in 51, especially ¥, satisfies
~F.(Kz+ D*) = =C.(I{g+ D*). So, every singular fiber of the previous fi-
bration ¢ defined above has one of two types in Lemma 6.12, part I. However,
S; above contains a curve Hyy with HZ < —3. We reach a contradiction.

This proves Claim(3).
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Let _ o _
So = 30 +2H1 -+ H12 + H2

and let ¢ : T — P! be the P!-fibration with Sp as a singular fiber. Hay, Hy,
(resp. Hyi) is a cross-section (resp. 2-section). Denote by S; the singular
fiber containing . Let

Si (6=0,1,---,7)

be all singular fibers of . By Claim(3), every singular fiber S; (i > 1) consists
of only (—1) or (—2)-curves. So, S; has one of two types in Lemma 6.12, part
L

Claim(4). Suppose that Si has the second type in Lemma 6.12 of part 1
for some k > 1. Then Case(4-1) of Theorem 1.1 occurs. B

Suppose S has the second type in Lemma 6.12, part I. Then ¥ is the
unique (—1)-curve in S;. Then the 2-section Hy, meets two multiplicity-one
or one multiplicity-two irreducible component(s) other than S in S. This
leads to that A; is a fork (cf. Lemma 1.1,(4), part I), a contradiction to
Claim(1). So, S consists of two (—1)-curves X, E and several (—2)-curves.

Suppose that Sk has the second type in Lemma 6.12, part I for some
k > 2, say k = 2. Let F' be the unique (—1)-curvein S;. Since Hy;.S; =1 (j =
1,2), there are two (—2)-curves G;(j = 1,2) such that F.G; = 1, Hy;.G; =
ﬁu.F =1 a,nd

Sy =2F 4+ G; + Gs.

Now we have (cf. Claim(1)) :
Ay =Gy +ﬁzn +ﬁ2+ﬁzz+az-

We have also D* > 1/5G; + 2/5}‘:"21 + 3/5}1?2 +.2./5j1722 +1/5G,.

If H is an irreducible component of A; — H; adjacent to Hy,, then H
is a cross-section and H.G; = 1 for j = 1 or 2. This leads to Ay = A, a
contradiction. So, Hyis a tip of A;.

If H is an irreducible component ¢ of Ay — H1 adjacent to Hll, then D* >
3/11H + 6/11Hy; + 4/11H1 +2/11H;,. This leads to 0 < —5. (K5 + D) <
1— &(3/11H+2/_§H21 +2/5Hy;) = 1-3/11—-2/5—2/5 < 0, a contradiction.
SO, H]] is tlp of H].

Therefore,

Ay=Hy + Hn + Eyz-
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In particular, £ meets only Hy;(j = 1,2) in D (cf. Lemma 1.5 and Claim(3)).
So,
51 = 2 + E

with gE =1 and Fn.E = 2. . o ____

If HY < —4,then D* > 1/2H; and 0 < —E.(K5+D*) < 1-E.1/2Hy, =
0, a contradiction. So, Efl__= -3.

For every ¢ > 3, since Hz meets a (—1)-curve of multiplicity one in §;,
S; has the first type in Lemma 6.12, pat I. Since D — (Hz1 + Hza + H11) are
contained in singular fibers of ¢ and since p(T)) =1, r =3 and

S: (i =0,1,2,3)

are all singular fibers of ¢ (cf. Lemma 1.5(1) in [4]). Let E;(j = 1,2) be the
two (—1)-curves in Ss.

Let 7: T:» T2 be the smooth blowing-down of curves in singular fibers
such that 7(Hq1)? = —2. Then T(Hy) ~ 7(Hpn) + 27(S0) and 7(Hyn) ~
2r(Ha) + 47(S0). In particular, 7(Hz)* = 2 and 7(Hy;)? = 8. So, may
assume that Hy;.E; = Hy,.Ej =1 (j = 1,2). Moreover,

