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HaneBO (5epy MHonpRBO. .
H na:«c. 6e3 ttYBCTB8 BHH!d,
HCMHoro y )KH3HH nyKoBOA
H BCC - YHottHOA TKWHHbI.

INTRODUCTION

In two papers - n2- 12 and 14 of [He], pub11shed 1n 1918 and
1920 - E. Hecke introduced what he called "Gr6ßencharaktere"
of algebraic number fields, with a view to extending the theory
of L-f~ctions and their applications in analytic number theory.
In the early 1950's, the arlthmetic and geometrie significance
of those of Hecke's characters that take algebraic values began
to appear in two different, if overlapping, lines of thought.
(Both of these bad been anticipated in special cases by Eisen­
stein exactly one hundred years earlier; but none of the mathe­
maticians work1ng on them in the tlfties 8eems to have been
aware of their precursor at the time.) - First W~il, testing a
conjecture cf H~sse, investigated algebraic curves over Q with
the property that the number of F p rational points on their
reduct10ns module p can be computed in terms of exponential
.sums. This led him to a study of "Jacobl sums as 'Größencharak­
tera' 11. - Secondly Deuring, developing one aspect of Weil'.s
examples, proved that the (Hasse-Weil) L-functlon of an elliptic
curve w1th complex multipllcation is a (product of) Hecke L­
functlon(s). This was· then qulckly generalized to higher di~

mensional eM abelian varieties by Shimura and Tanlyama, with
Weil provid1ng clariflcat1on, tor instance, on the Hecke
characters employed in the theory.

Both approaches cover only very limited classes of algebraic
Hecke characters. - Jacobi sum characters were confined to
cyclotomic (today: abelian) fields, and in general, not every
algebraic Hecke character of such a [ield i8 given by Jacobi
sums. - The product of several Hecke characters each one of whleh
1s attached to a CM abelian variety does no langer oceur in the
L-functlon of an abelian var1ety.
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This last difficulty disappears in a theory cf motives, as
proposed by Grothendieck. There one associates with every (smooth
projective) algebraic variety, in same sense, its "universal
cohomology" which is an object of a Tannakian category, and may
therefore be vlewed as a representatlon of some proalgebraic
group. The product of Hecke characters then corresponda esaent­
1al1y to the tensor product of representationa. Until the'mid
seventies such a category of motives existed o~y conjectura1ly;
the morphlsms were to be defined by the cohomo1ogy classes of
algebraic correspondences, and conjectures on the existenee of
sufficient1y many algebraic cycles had to be used to show that
the construetlon actua11y yielded a Tannakiari category - see
CSa]. Using this, the semi-simplicity of Frobenius action on ,t­
adle cohomology end Tate's conjectures, one could show that ~
motive defined over a number field i8 determined up to i80,­
mOrphism by its ("Hasse-Weil") L-function (defined using the
etale cohomology of the motive). Consequently, two motives (which
may be constructed from different variettes, but are) attached
to the same Hecke eharaeter have to be isomorphie, and in parti­
cular, have to heve thesame periods (defined by "integrating"
de Rham cohomology classes "against" Betti cohomology of· the
motive.)

This uniqueness prineip1e is at the centre of our work. We
peruse e variety of consequences of it that 'can be proven, either
because an analogous uniqueness principle is available in a
s11ghtly different framework - see next paragraph - , or because
of the special situation eonsidered - this 18 the case in chapter
V. - Applications include a re!lned version of the so called
formula of Chowla end Selberg, deduced from the comparison of
the motive ef abasie Jacobi ~um Hecke character 9f an imaginary
quadratie field K to elliptic curves with complex multipli­
cation by K - see chapter 111 - ; refinements of Sbimurats
menom1al period relations; generalizations of the formula of
Chowla end Selberg to arbitrary abel1an number flelds - chapter
IV - ; and the study of motives for the theta series of Hecke
characters of imaginary quadratic fields - ehapter V •
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That we can actually prove theorems, not merely do an exegesis
of conjectures, hinges on two insights by P. Deligne. First, he
saw that one could actually construct a theory of motives by
weakening the requirement on the morphisms; they no longer have
to be algebraic but ooly "absolute Hodge" correspondences - see
chapter I, section 2. Henceforth, when we speak of "motives ll ,

we refer to this existing theory. Second, Deligne was able to
show that, on an ~be1ian variety over ~, every Hodge cyc1e i8
an absolute Hodge cyc1e. This consequenee of the Hodge eonjecture
provides enough absolute Hadge cye1es to prove the uniqueness
principle for motives of algebraic Hecke characters, within the
category of motives generated by abelian varieties - see chaper I,
theorem 5.1.

In fact, ror ~very algebraic Hecke character of a number field
K , there exists a unique motive in the catagory of motives ovar
K generated by abe1ian varietles with potential comp1ex multi­
plleation. Deligne has shown around 1980 that this category is
equivalent to the representations of (a subgroup of) the Taniyama
group, a group scheme which had been introduced by Langlands.
This structure theorem also links the motivic interpretation of
Hecke characters to that proposed by Serre in (Si] more than ten

.years ear1ier. It was also the starting point for G. Anderson's
.:comprehensive motivic theory of Gauss and Jacobi sums, and their
- relations to representations of the Taniyama group, a theory

which he worked out between 1982 and 1984 - see (A 1) and CA 2J.
In Anderson's formalism, the basic observation that Fermat hyper­
surfaces provide motives for Jacobi sum Hecke characters of
cyclotomic fields is extended to a elaas of characters of abelian
number fields which i5 likely to include all sensible candidates
of Hecke charaeters of "Jacobi sum type". We' make essential use
of Anderson's theory when deal1ng with Jacobi sum Hecke characters.

Thus, I really "take on the left and on the right" very substant­
laI results obta~ned by others, and numerous little chats with
many people have found their way into the "silent hours of the
night ll during which these pages. were written.

** *
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It was my intention, in writing up the paper, to also provide
~ viable introduction to the background theories. More precisely,
the reader should get an idea of what they are like, without
however being offered eomplete proofs. I hope there will be
readers to whom my blend of explanations and quotes appeals,
and 18 aetually helpful.

CHAPTER 0 should be completely readable for anyone with some
very basic knowledge of algebraic number theory. It covers the
elementary (as opposed to geometrie) theory of algebraic Hecke
characters, Including their interpretation via Serre's groups
S~ , and the definition and basic properties of Jacobi sum
Hecke characters according to G. Anderson. (The Jacobi sum
characters of- Imaglnary quadratlc [leIds are largely treated
wlthout reference to Anderson, by way of a fundamental example
which Is used in chapter 111.)

CHAPTER I falls ioto live parts.

I § 1 presents the Shimura-Taniyama theory of complex multi­
plication of abelian varieties with a view to introducing-motives
for Hecke characters. The existence of the Hecke character
attached to a CM abelian variety 18 derived using a transcendence
resu1t whlch Imp1ies - see (Henn] - that every semi simple abe­
1ian E-rational A-adic representation 18 10cal1y a1gebraic - cf.
I, 1.4.

I § 2 reviews the theory of motives ror absolute Hodge cycles.
We hope that our shortcut through this theory can serve as a
reading guide rar CDMOSJ, chapter II, and also to the correspond­
ing ;ections of (A 2). - Dell'gne's fundamental theorem on absolute
Hodge cycles on abalien varieties 1s only quoted from (DMOS],
chapter I, because its proof would have led us to far away from
the geometrie study cf Hecke characters.

I §§ 3 - 5 cover the "naive" theory of motives for Hecke
characters. In § 4, a motive for every algebraic Hecke character
is constructed "by hand", out cf Artin motives and CM abelian
varieties. Its uniqueness up to isomorphism, in the category cf
motives generated by abelian varieties, 1s derived from Deligne's
theorem in § 5.
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I § 6 treats the theory of the Taniyama group and its relation
with the"category ~f motives CAtQ • While in the previous
sections of chapter I the reader should be able to survive with
a certain knowledge of algebraic geometry, this section is de­
liberately sketchy. In fact, we ahall make very little usa of
it in later chapters - except through Anderson's thaory. Also,
Milne 15 preparing a book on this 5ubject which will also deal
with Shimura varieties.

I § 7 briefly reviews Anderson's theory of motives for Jacobi
sum Hecke characters, and also his u~terior motives. For all
the details the reader Is referred to his papers.

CHAPTER II i5 the technical heart of this work. The formallsm of
the periods of motives in general, and motives for Hecke characters
in particular, 1s unfolded here. This "arithmetic linear algebra"
" "

1s carried out in great genera1ity. I am afraid thls does not
exactIy simplify the notation end understanding of this chapter."
But I do hope that this treatment of periods - which, by the way,
1s essentially due" ·ta Deligne - will be useful :tor further in­
vestigatlons. Thls chapter also contains a brief review of

~.Deligne·',s rationality conjecture for special values of Hecke L-
~- ~

~functions. This ease of the conjeeture 1s now a theorem by v1rtue
of recent important results of Bla8ius [BI) and Harder (unpub11shed).
However, Blas1us' motiv1c treatment of the periods c+ 18 not
included in my exposition - mainly because he had told me that he
was going to apply it to Shimura's period relations - whic~ are
treated by our formalism in IV § 1. - At the end of chapter II,
after discussing the periods of Jacobi sum Hecke characters
starting from the example of Fermat hypersurfaces, we deduce some
relations between values cf the r function at rational numbers
which were first conjectured and proved by Deligne.

CHAPTER I11 is devoted to the so called formula of Chowla and
Selberg. We prove a refined version of it, and show that it
"genarates" all period relations produced by Jacobi sum Hecke
characters of imaginary quadratic fields - see 111 § 3. An
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interesting feature of the motiv1c treatment of this formula 18
that here, it 1s often convenient to deduce an ident1ty of Hecke
characters from an analytically aceessible period relation ­
rather than going the other way around.- Cf. also 11, 3.5.

CHAPTER IV traate Shimura's relations between periode of CM
abe11an varletles and generalizat10ns of the Chowla-Selberg
formula to abelian fields. The most remarkable feature here 18
the enormous diserepaney between" the potential of the method end
the seareity of information about conerete situations to whieh
the method applies. In the Chowla-Selberg eBse 1t 18 often
possible to determine exp11citly every single character whose
periods contribute to the formula. But over an arbitrary abelian
field such explicit identities are usually not available, and so ­
in spite of the inherent precision of the method - one is led to
weaken the period relations in order to get sensible statements.

Compared to the preeeding chapters, CHAPTER V 1s really wr1tten
"in shorthand". We start by reviewing very briefly U. Jannsen's
recent construction of an honest regard (absolute ~odge cycle)
motive for every newform f on r 1(N) c SL2~) of weight ~ 2.
Than we proce~d to show that this motive "lies in" CJ(Q if f
has complex multiplication. This has to be dona by hand, using
Deligne's eonjecture for the eritiea! values of these modular
forms.

** *

It is a pleasure to aeknowledge tha hospitality of the Max-Planck­
Institut fUr Mathematik at Bonn, where I stayed from October
1983 through January 1985. About half of this work was written
there, nqt little influenced by Harder's interest in these
questions, and his willingness to let me organize his seminar
in the winter 1984-85 on motives for absolute Hodge cycles.
Most of the suggestions "explicitly acknowledged in the text I

obtained through my stay in Bann. - For the excellent typing
my hearty thanks go to K. Deutl.er at Bann and C. Gieseking at
Göttingen.

Göttingen, December 1985,

N. Schapp&cher
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LEITFADEN

Here as weIl as in the internal references throughout t~e text,
roman numerals denote chapters - chapter z'ero being represented
by C - , and an expression of the form n.m~l, . n.m·, : or
n •. refers to the corresponding formula, theorem, paragraph or
section within the given chapter.
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CHAPTER ZERO:

Algebraic Hecke Characters

In this chapter we review the elementary theory of algebraic

Hecke characters and fix some basic notation.

1. Definition

Let K and E be two number fields, i.e., finite extensions of

W . Let f be a non-zero integral ideal of K, and

T = L n a 0 E',: Z [Horn (K, E)] a Z-linear combination of ernbeddings of

K into a fixed algebraic closure E of E.

Definition: [cf. [SGA 4t], Sommes trig. § 5]: An algebraic Hecke

character X of K with values in E, of inf1nity-type T and

conductor dividing f, 1s a group hornomorphism

from the group I f of ideals of K prime to f to the rnultiplica­

tive group of E, such that, for any ideal (0.) € I f qenerated by an

aEK* with a=1(mod f), and a totallypositive (i.e., aP>O

for all real embeddings P : K'+- :R, syrnbolically: Cl > > 0), one has

T TI 0 110x«a» = Cl = ld(Cl )

It is understood that, if flf l
, characters of conductor dividing

f are identified with the corresponding characters of conductor
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dividing f' obtained by restricting to. Ir' ~ Ir. The smallest

f (in the sense qf divisibility) such that X extends to a

character of conductor dividing r i5 called the conductor of

X' and denoted

a »0. and a =1

f • - Note that the subgroup of ideals
X "

(mod r) has finite 'index in Ir"

(a) with

2. Algebraic homomorphisms

1Recall from [SGA 42], Sommes trig." § 5, the varlous ways to vlew

the infinity-type T of an algebraic Hecke character. In general,

""~~ algebraic homomor2h1sm t:K*+E* is a group homomorphism such
~ • • ~ .. t. L

that either one of the follow1ng equivalent cond1tions 18 satisfled.

(a) For any basis {eilie 1, ••• ,n} of K over W, there 16 a

rational fWlctioil fEE (X 1 ' ••• , Xn ) such that

for all n
(ai) E W •

(b) t i8 induced by a hornomorphisrn of algebraic groupe over E

(c) t 18 induced by a homornorphism of algebraic groups, over W

(cl) There 15 TeE n 0 E Z [Horn (K , E) ]
o

such that for all a e: K* ,

t (a) c aT = Tf( a 0 ) n a

o
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dividing f' obtained by restricting to. I f , S I f • The smallest

f (in the sense qf divisibility) such that X extends to a

character of conductor dividing f i8 called the conductor of

X' and denoted

a >> O. .and a =1

f • - Note that the subgroup of ideals
X .

(mod f) has finite index in Ir-

(a) with

2. Algebraic homomorphisrns

Recall from 1[SGA 42 ], Sommes trig.' § 5, the various ways to view

the infinity-type T of an algebraic Hecke character. In general,

,~~ algebraic homornorphisrn t:K* -+- E* is a group homomorphism such
.. . ......

that either one of the following equivalent conditions i5 satisfied •

. (a) For any basis {ei 11 = 1, ••• ,n} of K over (D, there 1s a

rational function fEE (X 1 ' • • • , Xn ) such that

t ( Laie i ) c f (a 1 ' • • • , an) ,

for all n
(ai) E W •

(b) t 1s induced by a homornorphism of algeb.~a1c groups över E

R
K

/ m (b XE'" a;
w m W m

(c) t is induced by a hornornorphisrn of algebra1c groups· over (D

Gi •rn

(d) There i5

t(a)

T = E n a e: Z [Horn (K, E) ]
a

such that for all a e: K* ,
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CHAPTER ZERO:

Alsebraic Hecke Characters

In this chapter we review the elementary theory of algebraic

Hecke characters and fix some basic notation.

1. Definition

Let K and E be two number fields, i.e., finite extensions of

~ • Let r be a non-zero integral ideal of K, and

T :::t l na 0 ( :Z [Horn (K, E)] a- ;I-linear combination of embeddings of

K into a fixed algebraic closure E of E.

Definition: [cf. [SGA 4t], Sommes trig. § 5]: An algebraic Hecke
tr

character X of K with values in E, of infinity-type T and

conductor dividing f, is a group homomorphism

from the group I f of ideals of K prime to f to the multiplica­

tive group of E, such that, for any ideal (a) Elf generated by an

aeK* wlth a=1(mod f), and a totallypositive (i.e., aP>O

for all real embeddings P : K 4,. :R I symbolically: er. > > 0), one has

TTIo Ila
x«a» = a =Id(er.) •

It is understood that, if rlf ' , characters of conductor dividing

f are identified with the corresponding characters of conductor
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(e) Decompose K ~W~ = 1] F j (finite product of' fields) ·
There are integers m. such that

J

•

As explained in loc. cit., the equivalence of (a) through

(c) follows from elementary facts about algebraic groups,

and (d), (e) are reformulations of (b) using the identifi­

cation ~f the character group of ~/~~m ovar E with
zHom(K,E~ An analogous.reformulation of (c) will be given

in § 4. In the sequel w~ will often identify a type T like

in (d) with tha algebralc hornomorphi5rn t defined by it. Note

that T glves rlse to an algebraic homomorphism K* + E*

if and only if n = n , for every T E Gal(E/E). This 1s thea "[0

case if T' 15 the infinity-type of an algebraic Hecke

character with values in E.

3. Infinity-types and algebraic Hecke characters

~t 15 not true that, conversely, every· algebraie homomorphism

K* + E* oeeurs as 1nfinity-type of an algebraic Hecke character

of K with values in E. The first obvious constraint 15 that

such an infinity-type has to kill all totally-positive units

= 1 (mod f) in 0K~ As these are of finite index in 0K' the

proof of Dlrichlet's unlt theorem implies that there is an

integer w such that, for any ernbedd1ng E~-~, inducing

an action of complex conjugat1on, 0 ~ 0 , on Hom(K,E) , and

for any a E Hom(K,i), , one has

( 3.. 1) n + Il- = w.
a 0

W 15 called tha we1ght of T (er of x).

Thus, for any complex conjugation of E, we find
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w
, X ·:X = E K/ W '

where EK/m(a) = #(OK/a) for an integral ideal a of K.

(In fact, this 1s true on a subgroup of finite index of I f ,

and ~* 1s torsion-free.) Therefore the values of an algebraic

Hecke character are pure, in the sense that all embeddings into
(c have the same absolute value. Similarfy," they' are what

we ahall call .(for want of a better term) numbers of CM-type:

An algebraic number ,a i8 of CM-type if there is a (necessarily

unique) conjugate a l of a such that, for all embeddings

'[:W(a,a l
) + a:,

one has t1äT T '[(al).

Ta make more expl~cit the restrietion on the existence of .algebraic

Hecke characters i~osed by the homogeneity , condition

no + nä = est., let K' be the subfield of K consisting of

all a€ K that are of CM-type. So, K' is either totally real

or a CM-field (i.e., a totally imaginary quadratic extension of

a totally real field). Then in our infinity-type T = rna •o , no
depends only on al K, because no + ~ is independent of the

choice of complex conjugation. 50 one gets an element

TI = r.n'l · (0 IK I) € Z [Horn (K I , E) ] •
.. ,Cd K I)

The fact that n + n i5 independent of a means this:
o. Ö

(a) if K I 18 totally real, then TI e: Z·};,[ (summed over

all '[ : K .. E) ;

(b) if K' 1s a CM-field, then TI belongs to the subgroup

of Z[Hom(K',E)] generated by the CM-types {Enoo I no € {O,-l},

no + n = -l}.
o

5ince alqebraic Hecke characters of f~nite order are precisely

those whose infinity-type i8 trivial, we see that

(a) if K' is totally real, then every algebraic Hecke character

X of K 1s of the form X ~ ~.E~~~ , where ~ i6 of finite order

and w E 2:.
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where EK/W(a) = S(oK/a) for an integral ideal a of K.
(In fact, this 1s true on a subgroup of finite index of I f ,

and 1\* i9 torsion-free.) Therefore the values of an algebraic

Hecke character are pure, in the sense that all embeddings into
a: have the same absolute value. SJ.milarly,·' they' are what

we ahall call ,(for want of a better term) numbers of CM-type:

An algebraic number . a 1s of CM-type if there 1s a (necessarily

unique) conjugate a' of a such that, for all emheddings

'[:(D(a,a l
) + <1:,

one has TTäT, '[(al).

To make more explicit the restr1ction on the existence of ,algebraic

Hecke characters imposed by the homogeneity' conditioo

na + 0a = cst., let K' be the subfield of K consisting of

all a€ K that are of CM-type. So, K' 18 either totally real

or a CM-f1eld (1.e., a totally 1rnaginary quadratic extension of

a totally real field). Then in' our infinity-type T = Ino·a, Da

~epends only on al KI because na + ~ 1s independent of the

~ho1ce of complex conjugation. So one gets an element

TI = r.n·, · (0 , K') € Z [Horn (K',E) ] •
. ,.(a K')

The ,fact that 0a + n 18 independent of a means this:
a

(a) if K I 1s totally real, then TI E Z • 1:t (sununed over

all '[ : K c+ E) 1

(b) if K' i8 a CM-field, then TI belangs to the subgroup

of Z[Hom(K',E)] generated by the CM-types {tnao I noE {O,-l},

n + n Cl -l}.
a 0

51nce algebraic Hecke characters ef finite order are precisely

these whose infinity-type 1s trivial, we see that

(a) 1f K' 1s totally real, then every algebraic Hecke character

X of K is of the form X = ~.E~~~ ' where ~ 1s of finite order

and w € 2Z.
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(e) Decompose K ~WE :: VF j (finite product of" fields) •

There are integers m. such that
J

•

As explained in loe. clt., the equivalence of (a) through

(c) follows from elementary facts about algebraic groups,

and (d), (e) are reformulation5 of (b) using the identifi­

cation ~f the character group of ~-/mm over E with
H (K E) -t\. w m

Z om , . An analogous reformulation of (c) wlli be given

in § 4. In the sequel we will often identlfy a type T like

in (d) with the algebraic homomorphism t deflned by 1t. Note

that T gives rise to an algebraic hornomorphism K* + E*

if and only if n :: n , for every T E Gal(E/E). This is the
CI 't'CI

case if T' 1s the infinity-type of an algebraic Hecke

character w1th values in E.

3. Infinity-types and algebraie Hecke characters

It i5 not true that, eonversely, every algebraic homomorphism

K* + E* occurs as infinity-type of an algebraic Hecke character

of K with values in E. The first obvious constraint is that

such an lnfinity-type,has to kill all totally-posltive units

= 1 (mod f) in 0K. As these are of finite index in 0K' the

proof of .Dirichlet's unit theorem implies that there 18 an

integer w such that, for any embedding E~'~ , induc1ng

an action of complex conjugat1on, (] ~ CI , on Hom(K,E) , and

for any a € Hom(K,El , one has

(3.1) n + n- = w.
o 0

w 1s ealled the weight of T (ar of x).

Thus, for any complex conjugation of E, we find
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(b) if K' is a CM-field, we have X::I)1.· (1O ~ NK/ K .)

for some algebraic Hecke character· ~ of K', and

)1. a character of finite order of K.

Consequently, the field of values of an algebraic Hecke character .

is either Q er a CM-field.

Every algebraic homomorphism T = En ·a:K*+E* whicho .
satisfies the hornogeneity condition Da + ~ä ::I cst. as

above i8 the infinity-type of some algebraic Hecke

character X of K with values in a finite extension

of E. The constructien of X i8 straightforward:

Choose an ideal r such that

{e: € 0K*: I e: »0 and e: _ 1 (madf)}T = 1,

and take any extension of

XI{(a)\ a» Q and a _ 1 (mod f)}

to all of Ir (cf.,e.g., [Shim] , Lemma 7.45). Since roots of

ßyalues of T are extracted in this process one cannat da with­

out extending E, in general. If we insist on keeping E, we may

pass ta ToN
LIK

., for a suitable finite (abelian) extension L

of K. Fixing E and K, all one can assert in general is that

rn·T, for a sultable rnEE, will come from an algebraic Hecke

character of K with values in E. (Cf. [DP], 8.2.) - We ahall

not be concerned with the problem of bounding the conductor of

the character X which we have just shown to exist .. Far this,

cf. [ Schm] , I. 2 •

4. The Hodge decomposition

A· homomorphism ~/Qa;m -+ ~/atDrn over E (cf. §.2,. (.c) ) 15. a
system of characters of RK/Omm indexed by Hom(E,E). This

yields a description of infinity types whose relation with

the title of this se~~~on will becorne apparent in the next

chapter (see in particular I, 1.7,4.2,6.1.5; cf. [DP], 8.2)... .... .: ~
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Let t : K* -+ E* be an algebraie homornorphism, and t € Horn (E , a:) •

Then tot:K*-+ (E l )* i8 again an algebraie homomorphism whose

type will be written

where 0 now ranges over all embeddings of ~ into the algebraie

elosure of ~ in ~, or simply o:K-+~.

15 the type of t, thenIf T = Y. _
n:K-+E

and on1y if
~ ~

o :: t" 0 n , for any extens ion t of t to

if

E.

We have n(a,T) = n(ao,aT) for all a€ Aut CI: beeause
t :~/O<Gm .; .RE/ Q<Gm i'8 defined over Q (e f. I, 6 • 1 • 2) •Furthermore ,
if t 1s the 1nfinity-type of an algebra1e Hecke character X

of weight w, then

w :::t n(o,T) + n (CO,T) ::: n(o,T) + n(o,cT),

for any 0 € Horn (K, a:), T € Horn (E, CI:), where c:: comp1ex conj ugation.

5. Adeles

Algebraic Hecke characters may, of course, be read on the ideles

KÄ of K: cf. [W],[1955e] where algebraic Hecke characters were

introduced as characters of the ide1e class group "of type (AO)".

First, given X as in § 1, there clearly exists a unique group

homomorphism

X : K * -+ E*A A .

such that

(a)

(b)

(c)

-1
X A .( 1 ) 1s open in Kit.i
XAl K* = T: K* -+ E* i

XA (lT p) =.X (p), for a.ll prime ideals p of K not dividing f .
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t:K* + E* be an algebra1c homomorph15m, and t € Hom(E,([) •

Tot:K*+ (E T)* 18 again an algebraic homomorphism whose

type will be written

where 0 now ranges over all.embeddings of ~ into the algebraic

eloaure of ~ in 0;, or sirnply a:K+ 0;.

1s the type of t, then

E.
If T = 1. _

n:K+ E
and only if

n • nn
~

o = 1" 0 n , for any extension T of

n =n(o,T)
n

T to

if

We have n(o,T} = n(ao,aT) for all a€ Aut 0;' beeause
t: RK/o<Gm +. ·~/Q(brn is defined over Q (cf. 1,6. 1 .2) •F~rthermore,

if t is the infinity-type of an algebraic Hecke character X

of weight w, then

w = n (a , T ) + ,n (co, T) = n (cr , T ) + n (a , CT) ,

for any a € Horn (K, 0;), T € Horn (E, 0;), where . c = complex conj ugation.

5. Adeles

Aigebraic Hecke'characters rnay, of course, be read on the ideles

KA of K: cf. [W],[1955c] where algebraic Hecke characters were

1ntroduced as characters of the idele class group "o f type (.AO) 11 •

First, given X as in § 1, there clearly exists a unique group

homomorphism

X :K *+E*A A .

such that

(a) -1 is open in K*·XA (1) A'
(b)

X:AI K* = T:K* + E*;

(c) XA(TT
p

) =.X(p), for a.ll prime ideals p of K not dividing f.
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(b) if K I 18 a CM-field, we have X =J,J.. (lP 0 NK / K I)

for some algebraic Hecke character· lP of K I
, and

~ a character of finite order of K.

consequently, the field.of values of an algebraic.Hecke character .

18 either Q or.a CM-field.

Every algebraic homomorphism T = Ena·a:K*+E* which

satisfies the homogeneity condition na + ~ä = cst. as

above i5 the infinity-type of some algebraic Hecke

character X of K with values in a finite extension

of E. The construction of X is straightforward:

Choose an ideal f such that

{e:E 0K* I
T· 1 ,e: » 0 and e: - 1 (modf)} c

and take any extension of

XI{(a) I a» Q and a - 1 (mod f) }

to all of I f (cf.,e.g., [Shim] , Lemma 7.45). Since roets of

values of T are extracted in this process one cannot do with­

out extending E, in general. If we insist on keeping E, we may

pass to ToN
LIK

., for a suitable finite (abelian) extension L

of K. Fixing E and K, all one can assert in general 18 that

m· T, for a aui table m€:E, will come from an algebraic Hecke

character of K wlth values in E. (Cf. [DP], 8.2.) - We shall

not be concerned with the problem of bounding the conductor of

the character X whichwe have just shown.to exist.· For this,

cf. [ Schm] , 1.2.

4. The Hodge decomposition

A· homomorphism ~/o(brn + RE/am
rn

over E (cf. §.2,. (.c) ) is. a

system of characters of RK/QSm indexed by Hom(E,E). This

yields a description of infinity types whose relation with

the title of this seq~ion will become apparent in the next

chaj?ter (see in particular I, 1.7,4.2~6.1.•. 5; cf. [D~], 8.2).. ~.
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denote~ any idele having a uniformizing parameter

1 at all other components.

Since X
A

takes .values· in E*, it could not be an idele class

character, and its restrictions to individual completions of K

are not very interesting. But this can be changed by conveniently

nlocaiizing over E":

Being an algebraic homomorphism, Tinduces a continuous homomor­

phism K* + E * - see, e.g., condition (c) of § 2. Given any place
A A

A of E, denote by TA the compos1te with project10n onto the

A-component of EA:

and write

= T- 1 v* ~ E*XA X· h': 4'\A A·

Then Xh 1s an 1d~le class eharaeter, 1.e.,' a continuous homomorphi5rn

K* /K* + E~ •
. A

If A 1s a finite place, Eh i5 a totally disconneeted topological

space, so ker X A contains the eonneeted cornponent of 1 in K~.
ab .

By class-field-theory, XA factorizes: Gal(K /K) +EX as the

l-dimensional A-adic Galois representation with

Xh (Frob p) = X(p) E E * '+ E~ ,

for any prime ideal p of K

is a "geometrie Frobenius ll at

rnap of class-field-theory to

This 1s done to comply with

Froh p with respect to this

absolute value (Ep)w/2.

not d1vid1ng f. ~A. Here, Frob p

p, 1.e., we normalize the reciproc1ty

be the reciprocal of the Artin map.

[DP]. Note that the "e igenvalues" of

A-adie representatlon are purely of
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If A 1s a complex place of E, we get two (possibly equal)

continuous homomorphisms, er uquasi-characters of the idele

class group" in the sen-se of [Tt] or [W3], chap. VII:

according to the two continuous isomorphisms EAa~.

If A 1s areal place, there 1s just one such character

XA: Ki/K* ~ lR*c.... a: * ·

In another language, we get for each infinite place A, one

or two automorphic forms on GL(1,K~).

6. L-functions,

Tc every complex embedding "[' :E '""" a: 15 attached the "Größen­

charakter 11 (in Hecke I s sense) l' 0 X· If Tinduces the infinite

place A of E, then T 0 X corresponds to (one cf) the idele

class character(s) (j)X A• Consider the Hecke L-functien

L(xL,s) = L
(a,fX)=l
ac a

K

( f 0 r Re (s ) > ! + 1).

We write formally

t
L*(X,s) = (L(X ,S»T:E~a: '

so that L*(X,s) is an array of L-functions.taking values
in ~Hom(E,~)= E a:

I3 CO •

Recall the general form of the functional equation of the T
L{x ,5) -



(TOx)(a)-:Na- s =

If A i9 a complex place of E, we get two (pos~ibly equal)

continuous homomorphisms, or "quasi-characters of the idele

class group" in the sense of [Tt] or [W3], chap_ VII:

according to the two continuous isomorphisms EAiiIi.(t -

If A is areal place, there 19 just one such character

XA:Ki/K *+lR*4 a:*_

In another language,. we get for each infinite place A, one

or two automorphic forms on GL(1,K~)_

6_ L-functions

To every complex embedding T :E"+ a: is attached the "GröBen­

charakter 11 (in Hecke I s sense) T 0 X- If Tinduces the infinite

place A of E, then T 0X corresponds to (one of) the idele

.class character(s) (j)XA- Consider the Hecke L-function

L(xT,S):::l L
(a,fX)=1
ac U

K

(for Re (s) > ~ + 1)_

We write formally

L*(X,s) ~ (L(xL,s»
T :E + a:

so that L*(X,s) is an array of L-functions-taking values
in a:Hom(E,(t)= E (t

0 W -

Recall the general form of the functional equation of the L(XL,s) -
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Here, 11'p

at p, and

denotes any idele having a uniformizing parameter

1 at all ether components.

Since X
A

takes .values· in E*, it could not be an idele class

character, and its restrietions to individual completions of K

are not very interesting. But this ean be changed by conveniently

IIlocalizing over E":

E~ ,+

Being an algebraie homomorphism, Tinduces a continuous homomor­

phism K* + & * - see, e.g., condition (c) ef § 2. Given any place
A A '

A of E, denote by TA the composite with projection ente the

A-component ef EA:

T
TA:K~ ~ Ei

and write

-1 *. E*
Xx = X • TA : KA -+ A •

Then Xx 1s an idele elass character, i.e., a eontinuous homomorphisrn

K* /K* -+- E* •
.A, A

If X' is a finite place, EX is a totally diseonnected topological

spaee, so ker XX contains the conneeted eomponent of 1 in K~.

By class-field-theory, Xx factorizes: Gal(Kab/K) ~E~ as the'

l-dimensional X-adie Galois representation with

XX(Froh p) = X (p) E: E* 4- E~ ,

for any prime ideal p of K

is a "geometrie Frobenius" at

map of class-field-theory to

This is done to comply with

Froh p with respeet to this

absolute value (Ep)W/2.

not dividing f. EX. Here, Froh p

p, i.e., we norrnalize the reciproeity

be the reciprocal of the Artin map.

[DP]. Note that the "eigenvalues" of

X-adie representation are purely of
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cf. [He], p. 272 f; [Tt] or [W3], VII-7. Put

For areal place v of K

notation of § 4, that all

(whose existence implies, in the
w

n(a,T) are equal to 2)' put

where E:::J 0 or 1, such that the \r-component XT :K* -+- a:*
2

. v V
T E+W/of XA satisfies Xv (-1) = (-1) .For a cornplex place

v of K, corresponding to the pair 0 , ä: K -+- a: of complex

ernbeddings of K, put

L
V

(XT ,5) = f(t(5-inf(n(o,1'),n(Ö,T»).

Then, setting

A (X T , 5 ) = TT Lv (Xl' , S ) • L (Xl' , 5) ,

vl oo

we get a meromorphic continuation to the whole cornplex plane

with functional equation of the type

T l' l' -1
A(X ,5) = E(X ,5) • A«x) , 1 - s),

l' l' .1/2-5
where E (X , s) = \'1 (X ). { Id KI • lNf ). . , for some constant

T - X
W(X) of absolute value 1, and dK the di5crimi~ant of K

(over lJD. - As xr =.·Nw• (xl')-1 , this functional equation may be

rewritten as one relating L (XT , s) to L (XT, w + 1 - 5) .

7. Serre's group

In [Si], chap. 11, Serre has given an interpretation of algebraic

Hecke characters which generalizes the definitions (b) or (c) of

algebraic homornorphisrns recalled in § 2.
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kJ Put:

UA, f

x > 0 ifv
€ K* x :: 1 (mod

.A v
x E 0* ifv v

Then ~A factorizes through Ki!UA,f ' and we have the

diagrarn

where Uf = 011" f n K*, and Cf is the ray class group of K

mod f. Recall that' Cf i8 a finite abelian group. Now, K*/U r
is the group of m-rational points of the m-torus

where r; i8 the Zariski-closure of a suitable arithmetic

subgroup r f of RK/ W~m. Serre shows how to construct a

W-algebraic group SK,f of rnultiplicativ~ type (i.e., SK,f
is the product of a torus by a finite abelian gro~p) which i8

an extension of Cf by ZK,r such that SK,r(W) = Ki/UA,f ·
In fact, define SK,f via its c~aracter group:

(as Gal(WIW)-rnodule) .
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7.1 Put:

!(xv)

x > 0 if vv
UA,f = € K* x = 1 (mod f v )

.A v
x € 0* if v

l v v

iSi;ea~lf )

1s finite

Then X factorizes through K*/U f' and we have the
·A A A,

diagram

where Uf = 0A, f n K*, and Cf is. the ray class group of K

mod f. Recall that Cf 1s a finite abelian group. Now, K*/U
f

is the group of m-rational points of the m-torus

where r f is the Zariski-closure of a suitable arithmetic

subgroup r f of ~/m ~m. Serre shows how to construct a

~-algebra1c group SK,f of multip11cative type (i.e., SK,f

1s the product of a torus by a finite abelian group) which 1s

an extension of Cf by ZK,f such that SK,r(W) = Ki/UA,f •

In fact, define SK,f via its character group:

= ((Tl,<;)

(as Gal(Wlm)-rnodule) .
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cf. [He], p. 272 fi [Tt] or [W3], VII-7. Put

s

fR(s) = 1T
2 r(~)i fa=(s) = fE, (s)fE,(s +1) = 2(21T)-sr(s).

For areal place v of K

notation of § 4, that all

(whose existence irnplies, in the
wn(o,T) are equal to 2)' put

. .

T ' W
Lv (X , s) ,= r~ (5: + e: - '2),

Twhere e: c 0 or 1, such that the v-component X :K* -+ a:*
T e:+w/2 v v

of Xx satisfies Xv (-1) = (-1) .For a complex place

v of K, ,?orresponding to the pair a,o:K .... a: of complex

embeddings of K, put

Then, setting

L TT T TA (X , 5 ) = Lv (X , s ) • L (X , s) ,
vlO)

we get a meromorphic continuation to the whole complex plane

with functional equation of the type

L L .1/2-s
where "e:(X ,5) = W(X ).{ IdKI • JNf J.. ,for some constant

T " X
w(x) of absolute value 1, and ~ the discrimi~ant of K

'(over aD. - As xr =,'NW ·(XT)-1 , this functional equation may be

rewritten as one relating L (XL, 5) to L (Xf,w + 1 - s) •

7. Serrels group

In [51], chap. II, Serre has given an interpretation of algebraic

Hecke characters which generalizes the definitions (b) or (c) of

"algebraic homomorphisms recalled in § 2.
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7.2 An algebraic Hecke character of K with values in E

can then be viewed as a representation defined over E of

algebraic groups

or equivalently, as a.homomorphi5m of algebraic groups defined

over W:

7.3 SK sits in the exact sequence of m-algebraic greups

(obtained as projective limit over f):

(7.3.1) 1 ~ Z ~ S ~ Gal (Kab /K) ~ 0,K K

1
r

a J '

where ZK can be de5cribed as foliows.

7.3.2 Given an- algebraic Hecke character of K with values

in E, as a representation SK-1. RE/al !Sm I i~S infinity-type

.~is obtained simply by restricting to ZK: ZK + ~/~ [Sm (cf. §4?

~and ZK 1s the largest quotient of RK/~ ffim through which all

infinity-types of algebraic Hecke characters of K factorize.

Let (ö be the algebraic closure of (D in. a:, and consider

temporarily all fields K as 5ubfields of m. Write

T : E t... (ö' ca:. Then T oT can be interpreted a s a character T : ZK ~ (G
l' m

over W. Denoting complex conjugation on W by c, and by

~CMeGal (m/<;n) the subgroup fixing all algebraic numbers of CJ.I-type,

it fellows that the character graup of ZK i5 given by:

(. lAS = A, fe r a 11 5 E GC~1
X(ZK) = 1AEX(11<IQGm) ,

l A(ca)+A(a) indep.of

where we identify X(R
K1Q

Gm) = Z [Horn (K,Ö)] , and define
A

S
(0) = A (5-

1
00), for 5 EGal (0'/0),0 E Hom(K,Q).
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7.3.3 Consequently, 1f KicK 1s the field of numbers of

CM-type in K, then ZK a ZK' , and

Z'J'J ::I: Clim/'J'J , ,if K' 15 totally real

ZK' a RK , /(0 Clim/ker (NK I /K
O

:RK ' /'J'Jaim -+- RKO /'J'Jaim) ,

if K' 1s a CM-field with Ka as

maximal totally real subf1eld.

In part1cular, for K1 c K
2

' the norm maps

factor through

z = l!m
K

-+- Z , allowing us to define
K1

ZK - liID ZK
K CM-field

The 1nf1nity-types of all algebraic Hecke characters can

" be regarded as characters of Z (identifying T on
T

RK1/ 'J'J Clim with TToNK2/K1):

x IZ) =If,Gal lW/ai) + Zl

f locally constant

f.S = f , for a 11 s E GCM
t[(ca)+"f{a) indep. of

a € Gal «DIa»

7,3.4 Thus, same invariants of X can be viewed as homomorphisms

of (pro-) algebraic groups. E.g.,

X(Z) .... z = X(CC ) gives rise to:
m

f .... f(1) + f(c) (=w) w:ai .... Z(/(Q)
m

f ... f ( 1 ) (= n(a,T» U:cc +Z(/a:)m
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7.3.3 Consequently, if KicK i9 the field of numbers of

CM-type in K, then ZK = ZK
'

, and

Zw = CGm/W ,.if K I is totally real
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Ü
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2 K,

Z = lj;m ZK - lJ:m ZK

K K CM-field

The infinity-types of all.algebraic Hecke characters can

be regarded as characters of Z (identifying T on
~ T
RK Im ~ with TT oNK

2
/K,):1 w rn

x IZI =If:Gal lW/Oll + 7l

f locally constant

:fS = f , for all s f· GCM
tf(co)+·f(o) indep. of

o EGal (Qi/(ln

7.3.4 Thus, some invariants of X can be viewed as hornomorphisms

of (pro-) algebraic groups. E.g.,

X(Z) -+- Z = X(ai )
In

f -+- f(') + f(c) (=w)

f -+- f(1) (= n(o,T))

gives rise to:

w:(b -+- Z (/(IJ)
In

Jl:CG -+- Z (leI:)m
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7.2 An algebraic Hecke character of K wlth values in E
=
can then be v1ewed as a representation defined over E of

algebraic groups

or equivalently, as a.homomorphism of algebraic groups deflned

over W:

7.3 SR sits in the exact sequence of W-algebraic groups

(obtained as project1ve limit over f):·

(7.3.1)

where ZK can be descr1bed as follows.

~ 7.3.2 Given an· algebraic Hecke character of K with values

in E, as a representation SK~RE/W mm ' i~S infinity-type

is obtained simply by restricting to ZK: ZR ..... RE/I;D (Gm (cf. §4.)

and ZK is the largest quotient of RK/~ mm through which all

infinity-types of algebraic Hecke charactersof K factorize.

Let Ql be the algebraic closure of (D in CI:, and consider

temporar11y all fields K as subfields of W. Write

T : E c.. (ü c CI:. Then T oT can be interpreted as a eharaeter T : ZK ..... (C
T m

over m. Denoting complex conjugation on m by e, and by

GCMcGal(W/~) the subgroup fixing all algebraic numbers of CM-type,

it follows that the charaeter group of ZK 15 given by:

s
A = A, :cor all s E: GC~_!

A(co) + A (0) indep. 0 f

where we identify X(R
K10

Gm} = Z [Horn (K,Ol] , and define
s -1 - -

A (a) = A(S 00), for sE Gal(Q/O},o E Horn(K,O).
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7.4 The sequence .7.3.1 admits a natural sect10n~ the

*finite ideles mA~ whose construction 1s reminiscent of

the way in which we passed fram XA to XA, for a finite

place A of E, in § 5. As SK(W) = 11m Ki/uA,f' there 15
a natural cont1nuous map f

f:K.* .... 5 (Q) ~S (~f,) •
-A K K '1i

On the other hand, ZK(Whf) i9 also a quotient of ~A'

whence a continuous map

fand g obviously agree on K*, and as S.K (Q).Af ) 1s a totally

disconnected topological space, the quotient f/g factors through

a continuous homomorphism

~hich is the section sought .
....

Given an algebraic Hecke character as a homcmorphisrnof
;-algebraic groups

we can recover XA as the rnap induced by

points of SK' ~/Q) ~m. As for XA ' for
E, it is the A-cornponent of

X on the.w-rational

A a finite place of

= E*f.
A

It is obvious haw to mirnick the canstruction of fg- 1 at

the infinite place of W. The result will na langer factor

through Gal(Kab/K), but gives the characters XA, for Al~,
1nltroduced : in § 5.
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8. Jacobi suro Hecke characters

8.0.1 History

Although special cases are already present in Eisenstein

[Ei 3] the notion of Gauss or Jaeobi sums viewed as Hecke

charaeters really starts with Andre Weil: [W 11], 1952d, for

the cyclotomic ease; [W 111], 1974d, over abelian number
fields. Cf. also the beautiful [W 1111, 1974c. Several authors

have then extended the class of characters amenable to Weiltg

me~hod - see [Kb],[KL],[Li] -, and proved results about special

values of their L-functions (to· w~t, special cases of Lichtenbaum 's
"r-hypothesis"): [Br], [BL], [Li] •

On the other hand, a thoroughly geometrie study of Weil'g

Jacobi surn Hecke characters - with a view to rnajorize

exponential sums - was done by Deligne in [SGA 4;], Sommes

trig. - The "motivic" picture of Jacobi sum characters over
cyelatornic lfiields i·simplicitly discussed in [DMOS] , I § 7.

Recently, G. Anderson took up the subject introducing, in

[A2), a very smooth and efficient formalism as weIl as a

geometrie interpretation for a elass of Jacobi suro Hecke

characters which ineludes all Hecke characters of abelian

fields that have ever been proposed as candidates of Jacobi

swn Hecke characters .. More precisely, I checked that

Anderson's class coincides with the one defined by Kubert,[Kb].

The geometrie interpretation makes it seem very unlikely
that new reasonable candidates for Jacobi sum Hecke characters

of abelian fields can be proposed. Anderson's work (in fact,

essentially already the earlier [A1)) definitely links up

the "r-hypothesis" with Deligne's rationality conjecture of

COp]. This has actually been the starting point of the

present work - see [GS'.], announcement made after Cor. 1.2.
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7.4 The sequence ,7.3.1 adrnits a natural section~ the

*finite ideles ~Af whose construction is rerniniscent af

the way in which we passed fram XA to XA, for a finite

place A of E, in § 5. As SK(~) = 11m K~/UA,f' there is

a natural continuous map f

On the other hand, ZK(~Af) is also a quotient of ~A'

whence a continuous map

f and 9 obviously agree on K*, and as S1{ (W'Af ) i9 a totally

disconnected topological space, the quotient f/g factors through

a continuous homomorphism

which i8 the section sought.

Given an algebraic Hecke character as a homcmorphisrnof
·m-algebraic groups

we can recover XA as the map induced by

points of SK' ~/W mm· As for XA ' for
E, it is the A-component of

X on the W-rational

A a finite place of

It i5 obvious how to mirnick the construction of fg- 1 at

the infinite place of ~. The result will no longer factor

through Gal(Kab/K), but gives the characters X
A

, for AI~,

inltroduced : in § 5.
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8.0.2 In this section we shall, as of 8.2, introduce

Anderson's class of Jacobi SUffi Hecke characters and briefly

discuss, in 8.4, the corresponding notion of Stickelberger

ideal (of an abelian number field) - which is easily seen
to coincide with Sinnott's ,[Sin]. - Our account of [A2]

will continue in I § 7, where we describe Anderson's motives

for Jacobi sum Hecke characters - also touchina upon his

I ulterior motives I -, and will be concluded in II.- § 4., with the

calculation of their periods·in terms cf values of the

r-function at rational numbers. - Proofs will often be

replaced by a reference.

To make things'more concrete we begin, in 8.1, with a family

of examples cf Jacobi sum Becke characters (all included

already in [W 111], 1974d) which will p~ay a prominent

rele in chapter 111.

~ The basic Jacobi SUffi character of an imaginary-

~ quadratic number field·.

Let K = W(/-D) be the imaginary quad~atic number field

of discriminant -D<-8. (The exceptional casea D = 3,4,8

will be treated in 8.3.2.) Pick an embedding

K is the unique quadratic subfield of L. For a prime P

ef L not dividing D write L(P) = Z[~D]/P the residue

field and XD,P the D-th power residue symbol module P :
fer xE L(P),

XD,p(x) E ~D U {O} and XD,p(x) (rnod P)

lNP-1
-D-

= x

FinaIly, put

·trace rnap from

a(i) = exp (2ni z), and denote by tr the

L(P) down to its prime field F . The basicp
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K is given by its values on

K as foliows.

(8.1.1) (- L XD p(X) e«tr x)/p»,
x€L(P) ,

where P runs over the primes of L

multiplicatively to the group 1(0)

D in K, this gives a homomorphism

1(0) + K* ,

dividing p. Extending

of all ideals prime to

as i8 easily seen fram the behaviour of Gauss sums under

conjugation: see [W 111], 1974c, § 1. But it is by no means

obvious, apriori, that J o 1s a Hecke character, i.e.,that it

"admits a conductor" t. , as in § 1. Suppose we knew this.