Ss=E1+G3+ Gy + B

where G3 + G4 is a connected component of D with two (—2)-curves (cf.
Lemma 1.1,(4), part I) and with E;.Gj42 = 1.
Now H? = -3, and L
Ah A?: GS + G4

are all connected components of D (cf. Lemma 1.1, (4), part I). To show that
Qase(tl—l) of Theorem 1.1 occurs, it suffices to show that o = id. Tet 05 : 51 —
T be the blowing-up of the point P; := CNH, and let L := a5 (P,). Suppose
to the contrary that ¢ # id. Then by the hypothesis, there is a smooth
blowing-down a1 : § — §; such that ¢ = o3 - 0;. Now applying Lemma 1.4,
we get ~L.(K3z +M*) > 0. On the other hand, M* = 1/205 Hi1 +1/20Hy +
/404 Hia+1/405C +1/40Gr +2/405 Hay + 3 /404 Hy +2/dol Hyy +1/404Ga.
This leads to —L.(K3z + M*) =1 — L.(1/40,C + 3/403H;) = 0. We reach a
contradiction. So, o = id and Case(4-1) of Theorem 1.1 occurs.

This proves Claim(4).

In view of Claim(4), may assume that each singular fiber S; (i = 1,---,7)
has the first type in Lemma 6.12, part I. Then the number of singular
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fibers containing two (—1)-curves is one less than the number of sectional-
components of D because p(T') = 1. So, r = 2 and Sy, 51, S are all singular
fibers if Hyp is a tip of Ay, or r = 3 and So, S1, .52, 53 are all singular fibers
otherwise. Let
[T T > 5,

be_the smooth blowing-down of curves in singular fibers of ¢ such that
p(Hgl) = —2. Write p(H,_,) = H,pu (S) =5;, etc. Then Hyp ~ Hoy + 25,
and Hy; ~ 2H +45,. In particular, H22 =2 Hll =8, Hqy. Hyy = 4.

Claim(5). Suppose that Hyy is not a tip. Then Case(4-2) of Theorem 1.1
occurs.

One can see that Hj; is a (—3)—curve, as in the proof of Claim (4) above.
Note that » > 2 and we can write

$,=S+Y.Gi+E
1=1
such that E? = —1,G? = -2, H,,.G, = £.G; = G;.Gj41 = G,.E =
(j=1,---,8~1) (cf. Lemma 1.5),

s+t
S =FEy + E G + E

i=a+1

such that E? = —'1,G;2 = 2 E1 Ga-H - G GJ'+1 = G,.H.Eg == 1(] S
s+t —1). Note that Hy; . E = 1 for Hy1.5; = 2.

Note that D* > 2/11Hy, + 4/11H, +6/11Hy; + 3/11G,. If F.Hy; > 2 for
some (—1)-curve F, then 0 < —F.(Kz+D*) <1- F.6/11Hy; < 1-(6/11)-2 <
0, a contradiction. So, F.Hy; <1 for every (—1)-curve F' and the equality
holds if F'is in S; (¢ > 2) because H,. Si = 2 (cf. Claim(1 (_2

Case(5.1) Hu is a tip of A, while sz is not a tip of A, for 3 =1 or
2, say j = 1. Then r = 2. May assume Hy;. 1.Gs41 = 1. Since Hn = 2,
one gets Ha,. E; =1 and t = 4. This leads to _D“ > 1/10G,44 +2/10G 43 +
3/10G,+2+4/10G,+1+5/10H21 +6/10H,+3/10Hy; and 0 < —8.(Kz+D*) <

£.(5/10Hy + 3/10H,; + 3/11G,) = 1 -5/10 — 3/10 — 3/11 < 0, a
contradlctlon So, Case(5.1) is impossible.

Case(5.2). Hyisa tip of A; and both Hy; and Hy, are tips of A,. Then
r=2,le.,

Si(i=10,1,2)
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are all singular fibers of ¢, and

A, =F12+F1+E11 +ZG:‘, Ay = Hy +ﬁ2+ﬁ22a

=1

because A;’s are linear chains. Moreover,

are all connected components of D (cf. Lemma 1.1, (4), part I). We shall
show that Case(4-2) of Theorem 1.1 occurs. May assume that Hy . B, = 1.
By the same rea.sonmg as in the previous case, we have Hzg FEo=1and{=3.
Then 8 = H11 —H121 +2+ (3+4)+4 Hence s = ——Hfl-2 If s > 2, then
H? < —4and D* > 1/4H12 + 2/4H1 +3/4Hn + 2/4G, + 1/4G,. This leads
to 0 < —C. (K~+D"’) <1-C.(1/2H, 4+ 1/2H,) = 0, a contradiction. So,
s=1 Hu = -3.

Now s = 1,t = 3, H? = —3. To show that Case(4-2) of Theorem 1.1
oceurs, it is sufﬁcxent to show that o = id. Let a5 : 5'1 — T be the blowing-up
of the point P; := CNH; and let F := 05! (P;). Suppose to the contrary that
o # id. Then by the hypothesis, there is a smooth blowing-down oy : § — &
such that ¢ = 03 - 1. Applying Lemma 1.4, we get 0 — F.(K3 + M*) > 0.
On the other hand, M* = 1/303G, + %3021111 + 2/30,H, + 1/30,Hyy +
1/3026’ + 1/30’2H21 +2/303H; + 1/303 Hya. Hence 0 < —F.(Kz + M*) =

F.(1/304,C +2/304 H,) = 0. We reach a contradiction. Therefore, o = id
a,nd Case(4-2) of Theorem 1.1 occurs.

Case(5.3). Hypi is not a tip of A,. Let H be the irreducible component of
D-H, adjacent to Hiz. Then D* > 1/7H+2/7H12+3/7H1+4/7Hn +2/7G;.
Note that H is a cross-section and H.& = H. (K5 + ng) =1 (cf. Lemma
1.5).

If sz is not a tip of Ayforj=1or2, say j = 1, then also D"‘ > 4/11H21+
6/11H, + 3/11H;,, this leads to 0 < —S.()z + D*) < 1 — £.(4/11H +
3/11522+1/7H+2/7G1) =1-4/11-3/11-1/7~2/7 < 0, a contradiction.
So, Hj;’s are tips of A, and hence A, = Hoy + Hy + Haa.

If Gy or H is not a tip of A (resp. if Hfl < —4), then D"‘ > 3/19H +
6/19H,+9/19H, +12/19H,, +8/19G, or D* > 4/1TH +6/17Hy, +8/17H; +
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10/17Hy; + 5/17G; (vesp. D* > 2/11H + 4/11ng +6/11H, + 8/11H;, +
4/11G1) and hence —Z. (Ks + D"y < 1-5.(3/19H +8/19G, + 1/4Hy +
1/4Hp) =1 = 3/19 8/19 -~ 1/4 -~ 1/4 <0,0r<1— (4/17H +5/17G; +
411G, + 1/4H21 + 1/4H22) _1—2/11 — 4/11 — 1/4 —1/4 < 0. We reach a
contradlct.ion in either of the cases. So, s = 1,51 =H4 H,+ H, +Hi +
G], 11 = -3.

Note that r = 3. Let Ey, E; (resp. Es, F4) be the (—1)-curves in S, (resp.
S3). Let t; + 2 be the number of irreducible components of S;. May assume
that Ho.E; = 1 for j = 1 and 3. Note that 8 = H., = H2 + 2+ (1 +4) +
(1 + 1) + (t2 + 1). So, t; + t, = 2. Hoy = 2 implies that Hy E; = 1 for
j = 2,4. But then it is impossible that T =HHyp=2 So, Case(5-3) is
impossible.

This proves Claim(5).

In view of Claim(5), may assume that

Hyisa tip of Ay

Thus, _
S5:=X+F

where E is a (—1)-curve such that E. £=1 and E. Hy = S1.Hy = 2 (cf.
Lemma 1.5,(5)). If H?, < —4, then D* > 1/2H); and 0 < —E. (K5 + D*) <

1- E.l/?f-fu =0, a contradlctlon So,
H = -3,

Claim(6). Suppose that Hj; is a tip. Then Case(4-3) of Theorem 1.1
occurs.
In this case, we have r = 2, i.e.,

S5 (2=0,1,2)
are all singular fibers of ¢ and
A, = H, + Hyy + H,.

Hence £ meets only Hy; (j = 1,2) in D(cf. Lemma 1.5,(5) and Claim(3)).
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Write .
Sy = Ey+Y_ G+ E;
i=1
such that £,.Gy = G;.Giyy = Gi.£y = 1(2 = 1,---,t ~ 1). May assume that
Hg_, does not meet 3, G; for 7 = 1 or 2, say j = 1. May assume also that
Hgl =1 H22 =2 1mp11es that either t = 3 and Hgg Eg =1,ort=4 and
H22G4—-1 SmceHl—S wemusthavet~4andH11E =lforyj=1
and 2. Now H11 = =3,

52=F21+Ez+§22+G4+G3+G2+G1,

and
51'; 52
are all connected components of D (cf. Lemma 1.1,(4), part I).