Then Stickelbergerts theorem would give us the infinity type

of J o ' as follows. 1dentify as usual

,(Z/OZ) * > Gal (L/(D)

a --~> o:z;; + r;a
a

Write the Dirichlet character corresponding to K as.

(8.1.2)

e: : (72 /OZ) *

e:(a) = { 1
.-1

if

if

{±1 }

0alK c 1

0o,I K ~ c (complex conjugation)

Lift E back to Z when convenient, also extending it to

numbers not prime to 0 by O. Thus e:(p) = (-D) (Legendreisp
symbol), for all rational primes p. Define, for a running

ovar· (:&/0:) *

(8.1.3) L
e: (0.) =-1

L
e:(a)=+1
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K is given by its values on

K as follows.
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xEL (P) ,
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"admits a conductor" f. , as in § 1. Suppose we knew this.

Then Stickelbergerts theorem would give us the infinity type

of J o ' as foliows. Identify as usual

,(Z/DZ) *

a

---~> Gal (LI;)

--....> 0:1; ..... l;a
a
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8.0.2 In this section we shall, as of 8.2, introduce

Anderson'g class of Jacobi surn Hecke characters and briefly

discuss, in 8.4, the corresponding notion of Stickelberger

ideal (of an abelian number field) - which is easily seen

to coincide with Sinnott's ,[Sin]. - Our account of [A2]
will continue in I § 7, where we describe Anderson's motives

for Jacobi sum Hecke characters - also touchina upon his

I ulterior motives' -, and will be concluded 'in II: § 4, with the

calculation of their periods 'in terms of values of the

r-function at rational numbers. - Proofs will often be

replaced by a reference.

To make things more concrete we begin, in 8.1, with a family

of examples of Jacobi sum Hecke characters (all included

already in [W III], 1974d) which will play a prominent

role in chapter III.

~ The basic Jacobi sum character of an imaginarx·

quadratic number field.

Let K = W({-D) be the imaginary quad~atic number field

of discriminant -D < -8. (The exceptional cases D = 3,4,8

will be treated in 8.3.2.) Pick an embedding

K is the unique quadratic subfield of L. For a prime P

of L not dividing D write L(P) = Z[~D]/P the residue

field and XD,P the D-th power residue symbol modulo P
for xE L(P),

and Xo,p(x) (mod P)

:1NF-1
0-= x

Finally, put

trace map from

~(i) = exp (2ni z), and denote by tr the

L{P) down to its prime field F p ' The basic
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where

(8.1.4) <.>:W/Z ~ m is the representative in [0,1)

of a class mod Z.

Then an easy calculation, starting, e.g., from [W III],

1974c, § 15, shows that

(n
1

1+n c)
= p c

Now, the trick of Gauss as a young man, and the analytic

class number formula of Dirichlet give the two equations
(remember that D • 3,4):

where ~(D) = #(Z/DZ)*

15 the class number of

'~D would have to· be

is Euler's ~function, and hD
K. Therefore the infinity type of

(8.1.5) T = l[(~(D) + h
D

) • 1 + (~2(D) - h
O

)· c] .
D . 2 2

This does give an algebraic homomorphism of K* into

itself because, by genus theory , ~~D) • hD (mod 2) ­

this is why we had to exclude 0 = 8 alsol

It is proved in [W III], 1974d, that J o is actually a

Hecke character of K, with defining ideal f dividing

apower of D. Alternatively, this follows from Anderson's

interpretation: see I § 7.

8.2 Anderson's formalism

The latent reference for this subsection is [A2], § 2.
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8.2.1 Let m be the free abelian group on W~...... {O}.

For a :z En [al EB , let m<.~) be the order of the sub-a
group of W/Z generated by {a E CO/Z I n :11 O}. Extend thea
function 8.1.4 to m by the rule

Let ~ be the algebraic closure of W in ~, and let

Gal (ij/W) act on m via its action .on roots of 1:
_ A

Writing ~:Gal(W/~) +Z* the cyclotomic character defined
by r;s:cl l; ~ (s) , for all s EGal (CD/aD and l; E i* a roo t

of 1, we set

Given a number field Kc W , write

subgroup of elements invariant under

and a E mK ' define

a S = (I na[a])s = y'n
a

[~(~)a]

B ~ E G(W/K) the
K
Gal(W/K). Given

eK(~) :G(W/CO}/G(W/K} + ~

-1o t+ <0 a > •

K

In the application, K will be abelian over (D and 8K
will be read on Gal(K/(D).

Also let JBO ~ {~E BI L n a = 0 in Ql/Z} , and

mO mO n m
a

=K K

8.2.2 Let p be a rational prime and let :B (p) be the

subgroup of JB generated by elements of the form

where f 1s a positive integer and 0 * a E (D/Z i8
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group of

function

w~......{o}.

the sub­
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Given a number field Kc:: äi , write E
K

= E G(W/K) the

subgroup of elements invariant under . Gal(W/K) • Given K

and a E IBK ' define ,
BK(~) :G(W/W)/G(W/K) ~ W

-1o 4 <0 a > •

In the application, K will be abelian over W and BK
will be read on Gal(K/W).

Also let JBO = {~E BI r n a = 0 in QJ/Z} , and
IBO mO n m

a
=

K K

8.2.2 Let p

subgroup of lB

be a rational prime and let E(p)

genera ted by elements of the form

be the

where f is a positive integer and 0 * a E W/Z 1s
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where

(8.1.4) <.>:W/Z ~ m is the representative in [0,1)

of a class mod Z.

Then an easy calculation, starting, e.g., from [W II1],

1974c, § 15, shows that

(n 11+n c)
= p c

Now, the trick of Gauss as a young man, and the analytic

class number formula of Dirichlet g1ve the two equat10ns

(remernber that D + 3,4):

where ~(D) = #(Z/D!)*

15 the class number of

J D would have to be

15 Euler's ~-function, and h D
K. Therefore the 1nfin1ty type of

(8.1.5) T = ..![(~(O)
D 2 2

+ h ) • 1 + (tp (0) - h ). c]
D 2 D

This does give an algebraic homomorphism of K* into

i taelf because, by genus theory , <p~O) Iil h
D

(mod 2) ­

this i8 why we had to excIude D = 8 alsol

It 19 proved in [W 111], 1974d, that J O is actuaIIy a

Hecke character of K, with defining ideal f dividing

apower of D. Alternatively, this follows from Anderson's

interpretation: see I § 7.

8.2 Anderson's formalism

The latent reference for this subsection i8 [A2], § 2.
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such that (pf - 1)a = O.

We assume that, for every rational prime

of the p-adic absolute value _I lp to m
So, in any number field L ( c (0), there is

prime divisor P of p.

There 1s a unique homomorphism

gp:lB (p) .... W*

p, an extension

has been chosen.

a privileged

f
gp ( Y.

j=l

fsuch that, tor .all integral powers q = p ~ p, and all

o *a € W/Z wi th (q - 1) a :: 0, one has

J' \ -<a>(q-l) ~(t(q,C»
[p a]) '.= - l. r; • QO 13

Cq- 1=1

f j
wi th t (q,l;) € Z and t (q, Z;;) = L z;;P (mod P), for

j=l in the fieldP the chosen prime over P ~(~q-l).

This is Anderson's version of the theorem of Hasse and

Davenport. - Note the - in the exponent of l;!

8.2. 3 Let K c W be a number field which is abelian over

(0. Let ~€ E
K

and p a prime ideal of K with P %m(a).

;Call p the rational prime below p , and write

D(K,p) eGal <m/aJ) the open subset of all s such that pS

is the privileged prime above p in K. Thus D(K,p) consists

of full left cosets of the decomposition group D(p) of II p '

as weIl as of G(W/K).

Put

= g ( L
P aE D(K,p)/G(W/K)

-1
a a
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where g was defined in 8.2.2: To see that ,Ia-1~
p

actually lies in JEh?) , note that

B(p) = mD(p) n {a€ EI p 1 m(~)} •

8.2.4 A Jacobi sum Hecke character (according to Anderson)

is a character of the form JK(~)' where:

•
oe

K is an abelian number field, K c:: iji ,
o

a € BK '

and JK(~) i8 given on prime ideals p of K not dividing

m(~) by the rule

•

The fact that JK(~) is actually a Hecke character of K,

with defining ideal dividing apower of m(a) ,. hinges on

the conditlon ~ E BQ, and can either be d~g out of [Kb],

or derived from Andersonrs geometrie interpretation:
see I § 7.

Elementary properties of Gauss sums imply that

i5 galois equivariant:

for all s E Gal (~/lJD and any ideal a of

m(~). In particular, JK(~) takes values in

K prime to

K*.

8.2.6 It is plain fram the construction that, for L/K
o 0a finite extension and ~ EJB K c:: E L ' one has
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Elementary properties of Gauss sums imply that
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for all s EGal (W/W) and any ideal a of

m(~). In particular, JK(~) takes values in
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K*.

'8.2.6 It i8 plain from the construction that, for L/K
o 0a finite extension and ~ ElB
K

c B L J ane has
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such that {pf - 1)a = O.

We assume that, for every rational prime

of the p-adic absolute value _I lp to m
So, in any number field L { c on, there is

prime divisor P of p.

There 15 a unique homomorphism

p, an extension

has been chosen.

a privileged

f
gp ( 1.

j=1

such that, for ,all integral powers q = pf ~ p, and all

o *a E mIx wi th (q- - 1) a a 0, one has

[pja])'.= - 1.
Z;q-1=1
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with t(q,i;) E Z and t (q,z;):: I Z; (mod P), for

j=1P the chosen prime over p in the field ~(~q-1).

This is Anderson's version of the theorem of Hasse and

Davenport. - Note the - in the exponent of ~ 1 .

8.2. 3 Let K c W be a number field which i8 abelian over

m. Let ~ E:BK and p a prime ideal of K wi th P l' m (~) •

Call p the rational prime below p , and write

D{K,p) eGal (äi/~) the open 8ubset of all s such that pS

18 the privileged prime above p in K. Thus D(K,p) consists

of full left cosets of the decomposition gro~p D{p) of 'Il
p

,

as weIl as of G(W/K).

Put

= 9 ( I
P oE D(K,p)/G(W/K)

-1
C1 a
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8.2.7 5tickelberger 1 s theorem implies that the infinity

type of JK(~) is 8K(~) - defined in 8.2.1 - ,which takes

values in Z if a E mO.

~:' Example 8. 1 revisi ted

8. 3. 1 Let us· first write our basic characters 0 f 8. 1 in

Anderson's notations. So let K = ~(/-D) be of discriminant

-D<-8. Put

a =-D

We find (8.1.3) that

and

Therefore, by the remark following 8.1.5, one has

°~D E JB

Since ~D clearly belongs to EX' the character JK(~)

is weIl defined in Anderson's setup, and it is an easy

exercise to check that

8.3.2 We shall now def1ne, in Anderson's notation, abasie

Jacobi surn character for each of the imaginary quadratic

fields not treated in 8.1 and 8.3.1, i.e., for D = 3,4,8.

In all three cases the class number h
D

is 1, and (in

analogy with 8.1.5 for D = 3,4) we shall define Je so

that its infinity type TD is 1.1 + O.c = 1. All we have
oto do is give an element ~D e: :IBm v=D') , for D = 3,4,8,

such that
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if

if

a = 1

a = c

For D = 3,4, we have tried to make a "classical" choice

of ~D - see I. 7.5.
We propose as basic characters, J D = JK(~D) with

~3 = 2 [~] - [.! ]
3 3

!.4 = [.1. ] + [l] - [.! ]
2 4 4

1 [~] [1. ]
~8 = -[-] + +2 8 8

~ The Stickelberger ideal

8.4.1 Definition. Let K be

The Stickelberger ideal of K

ring Z[Gal(K/;)] consisting

types of all Jacobi sum Hecke

denoted St
K

an abelian number field.

is the ideal of the group

precisely of the infinity

character8 of K. It i8

It i8 not hard to check that our Stickelberger ideal StK
coincides w1th the one defined by Sinnott in [Sin] •

The ~in property of StK which we ahall have occasion

to use 18 the following

8.4.2 Proposition. Let Axc Z[Gal(K/WJ] be the set of

infinity types of all algebraic Hecke characters of K.

Then StK 18 a subgroup of finite index in Ax.
See [Sin], Theorem 2.1.

In general, it is very hard to describe StK inside ~ ,

and even to give an explicit forrnula for the index [AK:StKl.
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if

if

o ::11 1

o = c

For D = 3,4, we have trled to make a "c l ass ical" choice

of ~O - see I. 7.5.
We propose as basic characters, Jo::ll JK(~O) with
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ring Z[Gal(K/W)] consisting

__ types of all Jacobi swn Hecke

denoted StK

an abelian nurnber field.

is the ideal of the group

precisely of the infinity

characters of K. It i8

It i8 not hard to check that our Stickelberger ideal StK
coincides with the one defined by Sinnott in [Sin] •

The ~in property of StK which we shall have occasion

to use is the following

8.4.2 Proposition. Let ~c Z(Gal(K/WI] be the set of

infinity types of all algebraic Hecke characters of K.

Then StK is a subgroup of finite index in Ax.
See [Sin], Theorem 2.1.

In general, it is very hard to describe StK inside Ax,
and even to give an explicit formula for the index [Ax:StK].
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8.2.7 5tickelberger's theorem implies that the infinity

type of JK(~) 15 6K(~) - defined in 8.2.1 - ,which takes
values in Z if a € ]80.

~;_ Example 8. 1 revisi ted

8. 3. 1 Let uso first wri te our basic characters of 8. 1 in

Anderson's notations. 50 let K = ~(i-D) be of discrirninant

-D<-8. Put

a ::::l
-0

We find (8.1.3) that.

and

Therefore, by the remark following 8.1.5, one has

o
~O € B

5ince !o clearly belangs to ]BK' the character JK(~O)

1s well defined in Anderson's setup, and it is an easy

exercise to check that

8.3.2 We shall naw deftne, in Anderson's notation, abasie

Jacobi suro character for each of the irnaginary quadratic

fields not treated in 8.1 and 8.3.1, i.e., for D::::l 3,4,8.

In all three cases the class nurnber hD 1s 1, and (in

analogy with 8.1.5 for D = 3,4) we shall define J D so

that its infinity type TD 1s 1.1 + O.C = 1. All we have
oto do i8 give an element ~D E ]13m V-D) , for D = 3,4,8,

such that
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An interesting case in which both can be done takes us

back to our initial example of 8.1, resp. to 83.2.

8.4.3 Lemma Let K = ~(I=D) be any imaginary guadratic

number field, -0 i ts discriminant. Then . St
K

consists

precisely of the types

k·T
O

+j·(1 + c)

wi.th k, j E Z. The index

(Recall that TO was defined in 8.1.5, resp. 8.3.2.)

Proof. First observe t~at the given types are actually

contained in StK• This is true by construction for TO '
and 1 + c is the infinity type ef the norm m , i.e. of

(say) JK(~3 +. c~3) , where ~3 is as in 8.3.2 (but

K = W(~) - cf. 8.2.6).

Secondly, the i~dex of the set of types described is

.ho · In fact, (8.1'.5)

- h O)· (1 + c) = hc· 1 ,

unless D = 8 - in which caseo Ax = StK according to 8.3.2.

On the ether hand, it follows from Theorem 2.1 combined with

Theorem 5.3 of JSin] that [~:StK] = ho ' in our case. ­

But, to be sure, our quadratic fields do not really merit
o -this quote: In fact, suppose ~ E m
K

, and. K = (D (I-D) wi th

D > 8. Put m = m (e,) and decompose b = L ~ with
1<dlrn

m
\' [!.]
l.. n i rn

i=1 .m·
(i,m)=CI
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Then ~ € :IBm (~ ) , and since the action of Gal (w/m)
respects this ~composition of b we find th~t

if

if

d i 2, it follows that ~ is a

and therefore in m~ • So it

In the first case, if

multiple of ~ [i] ,
j=l

(j ,d) =1

contributes to JK(b)

multiple of 1 ~ c to

reduced to elements b

a Hecke character of ~, i.e.,a

the inf1nity type. We are therefore

of the form

b = n
m
-,;

[1.] + L b
2 Dldlm ::cl

Now ~ €:BK implies that

<~= r ·
d
L

j=l
(j,d)=l

.E (j) = -1

1
d + s ·

d

L
j=l

(j,d)=l
E(j)=+l

1
d

with n
1

(D) = n
1

and n (D) = nc
, as in 8.1.3.

c
Now it 1s easy to check that

•
n

1
(d) - nc(d) = (n

1 - n ) n ( 1 - E (p) ) = h ·n (1-E(p).c pld D pld

This means that, if n·1

sum Hecke character of

18 the infinity type of a Jacobi

K , then ho In.

q.e.d.
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Then ~ e: JB(O (IJ. ) , and since the action of Gal (W/(O)
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if
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1
d + s ·
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r
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(j ,d) =1
E(j)=+1

1
d

with n 1 (D) = n 1 and nc(D) = nc ' as in 8.1.3.

Now it is easy to check that

n
1

(d) - nc(d) = (n 1 - n ) TT (1 - E(p))
c pld

This means that, if n·1

sum Hecke character of

1s the infinity type of a Jacobi

K , then h
O
In.

q.e.d.
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(say) JK(~3 + c~3) , where ~3 is as in 8.3.2 (but
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unless D = 8 - in which case Ax = StK according to 8.3.2.
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CHAPTER ONE:

Motives for algebraic Hecke characters

This chapter contains an exposition of the less elementary

and more geometrie parts of the theory of algebraie Hecke

charaeters. None of the results is original, but all the main

theorems are fairly recent, so this ~s~almost the first·ti~e that

they are explicitly put together with a.view to providing a "motivic"

theory of Hecke characters. Compare however [A2] and [B2]. More

precisely, we indicate a proof'of Conjecture 8.1 of Cop] in the

setting of certain mot.ives for absolute Badge cycles. - We start

out with the key example of the theory:

1. Abelian varleties with complex multiplication

E be two number fields (of finite degree;

A be an abelian variety defined over K

A = [E:m]. Denote by EndKA the ring of endo­

that are defined over K, and aS5ume there i9

(D-algebras

which will be fixed throughout. For any prime power 1n in Z,

denote by A[~n] the kernel of'mulitplication by t n on A,

and def1ne as usual

Ti (A)

Here K i5 some fixed algebraic eloaure cf K. There 1s a

natural faithful action of End A on Tt(A), and therefore of

E on V~(A). As K i9 of characteri5tic 0, Tt(A) i5 a free

. Z i-module cf .rank:.2 dirn A, and V~ (A) is a free E 13 (D~ - module

cf rank 1. The action of EndKA cornmutes with the natural action

of Gal(K/K) on Tt(A) and Vt(A). So the Galois-representation
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on Vt(A) i5 E ~ ~t-linear, and splits up as a suro of

1-dimensional A-adic representations, for the places A

of E dividing t~

~ The formation of Tt and v~ is, of course, not

restricted to abelian varieties with complex multiplication

by a field E as above. And the part of the "Weil-conjectures"

proved by Weil himself implies that the system of Galois ·repre­

sentations Tt(A), for t varying over all rational primes, is a

strictly compatible system of (~-)rational representations. This

means that there. i8 a finite set . S of pla~es of K -. to wit,··

the places where A has bad reduction - such that for all primes

t, t I and any finite place p of K such that p (S and p IR.· ~1,

Tt(A) and' Tl, (A) are.unramified at p (so that the action of

a geometrie Frobenius element Froh p' at Jl is well-defined) ,

and the "characteristic polynomials"

det(1 - Frob p'. XITt(A» and det(1 - Frob p'. X!T1 , (A»

have coefficients in (D and are equal. - ,Cf.[ST]. The "Weil­

conjectures" also tell us that all the eigenvalues of Frob p on

T t (A) are algebraic numbers purely of absolute value Yliji" •

~ In the ca~e of complex rnultiplication, the system (X
A

)

of A-adic representations,A varying over all finite places of E,

15 itself a strictly cornpatible system of E-rational Galois represen­

tations. That is to say, for every prime ideal P of K not in

the set of bad reduction S, there is a number X(P) E E* such that

for any finite plaee A of E with P. l:NA,. X(P) maps to X
A

(Frob P )

under E ~EA . - To prove this, one has to study the reduetion

mod p of the abelian variety A: The Galois-action of Froh P

reduces to the geometrie Frobenius endomorphisrn. on the reduction

Ap, over the residue elass field of K at P. This endornorphisrn

lies in the centre of the al,gebra (J) ~~ End (P: p), and therefore

lifts back to an element X(p) E E c= OJ 0 Z EndKA. X(P:) i8 unique
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because reduction of endomorphisrns is injective. It is the

number sought. - Cf. [LCM), 2 .§ 3.

It follows from the theory of Shirnura and Taniyama - see

[ShT); cf. [LCM], Chap. 4 - that X extends multiplicatively

to an algebraic Hecke character, i.e., "X adm1ts a cond\lctor".

But we prefer to deduce this from a much more general result

which will be used later on:

1.4 Proposition: Let XA:Gal(K/K) ~ E~ , for all finite places

A of E, be a strictly compatible system of E-rational A-adic

representations of K. Then there is an algebraic Hecke character

X of K with values in E such that, for every finite place

A of E, XA 1s the A-adic representation attached to X (defined

in chapter 0, § 5).

This proposition is just a variant of the main theorem of

[Henn], which in turn 15: a c~rollary of a result in trans­

cendence theory. In fact, Henniart proves that any abelian

semisimple E-rational A-adic Galois 'representation of K

is locally algebraic. This means that there 1s a homomorphism

of group-schemes over EA '

such that the restrlciton of TA/E
A

:Z (E
A

) -+ E~ to the subgroup

coincides with the reciprocal of the composite map

TT K * * Frob,v IR. v ~ KA ",.. Gal(Kab/K) repres~ E*
A

on a suitable neighbourhood of 1. - Note that this condition

i9 the analogue, for a finite place A, of the existence of
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a defining ideal for the representation: see [Si], III - 2.

This is the reason why proposition 1.4 follows from Henniart's

theorem.

1.5 Let us come back to the abelian variety A over K with
=
eomplex multiplieatlon by E. Let X be the algebraic Hecke

character of K wlth values in E giving the A-adic representa­

tions XA of A, i.e., giving the action of Gal(K/K) on the

torsion points of A.

The "Tate-canjecture proved by Faltlngs - cf. [Sch2], in particular

4.2 - implies that, for every 1, the ~t-subalgebr~ of

End~1 Vt{A) generated by the action of Gal(K/K) is the cornmu-

tant of EndKA ~Z Wt · Since E 0 W1 i8 its own cemmutant in

EndmVi(A) it fellows that . E = m<X) - the field generated over

W b9 the values of X" - 1f and on1y if E = m0~ En~A, 1.e.,

if and only if A is simple over K. In particu1ar, E i5 a
- -1CM-f1eld in that case (it cannot be totally" real, as XX = ~ ).

From th1s ane can deduce that E 1s always ~ CM-field - but th1s

proof 18 of course a 11ttle heavy-handed for this elementary fact.

~ The character X has weight -1, and, moreover, it5 infinity­

type T is what we ca11 a CM-type of K (see 0 § 3). Tc determine,

'T: K* ..... E* , extend it to a map fram ideals af K to ideals of E

so that

X(p). 0 = T ( p) ,
" E

for almost all prime ideals p of K. The prime ideal decompo­

sition of X(p) ·oE can be deterrniped fram the faet that

'reduces to the geometrie Frobenius on Ap , by letting

End Ap act on the tangent spaces Lie A and Lie A
p

End A and

- see [Gi].
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a def1ning ideal for the representatian: see [S~], 111 - 2.

This is the reason why proposition 1.4 follows fram Henniart's

theorem.

1.5 Let us come back to the abelian variety A over K with

complex multiplication by E. Let X be the algebraic Hecke

character of K with values in E giving the A-ad1c representa­
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torsion points of A.

The ·Tat~-conjecture proved by Faltings - cf. [Sch2], in particular

4.2 - implies that, for every 1, the wt-subalgebra of

End
Wi

vitA) generated by the action of Gal(K/K) 1s the comrnu­

tant of EndKA ~Z W1 • Since E a Wl is its own cornrnutant in

End
W

vitA) it follows that. E = W(X) - the field generated over
i .

W by the values of X - if and only 1f E c W~ En~A, i.e.,

if and only if A is simple over K. In particular, E 1s a

CM-field in that case (it cannot be totally real, as XX = ~-1).

From this one can deduce that E is always,~ CM-field - but this

proof i8 of course a little heavy-handed for this elementary fact.

1.6 The character X has weight -1, and, moreover, its infin1ty­

type T is what we call a CM-type of K (see 0 § 3). To determine

T:K* ~ E* , extend it to a map from ideals of K to ideals of E

so that

x(t:r)· 0 = T(p) ,, E

for almost all prime ideals p of K. The prime ideal decompo­

sition of X(P) ·oE can be determiped from the fact that

reduees to the geometrie Frobenius on Ap , by letting End A and

End Ap act on the tangent spaces Lie A and Lie A
p

- see [Gi].

,
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because reduction of endomorphisms 1s 1njectlve. It i8 the

number sought. - Cf. [LCM], 2 § 3.

It fellows from the theory of Shirnura and Tan1yama - see

[ShT)i cf. [LCM), Chap. 4 - that X extends multiplicatively

to an algebraic Hecke character, i.e., Il X admits a cond~ctorll.

But we prefer to deduce thls frem a much more general result

which will be used later on:

J.4 proposition: Let XA:Gal(K/K) ~ E~ , for all finite places

A of E, be a strictly compatible system of .E-rational A-adic

representations of K. Then there is an algebraic Hecke character

X of K with values in E such that, for every finite place

A of E, XA 1s the A-adic representation attached to X (defined

in chapter 0, § 5).

This proposition is just a variant of the main theorem of

[Henn), which in turn.ia: a corollary of a result in trans-

~ cendence theory. In fact, Henniart proves that any abelian

semisimple E-rational A-adic Galois ·representation of K

1s locally algebraic. This means that there is a homomorphlsm

of group-schemes over EA '

such that the restriciton of TA/EA :Z(EA) ~E~ to the subgroup

coincides with the reciprocal of the composite rnap

TI K * -+ Kir Frob> Gal (Kab /K) repres~ E*
v IR. v A A

on a suitable neighbourhood of 1. - Note that th1s condition

1s the analogue, for a finite place A, of the existence of
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Viewing Lie A as a K 0 mE - module - cf. [ST], § 7 - the

final result can be stated like thisi

T(x) = detE(x GD , I Lie A)-' E E*.

Recall in passing that the algebraic homomorphism

E*" K*

Y .. det
K

(1 ~ Y I Lie A)-1

(or rather, its reciprocal) is often called the ·CM-type of A,

and T (or rather, -T) is called its lfreflex-type lt (on K).

'.7 An interesting way of rephrasing this descriptio~ of

the infinity-type of X is provided by the Hodge decomposition

of the firs.t singular· homology of A. For o::K" CI: write

Then

H-a"O = Lie (AX K a:) = (Lie A) ~K a:.
,0 ,0

But Lie A is also an E-module. For any T : E .. a:, def ine n (0, T)

to be -1 or 0 according as the action of E on Lie A

agrees with the action of E via E 4. a: on the subspace H~ 1 ,0 ,

or not (in which case n(o,T) will be -1). These integers

n(o,~) describe the Hodge decompositions of the H~(A) , for all

o , as foliows:
oSince E =W ~Z EndKA, every H, (A,m) has the structure of an

E-vector space (of dimension 1). The direct factor

H~(A,aD ~E,la: of H~(A,a:) lies in H~(O'T) ,(-l-n(o,T)).

On the other hand, the identity T (x) = detE (x ~ 1 I Lie A)-1

means that the n(O,T) '5 are precisely the integers attached

to X in chap. 0, §4. Later on in this chap~er, we shall
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systematically generalize this kind of eorrespondenee between

infinity-types and Hodge structures on an E-vector 5pace of

dimension one.

~ St±cking to our preference for the geometrie Frobenius

ovar the arithrnetic one, we define the (nHas5e-Weil n-) L-function
1

of A ovar K, for Re es) > '2 by:

L{A/K,e) :: lTdet{1 - Frob P··~lp·-SIVR.{A)Ip)-1 ,

P

where I p i5 an inertia-subgroup at Pi p runs over all finite

primes of K, and it i5 understood that the daterminant i8 caleu-

lated u5ing some prime number R. such that p J R. • - Cf. [ST].

Since V~{A) = $ XA ' we see immediately that
AI~

L{A/K,s) = TI
t : E-+G:.

in the notation of 0 § 6.

L{Xl,S),

This 15 the L-funetion of A over K defined wlthout reference

to the faet that A has eomplex multiplication by E. In the

presence of complex multiplication it 15, however, more adequate

to consider the array of L-functions

L*{A/K,s) = L*{X,s) = (L(XT,S»t:E-+et)

taking values in E awet •

In order to find "geometrie" objects over K whose L-functions

include all L-funetions of algebraic Hecke characters of K, we

have to pass fram abelian varieties (with complex multiplication)

to motives.
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to consider the array of L-functions
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taking values in E ~Wa: •

In order to find "geometrie" objeet5 over K whose L-functions

inelude all L-funetions of algebraic Heeke characters of K, we

have to pass from abelian varieties (with complex multiplieation)

to motives.
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Viewing Lie A as a K 0 mE - module . - cf. [ST], § 7 - the

final result can be stated like thisi

Recall in passing that the algebraic homomorphism

E* K*

Y det
K

(1 0 y I Lie A)-1

(or rather, its reciprocal) 1s often called the CM-type of A,
and T (or rather, -T) ia called 1ta "reflex-type" (on K).

1.7 An interesting ·way of rephrasing this description of
=
the infinity-type of X 18 provided by the Hodge decomposition

of' the first singular· homology of . A. For o::K ..... IX , write

Then

H- 1 ,O = L1e (AX
K

~) = (Lie A) 0
K

~.
o ,0 ,0

But Lie A i8 also an E-module. For any T : E -+- (t, de fine n (0 , t)

.to be -1 or 0 according as the action of E on Lie A

agrees with the action of E via E 4. IX on the subspace H~1, 0 ,

or not (in which case n(o,T) will be -1). These integers

n(a,~) describe the Hodge decornpositions of the H~(A) , for all

o , as follows:

Since E =W ~Z EndKA, every H~(A,W) has the structure

E-vector space (of dimension 1). The direct factor

H~ (A,m) II
E

,t ~ of H~ (A,II) lies in H~(a ,t) , (-1-n(a,t» •

of an

On the other hand, the identity T (x) = detE (x 11 1 I Lie A)-1

means that the n(a,T)'s are precisely the integers attached

to X in chap. 0, §4. Later on in this chap&er, we ahall
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2~ Motives for absolute Hodge eyeles

The leeture notes [OMOS] oontain the first detailed exposition

of a theory of motives over fields of eharaeteristic zero whieh

does not depend on unproven eonjeetures. They will be our constant

frame of referenee when we are dealing with motives. The other

main source for the kind of questionstreated here is of course

Deligne's artiele [DP] which, however, insists on the general

formalism, not attaehing any specifie meaning to the ward motive,

and using a hiera~chy of conjectures when needed. In this section,

we shall quickly review the main conc~pts and results from the

general theory of motives as constructed in [OMOS], II"§ 6.- For a

somewhat different setup of largely the same theory, see [A2].

~ ABSOLUTE HODGE CYCLES (Reference: [OMOS],I § 1, § 2)

Let K be a field whieh can be embedded into C', and X a smooth

projective algebraic ,variety over K. Ta every plaee of Q, we

can attaeh a cohomology theory of varietles X over K:

At infinity, take the algebraie de Rharn cohomology

For all n,

filtration

n
HOR(X) 1s a K-vector space equipped with adescending

F· , the Hodge filtration.

Atl the finite primes t of Q can be treated simultaneously:

denote by QAf the ring of finite adeles of 0, and put

Z /rnZ )} ~" m fZ;' 'MA

where K is an algebraic elosure of K. The H~f(X/K) are 0Af­

modules with a natural action of Gal(K/K). The 0t-eomponent of

HÄf(X) will be written Hi(X).
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For any embedding a:K + ~ , denote by aX the extension of

scalars Xx ~, and byK,a

the rational singular cohomology (reep., H~(X) the rational

singular homology) ofaX(~) . The H~(X) are rational Hodge
structures, i.e., W-vector spaces together with a decomposition

of the cornplexifications,

H~(X) ~~~ = e HPq
p+q:;:n

such that HPq · and Hqp
- are interchanged by complex conjugation.

Whenever K is given as a subfield of ~ (e.g., K = m~), H·
a

for a the inclusion K c ce, will be written HB , the letter B

standing for "Betti n. (See also 6.0.)

In these cohomology theories, define the Tate twist as follows

(wewrlte J1m(K)= {CEK* 1 crn = 1}).

(DDR (1 ) = K

(DDR ( 1) = F- 1 ~ F O
:. 0

Q)Af (1 ) = li..m ~m(K)0z (DAf
m

WB ( 1 ) ::: 27fi (Dca:

WB ( 1) 11 a: = H- 1,-1
(D

the involution F (see II,
co

1.6.1) acta on ~B(1) aa -1

For rn € Z, m > 0 ,

l3m
(D •• (m) = W•• (1)

W
DR

(-1) = K

(DDR (-1 ) = F 1 ~ F2 = 0

(DAf (-1 ) = Horn ( (DAf ( 1 ) , mAf)

W
B

(-1)
1

CJJ= 21fi
.

OJ
B

(-1) IJI (t = H1 ,1

the involution Facta
00

on lJ2 (-1) as -1
B

For m € Z ,m < 0 ,

~,-m

W•• (m) = lD •• (-1)
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For any embedding o:K + ~ , denote by oX the extension of

scalars Xx ~, and byK,O

H~ (X) = H· (OX«(t) ,Q)

the rational singular cohomology (resp., H~(X) the rational

singular homology) of oX(~). The H~(X) are rational Hodge
structures, i.e., ~-vector spaces together with a decomposition

of the cemplexifications

such that HPq and Hqp are interchanged by complex conjugation.

Whenever K is given as a subfield of ct (e.g., K = W~), H·
o

for 0 the inclusion ~ c ct, will be written Hä' the letter B

standing for "Bett! 11. (See also 6.0.)

In these cohomology theories, define the Tate twist as fellows \-

(we wr i te I.L m(K) = {l; € K* I r;m = 1}).

WAf (1 ) = ltm IJ. m (K?0z WAf
m

W
B

(1) c 21f1 Wca:

(OB(1) ~ a: = H- 1 ,-1
W

the involution F (see 11,
(I)

1 .6. 1) acts on (Ja (1) as -1

For m € Z , m > 0 ,

filmW.. (m) = ID •• ( 1 )

1
= 21fi • W

-.<0 (-1) CI! ct = H1 ,1
B

the involution Facts
(I)

on lJ2 (-1) as -1
B

For mE Z,rn< 0,

~.-m
<D •• (m) = 1D •• (-1)
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2. Motives for absolute Hodge cycles

The lecture notes [DMOS] oontain the first detailed exposition

of a theory of motives over fields of characteristic zero which

does not depend on unproven conjectures. They will be our constant

frame of reference when we are dealing with motives. The other

main souree for the kind of questionstreated here is of course

Deligneis artiele [DP] which, however, insists on the general

formalism, not attaching any specific meaning to the ward motive,

and using a hierarchy of conjectures when needed. In this section,

we shall quickly review the main concepts and results from the

general theory of motives as constructed in [DMDS], 11 § 6.- For a

somewhat different setup of largely the same theory, see [A2].

2 • 1 ABSOLUTE HDDGE CYCLES (Re f erence: [DMDS], I §, 1, § 2).

Let K be a field which can be embedded into C , and X a smooth

projective algebraic variety over K. To every place of 0, we

can attach a cohomology theory of varleties X over K:

At infinity, take the algebraic de Rham cohornology

For all n,

filtration

n
HDR(X) is a K-vector space equipped with adescending

F· , the Hodge filtration.

ALl the finite primes t of Q can be treated simultaneously:

:denote by 0Af the ring of finite adeles of 0, and put

HA·f (X) = H~f (X / K) = {l im H· ( (X x K) , Z / rnZ)} ~ 1\ m
~ +- K et :& wAlm

n:where K is an algebraic closure of K. The HAf(X/K) are 0Af-

modules with a natural action of Gal(K/K). The o~-cornponent of

HÄf(X) will be written Hi(X).
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Por all mEZ I

. H· (X) (m) = H· (X) t» •• W•• (rn) •

For every embedding o:K 4 ~ of the fixed algebraic closure

K of K into ~, there is the total comparison isornorphisrn

(2.1.1)

the filtration on HÖR(OX) = H~R(X) QK/O~ being given by

~ HP'/q' + pP .
p'~p

Note that a induces an isornorphism

,and ~f(XxKK/K) i5 just HÄf(X/K), with the action of Gal(K/K)
}~forgotten.

Abbreviate H~R (X) (m) x HÄf (X) (m) to H~ (X) (m). For p E Z I P > 0 I

an element t E ~P (X/K) (p) 1s called a Bodge cycle (of codimension

p) ~ K relative to a:K ~ ~, if

(ii) the HDR-component t DR of t lies in

The algebraic condition (li) i9 clearly equivalent to the

analytic one:

(ii)' , tDRE H
O,O

c= H~P(X) (p) ~ ([ (by 2.1.1
DR

).
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Condition (i) means that the components of t E Hi~ (X) (p) all

correspond to a single element in H2p (X) (p), under the varioua
o

comparison isomorphisms: between Betti and de Rham, Betti and

6tale cohomologies.

An absolute Hodge cycle ~ X over K (of codimension p) is

an element t € ~p (X/K) (p) which i.s a Hodge eycle relative to

all o:K ~ ~. The ~-vector space of all these absolute Hodge cycles

i8 denoted by C~H(X/K), or C~(X) if the reference to K is

clear or irrelevant (e.g., K = K - see below) .Clearly,

dim
W

C~H (X/K) < 00. The definition of C
AH

we have given does

not easily betray its virtuea. - Looked at "from the aide of

Betti cohomology", C~(X/K) i5 isomorphie to the W-vector space

of arrays (t Icr:K + ~), wherecr

such that, fixing any o:K~~, we have for all s € Aut (t:

(ii) t and t correspond to the same elemento Soo
under the Betti~de Rham comparison isomorphism

2p -
t DR E H DR (X/K)

~2p -
. ~ H . (X/K) (p) 3 t .
~ DR . DR

(ill) correspond to the same element

under the Betti-etale comparison lsomorphism:

~s

t .Esoo

~2P _

~
H i{X/KHp)3 t f

2 - A AP •
H f({soa)x)(p)

A
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Condition (i) means that the components of t € H~J? (X) (p) all
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For all mEZ,

H· (X) (m) = H· (X) IX' •• (0 •• (rn) •

For every embedding a:K 4 ~ of the fixed algebraic closure

K of K into ~, there is the total cornparison isomorphism

( 2 • 1 • 1 ) H~ (X) (m) 9 (D (a: x Af ) .:. HÖR ( a X) x HÄf (aX) (m) ,

e HP· ,.q r ... pP •

p'~p

Note that a induces an isomorphism

and ~f(XxKK/KY 18 just Hif(X/K), with the action of Gal(K/K)
forgotten.

Abbreviate HÖR (X) (m) x HÄf (X) (m) to Hi (X) (m). Por p E Z, P > 0,

an element t E ~P (X/K) (p) 1s called a Hodge cycle (of codimension

p) over K relative to cr:K ~ a:, if

(i) t € H~P (X) (p) c: H~.P (X) (p) 13. (a:)( (DAf) (by 2.1.1),

( ii) the HDR-cornpo~~nt t lies in

The algebra1c condition (ii) i8 clearly equivalent to the

analytic one:

( i i)' . t E HO, 0 c: H2
cr

P (X) (p) l!I ~
DR
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t = t , for all 9 € Gal (K/K) •o oog

Note that (iv) makes sense because X is defined over K, and.
so H· (X) = Ha (X). Given the compatibil1t1es (i1) ,and (111) ,

0 og
the Galois-action may also be read on HOR or H f, and (iv)

A
may be replaced by e1ther

(iv) I

,
2p

t
DR

€ H
DR

(X/K) ,

- which is what we used in our first definition of absolute

Hodge cycles - , or by

The following proposition sums up the fundamental rationality

properties of absolute Hodge cycles.

2.1.2 Proposition: a) If L~K is still'embeddable into ~,

then the natural map

is an isrnorphism .. "

b) Gal (K/K) acts on cP (X/K)
AH

through a finite quotient.

To prove a), one has to invoke the theory of the Gauss-Manin

connection. As for b), ~e have already seen that Gal(K/K)

stabilizes C~(X/K). This action being continuous and W-linear

on a finite dimensional ~-vector space it factors through

a finite quotient.

The crucial result justifying in a way the theory we are ahout

to develop i9 Deligneis
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2.1.3 Theorem: If K i5 algebraically closed, and X is

an abelian variety over K, then every cycle t EHi~(X) (p)

which i8 a Hodge cycle relative to one embedding a:K + ~

is an absolute Hodge cycle.

If K i8 not algebraically closed the conclusion will hold for

cycles t whose HDR- or HAf-component 18 fixed by Gal(K/K).

The proof starts with the "exceptional" Hodge cycles on abelian

varieties with some cornplex multiplications, studied in

[Weil; 1977 c] and used more generally in [Gr 2]. They are shown

to be absolute Hodge cycles by a deformation argument very rnuch

reminiscent of Gross' paper. From there, Delighe goes on to

CM-abelian varieties first, and passes to. the general case by

another deformation argument.

2.1.4 Rernark. Every algebraic cycle, i.e., every element of

H~P(X) (p) coming fram an algebraic subvariety of, X of codirnen­

sion p , via the cycle maps in de Rbam and etale cohomology, is

an absolute Hadge cycle. The Hadge canjecture states that any

cycle which i8 a Hodge cycle relative to one a is algebraic.

In this sense Deligne's result proves part of the Hodge con­

jecture for abelian var1et1es.

2.2 MOTIVES (Reference: [OMOS],II § 6)

Let K as before be a field ernbeddable into ~. The construction

of the category M'K of motives over K, via absolute Hodge

cycles, proceeds roughly as foliows.

Step 1. Let CVK be the category w1th objects wr1tten h(X), for

X varying over srnooth projective algebraic varieties defined

over K, and rnorphisms' the m-vector spaces defined by
nHom(h(X) ,h(Y)). T CAH(XxY) , if X 1s connected of dimension n,

and by additivity, via h(XllY) = h(X)~ h(Y), in general.



- 36 -

2.1.3 Theorem: If K i5 algebraically closed, and X is

an abelian variety over K, then every cycle t EH~P(X) (~
which is a Hodge cycle relative to one embedding cr:K ~ ~

i5 an absolute Hodge cycle.

If K is not algebraically closed the concluslon will hold for

cycles t whose HOR- or HAf-cornponent is fixed by Gal(K/K).

The proof starts with the "exceptional ll Hodge cycles on abelian

varieties with some complex multiplications, studied in

[Weil j 1977 c] and used more generally in [Gr 2].' They are shown

to be absolute Hodge cycles by a deformation argument very rnuch

reminiscent of Gross' paper. From there, Oeligne goes on to

CM-abelian varieties first, and passes tO.the general case by

another deformation argument.

2.1.4 Remark. Every algebraic cycle, i.e., every element of

H~P(X) (p) coming from an algebraic subvariety of X of codimen­

sion p , via the cycle rnaps in de Rharn"and etale cohomology, 1s

·an absolute Hodge cycle. The Hodge conjecture states that any

~cycle which 1s a Hodge cycle relative to one cr 1s algebraic.

~In th1s sense Oeligne's result proves part of the Hodge con­

jecture for abelian varieties.

2.2 MOTIVES (Reference: [OMOS],II § 6)

Let K as before be a field ernbeddable into ~. The construction

of the category M'
K

of motives over K, via absolute Hodge

cycles, proceeds roughly as foliows.

Step 1. Let CV
K

be the category with objects written h(X), for

X varying over smooth ,projective algebraic varieties defined

over K, and rnorphisms the ~-vector spaces defined by
nHom(h(X) ,h(Y)) 7 CAH(XXY) , if X is connected of dimension n,

and by additivity, via h(XllY) = h(X)~ h(Y), in general.
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t = t , for all 9 € Gal (K'/K) •o oog

Note that (iv) makes sense because X is defined over K, and.
so H· (X) = H (X) • Given the cornpatibilities (ii) and (iii) ,

0 oog
the Galols-action rnay also be read on H

OR
or H f, and (iv)

A
may be replaced by either

(iv) t

t

2p
t

DR
€ H

DR
(X/K) ,

- which is what we used in our first definition of absolute

Hodge cycles - , or by

( iv) I I t € [ H2P (X) (p) ] Ga1 "( K/ K) .
A f Af"

The following proposition sums up the fundamental rationality

properties of absolute Hodge cycles.

2.1.2 Proposition: a) If L~K is still-embeddable into ~,

then the natural rnap

is an isrnorphisrn. ""

b) Gal(K/K) acta on cp (X/X)
AH through a finite quotient.

• To prove a), one has to invoke the theory of the Gauss-Manin

connection. As for b), we have already seen that Gal(K/K)

stabilizes C~(X/K). This action being continuous and ~-linear

on a finite dimensional ~-vector space it factors through ,

a finite quotient.

The crucial result justifying in a way the theory we are about

to develop 1s De11gne l s
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Tc understand this definition of morphisms, ' note that

cn+p (Xxy) c.....H2 (n+p) (xxY) (n + p) = ED
r

Horn •• (Hr(X) ,Hr +2p (Y) (p))
AR • •

(by Kilnneth and duality), so that Hom(h(X) ,h(Y)) really gives

a family of maps between the graded Betti, resp. de Rham, resp.

etale cohomology of X and Y.

Taking the cycle of the graph of a K-morphism X -+ Y Yields a

contravariant functor VK -+ CVK ' where VK i9 the usual cate­

gory of smooth projective K-varieties.

It is essential to ccnsider CV
K

as a tensor category (cf_ [OMOS],

·11 § 1), the tensor product being given by

h(X) ~ h(Y) = h(XxY),

with obvious associativity and comrnutativity.constraints, and

-h(pt) as identity object_

-+
Step 2_ Let MK be the Karoubian envelope of CV

K
• This rneans we

forrnally adjoin objects to CVK to insure that every idernpotent

in End(h(X)), for any X, arises from a splitting h(X) = M'd)l-1 u

-+ -+
in MK - The objects of MK can be represented explicitly as

2pairs' (M,p), with M in CV
K

and pEEnd(M), p = id
M

- The

morphisms are given by

Horn ( (M, p) , (N, q)) =

For every X, there i5 a standard decornposition, in End(h(X)),

of idh(X) into a surn of pairwise orthogonal idernpotents

+ - - -
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(actually a finite sum): take pr to be the projection

EI H· (X) -+- Hr (X) ,

in all cohomology theories. In terms of absolute Hodge cycles,

look at the Künneth components of the diagonal !:J. C X )( X:

H2n
(X.XX) (n) =~n H2n- i (X) 0 Hi

(X)
1=0

2n
ci(ß)= 1. lT

i

1=0

Fon all 1, one has i n
lT € CAH (Xx X) •

So, for. every XE V
K

and O:S; ~ :;a 2 dirn X, there i8 an object
r + .h (X) E MK which. singles out the r-~h cahomology groups of X.

Whence a grading on the objects of M;.
The tensor structure on i5 defined by

(M,p) ~ (N,q) = (M ~ N,p ~ q).

It respects the grading in the sense that the "Künneth formula"

holds:

(X 0 y)r = e XS 0 yt ,
s+t=r

1.e., one has to check that the Künneth cornponents are absolute

Hodge cycles.

.+
Step 3. We now introduce the Tate twist into M

K
• The motive

h 2 (p1) € M; has prec~sely the cohornology groups denoted by
.+

W•. (-1) in 2.1. Let MK be the category obtained fram .MK
by inverting the auto-equivalence M" M l» h 2 (:p 1 ) of ~;.

In down-to-earth terms, this means that the objects of MK can

be represented as pairs
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(actually a finite sum): take

EI H· (X) ~ Hr (X) ,

rp to be the projection

in all cohomology theories. In terms of absolute Bodge cycles,

look at the KUnneth components of the diagonal ac: X x X:

H2n (x.xX) (n) = ~n H2n- i (X) ca Hi (X)
i=O

2n
ct(6)= 1. lfi

i:::'lO

Fon all i, one has in·
11' E CAH(XXX).

So, for. every XE V
K

and 0:$ r :$ 2 dim X, there is an object

h r (X) E M; which. 'singles out the r-~h cohomology groups of X.

Whence a grading on the objects of M~.