To prove that Case(4-3) of Theorem 1.1 occurs, it is sufficent to show
that o = id. Let o5 : S; — T be the blowing-up of the point P, := ¢ n
H, and set F := o;7'(P,). Suppose to the contrary that o # id. Then by
the hypothesis, there is a smooth blowing-down oy : § — S, such that
¢ = 03 - 01. Applying Lemma 1.4, we get —F.(K3 + M*) > 0. On the
other hand, M* = 1/202H11 +1/20} Hl + 1/462H12 + 1/405 C + 1/804Gy +
2/802Gg+3/80’2G3+4/8¢7£G4+§/802Hniﬁ/Sa,Hg +3/80‘2H21 This leads to
—F.(Kgz +M*) =1~ F.(1/403C +3/403H,) = 0, a contradiction. Therefore
o = 1d and Case(4-3) of Theorem 1.1 occurs.

This proves Claim(6).

Claim(7). Suppose that H,; is not a tip. Then either Theorem 1.1,(3) is
true with £ = C or Case(4-4) of Theorem 1.1 occurs.

Then r = 3, i.e.,

Si(2=10,1,2,3)
are all singular fibers of . Write

Sy = E1+ZC + B,

1=1

t1+t2
Ss = E3 + Z G; + Ey

i=t; +1
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such that EJZ - —1, G? = —2,E1.G1 = th.Eg = Ea.Ggl+1 - G‘-’1+‘2‘E4 =
G;.G;+1 == 1. . ~ ~
Let H be an irregucible component of A; — Hy adjacent to Hyp. If H is
not a tip of A, then C+ A, and hence C + T3+ A, have a positive eigenva,lue.
So, Theorem 1.1,(3) is true. Thus, may assume that H is a tip of A;. Hence
Y.H =1 and . o _
Ay =Hi+ Hny + Hao+ H.

Note that
D* = 1/9H + 2/9ﬁ12 + 3/9?1 + 4/9}‘1’11 + (other terms).

Now one may assume that F;.H = 1 for j = 2,4. Let ¢ : T — 5,
be the smooth blowing-down of curves in the singular fibers of ¢ such that
g(H)? = —2. Then ¢(Hy;)? =2 ( = 1,2) and &(Hy;)? = 8.

Ifffn.E,' =2fori=1or 3,say : =1, then S; = £y 4 E;, 53 = E3 + E,
and Hy1.Ex = 1 for k = 3 and 4 because e(Hy1)? = 8. But then e(Hy;)? <
-2+ 3 (5 = 1,2), a contradiction. If Hy.E; = 2 for i = 2 or 4, then
—Ei(Kz+D*) <1—E.(1/9H +4/9H,) = 1-1/9 - (4/9) x2 =10, a
contradiction. So, Hy;.E; =1 for j = 1,2,3 and 4. Now &(Hy;)? = 8 implies
that ¢; + ¢, = 3.

If ﬁg:‘ is not a tip of A, for both j = 1 and 2, then one may assume that
(t1,%2) = (1,2) and ﬁg}".Gl = 1. Then it is impossible that e(Hz1)? = 2. So,
one may assume that Hy, is a tip of A,.

Since £(Hy)? = 2, one may assume that (t1,t5) = (1,2) and Hy1.E; = 1
for j = 2 and 3. Now e(Ha2).€(H21) = 2 implies that Fgg.El = §22.G3 = 1.
So,

A; = Hy + Hy + Hyp + Gs + Gy,

and L
AhAZ: Gl

are all connected components of D (cf. Lemma 1.1,(4), part I).

Now (t1,12) = (1,2) and H# = —3. To prove that Case(4-4) takes place,
we have only to show that o =id. Let o3 : S, — T be the blowing-up of the
point C N H, and set F := o5 '(P,). Suppose to the contrary that o # 7d.
Then by the hypothesis, there is a smooth blowing-down oy : § — S, such
that ¢ = 0, - 91. Applying Lemma 1.4, we get —F.(Kg + M") > 0. On the
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other hand, M* = 2/903H + 4/90’1{112 + 6/904H, + 5/90,Hyy + 3/904C +
+4/110,H21 + 8/110’2H2 + 6/1103Hy + 4/1105G3 + 2/1103G,. This leads
to —F.(K5 +M*)=1-F (1/3045C + 8/1105]1’2) =1-1/3-8/11<0,a
contradiction. Therefore, ¢ = ¢d and Case(4-4) of Theorem 1.1 occurs.

This proves Claim(7) and also Theorem 1.10.

Lemma 1.11.  Suppose that the case (2) in Lemma 1.8 occurs with
(J2,J%) = (~2,~-3) or (—2,—4) but the case in Corollary 1.6 does not occur.
Then either Theorem 1.1,(8) is true with E = C, or one of the following two
cases occurs :

Case(1) Ay is a fork with 4 or 5 irreducible components, and Ty, a maz-
imal twig of Ay consists of a single (—2)-curve Dy. Hy is the central com-
ponent of A, and H? = —3. Every irreducible component of Ay — Hy is a
(=2)-curve. Thus, Ay = Dy + Hy + Hi1 + Hio + H where H = 0 or an
irreducible component adjacent to Hy,.

A, 15 a linear chain with three irreducible components and with D, as the
middle one. Hence Jl == H],Jg = Hg = Dg,Ag = D2 + H?l + HZZ’D.g =
H2, = -3, H%, = —2. Moreover, o is the blowing-down of C, C = o(Dy), J? =
~3,J2 = -2,

Case(2) Ay is a fork with 5 irreducible components, and T\, a mazimal
twig of Ay consists of two (—2)-curves, say Ty = Dy + By. Hy is the central
component of Ay and H} = —3. Every irreducible component of A, — H; is
a (—2)-curve. Thus, Ay = Dy + By + Hy + Hyy + Ha.

Ag ts a linear chain with three irreducible components and with Dy as the
middle one. Hence Jl = H],Jg Hg = DQ,AQ = Dz + Hzl + sz,Dz =
-4,H221~= —3,H§2 = —2. Moreover, o is the blowing-down of C,Dy, C =
o(B1),JE = =3,J} = -2

Proof. By the hypothesis, J, = H, and may assume that fle < -3
Claim(1). It is impossible that J? =
We consider the case J2 = —4. Slnce the case in Corollary 1.6 does not
occur we have o # 1. Let 7 : §; — T be the blowing-up of the point
=Cn J Let E', = T_l(P) Then for ¢ = a or b, there is a smooth
blowmg—down o¢: 5§ — S, such that ¢ = 7, - 5,. Now we apply Lemma 1.4.
In particular, we have —E,.(K3z + M*) > 0.

Case t = a. Then M* > 8/137. H, + 7/137! Hyy + 4/137/ H,y + 2/57.C +
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4/57)J,. This leads to 0 < ~Eo.(Kgz + M*) < 1— E,.(8/137, H, +2/57,C) =
1-8/13-2/5<0,a contra,dlctlon So, this case is impossible._

Case t = b. Then M* > 1/4r;C+1/27,H, +1/2T§H,,1+1/4T Ha2+3/4Tbe
This leads to 0 < —Ey.(Kz + M*) <1 - E,. (1/47iC + 3/47Jy) = 0, a
contradiction. So, this case is impossible.

This proves Claim(1).

Therefore, j,,z = —

__ Claim(2). (1) A, is a linear chain and the connected component of A, —
H, containing Hg, is a (—2)-chain.

Since it is impossible that A, is a linear chain with Jy as a tip (cf. the
hypopthesis(x) after Lemma 1.3), we have [ D* > 1/2J,. If Claim(2) is false,
then we have D* > 1/2H, + 1/2H, + 1/2H,,. This leads to 0 < —=C. (Kz+

D)y<1-C.(1/2H, + 1/2Jb) = 0, a contradiction. So, Claim(2) is true.

Thus, H2, = —2.If J, is a tip of_Ab, ie., if J, # H;, then Theorem 1.1,(3)
is true with E = C. Indeed, € + J, + H, + H,, is a support of a singular
fiber of a P!-fibration; hence C+Jy+ A, and C + Ty + A, have a positive
eigenvalue.