The tensor structure on is defined by

(M,p) • (N,q) = (M. N,p • q) .

.,

.oIt respects the grading in the sense that the "KUnneth formula U

holds:

r XS t
(X ~ Y) = $ • Y ,

s+t=r

i.e., one has to check that the Kilnneth components are absolute

Hodge cycles.

.+
Step 3. We now introduce the Tate twist into M

K
• The motive

h 2
(p1) € M; has prec~sely the cohomology groups denoted by

.+
~ (-1) in 2.1. Let MK be the category obtained from .MK
by inverting. the auto-equivalence M 1+ M 00 h2 (P 1) of ~;.

In down-to-earth terms, this rneans that the objects of MK can

be represented as pairs
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To understand this definition of rnorphisms,.not~ that

(by Kilnneth and duality), so that Hom(h(X) ,h(Y» really gives

a family of maps between the graded Betti, resp. de Rham, resp.

etale cohomology of X and Y.

Taking the cycle of the graph of a K-morphism X -+ Y yields a

contravariant functor VK -+ CVK ' where VK i5 the usual cate­

gory of smooth projective K-varieties.

It is essential to consider CV
K

as a tensor category (cf. [OMOS],

11 § 1), the tensor product being given by

h(X) ~ h(Y) = h(XxY),

with obvious associativity and commutativity constraints, and

h(pt) as identity object .

• +
Step 2. Let MK be the Karoubian envelope of CV

K
• This mean5 we

formally adjoin objects to CV
K

to insure that every idempotent

in End(h(X», for any X, arises fram a splitting h(X) = M'Cf)~I"
• + • +

in MK • The abjects of MK can be represented explicitly as
2pairs (M,p), with M in CV

K
and pe: End (M), P = id

M
• The

rnorphisms are given by

Horn ( (M,p) , (N ,q» =

For every x, "there i5 a standard decompasition, in End(h(X»,

of i~(X) into a sum of pairwise orthogonal idempotents

+ •••
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(M,m) , with M€ if; and m € Z.

Fer morphisms we have

Hom«M,ni),(N,n)) = HomM+(M" (h2 (F'))_k-rn,NtP (h2(F'))~k-n),
K

for any ~: ~ m,n.'

Thi9 definition i8 independent of k, and thus allows to

define the compo8ition of morphisms by choo8ing k sufficiently

large.

We write (M,m)

category of MK
1s given by

as M (m)

via M t+

• +
or M" W(m). MK is a full sub-

M(O). The tensor structure on MK

M(rn) ~ N(n) = (M ~ N) (m+n)

The grading on
". +MK extends to

tot (rn) r = Mr - 2m

Step 4. M
K

is almost the category of motives we want. Its

enly technical (but important) shortcorning 1s the sign con-"

vention relating the grading of the objects to the tensor structure.

The point 1s that a good category of motives should be equivalent

to the category of representations of a group scheme - i.e., should

be a tannakian category (see 2.3 below!). In such a categ~ry, the

rank of a representation (i.e., the trace of its identity-rnorphism

'- see [OMOS],II § '.7) i9 simply the dimension of the underlying.
space, i.e., a positive integer. But in M

K
, the rank of h(X)

turns out to be.the Euler-Po~ncar~, characteristic which may of

course be negative. - To put it another way, the problem is that the

cup product which yields the identification of h(Xxy) with

h(X) "h(Y) is not commutative.
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This problem can be overcome by tampering with the commutativity.
constraint of the tensor structure on MK

1f : M & N :; N ~ l-1, 'P : EB ~p, q

The corrected constraint is defined by:

'Pp,q = (-1)pq ~p,q.

where

where

MK with the commutativity constra1nt 'P replaced by 'P , 1s

denoted by M
K

,and called the category of motives over K

(constructed with absolute H9~ge cycles). MK is a tannakian

category, in the sense to be explained below.

2.2.1. One shows that MK
(1.e., every exact sequence

and that End M, for every

(D-algebra.

1s a 5erni5imple tannakian category

in MK splits), see [DMOS], 11 6.5~

object M of MK i5 asemisimple

2.2.2 For practical purpo8es, it i8 often sufficient to identify

a motive M in MK with the string of its realizations in the

different cohomology theories:

(cr:K+ ([iR. a rational prime).

These realizations are formally defined by extending the cohomo­

logy functors H.. : VK.... A. • to M
K

~ where .A.·. 15 the corresponding

target category: AB= rational Hadge 5tructuresi ADR= f11tered

finite-di~ensionalK-vector spaces; At = finite dimensional

wt-vectar spaces with Gal(K/K)-action. For each of the cohornology

theories, the extension of H 15 possible because the cate-

gories Aare Karoubian, have a tensor structure with KUnneth

formula, and the Tate twist is defined (see 2.1).
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constraint of the tensor structure on MK

'f' : M l3 N ~ N ~ l'ol, 'f' = e ~p, q

The corrected constraint is defined by:

~:M e N ~ N • M, 'f'= ~'f'p,q

~p,q = (-1)pq ~p,q.

where

where

MK with the cornmutativity con9traint 'f' replaced by 'f' , 1s

denoted by MK ,and called the category of motives over K

(constructed with absolute Hodge cycles). MK is a tannakian

category, in the sense to be explained below.

2.2.1. One shows that MK
"(i.e., every exact sequence

_~nd that End M, for every

"Q)-algebra.

i9 a semisirnple tannakian category

in MK split8), see [OMOS], 11 6.5,
object M of M

K
i8 a sernisirnple

2.2.2 For practical purposes, it is often sufficient to identify

a motive M in MK with the string of its realization5 in the

different cohornology theories:

(cr: K ~ a: iR. a rational prime).

These realizations are forrnally defined by extending the cohomo­

logy functors H.. : VK~ A. . to M
K

~ where .A... i5 the corresponding

target category: AB= rational Hodge structureSi AOR= filtered

finite-dimensional K-vector spaces; At = finite dimensional

~i-vector spaces with Gal(K/K)-action. For each of the cohornology

theories, the extension of H is possible because the cate-

gories Aare Karoubian, have a tensor structure with KUnneth

formula, and the Tate twist 1s defined (see 2.1).
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(M, m) , with

For rnorphisrns we have

and m€ Z.

Horn«M,m),(N,n» c HornM+(M GD (h2(pl»~k-rn,NC) (h2(:p1»~k-n),
K

for any J:t.:;;: m,n.'

This definition 15 independent of k, and thU5 allows to

define the cornposition of morphisms by choosing k sufficiently

large.

We write (M,m).
category of JAK

1s given by

.+
as M(m) or M e W(m). MK i9 a full sub-

via M ~ M(O). The tensor structure on MK .

M(m) ~ N(n) = (M \3) N) (rn+n) •

The grading on
'. +MK extends to

step 4. M
K

i5 almost the category of motives we want. Its

only technical (but important) shortcoming is the sign con-'

ventlon relating the grading of the objects to the tensor structure.

The point i6 that a good category of motives should be equlvalent

to the category of repreaentations of a group scheme - 1.e., should

be a tannak1an category (see 2.3 belowl). In such a category, the

rank of a representation (i.e., the trace of its identity-morphism

- see [DMOS],II § 1.7) ia simply the dim:nsion of the underlying

space, i.e., a positive integer. But in MK , the rank of h(X)

turns out to be the Euler-Po~ncar~ characteristic which may of

course be negative. - To put it another way, the problem 1s that the

cup product which yields the identif1cation of h(Xxy) with

h(X) GD h(Y) 15 not cornrnutative.
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Then, Horn (M, N), for M, N E M
K

, cons ists precisely of the

systems of maps

(f ) = (f ,f" lall R.)
A DR At

such that

is a K-linear map preserving the Hodge filtrations, and for

every prime number R.,

is a (D-linear map with f~ = fR, , for all 0 EGal (K/K) , and

such that, for any ernbedding o:K + ~, there exists a (D-linear

map

such that fo~ (~x(DAf) corresponds to f
A

under the comparison

isomorphism (2.1.1)

--+ HA (aM) •

(Here we have used the fact that the functor x K ~,or in general
,0

xKK' : V
K

..... V
K

, extends to a functor M
K

..... MK I ). Note: that f
a

has to respect the Hodge decomposition.

f is an isornorphism, if at least one of fa,fOR,fR. i5.

2~2.3 Remark: For any field extension K'~ K, the functor

extension of scalars, xKK' , carries over from varieties to

motives, xKK I :MK ..... Mx'. If K' ~ X i5 finite, so does the

functor restrietion of scalars RK,/K:VK' ..... VK' defined by
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x

+~ I·Spec.I<

Spee K~

(or classieally,·according to

that ~'/K:MK' ~ MK is not

[We 4),1.3~) Note, however,

e-compatible.

2.3 TANNAKIAN PHILOSOPHY (Reference: [DMOS],II §§ 1-5i [Sa)

2.3.1 Let k be a field, and G an affine group scheme over k,

i.e., a representable group valued functor on k-algebras, er again,

the inverse limit of affine k-algebraie graups (=affine group

schemas of finite type ovar k). ~ Cf. [w~]. The eategory Repk(G)

of finite dimensional representations of G over k(=algebraic

morphisms G ~ GL(V), with a finite dimensional k-vector spaee

V) has the following properties:

RePk(G) is a k-linear abelian categorYi

RePk(G) is a ~-category - ef. [DMOS], 11 § 1 - with

commutativity and associativity constraint, unit object

whose algebra of endomorphisms is k, ~-compatible Horn ­

objects, and duals sueh that each object is isomorphie to

its double dual;

there 1s a k-linear, ~-eompatible functor

w 1s faithful, additive and exact.

Namely, take for w the functor forgetting the G-action on V.

A (neutralized) tannakian category (~ k) ~s a pair (C,w)

consisting of a ~-category C satisfying the first two properties
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x

~ ~ I·Spec.l<

SpecK~

(or classically, 'according to [We 4],1.3~) Note, however,

that ~'/K:MK': MK i~ not 0-compatible.

2.3 TANNAK1AN PH1LOSOPHY (Reference: [OMOS],11 §§ 1-5; [Sa])

2.3.1 Let k be a field, and G an affine group scheme over k,

i.e., a representable group valued functor on k-algebras, or again,

the inverse limit of affine k-algebraic groups (=affine group

schemes of finite type over k). - Cf. [W~]. The category RePk(G)

of finite dimensional representations of G over k(=algebraic

morphisms G ~ GL(V), with a finite dimensional k-vector space

V) has the following properties:

_. RePk(G) 1s a k-linear abel1an categorYi

RePk(G) 1s a e-category - cf. [DMOS], 11 § 1 - with

commutativity and associativity constraint, unit object

whose algebra of endomorphisms is k, ~-compatible~ ­

objects, and duals such that each object 1s isomorphie to

its double dual;

there 1s a k-linear, ~-compatible functor

w:Repk(G)

w is faithful, additive and exact.

Namely, take for w the funetor forgetting the G-action on V.

A (neutra11zed) tannakian category (over k) ~s a pair (C,w)

cons1sting of a $-category C sat1sfying the first two properties
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Then, Born (M, N), for M, N € MK, consists precisely of the

systems of maps

(f ) = (f ,f n lall R,)
A Da ~

such that

1s a K-linear map preserving the Bodge filtrations, and for

every prime nurnber R.,.

is a ~-linear map with f~ =
such that, for any embedd1ng

map

fR. ' for all 0 € Gal (1</K) , and
o:K .+ a:,' there exists a (D-linear

such that fo~ (~xmAf) corresponds to fA under the comparison

!somorphism (2.1.1)

---+
(Bere we have used the fact that the functor xK ~, or in general

,0
xKK t : V

K
+ V

K
• extends to a functor M

K
+ Af

K
,) ,. Note that f o

has to respect the Hodge decompos!tion.

f is an isomorphism, if at least one of fo,fDR,fR, i6.

2.2.3 Remark: For any field extension K'~ K, the functor

extension of scalars, xKK' , carries over from varieties to

motives, ><KK ': MK + MK,. If K' ~ K is fin! te, so does the

functor restrictlon of scalars RK,/K:VK• + VK' defined by
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listed for RePk(G) abov~, and a ~-functor w:C ~ Veck ver1fy1ng

the third set of condit1ons.

"Tannakian philosophy" exploits the fundamental theorem to the

effect that there 15 a 1-1 correspondence between affine k-group

schemes G and neutral1zed tannakian categories over k:

G

~,

,Aut w (C ,w) ,

where Aut~w is ,the group valued functor on k-algebras R such

that (AutSw) (R) consists of all R-linear, ~-compatible auto­

morphisms of the functor X~w(X)~kR on C. -' Thus, it 1s

shown that Aut0 w can be represented b~ an affine group scheme

G over k, and that w defines an equivalence of ~-categor1es

C ~ Re~k(G).

2.3.2 Here 1s a portion of the dictlonary between affine group

schemes and tannakian categories which results from the funda­

-mental correspondence between them. - Cf. [Sa],p. 156 f; [DMOS],

pp. 138-144; and [A2], 3.4 - 3.6.

Suppose (C,w) and (C',w') are neutralized tannakian categories

over k with corresponding. aff ine k-group schemes G and GI.

Any additive e-compatible functor F:C' ~ C ,such that

LI) I = W 0 F indu~es a k-morphism F# : G -+ G' .

(a) Suppose k is of characteristic o. Then C is sernis1mple

(1.e., every exact sequence in C. splits) if and only 1f G,

1.e., its connected cornponent GO , 1s (pro-)reductive.

(b) Suppose the equivalent conditions of (a) are verified. Then

F# is fa1thfully flat 1f and only 1f F 1s fully faithful.

(c) F# 1s a closed immersion if and only if every object of C
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i5 isomorphie to a subquotient of F (X), for some object
X of CI.

(d) The objeets {Xi li EI} of C generate the tannakian

category C (i.e., every objeet of C is isomorphie to

an objeet\obtained from the {Xi} by a finite nurnber ,of

operations of the following kind: tensor product, dual,

direct sum, subquotient) if and only lf, for every k-algebra

R, the obvious map

G (R) .. n AutR(w(Xi ) Q)kR)
iEI .

is injeetive.

2.3.3 As an example of a tannakian category speeified by genera­

tors, eonsider this definition of the Mumford-~ group of ~

abelian variety (cf. [OMOS], pp. 39-47 and p. 63 f;"see also 6.0

below) :

Let K = K be an algebraieally elosed field, and a:K ~ ~. Let

A be an abelian variety defined over K , and denote by <A>

the smallest full tannakian subcategory of MK containing h'(A)

and ~('). As ~-funetor on <A> we take the restrietion to <A>

of Ho:MK " Vec~. Then «A>,Ho) corresponds to an affine group

seheme MT(A) over ~, called the Mumford-Tate group of A.

From 2.3.2 (d) we" see that

MT (A) '+ GL (H' (A)) x a; •a rn

But we know more: Deligne's fundamental theorem 2.'.3 lmplies that

is a fully faithful funetor to the eategory of rational Hodge

struetures - see 2.4.3 below. Thus, writing



- 44 -

is isomorphie to a subquotient of F (X), for same object

X of C·.

(d) The objects {X i 11 € I} of C generate the tannakian

category C (i.e.,. every object of C is isomorphie to

an object, obtained from the. {Xi} by a finite number of

operations of the following kind: tensor product, dual,

direet surn, subquotient) if end only if, for every k-algebra

R, the obvious map

G (R) ~ n AutR(w(Xi )~kR)
iEI .

1s injective.

2.3.3 As an exarnple of a tannakian category specified by genera­

tors, consider this definition of the Mumford-Tate graUE of ~

abelian variety (cf. [DMOS], pp. 39-47 and p. 63 f;·see also 6.0

below) :

Let K = K be an algebraically closed field, and 0 :·K ~ ~. Let

A be an abelian variety defined over K, and denote by <A>

~the srnallest full tannakian subcategory of M
K

eontaining h 1
(A)

and W(1). As ~-functor on <A> we take the restrietion to <A>

of Ho:MK ~ vec
W

• Then «A>,Ho) corresponds to an affine group

scheme MT(A) over W, called the Murnford-Tate group of A.

From 2.3.2(d) we see that

MT (A) '+ GL (H
1

(A» x a; •o rn

But we know more: Deligne's fundamental theorem 2.1.3 irnplies that

1s a fully faithful functar to the categary of rational Badge

struetures - see 2.4.3 below. Thus, writing
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listed for RePk(G) abov~, and a ~-functor w:C + Veck verifying

the third set of conditions.

IITannakian philosophy" exploits the fundamental theorem to the

effect that there i5 a 1-1 correspondence between affine k-group

schemes G and neutralized tannakian categories over k:

G

1&,Aut fJJ (C ,w) ,

where Aut~w is the group valued functor on k-algebras R such

that (AutSw) (R) cons1sts of all. R-linear, ~-compatible auto­

morph1sms of the eunctor X~w(X)~kR on C. -' Thus, it 15

shown that Aut0 w can be represented by an affine group scheme

G over k, and that w defines an equivalence of e-categories

C + Repk(G).

2.3.2 Here is a portion of the dictionary between affine group

schemes and tannakian categories which results fram the funda­

mental correspondence between them. - Cf. [Sa],p. 156 fi [OMOS],

pp. 138-144; and [A2], 3.4 - 3.6.

Suppose (C,w) and (C',w') are neutra11zed tannakian categories

over k with corresponding.. affine k-group schemes G and GI.

Any additive ~-compatible functor F:C' + C such that

wI = W 0 F induces a k-morphism F#:G + GI.

( a) Suppose k 1s of characteristic

(i.e., every exact sequence in C.

1.e., its connected cornponent GO

o • Then C is semisimple

splits) if and only if G,

, i5 (pro-)reductive.

(b) Suppose the equivalent conditions of (a) are verified. Then

F# 18 faithfully flat 1f and only if F is fully faithful.

(c) F# i5 a closed immersion 1f and only if every object of C
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(as a m-Hodge structure),

for a,b,m z; a,b ~ 0, and
those elements of Ta,b,m

the Hodge decomposition af

the W-algebraic subgroup af
in allspaces Ta,b,m.

b vy·Qljlb.Ta, ,m = V~a c ~ W(m) ,

calling Hodge cycles in Ta,b,rn

that are pure of type (0,0) in
Ta,b,m0W~' we find that MT(A) is

GL (V) x l1:m fixing all Hodge cyeles

The th1rd deseript10n of MT(A) 18 th1s: def1ne

IJ:~ ~ GL(V) x (G over a: by u(z) = (J,11 (z),z ) and
In m 1-0- 0 1 1 0 0 1 1

IJ 1 (z) (v) = ( z •v ' ) + v' (z E a:*, v = v' + v ' E Ho (A) e a:. )
·Then MT(A) i8 the smallest W-algebraic subgroup U of GL(V) x ~

m
such that U Ut) ~ u (a:*) •

MT(A) 1s reduetive. This follows alternat1vely fram the existence

of a polarization, on A - which is·fixed by MT(A) because it de­

fines a Hodge cycle in T2 ,0, 1,' and the existence of "",hieh forces

.!IT(A) to have.a·cornpact real form.- ," or· from the semisimplicity

2f <A> ,. by 2.3.2(a) ..·In fact the whole category of motives M
K

1s semis imple (..i. e ., every' exact sequence in" M
K

spli"ts), by' [Dfwl0S],

11 •. 6.5, and·. <A>. is a full tannakian subcategory of Mx.

Finally, MT(A) is a torus if and only if all simple factors (up

to isogeny) Ai of A admit complex rnultiplication by a CM-field

Ei with [Ei:W] = 2 dirn Ai.

2.3.4 We have already quoted that, for any field X admitting

an ernbedding cr:K ~ a::, the eategory MK of motives (for abso­

lute Bodge cyeles) over"K i5 a semisimple tannakian category,

equ1pped wlth the ~-functor Ha:MK ~ V~CW. The corresponding affine

group seheme over' W 1s denoted G(cr). It is proreductive, accor­

ding to 2.3.2(a). G(o) as a whole looks prohibitively big and un­

controllable. In order to make it appear less outlandish, it 1s

called the motivic Galois group. This terrninology takes itsclue
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from the classical son of G(cr) to be discussed in the next

paragraph.

2.4 ,SPECIAL MOTIVES (Reference: [OMaS], 11 § 6)=.

We shail need Iater on a few subcategories of MK
•

2.4.1 Artin motives: M~

Let CV~' be ~he' subcategory of CV
K

(2.2, step 1) formed by

the h(X) with X a variety over K of dimension zero. For such

an X, the K-rational points X(K) are just a finite set with a

Gal(K/K)-action, so consider the finite dimensional rational re­

resentation ~X(K) of Gal(K/K)," ~here we may view Gal(K/K) as
oa constant group scheme over K. In CVK , one has

oHorn (h (X) ,h (Y» :; C
AH

(X-Y)

= HOffiGa1(K/KI (~X(K~ WY(KI1.

O' . -
Whence a ful~y faithful functor CVK ~ RepW(Gal(K/K» into the

tannakian category of finite-dimensional rational representations
- 0of Gal(K/K). Let MK be the smallest tannakian subcategory of

MK cont~ining CV~. Thus there is an equivalence of ~-categories

between this category ~ of (Ernil) Artin motives and

RepW(Gal (K/"K».

For future reference, let us list the realizations of an Artin
omotive ME M
K

• We think of M as a representation of Gal (K/K) ,

and denote by M the underlying finite-dimensional W-vectors
space.
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(as a m-Hodge structure),

for a,b,m Zi ~,b ~O, and calling Hodge cycles in Ta,b,rn

those elements of Ta,b',m that are pure of type (O,O) in

the Hodge decomposition of Ta,b,m~m~' we find that MT(A} is

the W-algebraic subgroup of GL(V} x ~rn fixing all Badge cycles
a b min all spaces T' , .

The third description of MT(A} i5 this: def1ne

lJ.:~ -I'- GL(V) x (G over (t by lJ. (z) = (lJ., (z),z ,) and
rn m 1-0- 0' 1 0 0' ,

lJ., (z) (v) = (z •v ' ) + v' (z e: a:*, v = v' + v ' e: Ho (A) QI) (t. )

Then MT(A) 18 the smallest W-algebraic subgroup U of GL(V) x (G
m

such that U((t) =' lJ. (a:*) •

MT(A} i5 reductive. This follows alternatively from the existence

of a polarization. on A - which is'fixed by MT(A} because it de-
2 0 , .

fines a Hodge cycle in T ' , , and the existence of ~hich forces

MT(A) to have,a compact real form.- ," or' from the sernisimplicity

of <A> ,,' by 2.3.2(a} •.-In fact the whole category of motives M
K

is semisimple, (.1. e., every' exact sequence in - M
K

splits), by" (DMOS],

11 •. 6.5, and '. <A> 15 a full tannakian .subcategory of MK •

Flnally, MT(A) i8 a torus if and only if all simple factors (up

to isogeny) Ai of A admit complex multiplication by a CM-field

Ei with [Ei:W] = 2 dirn Ai.

2.3.4 We have already quoted that, for any field K admitting

an embedding o:K + (t , the category M
K

of motives (for abso­

lute Hodge cycles) over K i8 a semisimple tannakian category,

equipped with the ~-functor Ha:MK + vecm. The corresponding affine

,group scheme over' m 1s denoted G(a). It 15 proreductive, accor­

ding to 2.3.2(a}. G(o) as a whole looks prohibitively big and un­

controllable. In order to make it appear less outlandish, it is

called the motivic Galois group. This terrninology takes itsclue

•
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H (M) Qt a: ::l HO, 0
o

Hence for every prime number t,

. To determine the de Rham realization wr i te M as Spec A, w1th

A = TIK i ' where the Ki:l Kare finitely many number fields. Now,

HDR(spec Ki ) = Ki (as K-vector space)

= (Ki
~ K) Gal (K/K)

K

= (KHOmK(K~,K))Gal(K/K)

= «(D(Spec Ki) (K)~WK)Gal(K/K).

Therefore,
~ .-

~WK) Gal (K/K)HOR(M) = (M

2.4.2 Abelian varieties: Mav
K

Let M~v be the tannakian subcategory of MK. generated by

motives of abelian varieties and Artin motives over K. Since

allof h(X) is' given by the exterior algebra of h 1 (X), for

an abelian variety X, M~v is already generated by the

h 1 (X) and M~.

2.4.3 Theorem. If K 1s algebraically closed, and a:K ~ a:
1s any ernbedding, then the cg-functor

H : Mav
~ Hod(D

0 K

into the tannak1an category of rational Hodge structures i5 fully

faithful.

•
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This is an easy reformulation of Oelgine's theorem 2.1.3 above.

Let us give a proof that would work for any category C of

motives generated by varieties of which one could prove that, over

algebraically closed fields, every Hodge cycle on them was

absolutely Hodge: We have to show that any W-linear map

f :H (M) -+ H (N), for M,N E C, which over a: respects the
000

Hodge decompositions comes from an "absolute Hodge cycle on

MxN". By the comparison isomorphisms f o induces a mAf-linear

map fAf:HAf(M/K) ~ HAf(N/K), and a ~-li~ear rnap

fDR,~:HOR(M/a:) -+ HOR(N/a:) respecting the Hodge filtrations. There
is a field L~K, say L = L , of finite transcendence degree over

r'>J

K, and an extension ° of ° from K to L such that fDR,~

i5 already defined over LO. Then (fOR L,fAf) 1s a Hodge cycle
r'>J 'on M x N over L relative to 0 • By assumption on C , as L

15 algebraically closed lt 1s an absolute Hodge cycle. Now

Proposition 2.1.2(a) shows that it can already be defined over

K = K.

Certa1n elasses of algebraic 'varieties are known to have motives

isomorphie in M
K

to objects of M~v. E.g., curves (via their

jacobians), but also K3-surfaces and Ferrnat varieties. We ahalI

recall these resu!ts as we need them.

5ince our main cancern 1s with algebra1c Hecke characters we are
. av

eventually g01ng to concentrate on the sUbcategory of MK
generated by abelian varieties with (potential) complex mu!ti­

plication (and Ar'tin motives). First, however, we have to ex­

plain how motives can oe related to algebraic Hecke characters.
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plication (and Ar-tin motives). First, however, we have to ex­

plain how motives can be related to algebraic Hecke characters.
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Hence for every prime nurnber 1,

. To determine the de Rham realization write M as Spec A, with

A = ITK i ' where the K i ~ Kare f1nitely many number fields. Now,

HDR(Spec Ki ) = Ki

= (K ~ K)Gal(K/K)
i K

Therefore,

H (M) · (M -m.-K) Gal (KI.K) •DR = V w

'2.4.2 Abel1an var1eties: M~V

avLet M
K

be the tannakian subcategory of M
K

generated by

motives of abelian variet1es and Artin motives over K. Since

allof h(X) is g1ven by the exterior algebra of h 1 (X), for

an abelian variety X, M~V is already generated by the
h'(X) and MO '

K

'2.4.3 Theorem. If K 1s algebraically closed, and o:K ~ ~

1s any ernbedd1ng, then the ~-functor

H • Mav ~
0· K

into the tannak1an category of rational Badge structures 15 fully

faithful.
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3. Motives of rank 1

3.0 The notion of complex multiplication for abelian varieties

generalizes to motives in th~ ~ollowing way. Let K be a field

embeddable into ~ and E a number field of finite

degree over ~. The category MK(E) of motives over K with

coefficients in E has objects the pairs (M,8), with M a

motive"over K (i.e., an object oI M
K
), and 8:E ~ End(M) an

embedding of W-algebras. The rnorphisrns in MK(E) are the

·obvious ones, respecting the E-structures. MK(E) is a 0-category

via

(M, 8) I$E (H' , 8 ') = (N, 1 )

where N 1s the dlrect factor of M1$ M' on which

E~ End(M) ~
~ End(M$ M')

E ~ End(W) /

agree to define 1. For an alternative description of MK(&),

see [DP], 2.1, 1I1angageB".

The E-structure 8 : E .... End (M) def ines. E-rnodule structures on

all the realizations of a motive (M,8) in MK(E). Thus, for

a:K .... ~, H (M) i5 an E-rational Hodge structure, i.e., an
o

E-vector space with a decomposition of El$.~-rnodules

Ha(M) ~m~ = ~ HPq

p,q

such that cornplex conjugation interchanges HPq and HqP . (Cf. 6.0and6.

Forgetting this Hodge decomposition of Ho(M), the pair

(MK(E) ,Ha) is a neutralized tannakian category over E
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and the correspondlng E-group scheme 1s G(o) xmE, the motlv1c

Galo1s group consldered over E. (This ls most easily seen in

"langage B n quoted above.) In other words, there is an equiva­

lence of categor1es lnduced by Ho'

The rank of (M,8) in ~(E) is defined to be the trace of

identity in the corresponding representation:

(This ls, of course, independent of 0.)

The de Rham reallzation of a motive (M,8) - or, as we shall

simply write, M - in MK(E) 18 a filtered E ~ K-module, frae

of rank rkEM.

For all prime

r~M, with an

E ~ tD 1 = TI
.~ I 1

there is a decomposition of Gal(K/K)-reprasentations

the HX(M) = HR,(M) ~EemiEA being the X-adie Galois representations
of M.

The realizations of M ~EM'

ducts of the realizations of
are simply the E-linear tensor pro­

M,M'EMK(E).

'The functors on MK: extension and restrietion cif the base field

K clearly induee functors on MK(E) - cf. 2.2.2. In addition,

if EcE' i8 a(necessarily finite) extension, there are functors
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embeddable into ~ and E a number field of finite
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~ E'
E

of extension and restriction of the field of.coefflcients.

IE is simply forgetting the E'-action, except for that of E.

- ~EE I sends M into M~EE I ,where E'E M
K

is the first

component of the unit object (E',SI) of MK(E').

Assume now that

degree over W.
E) i6 a number field of finite

3.1 Proposition (cf. [DP], 8.1 (iii» Let MEMK.(E) with

rkEM = 1. If the system of the HA(M), for all finite places

A of E, is ~ strictly compatible syst~m of E-rational A-adic

Galo1s-representat~ons XA over.K, then there 1s an algebraic

Hecke character X of K .with values in E such that for all A
and almost all primes p of K, X(p) = xA(Frob p).

This is just an application of Proposition 1.4 above.

3.2 Remark: Absolute Hodge cycles do not lend themselves to

reduction mod p - or at least, we do not know how to prove

that they do. This is why 1t 15 not even known , for a general

motive M in MK , that the Ht(M) I for all rational primes

! , form a compatible system of rational ~-adic representations.

This is true for M € CV
K

by the "Weil conjectures", but it

cannot be shown to carry over to all motives constructed in

Step 2 of the construction of M
K

• - On the positive aide however,
avit will be shown in § 6 that every rank· 1 ·motive in MK (E) has

strictly compatible A-adic representations, and therefore defines

a Hecke character. So, Proposition 3.1. will be shown to be

far from vacucus.

We have now motivated the basic nation in the "geometric" theory

of algebraic Hecke characters:
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3.3. Definition. Let X be an algebraic Hecke character

of K with values in E. A motive M ~ M
K

(E) is said to be

a motive for X , if rkEM = 1 and for all finite places X

of E, and all prime ideals p of K with pffx·NA, the·

A-adic representation HA(M) of Gal(K/K) is unramified at p

and a geometrie Frobenius element Frob p e: Gal (K/K) acts on

HA(M) via multiplication by X(p).

In other words, M is a motive for X, if HA(M) = XA ' in the

notation of 0 § 5.

The typical example of a motive for an algebraic Hecke character

is an abelian variety with complex multiplication - see § 1.

4. A standard motive for a Hecke character

~. Let CMK be the Tannakian subcate­

of M:V ) generated by the Artin

motives h 1JA), where A i5 an

Let K be embeddable. into

gory of MK (equivalently:

motives over K and by the

abelian variety over K which, over R, has complex

(in the sense that EndR A contains a number field

[E:~] = 2 dirn A.j Given a number field E (af finite

~), we can consider the category CMK(E) of motives

CM
K

that are equipped with an E-action, E'" End (M) •

rnultiplication

E of degree

degree over

M in

4.1.Theorem. Suppose

Hecke cnaracter X of

motive ~I( X) E CM
K

(E)

of 3.3.

K 15 a number iield. For any algebraic

K with values in E ,there exists a

which is a motive for X, in the sense

Elementary and direct Eroot of 4.1

4.1.0 If X i5 of the form uJNw/ 2 , for a character of finite

order ~ on Gal(K/K) with values in E* , then we can write

down a motive for X in CMK(E) like this:
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of extension and restriction of the field of coefficients.

IE i8 s1mply forgetting the EI-action, except for that of E.
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is the first
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Assume now that
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Hecke character X of K .with values in E such that for all A
and almost all primes p of K, X{p) = XA(Frob ~).

This 1s just an application of Proposition 1.4 above.

3.2 Remark: Absolute Hodge cycles do not land themselves to

reduction mod p - or at least, we do not know how to prove

that they do. This is why 1t i8 not even known, for a general

motive M in MK , that the H~{M), for all rational primes

1 , form a compatible system of rational t-adic representations.

This 1s true for M e: CV
K

by the "Weil conjectures", hut it

• cannot be 8hown to carry over to all motives constructed in

Step 2 of the construction of MK. - On the positive side however,
avit will be shown in § 6 that every rank· 1 -motive in MK (E) has

strictly compatible A-adic representations, and therefore defines

a Hecke character. So, Proposition 3.1. will be 8hown to be

far fram vacuous.

We have now rnotivated the basic nation in the "geometriclt theory

of algebraic Hecke characters:
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where [ J! ] € M~(E) 1s the rank 1 Art1n motive for J! with

coefficients in E (i.e. , s € Gal (K/K) acts on E via

multiplication by J! (6) e: E*) , and E(~) -w
"jJ)E, E= W(-)2 2

being here the unit object in M
K

(E) •

Thus calling K' the field of all nurnbers of Cl-1-type in K,

let us henceforth assurne, without loss of generality, that K '

and E are CM-:-fields - cf. CD) § 3.

4.1.1 We now treat the case that the infinity-type of X

is of the form T = ~'aNK/K' with a CM-type ~' of K',

i.e., X is of weight -1 and the invariants n(cr,T), for

o e: Horn (K ,G:), T e: Horn (E ,(t), introduced in 0 § 4 are all either

-1 or O. Exchanging .the rales of K and E these same

n(a,T) also define a CM-type ~ of the field

'calIed the reflex~ of ~'. By a theorem of Casselman,

~[ShiL] , Theorem 6, there is an abelian variety A defined over

K with cornplex multiplication by the ring of integers of E,

of CM-type (E,~oNE/Eo)' such that h 1 (A) is a motive for X.­

In fact, if one tries to be very neat, A may be constructed as

being a direct summand in h 1 (RL1KB), for a suitable (abelian)

extension L of K such that xoN
L1K

takes values in E: ,

and B, provided.by Casselrnan, an abelian variety over L

of CM-type (Eo ,~) with character xoN
L1K

- cf. [GS], th~ordrne 4.~.

4.1.2 All infinity-types of algebraic Hecke characters of K

are Z-linear cornbinations of the CM-types discussed in 4~1.1.

- This is an easy exercise, observing the hornogeneity condition

n(o,T) + n(co,T) = w, cf. 0 §§ 3,4.

4.1.3 We can now start on the general case of.4.1 (always under

the assurnption that K' is a CM-field). Write the infinity-type
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T of X' as

T :z

n
TI T i
i i

with n i € Z and Ti CM-types like in 4.1.1. There is a finite

extension fleld EI~E such that"for all i, there exists an

algebraic Hecke character Xi of K with values in EI of

infinity-type Ti - see 0 § 3. Let Ai be an abelian variety

attached to Xi as in 4.1.1. Put

MI = (eEI h 1 (Ai)ßEI nil QE I [~]
i

( -ni) [ ]where u. = X 'reX! is of finite order, and u. i5 the Artin

motive for J.I. in M~ (E'). 'rhen MI 15 a motive for x' if

we consider X to take values in ,EI , rather than E. Thus

it rernains to "descend the coefficients".

4.1.4 There i5 a finite (abelian) extension L of K such

that all characters Xl used in 4.1.3 take their values in

E* when composed with N
L .1K. Therefore, taking, for simplicity,

L such that every XioN
L1K

takes its values in the corresponding

reflex-field Eo,i (see 4.1.1), we see that M'xKL 1s cf the

form ~~EE' , with ML a dlrect factor of the motive:

the Bi being as B in the last sentence of 4.1.1. So, M
L

is a motive for XoNL1K in CML(E). In ether words, there 1s

a ·projector (an absolute Hodge cycle) TT € EndML (M 'x KL) carving

out the E-structure ML . We have to show that n is already

defined over K. 51nce it i5 an absolute Hodge cycle it 15 enough

to show that its Af-component 15 invariant under Gal(K/K).

But MI 1s a motive for the character X which takes values

in E. 50 TT cannot possibly be affected by the action of

Gal(K/K) on HAf(M').

q.e.d.
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out the E-structure ML . We have to show that Tf 1s already

defined over K. Since it 15 an absolute Hodge cycle it is enaugh
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But Mt 15 a motive for the character X whlch takes values

in E. So Tf cannot possibly be affected by the action of
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q.e.d.
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owhere [~] € MK(E) 1s the rank 1 Art1n motive for ~ w1th

coeff1cients in E (i.e., s€ Gal(K/K) acts on E via

multiplication by ~ (s) € E*), and E (~) = (D (~) 13 E, E2 2 (D
being here the unit object in MK(E).

Thus calling K' the field of all nurnbers of Cl-1-type in K,

let us henceforth assurne, without loss of generality, that K'

and E are CM-fields - cf. ~ § 3.-- --"---

4.1.' We now treat the case that the infinity-type of X

16 of the form T = ~toNK/Kt with a CM-type ~I of Kt ,

1.e., X 1s of we1ght -1 and the invariants n(a,T), for

a € Horn (K, [[:), T € Horn (E,G:), introduced in 0 § 4 are all either

-1 or O. Exchanging the roles of K and E these same

n(a,T) also define a CM-type ~ of the field

called the reflex~ of ~'. By a theorem of Casselman,

[ShiL] ", Theorem 6, there is an abelian variety A defined over

K with complex multiplicat10n by the ring of integers of E,

of CM-type (E,~aNE/Eo)' such that h 1 (A) 1s a motive for x.­
In fact, if one tries to be very neat, A may be constructed as

being a direct summand in h 1 (RL1KB), for a suitable (abelian)

extension L of K such that xoN
L1K

takes values in E: ,

and B, provided by Casselman, an abelian variety over L

of CM-type (Eo'~) with character xoNL1K - cf. [GS], theoreme 4.1.

4.'.2 All infinity-types of algebraic Hecke characters of K

are Z-linear cornbinations of the CM-types discussed in 4~'.1.

- This 1s an easy exercise, observing the homogene1ty condition

n(a,T) + n(ca,T) = w, cf. 0 §§ 3,4.

4.1.3 We can now start on the general case of.4.1 (always under

the assumption that K t is a CM-field). Write the infinity-type
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4.2 Remark. In view of 1.7 above, the motive M(X) for

X which was just constructed has its Hodge structure deter­

mined by the infinity-type of X. Explicitly, for all

a:K'" a:,T:E ... 0:, one finds

( »
_ '" c: Hn (a ,T) ,w - n (a , T )

Ha(M X -E w..,T

(See 0 § 4 for the notation.)

The proof of theorem 4.1 which we have presented is "elementary

and direct" in that it starts immediately from the georne~ry of

the varieties that geneJate CM K , and does ~ use Delignets

theorem 2.1.3 about Hodge.cycles on abelian varieties. It does

use Casselman's theorem, i.e., the Shimura-Taniyama reciprocity

law for abelian varieties with complex multiplication.

Using 2.1.3 it i8 possible to gain much more insight into the

structure of CM
K

, reproving theorem 4.1 (via the interpretation

of algebraic characters given in 0 § 7) and generalizing the

Shimura-Taniyama reciprocity law. Specifically, what one has to

-do is to identify CM~' with RePW(l) , for the Taniyama group t.

We shall sketch this in § 6 below, th~reby obtaining additional.

information about all rank 1 motives constructed from abelian

varieties.

5. Unicity of M(X)

Let K and E be number fields of finite degree over ~,

avand consider the category of motives MK (E). These are the
avmo tives in MK - see 2.4.2 - with an E-action. Since

avCM K i5 a subcategory of MK '

theorem 4.1 - a motive M(X) in

Hecke character X of K with
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5.1 Theorem. Up toLsoroorph1sm, there 1s only one motive M(X)

in M~V(E) for a given algebraic Hecke character X of K
with values in E.

Proof. Let M in M~v(E) be any motive for X. For any

o :K4 a:, Ha (M) ia a Hodge structure of rank 1 over E. In

particular, it ia indecomposable and there~ore pure of some
we~ght w (cf. 6.0 below). The relations

HO(M) ca a: cIf\(O,T) ,w- n(o,T)
E,T

define' invariants n(o,T) for all

satisfy n(ao,aT) = n(a,T), for all
l' : E + CI:. They actually

a € Aut CI: (because E

operates on M through absolute Hodge cyeles.)So by 0 §§ 3 and 4,

there 18 some algebraie Hecke charaeter ~ of some number fleld

L~K with values in E having the n(o,T) 1 8 as its invariante.

Let M(~) € CML(E) be the motive for 'I' construc.ted in 4.1. By

remark 4.2 the Hodge structure H~(M('I'», for every embedding

ä:L + CI: extend1ng o:K 4. a: , 1a E::eompatibly isomorphie to 11
0

(M) •

By theorem 2.4.3, M and M('I') are isomorphie in M~v(E). In
K

view of 2.1.2(b), they are isomorphie over some finite extension

LI of L. Reealling that M was a motive for X ,and M('I') for

'I' , we find that XONL'/K = 'l'oNL' / L • Benee the n(o,T) whieh

by con8tructien describe the infinity-type of 'I' are also the

invariants attached to the character X. Thus we have shown that,

if M ia an arbitrary motive for X in M~v(E) , its Badge

realizations H (M) are these determined by (the infinity-typea
of) ·x , as in 4.2. This establish~~ an isomorphism (an absolute

Hodge cycle) between M and our standard motive M(X) over K.

But HAf (M) and HAf (M(X » . are isomorphie Gal (K/K) -representations

by definition •. So the isomorphism 1s def1ned over K.

q.e.d.
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Proof. Let M in M~v(E) be any motive for x. For any

0: K<-" U:, Ho (M) i8 a Hodge structure of rank 1 ovar E. In

particular, it is indecomposable and there~ere pure of some
we~ght w (cf. 6.0 below). The relations

HO(H) 18 u: CHn(O,T) ,w- n(a,T)
E,T .

define invariants n(a,T) for all

satisfy n(aa,aT) ~ n(o,T), for all

T: E -+ a:. They actually

a E Aut lt (because E

operates on M through absolute Hodge eyeles.)So. by 0 §§ 3 and 4,
there is some algebraie Hecke character ~ of some number field

L~K with values in E having the n(o,T) I S as its invariants.
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,,,By theorem 2.4.3, M and M( ~) are isomorphie in M~v (E). In
K

view of 2.1.2(b), they are isomorphie over some finite extension

LI of L. Reealling that M was a motive for X ,and M(~) for

~ , we find that XONLI / K = ~oNL'/L • Henee the n(a,T) which

by construction describe the infinity-type of ~ are also the

invariants attaehed to the character x. Thus we have shown that,

if M is an arbitrary motive for X in M~V(E) , its Hodge

realizations Ha(M) are those determined by (the infinity-type

of) ·x , as in 4.2. This establish~~ an isomorphism (an absolute

Hodge eycle) between M and Qur standard motive M(X) over K.

But HAf (M) and HAf (M (X )) . are isomorphie Gal (K/K) -representations

by definition. So the isomorphisrn 1s defined over K.

q.e.d.
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4.2 Remark. In v1ew of 1.7 above, the motive M(X) for

X which was just constructed has its Hodge structure deter­

mlned by the 1nf1nity-type of x. Explicitly, for all

a:K+O:,1':E -+ 0:, one finds

H (M ( X)) qD (t C Hn (cr , 1') , W - n (0' , l' )
o E,1'

(See 0 § 4 for the notation.)

The proof of theorem 4.1 which·we have presented 1s "elementary

and dlrect" in that it starts 1mmed1ately from the geometry of

the var1eties that geneEate CM K , and does not use Deligne's

theorem 2.1.3 about Hodge.cycles on abel1an var1et1es. It does

use Casselman l s theorem, 1.e., the Shimura-Taniyama reciprocity

law for abel1an varieties with complex multiplication.

Using 2.1.3 it is possible to gain much more insight into the

structure of CMK , reproving theorem 4.1 (via the interpretation

of algebraic characters given in 0 § 7) and generalizing the

Shimura-Taniyama reciprocity law. Specifically, what one has to

do 18 to identify CMW with RePW(i) , for the Taniyama group t.

We ahail sketch this in § 6 below, thereby obtaining additional.

information about all rank 1 motives constructed from abelian

varieties.

5. Unicity of M(X)

there always exists - by

M~V(E) for a given algebraic

values in E.

EandKLet be number fields of finite degree over W,
avand consider the category of motives MK (E). These are the

avroo tives in MK - see 2.4.2 - with an E-action. Since
avCM K i8 a subcategory of MK '

theorem 4.1 - a motive M(X) in

Hecke character X of K with
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5.2 So far we have yerified all but part (iii) of

conjecture 8.1 1n [DP] for the category M~v. (In

fact, our description in 4.2 of the Hadge decomposition

of M(X) is equivalent to the characterization of the

Hodge filtration given by Oeligne in [~p], 8.1 (iv).)

As to [DP], 8. 1 (1ii), it will be shown in § 6 that every

motive M in CMK(E) has strictly compatible E-ration~l

A-adic representations HA(M). By proposition 3.1 , this

will settle [DP], 8.1 (iii) for the category CM K. But

in fact, it will automatically take care also of the rank 1

motives in Mav
K

~ Remark Every motive of rank 1 in

to a motive of CMK(E).

Mav(E)
K

is isomorphie

Proof. Let· M be in M~v(E); let o:K ~ ~, and assume

that di~Ho(M) = 1. Then Ho(M) is an E-rational Hodge

strueture of th~ kind deserlbed in 4.2 and t~e proof of 5,.1.

It oceurs as Ha(N), for some N in CML(E), for some number

field L with K c= L c= K and 0 extending 0 to L. By 2.4.3

'~M x KK i8 isomorphie to a motive in CMi (E) ., This being true

'over some finite,extension L' of K (and L), we see that

M is isomorphie to a motive in CMK(E). (E.g., M oeeurs as

a direet factor in RL'/KN.)

6. Representatiöns of the Taniyama group

The affine group seheme over W eorresponding, by

tannakian philosophy, to the neutralized eategory of motives

(CM~7HB) - see § 4 above for the notation - is (isomorphie te)

the Taniyama group introdueed by Langlands in [Lg], 5. This

fact was first proved by Deligne: see [OMOS], IV. Using a

formalisrn of Tate's eompleted by an argument of Deligne

- see [LCM], ehap. 7 - , the proef can be given much more

explieitly. This seeond proof is certainly part of the folklore
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on this subject - I myself am indebted to G. Anderson

for explaining it to me - and J.S. Milne is preparing

a book whlch will contain it in detail. In this section

we ahall give an extremely sketchy account of how this

proof proceeds, and then apply the theorem to settle

the only question left open in 5.2. The results of this
section will not be substantially used in the sequel. TFiey

are however, essential for G. Anderson's formalism

(section 7), and they complete the picture we are drawing

of motives forHecke characters. - The first two sub­

sections: 6.0 and 6.1, are more detailed than the rest

because they give a more thorough basis to things that

have been used before: rational Bodge structures and the

Serre group. The definition of CM Bodge structures in 6.1

was suggested by R. Pink.

~~ Rational Badge structures

6.0LQ A rational Bodge structure of weight w i8 a

finite dimensional m-vector space V equipped with a

decompo8ition

V e ~ = e Vpq

p+q=w
p,qEZ

such that (1 ~ c) Vpq = vqp , for c = complex conjugation.

A rational Hodgestructure is a finite direct surn of rational

Bodge structures of fixed weights. A homomorphism of rational

Badge structures V1 ,V
2

1s a ~-linear map f:V
1

+ V
2

such

that, for all p,q E Z, one has

(f Im c Vpq
2 •

6.0.1 Reformulated in a tannakian way, the extra structure

on the m-vector space V amounts to a representation

h:~+GL(V) defined over JR, where S = Ra:/lR~ril - see [DeH 11],
2.1. The translation 1s given by the rule
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~ Rational Hodge structures
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finite dimensional ~-vector space V equipped with a

decomposition

V ~ ~ = e Vpq
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p,qEZ

such that (1 ~ c) Vpq = Vqp , for c = complex conjugation.
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that, for all p,q E Z, one has

6.0.1 Reformulated in a tannakian way, the extra structure

on the ~-vector space V amounts to a representation

h:!j~GL(V) defined over lR, where $ = Ra:/JRCGm - see [DeB II],
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5.2 So far we have verified all but part (iii) of

conjecture 8.1 in [op] for the category M~v. (In

fact, our description in 4.2 of the Bodge decomposition

of M(X) is equivalent to the characterization of the

Hodge filtration given by Oeligne in COP], 8.1 (iv).)