Therefore, we may assume that J, = Hy. Since the case in Corolla,ry 1.6
does not occur, there are two smooth blowing-downs o7 : S — 81,0'2 S, —
T such that ¢ = o5 - 0, and that :

(1) o1(Tu+C+T,) = T)+ E+T{ where E is a (~1)- curve and T} < 04(T3),

(2) T + o4(H o) = Yia L, E.Ly = Li.Liy, = 1z =1,---,s ~1;5 >
1), L, = oy(H,), L? =-t—1g—3,L§f=—2(j> 1),

(3) Tl: + Gl(Hb) = Z:E:l M,',E.Ml = M{.M{+1 = 1(3 = 1,‘ T ,t - l,t Z
2), M, = o1(Hp), M} = =2(j < t),M?=—s—2< -3, and

(4) o does not factorize through the blowing-up of the point P, := ENL;.

In particular, we see that ¢y(Ay) is a fork and hence A, is a linear chain.
Now we apply Lemma 1.4. In particular, we have —E. (K~ + M*) > 0.

Claim(3). oy =id. Hence a = 2,0=1,C = E, D, = Ml,Dg Ly,D? =
~t—1< -3, H} < -3 and Ty = T{Z] M; is a (—2)-twig.

Let 7 : X — §1 be the blowing-up of the point P, := E N M; and set
F := 7;7Y(B). Suppose that Claim(3) is false. Then by the definition of o}
(cf. the above condition(3)), there is a smooth blowing-down 71 : § — X
such that oy = 72 - 7. Now we apply Lemma 1.4. In particular, we have
—F.(Kg+ N*) >0, where N = D if ; =id and N = 7(D) — F otherwise.

Since 71(C + Ay + Az) — F can be contractible to quotient singularities
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(cf. Lemma 1.4), we have s = 1 or 2, and if s = 2 then ¢ = 2, H%, = —3 and
T]_(Aa) = Té(E + Zi L,) -+ Tl(Hal + Hag).

Suppose s = 1. Then N* > (3t—2)/(6t~2)7, E4+2(3t—2)/(6t—2) (H. )+
(4t —2)/(6t —2)T1(Ha )+ (3t —2)/(6t — 2)71(Haz) + i (t+12) /(20 + 1) 75 ( M;) +
t/(2t + 1)T1(H51) + t/(Qt + ].)T](Hbg). This leads to

0< —F.(Kg+N°)<1—F((3t—2)/(6t — 2)m4E + (1 +1)/(2t + 1)rjMy) =

1—(3t—2)/(6t—2)—(t4+1)/(2t-+1) = 1/(6t—2)—1/2(2t+1) = (~2t-+4)/2(6t—2)(2t+1) < 0,

because ¢ > 2. We reach a contradiction.

Suppose that s = 2. Then N* > 9/23r, E + 18/2375(L1) + 22/23m(H,) +
15/23’7’1 (Ha]) + 11/231’1 (Ha2) + 10/16T;(M1) + ].4/167'1 (Hb) + 7/16T1(Hb]) -+
7/167(Hyz). This leads to

0 < —F.(Kg+N*) <1—F.(9/231E +10/167jM;) = 1 —9/23 ~10/16 < 0.

We reach a contradiction.

So, Claim(3) is true.

Claim(4). s = 1. Hence A; is a linear chain, H; = D, and H} = —s—2 =
-3.

Suppose s > 3. Then s = 3,t =2, H, = —=3,A; = Dy(= L))+ Lo+ Hy(=
L3)+ Hy1 + Hae because A is contractible to a quotient singularity. So, we
have D* 2 3/7D1(= Ml) + 6/7H1(= Mg) + 3/7H]1 + 3/7H12 + 10/17D2(=
L)) +13/17L; + 16/17THz(= L3) + 11/17Hy + 8/17H,;. This leads to 0 <
—C(Kz+D*) £1-C.(3/TDy + 10/17D;) = 1 = 3/7 —10/17 < 0, a
contradiction.

Suppose s = 2. Then D* > 5, 2i/(2t + 1)M; + t/(2t + 1)Hy +t/(2¢ +
1)Hyp + (Tt = 5)/(Tt + 1)Dy(= L1) + 4(2t —- 1)/(7t + 1)Ha(= L) + (5t —
1)/(7t + 1)Hyy + 2(2t — 1)/(7t + 1) Hz,. This leads to 0 < —C.(Kg+ D*) <
1-C.(2/(2t4+1)D, +(7t—5)/(Tt+1)Dy) = 1-2/(2t+1)— (Tt —5)/(Tt+1) =
—-2/(2t+1)+6/(Tt+1)=(4—2t)/(2t + 1)(Tt + 1) <0, because t > 2. We
reach a contradiction.

This proves Claim(4).

Claim(5). t = 2,3. Hence D2 = —t — 1 = -3, —4.

Note that D* > i/(t + 1)M; + t/2(t + 1)Hyy + t/2(t + 1)Hyz + (61 —
4)/(6t 4+ 1)Do(= Ly) + (4t — 1)/(6t + 1)Hy + (3t — 2)/(6¢ + 1)Hjz. So, 0 <
~C(Kz+D*)<1-C.(1/(t+1)Dy + (6t —4)/(6t +1)Dy) =1 - 1/(t+1) -
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(6t—4)/(6t+1)=-1/(t+1)+5/(6t+1) = (4 —1)/(t +1)(6¢t+ 1). Hence
t < 3. This proves Claim(5).

Claim(6). Case (1) or (2) in Lemma 1.11 occurs.

Consider first the case D2 = —t —~ 1 = —3. Then D* > 1/3Dy(= M;) +
If Hy is not a tip (resp. Hay is not a tip, or HZ < —4), then also D* >
2/3H21 + 2/3D2 + 1/3H22 (resp. D> 2 5/9H21 + 6/9D2 + 4/9H22; or D* 2
2/3Hg +2/3D; +1/3Hy,). Either of the three cases leads to 0 < —C.(Kg+
D*)<1-C.(1/3D142/3D,) = 0, a contradiction. Thus, Ay = Do+ Hyy+ Ho,
and H} = ~3. So, A; is as described in the case(1) of Lemma 1.11.

Let T7,T1” be twigs of A; containing Hiyy, Hia, respectively. If both 7Y
and 77" have more than one irreducible components (resp. T or 71", say 7}
has more than two irreducible components), then D* > 3/7D, + 6/7TH, +
4/7.H11 + 4/7H12 (resp. D~ 2 2/5D1 -+ 4/5H1 + 3/5H11 + 2/5H12). Either
of the two cases leads to 0 < —C.(Kz+ D*) <1-C.(2/5D, + 8/13D;) =
1-2/5~8/13 < 0, a contradiction.

To show that A; is as described in the case(1) of Lemma 1.11, it remains
to show that A; — Hy consists of only (—2)-curves. Indeed, if H}; < -3
for 7 =1 or 2, say j = 1, then D* > 2/5D, + 4/5H, + 3/5Hy; + 2/5H;3.
We shall reach a contradiction as in the above paragraph. Note that H :=
Ay —(Dy+ Hy+ Hy1 + Hyp) is zero or a single curve. It remains to show that
H? = —2 if exists. Indeed, suppose H?> < —3 and suppose, without loss of
generality, H < T|. Then D* > 3/7D, + 6/7H, + 4/TH 4+ 5/7THy + 3/7TH;,.
We shall again reach a contradiction as in the above paragraph.

We have proved that the case(1) in Lemma 1.11 occurs if D = 3.

Now we consider the case D} = —4. Let 7, : § — X be the blowing-down
of C. Let v, : X — T be the smooth blowing-down such that ¢ = 7, - ¥,.
Now we apply Lemma 1.4. In particular, we have —F.(Ky + N*) > 0 where
F =~ (Dy)is a (~1)-curve and N = v (D) — F.

Now F' meets a {—2)-curve y(M;) and a (—3)-curve y(D;). By making
use the latter inequality for F and by the arguments for the case D2 = —3, we
can also prove that v(A; —D;),v(A;) have the same weighted dual graphs as
A1, A, respectively in Case(1) of Lemma 1.11. To verify that the case(2) in
Lemma 1.11 occurs. It remains to show that H := A, —(Dy+ M+ H+ Hyy +
Hy3) = 0. Suppose H # 0, say H is adjacent to Hy;. Then D* > 2/7D; +
4/TMy+6/THy +2/TH +4)THyy +3/THyz +11/19Hy, +14/19D; +7/19Hy,.
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This leads to 0 < —~C.(K5+ D*) < 1= C.(2/7D; + 14/19D;) = 1 — 2/7 —
14/19 < 0, a contradiction.
This proves Claim(6) and hence Lemma 1.11.