As to COp], 8.1 (iii),itwill, beshown in § 6 that every

motive M in CMK(E)' has strictly compatible E-rational

A-adic representations HA(M). By proposition 3.1 , this

will settle [DP], 8.1 (iii) for the category CM K• But

in fact, it will automatically take care also of the rank 1

motives in M~v

~ Remark Every motive of rank 1 in

to a motive of CMK(E).

Mav(E)
K

is isomorphie

Proof. Let M be in M~v(E); let ,o:K'~~, and assurne

that di~Ho(M) = 1. Then Hcr(M) is an E-rational Hodge

structure of the kind described in 4.2 and the proof of 5.1.

It oceurs as Hä(N), for same N in CML(E), for some nurnber

field L with Ke LeK and Ci extending 0 to L. By 2.4.3

M x KK is isomorphie to a motive in CMi (E). This being true

over some finite.extension LI of K (and L), we see that

M is isomorphie to a motive in CMK(E). (E.g., M oeeurs as

a direct faetor in RL,/KN.)

6. Representations of the Taniyama group

The affine group scheme over W corresponding, by

tannakian philosophy, to the neutralized category of motives

(CM~,HB) - see § 4 above for the notation - 1s (isomorphie to)

the Taniyama group introduced by Langlands in [Lg], 5. This

fact was first proved by Deligne: see [DMOS], IV. Using a

forrnalisrn of Tate's completed by an argument of Deligne

- see [LCM], ehap. 7 - , the proof can be given much more

explicitly. This second proof is certainly part of the folklore
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h(z) I pq = multiplication by z~,
V

for z € a:* = Si (:R) •

The inclusion m* ~ ~* gives rise to a canonical map
o

w:(& .. Si over ]R. Given a rational Hodge structure V, we
m 0

set w = h 0 w :(1; ..... GL(V). If V i5 of weight n, thenm
w(A) acts as multiplication by An on V ; this justifie5

the letter w, and implies that, arnong the ureal Hodge 5tructures"

h: $ ..... GL (V) /JR, the rational Hadge structures are precisely those

for which w i5 defined over m. Over ~, denote by ~:mm" GL(V)/~

the cornplex cocharacter given by the rule

for

~(z) Ivpq c multiplication by zP,

z e: a:* = ce (G:). Its (imagewise) complex conjugatem

is algebraic (not over ~ but) over R, and (~~) takes values

.in GL (V ~ R) on 0:*. Thus i t defines an algebraic hornomorphism

$ .. GL (V) over :R, which i5 none other than h. Ei ther h or ~

suffice to characterize the Hodge structure on a given W-vector

space V. This i5 convenient , for instance, in defining the

tensor product of rational Hodge structures via the tensor

product of real $-representations. - Rational Hodge 5tructures

form a (D-linear 0-category ..

6.0.2 Define the Mumford-Tate group of a rational Hodge

structure V by generalizing 2.3.3: MT(V) 1s the W-algebraic

subgroup ·of GL (V) x m that fixes all elements of pure type
. m

rO,O) in all spaces of the form

Ta,b,rn = v~a ~ v~b 0 OJ(m),

where a,b,m e: Z; a,b ~ 0; T being viewed as

of the natural representations of GL(V) on

tensor product

V and ~, and
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the representation: multiplication by A- 1

m(1). Equivalently ([DMOS],I. 3.4.), MT(V)

smallest m-algebraic subgroup of GL (V) :r: (Gm

MT(V) (~) contains the image of

a:* ~ GL (V l& ~) x 0:*

z ~ (~(z),z)

of (Gm on
is the

such that

It is often

projection.

subgroup of

the image of

convenient to identify MT(V) with its first

Thus MT(V) becomes the smallest m-algebraic

GL(V) the ~-rational points of which conta!n

~. The first description then runs:

MT(V) (m) = { y € GL(V)
for all a,b,m, and all l
t € v~a ~ v~b n (V~a ~ v«lb) m,m

there is A€ m* such that y (t) =Amt

6.0.3 As MT(V) (0:) receives the cocharacter ~, one also has

and

h: $ MT (V)

w·<; MT(V)
• m

over

over

,

~ and w have more or less surfaced already in chapter 0,

7.3.4 , and we are now going to reconsider the Serre group Z

in the context of'rational Badge structures of CM type.

6.1 CM Badge Structures (cf. also [OMOS], 111. 1)

6.1.0 Definition: Let V be a rational Hadge structure,

MT(V) its Mumford-Tate graup (6.0.2) and w:(Gm .... MT(V)/m

the associated cocharacter (6.0. 1/3). V is called a

CM Badge structure if MT(V) i5 a torus and (MT(V)/w(CG )) (R), m
is compact.
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MT(V) its Mumford-Tate group (6.0.2) and w:mm -+ MT(V)/(D

the associated cocharacter (6.0. 1/3). V i8 called a
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m n
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for z € tI:* = (Gm (<t). Its (imagewise) complex conjugate

i5 algebraic (not over a: ,but) over R, and. (~ji') takes values

in GL(V e~) on ~*. Thus it defines an algebraic homomorphism

Si -+ GL (V) over R, which is none other than h. Ei ther l}. or I!

suffice to characterize the Hodge structure on a given ~-vector

space V. This i5 convenient I for instance, in defining the

tensor product of rational Badge structures via the tensor

product of real $-representations. - Rational Bodge structures

form a ~-linear e-category.

6.0.2 Define the Mumford-Tate group of a rational Hodge

structure V by generalizing 2.3.3: MT(V) 1s the ~-algebraic

subgroup 'of GL (V) x (Gm that fixes all elements of pure type

(0,0) in all spaces of the form

where a,b,m€ Zi a,b ~ Oi T being viewed a5

of the natural representations of GL(V) on

tensor product

V and ~; and
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CM Hodge structures fbrm a 0-subcategory of all rational

Hodge structures •. We are going to show that the Mumford­

Tate group of a CM Hodge structure is a quotient of the

Serre group Z, introduced in 0 , 7.3.3. RecalI that

Z = 11m ZK .' where K runs over number fields and ZK

is ehe quotient of RK/IJ)Gim by a sufficiently small arithmetic

sUbgroup. Observe that the rnaps w und ~ defined in

0, 7.3.4 actually give rise to cocharacters of RK/m~m

(defined over :R, and CI:, resp.), for all nurnber fields

K (embedded int~ ~, as explained in 0, 7.3.2).

6.1.1 Lemma Let V be a rational Hodge structure such

that MT(V) i5 a torus.

(i) For any sufficiently large nurnber field K e:-;... W,
there exists a unique homomorphism

of w-algebraic groups rendering the following diagram

conunutative.

x CI:

(ii) For K cL, the maps \.l are compatible via N
L

/
K

•

(iii) \.l i5 faithfully flat.

Proof. (i) Translate into.a statement on character groupsi

the requirement that v be defined over m then forces

(for K normalover m splitting MT(V)):

v*(f) = L
aEG(K/(D)

for fE X(MT(V)).

a
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(ii) follows from the uniqueness of v.
(iii) expresses thefact that ~ "generates n the

W-algebraic group MT(V).

6.1.2 Remark Care has to be taken with the galois

action(s) on Z: cf. [Lg] , p. 219/20; [OMOS] , 111 (1.3),

(1.8); [OMOS], IV, (B) ••• Since we just used a galois

invariance in the proof of (i), let us make explicit our

setup : we define a left action of G(m/W) on

R ~ (w)= (W*)Hom(K,w) by the rule
K/W m

This transports to a left action on characters

-1
via : fS ( (z a» = f ( (za) s ).

Identifying f with anao E Z[Hom (K,W)], one finds

This 1s the action we have used on characters of RK/Wmm
(cf. 0, §§ 2 und 4). Passing to the quotient ZK and

to the limit Z, this yields, for a character

f:G«D/W) -+ Z of Z (as in O. 7.3.4): fS(t) = f(s-l t ),

for s,t EGal (W/GH • (Note that f (st) = ·(ft) s .)

There is, of course, another left action of Gal(~/W) on

X(Z), namely by right translation:

( S • f) (t) = f (ts) •

In the preceding setup, it is induced by the rule
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on ~/~~m(W) - where K has now to be

assumed normal over W (and always embedded into ~). - This

second action will become relevant as of 6.2.0.

6.1.3 Proposition [R. Pink] Let V be a rational Bodge

structure such that MT(V) is a torus. Choose K so that

v exists as in 6.1.1. Then the following are equivalent.

(i) V is a CM Badge structure.

(ii) ker v contains an arithmetic subgroup.

(iii) '11he subgroup

contained in

i5

Proof. (i) - (ii). Assume (without lass of generality)

- that K is totally imaginary, say ,[K:~] = 2r, and

consider the diagram

$.r = ' ~/(Da;m x :IR
vxR MT (V) x.:IR)

W(1Na:/:R w ~ /w x :IR

(<G I R)r
m <G IRm

whose cornrnutativity is easily checked using 1.6.1 (i).

According to Dirichlet,the units in RK/ma; rnap to
r ~ 2

({Gm/R) with a finite kernel. As Na:/:R 0 w (x) = x ,

any sufficiently small arithmetic subgroup U of

~/CDa;m 1s contained in ~ (CCrn/:R) r " and since

(MT(V)/w(~ )) (m) is compact we can achieve thatm
v (U) (lR) c w (CSrn/R) . Now assume furthermore that

U c ker NK/W ' the norm-1-subgroup of RK/w(Cm. Then

U(:R) n w(<G /:R) 1s obviously finite. Thus, in view ofrn
the cornmutativ'e triangle above, we conclude that U c Ker v,

provided again that ·U is sufficiently small.

(ii) and (ii1) just express the two possible definitions

of ZK - as quotient of RK/m<Gm, or via its character group.
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Finally, assuming (iii), we find (cf. 0,7.3.2)

So, c acts as -1

(MT (V) /w «lim) ). (R)

on X(MT(V)/w(mm»' and
is a quotient of

ker (Na:/m: Si -+ m ) (R) r
m ,

that is, a quotient of a product of

compact.

1 •S s, and therefore

q.e.d.

6.1.4 Corollary The 0-category of all CM Hodge structures,

together with the functor which, to a CM Bodge structure,

associates its underlying W-vector apace 15 a neutralized

tannakian category over ~, wlth the Serre group Z

(see ~, 7.3.3) as corresponding affine group scheme.

It is clear how the mapping v of 6.1.1 defines a repre­

sentation of Z if the conditions of 6.1.3 are satisfied.

So the proof of 6.1.4 is obvious, but let us illustrate

the corollary in our principal

6.1.5 Example. Let X be an algebraic Hecke character

of K with values in E4 and let M(X) E CMK(E) be

the standard motive for X canstructed in § 4. We know

- remark 4.2 - that the Hadge structures Ha(M(X» ,for
a:K ~ (D c a: are given by

Ha (M ( X» "E , T a: c Hn (a , T), w - n (0 , T) ,

the n(a,T) describing the infinity type of X as in~, § 4.

Every Ho(M(X» is a CM Hadge structure: in fact, the elements



- 64 -

Finally, assuming (iii), we find (cf. 0,7.3.2)

So, c acts as -1

(MT (V) /w (~m) ) (R)

on X(MT(V)/w(~m»' and

is a quotient of

ker (Net / m : Si ... ~ ) (R) r
m

that is, a quotient of a product of

compact.

1 '5 s, and therefore

q.e.d.

6.1.4 Corollary The ~-category of all CM Hodge structures,

together with the functor which, to a CM Hodge structure,

associates its underlying ~vector space 1s a neutralized

tannak1an category over ~,with the 5erre group Z

(~9, 7.3.3) as corresponding affine grouE schema.

~~It is clear how the mapping v of 6.1.1 defines a repre­

sentation of Z if the conditions of 6.1.3 are satisfied.

So the proof of 6.1.4 1s obvious, but let us illustrate

the corollary in our principal

6.1.5 Example. Let X be an algebraic Hecke character

of K with values in E, and let M(X) E CMK(E) be

the standard motive for X constructed in § 4. We know

- remark 4.2 - that the Hodge structures Ha(M(X» ,for

a:K~ (Dca: aregivenby

_ CI: c Hn (a , T) , w - n (a , T )
Ha(M(X» -E,T '

the n(o,T) describing the infinity type of X as in~, § 4.
Every Ha(M(X» is a CM Hodge structure: in fact, the elements



- 63 -

(Zcr)~ = (z9s)cr on Rx/w~m(W) - where K has now to be

assumed normal over ; (and always embedded into ~). - This

second action will become relevant as of 6.2.0.

6.1.3 Proposition [R. Pink] Let V be a rational Hodge

structure such that MT(V) is a torus. Choose K so that

v exists as in 6.1.1. Then the following are equivalent.

(i) V is a CM Hodge structure.

(ii) ker v contains an arithrnetic subgroup.

(iii) 'rhe subgroup

contained in

X(MT(VJ)

X (ZK) •

is

Proof. (1) .. (ii). Assume (without 1055 of generality)

that K is totally imaginary, say [K:~] = 2r, and

consider the diagram

$.r = -!1</mCGm x :R
vx::R MT (V) x JR)l

W(lNa:/:R w ~. /wxp-
(Oim/R)r

~ IRm

whose commutativity 1s eas1ly checked using 1.6.1 (i).

According to Dirichlet,the units in RK/WOi map to
r I» 2

(C&m/:R) with a finite kerne!. As Na:/R 0. w(x) c x ,

any sufficiently small arithmetic subgroup U of

~/ma;m is contained in W«(Jjm/~)r , and since

(MT(V)/w(Oi
m

» (m) is compact we can achieve that

v (u) (m) c W (aim/:R) • Now assume furthermore that

Uc ker NK/<D ' the norm-1-subgroup of 11</;(Gm. Then
U(JR) n w(Oi IR) is obviously finite. Thus, in view of

m
the commutative triangle above, we conclude that U c Ker v,

provided again that 'U is sufficiently small.

(ii) and (ii1) just express the two possible definitions

of ZK - as quotient of RK/wOim, or via its character group.



, - 65 -

of E define endomorphisms of the motive M(X), and

therefore in particular elements of type (0,0) in
1 1 v

T' = Ho(M(X)) ~ H~(M(X)), so that

on the other hand, we shall show that, for all 0,

the corresponding map va factors through ZL' for

a suitable number field L. More precisely, remember that,

when working with the Serre group Z, we consider all number

fields as embedded into ~ (cf. 0, 7.3.2). Pick a finite

Galois extension L of (D, L c= W, which eontains K and E.

Then

exists, and is given by the farmula in the praof of 6.1.1

above. Now, ~*(~ D t · t) = ~ n(o,t)nt ' and thus one easily

finds that vo ' as a homomorphism over ~: RL/w~m + ~/w~m'

1s given 'precisely by the array of numbers

{n(sa,t) I sE G(Lian,t e: Horn (E,W)} ; ef. 0, § 4. As the

n(ol,t) '8 come from the infinity-type of a Hecke character, we

knaw - 0, 7.3.2 - that va factorizes through ZL' and

therefore defines a representation vo:z + RE/w~m/W - whieh

then corresponds to Ha(M(X)) via 6.1.4. If a is just

the fixed embedding of K into, W , this representation

va is nothing but the 1nfinity type of X, viewed as a

representation of Z as in 0, 7.3.2.

6.1.6 Corollary Let ~ be the algebraic elasure of (D

in ~, and 0 same embedding ~ ~ ~. The pair (CMw,H a )

see § 4 above - 15 a neutralized tannakian category over W
with Z as corresponding group scheme.

Proof. We show that Ho establishes an equivalence of cate­

gories between the motives CMm and all CM Hodge structures.
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By theorem 2.4.3 we are reduced to showing that

(a) if M i9 a motive in CMW ' then

CM Hodge structure;

H (H)
a

is a

(b) every CM Hodge structure arises in this way.

Since there are no non trivial Artin motives over ~,

for (a) it 9uffices to show that H~(A) is a,CM Hodge

structure if A/~ i8 an abelian variety with complex multi­

plication as in 1.1 - but this is a special case of 6.1.5.

As to (b), any representation of Z breaks up - over a

suitable number field E - into a direct sum ~f characters

A:Z + ~/~mm. Any such A is the infinity type of some
Hecke character X with values in E, defined over a suitable

number field Kc~. We have seen in 6.1.5 how these infinity

types arise from the Hodge structures Ha(M(X)) = Ha(M(X) x Km).

6.1.7 Remark It follows (for example, from 6.1.4 and

the definition of CMW••• ) that every CM Badge structure

1s polarizable. - In fact, it is more customary - cf. [Lg] ,

p. 215 f - to define a CM Hodge structure as a polarizable

rational Hodge structure whose Mumford-Tate group is abelian.

~ Taniyama extensions

We now start setting up the formalism for determining the

group scheme corresponding to (CMW,H
B
). Proofs are essentially

omitted.

6.2~O Definition. A Taniyama extension 1s an exact

sequence of affine group schemes over m

1 + Z
; ~ -
~ T T Gal(W/W) + 1,



- 66 -

By theorem 2.4.3 we are reduced to showing that

(a) if M is a motive in CMW' then Hcr(M) 1s a

CM Hodge structure;

(b) every CM Hodge structure arises in this way.

Since there are no non trivial Artin motives over ~,

for (a) it 5uffices to show that H~(A) is a .CM Badge

structure if Alm 1s an abelian variety with complex multi­
plication as in 1.1 - but this is a special case of 6.1.5.

As to (b), any representation 'of Z breaks up - over a

suitable number field E - irito a direct surn ~f characters

A:Z + ~/~~m. Any such A is the infinity type of some

Hecke character X with values in E, defined over a suitable

number field Kc W. We have seen in 6.1.5 how these infin1ty

types ar!se from the Badge structures Ha(M(X)) = Ha(M(X) xKon.

6.1.7 Remark It follows (for exarnple, fram 6.1.4 and

the definition.of CMW ••• ) that every GM Hodge structure

is polarizable. - In fact, it 15 more customary - cf. [Lg]

p. 215 f - to define a CM Hodge structure as a polarizable

rational Hodge structure whose Murnford-Tate group 1s abel1an.

~ Tan1yama extensions

We now start setting up the formalisrn for determining the

group scheme corresponding to (CM~,HB). Proofs are essentially
omitted.

6.2.0 Definition. A Taniyama extension is an exact

sequence of affine group schemes over ~

1 ~ Z



- 65 -

of E define endomorphisms of the motive M(X), and
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the fixed embedd1ng of K into W, this representation

va 1s nothing but the infinity type of X, viewed as a

representation of Z as in 0, 7.3.2.

6.1.6 Corollary Let ~ be the algebraic closure of (D

in ~, and a some embedding W~ ~. The pair (CMm,H ) -
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see § 4 above - is a neutralized tannakian category over CD

with Z as corresponding group scheme.

Proof. We show that Ho establishes an equivalence of cate­
gories between the motives CMW and all CM Hodge structures.
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where Z is the Serre group, together with a homornorphism

of topological groups E:Gal(w/m) ~ T(Af ) such that

tpAf 0 E = id.

Implicit in this

action of T on

abelian, factors

action described

definition is the requirement that

Z by conjugation - which, as Z

through Gal(~/~) - be the second

in 6.1.2.

the

is

galois

Any Taniyama extension may be written as inverse limit of

sequences (with finite adelic splittings EE)

(6.2.1)

over finite normal extensions E of m contained in ~~

Given 6.2.1, choose any set theoretlc splitting

.. :=:... and define, for 5 € Gal (E
ab Im) ,

(6.2.2)

which is independent of the

any character ZE ~ Gm defined

define the IIcocyclell:

ZE(EAf)/ZE(E)
aE. Next, for A

and 5 EGal (W laD ,

a class in

choice of

over m

(6.2.3)

These finite idele classes have the following properties,
ab svalid for all s, t € Gal (E IW); A, AlE HomW (ZE' (l;m); A

~eing defined as in 6.1.2.

6 • 2 • 4 Lemma ( i ) cE (s t , A) = cE (5 , Al CE (t , A) • .
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(iii)

(iv) If c ~ complex conjugation, then: CE(C,A) = 1

if and only if e: (c) E T (QJ) •

(v) cE (s , A) cE (s , At) = CE (8 , A· A') •

(In (iii), use that EÄt/E* ~ FAf/F*, by Hilbert 90~)

6.2.5 Proposition. Two Taniyama extensions T and TI are

isomorphic (as exact sequences of affine grouE schemes over

W with finite adelic splittings), if and only if the

corresponding cocycles cE' cE are equal, for all E.

6.3.0 Let 11 be the affine group scheme ovar W which

corresponds, by tannakian philosophy, to the neutralized

category of motives (CMW,HB), defined in § 4 above. Then

11 i9 naturally endowed with the structure of a Taniyama

extension

1 + Z 11 ~ Gal (W/~) + 1.

In fact, ~ is given (via 2.3.2, (b» by the fact that the

Art1n mo~ives (2.4.1) are conta1ned in CM~ (note that 11

is, in fact, proreductive: cf. 2.3.4); and, i corresponds

via 2.3.2 (c) to the functor CMm+ CMij , M~ Mxmm (the

condition of 2.3.2, (c) 1s ·satisfied because every object

M of CMW 1s defined over some number field K, and

RK/~M E CMm contains M as a direct factor if viewed over

W), where we make use of 6.1.6. The exactness 18 then

straightforward; the fact that the galois action on Z comes

out right is slightly more subtle (cf. [DMOS], IV, B),
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(iii)

(iv) If c = complex conjugation, then: CE(C,A) = 1

if and only if E (c) € T «JU •

(v) cE (5 , A) CE (5 , AI) = CE (s , A· AI) •

(In (ii1), use that E~/E* ~ FAf/F*, by Hilbert gOi)

6.2.5 Proposition. Two Taniyama extensions T and TI are

isomorphie (ag exaet sequenees of affine group schemes over

m with finite adelie splittings), if and only if the

corresponding cocycles cE' CE are equal, for all E.'

~ The group scheme for (CMm,HB).

6.3.0 Let U be the affine group scheme over ~ which

corresponds, by tannakian philosophy, to the neutralized

-~category of motives (CMW,HB), defined in § 4 above. Then

---U ·is naturally endowed with the structure of a Taniyama

extension

1 ..... Z 1 u ~ Gal (w/m) ..... 1.

In fact, ~ 1s given (via 2.3.2, (b» by the fact that the

Artin motives (2.4.1) are contained in CMm (note that II

is, in fact, proreductive: cf. 2.3.4); and. i corresponds

via 2.3.2 (c) to the functor CMW..... CMW ' M~ MXWW (the

condition of 2.3.2, (c) is satisfied because every object

M of CM~ i8 defined over some number field K, and

RK/WM E CMW contains M as a direct factor if viewed over

~), where we make use of 6.1.6. The exactness is then

straightforward; the fact that the galois action on Z comes

out right 1s slightly more subtle (cf. [DMOS], IV, B),



- 67 -

where Z is the Serre group, together with a hornomorphism

of topological groups €:Gal(W/~) + T(A f ) such that

tPAf 0 € = id.

Implicit in this

action of T on

abelian, factors

action described

definition is the requirement that

Z by conjugation - which, as Z
through Gal(~/~) - be the second

in 6.1.2.

the

is

galois

Any Taniyarna extension may be written as inverse limit of

sequences (with finite adelie splittings EE)

(6.2.1)

over finite normal extensions E of ~ centained in W~

Given 6.2.1, choose any set theoretic splitting

and define, for s EGal (Eab /~) ,

(6.2.2)

which i8 independent of the

any character ZE + Gm defined

def ine the n cocyc1e 11 :'

ZE(EAf)/ZE(E)

aE • Next, for A

and s e: Gal (ijj laD ,

a class in

choiee of

over (ö

(6.2.3)

These finite idele cla8ses have the fol1owing properties,

valid for all a,tE Gal (Eab/W); A,A ' E Hemm (ZE,<Gm); i\s

~eing defined as in 6.1.2.
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or at least confusing •.. ,- Finally, the finite adelie

splitting E requlred for a Taniyama extension, comes

from the faet that the E!tale realization ~f(Mf of

a motive M of CM~ earries an action of Gal(i/W),

and is, on the other hand, isomorphie to HB(M)e~f.

6.3.1 We shall now write down, generalizing Tate

(cf. [LCM], 7 § 3; [BI] , § 4), a "eocycle" gE(S,A), for

every CM field E normal over ~, which can be easily

shown to be the cocycle corresponding to U in the setup

of 6.2. Let M E CMW(E) be of rank 1. For any s EGal (i/au,
sthe eonjugate motive M is defined in CMW and carries

the action of E transported by s, with respect to which

it is also of rank 1 over E. Thus, fixing identifications

e
E ---+

(where HB denotes the realization Ho' for a the

identieal embedding ~ ~ ~), there is an element

a E ~f such that the following diagram commutes.

E f
A

~ e mf
A );

H f (M)
A

6.3.2 Theorem Up to multiplieation by an element of E*,

a depends only on 5 and on the representation

A:Z ~ RE/w~m/W corresponding to the CM Hodge structure HB(M).

The proof is easy from what we already know - but it does,

of course, use the absolute Hodge eycle theorem
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Rewriting A: Z -+ ~/(D<bm/W as A: ZE ..... CGm , defined over
E, we shall write the class a.E* as gE(s,:\), thereby

defining the cocycle characterizing U.

6.3.3 Lemma (ii gE(s,A) has the propert1es analogous to

( i) , (i i) , (111) and (v) 0 f 6. 2 • 4 •

(11) gE(c,A): 1, for all A.

1+c -w(ii1) gE(S,A) = 'I'(s) • E*,

where 'I' (s) € ~* 1s such that r,; S = r,;'I' (s) , for every root

of unity r,; € (0*, and w 15 the weight of the Hodge

structure HB(M).

In the case where A 1s a CM type (i.e., M = H
1

(A), for

some CM abellan variety A/W) and AS
C A, the class

gE (s , A) 1s g1ven br the Shimura-Taniyama reciproci ty law.

This class field theoretic description of gE(s,A) will

be generalized in 6.4, and the fact that it does describe

gE will be equ1valent to the isomorphism between U and

the Taniyama group •••

~ The Taniyarna group

We proceed to define Tate's second cocycle fE(s,A)- generalizing

it the same way we generalized gE in 6.3: cf. [LCM], 7 §§ 1,2,

and [BI], § 4.

6.4.0 First, generalize Tateis "half transfer":

Given a CM field Enormal over (0, choose a system of
representatives (remember that E c: (0)
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Rewriting A: Z "-+ ~/tDa;m/tD as A: ZE -+ (Gm' defined over

E, we shall write the class a.E* as gE(s,A), thereby

defining the cocycle characterizing ll.

6.3.3 Lemma (~) gE(S,A) has the properties analogous to

(i),(i1),(1i1) and (v) of 6.2.4.

(ii) gE(C,A) = 1, for all A.

1+c -w
(iii) gE(S,A) =" 'P(s) • E*,

where 'V (s) € ~ * is such that 1; s = ",'V (s) , for every reot

of unity ~ € ~*, and w is the weight of the Hodge

structure HB(M).

In the case where A is a CM type (i.e., M = H1 (A), for

some CM abelian variety A/~) and AS
C A, the class

gE (s , A) is given by the Shimura-Taniyama reciprocity law.

This class field theoretic description of gE(S,A) will

be generalized in 6.4, and the fact that it does describe

~gE will be equivalent to the isomorphism between II and

··the Taniyama group •••

~ The Taniyama group

We proceed to define Tate's second cocycle fE(s,A)- generalizing

it the same way we generalized gE in 6.3: cf. [LCM], 7 §§ 1,2,
and [BI], § 4.

6.4.0 First, generalize Tate's "half transferII:

Given a CM field E nermal over W, choose a system of

representatives (remember that E c:: an
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or at least confusing •.. - Finally, the finite adelic

splitting E required for a Taniyarna extension, comes

from the fact that the ~tale realization ~f (M) of

a motive M of CM~ carries an action of Gal(W/m),

and is, on the ether hand, isomorphie to HB(M)~~.

6.3.1 We ahall now write down, genera11zing Tate

(cf. [LCM], 7 § 3; [BI] , § 4), a "cocycle" gE(s,X), for

every eH field E normal over ~, which can.be easily

shown to be the cocycle corresponding to U in the setup

of 6.2. Let M E CMQj(E) be of rank 1. For any sE Gal((D/(D) ,

the conjugate motive MS 18 defined in CMW and carries

the action of E transported by s, with respect to which

it is also of rank 1 over E. Thus, fix~ng identifications

e
E~ Ha(M)

E;
E ----;... H

B
(Ms )

(where HB denotes the realization Ha ' for 0 the

identical embedding ~ ~ ~), there is an element

a € ~f such that the following diagram commutes.

e CI (DAf
E f > H f (M)

A A

1'a

~ ta (D f
15

E ' A !J H f (MB)
A f

A

6.3.2 Theorem Up to multiplication by an element of E*,

a depends only on s and on the representation

X:z ~ RE/(Dffim/(D corresponding to the CM Hadge structure HB(M).

The proof is easy fram what we already know - but it daes,

of course, usa the absolute Hodge cycle theorem • -
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such that v(t) JE =t and v(Ct) = cv(t), for c = complex

conj ugation. Then, for s EGal «e /<D) and A: ZE .. Q;m over

E (or over W), write A as

A = I n t
t:E~W t

and set

-1 -ntTI (v (s t ) • (s IEab) · v ( T ) }
t:Ee;.,. tD

an expression weIl defined in Gal(Eab/w) ~

6.4.1 Notations In the situation of 6.4.0, denote by
ab .

rE:Eif/E* "'Gal(E /E) the reciprocal of the classical

Artin map, i.e., r
E

sends a uniformizer n ,to a

geometrie Frobenius at ~. - Recall the cyclotomic character

~ defined in 6.3.3 (ii1), and note that one has·

::::.:for all s EGal Hu/au. - Finally, for A as before, write

as usual w = n t + nCt (any t) the weight of A (or: of the

corresponding Hodge structure).

6.4.2 Proposition/Definition. With the precedlng notations,

there exists, for any s EGal (w/au, a unigue class

fE(s,)..) E EAf/E*, such that

(i) rE(fE(s,>..» = VE(s,)..),

and (ii) f (s,)..)1+c = ~(s)-w · E*.
E

For the proef, cf. [LCM], 7, 2.2.

to the Taniyama group t

6.4.3 One can show that fE(s,A) gives the cocycle attached

defined by Langlands in (Lg], § 5 -
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except possibly for a certain nurnber of renormalizations,

of the sort carried .out in [DMOS], 111. We have not taken

the time to check the details, and for us twill be the

Taniyama extension characterized by fE(s,A) (whose

existence is not proved here.) We do however call this t

the Taniyama group.

~ The Main Theorem, Consequences

6.5.1 Theorem. The cocycles fE(s,A) and gE(S,A) are

egual: the Taniyama extension U eorresponding to (CMW,HB)

is isomorphie to the Taniyama group t.

The reader may obtain a complete proof of f E = gE from

[LCM], ehap. 7 : the one erueial property of 9 (therefore

of "e ") not demonstrated in Lang - theorem 4.2 of [LCM], 7 ­

has simply been built into our rnotivicconstruction of

gE(S,A) 1 In translating'Lang's setup, into our notations one

has to identify a CM abelian variety A/W with the motive

H
1

(A) - cf. 1.1 above. Thus instead of the CM types ~

(of weight + 1) in Lang, we consider representations A

with n
T

= -1 or 0, of weight -1.

6.5.2 We shall usa the following notation for the Taniyama

group t :

j 1>
1 -+- Z -+- t: ~ Ga1 (ijjI (D ) -+ 1

t (Af ) .JCi

We write Kt = 1>-.' (Gal «(ülK», for any number field Kc 'ijj •

And if E is a finite normal extension of (D, also contained

in CD, such that KC Eab , then we wri te KtE for the image

of Kt in the quotient t E (6.2.1) of t. One might call
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except pe8sibly for a certain number of renormalizations,

of the sort carried out in [DMOS], III. We have not taken

the time to check the details, and for us ~ will be the

Taniyama extension characterized by fE(s,A) (whose

existence i8 not proved here.) We do however call this t

the Taniyama group.

~ The Main Theorem, Conseguences

6.5.1 Theorem. The cocycles fE(s,A) and gE(S,A) ~

egual: the Taniyarna extension U corresponding to (CMm,HB)

i5 isomorphie to the Taniyama group t.

The reader may obtain a complete proef of f E = gE from

[LCM], chap. 7 : the one crucial property of 9 (therefore

of "eil) not demonstrated in Lang - theorem 4.2 of [LCM], 7 ­

has sirnply been built into our motivicconstruction of

gE(S,A) 1 In translating Lang's setup· into our notations one

has to identify a CM abelian variety A/W with the motive

.=. H1 (A) - cf. 1. 1 above. Thus instead of the CM types cll

.. -. (of weight + 1) in Lang, we consider representations A

with n
T

~ -1 or 0, of weight -1.

6.5.2 We ahall use the following notation for the Taniyama

group t :

j $
1 -+- Z -+- 0; -+- Gal (W/(D) -+- 1

t (Af ) Ja
We write Kt = tP-1 (Gal (W/K», for any nurnber field Kc W •
And if E is a finite normal extension of W, also contained

in W, such that KC Eab , then we write Ko;E for the image

of Ko; in the quotient t E (6.2.1) of [. One might call
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such that V(T) JE =T and V(CT) = CV(T), for C c complex

conj ugation. Then, for s € Gal «(0 /CD) and A: ZE + (Gm over

E (or ovar W), write A as

and set

A = I n T
T :Ec.(ö' T

,

-1 -nTTI (v ( 5 T ) • (s IEab) •v ( T) )
T:Eq... W

,

an expression weIl defined in abGal(E /(12).

6.4.1 Notations In the situation of 6.4.0, denote by

rE:EÄf/E* + Ga! (Eab
/E) the reciprocal of the classical

Artin map, i.~., ~E sends a uniformizer n to a

geometric Frobenius at n. - Recall the cyclotomic character

~ defined in 6.3.3 (iii), and note that one has

for all s € Gal (ij/(D). - Finally, for A as before, write

as usual w = n
T

+ nCT (any T) the weight of A (or: of the

corresponding Hodge structure).

6.4.2 Proposition/Definition•. With the preceding notations,

there exists, for any 5 € Gal «(Dlan, a unique class

fE(s,A) € EAf/E*, such that

(i) rE(fE(s,A» = VE(s,A),

and ,(ii) f E (S,A)1+C = !(s)-w • E*.

For the proof, cf. [LCM], 7, 2.2.

to the Taniyama group t

6.4.3 One can show that fE(s,A) gives the cocycle attached

defined by Langlands in [Lg], § 5 -
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1 + Z -+ K~ -+ GaI ('CD' / K) -+ 1

f J°IG(W/K)
K~ (& )

a Taniyama extension over K. It is the inverse limit of

(6.5.3) 1 + ZE + K~E -+ Gal(Eab/K) -+ 1

<J oE

K[E (Af)

Note that KtE is abelian, if K => E.

6.5.4 Scholion.' Let· KcW

HB for the fibre ·funetor Ha

inclusion K~ W. Then Kt

corresponding to (CMK,HB) •

be a number field, and write

on CMK , with a = the

is the affine group scheme

.::.~ Cf • [OMOS], p. 265.

6.5.5 Scholion. Let K c W be a number field whieh is galois

over W. Then the structure K[K (i.e., 6.5.3 with E = K)

'is isomorphie to Serrels group SK' i.e. to the seguence

0, 7.3.1, eguipped with the section € of 0, 7.4. - Eguivalently,

there is an isomorphism

lab ~ S
K K

compatible with the finite adelic splittings a and € •

Two proofs of 6.5.5 are possible: First, a direct preef using

only the eoeycle f E charaeterizing ~ - cf. [Lg] , p. 224;

second, using the fact that t Iiii 11, ene ean exploi t the existenee
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of M(X) in CMK, for any Hecke character X of K,

.to identify HO~(Kt'~m) with HomW(SK'~m) - cf. [DMOS],

IV, (0) and CE).

6.5.6 The first proof of 6.5.5 would provide us with a

new method to construct M(X) (via 6.5.1): Viewed as a

representation Kt + ~/~~m over ~, the motive M(X)

i8 simply the Hecke character X of K with values in E,
interpreted as in ~, 7.2,

over (D

and pulled back to Kt , via the canonical map ",ab
K'" •

6.5.7 Corollary. Let K and E be number fields, and

Kc:ijj~ Let M be a motive in CMK(E) • Then the system of

A-adic representations, for A running over the finite

places of E,

(where

is a strictly compatible system of E-rational Galois

representations.

Recall that the statement of the eorollary means that

there 1s a finite set E of places of K such that

for any prime ideal p of K not contained in E,
and any place A of E with P l ~A, the Galois

representation HA(M) is unramified at p (so that

the action of a geometrie Frobenius element Froh p at

p on HA(M) i8 weIl defined), and the "charaeteristic

polynornial"
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of M(X) in CMK, for any Hecke character X of K,

to identify HOrnw(K['~m) with HomW(SK'~m) - cf. [DMOS],
IV, (D) and (E).

6.5.6" The first proof of 6.5.5 would provide us with a

new method to construet M(X) (via 6.5.1): Viewed as a

representation K[ ~ ~/Wmm over W, the motive M(X)

18 simply the Hecke character X of K with values in E,

interpreted as in ~, 7.2,

over

and pulled back to Kt , via the canonical roap 1I"ab
K~ •

" .
6.5.7 Corollary. Let"K and

Kc W." Let M be a motive in

A-adie representations, for

places of E,

E be number fields, and

CMK(E). Then the system of

A running over the finite

(where

is a strictly cornpatible system of E-rational Galois

representations.

Recall that the statement of the corollary means that

there is a finite set E of plaees of . K such that

for any prime ideal p of K not contained in E,
and any place A of E with P I ~A, the Galois

representation HA(M) is unramified at p (so that

the action of a geometrie Frobenius element Froh p at

p on HA (M) is weIl defined), and the "eharacteristic

polynomial tl
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1 -+- Z -+- Kt -+- Gal (W/K) -+- 1

f JQIGHD/K)
K[(A. )

a Taniyama extension over K. It 1s the inverse limit of

(6.5.3) 1 -+- ZE -+- KiE -+- Gal (Eab IK) -+- 1

<J aE
KiE (Af)

Note that KtE is abelian, 1f K;:)E.

6 . 5 . 4 Seho1ion. Let Kc W
HB tor the tibre ·functor Ha
inclusion K~ m. Then K[

eorrespond1ng to (CMK,HB).

Cf. [DMOSJ, p. 265.

6.5.5 Scholion. Let Kc Ci' be a number field which is galois

over W. Then the structure . KtK (i.e., 6.5.3 with E = K)

i5 isomorphie to Serrels group SK' i.e. to the sequenee

0, 7.3.1, eguipped with the section E of 0, 7.4. - Eguivalently,

there 15 an isomorphism

[ab ;; S
K K

compatible wi th the finite adelte splittings a and e: •

Two proofs of 6.5.5 are pessible: First, a direct proef using

only the cocycle f E characterizing (- cf. [Lg] , p. 224;

second, using the fact that [;; U, one can exploi t the existence
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actually has coefficients in 'E ~ E
A

which are

independent of the place A.

One proof of 6.5.7 (via 6.5.1) uses the fact - due to
Langlands, [Lg], p. 226/227; cf. [DMOS], 111, 3.17 ­

that there is a natural homomorphism Wm~ t(~), where

w~ i8 the global Weil group of ~. See [DMOS], IV,

remarques 2,3 (p. 262). - As Greg Anderson has pointed

out (see [A2], 5.7), 6.5.7 as weIl as a few other

important corollaries of 6.5.1 can also be obtained

using R. Brauer's induction lemma:

6.5.8 Lemma The Grothendieck group of Rep~(t x~) is

gerterated by the representations of the form

for nurnber fields K and characters X:Kt ~ ~m/~ •

In fact, t x CI: 15 the inverse l1mit of a:-algebraic

. groups whose connected., components are tori. And the

Grothendieck group of Rep~(G), for G a a:-algebraic

group such that GO is a torus, is generated by the

representations induced from 1 dimensional characters

of subgroups of finite index.

Now, to deduce '6.5. 7 from 6.5.8 , asswne (without lass

of generality, applying RK/ W) that K = W in the claim

of 6.5.8, and note simply that

at good p1aces p.

= TI
plp

(1 - X(p) .~) € E [X],



- 76 -

6.5.9 The corollary 6.5.7 allows to unconditionally

define the L-function of a motive M in CMK(E)

( or, equivalently, M in CM
W

(E) ): For s € a: with

Re-(s) » 0 , put (cf. 1.8 above):

TI -sL*(M/K,s) = detE (1 - Frob p·mp
p

where p runs over all finite primes of K, and the

determinant i8 calculated using any A such that P.t:IN A •

. It 19 weIl known that the product converges for Re(s)

sufficiently big, defining an element

L*(M/K,S) € E " a::! a:Hom(E,CC)

(With our definition of strict compatibility, we have no

contral, a prior!,. abaut the Euler factors of the primes

p in the bad set E. This problem disappears however,

in the light of 6.5.81)

If E = W (i.e~ M is considered w!thout E action), then

we write simply L(M/K,s) for the ("Hasse-Weil") L-functlon

of the motive M.

Recall that, as functions on a: (a ·priori on {Re(s) » O}),

the following L-functions coincide:

L*(M/K,S) = L*(RK/WM/W,S).

(This generalizes the identity recalled before 6.5.9.)

In terms of L-functlons, 6.5.8 reads:

6.5.10 Corollary. For any motive M in CMK , there exist

number fields L1 , ••. ,Ln and, for every i = 1, ... ,n, ~

algebraic Hecke character Xi of Li with values in a suitable

field E ca:, and an integer Mi ' such that
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6.5.9 The corollary 6.5.7 allows to unconditionally

define the L-function of a motive M in CMK(E)

( or 1 equivalently, M in CM(D (E) ): For s € ce with

Re (s) » 0 , put (cf. 1.8 above):

L*(M/K,s) = TT det
E

(1 - Frob p.Ep-s
p

where p runs over all finite primes of K, and the

determinant 1s calculated using any A such that p l:IN A •

. It 1s weIl known that the product converges for Re(s)

sufficiently big, defining an element

L* (M/K, s) € E 13 ce a ceHom (E , ce)

(With our definition of s~rict compatibility, we have no

control, apriori, about the Euler factors of the primes

p in the bad set E • This problem disappears however,

in the light of 6.5.81)

If E: ~ (i.e~ M is considered without E action), then

we write simply L(M/K,s) for the (IIHasse-Weil") L-function

of the motive M.

Recall that, as functions on ~ (a ,priori on {Re(s) » O}),

the following L-functions coincide:

L*(M/K,S) = L*(~/mM/W,S).

(This generalizes the identity recalled before 6.5.9.)

In terms of L-functions, 6.5.8 reads:

6.5.10 Corollary. For any motive M Ln CMK ~ there exist

number fields L" .•• ,Ln and, for every i ~ 1, ••• ,n, ~

algebraic Hecke character Xi cf Li with values in a suitable

fleld E ca:, and an integer roi ' such that
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actually has coefficients in "E ~ EA which are

independent of the place A.

One proof of 6.5.7 (via 6.5.1) uses the fact - due to
Langlands, [Lg], p. 226/227; cf. [DMOS], 111,3.17­

that there i5 a natural hornomorphism Wm ~ t(~), where

W~ is the global Weil group of ~. See [DMOS), IV,

remarques 2,3 (p. 262). - As Greg Anderson has pointed

out (see [A2], 5.7), 6.5.7 as weIl as a few other

important corollaries of 6.5.1 can also be obtained

using R. Brauer l 8 induction lemma:

6.5.8 Lemma The Grothendieck group of Rep~(t x~) is

gerterated by the representations of the form

for nurnber fields K and characters X:Kt ~ Gm/~ •

In fact, t x (t 18 the inverse limit of a:-a1gebraic

groups whose connected. components are tori. And the

Grothendieck group of RePa:(G), for G a a:-a1gebraic

group such that GO is a torus, is generated by the

representations induced fram 1 dimensional characters

of subgroups af finite index.

Now, to deduce 6.5.7 fram 6.5.8 , assume (without 10ss
•of genera1ity, app1ying RK/

W
) that K = m in the claim

of 6.5.8, and note simply that

= TI
plp

at good places p.
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n m.
L(M/K,s) = TT L(Xi'S) 1

i=1

Here, L(Xi'S) is the L-function

with T:E ~ ~.

TL (X. , S) of
1

0, § 6,

6.5." Amazingly eno~gh, the same line of thought also

gives an alternative proof of the unicity theorem 5.11

For this, we refer to [A2] , 5.7.5.

6.6 Motives of rank 1 arising fram abelian varieties

From 3.1, 5.3 and 6.5.7, we can now deduce that conjecture

[DP] , 8.1, (ii1) 1s also true - like all the rest of

conjecture [DP], 8.1 - in the category ~v of motives­

overthe number field K- whieh can be constructed fram

the cohomology of abelian varieties (with or without

complex multiplieation). Joined with 5.1, this gives·

.the

6.6. 1 Theorem Every motive M in JL~v (E) , for a number-
.:;:,field E, of rank 1 over E, is isomorphie in Al·~v to a

motive M (X) - see 4. 1 - for some algebraic Hecke character X
of K with values in E.

7. Anderson's motives for Jacabi SUffi eharacters

This section eontinues 0 § 8.

7.1 The basic exarnple (Reference: [DMOS] , I § 7)

•

n 1 n-l7 . , . 1 For integers rn ~ 0, n ~ 1, let Xm ~:IP be

the Ferrnat hypersurface of dimension n - 2 and degree ro,

given in projective coordinates by the equation

• •• + In
X = o.

n
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The twisted primitive cohomology motive

h im(X~) (-1) = [h(Xß )/i*h(pn-1)] ta (0(-1),
pr m m

apriori an object of M~, decomposes over m(~m) under

the action of the group

n
n / nG = (lB ~) (diagonal) c Aut (X /(12 (~ ».
m i=1 m . m m

Specifically,write thecharacters of Gn asm

n n 1 n
a = I [ai] E lB - z/z, I a. = 0, all a

i
* 0,

i=1 m i=1 l.

i=1

n ai~

a ( (C 1 ' • • • , 1; ) (mod diag.» = TI Ci
- n i=1

Define the eigenmotive h rim(Xn ) as the image ofp m a
[hprim(X~) ~ W(~m)] x W(~m) under the projector

... p
a

L C(g) ~ ~(g)-1 ,
gEG~m

where C(g) is g, viewed as endomorphism (:: absolute Hodge

t correspondence) of h(X~). Here, W(~m) in the tensor product

is (the first component of) 'the unit object of M(D (W (J.Lm» ­

cf. 3.0 above. One shows that h i (Xn ) is an object ofpr m m a
Mm(~rn) (W(~m» of rank 1, and that its L=function 1s given,
in terms of. the Jacobi sum Hecke characters of 0, 8.2, by

the relation [see 6.5.9 for the notation] :

7.1.2 As Jacobi sum Hecke characters are galois equivariant­

see 0, 8.2.5 - all the cornponents of thls array of L-functions

are actually equal (as rneromorphic functions on ~). On the
other hand, the sum of projectors
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The twisted primitive cohomology motive

h . (X~) (-1) = [h (X
n ) /i*h (pn-1)] Qt lJH-1),

pr1ID m m

apriori an object of M~, decomposes over W(~m) under

the action of the group

n n
G

n = (&J ~) I (diagonal) c Aut (X IW (Ji ».
m i=1 m . m m

Specifically,write thecharacters of

n
a = L

i=1

n
E e

1=1
.1. Z/z
m '

n
L

1=1
a. = 0,

1
all a

i
* 0,

with
n a.m

a ( (z; 1 ' • • • , c; ) (mod diag.» = n c; 1
1

- n i=1

Define the eigenmotive h im (Xn ) as the image ofpr m a
[hprim(X~) Qt W(Jim)] x W(Jim) under the projector

.. L C (g) ~ a (g) -1 ,
gEGn

m

where C(g) 1s g, v1ewed as endomorphism (= absolute Hodge

correspondence) of h(X~). Here, W(~m) in the tensor product

is (the first cornponent of) 'the unit object of M
W

«0 (!-lm» ­

cf. 3.0 above. One shows that h i (X
n ) 18 an object ofpr m m a

MW(I-lm) (W(Jirn » of rank 1, and that it8 L=function i8 given,
in terms of the Jacobi surn Hecke characters of 0, 8.2, by

the relation [see 6.5.9 for the notation] :

7.1.2 As Jacobi surn Hecke characters are galois equivariant­

see 0, 8.2.5 - all the components of th1s array of L-functions

are actually equal (as meromorphic functions on ~). On the

other hand, the SUffi of projectors
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L(M/K,s)

Here, L(Xi's) "is the L-function

with t:E ~ ~.

0, § 6,

6.6. 1

field

motive

of K

6,5.'1 Amazingly enough, the same line of thought also

gives an alternative proof of the unieity theorem 5.11

For this, we refer to [A2] , 5.7.5.

6.6 Motives of rank 1 arising frorn abelian varieties

From 3.1, 5.3 and 6.5.7,we can now deduce that conjecture

[OP] , 8.1, (iii) is also true - like all the rest of
avconjecture [OP], 8.1 - in the eategory MX of motives

over the number field K whieh can be constructed from

the cohomology cf abelian varieties (with er without

complex multiplication). Joined with 5.1, this gives

the

Theorem Every motive M in ~v(E), for a number

E, of rank 1~ E, 1s isomorphie in ~~v to a

M(X) - see 4.1 - , for same algebraic Hecke character X
with values in E.

7. Anderson's motives for Jacobi SUffi charaeters

This section continues 0 § 8.

7.1 The basic example (Reference: [DMOS] , I § 7)

ben i -.n-17. 1 . 1 For integers m ~ 0, n > 1, let X c..,;....:.;:. .ll-'
rn

the Fermat hypersurface of dimension n - 2 and degree

given in projective coordinates by "the equation

ro,

mx,+ • •• + X
ID = 0 ,
n
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p
oa

of
that 0.8.2.1) is an absolute

1\
h(Xn ) ~ W(~) defined over ;.m m

is a motive M(~) in MW ' with coefficients
n(the action of Gm is only defined over ;(~m» of

[~(~m) :WJ such that

in

rank

(the galois action being

Hodge correspondence of

Thus, there

in MW(~m) ; conseguently

L(M(~) /01,s) = L(J(D(~ ) (~) ,s)
m

(an identity of functions on ~.)

7 • 1 .3 The motive h (Xn ) , and therefore also M (~) , 18m
(isomorphie to) a motive in Mav , and in fact, by the

W
same token, in CMW - cf. 5.3.

~'This is shown by Shioda induction: see [A2], § 9 for

a detailed proof of how to express h(Xn ) in terms of

the Fermat curves x~,x; and of p1.:s the Jacobian

of Fermat curves are weIl known to admit compiex

rnultiplication (over W(~» this directIy proves the
m

stronger assertion.

7.1.4 Thus we have indicated how to construct, for

a as above, a motive M(~) in M~v, and in fact a

representation of the Taniyama group, whose L-function

is the Hecke L-function of JW(~) (~). Note that, in

view of 6.5.7, this already prov~s .that JW(~) (~) is a

Hecke character, and more precisely, a Hecke ~haracter

unramified outside m - because this is true of the .

t-adic representations of xn .
In
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Anderson, in [Al], and especially in [A2], has genera­

lized this construction of M(~) to all Jacobi sam Hecke

characters, in th~ sense of 0, 8.2.4.

~ Anderson's first theorem (Reference: [Al] or [A2])

oLet K be an abelian nwnber field and ~ € m K (for the

notation, see 0, 8.2). There 15 a-motive ~(~) in CMW
of rank [K:WJ such that

Upon extension of scalars, ~(~) x K acquires the structure

of a motive of rank 1 in CMK(K), wh1ch i5 a motive for

JK(~)' in the sense of 3.3.

The ~rucial point about this theorem is that Mx(~) i8

constructed from the cohornology of,Fermat hypersurfaces'

Xn • This will make it possible to calculate the periods .
m

of Mx(~) in terms of values of the r-function at rational

numbers: see II § 41 In [Al], Mx(~) i5 explicitly constructed

as sitting in twisted Fermat hypersurfaces; in [A2], the

theorem 18 no longer stated the way we just did but rather

embedded in a much more general formalism which we shall

now sketch very roughly .

7.3 Anderson's ulterior motives (Reference: [A2] )

7.3,1 An arithmetic Hodge structure W

• a finite dimensional CD vector space
decomposition

such that (1 0

= e wa,b
a,b€CD
a+b=w

c) wa , b =wb , a , fox: c = complex conjugation;
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Anderson, in [A1], and especially in [A2], has genera­

lized this construction of M(~) to all Jacobi suro Hecke

characters, in the sense of 0, 8.2.4.

~ Anderson's first theorem (Reference: [Al] or [A2])

oLet K be an abelian number field and ~ E lB K (for the

notation, see 0, 8.2). There is a"motive ~(~) in CM~

of rank [K:W] such that

Upon extension of scalars, MK(~) x K acquires the structure

?f a motive of rank 1 in CMK(K), which 15 a motive for

JK(~)' in the sense of 3.3.

The crucial point about this theorem is that Mx(~) is

constructed from the cohomology of.Ferrnat hypersurfaces

Xn • This will rnake it possible to calculate the periodsm
~f Mx(~) in terms of values of the r-function at rational

Eurnbers: see II § 41 In [Al], MK(~) is explicitly constructed

as sitting in twisted Ferrnat hypersurfacesi in [A2], the

theorem i5 na langer stated the way we just did but rather

embedded in a rnuch more general formalism which we shall

now sketch very roughly .

7.3 Anderson's ulterior motives (Reference: [A2]

7.3.1 An arithmetic Bodge structure W

• a finite dimensional W vector space

decomposition

WB ~ ce = e
a,bECD
a+b=w

such that (10 c)Wa,b=wb,a, fOI C = complex conjugationi
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p
oa

of
(the galois action being that 0.8.2.1) 15 an absolute

1\
Hodge eorrespondence of h(xn ) ~ W(~) defined over ~.m m
Thus, there is a motive M(~) in M~, with coefficients

in ~ (the action of G~ 18 only defined over W(~m)) of

rank [~(~m) :w] such that

in M ); eonseguently
(D (~m

L(M(~)/(D,s) = L(J(D(~ ) (~) ,s)
m

(an identity of functions on ~.)

7 • 1 ,3 The motive h (X~), and therefore also M (~) , 'is

(isomorphie to) a motive in M~v, and in fact, by the

same tQken, in CM(D - cf. 5.3.

This i5 shown by Shioda induction: see [A2], § 9 for

a detailed proof of how to express h(Xn ) in terms of
2 31 m

the Fermat curves X, X and of lP . As the Jacobianm m
of Fermat curves are weIl known to admit complex

multiplication (over W(~rn)) this directly proves the

stronger assertion.

7.1.4 Thus we have indicated how to construct, for

a as above, a motive M(~) in M~v, and in fact a

representation o~ the Taniyama group, whose L-function

i8 the Hecke L-function of JW(~) (~). Note that, in

view of 6.5.7, this already provWs that JW(~) (~) i5 a

Hecke character, and more precisely, a Hecke ~haracter

unramified outside m - because this 1s true of the

~-adic representations of xn .m
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• a ~-linear subspace WDR of WB ~ ~ of the same dimension

as WB such that

(i) for all a E: ~/Z, writing

one has

6)

a'E:(D
a' ~a

wa' ,w-a ' and

(ii) there is a (Q-linear involution .Foo:WB ~ WB making the

following triangle commute.

~ c

An arithmetic Hodge structure is a finite direct SUffi of

arithrnetic Hadge structures of fixed weights.

It is abvious how the notion of arithrnetic Hodge structure

ls a generalization of the "part at infinity" of a motive

over (D - cf. [DP], 1.4 , for the last requirernent, (li).

We shall write W
OO

(M) 'for the ari thmetic Hodge structure

given by a motive M in M(Q. The fractional exponents permitted

in the decomposition of WB ~ ~ will be needed to accomodate

individual Gauss sums

Amorphism of arithrnetic Hodge structures is a (Q-linear map

of the WBIS which respects the wa,b,s and the WDR's.

Just like Hodge structures, arithmetic Hodge structures form

a tannakian category over W, say AH , neutralized by the
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functor WI-.;.. WB into (D vector spaces.

A
7.3.2 Write 2lTi ':~ for the Pontrjagin dual of al/Z, and

consider the pairinq

1\
2TTi Z x (D/Z ~ ct*

(2nin, a) 1---+ <2nin,a> :: exp (2TTi<na» ,

where the function <.> on ~/Z was defined in 0, 8.1.4.
A

Given 0 * a E (D/Z, define y (a) : 2TTi Z -+ 0:* by

y(a)(21Tin) = <2lTin,a> :r«-a».

For each integer m ~ 1, we define the arithmetic Hodge

structure of weight 1, Ern by:

e factors throughA

• (Ern) B = { e : 2 TT i z .. (D
and

AAl2TTi(Z/rnZ)

e(2TTimj) = 0

• E <a>,<-a>= ~.y(a), if
In

1o* a € - Z/Xm

• 1:
1

O*aE:- Z/ Zm

;·y(a) •

7.3.3 Call CM the smallest tannakian subcategory of AH
containing Wm(M) , for all objects M of CMW ' and Ern'

for all m ~ 1. Write [ for the affine group scheme over
~

(D which corresponds to (CM, W~WB). The. (D vector space

(Em)B ' viewed as a representation of [, 1s denoted ~

. by Anderson, and he defines

:JE =

using the inclusions of arithmetic Hodge structures

for mln.

E -+ E ,rn n
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functor Wl-;a.. WB into c;g vector spaces.
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7.3.2 Write 2TTi~Z for the Pontrjagin dual of (D/Z, and

consider the pairing
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For each integer m '= 1, we define the arithrnetic Hodge

structure of weight 1, Ern by:
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7.3.3 Call CM the smallest tannakian subcategory of AH
containing w=(M) , for all objects M of CMW ' and Ern'
for all m '= 1. Wri te l for the aff ine group scheme aver,....,

~ which corresponds to (CM, W~WB). The . (D vector space

(Em)B ' viewed as ~ representation of i , is denoted ~

by Anderson, and he defines

using the inclusions of arithmetic Hadge structures

for mln.

E ~ E ,m n
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• am-linear subspace WDR of wB ~ ~ of the same dimension

as WB such that

(i) for all a E (D/Z, writing

one has

m Wa ' ,w-a'
atE<D
a l ,=a

and

(ii) there is am-linear involution ,Fco:WB -+ WB making the

following triangle cammute.

$ C

An arithrnetic Hodge structure i8 a finite direct suro of

arithrnetic Hodge structures of fixed weights.

It i8 obvious how the notion of arithmetic Hodge structure

is a generalization of the "part at infinity" of a motive

over (D - cf. [DP], 1.4 , for the last requirement, (ii).
We ahall write wco(M) for the arithmetic Hodge structure

given by a motive M. in M(D. The fractional exponents permitted

in the decomposition'of WB ~ ~ will be needed to accomadate

individual Gauss sums

A marphism of arithmetic Hadge structures i5 a W-linear map
a bof the Wals which respects the W' 's and the WDRts.

Just like Hadge structures, arithmetic Hadge structures form

a tannakian category over W, say AH , neutralized by the
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By tannakian philosophy, the functor w=:CM
W

~ CM
corresponds to a morphism

with t the Taniyama group (6.5).

Furthermore, there is an arrow

- 1\ """j:21Ti Z ~ t

which arises as follows.

7.3.4 Let

action of

over 0::

V be a W
1\

2TTi Z. Then
vector space with an admissible m-linear

V can be decomposed into eigenspaces

v ~ ~ ~ e V(a)
aEm/Z

,

and one finds, for all s € Aut a: , that

with ~ the cyclotomic character: see 0, 8.2.1;·or 6.4.1.

Conversely, every decomposltion respecting the galois action
1\

on ~/Z comes from an (admissible) representation 2ni z~ GL(V) .

Now, given a representation W of l, and a E W/Z, put

W(a) ~ e wP+<a>,q-<a>

p,q€Z

The decomposition 'W ~ a: = $ W(a) is compatible with the

galois action on ~~ - look at E. ! - , and therefore comesm
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A
from a representation 2ni Z -+ GL (W). This action of.

A
2ni Z depends naturally on Wand thus defines the

A
desired morphism ]:2ni Z -+ t. Since motives have honest

regard Bodge structures: with integral exponents, it i8

plain that the image of j is contained in the kernel

of ~. - And more is true:

~ Anderson's second theorem ([A2], Theorem 8)

7.4·1 The sequence

A j ~
1~21Ti ·z -+ t ~ t -+ 1

1s exact.

7.4.3 Recall from 7.1.1 the motive hprim(X~) (-1). According

to 7.1.3, it may be viewed as giving a representation of the

Taniyama group t, and hence, via ~, a representatien of

t.
There is an isamorphism af t representatiens

A

h (Xn ) (-1) liI (E0n ) 2n i Z
prim m m

The superscript denates, of course, the subspace o~ elements
"'l" A

invariant under J(2ni Z).

7.4.3 Use the embedding J , like in 7.3.4, te decompose

E l& CI: = IB E(a)
aEQJ/71J

..
Note that dimiE (a) = 1 er 0 accerding as a * 0 or a = 0

in QJ/~. Recall fram 6.5.2 our notations for the Taniyama graupe
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with [ the Taniyama group (6.5).

Furthermore, there 1s an arrow
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m
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Por all t € '[ «(t), calling 5 € Gal (Q2/(D) the image

4> 0$ (t), and for ali 0 * a € m/zz, one has

7.4.4 Last but not least Anderson proves that there 1s

a substitute for the galois action on the eigenspaces E(a),

which shows their relation to Gauss sums. In stating it

he makes use of a fixed chosen embedding of W~ into ~, for

every 1. In fact, recall (0,8.2.2) that in the treatment of

Jacobi sum Hecke characters we also fixed, at least, an

extension of the absolute value 11
1

from·W to W, for

every R...

Let p and R.. be two distinct rational primes, and write

Frob p € Gal (W/(D) for a geometrie Frobenius element (weIl

deterrnined up to Gal(w/wab ) and up to the inertia group

of the chosen extension of I Ip .) Call a t the t-component

of the splitting a of 4> f"- see 6.5.2.
lA

There exists F (p, i) E i" ((1:) satisfying

• for all positive integers

such that (pf- 1 )a = 0 in

f and all 0 * a € (D/7l
W/Z , one has

with as in 0, 8.2.2.
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7.4.5 In the setup of Anderson's second theorem, the

motives ~(~) of 7.2 are obtained like this: First,

it 1s enough to consider elements a:::c 1. nJa]ElB~
O*aE(D/Z

with na ~ ° for all a. For such ~, put

= e E(a) ena
.a

Mx(~) then appears as a ~-rational representation of t
such that

Mx (~) 0 a: = e
aEGal(K/~)

JE (a~)

0" 6As ~ EJB , the action of 211"1 Z; on ~ (~) 1s trivial

which, by 7.4.1, rnakes it a represent~tion of t , i.e.,

a motive in CM(D'

For all details of Anderson's construction we refer to [A2].

Our discussion of this work ~ill be taken up again in 11 § 4

where we give an account of his period calculations.

~ Elliptie curves

Let us mention in passing the geometrie reasons that

have motivated our choices of the basic characters of

the exceptional imaginary quadratic flelds: 0, 8.3.2.

It is".eas11y checked that J 3 15 the Hecke character of the

el11ptic curve

y (1 - y) = 3x ,

the latter one being ~-1sogenous to the first one. In fact,

u 3
+ v 3 = 1 1s also the strang Weil curve for f O(27). These

coinc1dences seemed to give some geometrie privilege to this
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•
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for all positive integers
such that (pf- 1 )a = 0 in

f and all 0". a E ~/ll

(D/Z , one has

with as in 0, 8.2.2.
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On a more historieal. basis, J 4 was chosen because it is

the Hecke character of the famous lemniscate y2 = x3 - x:
cf. [HS], § 1.

As to m<I=2), any Jacobi-sum Hecke character of infinity

type 1 corresponds to 'a m-curve, in the sense of [Gr 1], § 11.

But we do not know of any such curve that has attracted

individual interest.
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CHAPI'ER TWO:

The Periods of Algebraic Hecke Characters

Although we introduce in this chapter the basic nation of our
work, the constructions we have to present are quite formal.
More precisely, we review what may be called the lIarithmetic
linear algebra" needed for our purposes:

- In § 1, we define the periods cf a motive M in ~K(E) ­
K and E number fields -, and the periods c±(M) , for
M in Jt I1l(E) , introduced by Deligne [DP] to formulate his
rationality conjecture for eritieal values of L-functions
cf motives. The periods ef a Hecke Character X cf K with
values in E are simply these of any motive M attached to
X in the sense of I.3.3, or the e±(RK/«lM).

- Deligne's ratlonality eonjecture (and its proof in the case
of Hecke characters) 1s reealled (resp. quoted) in § 2.

§ 3 16 devoted to the study of t~e behaviour of our periods
lIunder tWisting ll • Very s1milar ealculations have also been
done by Blasius.

- § 4 continues and eloses our diseussion cf Anderson's motives
for Jacobi sum Hecke characters by recalling their periods.
They will be needed in chapters III andlY.

1. The periods of a motive

1.0 Let K and E be finite extensions of ~,and let M
====:a
be a motive defined over K with coefficients in E, of rank r
over E • Thus, in the notation of 1.3.0, M is an object cf
~(E) . But the linear algebra which we are ~bout to present
would werk in any sensible theory cf motives, not just the parti­
cular one using absolute Hodge cycles with whieh we work here.
The constructions of this section are all (essentially) present
in various secticns of [DP].
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the Hecke character of the famous lemniscate y2 = x 3 - X;

cf. [HS], § 1.
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But ws da not know of any such curve that has attracted
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1 .1 Definition of p(M)=.
The component at infinity of the comparison isomorphism 1,2.1.1

yields an isomorphism of free K ~ E ~ t modules of rank r,

where an unmarked 0 is always over Q and 0 runs through
all distinct embeddings of K into C; so the K-linear
structure on the left hand aide i5 obtained from identify1ng
K ~ C with CHom(K,~) •

The K ® E 18 lt

scalars up to
modules compared in 1.1.1 are extensions cf

C of

- the ~om(K,t) module ® H (M) , on the left;
a a

- the K ~ E module HDR(M) , on the right.

Choose basea V1, ••• ,Vr - where
r
e E· Vi ' for all a -, resp.

1=1 a

structure5, and define

with H (M) =cr
of these sub -

p(M) E (K 0 E ~ t)* = (c*)Hom(K,C) x Hom(E,C)

to be the determinant ef the matrix representing the isomorphism
1.1.1 relative to these bases.

Changinr the bases multiplies p(M) by an element cf
(E*)Hom K,~) , resp. of (K 0 E)* . Thus, p(M) will be regarded

module these operations, defining a class

Remark. Let det~ be the maximal E-linear exterior
~·r

MEin A(,K( E)
r
1\ H ( r1) • Then
E 0

d~tEM 15 a motive cf rank 1 over E, and it 15 clear from the
definition of p that

power cf M, i.e., the direct faetor of

whose a-rea11zation (ior any a : K~ ~ ) 1s

1 .1 .2
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1.2 Compcnents cf p(M)

Although p(M) 15 really a class mOd(E*)Hom(K,t) (K ~ E)* ,

we continue to think of our period, via representatives, as an
array of complex numbers, in (~*)Hom(K,~) x Hom(E,~) , and

we write

p(M) = (P(MjO,T»O,T '

*w1th p(Mio,T) E ~ ,for all a E Hom(K,C) , ,. E Hom(E,~) •

Similarly, we occasionally write, for cr : K C-+t

*p(Mjo) = (p(M;o,,.»,. E (E ~ t) ,

and for T·: E c;....-.. a: ,

*p(Mj,T) = (p(MjO,T»O E (K ~ c) •

(If K=E, the two roles of this field still have to be neatly
separated! )

All these components are actually determinants (with respect
to certain bases) of comparison isomorphisms derived from 1.1.1.
For example, decompose our basis elements wi as

(1.2.2)

By its very construction, 1.1.1 1s the direct sum of isomorphisms

I
a

basis

So,
bases

p(Mia) 15 the determinant of I with respect to the
(1

{Yiali and lwiali. - Note that Iwiali 15 a KO ~ E

of HDR(M) 0 K ,a K(J •

Field of coefficients

1 .3. 1 If E'::> E

see 1,3.0 -, then
i5 a (finite) extension, and

H (M') = H (M) ~E E' , for all
cr a

M' = M~E EI ­

a , and



- 90 -

p( datE M) = p(M) •

1.2 Components of p(M)

Although p(M) i5 really a class mod(E*)Hom(K,~) (K ~ E)* ,

we continue to think of our period, via representatives, as an
array of complex numbers, in (~*)Ham(K,C) x Hom(E,C) , and

we write

(1.2.1) p(M) = (p(M;a,T»a,T

*with p(M;a,T) E ~ , for all a E Hom(K,C), T E Hom(E,~) .

Similarly, we occasionally write, for cr : K C-+c ,

*p(M;o) = (p(M;cr,T» E (E ® t) ,
T

and for T·: E e:.--.. a: ,

p(M;,T) = (p(M;a,T» a
*E (K ~ C) •

(If K=E, the two rales of th1s fleld still have to be neatly
separated! )

.All these components are actually determinants (with respect
~to certain bases) of comparison isomorphisms derived from 1.1.1.
:~For example, decompose our basis elements wi as

(1.2.2)

By its very construction, 1.1.1 i5 the direct sum af isomorphisms

So, p(M;o) 15 the determinant of I with respect to the
a

bases {Vio}i and (wial i . - Note that Iwiol i i5 a KO ~ E

basis cf HDR(M) 0 K ,a KO
•

1.3 Field af coefficients

1.3.1 If EI ~ E i5 a (finite) extension, and MI = M~E EI ­
see 1,3.0 -, then H (M') = H (M) ~E EI , for all 0 , and

(1 a
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Definition of p(~)

The component at infinity of the comparison isomorphism 1,2.1.1

yields an isomorphism of free K 0 E 0 t modules of rank r,

, -I : tIl H ( M) 18 C ----+ HDR (M) lZl C ,
a cr

where an unmarked 0 i5 always over Q and cr runs through
all distinet embeddings of K inta C; so the K-linear
strueture on the 1eft hand aide 18 obtained from identifying
K ~ C with CHom(K,C)

The K 0 E ~ ~ modules compared in 1.1.1 are extensions of
scalars up to C of

- the ~om(K,~) module @ H (M) , on the left;
a 0

- the K ~ E module HDR(M) , on the right.

Choose beses V1' ..• 'Yr - where
r
$ E· Vi ' for all a -, resp.

1=1 a

structures, and define

with H (M) =
o

of these sub -

to be the determinant cf the matrix representing the isomorphism
1.1.1 relative to these bases.

Changinf the bases multiplies p(M) by an element of
(E*)Hom K,~) , resp. of (K ~ E)* • Thus, p(M) will be regarded

modulo these operations, defining a elass

1.1.2 Remark. Let det~ be the maximal E-linear exterior
® r

power of M, i.e., the direet faetor cf MEin ~K(E)
r

whose cr-realization (for any a : K c.... C ) 1s 1\ H (f1) • Then
E 0

d~t~ 15 a motive of rank 1 over E, and 1t 1s elear from the

definition of p that
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HDR{M') = HDR{M) OE E' . Henee,
of p(M) under the natural map

p{M') is simply the image

* *(K ~ E 18 «:) c........... (K ~ E' 0 «:) •

Observe that, if we know that MI in AiK(E') 1s of the form
M~ E' , for same M in ~K{E) , then p(M) can be reeuperated
from p(M') beeause, assuming E'IE to be galois with group
G and letting G act triviallyon K, one has

In fact, use the exact sequence

to conelude

1 _ E'* _ (E,*)Hom(K,a:)(K~E)* _ (E,*~Hom(K,a:) (K0E')*
(E I *)Horn (K, «: )n(K ~ E' ) *

* *as weIl as uHilbert go" for EI and (K ~ EI)
that

- 1 ,

1.3.2 Suppose now that M' in ~K{EI) i5 given,

M = M' IE ' in .the notation of 1,3.0. U5ing a basis
EI over E to obtain bases lVII and twil for
those chosen for M' , one finds that

In terms of eomponents, this means that

p{M;,r):! TI p(M' ;,r'),
T I IE = T

and that

(eil of
M from

for T E Hom{E,~) and T' E Hom{E'~) restrieting to T •

1.4 Field of definition

1.4.1 If K' ~ K i5 a finite extension and M 15 defined over
*K , then p{H Xl( K') 15 clearly the image in {KI ~ E~ (1;) I

(E*)Hom{K',~) (K' 0 E)* of p{M) via the natural map
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In pract1ce it 15 often convenient to extend the base fleld
1n order to have eigendifferentials for the action of E de­
finad ovar K' ~ cf. for example, 1.5.2 below. However, unlike
1.3.1, extending K does in general throw away information
about p(M) : If K'/K is galois with group G acting tri­
vially on E, then

Put another way, different K'/K-forms of M' will in general
have different periods p(M) •

1.4.2 Suppose now that MI in ÄiK,(E) 1s g1ven, and define

M = RK,/KM' , in ~K(E) • Then HDR(M) 15 HDR(M') , but
considered as K ~ E module. Therefore, for every 0' : K e-..,.. a: ,

=

where 0 1 varies over the embedd1ngs of K' that restrict to

a on K. Thus, 1f wl = (w1o ')a
'

- like in 1.2.2 - make up
a basis of HDR(NI) over K' 0 E , then {wio ' l i =1 ,•••,rl;a' IK= 01
15 a basis of HDR(M) ~,o ~ over E @ K ~K,a t . Here, r l

1s the rank of MI over E. And since

1t follows that

*where D E (E 8 t) will now be computed. This factor comescrin because the {W 1cr ,} are not necessarily a basis of

HDR(M) ~,a l(O •

First, given the basis Iwl1i=1, ... ,r'l
K' 0 E , and choosing a basis {~s} of

of HDR(M') over
K' ovar K, take
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In practice it is often convenient to extend the base field
in order to have eigendifferentials for the action of E de­
fined over K' - ef. for example, 1.5.2 below. However, unlike
1.3.1, extend1ng K does in general throw away information
about p(M) : If K'/K 15 galois with group G aeting tri­
vially on E, then

Put another way, different K'/K-forms of MI will in general
have different periods p(M) •

1.4.2 Suppose now that MI in ~K,(E) 1s given, and define

M = RK'/KM' , in AtK(E) • Then HDR(M) is HDR(M') , but
considered as K 0 E·· module. Therefore, for every a : K c........ a: ,

where 0' varles over the embeddings cf K' that restriet to
o on K. Thus, if wir = (W i' ,) I - like in 1.2.2 - make up

cr 0 I

a basisof HDR(M') over K' 0 E , then IWla ' l i =1,•••,r l ;o' IK=al
Is a basis of HDR(M) ~K,o ~ over E ~ K ~K,a ~ • Here, r'
15 the rank of MI over E. And since

it follows that

(1.4 •.3) p(M;a) = ( TI p(M';o'» D
Q'1\K=a (J

.
*where D E (E ~~) . will now be eomputed. This factor comes

o
in because the . Iw 10" I are not necessarily a basis of

HDR (M) ~,a K'1 •

First, given the basis {wili=1, ... ,r'l of
K' 0 E , and choosing a basis {asl of K'

HDR (N' ) over
over K, take
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HnR(M') = HDR (M) 0 E EI. Henee,
of p(M) under the natural map

p(M') is simply the image

* *(K ~ E ~ «:) e-.... (K <8 E' 0 a:) •

Observe that, if we know that M' in ~K(EI) 'is of the form
M~E E' , for same M in AiK(E) , then p(M) ean be recuperated
from p(M') because, assuming EilE to be galois with group
G and letting G aet triviallyon K, one has

In fact, use the exact sequence

1 - E'* _ (E,*)Hom(K,a:)(K® E)* _ (E·*)Hom(K,a:) (K0 E' )* _
(E' *)Hom(K,lt) n(K0 E' )* 1,

as weIl as "Hilbert go" for E'* and (K ~ EI)* to conelude
that

1 .3.2 Suppose now that M' in AlK(EI) 15 given,
M = MI IE ' in ,the notation of I,3.0. Using a basis
E' over E to obtain bases lVi} and IWil for
those chosen for M' , one finds that

In terms of eomponents, this means that

and that

let} of
M from

p(M;,r)= TI p(MI;,,-I),
TI \E = T

for T E Hom(E,lt) and ,-1 E Hom(E'lt) restricting to T •

1.4 Field cf definition

1.4.1 If K' ~ K i8 a finite extension and M i8 defined over
*K , then p(N x K KI ) 18 clearly the image in (K I ~ E ~ a:) I

(E*)Hom(K',~) (K' @ E)* of p(M) via the natural map
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(as,wl}i,s as basis cf HDR(M) over K ® E • Far every
cr : K e-.~ the factor D 1s then the determinant of

(j

1'1I (M) ~r It' relative to the bases Iw.1o' li ,0.' \v= (J' on the
DR .. !\., 0' l\.

1eft, and (aSwi)cr'i,s' on the right. Thus,

« crl) )-r l * ( )*
D = det 0:s s '1 - E lC e..-.. E 0 IVcr ,0' K-cr

Second, note that the .undeterminacy af the: determinants

is just what 1s allowed for in the definition of p(M) :
On the one hand, changing the basis las} of K'/K multiplies

*ö(K'/K,o) by kcr , for same element k E K , so that the array

* *gets multiplied by k E K e--. (K 0 E) • On the other hand,
1.4.5 gives 6(K'/K,0) only up t~ a sign since no ordering was
imposed on lai IK = cr} , and in general, there does not seem
to be a reasonable way to fix these signa simultaneously in cr .
We are saved by the fact that p(M) is only weIl defined up to
factors in (E*)Hom(K,t) ! '

It ls'plain that &(K'/K)2 E K* e--. (K ® E 0 ~)* . Thus,
calling e(M') E 10,11 the rank of .M' over E taken module 2
we have shawn:

i±11

(

Sign cf the permutation t ~

of the set Gal(K'O"/KO)
s j......---.....

1.4.8 Remark. Recall the following characterizations of
ö(K'/K) , in the 'case that K' is normal over K. Far
0 1

: K' ~ C call 0 the restrictian of 0 1 to K. Then
I

x<'(ö(KI/K,a» c KlO' is the (at most quadratic) extension of
I

KO such that Gal(K'cr /~(ö(K'/K,cr») 1s the kernel of the·
sign character

I
Gal(K'O /KO ). ---+
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This and the condition that Ö(K'/K,cr)2 E (~)* characterize
the numbers defined by 1.4.5.

Furthermore, by the classical theory of the discriminant, there
15 an ideal b of ~ such that

where a a 15 the ring of integers of
K

the relative discriminant ideal of K,cr '

is

1 .5 Examples

1.5.0 Let n E~ and consider the n-th Tate.motive ~(n) in
ALw - cf. I,2.1 and I,2.2, Step 3. The comparison isomorphism

QB(n) ~ C~ ~DR(n) ® 0;

1s simply the ident1ty on ~ • Rational basea are, say, (2rri)n
on the 1eft, and 1 on the right. Therefore

p(lIl(n)) =

1.5.1 Let A be an abe~ian variety with complex multipli­
cation by E (necessarily a CM field) defined over K, aa
in 1,1.1. Assume that the galois cloaure cf E over ~ can
be embedded 1nto K. Let a E Hom(K,C) and T E Hom(E,~) ,
and recall the Hodge exponents n(a,T) of H1(A) defined in

I,1.7. Then there 15 a (holomorphic or antiholomorphic) 1-form

such that, for all e E E e..-. End a(Ao) , one has
K

T
e · wcr,T

(Note that, by assumption on K and E, eT E KO
.)
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This and the conqition that ö(K'/K,a)2 E (Ko)* characterize
the numbers defined by 1.4.5.

Furthermore, by the classical theory of the discriminant, there
is an ideal b of Kcr such that

5 (K ' /K, cr ) 2
. 0 cr = .,J cr' r,(j· b

2
,
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where a ° is the ring of integers of
K

the relative discriminant ideal of K'o'

1.5 Examples
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1.5.0 Let n E~ and consider the n-th Tate,motive ~(n) in
AL(jJ - cf. I, 2 .-1 and 1,2.2, Step 3. The comparison isomorphism
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on the 1eft, and 1 on the right. Therefore

p(IIl(n)) =

1.5.1 Let A be an abe~lan variety with complex multipli-
·cation by E (necessarilya CM fieId) defined over K, as
in I,1.1. Assume that the galois clo5ure of E over ~ can
be embedded into K. Let 0 E Hom(K,C) and T E Hom(E,t) ,
and recall the Hodge exponents n(cr,T) of H1(A) defined in
1,1.7. Then there is a (holomorphic or antiholomorphic) 1-form

such that, for all e E E c......End cr(AC') , one ha5
K

T
= e· wC',T

(Note that, by assumption on K and E, eT E KO .)
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las,wili,s as basis of HDR(M) over K ~ E • For every
o : K~~ , the factor D 1s then the determinant of

[j

idH (M)~.. IX: , relative to the bases IwiO" fi,a. 1 \K.= er' on the
DR ~K.,O'

left, and {Ca wi')}i ,on the right. Thus,
S cr ,s

= « cr 1 ) ) -r I * ( )*D det a s s I I - E lt ~ E ~ «: •
(J ,0 K-cr

Second, note that the .undeterminacy of the determ1nants

is just what 15 allowed for in the definition of p(M) :
On the one hand, changing the basis lasl of K'/K multiplies
6(K'/K,0) by· kO , for some element k E K* , so that the array

* *gets multiplied by k E K e--. (K ® E) • On the other hand,
1.4.5 gives 6(K'/K,o) only up to a sign sinee no ordering was
imposed on 10 1 IK = crl , and in general, there does not seem
to be a reasonable way to fix these signs simultaneously in 0' •

We are saved by the fact that p(~) 1s only weIl defined up to
factors in (E*)Hom(K,~) !

It 15 plain that Ö(K'/K)2 E K* e--. (K ® E @ ~)* . Thus,
calling €(M') E (0,1\ the rank of MI over E taken module 2
we have shown:

,
Gal (K,cr /K?)

the permutation t ~

1±1 I

(

Sign of

of the set
5 1-1---..

1.4.8 Remark. Recall the following charaeterizations of
6(K'/K) , in the case that K' 15 normal over K. Für
0' : K' ~ C call cr the restr1ction of 0' to K. Then

,
~(Ö(K'/K,o» c K'O i5 the (at most quadrati~ extension of

I
I~ such that Gal(K'O /KO(ö(K'/K,o») is the kernel of the
sign character

I

Gal(K'O /KO ). ----..
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Choosing any nonzero rational cyele Ycr ' so that ~ (A):::::I E..Yf'l '
we find that

(1.5.2) p (H1 (A) j C1 ,T) = JUJa , T '

Ya

up to the usua! undeterminacy. .

By the definition of an abelian variety, A admits a polari­
zation, i.e .. , a correspondenee

- lQ(-1) ,

and its Rosati involution neeessarily induees eomplex eonju-
gation e on E • So,

*
gives an E semilinear isomorphism

(1.5.3) H
1 (A) : H1(A)(-1) .

(We have H1 (A) = 1used the fact that H (A)v.) Henee,

(1.5.4)

p (H1 (A) ja, T) CI 2TT i .. P (H1(A) ( -1 ) j cr ,T )

:::::I 2TT i .. P (H1 (A) j 0 ,T c)

2fT i

This relation generalizes Legendrefs period relation from

elliptie curves to abelian varieties - here in the ease of
eomplex multiplication. It allows to express all periods of
A in terms of 2ni and periods of holomorphie 1-forms on A ..

There is also the following relation, whieh is valid under
quite general eircumstanees: see 1.6.6. below.

(1.5.5) p(H1 (A);ecr,T) :: p(H1 (A);f'l,CT) ..

I ....

Sinee E is a CM field, the right hand side mayaIso be

written as the complex eonjugate cf p(H1 (A);f'l,Te) .

1.6 Definition cf e~(M)

1 .. 6.0 It follows from 1.4.7, 1.5.4, and 1.5.5 that, for any

abelian variety A as in 1.5 .. 2, with real periods P(H1(A);cr,T).
the period P(RK/ mH1 (A» i5 essentially 2~i. We ahall
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now recall Delignets device to separate holamorphie from anti­
holomorphic periods~ ~ • We generalize it very slightly

by working over a totally real field K.

1.6.1 So, let M be, as befere, a motive with coefficients
in E defined ~ver K; but assume that K 15 a totally real
_n_um__be_r__f_i_e_l_d_. Then, for every cr : K e-.R c ~ , the realization
Ha(M) carries the involution

F : H (M)O
00 a

induced by complex conjugation on H reM) , or directly by
A

1 X c M xK ,0 a: - M xK , ccr C :::z M xK, 0 a:; •

Clearly, F~ ~ 1C(H~q) = H~ .

Write the + (resp. -) eigenspace of F~ as

H: ( M)' :::z I y . EH' (M) I F y = + y f •a 00_

Both are E submodules cf H (M) belng defined ovar K,
(T

the action of E on M commutes with F . Then
co

dimE~ ~«Ho~(M) ~ a:) n G> HPq) = dimE ® a:( G> HPq ) •
... Pfq a p> q cr

In order to include the HPP,s we impose the
a

1.6.2 Assumption: There i5 n E 1+,-' such that, for all
n : K~ C , the involution F~ ~ 1~ acts as multiplication
by n 1 on all spaces H~P that occur in the Hodge decompo­
sition of H (M) •

a

This hypothesis will be made whenever we speak of the per10ds

c!(M) , to be defined presently.

I (1.2.3) transfarms
cr

on HDR(M) @K " ~ •
1,7.3.1 above.~ Thus
the real structure

The comparison 1somorphism
on H (M) ~ ~ into 1 ~ c

a
1.4, for the proof; cf.
1s real with respect to

1.6.3
F ~ c
~

(See CDP] ,
H+(M) ~ R

cr
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by Tl 1 on all spaces H~P that occur in the Hadge decompo­
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This hypothesis will be made whenever we speak of the periods
c!(M) , to be defined presently.
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CI
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Choosing any nonzero rational eycle Ycr ' so that ~(A)=E·Yn '
we find that

(1.5.2) p ( H1 (A) ; cr ,T) = JUJ cr , T '

Vcr

up to the usual Wldeterminaey •.

By the definition of an abelian variety, A admits a polari- '
zation, 1.e., a correspondence

- lQ(-1) ,

and its Rosat! involution necessarily induees eomplex conju­
gation c on E. So, $ gives an E semilinear isomorphism

1 f'J •

(1.5.3) H (A) = H1 (A)(-1) .

(We have used the fact that H1(A) = H1(A)v.) Henee,

p (H1 (A) ;a ,T) m 2rr1 · P (H1 (A) ( -1 ) ; cr ,T )

= 2rr i .. P (H1 (A) ;cr ,T C )

2iTi

This relation generalizes Legendre's period relation from

elliptie curves to abelian varieties - here in the ease of
eomplex multiplieation. It allows to express all periods cf

A in terms cf 2rri and periods of holomorphie 1-forms on A •

There 15 also the following relation, which ls valid under
quite general eircumstanees: see 1.6.6. below.

(1.5 .. 5)

Sinee E is a CM fleld, the right hand aide mayaIso be

written as the complex conjugate cf p(H1 (A);(T,TC) •

1.6 Definition of e~(M)

1.6.0 It follows from 1.4.7, 1.5.4, end 1.5.5 that, for any

abelien variety A as in 1.5.2, w1th real periods P(H1(A);n,T).
the perlod P(~/~H1(A» 1s essentially 2~1 • We shall
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Recall the comparison of the Hodge filtration on HDR(M) with
the Hodge decomposition of H (M)

a

I (1$ HP I ,q I) .
C1 pi 2:P cr

as in 1.6.2, define the

of HDR(M) by
K~E linear subspace

and put

Note that, if H (M) is hamogeneaus af even weight ~ = 2p ,

then F"HDR(M) ~ FPHDR(M) and F-nHDR(M) = FP+1 HDR (M) • If
w i8 add, then 1.6.2 i5 vacuous, and F+HDR(M) = F-HDR(M) =
F(W+1)/2

HDR
(M) •

Then a count of dimensions shows that the isomarphism I of
1.1.1 induces isomorphisms of free K 0 E ® ~ modules

"

I± : $ H~(M) ~ (t --::..... HnR (M) ~ a: ,
o

where we have put

-
HnR(M) = HDR(M)/F+HDR(M)

1.6.5 In analogy to p(M) above, we define (under the
assumpt~on that K 15 totally real, and that 1.6.2 holds):

+ "to be the d~term1nant of I~, computed wi~h ~espect to E bases

of the H~(M)'S on the left~ and a K ~ E basis of HDR(M) , on
the right •.
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As with p(M) , write the coordinates:

Note that, if K = ~ , one has simply

1.6.6 Remark.
assumption on

In the general situation of 1.1, with no
K er E, we have

F
00

: H (M)
a - Hc (M)

. 0

for all a : K e-. t . So, one can choose E bases 1Yia 1 cf
Ha(M) such that Foo(Yia) = Yi(ea) , for all a. Sinee 1 ® e
eeineides with Foo on HDR(M) - via I - one sees that

p(M;Ccr,CT) = p(M;a,T)

up to the usual indeterminacy •

1.7 e and p
~

Consider the following

1.7.0 Situation. Let K and E be totally imaginary number
fields, and M a motive w1th coefficients in E defined over.
K , of rank r over E. Let Xo be a totally real subfield

of K (e.g., Ko=~)' and put Mo = RK/Ko(M) • Assume (for

simp11eity) that M 1s homogeneous of we1ght w. Suppose that,
for all a E Hom(K,~) and T E Hom(E,~) , the subspace

H (M) SE ~ c H (M) ~ ~a ,T er

1s of pure Hodge type (n(o,T),w-n(a,T), for same n(a,T) E~ .
(If r = 1 , this 1s automatie and has been used, before~ for
instame, in the proof cf I,5 .1.) Note ,·that, for all 5 E Aut C ,

w w
one has n(5(1,51) = n(a,T) • Finally, assume that H2 ' 2' = 0

(J

for all a : K c.~ .

Under these circumstances we ahall now compute the periods
C±{Mo ) 1n terms of p(M) , using basically the same method as



- 98 -

As with p{M) , write the coordinates:

Note that, if K = ~ , one has simply

+ * *c-{M) E (E ~ ~) JE •

1.6.6 Remark.
assumption on

In the general situation of 1.1, with no
K or E, we have

F . :
00

H (M)
a

- Hc (M)
. cr

for all cr : K e-. t . So, one can choose E bases 1Vicr} of
Ha{M) such that F~{Yia) = Vi{ca) , for all a _ Since 1 ~ c
coincides with F~ on HDR{M) - via I - one sees that

up to the usual indeterminacy .

1.7 c and p

·Consider the following

~1.7.0 Situation. Let K and E be totally imaginary number
fields, and M a motive with coefficients in E defined over
K , of rank r over E. Let Ko be a totally real subfield
of K (e.g., Ko=~)' and put Mo = RK/ K (M) • Assume (for

o
simplieity) that M is homogeneous of weight w. Suppose that,
for all cr E Hom{K,~) and T E Hom{E,t) , the subspace

H (M) OE ~ c H (M) ~ Ccr ,T a

is of pure Hodge type (n{o,T),w-n{a,T», for same n{a,T) E~ .
(If r = 1 , this is automatie and has been used before; for
instan::e, in the proof of 1,5.1.) Note that, for all s E Aut q:

w w
one has n( so, ST) = n{ (J, T) • Finally, assume that H2 ' 2 = 0

o
for all a : K C+~ •

Under these circumstances we shall now compute the periods
C±{Mo ) in terms of p(M) , using basically the same method as
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Recall the comparison of the Hodge filtration on HDR(M) with
the Hodge decomposition of H (M)

(J

I (EEl HP I ,q I) •
o pl~p (J

as in 1.5.2, define the

of HDR(M) by

K ~ E linear subspace

and put

= 1($ (!) w>q) •
cr p>q er

Note that, if H (M) i5 homogeneous of even weight w = 2p ,
then FrrHDR(M) ~ FPHDR(M) and F-rrHDR(M) = FP+1 HDR (M) . If
w 1s add, then 1.6.2 15 vacuous, and F+HDR(M).= F-HDR(M) =
F(W+1)/2HDR (M) •

Then a count of dimensions shows that the isomorphism r of
1.1.1 induces isomorphisms af free K 0 E ~ ~ modules

r± : (f) H~(M) ~ a:~ HOR(M) ~ (t ,

a

where we have put

-
HOR(M) = HDR(M)/F+HDR(M)

1.6.5 In analogy to p(M) above, we define (under the
assumption that K 1s totally real, and that 1.6.2 holds):

C±(M) E (K ~ E ~ ~)*/(E*)Ham(K,~). (K ~ E)*

to be the determinant of I~, computed with respect to E bases
of the H~(M)'S ~n the left~ and a K ~ E-ba~is cf HnR(M) , on

the right.
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in 1.4.2 above. (Cf. (DPJ, 8.16.)

1.7.1 Let 00 E Hom(Ko,t) , and start by ehoosing an E
basis of H+ (Mo) = (~ H (M)J+ : Denote by 5(00) the

0 0 01 =0: aKo 0

set module the action of complex con-

jugation c. For each ä = {a,ea) E 5(00) ,
(Y i li-1 r 'af H (M) over E, and takea - , ••• , a

ehoose a basis

(Yio + Foo(Yio)li=1, ••• ,r;l a ,eal E 8(00)1

as E basis of H;o(Mo )' - Note that F~(Via) E Hca(M) - see

remark 1.6.6 -, and that our eonstruetion ,doss. not depend on
the ehoiee of the representatives a E a .

1.7.2 There i5 a,unique direet faetor (K ® E)+ af K ~ E
such that

=

with n(a,T) as in 1.7.0; and the quotient H~R(Mo) of
HDR(Mo ) is isomorphie (as Ko ~ E module) to the direct faetor

Starting from a basis {wi } of HDR(M) over K 0 E , with
components

cansider the

{Wi ,er I i=1 , • • • , r; cr E 8 ( a0) J ,

where wi - = w. , if a E cr and n(a,T) < w2,a,T ~,a,T

Then we find
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( n p(M;O,T)). n+(ao,T)
alK = °0

o

n(o,T)<~

where n+ E (Ko ~ E 0 ~)* - weIl determined up to

* Hom(K ,~) *
(E,) 0 • (Ko ~ E) - is the determinant of the identity
on H;R(Mo ) 0 ~ • computed with respect to the basis +
{Wi,ö1i,a ' on the 1eft, and some Ko 0 E basis of HDR(Mo) ,
on the right. To compute n+ note first that (K® E)+ . is, in
fact, a free 'Ko 0 E module, because Ko · i5 tota11y real.
Pick a basis of it:

If fWili=1,~•• ,rl, i5 the K ~ E basis of HDR(M) used
befare, with wi projecting to w! in H;R(Mo ) , then

le j w1 l j ,i i5 a *Ko ~ E basis cf H~R(Mo) • Thus, writing
6+ E (K ~ E ~~) - weIl determined, as usual, up to

,Q

* Hom(Ko'~) *
(E ) • (Ko ~~) - the array with components

we see that

•

where e(M) = r(mod 2)

1.7.6 Like in 1.4.8, let us also give an abstract characteri­
+zation of ö - cf. (HS], 4.5.

Start with one fixed
independently, choose

T O E Hom(E,C) • For each 00 : Ko e-. ~

Ö+(OO,T
O

) E C* such that the group
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= ( n p(M;a,T». n+(Oo,T)

alK = °0o

n(C',T)<~

where n+ E (Ko 0 E ~ ~)* - weIl determined up ta

* Hom(K ,~) *
(E ) 0 • (Ko ~ E) - i5 the determinant of the identity
on H~R(Mo) 0 ~ , computed with respect to the basis +

{Wi,cr1i,cr ' on the le~t, and some Ko ~ E basis of HDR(Mo) ,
on the right. Ta compute n+ note first that (Kl&l E)+ . is, in
fact, a free Ko ~ E module, because Ko 1s totally real.
Pick a basis ·of it:

If Iw i !i=1, ••• ,rl 15 the K ~ E basis cf HDR(M) used
befere, with wi projecting te wr· in H~R(Mc) , then
{e j w1 l j ,i 15 a *Ko ~ E basis cf H~R(Mo) . Thus, writing
6+ E (K

Q
~ E ~~) - weIl determined, as usual, up to

* Hem(Ko'~) - *
(E ) · (Ko 0~) -- the array with components

j=1, ••• ,(K': Ko]/2; )

(1 \ K
o
= cr 0 ' n( cr, T ) < ~

we see that

where e(M) = r(mod 2)

1.7.6 L1ke in 1.4.8, let us also g1ve an abstract characteri­
+zation of ö - cf. CHS), 4.5.

Start with one fixed
independently, choose

Ta E Hom(E,C) . For eech 00 : K
o
~ ~

Ö+(OO,T O) E t* such that the group
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in 1.4.2 above. (Cf. [DP], 8.16.)