Lemma 1.12 In the Case (8) of Theorem I.1, m,(S°) is finite.

Proof. The argument in this case is similar to the proof of Lemma 6.24 at
the end of part I. We can assume that C' + 71 4 ©, has a positive eigenvalue.
Let Ty = By + Ly + -+ -+ L, be the twig. If U is a nice tubular neighborhood
of C + Ty + O,, then it is easy to see that U — D has N — D as a strong
deformation retract, where NV is a tubular neighborhood of C + ©,. Now the
rest of the argument is exactly as in the proof of Lemma 6.24 in part 1.

Lemma 1.13. In the case ({) of Theorem 1.1, 71 (S°) is finite.

Proof. We will use the description of C' + A; + A2 which occurs in the
proof of Theorem 1.10 {cf. Figures 1, 2, 3, 4).
As before, the intersection form on C + A, + A; has one positive eigenvalue
and by Lemma 1.10 of part I we have a surjection (U — Ay — Ag) — 7(S59),
where U is a small neighborhhod of CUA; UA,;. We will use the presentation
of m(U — Ay — A;z) given by Mumford in [3].

Case (4-1) m(9U) is given by generators e, €1, €11, €12, €2, €21, €22, g1, g2 COI-
responding to C, Hy, H11, H12, Ha, Ho1, Hja, G, G2 respectively and the fol-
lowing relations :

-3, _ =2 _ -2, _ -1 — —
€11 €1 = €13 €1 = €11€12€; "€ = €1€, €3 =+ = 1

Hence e; = €2, = €%, and ejjefye0 = 1.
Now m (U — D) is obtained by putting ep = 1 in the relations above. Hence
in m(U — D)
e1r = €53,€2 = €' = €,

etc. From the remaining relations, we can express gy, €31, and eg; in terms of
g and after putting e = 1,e; = g5 and ¢1® = 1 = ¢],.

Here, 7 and 15 are the absolute values of the determinants of the inter-
section forms of A; and A, respectively. Hence e;, can be expressed in terms
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of e; and hence 71(U — D) is a finite cyclic group generated by g2. Hence
71(S°) is finite cyclic in this case.

Case (4-2) From the proof of Theorem 1.10, Claim (5), Case (5.2) (cf. Figure
2) we know that o = identity. We argue exactly as above. The determinant
of Ay = £11 and m(U — D) is generated by ey (corresponding to Hy).
Again (U — D) is finite cyclic.

Case (4-3) By the proof of Theorem 1.10, Claim (6) we have ¢ = identity
and the determinant of Ay = £7 (cf. Figure 3). In this case m(U — D) is a
finite group generated by ¢, (corresponding to Gy).

In the above cases, the crucial fact used was the linearity of Ay, A,.

Case (4-4) By the proof of Claim 7 in Theorem 1.10, ¢ = identity. Now the
determinants of A, Ay are 9, +14 respectively (both non-primes).

In this case we use the (-1)-curve E in the singular fiber 5y (cf. Figure 4).
Now F + A, supports a divisor with a positive self-intersection. £ intersects
only the curve Hy; from A; (E.H;; = 2) which is a tip of the linear chain
Ay. Now the proof used for the case | +C + D| # ¢ in part I, using Lemma
1.14 in part I proves that m,(S?) is finite.

Lemma 1.14 [n the two cases of Lemma 1.11, m(S°) is finite.

Proof. In Case (1) of Lemma 1.11, the determinant of -

Az = %13 and A; is linear (whether or not H = ¢ or # ¢). In Case (2)
of Lemma 1.11, the determinant of Ay = 19 and Aj; is linear (cf. Figures
5, 6).

If U is a tubular neighborhood of C' U A; U A,, then using Mumford’s pre-
sentation we see that m(U — D) is a homomorphic image of m(U; — 4A;),
where U is a small tubular neighborhood of A;. Since A; defines a quotient
singular point, we deduce the finiteness of 7,(S°).

This completes the proof of Theorem 1.1 and also of the Main Theorem.
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