1.7.1 Let cr o E Hom(Ko,t) , and start by choos1ng an E
basis of H+ (Mo) = C m H (M)]+ : Denote by S(a o ) the

0 0 0 I = a 0Ko 0

set {o: K~ ~latKo= aal modulo the action of complex con-

jugation c . For eech ö = la,cal E 5(0
0

) ,

{Vi 11- 1 r 'of H (M) over E, and takecr - , ••• , a

choose a basis

1Yia + F~(Yia)li=1, ••• ,rjlo,ccrl E 5(00)1

as E basis of H+ (H ). - Note that F (Yi ) E H (M) - seea 0 0 00 0 ' ca
remark 1.6.6 -, and that our constructlon does· not depend on
the ehoice of the representatives cr E a .

1.7.2 There 1s a unique direct factor (K 0 E)+ of K 0 E
such that

=

with n(o,r) as in 1.7.0; and the quotient H~R(Mo) of
HDR(Mo) 15 isomorphie (as Ko ~ E module) to the direct factor

Starting fram a basis {wif of HDR(M) over K ® E , with
components

consider the

where w ­1,0,1" = wi T' if,a , a E ä and n(o,,-) < ~

Then we find
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a for all a : K c..... C with 0 IK = 0' 0 J.

Gal(Q/K 0) w w 0
n( SO' , T 0) < 2 (:) n( 0, T 0) < '2

acts on 6+(OO,T
O

) via the sign character

sign of the permutation of the set
Sl----( w )

tCf IK
o

= 0' 0 In ( Cf , T 0) < 21 in~uc ed by 5

It remains to define ö+(OO,pT
O

) , for all 00 E Hom(Ko,t)
and p E Gal(~/~) • We put

+( ) ( ) +( -1 )PÖ 0o,P'T o = € ";0'0 · ö 0 00,T O '

where the signs e(p;oo) are defined as follows. For each
00 : Ko c.~ , choose an ordering of the set of infinite
places of K lying abeve the place of Ko induced by 0

0
•

Note that, for any T , the set {alKo =aoln(a,T)<~1 1s

in bijection w1th the places of K above 00 • Then· €(~;ao)

1s the s1gn of that permutation of the places above 0'0 which
transfarms the chosen order1ng inte the image under p of

-1the chosen ordering on the set of places above p 00 - The
choices made are'compensated by the indeterminacy of ö+ up

* Hom(Ko'~)
to (E)

1.7.7 Let us now derive the analogue ef 1.7.3 for c • In

the notation of 1.7.1,

lYia - Foo(Yia)\i=1, ••• ,r;(a, co l E S(oo)l

1s a basis cf H- (Mo) over E . Note that here we have to
. °0

take a particular choice of representatives lai of S(oo) .
One way to da this - which we adopt - is agaln to fix one
embedding 'T a : E e.......,. a: , and to use the set

Ia Ia IK
o

= (j 0 and n (a , T 0) < ~ I ·

Dafine accerdingly,

Wi - E HD-R(Mo ) ~K ~ = Hn+R(Mo ) 0K ~
,0 0,°0 0,°0
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by their components:

if - and n(cr,T)' < ~ > n(cr,T o)tW1 ,a,T
, a E cr

I"V

W - -i,O,T - if - and n(a,T). < ~ < n(cr,T o )-w a E 0i,O,T ,

This gives

= ( r-T p(M;C1,T»"n-(Oo,T) ,
a IK

o
=00

n(a,T)<~

where n­
placed by

1s defined like n+ in 1.7.3, w1th' {wi-I
,0'

IW1 ,ä l · In particular, 11ke in 1.7.5,

n- = (6-)€(M) ,

re-

where the quotient 5+/ö- is given - up to the usual indeter­
minacy - by the rule

(1.7.10)
Ö+(OO,T)

6-(°
0

,,,)

#1 alK = °0 In( 0' ,,. ) < ~ < n( a , T 0) I
= (-1) 0

for all 0'0 E Hom(Ko'~)' T E Hom{E,t) , and T O as fixed
above.

1.7.11 Corrigendum. Formula 1.7.10 emends our foolish ne­
gliBence at the end of the proof of (GS], 9.3, and again in
(GS'], 3.3. There we asserted, for Ko = Q, K quadratic,
and r=1 , that c+ = c- .' In "p roving ll Deligne's conjecture
in that case, we compensated this mistake by overlooking the
fact that the complex conjugate of 2ni 15 -2ni, in the
application of [DP], 5.18. The same false replacement of c
for c+ still slipped inta (HS], formula 11 - cf. instead,
3.1. below -, where it was finally caught by Blasiu5.

1 •7 • 12 Lemma

(i) ö:t depend only on Ko ' K, E, and the ;amilY of "CI'I­

types" of K ({a E Hom(K,lC) !n(a ,T) < ~1)T : E c:.... a: •
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by their components:

if o E - and n(a,T) ,., ( )t W1 ,a,T
, cr < ~ > n a,T 0

rv
W. - =
~,a,T if - and n(a,,-) < ~ < n(o,,.o)-w 0' E a1,a,r ,

This gives

= ( r-T p(M;O',r)·D-(oo,T)
°' IKo = °0

n(a,,-) <~

where n­
placed by

15 defined like n+ in 1.7.3, w1th twi-}
,0

t~i -I" · In particular, like in 1.7.5,
,0

D- = (6-)e:(M) ,

re-

(1.7.10)

where the quotient ö+/ö- 1s given - up to the usual indeter­
minacy - by the rule

~+(a0 ' T ) *1 alK = a0 In ( a , T ) < ~ < n ( a , T 0) I
_______ = (-1) 0, ,

5-(OO,T)

for all 0
0

E Hom(Ko'~) , T E Hom(E,t) , and T O as fixed
above.

1.7.11 Corrigendum. Formula 1.7.10 emends our foolish ne­
gligence at the end cf the proof cf (aS], 9.3, and again in
[GS'J, 3.3. There we asserted, for Ko = (l, K quadratic,
and r=1 , that c+ = c- • In "prcving" Deligne's eonjeeture
in that ease, we eompensated this mistake by overlooking the
fact that the complex conjugate of 2ni 1s -2ni, in the
application of [DP] , 5.18. The same false r~placement of c
for c+ still slipped into [HS], formula 11 - cf. instead,
3.1. below -,.where it was finally caught by Blasius.

1 •7 •12 Lemrria

(i) ö± depend only on Ko ' K, E, and the family cf "CI-1­

types" of K (10 E Hom(K,tt) In(a ,r) < ~}),. : E c..... a: •
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° for all a : K c:... C with 0 IK =oo .. j-
Gal(~/K 0) w w 0

n ( so ,T 0) < ~ ~ n (0 ,T 0) < ~

acts on 6+(ao ,T o ) via the sign character

sign of the permutation of the set'
s.--(. w )

t0' IK
o

= 0' 0 In ( cr ,T 0) < '2 ) induc ed by s

It remains to define ö+(OO,pT O) , for all 00 E Hom(Ko'~)

and p E Gal(Q/Q) _ We put

where the signa e(p;oo) are defined as follo~s. For each
00 : Ko c.t ,'choose an ordering of the set of infinite
places of K lying above the place of Ko induced by 00 ­

Note that, for any ,. , the set lal
Ko

=aoln(a"")<~l 1s

in bijection with the places of K above 00 - Then e(p;oo)

1s the sign of that permutation of the places above 00 which
transforms the chosen ordering into the image ~der p of
the ehosen ordering on the set of places above p-1 o . - The

. 0
ehoices made are compensated by the indeterminacy of ö+ up

* Hom(Ko'C)
to (E)

1.7.7 Let us now derive the analogue of 1.7.3 for c • In
the notation of 1.7.1,

{Yia - F~(Yia)\i=1, .•• ,r;lo,cal E S(O'o)}

i5 a basis of H- (Mo) over E • Note that here we have to
0'0

take a particular ehoice of representatives {al of 3(00) •

One way to do this - wh1ch we adopt - 1s agaln to fix one
embedding T 0 ,: E C-.+ a: , and to use the set

to la \K = 0'0 and n(a,T o ) < ~l ·
o.

Define accordingly,
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2' * Hom(K ,e) *
(ö±) E (E ) 0 (Ko ~ E) .

(11i) Let K'/K be an extens10n cf degree n , and denote by

6'+ E (Ko @ E ~ C)* the ö+-factor relative to Kt/Ko '

and the exponents n(ol,,-) = n(cr\K,T) . Then, for all

00 E Hom(Ko'~) and T E Hom(E,~) :

where ö(K'/K) has been defined in 1.4.5/6.

(iv) If Ko = ~ , and K a CM field with maximal real sub­

*field F , then - up to a faeter in (E ® 1) -,

where we take ene and the same roet of the absolute

diseriminant of F , for all embeddings of . E into ~.

Parts (i) and (ii) are plain. In part (iii) note that the
*various indetermlnaeles aetually da work out: If, for k E K

ö(K'/K,o) i5 replaced by kO 6(KI/K,0) , then we obtaln in

the formula the faetor

0**
~ kO E (K o.ET ) c C

0lK =00 0

o w
n(a,T)<2

The proof of (111) is straightforward. (iv) is also easy to
prove onee one observes that Hom(F,~) naturally identifies
itself with S(id~) • - Cf. (DP), 8.17; and 1.4.8 above.

1.8 Applieation to Hecke characters

We now resume the discussion of the tlunique U motive M(X) in

~~V(E) whieh we have attached in chapter I (1,4, 1,5; also
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I, 6.5.6) to a given algebraic Hecke character I X of K
with values in E • Write its periods as

with components p(Xicr,T) • And if RK/~~(X) satisfies hypo­
thesis 1.6.2, it makes sense to write

with components C±(X;T) •

Recall that, by definition (I, 3.3), M(X) 16 6~ rank 1 over
E , and that 1ts Hodge decomposition 1s given by the invariants
n(cr,T) attached te X in m,4, the weight cf the Hodge
structure being the weight w cf X : see I, 6.1.5. It fol~ows

that, if none of the n(cr,T)t s equals ~, th~n

(1.8.1) c±(x) = ö±(X) ( ~ p(X;O,T))T
n(cr,T)<~

In fact, this 15 just a reformulation of 1.7.3"resp. 1.7.8,
with ö!(x) E (E ~ ~)*/E~ equal to the faeter given by 1.7.4,

I

resp. 1.7.10, relative to the data ~,K, E, an~ the n(cr,T)'S
of X - see 1.7.12 (i).

1.8.2 In a nutshell, the observation which i5 basic to our
work 15 that, by theorem I, .5.1, all these per10ds do not
depend on the particular geometrie construction of a motive

. M( X) !!! Ai~v(E) attached to X •

As a first illustration of this principle we shall now give a
list of six basic properties cf the periods p(X) all cf
which follow from two different ways of writing;the M(x) in
question. These isomorphisms of motives are all'easily cheeked
on the X-adie representations, i.e. precisely, by verifying
that the motives on both sides of what we shall write as an
equality are motives for one and the same eharacter. In each
ease it 15 ind~cated, how the period relation follows from the
corresponding isomorphism of .motives. - The reader will notiee
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I, 6.5.6) to a given algebraic Hecke character X of K
with values in E . Write its periods as

with components P(XiO,T) . And if RK/ a1(X) satisfies hypo­
thesis 1.6.2, it makes sense to write

with components C±(X;T) .

M(X) is of rank 1 over
i5 given by the invariant5
weight of the Hodge

see I, 6.1.5. It follows
w
~ , th~n

Recall that, by definition (I, 3.3),
E , and that its Hodge decomposition
n(o,T) attached to X in ~,4, the
structure being the weight w cf X
that, if none of the n(o,T)I S equals

(1.8.1) c±(x) = ö±(X) ( n P(Xicr,T)T
n(cr,T) <~

In fact, this i5 just a reformulation of 1.7.3, resp. 1.7.8,
+ * *with ö-(x) E (E ~ ~) /E equal to the factor given by 1.7.4,

resp. 1.7.10, relative to the data ~, K, E, and the n(a,T)IS
cf X - see 1.7.12 (i).

1.8.2 In a nutshell, the observation which is basic to our
work is that, by theorem I, 5.1, all these periods da not
depend on the particular geometrie construction of a motive
M(X) in Ai~V(E) attached to X .

•

As a first illustration of this principle we shall now give a
list cf six basic properties of the periods p(X) all of
which follow from two different ways of writing the M(X) in
question. These isomorphisms of motives are all easily checked
on the x-adie representations, i.e. precisely, by verifying
that the motives on both sides of what we shall write as an
equality are motives for one and the same character. In each
case it is ind~cated, how the period relation follows from the
corresponding isomorphism of motives. - The reader will notice
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2 * Hom(K ,e) *
(6±) E (E ) 0 (Ko ~ E) .

(i11) Let K'/K be an extension cf degree n, and dencte by

6'+ E (Ko ® E ~ t)* the 6+-factor relative to KI/Ko '

and the exponents n(crl,T) = n(cr\K,T) . Then, for all

00 E Hom(Ko'~) and T E Hom(E,~) :

where ö(K'/K) has been defined in 1.4.5/6.

F , then - up to a faetor in

(iv) If Ko =

field

K a CM field with maximal real sub­

*(E ® 1) -,

+..,Je 1Ö = disc(F) ,

where we take one and the same roet cf the absolute

diseriminant cf F, ~or all embeddings o~ E inte ~ .

Parts (i) and (li) are plain. In part (il1) note that the
*veriaus indeterminacies actua~ly da work out: If, for k E K

6(K'/K,a) is replaced by kO 6(K'/K,o) , then we obtain in
the farmula the faetor

The proof of (ii1) 1s straightfoniard. (iv) is also easy to
prove once one observes that Hom(F,~) naturally identifies
itself with S(id~) • - Cf. CDP], 8.17; and 1.4.8 above.

1.8. Application to Hecke characters

\'fe now resume the discussion cf the "unique" motive M( X) in
4~V(E) whieh we heve attached in chapter I (1,4, 1,5; also
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the analogy of our list to the tab1e in (DB], § 2.

1.8.3 Let X and Xl be two algebraic Hecke characters of
K with va1ues in E. Then

Sinee the motives are of rank 1 ovar E, it is e1ear that
the i50morphism on the 1eft implies the simple period relation
on the right.

1.8.4 Let E be ~, and denote by n the absolute norm of
ideals of K. '.Then, for all n E 2l ,

This follows fram 1.5.0 and 1.4.1. Note that, if K i5 also

~ ,then (2TIi)~n ~ e(~)n~in) - see I, 2.1 for the action of

F on the Tate motive.
00

1 .8.5 Remark. If X is the Hecke charaeter of H1 (A)" , for
A an abelian variety with complex mu1tip1ieation, like in 1,1,
then - -1 Thus·1.8.3 and 1.8.4 reprove nLegendre'sX.X =:N. .

.~

period relation", 1.5.4._0-

1.8.6 Let EilE be a finite extension, X an algebraic
Hecke character of K with values in E. Then, with i the

* *inc~usion E e-. EI (also viewed as homomorphism of algebraic
groups) ,

This 15 just an application of 1.3.1.

1.8.7 Let agaln EilE be a finite extension, but let a
Hecke character Xl of K with values in Er be given.

* *Then, denoting NEljE the norm homomorphism E' - E
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Recalling that detE was defined in 1.1.2 (and the restriction
of coefficients IE in I, 3.0), the period relation is implied
by the isomorphism, because of 1.1.3 and 1.3.2.

1.8.8 Let K'/K be a finite extension, and denote by NK'/K
the relative norm, on ideals of K' • Then, for X an algebraic

* *Hecke character o~ K, and j : K e-. K' the inclusion,

as follows from 1.4.1.

1.8.9 Given again a finite extension K'/K, but a Hecke
character X' of K' with values in E, write now j for
the inclusicn cf ideals of K into ideals of K' , and

* *NK'/K for the norm K' - K . Let €K'/K be the finite
order character of K which, via Artin reciprocity, corres-
ponds to the character

of the

Gal(K/K) - {± 11
(Sign of the permutation

S 0-- \G(X/K)/G(K/KI) given by s

Then the following isomorphism of motives 15 an easy gene­
ralization cf Prop. 3.2 cf (Mar], p. 35 f.

The period relation follows from 1.1.3, 1.4.2, 1.8.3, and the

fact that P(€K'/K) = ö(K'/K) which will be proved in 3.2
below.

1.8.10 It is usually elear how these formulas fcr'the periods
p can be used to derive relations between periods c±, using
1.7, resp. 1.8.1. However, eare must be taken not to apply
1.8.3 inside 1.8.1, unless both factors in question satisfy
the conditions of 1.7.0 with the same system of "CM-types"

Icr!n(a,T) < ~}T E Hom(E,~)
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Recalling that de~ was defined in 1.1.2 (and the restrietion
of coefficients IE in I, 3.0), the period relation 1s implied
by the isomorphism, because cf 1.1.3 and 1.3.2.

1.8.8 Let Kt/K be a finite extension, and denote by NK'/K
the relative norm, on ideals of KI • Then, for X an algebraic

* *Hecke character o~ K, and j : K e-. Kt the inclusion,

as follows from 1.4.1.

1.8.9 Given again a finite extension Kt/K, but a Hecke
character Xl of Kt with values in E, write now j for
the inclusion of ideals of K into ideals of KI , and

* *for the norm KI - K • Let eKt/K be the finite
character of K which, via Artin reciprocity, corres­
to the character

Gal(X/K) - {± 1}

~
Sign of the permutation cf

s t------

G(K/K)/G(R/Kt) given by s

Then the following 1somorphism of motives 1s an easy gene­
ralization of Prop. 3.2 of ( Mar] , p. 35 f.

The period relation follows from 1.1.3, 1.4.2, 1.8.3, and the

fact that P(€K'/K) = ö(K'/K) which will be proved in 3.2
below.

1.8.10 It 1s usually clear how these formulas far the periods
p can be used to derive relations b'etween per10ds c±, using
1.7, resp. 1.8.1. However, care roust be taken not to apply
1.8.3 inside 1.8.1, unless both factors in question satisfy
the condit1ons of 1.7.0 with the same system cf "CM-types"

{cr ln(cr,T) < ~JT E Hom(E,~)
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the analogy of our list to the table in [DEJ , § 2.

1.8.3 Let X and Xl be two algebraic Hecke' characters of
K with values in E . Then

Since the motives are of rank 1 over E, it is clear that
the isomorphism on the left implies the simple period relation
on the right.

1.8.4 Let E be ~ I and denote by n the absolute norm cf
ideals of K.' Then , for all n E 7l I

This follows from 1.5.0 and 1.4.1. Note that , if K 1s also

~ ,then (2rri)~n = c(_)nONn ) - see I, 2.1 for the action of

F on the Tate motive.
CX]

1.8.5 Remark. If X 15 the Hecke characte~ of H1(A) , for
A an abelian variety with complex multiplication, like in I,1,
then X. X= :N~1 • Thus 1.8.3 and 1.8.4 reprove IILegendre I 5

period relation", 1.5.4.

1.8.6 Let EilE be a finite extension, X an algebraic
Hecke character of K with values in E. Then, with i the

* * 'inclusion E e-. EI (also viewed as homomorphism cf algebralc
graups) ,

This 15 just an application of 1.3.~.

1.8.7 Let aga1n EilE be a finite extension, but let a
Hecke character Xl of K with values in EI be given.

iE- *Then, denoting NEIIE the norm homomorphism EI - E
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See section 3 for the most common illustrations cf this
problem.

A relation deduced, with no such difficulty, by combining
1.7.12 (1), 1.7.12 (111), 1.8.3 end 1.8.8, is the formula
which plays a crucial role in (HS]-: If K,KI and 'X. are
like in 1.8.8, and n = [Kt :KJ , then

(1.8.11)
c+(x 0 NK, / K) =

c+(xn )

2. Periods end L-values

As usual, let
character of

K and E be number fields, and X
K .with values in E.

a Hecke

2.0 Let T E Hom(E,~) • An integer 5 is called critical
for (the L-function of) XT , if the r-factors on both sides
of the functional equation of L(XT ,.) do not have (a zero
or) a pole at 5. It 1s an easy exerc1se to work out what
this means, using the, formulas in 0, § 6 - cf. [DP], 1.3, 3,

8.15 -

2.0.1 If {a,ccrl , for 0 E Hom(K,C) , induces a complex
place of K, then n(a,T) has to be different from ~,

for a critical s to exist. Thus critical 1ntegers (for
Hecke characters) can only oceur, If K 1s totally real or
totally imaginary, and in the latter case, one has a disjoint
union

Hom(K,«:) x Hom(E,lt.) = {(a,T)ln.(a,T)<~1 0 i(O"T)ln(cr,T»~) .

2.0.2 If K is totally real, the character ~~n - with ~ of
finite order and n E~ - admits critical integers 5 if and
only if, for all infinite places y of K, the constants €y

defined for ~~ in 0, § 6 are equal to, say, e E {0,1} • Then
the set of all critical 5 for ~~n 15

{s > nls =n+e(mod 2)f U {s ~ nls ~ n+e(mod 2)} •

2.0.3 If K is totally imaginary, critical 5 exist for
XT

, if and only 1f, for all 0 ,

w·<-
2 or n(o,T) > ':/

2
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If this 15 SO, then the set of critical 1ntegers for X­
independently of T - 1s the interval

In all casea, we can therefore say 11 eritical for X n, .inde­
*pendently of T • - Recall the notation L (X,s) from 0, § 6;

+ .
and c (x) from 1.8.

2.1 Theorem [Siegel, Blasius, Harder]. If s 1s critical

for X , ~

*L (X,s)
E E ~ 1 C--+ E • ~ •

In other words, Delignets conjecture (DP] , 2.8 1s true "for
all algebraic Hecke characters".

For a discussion of the hlstory and overall structure of the
proof, see (HS], § 5. Let us just recall that SiegeIts part
of the theorem concerns the ease where K 1s totally real;
BlasiuB proves it for K a CM field; and Harder extends
the information provided by Blasius t result to all totally
imaginary fields. For Blasius t part, see his paper CB 1J ;
Harderls results have not been written up yet.

2.2 Remark. Dne of the key constructions 'in (BIJ 1s the
conatruction, for M= RK/~ M(X) , of a motive that playa a
role analogous to det~ in 1.1.3, with p replaced by c+.
One csn use this language to derive all the formulas relative
to c± which we heve presented.

3. Twisting

3.0 We continue to consider an algebraic Hecke character X
of the number field K with values in the number fleld E.
Assume that K i5 totally imaginary, and that X admits
some critical integer 5 - see 2.0.1 .
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If this is so, then the set of critical integers for X­
independently of T - is the interval

In all cases, we can therefore say 11 eritical for XII, inde­
*pendently of T • - Recall the notation L (X,s) from 0, § 6;

+ .
and c (X) from 1.8.

2.1 Theorem [Siegel, Blasius, Harder]. If s i5 critical

for X , then

*L (X,s)
E E 0 1 e--. E ~ ~ •

In other words, Deligne's conjecture (DP] , 2.8 1s true IIfor
all algebraic Hecke characters".

For a discussion of the history and overall structure of the
proof, see CHS], § 5. Let us just recall that Siegells part
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the information provided by Blasius I' result to all totally
imaginary fields. For Blasius' part, see his paper (B IJ ;
Harder's results have not been written up yet.

2.2 Remark. One of the key constructions in [BI] 1a the
construction, for M = RK/~ M(X) , of a motive that playa a
role analogous to detEM in 1.1.3, with p replaced by c+
One can use this language to derive all the formulas relative
to c± which we have presented.

3. Twisting

3.0 Ws continue to consider ~ algebraic Hecke character X
of. the number field K with values in the number field E.
Assume that K 18 totally imaginary, and that X admits
some critical integer s - see 2.0.1 •
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See section 3 for the most common illustrations of this
problem.

A relation deduced, with no such difficulty, by combining
1.7.12 (i), 1.7.12 (ii1), 1.8.3 and 1.8.8, is the formu1a
wh1ch playa a crucia1 ro1e in (HS]: If K,Kt and X are
like in 1.8.8, and n = [K' :KJ , then

(1.8.11)

2. Periods and'L-values

As usual, let
character of

K and E be number fields, and X
K .with values in E.

a Hecke

2.0 Let T E Hom(E,t) • An integer s 1s called cr1tical
.=:::.::=.

for (the L-function of) XT
, if the r~factors on both sides

of the functiona1 equation of L(XT ,.) do not have (a zero
or) a pole at s. It 18 an easy exercise to work out what
this means, us1ng the formu1as in 0, § 6 - cf. (DP], 1.3, 3,
8.15 - :

2.0.1 Ii, {a, ca I , ~or 0 E Hom(K, C) , induces a complex

place of K, then n(a,T) ha5 to be different from ~,

for a critical s to exist. Thus cr1tical integers·(for
'Hecke characters) can only occur, if K 15 totally real or
totally imaginary, and in the latter case, one has a disjoint
union

Hom(K,«:) x Hom(E,lI:) = {(a,T) In,(a,T) <~} (J 1(0,,.) \n(o,,.) > ~l .

2.0.2 If· K 1s totally real, the character ~IDn - w1th ~ of
finite order and n E~ - admits critical integers s if and
only if, for all infinite places v of K, the constants €v
defined for ~~ in @, § 6 are equa1 to, say, € E {O,1} . Then
the set of all critical 8 for ~~n is

18 > nls =n+e(mod 2)} U (s ~ n\s $ n+e(mod 2)} .

2.0.3 If K is totally imaginary, critical s' exist for
XT

, if and only if, for all 0 ,

n( cr, T) < ~ .
2 or >:::!

2
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3.1 Write 1'1 for the absolute !lQ.!]! (of ideals of K) • Then--

_.
..."

(This.rectifies formula (11) of (HS] - cf. 1.7.11.)

3.1.1 is a special case of (DP], 5.1.8, which follows from
the characterizing properties of m(1) - see I, 2.1. - In
trying to d~rive 3.1.1 from 1.8.1 (for xI~:1) , 1.8.3, and
1.8.4, the subtlety 18 that c± becomes c+ because, for
Ya E Ha(M(x)) and a E ~B(1) ~ E ,

Ya ~ a + F~(Ya ~ a) = (Ya - F~(Ya)) ~ a

cf. 1.7.7.

3.2 Next, let ~ be a Hecke character of K of finite order,
with values in E. (In view of 1.3.1, there is no' lass of
generality, for our period calculations, in assuming that ~

and X both take values in the same field E. This will be
assumed in those of the following formulae which involve both

. IJ. and x.) Then 1 •.8.3 gives :

We shall compute p(~) using the explicit description of the
Artin motive M(\J.) given in I, 2.4.1.

3.2.1 Let F be the finite abelian extension cf K correspon­
ding to ~ by class fleld theory. Thus, reading u on
r = Gal(K/K) - for some fixed algebraic closure K of K­
via geometrie F.robenii , F 1s the fixed field of ker{ p) •
There are two actions of r on F ~ E inducing the natural
action of r 'on F c K :

• the trivial action of r on E: (f 0 e)V = fY ~ e

• the action (f ~ e) CyJ = fY ~ u( Y) e

Clearly y[Y] = {1 ~ u{y))·yV , for all y E F ~ E end
VEr. - We shall usually work with the first action.ln
particular, this 1s the action for wbich we bave the
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3.2.2 Lemma

Proof (suggested by M. LorenzJ: Let 6 = r/ker(~l), and write
E = al( X]!(p) , with P E l1lC X] irreducible·. Then F ~ E ::

F[XJ/(P) • Factor P:II P1 ••• Ps in F(X] • Aeting on FeX]
through the coeffieients apermutes the ideals (P1), ••• ,(Ps)'
sines it stabilizes (p). So, writing the orbits one by one,
we heve

t si
(p) m -rr -rr (Pij ) ,

i=1 j=1

and for eaeh i, ß p~rmutes the (Pij ) transitively.

Then
* t *(F ~ E) = -rr Ai '

i=1

as 6-module, where

si
Ai = -rr F( XJ/(pij) •

j m 1

1 11 * 1 *Sines H (a, I I Ai) D $ H (6,Ai ) we are redueed to the ease
i i

of a transitive 6-aetion. In other werds, if 611 is the sub­
group ef 6 stabilizing FCX]/(Pi1) , then

By Shapiro's lemma end Hilbert 90 ,

q.e.d.

Appl~ing the lemma to
*a unit ~ E (F ~ E)

[~1 E H1(r/ker(~),(F ~ E)*)
such that, for all y Er,

we find

~ y ::2 (1 0 ~(y» ~ •

(In fact, the lemma implies that any 0, ~ E F ~ E satisfying
*3.2.3 lies in (F ~ E) :) ~ is well-determined up to a

*faeter in (K ~ E) • - In terms of our second action, we



- 110 -

3.2.2 Lemma

Proof (suggested by M. LorenzJ: Let 6 ~ r/ker(~l), and write
E = 11l( X1/(p) , with P E 41( X) irredueible-. Then F ~ E ::::

Fe XJ/(p) • Faetor P = P1 • • .Ps in FC XJ • Aeting on Fr XJ
through the eoefficients ~ permutes the ideals (P1)' ••• '(Ps)'
sinee it stabilizes (p). So, writing the orbits one by one,
we have

t si
(p) = lnr lnr (Pij ) ,

i=1 j::::1

and for eeeh i, 6 p~rmutes the (Pij ) transitively.

Then
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aS'ß-module, where
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i i

we are redueed to the ease

of a transitive 6-aetion. In other words, 1f 611 18 the sub­
group of 6 stabilizing F(Xl/(Pi1) , then

By Shapiro's lemma end Hilbert 90 ,

q.e.d.

Appl~ing the lemma to
*a unit g E. (F ~ E)

C\-l] E H1(rjker(IJ),(F ~ E)*) , we find
such that, for all y Er,

~y = (1 0 \-l(Y» ~

(In fact, the lemma implies that any 0 +~ E F ~ E satisfying
. *3.2.3 lies 1n (F ~ E) :) ~ 1s well-determined up to a

*faetor in (K 0 E) . - In terms of our second action, we
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3.1 Write :N for the absolute !lQ.!]! (of ideals of K) . Then
~

(This rectif1es formula (11) of (HS] - cf. 1.7.11.)

3.1.1 18 a special ease of (DP], 5.1.8, which follows from
the characterizing properties of ~(1)'- see I, 2.1. - In
trying to d~rive 3.1.1 from 1.8.1 (for X~:1) , 1.8.3, and
1.8.4, the subtlety 18 that c± becomes c+ because, for
Ya E Ha(M(X» and a E ~B(1) ~ E ,

Ya ~ a + F~(Ya 0E a) = (Ya - F~(Ya» 0E ~

cf. 1.7.7.

3.2 Next, let ~ be a Hecke character cf K of finite order,
with values in E. (In view of 1.3.1, there is no' lass of
generality, for our per10d calculations, 1n assuming that ~

and X both take values in the same field E. This will be
assumed in those of the following formulae which involve both
~ and X.) Then 1.8.3 gives:

We ahall compute p(~) using the explicit description of the
Artin motive M(~) given in I, 2.4.1.

3.2.1 Let F be the finite abelian extension of. K correspon­
ding to ~ by class field theory. Thus, reading u on
r = Gal(X/K) - for same fixed algebraic eloaure K of K­
via geometrie F.robenil ,F 18 the fixed field of ker( fJ) •

There are two actions of r on F ~ E inducing the natural
action of r 'on FeX

• the trivial action of r on E: (f ~ e)Y = fY 0 e

• the action (f ~ e) ( yJ = fY 0 u ( y ) e

Clearly yLY] = (1 ~ ~(y».yY , for all y E F ~ E and
y Er. - Ws shall usually work with the firstaction.ln
particular, this is the action for which we have the
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have

(K ~ E)( T' ] = ~ -1 (K f:l E) c K ~) E •

Now, the motive N(~) really "is" E viewed as the one di­
mensional E linear representation of r given by ~ • On
the other hand, HDR(M(~)) = (K ~ E)(r1 - see I, 2.4.1 -, so
~ 1s a K. E ' basis of HDR(M(~)) . Therefore, for each
a : K e-. ~ c ~ , the period p(~;o) can be computed like this:
take 1 as E-basis of H (M(~)) = E; for anx extension

(j rv 0 18 id *
the inverse of ~cr = ~ E E (Q ~ E)

HDR(M( t-l )) 'QOK ,a xa c: HDR(M( I-l)) ~K, cr q: = E~ a:

Let us analyze' the indeterminacy: ~ was weIl determined up
to (K 0 E)* ; on the other hand, ,if WB pick So instead of
';;, with s E Gal (~jK1) , we find,

rv

Thus, the array (~O)a: K~ ~ E (K ~ E ~ ~)* 1s weIl deter-

mined up to a factor in (E*)Hom(K,~) (K ~ E)* , and WB have

(3.2.5)
rv

p(t-l) = (~O)a E Hom(Kt~)

This establishes in particular the formula left unproven in

1.8.9 above. - Let us restate 1.8.9 for finite order characters,
using the well known role of the transfer map in class field
theory:

3.2.6 Let K'/K be a finite extension, and ~' a character
of finite order of K' (always with values in E). Denote by
ver~, : Gal(K!K) - Gal(K!K,)ab the transfer map. Then
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•

This formula implies the following invariance lemma a special
case of which was needed as formula (12) in (HS] - cf. also
1.8.11.

Lemma Let K and X be as in 3.0. Let K'/k be

a finite extension and XI a Hecke character of K' with

velues in E (lika x) , such that, for all T : E e--.t ,

I t1 I IKlO' I E Horn (KI ,a:) ;n I (cr I ,T ) <~ t :cl t Ii E Horn (K, lt) In (n' , T ) < ~ i .

Then, for any ~' as in 3.2.6, one haB

+ ' cf (X')c-{IJ.'. X I)

cf( (~ I 0 ver~ I )X >-
=

c±(X)

This fellows from,1.8.1, 1.7.12(i), 1.8.3, and 3.2.6. Note that,
unlike 3.1, the usa of 1.8.3 inside 1.8.1 1a lieit here because
K and K' are totally imaginary. In fact, even if we had, say,

IJ' = J..1o 0 NK, /K ,for some totally real field Ko and with Foo
o

aeting on H (M(J..1o » as -1 (i.e., ~o involves a nontrivial
0'0

sign character), no such signs would be visible over K' , end
F : H ,(M(~'» - H ,(M(J..1'» simply identlfies these two

00 0 Co
spaces.

3.2.8 We shall now develop, an analogue of 3.2.6, with NKf / K
replaced by Tata's Ifhalf transfer ll - cf. I, 6.4.0. Let X
and K be as before - but assume that K 18 a CM fleld. (We
can always reduee to this ease by 3.2.6: see 0, § 3.) Let
Ko c K be a tatally real subfield .af K. (The important ease
will be Ka = Q .). Fix an embeddlng 00 : Ko e-. t , and con­
sider K as embedded into Q ce, by using some fixed ex­
tension of 00 (whieh will not show up in the notation).
Choose a system of representatives,

",
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p (U I 0 Ver~ I )

This formula implies the following invariance lemma a special
case of which was needed as formula (12) in (HS] - cf. also
1.8.11.

Lemma Let K and X be as in 3.0. Let KI/K be

a finite extension and XI a Hecke character of KI with

values in E (like X) , such that, for all T : E ~t ,

wl W
it1~ IK 10 1 E Hom(K',lt);n'(cr',T)<"'21 c I(jE Hom(K,«:)ln«(j,T)<~1 •

Then, for any !J.' as in 3.2.6, one has

c±(IJ'. Xl) c±( X I )

9±( (!J. I 0 Ver~ I ) X).
=

c±(x)

Thi5 fo11ows from 1.8.1, 1.7.12(1), 1.8.3, and 3.2.6. Note that,
unlike 3.1, the use"of 1.8.3 inside 1.8.1 i5 lic1t here because
K and KI are totally imaginary. In fact, even if we had, say,

IJ. I = \Jo 0 NKI /K ,for some totally real field Ko and with FCX)

. 0
-'acting on H (M(lJo )) as -1 (i.e., \J.o involves a nontrivial

0 0
aign character), no such signa would be visible over K' , and
F~ : Ho,(M(\J.')) - HCOI (M(IJ')) simply identifies these two
spaces.

3.2.8 We shall now develop an analogue of 3.2.6, with NK'/K
replaced by Tateis flhalf transfer lf - cf. I, 6.4.0. Let X
and K be as before - but assume that K is a CM fleld. (We
can always reduce to this case by 3.2.6: see 0, § 3.) Let
Ko c K be a totally real subfield of K. (The important ease
will be Ko = ~ .) Fix an embedding 00 : Ko e-. ~ , and con­
sider K as embedded into Q ce, by using same fixed ex­
tension of 0

0
(which will not show up in the notation).

Choose a system of representatives,
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have

(K ~ E)rr ] :::I g-1 (K ~ E) c: K ~) E •

Now, the motive M(\-1) really "ia" E viewed as the one di-
mensional E linear representation of r given by \-1 • On
the other hand, HDR(M(~» = (K ~ E)Cr ] - see I, 2.4.1 -, so
~ is a K ~ E . basis of HDR(M(~» • Therefore, for eaeh
cr : K e-. ~ c: ~ , the period p(\-1;o) ean be eomputed like this:
take 1 as E-basis of H (M(~» = E; for anX extension

er ,....., cr ~ id *a : ~ ~ Q of a , the inverse of ~cr D ~ E E (Q ~ E)

is a xcr ~ E basis of HDR(M(J.,J»'SK,O' x<' c: HDR(M(IJ» 0 K,o C =E ~ a: ;
we find

•

Let us analyze the indeterminaey: ~ was weIl determ1ned up
to (K 0 E)* on the other hand, if we pick sa instead of
';;, with s E Gal(1ijIC") , we find,

=

*Thus, the array (~o)cr: K~ ~ E (K ~ E ~ t) 15 weIl deter-

mined up to a faetor in (E*)Hom(K,t) (K ~ E)* , and we have

r">-J

p(J.,J) a·(~O)o E Hom(K,~)

This estab1ishes in particular the formula 1eft unproven in

1.8.9 above. - Let us restate 1.8.9 for finite order characters,
using the weIl known role cf the transfer map in class fleld
theory:

3.2.6 Let K'/K be a finite extension, and pi a character
of finite order of K' (a1ways wlth values in . E ). Denote by
ver~1 : Gal(KjK) - Gal(~/K,)ab the transfer map. Then
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in such a way that v( ca) = c v(o) , for c:::: complex conjugation.
For each T E Hoin(E,t) , define the IIhalf transfer" map attached
to X and T , relative to Ko ' 0 0

by the rule

v( s, T) 1:1 Ir Lv( so) -1 B v(o )1 -n(o, T ) (mod Gal (1i/Kab» •
°IK=oo

o

V is independent of the choice of v, and for all
. a

s,t E Gal(~/KoO) end T E Hom(E,C) , one has .the cocycle
relation

v(s t , T) = V( s , tT) V( t, T) •

Now, let u be any finite order character on K with values
in E. Define

\.1
0

.. : Gal (1i/K:0 ) - (E* )Hom( E,~)

by the rule

(3.2.10)

be as in 3.2.1, and define a 1eft action of

*on Maps(Horn(E,~),(F~ E) ) by using the trivial
* . * ( ~E and the natural actions on Fand Horn E,w) -

Then there exists a unitcf. 3.2.1.

Let K c: F c: (l
.. cr

Gal(Q!Koo)
action on

n E (F ~ E)*Hom(E,Q) e-. (E ~ ~)*Hom(E,~)

cr
such that, for all s E Gal(~/Koo) ,

(3.2.11) ~s = (1 ~ ~o(S»·~ •

In fact, we can put (see 3.2.3/4, with K = ~ and a = v(cr»
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~ i5 determined by 3.2.11 up to a factor in

er 0 * (G(li/K: 0
) \ Hom(E, (ii) )

(Ko ~ E) •
It 15 convenient to write ~ as a matrix
dicee T,T I E Hom(E,4l) , 'and entries

Then, for

, I:J Tr (P v (0' ) ~ TI)n (cr ,T) E ij*
"T T t I ':l

, cr K ==:° 0o

er
s EGal (ti/Ko

0 ) .,

=
1

ST i
IJ(V(S,T»

~ST ,ST I

'and, for ~T =·(~T,TI)TI E (Q @ E)* ,with s acting via the
first action introduced in 3.2.1,

(3.2.15) •

•

What makes these formulas interesting 1s their connect1on with.
the per10ds c!, end thereby, via 2.1, w1th L-values:

3.3.0. Example. Let A be an a~elian variety with complex
multiplication by E defined over K - cf. I § 1. Ca!l X its
Hecke character: M(X) a H1(A) • Then by 1.8.1, 1.8.3 and 3.2.13
(with Ko I:J ~), one finds for any finite order character ~ of
K (with values in E):

c:t(~·X)

c:!:(X)

(The justification for applying 1.8.3 inside 1.8.1 1s the same
as in 3.2.7: K 15 totally imaginary.) Thus, by 3.2.14 wlth
s fixing T , the T-component ~ of this quotient of periods---- T,T
genarates the abelten extension of ET corresponding to the
character ~T(V(. ,T» of Gal(~iET) • And if, by chance, both- - -
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(3.2.12) •

It is
dices

~ i5 determined by 3.2.11 up to a factor in

ero \ -a *(G(~/Ko) Hom(E,~»
(Ko

O ~ E) •

convenient to write ~ as a matrix
T ,T I E Hom(E, lQ) , -and entries

~T 'T I = I Tr (~ v ( 0' ) ~ TI)n (cr , T) E ij*
, cr K =,° 0o

CI

Then, for s E Gal(~JKoO) ,

•

(3.2.14) =

*and, for ~T = '(~T,TI)TI E (Q ~ E) , with s aeting via the
first action introduced in 3.2.1,

•

, What makes these formulas interesting i5 their connection with.
the periods c~, end thereby, .via 2.1, with L-value5:

its

3.2.13

IJ. of

•=

3.3.0 Example. Let A be an abelien variety with complex

multiplication by E defined ovar K - cf. I § 1. Call X
Hecke character: M(X) = H1 (A) • Then by 1.8.1, 1.8.3 and
(w1th Ko = ~), one finds for any finite order character
K (with values in E):

c:!: (~. X)

c~(x)

(The justification for applying 1.8.3 inside 1.8.1 i5 the same

as in 3.2.7: K 1s totally imaginary.) Thus, by 3.2.14 with
s fixing T , the T-component ~T of this quotient of periods

--- ,T -
generates the abelian extension of ET corresponding to the
character ~T(V(. ,T» of Gal(WiET) • And if, by chance, both- ""'-' --
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in such a way that v(ca) a cv(cr) , for c c complex conjugation.
For eech T E Hom(E,t) , define the "half transfer" map attached
to X and T , relative to Ko ' 0

0

-
by the rule

V(S,T) CI Tr Cv(scr)-1 sv(0)1-n (cr,T)(mod Gal(1Ii/Kab» •
. cr IK = cr o·

o

V is independent of the choice of v, and for all
. (J

s,t E Gal(~/KoO) end T E Hom(E,C) , one has .the cocycle
relation

V(st,T) = V(S,tT) V(t,T) •

Now, let u be any finite order character on K with values
in E. Define

-
by the rule

(3.2.10) •

ij be as in 3.2.1, and define a left action of

*on Maps(Hom(E,~),(F ~ E» by using the trivial
* *E and the natural actions on F and Hom(E,Q)-

Then there exists a unit

Let K c:: F c
. cr

Gal(li/KoO)
action on
cf. 3.2. 1 •

such that, for all
cr

s E Gal(ii/Koo)

(3.2.11)

In fact, we can put (see 3.2.3/4, with K = ~ end 0 = v(cr»
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* * *L (~X,o) ~ L (x,O) are in (E ~~) ,then their quotient
*in (E ~~) has the same property. Thus, in particular, for

all T : E e-. ij ,

L(~TXT ,0). b L*(~X,O) order(\J.) *.. *
(3.3" 2) . E (ET

) a , and ,- *) E E c (E ~ lt) .
L(XT ,0) L ('X,O)

3.3.3 It 18 easy to generalize the statements of this example
to arbitrary Hecke characters X of K. Assume for simplicity,
that s c 0 i8 critical for X • Define V to be the transfer
defined by the system of invariants

if n(cr,T) < 0

if n(a,T):: 0

Then 3.3.1 holds for X ,with ~T,T replaced by ~T,T - de­

fined relative ·to flo(S) ce. (}J(~(S~1,T»)T instead of 1.10 •
So here, too, 3.3.2 folIows.

3.4 Finally, let us lift our convention 3.0, and consider
the ease that K' is totally real (embedded into ij) --. Assume
for simplicity that s = 0 1s eritieal for the eharaeter
X ::: p.Jrfl . Then (2.0.2) F

oo
aets on HB (RK/ 41M(w) as (_1)D

if n > 0, and aso _(_1)n, if n ~ 0 • Thus, if n ~ 0 ,

putting n1 ce (-1)€ , we obtain

tc+ (lJ ]ND) = 1 c elT ONn )
(3.4.1) ~

e-(\-1 :ND) :I P(RK/«1M(-X» = p(eK/C' (p 0 VerK)' JW1) •

In the ease n > 0 the signa get reversed, and we find, for
m = -n > 0

(3.4.2)
L{ ~l, m) e+ (~ ]ND)

P(€K/~' (1J. 0 ver~CI = ) ) •
(2TTi)m cn (:IND

)

Sinee the cODatruetion of ~ , such that 3.2.3/4 hold, clearly
works over all base fields, we get in particular that
Gal(~/m) acts on P(€K/Q·(w~ver~» E (E ~ m)* via the charaeter
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€K/ill'(l-Iover~) •

But for all Dirichlet characters of ~, such elements are
classically given by Gauss sums, and more precisely by the1r
Uroot numbers"j see [DP), 6.4, 6.5. This most 1ncredible
coincldence does NOT repeat itself over algebraic number
flelds K. 'different from Q! In fact, the eo~onents of
p(~) generate the eorresponding abelian extensions of K,

...s:band ean therefore not all 11e in ~. • - The last sentence
of [HS], § 4 18 therefore INCORRECT - end should never have
bean put in thera in the first pIaee.

3.5 Let K and E be arbitrary number fields.

3.5.1 Proposition Let M and MI be two motives in At~V(E) ,

of rank 1 over E, such that

(i) M end MI' beeome isomorphie over K ;

(li) p(M) = p(MI) in (K ~ E ~ (:)*j(E*)Hom(K,C) (K QO E)* •.

Then M-;;: Mt in AL- ~y (E) •.

Proof, ByI, 6.6.1, wehave N=M(X),MI=M(X I ), for certain
eharacters X, Xl of K w!th values in E; and (i) implies
that Xl = ~ X , for Bome finite order eharacter of K - cf.
e, 3 and I, 6.15. Henee, by 1.8.3,

I2i1:rl (1 = P1MT CI p J.1) •

By 3.2.3/4, this means that J.1 = 1, end I, 5.1 finishes the
proof. (In fact, a direct argument can be given, using (ii)
onee more.)

3.5.2 The proof cf 3.5.1 . shows that the XjK-forms of rank-1­
motives in ~~V(E) are parametrized by the periods
p(~) E (K ~ E S Kab)~ ,for ~ running ovar the finite order
eharacters of K •
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But for all Dirichlet characters of ~, such elements are
classically given by Gauss sums, end more precisely by their
"root numbers"; see [DP], 6.4, 6.5. This most incredible
eoineidenee does NOT repeat itself over algebraic number
fields K. 'different from Q! In fact, the eomponents of
p(~) generate the corresponding abelian extensions of K,

.•.s:b
and ean therefore not all 11e in ~. • - The last sentenee
of [HS], § 4 is therefore INCORRECT - end should never have
been put in there in the first plaee.

3.5 Let K and E be arbitrary number fields.--
3.5.1 Proposition Let M and M' be two motives in jL~V(E) ,

of rank 1 over E', such that

(i) M and M" beeome isomorphie over R ;

(li) p(M) = p(M') in (K 00 E ~ C)*/(E*)Hom(K,C) (K S E)* .'

Then M ~ M' in Al- ~v (E~ •

Proof~ By I, 6.6.1, we have M= M(x),M' ~ M(X') , for certain
.~ characters X, X' of K with values in E; end (i) implies

that X' = ~ X , for some finite order charaeter of K - cf.
C, 3 end I, 6.15. Henee, by 1.8.3,

By 3.2.3/4, this means that ~ = 1, and I, 5.1 finishes the
proof. (In fact, a direet argument can be given, using (li)
onee moreJ

3.5.2 The proof of 3.5.1' shows that the 1{/K-forms of rank':'1­
motives ln ~Kav(E) are parametrized by the periods

- ab *
p(~) E (K ~ E e K ) , for ~ running over the finite order
charaeters of K.

.-
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* * *L (~X,o) and L (X,O) are in (E ~~) ,then their quotient
*in (E ~~) has the same property. Thus, in particular, for

all T : E c:........ 1i ,

L (~T XT ,0) . b L* ().lX ,0) order ( J..l) *.. *
(3 . 3 ." 2 ) . E ( ET ) a , and {' *) E E c (E@q:) •

L(XT ,0) L (x,O)

3.3.3 It 18 easy to generalize the statements of this example
to arbitrary Hecke characters X of K. Assume for simp11city,
that s c 0 1s critical for X • Define V to be the transfer
defined by the system of invariants

{
-01n(o ,T) =

If n(o,T) < 0

if n(cr,T)::: 0 •

rw
Then 3.3.1 holds for X , with ~T,T replaced by ~T,T - de-

o • 1
flned relative to ~o(s) ~ (~(V(s- ,T»)T inst~ad of u o •
So here, too, 3.3.2 follows.

3.4 Finally,. let us lift our convention 3.0, and consider
the ease that K 1s totally real (embedded into 1ü) _.. Assume
for simplieity that s = 0 15 critieal for the eharacter
X = ~l,:rrfl • Then (2. 0.2) Foo aets on HE (RK/ IIlM( p» as (-1 )n

if n > 0, and aso _(-1)°, 1f n < 0 . Thus, 1f n ~ 0 ,
putting rr1 ~ (-1)€ , we obtain

{

c+ (l-l Jrfl) = 1 = CTT ONn )
(3.4.1) n 0 Q;l n

c-(IJ.:N ) = p(R~/tUM(X» %2 p(e:K/Q' (~l °VerK)·:IN.) •

In the ease n > 0 the signa get reversed, and we find, for
m = -n > 0

1:1

Sinee the construetion of ~ , such that 3.2.3/4 hold, clearly
works ovar all base fields, we get in particular that
Gal(~/m) acts on p(eK/Q·(~.ver~)) E (E ~ m)* via the character
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4. The periods of Jacobi sum Hecke characters

4.0 The gamma function, i.e., the meromorphic continuation cf

res) =J e-xxs ~
o

satisfies the followlng func~lonal equations - for sEt, and
mEZl, m~1.

(4.0.0) sr (5) :Cl: r(1+s)

m-1 m-1 1
(4.0.1) Tr r(s:.1) = (2TT)2 m2 - S res)

j=o

(4.0.2) r(s)r(1-s) TT
= ein TTS •

The first one implies that r induces a well-defined map

* *- a: /rD.

and D. Rohrllch ance stated the conjecture that all relations
satisfied by (4.0~3), composed with

.", «:*/«1* * *- a:!«i ,

follow from (4.0.1) and (4.0.2) - see (LD], ex. 4.

4.1 The basic example

Let us resume the situation of I, 7.1.1, assuming n ~ 3 • On the
affine open part

m + ym = -1 I (Y1
Xi

Y2 + • • • = x:-)n 1

of the Fermat hypersurface Xn , the' n-2 formm- an dY2a2
dY

n
_

1
Y2 ... Yn T::" ••• I\.

Yn-12
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i1'1s an e1genform 1'or the character
,.."

a
~(mOd~) = -a j , and aj » 0 • Its period against a suitable
n-2 simplex 15 computed as

see [DMOSJ, I, 7.12-7.14. This allows us to compute the periods
01' the motive M(~) x m(~) which, by construction, has the .
structure of a motive w1th eoeffieients in a(~m) . But M(~)

i5 constructed in such a way that M(~) 0 E is isomorphic, in

At~(~(~m»' to R~(~m)iQ(M(~) x a(~» . Thus we find, using

1.3.1, 1.4.2 - 1.4.8, and, in the ease where 0 15 crltical for
J(a) , 1.7, 0, 8.2.7:-

where d(Gl(J.1m» (reep. d+(lD(fJm») i8 the d1scr1minant 01'

Q(~) (resp. 01' the maximal totally real subfleld 01' Q(~) ­

see 1.7.12 (iv». These expresslons are well-determined up to
*a factor in Q ,as they should be for a motive in At~(Q) •

Also, we claim that, 11' 8 = 0 18 erit1eal for J(a) , then-
1 j1 c 'WnJ) = -Id-(Q(~))i. 11 -TI- r(a

j
k)-1 •

, , <~.!> > <-kID j=1

wlth d(m(~» = d+(Q(~».d-(Q(~» • In fact, by the behaviour
of the discriminant in towers, we have

the product being over any set of representatives k cf

C'2/m 7Z)* mod 1+1} • This shows that (-Jd-(CD.(~m)j) E (Gl(LL) ~ C)*
- T ~ ~

equals 6 - given by 1.7.10 - , up to a factor in ~(~) •
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15 an eigenform tor the character .! = I [a j J cf a:, if-a
~(mod~) = -a j , and a j » 0 • Its period against a sultable
n-2 simplex i8 computed ae

n 2nl·a
(4.1.0) (2nl)-1 lnr (1-e j)r(-<a

J
"»;

j=1

see [DMOS], I, 7.12-7.14. This allows us to compute the periods
of the motive M(~) x ~(~) which, by construetion, has the ,
strueture of a motive wlth coeff1elents in ~(~m) • But M(ä)
1s eonstructed in such a way that M(~) 0 E 18 isomorphie, 1n

At~(~(~m»' to R~(~ )i~(M(~) x Q(~» • Thus we f~d, uslng
m .

1.3.1, 1.4.2 - 1.4.8, and, in the case where 0 18 erit1cal for
J(~), 1.7, @, 8.2.7:

c <Mn) = Td Cu, )'. y -t r{a
j
k)-1 ,

(kID> <-k,!.) j=1

•

. where d(fD(~» (resp. d+(4l(IJm») 1s the diseriminant of
~~(~) (resp. of the maximal totally real subfleld of Q(~) ­

~see 1.7.12 (iv». These expressions are well-determined up to
*a factor in ~ , as they should be for a mot~ve in ~~(Q) •

Also, we claim that, 1f s = 0 18 critical tor J(~) , then

i j) c (M{n» = 0 O{u,' -r -+ r{ajk)-i •
. (~ID > (-k.!> j=1

wlth d(~(~» = d+(~(~».d-(a(~» • In fact, by the behaviour
of the dlscriminant in towers, WB have

the product being ovar any set of representatives k of
la/m 7) moa Lil . This show 1hat ( 0{ um)\ C (O( u,) : «:)*
equals 6- - given by 1.7.10 - , up to a factor in Q(~) •
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4. The perlods of Jacobi sum Hecke characters

4.0 The gamma functlon, 1.e., the meromorphic contlnuation cf
00

res) = J e-xxs ~
o

satls~ies the ~o11owing functional equations - far s E ~ , and
mEZl, m:::1.

(4.0.0) sr (s) I: r(1+8)

m-1 m-1 1

(4.0.1) Tr r(s:.i) = (2TT)2 m2 - S res)
j=o .

(4.0.2) r( s)r( 1-8) TT= sIn TTS •

The first one implies that r induces a well-defined map

r s «1/ Zl - a:*/ ~*

and D. Rohrlieh once stated the conjecture that all relations
satlsfled by (4.0~3), composed wlth

a:*/m.* * *- a: /i ,

fellow from (4.0.1) and (4.0.2) - see [LD], ex. 4.

4.1 The basic example

Let us resume the situation cf I, 7.1.1, assuming n ~ 3 • On the
affine open part

m mY2 + ••• + Yn = -1 I

of the Fermat hypersurface xn , the n-2 formm

... ••• A
dYn_1
y

n-1
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Note that - as it ought to be: [DP], 1.7 - c+(M(~)) and
i~(m)/2c-(M(~)) are real, where ~ i5 Euler's phi function.

4.2 Periods of And~rson's motives

If K i5 any abelian number field and .! E]8~ - see 0, 8.2 -,
then the periods of Anderson's motive MK(~) - see I, 7.2;
I, 7.4.5'- for the Jacabi sum character JK(~) can be eomputed
by farmulas which immediately generalize 4.1.1-4.1.3. In fact,
note that periods are built iota the nation of aritbmetic Hadge
structure - see I, 7.3.1/2. - We shall on1y give the final ex­
pression that Anderson obtains for the periods correspending
te the critleal values ef all Jaeobi sum Hecke characters. It
contains 4.1.2 as a special ease, and 4.1.3 fellows from It via
3.1.1. - The formula for p(MK(~) x K) 18 stated in 4.4.2.

4.2.1 If K 18 tetally real, then Facts triviallyono 00

HB(MK(~)) , for "any ~ EEK. (Essentially, thls 18 so because
J K(!) i8 "pulied down" from some totally imaglnary extension of
K~:) Thus",~by:2.0... 2 above;. the eritical values ·of the character

. , Ina ~
JK(!!) = fJ·:N' - w1 th ',! = L na [ a] and IJ. ef fln1 te order '-

a
are just the elements cf

tS E 2 2l+1 Is ~ I na I u IS E 2 III S > LDa I ·
a a

We put

er1t K(!.) = 2 Zl n (I Da ,00) •

a

4.2.2 If K
the crltical

1s totally 1maginary, then 2.0.3 impl1es that
s for JK(~) are precisely those in

(tID < s ::: (t c ~ for all t E G(&l/&l)1
with (t~::: (t c!!) J

Here, as usual, c denotes complex cODjugation; the galois
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action i8 that deflned in @_ 8.2.1.

4.2.3 Notation. d(K) _ resp. d+(K) _ denotes the discriminant
of K t resp. of the maximal totally real subfield of K; and
d(K) = d+(K)· d-(K) • For all! EE, ß = j 0a[a] , extend

l-J

4.0.3 by the rule a

o
r(~) = lnr r(a) a

a
* *E a: /flJ.

4.2.4 For all abelian number fields K, all a E mO and all- K
s = n E CritK(~) , one finds

4.3 Liehtenbaum's nr-hypothesis"

As Anderson·points out, the period calculation 4.2.5_ joined
wlth theorem 2.1 above, ylelds the following theorem on the
crltical L-values of Jacobl sum Hecke characters whlch contalns
the most general formulatlon of what Llchtenbaum had called
his r-hypothesis - see [Li), [KL).

4.3.1 Theorem. For all abelian number fields K, all

·ä Em~ , end all s = n E Critx(~) ,

Note that, in deriving thi6 statement from 2.1_ one has to use_
as in 4.1, that MK(~) ~ K 18 isomorphie, in ~Q(K) , to
RK/lU(MX(.!) x X) , where MX(.!) x K has a natUral structure of
a motive with coefflclents in K that makes it into a motive
for JK(~) • Recall also that Jx(ä) 16 galois equivariant -
see 8, 8.2.5 - _ so that the L-functions of all of its conjugates
coincide.
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action 15 that defined in G, 8.2.1.

4.2.3 Notation. d(K) , resp. d+(K) , denotes the diseriminant
of K, resp. of the maximal totally real subfleld of K; and
d(K) = d+(K) · d-(K) • For all ~ E m, ß =I naLa] , extend
4.0.3 by the rule a

n
r(~) = llr real a

a
* *E «: Im

4.2.4 For all abelian number fields K, all ~ E~ and all
s = n E Cri~(~) , one finds

4.3 Liehtenbaum's ~r-hypothes1sn

As Anderson·points out, the' perlod ealeulatlon 4.2.5, joined
wlth theorem 2.1 above, ylelds the following theorem on-the
eritieal L-values of Jaeobl sum Hecke characters wh1ch contains

::'the most general formulation of what Lichtenbaum had called
,his r-hypothesls - see [LiJ, [KLJ.

4.3.1 Theorem. For all abe11an number fields K, all
o

! EmK ' and all s = n E CritK(~) ,

Note that, in deriving this statement from 2.1, one has to use,
as in 4.1, that MK(~) 0 K is isomorphie, in ~~(K) , to
RK/m(MK(!) x K) ,where MK(~) x K has a natural structure of
a motive with coefflcients in K. that makes it into a motive
for JK(~) • Recall also that JK(~) 18 galois equivarlant -
see @, 8.2.5 - , so that the L-functions cf all of its conjugates
coinclde.



- 119 -

Note that - as it ought to be: (DP], 1.7 - c+(M(a» and
i~(m)/2C-(M(a» are real, where ~ i8 Euler's p~ function.

4.2 Periods of Anderson's motives

If K i8 any abelian number field and ~ E m~ - see C, 8.2 -,
then the periode of Anderson's motive MK(~) - see I, 7.2;
I, 7.4.5 - for the Jacobi sum character JK(~) can be computed
by formulas whlch immediately generalize 4.1.1-4.1.3. In fact,
note that periode are built inta the nation of arlthmetic Hodge
atructure - see I, 7.3.1/2. - We ahall only give the final ex­
pression that Anderson obtains for the periods corresponding
to the crltlcal values of all Jacob1 sum Hecke characters. It
contains 4.1.2 as a special ease, and 4.1.3 follows from it via
3.1.1. - The formula for P(MK(~) x K) is stated in 4.4.2.

4.2.1 If K 1s totally real, then Facta triviallyono CX)

HB(MK(~» , for. any ~ E mK • (Essentially, thls 1s so because

J K(!) 18 "pulIed down" from some totally 1maginary extension of
K~) Thus."by~2.0.• 2 above;': the crltlcal. va1ues 'o~ the character
. 'Ina . ~
JK(!.) = ~.:N' - w1th .! = L D a( a] and J.l of fin1te order -

a
are just the elements of

I8 E 2 Zl+1 Is :: I Da I u IS E 2 Zll s > I Da I .
a a

We put

. er1tK(~) CI 2 Zl n <L na ,co) •
a

4.2.2 If K
the critical

is totally 1maginary, then 2.0.3 imp11es that
s for JK<~) are preeisely those in

(t~ < s :::: (t c.!> for all t E G(Q/Q)1
with (t~:::: (t c~) J

Here, as usual, c denotes complex conjugation; the galois
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Finally, it should be pointed out that, in the case that K
1s totally real, every critical s for JK(~) either lies
in CritK(~) or is related to an element of critK(-~) , by

the functional equation.

4.4 r-relations

4.4.1 Theorem. : Let K c ~ be an abelian number [ield. If
o!,b E mK satisfy J K(!) = JK(b) , then

=

* *in (K ~ ~) jK •

Proof. By construction, the motive MK(~) x K has a natural
st~cture of a motive with coefficients in K with respect to

wh1ch·it is a motive for JK(~) . For all 0 , one has

(The fact that complex conjugation creeps into this formula 1s
clearly seen in our basic example: I, 7.1./2, and 4.1.0 above.)
By I, 5.1, the theorem folIows.

q.e.d.

4.4.3 Corollary ([A2], 8.6)

that critK(~) ~ f1, and

If a and b are in such

as meromorphic functions on tt , then

U- r(a!) = lT r(cr:2) ,
( 0 !!.> ;: <C1 c ~> ( ob> > (0 c b)

in a:*/d1*
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Proof. The hypothesis implies: immediately, that

CritK(~) : critK(~) ; and, module an exercise in analytic

number theory, that JK(b) = JK(T~) , for some T E G(K/~) •
Then, the theorem yields what i5 elaimed, in view of 0, 8.2.7.

Known variants of the theorem used to be eneouraging eompanions
to the r-hypothesis when this was ·still unproven. Its motivie
proof 1s a niee illustration of our central theme: how to
derive period relations from eharacter identities. More precisely,
it 1s a compatibility result inside one family of motives for
a class of Hecke characters. In that sense it is the analogue,
for Anderson's motives, of Shimura's monomial relations, as de­
rived from the standard motives of Hecke charaeters in chapter IV
below.

4.4.4 A different instance of

1s of finite order, and MK(~)

This was already pointed out by

us briefly reder1ve the results

our main theme oceurs when JK(~)

18 eompared to:an Artin motive.
Deligne in (DP], 8.9 - 8.13. Let
in our setting.

By C·, 8.2.7, the Jacobi suro Hecke character JK(~) 1s of finite
order if end only if (cr~) = 0 , for all ~ E Gal(Kjm) • If this

is so, then - by I, 5.1 - MK(c~) x K 1s isomorphie, in '~K(K) ,
to the Artin motive of JK(e!) = JK(~)-1 , and we deduce from

4.4.2, for MK(c!.)·, end 3.2.4, with rt::1 T C2 id , the following
theorem whieh eontains eonjecture 8.13 of (DP], and, together with
4.4.6, 15 equivalent to theorem 7.18 in [DMOSJ, chap. I. It also

1mplies, of course, 4.~.1 and 4.4.3 above.

4.4.5 Theorem. For all abelian ntUnber fields K , and all

a E 180 such that <o!.> ::1 0 for each (T ~ GCK/a;}) , reading- K
the finite order charaeter JK(~) on Gal(QJ/K)ab , one has

(i) r(~) E ~*/~*

(ii) r(~)s::1 JK(~)(5) ,r(~) , for all s E G(lö/K) •

Part (i) was first proved direetly by Koblitz and Ogus in the
appendix to [DP]. - It is shown in [Sch r] that a good deal of
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Proof. The hypothes1s imp11es: immediately, that

critK(~) = critK(~) ; and, modulo an exereise in analytie

n~ber theory, that JK(b) = JK(T~) , for same T E G(K/~) .
Then, the theorem yields what 1s ela1med, in view of 0, 8.2.7.

Known variants of the theorem used to be eneouraging eompanions
to the r-hypothesis when this was still unproven. Its motivic
proof i5 a niee illustration of our eentral theme: how to
derive period relations from eharaeter ident1ties. More precisely,
it i5 a compatibi11ty result inside one family of motives for
a class of Hecke characters. In that sense 1t 1s the analogue,
for Andersen's motives, ef Shimura's monomial relations, as de­
rived from the standard motives of Hecke characters in chapter IV
below.

4.4.4 A different lnstance of our main theme oceurs when JK(~)

is of finite order, and MK(~) 18 compared to an Artin motive.
Thi5 was already pointed out by Deligne in (DP], 8.9 - 8.13. Let
us briefly rederive the results in our setting.

By 0, 8.2.7, the Jacobi sum Hecke eharacter, JK(~) is of finite
order if and only if (cr~) = 0 , for all n E Gal(K/m) • If th1s

_is so, then - by I, 5.1 - MK( c~) x K 1s isomorphie, in At.K(K) ,

~ to the Artin motive of JK(c~) = JK(~)-1 , and we deduce from
4.4.2, for MK(c~) , end 3.2.4, with ~ = T = id , the following
theorem which conta1ns conjecture 8.13 of CDP1, and, together with
4.4.6, 1s equivalent to theorem 7.18 in [DMOSJ, chap. I. It also
1mplies, of course, 4.4.1 and 4.4.3 above.

4.4.5 Theorem. For all abelian number fields K , and all

a E :IBO such that. (cr!!) = ° for each (T ~ a(K/a)) , reading- K
the finite order character JKC.~) on Gal(äi/K)ab , one has

(i)

Part (i) was first proved direetly by Kobl1tz and Ogus in the
appendix to (DP]. - It 18 shown in [8ch r] that a good deal of
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FinallYJ it should be pointed out that J in the ease that K
is totally real, every eritical 5 for JK(~) either lies
in CritK(~) or is related to an element of critK(-~) , by
the functional equation.

4.4 r-relations

4.4.1 Theorem. ; Let K c ~ ba an abalten number field. If

~,12 E JB~ satisfy J K(!) = J K(12) , then

=

* *in (K ~ «=) /K

Proof. By construction, the motive MK(~) x.K has·a natural
structure of a motive with coefficients in K with respect to
which·it 1s a motive for JK(~) • For all 0 , one has

,
(4.4.2)

(The fact that complex conjugation creeps into this formula 1s
clearly seen in our basic example: I, 7.1./2 J and 4.1.0 above.)
By I, 5.1, the theorem folIows.

q.e.d.

4.4.3 Corollary «(A2], 8.6)

that CritK(~) +~ J and

If a and b are in BQ
K such

as meromorphie functions on «: , then

Tr r (cr~) = lT r(ab)
( crß> 2: (0' C ß> <ob> :: (0 c b> -

in a:*/lU*
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(li) can be derlved from 4.0.1, 4.0.2 uslng only classical re­
sults on the arithmetic of Gauss sums.

4.4.6 As in [DMOS], I, 7.18, the preceding theorem can be
complemented to give the behaviour of r(~) under all of
Gal ( a.1/Q) :

r (~) *
(iii) For all t E G(~/Q) , the quotient ~ lies in K

r <.~) ~
and for all cr E Ga1(K/Q) , one has

r(a) cr
(" - )
r(a)t

r(cr~)

= r(O'~)t

Proof. Writing g the "period" 3.2.3 of the Artin motive of

JK<'~) , we have

r(~)t :::

for all t E G(~/~) • This and the galois equlvariance ~, 8.2.5:

_ ea8ily imply that

JK(~)(S) = JK(t~)(t-18t)

r(~);r(~)t E K* ~

(8 E G( !UlK) )

The"last claim is proved by analysing the action of Gal(~/~) on
End/Q(MK(~) = K: just imitate the argument on CDMOS1, p. 93;
the details are 1eft to the reader.



- 124 -

CHAPTER THREE:

Elliptic Integrals and the Gamma Function

The subject of this chapter is a natural continuation of
II, 4.4: - we now compere Anderson's motives for Jacobi SUffi

Heclce characters to elliptic curves with complex multiplication.
This gives essentially a refinement of the so-called formula of
Chowla and Selberg - which originally is due to M. Lerch.

1. A formula of Lerch
1

~ Let K c • a; be an embedded imaginary quadratic field,

-D its discriminant, and Jn C JK(~D) the basic Jacobi sum
Hecke character ef K defined in ~, 8.1 fer n ~ 3, 4, 8 and
in 0, 8.3 for arbitrary n • The Infinity type Tn of Jn

(I, 8.1.5) i8 written

and hn denotes the c1ass number cf K.

Let X be any fixed Hecke character of K (with values in some
CM field E ;:, K ) whose iminity type 1s -1-. Then there ex1sts
a character of ~in1te order ~ of K, with values in E, such

that

( 1 • 1 )
n

Jn1 • If c •

Let us now comupte the periods c+ of motives attached to both

sides of the equation. They have to be equal by I, 5.1. On the

1eft hand aide, use 11, 3.3.3 for'the present u, and 11, 1.8.1/3
as well as 11, 1.7.12(iv). On the right, use 11, 4.2.5 observing
~, 8.1.3 and 0, 8.3.1, and remembering that (r.'IK(-~D) x K) ~ E i3

a motive for J~1 considered as Hecke character of K with values

in E. This gives, for n + 3,4,8 :

(1 .2)

where T runs over the complex embeddings of E , and ~ is the
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CHAPTEn THREE:

Elliptic Integrals and the Gamma Funct10n

The subject of this chapter 1s a natural continuation cf
11, 4.4: - we now campare Anderson's motives for Jacobi sum
Hecke characters to elliptic curves with complex multiplication.
This gives essentially a refinement of the so-cal1ed formula of
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1. A formula of Lerch
1

lJ' Let K c .. a: be an embedded imaginary quadratic field,

-D its discriminant, and J n C JK(~n) the basic Jacobi SUffi

Hecke character of K defined in 0, 8.1 for D +3, 4, 8 end
in 0, 8.3 for arbitrary D • The infinity type Tn of Jn

(Cf 8.1.5) is wrltten

+ TI • CC
,

and hn denotes the class number cf K.

~et X be any fixed Hecke character of K (with values in some
~CM field E ~ K ) whose infinity type 1s -1 • Then there exists
.~ character of finite order ~ of K, with values in E, such

that

(1 •1 ) :::: •

Let us now comupte the periods c+ of motives attached to both
sides of the equation. They have to be equal by I, 5.1. On the

left hand side, use 11, 3.3.3 for the present ll, and 11, 1.8.1/3
as weIl as Ir, 1.7.1~(iv). On the right, use Ir, 4.2.5 observing

\U), 8.1.3 and @, 8.3. 1, and remembering that (l'IK(-~D) x K) ~ E i3
a motive for J;1 considered as Hecke character of K with values

in E. This gives, for D f 3,4,8

(1.2)

where T runs over the complex embeddings of E , and € is the
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(ii) can be derived from 4.0.1, 4.0.2"using only classical re­
aults on the arithmetic of Gauas sums.

4.4.6 As in (DMOS], I, 7.18, the preceding theorem can be
comp~emented to give the behaviour of r(~) under all of
Gal(li/«:l) :

r(~) *
(iii) For all t E G(~/Q) , the quotient ~ lies in K

r(~)G
end ror all cr E Gal(K/Q) , one has

r(a) cr
(. - )
f(a)t

f(o!!)

= r(o~)t •

Proof. Writing g the "pericd" 3.2.3 cf the Artin motive of

JK(~) , we heve

=

for all t E G(~/~) • This and the galois equivariance ~, 8.2.5:

JK(~)(S) = JK(t~)(t-1st)

eas11y imply that f(~);r(~)t E K* ~

(s E GCal/K) )

The"last claim 1s proved by analysing the action cf Gal(~/~) on
End/ij(MK(~» = K: just imitate the argument on [DMOS], p. 93;
the details are 1eft to the reader.



- 125 -

Dirichlet character corresponding to K c ~(~n) .

Let F be any finite abelian extension of K such that X takes
*values in K on ideals which are norms from F. (Note that F

has to contain the Hilbert class field H of K.) Then there
exists an elliptic curve A defined over F' such that H1 (A) is
a motive for the Hecke character ,= (xoNF/K ' considered as
charaeter of F with values in K). This 15 a special ease of
Casselmanls theorem, i. e., theorem 6 in CShi LJ - cf. I, 4.1.1.

Note that, in terms of A, the 1nelusion K~F 1s given by
the action of End A on the tangent spaee of A at the ·orig1n. ­
Cf. also CGSJ § 4 •

From 11, 1 .8.,6 end 11,. 1.8.8, we find that, for all T
which restriet to Ta K -' C

*up to a faetor in .E

(1.2.1)

1.2.2 By 11, 1.5.1 and 11, 1.6.6, p(W;O,T
O

) is, independently
of T

O
and o. with alK = Tc' equal (up to the usual indetermin­

acy) to 0 , a fundamental perlod of the ellipt16 curve AG/Fa.a
In other words, the complex lattice A corresponding to the pair

a
(Aa(~),wa) , for a holomorphic 1-form w on A/F whose class 18
an F ~ K basis cf HriR(A) , satisfies

A • ~ = 0 • K c ~a a

We now make the following

1.3 Assumption. F may be chosen to be the Hilbert class field
*H of K. In other words, X takes values in K on all principal

ideals on which it i5 defined.

1.3.1. Remark. Characters X of type -1 which satisfy 1.3
exist for all imaginary quadratic fields K - their construction
1s straightforward. The field of values E is then cf degree hn
over K - see (Ro], cf. [Sch OJ, E . - 1t can have subfields which

~ *are galois over K only insofar as the few roots of unity in K
afford Kummer extensions corresponding to elements in the class
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K - cf. [Gr 1), § 15 for the case where
equivariant under complex conjugation).

1s odd

1.3.2. Since J n 15 galois equivariant, and therefore, in

particular, takes values in K, and sinee hn kills the elass
group of K, 1.1 and 1.3 imply that ~ takes values in K.
Thus, if D +3,4, then ~ 1s at most quadratic. In th1s ease,-the factor ~T T simply becomes, independently of T , any non-
zero element ~. of Kab c Q such that

I-l

6 s = l-l(s)ß , for all s E Gal(~/K) •
J.l lJ

By 1.2.1, 1.2.2, and 1.3.2, formula 1.2 beeomes an identity of
vectors with identical components:

If n ~ 3,4,8 , then,

ß· ~ n
I..l 0' E G(H/K) CI

up to a faetor in K*

(::i])~(~- hn) lT r(.1)
TI j=1 n

€(j) = 1

~ Before d15cussing 1.4 let us wri~e down the corresponding
relations for D = 3,4,8 • In these casea we simply take X=Jr;1

in 1.1: all three elass numbers are 1 . The corresponding
elliptic curves An/K were briefly discussed in I, 7.5. They
are actually defined over ~ and we have isomorphisms cf motives
in Al-~(l]l) :

H
1

(An) ~ MK(~n) ,

because An 1s constructed such that L(H1(A)/tU,s) = L(Jn,s) •

Thus, wr1ting On = J w

ADCR)
ential cf the first kind
identities cf classes in

the real period cf a nonzero differ-

0.

w on An/~ , we find the following
~*/fJJ.*

= r(,)2

r(§)

r(~)r(i)

= r<t)
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K - cf. (Gr 1), § 15 for the ease where
equivariant under eomplex eonjugat1on).

18 odd

1.3.2. Since J n 1s ga101s equ1variant, and therefore, in
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group of K, 1.1 and 1.3 impIy that ~ takes values in K.
Thus, 1f n +3,4, then l.1 is at most quadratic. In this case,-the factor ~T,T simply becomes, independently of T , any non-
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J.-1

6 8 = ~(S)6 , for all s E Gal(~/K) •
~, ~

By 1.2.1, 1.2.2, and 1.3.2, formula 1.2 beeomes an 1dentity of
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If D 9: 3,4,8 , then, up to a faetor in K*

1~ D-1(1.4) ~ '2( - hn) r(j)6 • Ir n "'-I lT* ( Tl ) nJ...l cr E G(H/K) CI K j=1
e(j) = 1

1.4.1 Before diseusslng 1.4 let us write ,down the eorresponding
relations for D = 3,4,8 • In these eases we simply take X = Jn1

"in 1.1: all three elass numbers are 1 . The eorresponding
<.elllptic curves An/K were briefly discussed in I, 7.5. They
-äre actually defined over ~ and we have 1somorphisms of motives
in A(.,m(~) :

H1(AD) ~ MK(~) ,

because An 1s constructed such that L(H1(A)/~,s) = L(JD,s) •

=

Thus, writing nn = I w

ADCR)
ential of the first kind
identities of classes in

the real period of a nonzero differ-

w on AD/~ , we find the following
lt*/~*

= r(~)2

r(~)

r(*)r(l)
~ 4
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Dirichlet character eorresponding to K c ~(PD) •

Let F be any finite abelian extension of K such that X takes
*values in K on ideals which are narms fram F. (Note that F

has to contain the Hilbert elass field H of K.) Then there
exlsts an elliptle curve A defined over F· such that H1 (A) ls
a motive for the Hecke eharacter ,= (xoNF/K ' considered as
eharaeter of F with values in K). This 1s a special ease of
Casselman's theorem, i. e., theorem 6 in [Shi LJ - cf. I, 4.1.1.
Note that, in terms of A , the inclusion K~F 1s given by

the action of End A on the tangent spaee of A at the origln. ­
Cf. also [GSJ § 4 .

Fram 11,1.8•.6 and 11,"1.8.8, we find that, for all T : E c....c
whlch restriet to Ta : K - C ,

~( 1 .2.1 )

up to a factor in *E •

1.2.2 By II, 1.5.1 and I1, 1.6.6, p(w;a,T o ) 1s, independently
af Ta and 0 with alK = Ta' equal (up to the usua! indetermin­
aey) to n ,a fundamental perlod of the elliptic curve Aa/Fa •a "
In other words, the complex lattice A corresponding ta the pair

a
(Aa(~),wa) , for a holomorphie 1-farm w on A/F whose elaas is
,an F ~ K basis of HriR(A) , satisfies

A • ~ = 0 • K c ~a CJ

We now make the following

"1.3 Assumption. F may be chosen to be the Hilbert class fleld
H of K. In other wards, X takes values in K* on all prineipal
ideals on which it is defined.

'1.3.1. Remark. Characters X of type -1 which satisfy 1.3
.exist for all imaginary quadratic fields K - their construetion
1s straightforward. The field of values E 1s then of degree hn
over K - see (Ra], cf. (Sch 0), E . - It can have subfields which

*are galois over K only insafar as the few reots of unity in K
afiord Kummer extensions corresponding to elements in the class
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(by 11, 4.0.2) =
.,;2rr'

r(~)r(i)
=

ß

To be Bure, in the ~irst two cases, it seems much more natural to
go the other way: the ~ormulas for n3 and n4 are classically
well-known (cf. § 2 below), and they imply, by 11, 3.5, that
An ';i MK(an) .QEt K, end in fact over ~ • This then shows
what was elaimed in I, 7.5: that, for D = 3,4, the elliptic
curves An deseribed are such that H1 (AD) i5 a motive for Jn .

1.4.2 Multiplying 1.4 with its complex conjugate yields a re­
lation up to a rational number. In order to put it into a elassieal
shape we apply II,.4.0.2 to the product on the ri~ht onee, and use
the following ~elat1on whieh 1s proved by argument~ cf the kind
well-known in the context of the analytic elass number formula for
real quadratic fields:

D . ~lnr sin(n ft) ~ IfDI ·
j=1 0

e:(j) = 1

.. ,
This version holds for all D > 0 such that ~-n is the discri-
minant of a quadratic field. In fact, the more natural right hand

side, ....;i)lCP(D)/2 was replaced by -fD'hn in order to make it

come out· r1ght for D = 8 •

Thus, writing 2m the number of units cf K, we get the
following relation, which can be checked for the exceptional
casea D = 3,4,8 directly from 1.4.1:

6 6. lT (~Ll Ll J
U U a E G(H!K) rr, cr cr

Note that the complex conjugate t\l of 6 1s not intrinsically
~ 2 * -defined: K(6) need not be a CM field. But, as 6 E K , ~

~ u u
1s well-determined up to a sign - which 18 inessential for 1.4.4.
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1.1'2 up to the interpretation of the factor 6~ 6u -v1Y bn •
1.4.4 1s eas11y seen to be the exponential.of a preclse identity
found by M. Lerch in 1897 (and rediscovered 1ater by Chow1a and

*Selberg), taken module ~ - see § 2 below. In this analytic
_ -, hnthe lactar ß 6 -In appears as the 12~th root of

, where 6(Aa~ ~s the discriminant of the lattice Aa
in 1.2.2. - See 1.5.6 below.

1.5.1 The 1eft hand aide af 1.4 - or of 1.4.4 - only depends on
the fie1d K. In fact, two elliptic curves over H eoming from
different characters X of K (like in 1.2) are twists of each
other, .by a finite order character af H of the form IJ Q NH/ K ­
so we can use II § 3. Sim11arly, if any elliptic curve C/H
with comp1ex multiplication by K is given, it will be the twist
of an A like in 1.2, ·by a finite order character of H - and
again II § 3 teIls us by which faetor in Hab to modify the
1eft hand aide of 1.4 in order to get the farmula for the product
of periods of the Ca • - For the more general ease where C 18

defined over some F ~ H , see § 3 be1ow. There we ahall also
Q".

discuss possible motivic interpretation cf 1.4.4.
1\

1.5.2 H/K-curves.

An elliptic curve A with eomplex mult1plication by K defined
over H 1s called an H/K-curve, if it 1s H-isogenous to all
conjugates AO ,with 0 E G(H/X) • If , 1s the Hecke character
of H w1th values 1n K sucQ that H1(A) = M(,) , then A is
an H/K-curve if and only if, for all cr E G(H/K) end all ideals
a of H on which , i5 defined, one has

•

If A 1s an H/K-eurve, then

= , 0 i 0 NH/ K '

where i 1s the inclusion of ideals of K
The character $ 0 i o! K with values in

into ideals of H •

K sat1sfies
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.1 5 Up to tne interpr tation of the factor 6~ 6u ~hn
1 .4.4 is easily seen to be the exponential o'f apreeise identity
found by M. Lerch in 1897 (and rediscovered later by Chowla and

*Selberg), taken modulo Q - see § 2 below. In th1s analytic
_ -. hnthe factar 6 6 -In appears as the 12~th root of

• wnere 6(Acr~ ~s tne discriminant of the lattice Acr
in 1.2.2. - See 1.5.6 below.

1.5.1 The left hand side of 1.4 - or of 1.4.4 - only depends on
the field K. In fact, two elliptic curves over H coming from
different characters X of K (like in 1.2) are twists of eech
other, by a finite order character of H of the form u 0 NH/ K ­

so we can use II § 3. Similarly, if any elliptic curve C/H
with complex multiplication by K is given, it will be the twist
of an A like in 1.2, by a finite order character of H - and.
again II § 3 teIls us by which factor in Hab to mod1fy the
1eft hand side of 1.4 in order to get the formula for the product"
of periods of the CO • - For the more general ease where C 1s
defined over some F ~ H , see § 3 below. There we shall also

Q".

discuss poss1b1e motivic interpretation of 1.4.4.
1\

-1.5.2 H/K-curves.

-
--An elliptic curve A with complex multiplicat10n by K defIned

ovar H i8 called an H/K-curve, If 1t i5 H-isogenous to all
conjugates AO , with a E G(H/K) • If V is the Hecke character
of H w1th values 1n X such that H1 (A) = M(.) , theo A 15
an H/K-curve if and ooly 1f, for all 0 E G(H/X) and all ideals
a of H on wh1ch , 1s defined, one has

If A 1s an H/K-curve, then

hn• =, 0 1 0 NH/ K

where i 15 the inclus10n of ideals of K into ideals of
The character ,., 0 i of K with values in K satisfies

H •
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(by II, 4.0.2) =

=

..,; 2TT'

r(l)r(2.)
8 8

F

Ta ,be sure, in the first two cases, it seems much more natural to
go the other way: the formulas for 03 and 04 are classlcally
well-known (cf. § 2 below), and they imply, by Ir, 3.5, that
An ~ MK(an) ~ K, and in fact over Q. This then shows
what was claimed in I, 7.5: that, for D = 3,4, the elliptic
curves An described are such that H1(An) is a motive for Jn .

1.4.2 Multiplying 1.4 with its complex conjugate yields a re­
lation up to a rational number. In order to put it into a elassieal
shape we apply 11,.4.0.2 to the product on the ri~ht ance, and use
the follow1ng relat~on wh1ch 1s proved by arguments of the kind
well-known in the context of the analytic elass number formula for

real quadratlc fieidsl

TI sin(TI~) "-"* -y'D'~ •
j=1 Q

E:(j) = 1

Thls version holds for all D > 0 such that A-D 1s the diseri­
minant of a quadratic field. In fact, the more natural right hand

side, -v'n' cp(D)/2 was replaced bY -fD'llo in order to make it

come out right for D = 8 •

Thu5, wrlting 2m the number of units of K, we get the
•

following relation, whlch ean be checked for the exeeptional
easea D = 3,4,8 direetly from 1.4.1:

6 6 lO[ (~O 0 ]
U U a E G(H/K) TT a cr ~

Note that the compiex conjugate ~~l of 6 is not intrinsically
~ 2 * -defined: K(6) need not be a CM field. But, as 6 E K 6

lJ. J.J 11
15 well-determined up to a sign - which 1s inessent1al for 1.4.4.
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J..l. (, oi) =
n

J-1 .1'1 c
D

of exponent two. Now we can imitate
to 1.2, and from there to 1.4,

crOcr of the A • It 1s not always
character ~ tor a given H/K-

for some character ~ cf K
the arguments that have led us
obtaining 1.4 wlth the periods
easy, however, to identify the
curve A •

1.5.4 Standard ~-curves

Assume D > 3 1s odd, and reca11 from (Gr 1] § 11 the fundamental
Hecke character of H attached to the field K = Q(~)

reading the Dirichlet character e cf K as a character

1+ 1 I ,-
every principal ideal of K prime to -/:D aeimits an unique.. . *
generator a E'K with €(a) = 1 • Call XD any extension to
all ideals of K prime to D, so Xn 15 a Hecke character of
K with values in some CM field E of degree hn over K. Put
'n = Xn 0 NH/ K - this is· the fundamental Hecke character of H

with values in K we were alluding to above. We claim that

.( 1 .5 .5)

with no twisting character ~.

One way to prove (1.5.4) 1s by direct attack. - We leave this es

an exercise to the reader, noting only that, 1f hn 15 odd, one
can get away without really looking at the definition ~f J n ­
see (BLJ, lemma 3.4. - This direct proof cf 1.5.4 verifies 1.4

crwith ßIJ = 1, and Ocr the period of An ' with An /H being
the standard ~-curve of -K: H1(An) = M(*n) •

Alternatively, one can show that ~ = 1 if one has an independent
way of checking that 1.4 holds for the Ocr cf An ' with
6 = 1 - cf. I1, 3.5. Now, Grass has shown - see (Gr 1J, 21.2.2
~

and (Gr 3], 5.6 - that the analytically proved relation 1.4.4
can be refined directly to yield exactly this: 1.4 for' An
with ß~ = 1 • (In the case hn odd, this elementary argument
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of Gross was quite an important ingredient in the proof of the
r-hypothesls for imaginary quadratic f1elds of odd class number:
see [BL], a paper completed before the advent of Anderson's mo­
tives.)

1.5.6 For any D , let A/H and A'/H be elliptic curves with
complex multipllcation by K, wlth characters t, $' , respectlvely
so that

v = ,'I, . Assume we know 6 in 1.4 applled to the periods
~

of AO • Then, for n' corresponding to A,a , one has
°

1'1 n' "-'*
a a K

where 1 1s as in 1.5.3. Th1s then det.ermines the factor 6 '
p

which has to b~ used in 1.4 for the O~ • - Cf.' [BG], 10.5, where
the analysis of the factors 1s finer than our motivic methods
permit. There, Gross reters back to [qr 4J § 4; cf. the analogous
passages in [GS], §§ 4, 9. - The formula recalled after (GS], 10.1,

lmpl1es that the wo expresslons t, "6 -ln hn and 1'1 t,(J\ ) -
~ ~ cr a

see 1.4.5 - do transform the same way under changement of the
curve A/H • So, it 18 enough to check they are equal for one
such A • This 1s what we heve indicated, in 1.5.4, for D odd.­
For curves that are no langer def1ned over H , 'see 3.2 belaw.

2. An historical aside

I am indebted to R. Sczech tor pointing out to 'me that an analytie
tormula which implles 1.4.4 oceurs as identity no. 163 in E.
Landau's paper CLaJ., Th.anks to Landau's bibliographieal scrutiny,
this paper contains reterences to what probably i5 a fairly
complete history of this formula, prior to 1903.

Special cases, including ~(-V-4') - the lemniscatic case - and
Q(-/=3') ware known early in the 19th century, Ithe main reference
being Legendre's book [Le] - e.g., 1ere partie, nQ 146, 147;
pp. 209 f. By the middle of that eentury, the lemniscatic formula
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D ,
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wlth no twisting character ~.

One way to prove (1.5.4) i8 by direct attack. - We leave this as
an exercise to the reader, noting only that, if hn 18 odd, one
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with 6~ = 1 • (In the ease hn odd, this elementary argument
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~f 1.4.1 above could be used, ~ithout further comment, by Eisen­
stei~: (Ei 1], p. 186. - It i5 this part of the history that
Chowla and Selberg ware aware of when writing their papers: the
annonncement (CS] (see § 4 for our formula) 'and the final version
( SC J" (§§ 8, 12). - Cf. (WW], 22.8.

In the analytic proofs of 1.4.4, the r-values, or rather their
logarithms, usually anter through the evalua~ion of

L'(t,1) = - Le(n) lO~ n

n=1
via Kummer's series for log rex) - i.e., the identity derived in
(KuJ. This part seems to have been done first by A. Berger - see.
(Be], p. 29/30 - as early as 1883. When Lerch rediscovered this
argument in 189:7 - [Ler], p. 302 f - Kronecker, using his "first"
limit formula - cf. [We], VIII § 6 - , had already expressed
L'(t,1) in terms of variaus constants and (logarithms of) special
values of theta series which correspond to the 0 's in ouro
notation - see [Kr], art. XVI, formula 7. Putting both parts to-
gether, Lerch deduces our identity (more precisely, its logarithm)
as formula 26 of [Ler] , p. '303.

Weil points out - (We 2], IX §§ 2,4 - that Lerch could have used
his determination, in 1894, of the derivative at s=O of the
Hurwitz zeta function, in order to reiate L'(e:,1) to valuesof
log r . But using Kummerls series for this seems to have been
closer to the taste of the day: in fact, J. de Seguier, a Jesuite
professor of mathematics at the University of Angers, rediscovered
this part of the proof in 1899 - see (dS 2] § 10 - although, as
Landau does not fail to point out «(La], p. 177), he looses a
factor of , along the way. de Seguier should heve been especially
weIl prepared to put together both parts of the proof because he
had published, in 1894, a whole baok - CdS 1] - on Kronecker's
series of memoires (Kr]. But our identity does not seem to have
caught his interest.

Landau, in (La], gives new proofs of both parts of our identity.
The part done first by Berger allows hirn to illustrate the use
of divergent Dirichlet series - the theory of which he develops
in the 3rd section of this paper -, see (La], 177-179.
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I do not know cf any oeeurenee of our Identity between [La] end
(esJ, i.e., between 1903 and 1949.

Weil seems to have been the first to envisage a geometrie proof
of our identity - see [W III], 1976 b (and 1976 b*). He did not
succeed in general; but in a slightly later manuseript - [W III],
1977 c - he provided what Grass could then develop into an essential

*tool for his geometrie proof of 1.4 up to factors in m - see
[Gr 2J. This proof tracks down perlods along a family of abalian
varieties whieh, at one point, eontains (a faetor of) the Jaeobian
cf a Fermat eurve - whence the r-values -, at another apower of
the elliptic curve A - whence n ~ any Ocr ~ Grass' deform-

ation argument, in turn, provided a key step in Dellgne's proof
of the fundamental theorem I, 2.1.3 on absolute Hodge cycles on
abelian varieties - ~ee [DMOS], I, 4.8, 4.11 - : it enabled hirn
to show that certain "exceptlonal cycles", presented in [W III],
1977 e as would-be obstructions to the Hodge conjecture, were
at least absolutely Hodge. Since It 1s basically this theorem
I, 2.1.3 - alang with Anderson's motives - on which our deduction
of 1.4 rests, the story of the geometrie proofs has eome almost
full cirele.

An amazing kind of a geometrie revindlcation of the log in front
of 1.4.4 which naturally comes out of the analytlc proofs is
provided by Fa1ting's theory of the modular height of abelian
varieties - ef. [DP], 1.5. Should the original identity really
be vlewed as an identity of the (logarithmic) heights of two ••• ?

The attempt, in [Mor] , to generalize the identity along analytlc
lines has, so far, not been linked to the geometrie vein. The same
ean be said of the analogues for real quadratic fields in [DenJ.
I~ these theories have a geometrie meaning it can be expected to
be falrly different from the one we encountered with 1.4.

3. Twists end multiples

~ Either one of the follow1ng two properties charaeterize the
imaginary quadratic fields among all CM fields.
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3.0.1 The set of all CM types of K forms a ~ basis of the
group of infinity types of all Hecke characters of K

3.0.2 Each element of ~CHom(K,~)] is the infinity type of a
Hecke character of K.

Taking everything module I a , the infini ty type cf the norm E

on K, i.e., 1+c if. K 18 1maginary quadratic, these conditions
amount to %

3.0.3 The group cf all 1nfinity types of Hecke chracters cf K,
taken module I a , 1s a free LZ module of dimension 1.

We know, fram 0, 8.4.3, that the subgroup StK of inf1nity types
of Jacobi sum Hecke characters of K, taken module its element
1+c , is precisely h .QZ(Hom(K,C)]/I a), for h t~e elass
number of the imaginary quadratie field K. The refinement 1.4
of Lerch' s period relation 1.4.4 was deducect by writing the gener­
ator Tn of StKI I a as h·a E h·ez[Hom(K,~)]1 Io) . Sinee we
are working in a onedimens1onal Zl module, the following remark
1s plain.

3.1 Remark. If, in the arguments 1.1 - 1.4, the charaeter Jn
-ia replaeed by any Jacobi sum Hecke eharacter of K (and ne ' hD'~

~~re changed aeeordingly), then the per~od relations between
'elliptlc integrals of CM type and values in r(~) that one finds
are all powers of 1.4, up to twisting by the norm or by finite
order characters - see 11 § 3 - , and up to r-relatlons - which
should all follow from 11, 4.0.

3.1.1 In (St], Stern, proving a conjecture of.Legendre, shows
that at most ~ of the values tr(~) I 0 < j < nl are in­
dependent.with respeet to the relations 11, 4.0.1/2. Unlike Landau ­
(La], p. 179 - we do ~ see 1.4 (or 1.4.4) as a relation which
"allows to reduce.the number of independent values" in this set.
Instead, 1.4 goes beyond 11, 4.0 in that it relates two different
kinds of transcendental constants: elliptic integrals and r-values.
This i5 also the use which is made of 1.4 in transcendence theory:
to transport transcendence results from elliptic integrals to
certain combinat1ons of r-values •••
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Aremark similar to 3.1 also appl1es if we look at 1.4 from the
point of view of the elliptic curves:

3.2 Let F be a finite extension of H , and At/F an elliptic-- .
curve with complex multiplicatlon by K. Write ~t the Hecke
character of F wlth values in K such that H1(At) = M(*t) .
As in 1.5.6, let us compare AI to a curve A/H, H1 (A) =M($) ,
for wh1ch 1.4, with all of 1ts constants, 1s assumed to be known.
Then ,t = \1- (. 0 NF/H) , for some finite order character v ?f
F , with values in K. It folIows, as 1n 1.5.7, that (assuming
F/K gelois, for simpllcity)

Tr 0 t "'-./

a E G(F/K) a K*
6 (,.,... n )[F:H]

(\101) • 1(.1 /) a 'a E G H K

where 1 18 the inclusion of ideals of K 1nta ideals af F •
Then 1.4 yields, for D +3,4,8,

(3.2.2) Tr n t

a E G(F/K) a
I'"V

*K

1 ep(n)=:I:Q ~(~- hD' D-1 j [FlH]
( n ) ~lTr(D)I·.

j=1
e:(j)=1

3.3 Grass onca asked me for a direct motivic interpretation of--
~Lerch's relation 1.4.4. Remembar that we have obtained 1.4.4 by
mindlessly multiplylng 1.4 wlth lts complex conjugate. - I pro-

* *pose the followlng ldentity cf periode in ~ Im .as an answer to
this question:

(3.3.1) C+«(RK/mM(U.Xhn)]lij) = c+(M(an)(-nc ) ~ Klij) •

In fact, 1.4.4 18 deduced from 3.3.1, using the arguments of 1.2 ­
1.4 as above, by virtue of 11, 1.8.2, an analogue of 11, 1.3.2 for
c+ , and 11, 1.6.6.

Note that, in case hn a 1, 3.3.1 corresponds to studying the
Hasse-Weil L-function of the elliptic curve A, lnstead of separat­
ing i~CM fact~rs L(X,s) and L(x,s) •
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3.0.1 The set of all CM types of K forms a ~ basis of the
group of infinlty types of all Hecke characters ,of K;

3.0.2 Each element of ZlCHom(K,«:)] 1s the infinity type of a

Hecke character of K.

Taking everything module La, the infinity type of the norm :N

on K, 1.e., 1+c 1f.K Is 1maginary quadratlc, these conditions
amount to z

3.0.3 The group of all infinity types of Hecke chracters of K,
taken modulo La, 1s a frea 7Z module of dimension 1.

We kno~, fram 0, 8.4.3, that the subgroup StK of infinity types
of Jacob! sum Hecke characters of K, taken modulo its element
1+c , 1s preclsely h .~CHom(K~C)J/I a), for h the class
number of the imaginary quadratic field K. The refinement 1.4
of Lerch I s period relation 1.4.4 was deducect by writing the gener­
ator Tn of StK/ La as h·a E h'~(Hom(K,€)J/ L0) • Since we
are working in a onedimensional ~ module, the follow1ng remark
is plain.

3.1 Remark. ~f, 1n the arguments 1. 1 - 1'.4, the character Jn
i8 replaced by any Jacobi sum Hecke character of K (and nc ' hn'~

are changed accordingly), then the per~od relations between
elliptic integrals of CM type end values in r(~) that one finds
are all powers of 1.4, up to twisting by the norm or by finite
order characters - see II § 3 - , and up to r-relations - which
should all follow from II, 4.0.

3.1.1 In CSt], Stern, proving a conjecture of Legendre, shows
that at most ~ of the values Ir(8) I 0 < j < DI are in­
dependent with respect to the relations II, 4.0.1/2. Unlike Landau ­
CLaJ, p. 179 - we do not see 1.4 (or 1.4.4) as a relation which
"allows to reduce the number of independent values" in this set.
Instead, 1.4 goes beyond 11, 4.0 in that it relates two different
kinds af transcendental constants: elliptic integrals and r-values.
This is also the use which 1s made of 1.4 in transcendence theory:
to transport transcendence results fram ellipt1c integrals to
certain combinatians of r-values •••
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CHAPTER FOUR:

Abelian Integrals with Complex Multiplication

In 111 we have studied the relations between periode of Hecke
characters of imaginary quadratic fields and values of the gamma
function. One aimo! thischapter 18 to generallze these results to
Hecke characters of abelian CM flelds - see § 2. In order to do so,
however, we first have to analyze a phenomenon which oceurs for all
CM fields K of degrae (K: wJ > 2 : the monamial perlod relations
implied by ~ linear relations among CM types of K. These relations
were"dlscovered by Shimura - see CShi pJ, (Shi 0) - i their motivic

*version (up to factors in ~ ) i8 already present in (DP), 8.18 -
8.23i and their motlvlc proof (up to ~*) was "explained in eDBl •

1. Shimura's monomial relations

~ Let K be an algebralc number field, and Xi ' for i Q 1, ••• ,r,
a collectlon of algebralc Hecke characters of KalI of wh1ch take
values in one number tleld E. Assume there are integers ni such
that

tor some character of finite order ~. Then, by II, 1.8.3, we get
the period relation

in
r n1lnr P(Xi) a p(~)

i 1:11 .

Furthermore, we know how to compute p(~) from ~ : - see 11, 3.2.
In particular, for all a E Hom(K,~) , T E"Hom(E,~), the complex
number p(~ia,T) lies in the composite of the maximal abelian ex~

tension of ~ with ET i

(1.0.1)

(1.0.2)

1.1 Shimura's 'basic relations

1.1.0 Assume that, in the situation of 1.0, a8ch Xi is of weight
-1 , and that, for all a E Hom(K,a:) , T E Hom(E,a:). , the Hodge
exponents n1(a,T) of Xi - see I, § 4 - are all either -1 or 0,
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for all 1 - 1, ••• ,r • Then 1.0.0, with unspecified U of finite
order, is equivalent to a ~ linear relation between CM types of K •

(Given r CM types of K, one has to choose E such that
characters Xi with values in E exist, co~esponding to the types.)
As mentioned before - 111, 3.0 - nontrivial such relations exist if
and only if K contains a CM field of degree at least 4.

1.1.1 In the situation of 1.1.0, let us assume, without lass of
genera11ty, that E 1s a CM f1eld, and let us fix embeddlngs

1 1
K e-. C, E ~ C whlch allow us to consider K and E as sub-
flelds of ~.

There exist abelian varieties Ai with complex multiplicatlon by E
defined ·ovar K such that ~(Ai). M(Xi) - see I, 4.1.1. If
Di(a,TJ c -1 , there ex!sts a holomorphic differential form w(i;. . a,
on A01 , de!1ned over ~·ET·c C·, such that e*(w(i

T
) - eT. w(iT) ,

a, a,
for all e E E , and

Cup to the usual indeterminacy), for any E basis
cf. 11, 1.5.1.

Putting ~ ~ 1 in 1.1.2 shows that 1.0.1 implies Shimura's basic
period relations, as stated, e. g., in theorems 1.2 end 1.3 of (Shi PJ.
Note, however, that the passage to antiholomorphie periods 1s normal­
ized dlfferently 1n Shlmura's paper; he slmply inverts the correspond­
1ng holomorphic period, whereas we are obllged to also multiply by
2ni - see II, 1.5.4.

The same translation also establ!shes propositions 1.4, 1.5, and 1.6
of (Shi pJ. - Cf. [DP), 8.18 and [DB] for motivic interpretation and

* *proof of all these relations in ~ /W •

Instead of explicit~y stating these results up to
finer relations provided by our formalism cf the

*U , let us diseuss

P(Xl)·
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for .all i m 1, ••• ,r • Then 1.0.0, with unspecified ~ of finite
order, is equivalent to a ~ linear relation between CM types of K.
(Given r CM types of K, one has to choose E such that
characters Xi with va1ues in E exist, corresponding to the types.)
As mentioned before - II!, 3.0 - nontrivial such relations exlst if
and only If K contains a CM ~ie1d of degree at least 4.

1.1.1 In the situation of 1.1.0, let us assume, without lass of
generallty, that E 18 a CM fleld, and let us fix embeddings

1 1
K e-. C, E ~ C whlch allow us to consider K and E as sub-
fle1ds of ~.

There exist abe1ian varletles Ai with comp1ex multlp1ication by E
defined over K such that ~(Ai). M(Xi) - see I, 4.1.1. If
n1 (a,T) m -1 , there exists a holomorphic differential form w(i;. . c,
on A~i' de!ined over ~·ET·C C·, 8u~h that e*(w(i) - eT• weiT) ,a,T c,
for all e E E , and

.(up to the usual indeterminacy), for any E basis
cf. 11, 1.5.1.

PUtting ~ ~ 1 in 1.1.2 shows that 1.0.1 imp1ies Shimura's basic
period relations, as stated, e. g., in theorems 1.2 and 1.3 of [Shi PJ.
Note, however, that the passage to antiholamorphie periods 18 norma1­
1zed di~ferently In Shimura's paper; he simp1y Inverts the correspond­
ing ho1omorphic perlod, whereas we are'obliged to also multiply by

2n1 - see 11, 1.5.4.

The same translation also establishes propositions 1.4, 1.5, and 1.6
". of (Sh1 p]. - Cf. (np), 8.18 and [DB] for motivlc interpretation and

* *proof of all these relations in ~ ~ •

*Instead of explicit~y stating these results up to ~ ,let us discuss
finer relations provlded by our formalism of the P(Xi).
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CHAPTER FOUR:

Abelian Integrals with COmplex Multiplication

In 111 we have studied the relations between perlods cf Hecke
characters of imaginary quadratic flelds and values of the gamma
function. One aim of thi8 chapter' i8 to generallze these results to
Hecke characters of abelian CM fields - see § 2. In order to do so,
however, we first have to analyze a phenomenon which occurs for all
CM fields K of degrae (K:~] > 2 : the monomlal period relations
lmplled by ~ linear relations among CM types of K. These relations
were o d1scovered by Shimura - see ~Shi p], [Shi OJ - ; the1r motlvic

*version (up to factors in ~ ) 1s already present in [DP] , 8.18 -
*'8.23; and the1r motivic proot (up to 1i ) was explained in [DBI •

1. Shimura's mOßamiel relations

~ Let K be an algebr~ic number field, and Xi ,for im1,.~.,r,

a collectlon of algebralc Hecke characters of K all cf which take
values in one number tield E. Assume there are integers ni such

, "that

tor some character of finite order ~. Then, by 11, 1.8.3, we get
the period relation

in
r Di-nr P(Xi) a p(~)

la1 0 0

Furthermore, we know how to compute p(~) trom ~ : - see 11, 3.2.
In partlcular, for all a e Hom(K,~), T e Hom(E,C), the complex
number p(~;O,T) lies in the composite of the maximal abelian ex~

tension of ~ wlth ET
;

(1.0.1)

o( 1. 0.2)

1.1 Shimura's 'basic relations

1.1.0 Assume that, in the situation of 1.0, aach Xi 18 of weight
,-1 , and that, tor all a E Hom(K,~) , T E Hom(E,t) , the Hodge
exponents ni(o,T) of Xi - see " § 4 - are all elther -1 or 0,
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'1.2 Shimura's reflnement
1 1

·1 .2.0 As before, let K e:.-...... a:, E c::....-. C
number flelds; E a eH fleld. Let X be
character of K wlth values In E, and

:ponents. Call Ko C K the flxed fleld of

18 e G(t/~)ln(s1,T) s n(1,T) , for all T E Hom(E,C)1 •

.~ew1se, let Eo C E be the fixed fleld of

ts E G(I/Q)ln(a,s1) ~ n(0,1), for all 0 E Hom(K,C)l •

'Ko and Eo are each elther ~ or a CM f~eld. From thelr definition,
It follows that n descends to a functlon

:such that

,-for all a E Hom(K, lI:), T E Hom(E, a:) •

The following constructlons will only depend on the functlon no '
,or equlvalently, on the algebralc homomorphlsm

}deflned by the Do(OO,TO)'S - see G, § 2(c), and C, § 4 • For all
'finite extensions Ko C L and Eo~ F , the extended algebralc
'homomorphlsm

.'18 glven by the function n on Hom(L,C) x Hom(F,lI:) defined by

-equation (*). Thus, for L D K, F = E , we find the inflnity type
"of the Hecke character X • Writing w its weight, we have, for
:.c - complex conjugation, that
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i
1.2.1 There exists a finite extension Eo c ~ F ,F a eH fieId,
and a Hecke character Xo of Ko w1th values in F and ~inlty

type lot. - Furthermore, there exists a finite abellan extension
L of Xo such that i ca "xo 0 NL/Ko takes values in Eo •

fOJ b T *
1.2.2 . Taken module [(~)a · E 0] ,the period p(X;a,T O ) - tor
a E Ham(L',a:), T 0 E Hom(Eo ,4:) - depends only on t,oo := er Ix ' and
Ta • It will therefore be written 0

p(t;oo,T
O

) E ~*It(K:o)ab. ETOJ* •

If "Xl ,for l a 1, ••• ,r, are as in 1.1.0, and such that

r
IJ' 'X. • 1T Xi '1..1

for some IJ cf finite order, then

for any extension. T cf Ta to the'cemmon fleld cf values E of
X and the Xi • - Again, all that matters here, are the Infinity
types of the Xi •••

Relation 1.2.4 almest establlshes conjecture 1.7 in [Shi P]. The
only dlfference ls that Shimura wants the perlod which we denote by

ab .T 0 * +p(t;1,T o ) to be weIl defined up to (Ke · Eo ] , where Eo 18

the maximal totally real.subfleld of Eo • Ta achleve this, we simply
repeat remark 8.22 cf [DP] in our context:

First, note the natura11ty of the formation of pet) , which 18
e8s11y proved on the level cf Hecke characters, by transport of
structure - cf. [DP), 8.18.4:
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i
1.2.1 There exiats a finite extension Eo c • F , F a CM field,
and a Hecke character Xo of Ko wlth valuea in F and inf1nity
type i 0 t • - Furthermore, there exists a finite abe11en extension
L of Ko such that X a 'Xo Cl NL/Ko takes values in Eo •

N b T *1.2.2 Taken modulo [(~)a · E 0J , the per10d p(X;O,T O ) - for
'0 E Hom(L,~), TO E Hom(Eo'~) - depends ooly on t,oo :~ alK ' and

o
T

O
'. It will therefore be written

p(t;C1o ,T 0) E a:*;t (K:o)ab. E
T

0)* •

If Xi ' for i m1, ••• ,r, are aa in 1.1.0, and such that

r
)..1' "X. a Ir Xi '

1-1

for some ~ of finite order, then

.for any extension. T of TO to the common field of values E of
X and the Xi • - Again, all that matters bere, are the 1nfinity
',types of the Xi •••

,Relation 1.2.4 almost establishes conjecture 1.7 in [Shi PJ. The
only d1fference 18 that Shimura wants the per10d which we denote by

ab ~To * " +
'p(t;1,T O) tO.be weIl def1ned up to CKo · Eo J , where Eo 18
·the maximal totally real subfleld of Eo • To achleve this, we 8imply
-'repeat remark 8.22 of [DP] in our context:

First, note the naturality of the formation of pet) , which 18

,easily proved on the level of Hecke characters, by transport of
ßtructure - cf. [DPJ, 8.18.4:
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1.2 Shimura's refinement
1 1

1.2.0 As before, let K~ t, E ~c be embedded aigebralc
number fleIds; E a CM fleld. Let X be an algebralc Hecke
character of K wlth values in E, and n(a,T) Its Hodge ex­
ponents. Call Ko C K the flxed fleid of

la E G(t/~)ln(s1,T) a n(1,T) , for all T e Hom(E,C)} •

Likewlse, let Eo C E be the fixed fleld of

ls E G(~/~)ln(a,s1) • n(0,1), for all 0 e Hom(K,~)l •

Ko and Eo are aach elther ~ or a CM fleld. From their definition,
it follows that n descends to a tunctlon

such that

for all a e Hom(K,t), T E Hom(E,~) •

The followlng constructions will only depend on the function D
O

'

or equlvalently, on the algebralc homomorphism

defined by the no(oo,To)'S - see C, § 2(c), and 0, § 4 • For all
finite extensions Ko C L and Eo~ F , the extended algebralc
homomorphism

18 given by the functlon n on Hom(L,C) x Hom(F,C) defined by

equation (*). Thus, for L = K, F D E , we find the Infinity type
of the Hecke character X • Writlng w Its weight, we have, for
c m complex conjugatlon, that
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IV "-'

1 2 5 If IV K' zr K and ß •• Eo~ Eo'•• Wo: o~ 0

fields, then
are Isomorphisms cf

From 'this, 11, 1.6.6, and the fact,that complex conjugation c in­

duces a weIl deflned automorpbism of Ko as weIl as Eo ' we obtain
the equatlons

(1.2.6) p(t;Oo,T o} = p(t;coo;CT'o" = p(~;OOC·,T oe)
i •

a
(Note that (KoO)~b is stable under c, even though e does not in

general commute with other automorphisms of (x:O)ab l )

Thus, by Hilbert 90, the perlods p(t;oo,T
O

) are represented by
rr 0 ab T *real numbers; they are weIl determined.up to a faetor in e(K ) E+ 0, .

- 0 0

1.2.7 Remark. D. Blasius has informed me that he has not on1y
found the above results independently, by the motivlc formelism; but
that he has also managed to prove eonjecture 1.7 of [Shi pJ adapting
Shimura •s proof - as 1n CSh1 P], sect10n 5 ..... , thus improving upon his

1981 Pr1nceton thesis (unpub11shed) 1n which a partial result was
obtained•

. Let us now go on to examine a few standard properties of the
*.. p(t;ao,T o ) - cf. [DP], 8.18 for the relations up to ij •

1.2.8 For finite extensions Xo C K~ ,

fleld, put

but consider the laft hand aide as being weIl determined up to
[(K~a')ab(E~+)T.J* • _ Cf. 11, 1.8.6/8.

* *1.2.9 If u' and u· are two algebraic homomorphisms K - E

both satisfy1ng n(I '(O,T) + n(I )(a,cr) = cst , independent of
then - in the sense of 1.2.8 - ,

,
(O,T) ,
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p(u;O' ,T) • p(U' ;0' ~T) - p(UtU' ;0' ,T) •

1.2.10

where

From 1.2.9 and 11, 1.8.4, we get:

1.2.11 "Reflex Principles"

IIReflex prineiplef - like theorem 2.3 of ~ Shi pJ; theorem 1.2 of
(Shi oJ; proposition 8.20 of ~DP] - are formal eonsequenees of the'
general formaliem of the periods eoneerned - i.e., in our eBse, of
formulas 1.2.5, 1.2.8 - 1.2.10. They typically serve to trace the
periods through arguments in which the reies of the fields Ko and
E above are interchanged. See, for instance, the' use that Deligne

o .
makes of [DP], 8.20; cf. [HS], p. 35.

Theorem 1.2 in [Sbi oJ has the advantage of being part1eularly simple
and general. But it seems to require a formal1sm of periods that are

*essent1ally only determined up to a factor in ~ • - So, we co~tent

ourselves wlth a refined version of CDP], 8.20.

Let t* : RE /~ Gm - Rx /Q Gm be the algebralc homomorphlsm deflned
0*0 *

by the invarlants no(To'O'o) a no(oo,T o ) • Define p(t ;To,ao ) as

/
(
"" N ) ,y1n 1.2.1 2, via P X*;T,OO ,for a suitable Hecke character x* of

*some finite abel~an extension F of Eo with values in Ko •
Assume, aa in 11, 1.8.1, that none of the no(oo,To)'S equals
1 1
~ w .. ,(no(oo,T o ) + no(oo,cT o» •~~ have the following Identity

of classes in c*/(~b)*, where M i8 the smallest Galois extension

of Q conta1ned 1n a which contains both Ko and Eo •

(1.2.12) •

The proof 18 straightforward - cf. (DP], 8.20. - Further refinements
of 1.2.12 may be treated using the construction cf Blasius mentioned
in 11, 2.2 •••
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p(u;O ,T) • p(U' ;0' ,T) - p(U' U' ;0' ,T) •

1 .2.10

where

From 1.2.9 and II, 1.8.4, we get:

1.2.11 "Reflex Prlnelples"

"Reflex prlnelpl~ - like theorem 2.3 of ~Shl pJ; theorem 1.2 of
(Shi 0); proposition 8.20 of ~DPJ - are formal eonsequenees cf the

general formelism cf the periode eoneerned - i.e., in our ease, of
formules 1.2.5, 1.,2.8 - 1.2.10. They typlcally serve to trace the
periods through arguments in which the r8les of the fields Ko and
E above are interchanged. See, for instanee, the usa that Deligne

o
makes of [DP), 8.20; cf. [HSJ, p. 35.

Theorem 1.2 in [Shi 0) has the advantage of being particularly simple
and general. But it aeema to requlre a formalism of periods that are

* .
essentially only determined up to a faetor in ~ • - So, we content
ourselves wlth a refined version of [DP), 8.20.

*Let t : RE /Q Gm - Rx /Q Gm be the algebra1c homomorphism deflned
0*0' *

by the Invarianta no(~o,ao) a no(O'o,T o ) • Deflne p(t ;To,ao ) as
in 1.2.1/2, via p(X*;T,OO) , tor a suitable Hecke character x* of

*same finite abel~an extension F of Eo wlth values in Ko •
Assume, aa in 11, 1.8.1, that none of the no(~o,To)'S equals
1 1
~ w • ~(no (0' O,T 0) + DO (0' 0' CT 0» • Then we have the follow:1ng ident1ty

of classes in e*/(~b)*, where M 18 the smallest Galo18 extension

of eontained in ~ which contalns both Ko

(1.2.12) •

The proot 18 straightforward - cf. [DP), 8.20. - Further reflnements
of 1.2.12 may be treated us1ng the construction of Blas1us mentioned
in 11, 2.2 •••
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'"
1 • 2. 5 If a : K~ ~ Ko
f'ields, then

and
I'\J

Q '. E --=-.. EI
... • 0 0

are isomorphisms cf

From th1s, 11, 1.6.6, and the fact,that complex conjugation c 1n­
duces a weIl def1ned automorphism of Ko as weIl as Eo ' we obtain
the equations

(1.2.6)

a
(Note that (KoO)~b 1s stable under c, even though c does not in

general commute with other automorphisms of (K:o)ab I )

Thus, by Hilbert 90, the periods p(t;oo,T
O

) are represented by
rT 0 ab T *real numbers; thay are weIl determlned.up to a factor in e(Ko ) E~ °1 .

1.2.7 Remark. D. Blasius has Informed me that he h~s no~ on1y
found the above results. 1ndependently, by the motivlc formalism; but
that he has also managed to prove conjecture 1.7 of [Sh1 p] adapting
Shimura •s proof - aa in CShi P), s8ction 5..... , thus improvlng upon bis
1981 Princeton thesis (unpublished) in which a partial result was
obtalned•

. Let us now go on to exam1ne a few standard properties of the
*.. p(tjao,T o) - cf. (DP], 8.18 for the relations up to t .

1.2.8 Far finite extensions Ko C K~ ,
fleld, put

p (i " t 0 NK •/K ;0'," I) = P (t;o' IK ,T' IE ) ,
o 0 0 0

'but conslder the 1eft hand aide as being weIl determined up to
:[ (K~a' )ab(E~+)T I J* '. _ Cf. 11, 1.8.6/8.

* *1.2.9 If u' and u' are two algebraic homomorphiams K - E ,
'both satisfylng n(1 )(a,T) + n(')(a,CT) = cst , independent of (O,T) ,
then - in the sense cf 1.2.8 - ,
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1.2.13 For examples of these period relations, the reader should
cODsult sectlon 2 cf (Shi P] • - As will be lndicated in § 2, the
pre~lse relations of ~he form (1.0.1) are liable, in principle, to
yleld much more information in concrete circumstances (in particular,
if u can be computed) than the coarser but more flexible periods
p(t;o,T

O
) with their increased indeterminacy.

2. Abelian integrals and the gamma function

2.0 In this section we consider a finite imag1nary abelian extension=====-
K of ~,with Galois group G. We fix a privileged embedding

1K c • C •

2.1 Let X be any algebraic Hecke character of K (with values in=
some number field E). Write its inflnity type as

(2.1..0) t CI L Da 0 E 1l( G] •

a E G

By 0, 8.4.2, there" exists for X ,

• a smallest positive (or: nonzero of smallest absolute value)
integer h, such that there 1s

:-~. an element !. E~ , - see 0, 8.2.1

• and a character of finite order ~ of K,

satisfylng,

(2.1.1)

Thus, ~. xh takes values in K, and via I, 5.1 we can translate
2.1.1 into the period relation

(2.1.2) h . 1 * *- P ( lJ'X ; 1) CI (r (a c!.) - )a E G E (K ~ C) /K ,

uaing II, 4.2.3 and II, 4.4.2.

2.1.3 The 1eft hand aide of 2.1.2 1s ea8ily expressed in terms of
p(~) and p(x) ; so any information one has about ~ can, in
principle, serve to reiate p(x) to values of the gamma function.



- 142 -

But already the very explicit eBse diseussed in ehapter III shows
that u will usually not be easy to determine from X, h and ~.

2.1.4 Therefore, let us now diseard finite order eharaeters in 2.1.1.
Then ~ 18 determlned.by X and h up to addition of an element
~ E lB~ such that J X(.!2.) is of finite order. In other words, !. 18
such that, tor all a E G , one has

(2.1.5) 1 -1
li(a ~ CI na •

By 11, 4.4.5, th1s determines (r(ac~»a E G up to a faetor in
(x&b)* c ~* c ~* .

Using 1.2.6 and the notation of 1.2.8 above, it follows for all 1n­
oflnlty types t as in 2.1.0 and all .! E lBK wlth 2.1.5 that,for all

a E G , we heve the period relation in :IR.*/(K8b n JR)* ,

(2.1.6)

~ Conslderlng both sides of 2.1.6 as representing elasses in
~~~ th1s relation verfies Gross' period eonjecture - see (Gr 2].

§ 4 - for all motives 1n Ai 8v(K) of rank 1 over K. In fact, all
.1 . .,

these motives are determ1ned by their Hodge realization (say, at
Id : i C-+~ ); but they all come from motives of the form H(X)

1 av .
in A~K (E) , for some X as above - see I, 5.3; I, 6.1.4, and
I, 6.1.6. - Th1s remark covers (and therefore Indlcates possible re­
f1nemen~s of) the first two examples discussed by Gross in (Gr 2J
p. 206/7; as for example 3 (p. 207/8), a motlvic version of it will
be establlshed in chapter V below•

•

'2.1.8 Suppose ~ is a class of (smooth projective) Q-algebraic
varieties for each of which one can show that every Hodge cycle on
i t 1s an absolute Hodge cycle. For L c: I , let j(, (eJ L be the
smallest Tannakian subcategory of AiL which contains CAlL as weIl
as 811 motives of the form h(XL) ,where ~L is a variety ovar L
which beeomes isomorphie, ovar ~, to a variety in ~. Then Grass'
period conjecture holds ~or the Hodge realizations of all motives ~n
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But already the very explicit ease discussed in ehapter 111 shows
that u will usually not be easy to determlne from x, h and ~.

2.1.4 Therefore, let us now discard finite order characters in 2.1.1.
Then a 1s determined.by X and h up to addition of an element
~ e ~- such that J K(!!.) i8 of finite order. In other worde, !.. 18

such that, for all a e G , one has

1 -1..:-t a a) CI n •
tt' - a

By 11, 4.4. 5, this determines (r (a c~) )(J. e G. up to a faetor in
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Using 1.2.6 and the notation of 1.2.8 above, it follows tor all 1n­
finity tyPes t as in 2.1.0 and all ! e~ with 2.1.5 that,for all
a e G , we have the period relation in R*/(Kab n JR)* ,

(2.1.6) p(t;1,a)h CI r(aca)-1 •-

~ Cons1derlng both sldgs of 2.1.6 as representing classes in
'~-J1l this relation verfies Gross' period conjecture - see CGr 2J.
§4 - for all motives in ~av(K) of rank 1 over K. In fact, all

.1 . .'
these motives are determined by their Hodge realization (S8y, at
1d-m : 1i e-....,.. a: ); but they all come from motives of., the form M(X)

.-in tit.:V(E) , for some X as above - see 1,5.3; 1,6.1.4, and

·1, 6.1.5. - Tbis remark covers (and therefore indieates possible re­
~1nements of) the first two examples discussed by Gross in [Gr 2J
p. 206/7; as for example 3 (p. 207/8), a motivic version of it will
be establlshed in chapter V below.

2.1.8 Suppose ~ ·18 a elass of (smooth projeetive) ~-algebra1c

varlet1es for aach of whlch one ean show that every Hodge cycle on
.1t 18 an absolute Hodge cycle. For Lc:l, let J(, Ce] L be the
'smallest Tannakian subcategory of At-L whieh contains CAt

L
as weIl

as 811 motives of ~he form h(XL) , where ~L 1s a variety ovar L
·wh1ch becomes isomorphie, over, 'ai , to a variety in e. Then Grass'
period conjecture holds for the Hodge rea11zations of all motives in



- 141 -

1.2.13 For examples of these period relations, the reader should
consult section 2 of (Sh! PJ • - As will be indicated 1n § 2, ,the
prec1se relations of the form (1.0.1) are liable, in principle, to
yleld much more information 1n concrete c1rcumstances (ln partlcular,
11' u can be computed) than the coarser but more flexible periods
p(t;o,T

O
) wlth their Increased indeterminacy.

2. Abelian integrals and the gamma function

2.0 In this section ws consider a finite Imaginary abelian extension
=
K of ~, wlth Galois group G. We fix a privileged embedding

1K c • C •

2.1 Let X be any algebraic Hecke character of K (with values in=
some number fleld E). Write Its 1nf'lnity type as

·(2.1..0) t. L Da a E ll( GJ •
a E G

By C, 8.4.2, there' exists for X ,

• a smallest positive (or: nonzero of smallest absolute value)
integer h, such ~hat there 1s

• an element ~ EE~ , - see G, 8.2.1 -

• and a character of finite order ~ of K,

satisfying,

(2.1.1)

(2.1.2)

•

Thus, J..l t xh takes values in K, and via I, 5. 1 we can translate
2.1.1 into the period relation

P ( lJ'X.h ; 1) Q (r (0 c~) -1 ) 0 E G E (K ~ C)*/K* ,

using 11, 4.2.3 and 11, 4.4.2.

2.1.3 The 1eft hand aide of 2.1.2 1s easl1y expressed in terms of
p(~) and p(x) ; so any information one has about u can, in
principle, serve to relate p(x) to values of the gamma function.
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of rank 1 over K. Moreover, the results of this sectlon1[[ eJ (K)
~

would then extend te all matives in ,IL. Ct' JK(E)

characters X of K, in the sense of I, 3.3.­
our proof of I, 5.1; from I, 5.3 and I § 6.

attached to Hecke
This follows from

2.1.9 We saw in 2.1.5 that worklng modulo finite order characters in
2.1.1 allows to express a in terms of 'X. and h. As tor h,. let
us simply remark that it may always be replaced with the index
tAx: stxJ of 0, 8.4. We rater to (Bin] for a number of results on
this index.

2.2 Looklng at things the other way around, let now .! Em~ be
given. Then there exist'

• a positive integer r
• algebralc Hacke characters X1, ••• ,Xr of K 11ke in 1.1.0

above

•

• a character of finite order U of K

such that

(2.2.1)

Let E be a finite extension of K which i8 a common field of
values for ~. and' all the Xi. Write j the incluslon

* *(K ~~) ~ (E 0~) • Then 2.2.1 translates .into the perlod relation

(2.2.2)

By section 1 above, this relation "does not depend" on the particular
choice of Xi's - in the sense that all such relations arlsing from
~ can be seen to be equlvalent wlthout recourse to the right hand
sides • - Conversely, all r-relations arising from comparing the
1eft hand sides of two instances of 2.2.2, for two different
a,a' Em~ , via 1.0.1 already fellow from 11, 4.4.5, and are there­

*fore, if taken modulo i , compatible with Rohrlich's conjecture -
see 11, 4.0 - , by virtue of the remark we made following theorem
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11, 4.4.5. Shimura's feelings about this, expressed at the end cf
[Sb! pJ § 4, are theretore proven to have been correct.

We leave it to the reader to write weaker versions of 2.2.2,
neglecting finite order characters in 2.2.1.

2.3 Blquadratix

Let K~C be an abellan im~ginary fie1d of degree four over ~.

2.3.1 If K 1s cyc1ic, then there is a simple abelian variety A
w!th complex mu1tiplication by K, de!~ed, s8y,over Kab , and all
such simple abel1an surfaces are lsogenous to some conjugate of A.
2.2.2 relates certain products of r values to periods of the Aa·s.
E. g., when K a Q(uS) , one finds preclsely the weIl known expressions
-af the periods of the Jacoblan of XS+yS. 1 in terms of r - cf.
I!, 4.1, or Rohrlich's appendix to tar 2).

2.3.2 If K i8 not eyelle, ca1l K+ it8 real quadratlc subfield,
and F1 ' F2 the ~o dlstinct imaginary quadratic subf1elds of K.
Every abelian var1ety A with complex mult1pllcat1on by K 1s iso­
genous to the product of two CM elliptl0 curves - cf. [Sch A] for the
exceptional r61e that such K play among all CM fields. All Hecke
characters X of K like in 1-.1.0 can be written as

fer seme 1 E {1,21 , and some Hecke character ~i of Fi of 10­
flnity type 0i ' for some embedding 01 : Fi e-. ~ and u some
character of finite order of K. The only nontrivial relations of
the form 1.0.0 over Kare consequences.of the relations ~l~i =~-1
over ~i. Thus, the corresponding period relations reproduee
Legendre's relation on elliptic eurves with complex mult1plication
by F1 - cf. 11, 1.8.5; Similarly, it 18 easy to check that 2.2.2
does not produce any new relations between the elliptie integrals
with CM by F1 or F2 , and r values, beyond what follows from
11 § 4 and 111, 1.4 - cf. 111 § 3 •
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11, 4.4.5. Shimura's feelings·about this, expreased at the end of
(Sbi pJ § 4, are therefore proven to have been eorreet.

We leave it to the reader to write weaker versions of 2.2.2,
neglecting finite order characters in 2.2.1.

2.3 Blquadratix
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2.3.2 If K 19 not eyeIle, call K+ Its real quadratlc sUbfleld,
and F1 ' F2 the two distlnct Imaginary quadratlc subflelds of K.
Every abelien varlety A wlth complex multlplicatlon by K 18 lso~

genous to the product of two CM elllpt1c curves - cf. CSch AJ for the
exceptional rale that such K play among all CM fields. All Hecke
characters X of K like in 1'.1.0 can be written as

for some 1 e 11,21 , and some Hecke character ~1 of F1 of in­
finlty type 01 ' for some embedding a 1 : Fi e-. ~ and u some
character of finite order of K. The only nontriv1al relat16ns of
the form 1.0.0 over Kare consequences.of the relations ~i;i =~~1
over Fi • Thus, the correspond1ng per10d relat10ns reproduce
Legendre's relation on elliptic curves with complex multiplication
by F1 - cf. 11, 1.8.5. Similarly, it 1s easy to check that 2.2.2
does not produce any new relations between the elliptlc integrals
with CM by F1 or F2 ' and r values, beyond what follows fram
11 § 4 and 111, 1.4 - cf. 111 § 3 •
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of rank 1 ovar K. Moreover, the results of this section)l( eJ (K)
([l

would then extend to all motives in Jl. (t' ]K(E)

characters X of K, in the sense of I, 3.3.­
our proof of I, 5.1; from I, 5.3 and I § 6.

attached to Hecke
This follows trom

2.1.9 We saw in 2.1.5 that working module finite order characters in
2.1.1 allows to express ä in terms of X and h .• As tor h, let
us simply remark that it may always be replaced with the index
[AK : stKJ ef 0, 8.4. We refer to (Bin] tor a number of results on
this index.

2.2 Looking at things the ether way around, let now !. E m~ be
glven. Then there exist

• a positive integer r
• algebraic Hecke characters X1, ••• ,Xr of K like 1n 1.1.0

above

•

• a character of finite order ~ of K

such that

(2.2.1) II_lTr D i ()
r- Xi = JK !. •

i=1

,Let E be a finite extension of K which 18 a common field of
'vslues tor ~. and' all the Xi. Write j the inclusion

* *:(K 0 a:) c.. (E ~ Q:) • Then 2.2.1 translates into the period relation

{2.2.2)

'By section 1 above, this relation "does not depend ll on the particular
'eholce of Xi's - in the sense that all such relations ari~ing from
.! 'can be seen to be equivalent without recourse to the rlght hand
sides • - Conversely, all r-relations arlsing trom,comparing the
1eft hand sides of two instances cf 2.2.2, for two different
:~,~' e~ , via 1.0.1 already follow from II, 4.4.5, and are there­
~ore, if taken modulo ~* , compatible with Rohrllch's conjecture ­
see 11, 4.0 - , by v1rtue of the remark we made following theorem
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GHAPrER FIVE:

Motives of GM Modular Forms

Let K be a GM field with maximal totally real subfield Ko .
Given a Hecke character X. of K with corresponding theta series
f (a Hilbert modular new-form relative t~ Ko)' there shauld be a
motive M(f) for f whose periods could be computed in terms of

*special values of L (X,s) . If one could ,not only construct the
motive M(f) in ~~(Eo) - with Eo the field generated by the
Fourier coefficients of f - but also show that, sinee f comes
fram x, r-1( f) lies in )l.~v , and in fact in Ci..aJ.' then
theorem I, 5.1 would allow to compare M(f) and H(X) , and
thereby yield 11, 2.1 for X (ar closely related charaeters),
provided eertain non vanishing results are available, about the
special values of L(X,s) mentioned befere.

This hypothetical 11 modular proof" of 11, 2.1 seems a long way off
at the moment - cf. Odals work (Od 1], tOd 2]. However, it provides
the romantic background for what we actually prove in this chapter:
First of all, we consider,only the case that K is·imaginary
quadratic. In this case, recent observations of U. Jannsenls,
in connection with his more general theory of mixed motives,
easily give us the ac~ual motive M(f) whose realizations were
already described in [DP) § 7 - this 1s discussed in § 1 below.
Then, after introducing the theta series for Hecke c~aracters cf
K we da. prove, in §.2 ~ that M(f) lies in CJt(fJ
But in order to do so, we have to ~ 11, 2.1 for Hecke characters
of K - in this ease the theorem was first proved in [GS), CGSI].

1. Motives for modular forms

\.' nLet k > 0 and N > 1 be integers ..Let f( z) = L anq
n > 1

(q = e2niz ) be a newform on ro(N) of weight k+2- w1th
character e, which is an eigenfunction for the Hecke operators

Tp ' P prime, p ~ N :

=

Put Eo = <D.( an I(n,N) = 1) c..... lt. It 15 lmown that Eo 15 a

number field of finite degree over m.
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1.1 Theorem (Eiehler-Shimura-Deligne-Jannsen]

There exists a motive M(f) in ~(l(Eo) of rank two over E

such that

where T E Hom(Eo,t) ,

Frobenius element at

·t :f p prime, Fp

p, end Re s » 0 •

i8 a geometrie

The proof of this theorem 18 1ndieated in (Ja], Cor. 1.4, build­
ing upon CDR] and (DP] § 7. Let us sketch very briefly how one
ean show that the realizatlons written in (DP], 7.6 actually are
realizations of a motive in ~Q' by using a somewhat different
argument - which, however, was also suggested to me by Jannsen.

1.1.1 Wrlte Ao = Y1(N) , end Ao = X1(N) the modular eurves
without, end with eusps. Suppose N ~ 3 and denote by
n1 : A1 - Ao the universal elliptic.curve. Put

XA •••
'0 ,

k factors

If k > 2 . Choose a smooth compactiflcation. Ak of Ak - cf.,
for instance (DR], 5.5. Let Z be a desingularization of Ak\Ak •
Then, by (DH III], Cor. 8.2.8, one has in the diagram

Hk+1(A «1)
c k'

that
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1.1 Theorem (Eiehler-Shimura-Deligne-Jannsen]

There exists a motive M(f) in Jt,G;;l(Eo ) of rank two over E

such that

where T E Hom(Eo '«:)' 'f, +p

Frobenius element at p, and

prime, Fp is a geometrie

Re s » 0 •

The proof of this theorem is indieated in [Ja], Cor. 1.4, build­
ing upon [DR] and [DP] § 7. Let us sketch v~ry briefly how one
can show that the realizations written in [DP], 7.6 actually are
realizations of a motive in ~~, by using a somewhat different
argument - whlch, however, was also suggested to me by Jannsen.

1.1.1 Write Ao = Y1(N), end Ao = X1(N) the modular eurves
without, and with eusps. Suppose N ~ 3 end denote by
n1 : A1 - Ao the universal elliptie. eurve. Put t

k faetors

if k ~ 2 • Choose a smooth compaetifieation, Ak of Ak - cf.,
for instance [DRJ, 5.5. Let Z be a desingularization of Ak\Ak •
Then, by (DH III], Cor. 8.2.8, one has in the diagram

Hk+1(A m)e k' .,

that
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CHAnEn FIVE:

Motives of CM Modular Forms

Let K be a CM field with maximal totally real.subfield Ko •
Given a Hecke character X of K with corresponding theta series
f (a Hilbert modular new-form relative to Ko)' there should be a

motive M(f) for f whose periods could be computed in terms cf
*special values of L (X,s) . If one could not on1y construct the

motive M(f) in ~~(Eo) - with Eo the field generated by the
Fourier coefficients of f - but also show that, since f comes
fram X, r-1(f) lies in )(,~v , and in fact in CJl rn , then
theorem I, 5.1 would allow to compare M(f) and M(X) , and
thereby yleld I1, 2.1 for X (ar c10se1y related characters),
provided certain non vanishing results are availab1e, about the
special values of L(x,s) mentioned. before.

This hypothetical "modular proofn cf II, 2.1 5eems a long way off
at the moment - cf. Odals work (Od 1J, rOd 2J. However, it provides
the romantic background for what we aotually prove in this chapter:
First cf all, we consider only the case that K is imaginary
quadratic. In this oase, recent observations of U. Jannsen's,
in connect1on with his more general theory of mixed motives,
easily give us the actual motive M(f) whose realizations were
already described in [DPJ § 7 - this 1s d1scussed in § 1 below.
Then, after introducing the theta series for Hecke characters of
K we da. prove, in § 2. ~ that M( f) lies in CJk..(JJ
But in order to do so, we have to ~ II, 2.1 for Hecke characters
of K - in this case the theorem was first proved in [GS), [GS'].

1. Motives for modular forms

\' nLet k > 0 and N ~ 1 be integers. Let f(z) = L anq
n > 1

.(q = e2niz ) be a newform on ro(N) of weight k+2- with
character € , which 1s an eigenfunction for the Hecke operators

Tp ' P prime, p ~ N :

=

Put Eo = 11l( an I(n ,N) = 1) c..... a:. It is known that Eo 15 a

number field of finite degree ovar m.
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As Hk+1(Ak ) and Hk+1(Z) are honest regard motives, and ~
- k+1(T) k+1()comes from an absolute Hodge cycle a : H A k - HZ, its

kernel, too, defines a motive in ~~, inside of which one now
continues to cut out the desired submotive:

1.1.2 By Liebermann's trick ~ see (DRJ, 5.3 -, preferably
modified by taking the part where [m1J x ••• x (mkJ act as
m1 , ••• 'mk ' for sufficiently many collections of integers
(m1 , ••• , mk ) , one obtains a motlye with realizatlons

1 .1 .3 Next, "take invariants under the action of the symmetrie
group Sk' and finally pass to the submotive of

annihilated by the kernel of the homomorphism of the Hecke
algebra !Ir ,

-
-

This produces the realizatlons described in [DP], 7.6.

1.1.4 In case N was 1 or 2, or if we want to construct
motives for .modular forms on more general congruence subgroups,
one has to close the construction of M(f) by passing to the
invariants under a finite subgroup.

It i8 fairly clear that, at every stage, we have only applied
absolute Hodge cycles in cutting out the next smaller motive.
But we leave the details to the reader.

The followlng problem 8eems to be unsolved.
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Problem. Show that for "generle" f of weight k+2 ~ 3 -

and in partlcular for

l1e in Att~V (Eo ) •

M(f), does !lQ1

1.2.1 For k = 0 , that Is, If f has weight two, M(f) "i5"
essentlally the abel1an variety attached tQ f by Shimura - see,
~.g., (ShimJ, Thm. ·7.14. So, M(f) E ,Jt..~v for k:l 0 •

2. CM modular ferms
1

2.0 Let K be an imaginary quadratlc field, embedded K c ", C
.=.

1n a fixed way, and wr1te '-D the discriminant ef K. Let X
be an algebraic Hecke character of K, of conductor f , with
inf1nity type w.1 , for some w > 1 • Denote by E ~ K the
number fie1d generated by the values of X • Wrlte the theta
saries f attached to X " and an embedding T : E ~t :

fT (z) = I XT (n)q:Nn .. L~ qn ,

(a,I)=1 n > 1

where a runs over all integral ideals of K prime to f , and

~ = L X(.Q) - thus, 8 1 = 1 • - By Hecke, [HeJ, n° 23, 27,
:Na" =n

fT(Z) is, for each T , a newform of weight w+1 (1.e.,
k = w-1, 1n the notation of § 1) on ,ro(N) , with N = D.. :NE ,
and character € given on prime numbers p ~ N by

e(p) = (~)p •

~ As in 1, cal1 Eo the fleld lU(anl(n,N)=1) , and wrlte
Q(e) the field generated by the values of € •

2 •1 •1 Lemma' ( i ) E = K· Eo

The proof 1s 1eft to the reader.
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Problem. Show that for IIgeneric" f of weight k+2:::. 3 -

and in particular tor

lie in 4~v (Eo ) •

M( t)", does!!21

1.2.1 For k = 0 , that ls, lf f has welght two, M(f) "ls U

essentlally the abelian var1ety attached tQ f by Shimura - see,
~.g., CShim) , Thm. ·7.14. So, M(t) E /Ii~v for k m 0 •

2. CM modular forms
1

2.0 Let K be an imaginary quadratic field, embedded K c ~ C
in a fixed way, and wrlte -D the discriminant cf K. Let X
be an algebraic Hecke character of 'K , of conductor ! , with
infinity type w.1 , for same w ~ 1 . Denote by E ~ K the
numbe~ field generated by the values cf X • Write the theta
aaries f attached to X , and an embedding T : E c..... «: :

T \"' T ]Naf (z) = ~ X (a')q '=
(.0,f)=1

where 0 runs over all integral ideals of K prime to f , and

an = L X(.o) - thus, a1 = 1 • - By Hecke, [He], n.Q. 23, 27,
l'Io" =n .

fT(Z) is, for each T , a newform of ,weight w+1 (i.e.,

k = w-1 , in the notation of § 1) on r o(N) , with N = D .. :N f',
and character € given on prime numbers p ~ N by

e(p) = (=!l)p
•

~ As in 1, call Eo the'field m,(anl(n,N)=1) , and write
Q(€) the field generated by the values cf e .

2 • 1 •1 Lemma' ( i ) E = K· Eo

The proof i5 left to the reader.
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As Hk+1(A
k

) and Hk+1(Z) are honest regard motives, and ~
comes from an absolute Bodge cycle a: Hk+1(Ak ) - Hk+1(Z) , its
kemel, too, defines a motive in ~~, inside of which one now
continues to cut out the desired submotive:

1.1.2 By Liebermann's trick - see (DR], 5.3 -, preferably
modifled by taking the part where (m1 J x •••x (mkJ Bet as
m1 • ••• ·mk , for suffieiently many collections of integers
(m1 , ••• , mk ) , one obtains a motiye with realizations

•

1.1.3 Next, 'take invariants under the action of the symmetrie
group Sk' and finally pass to the submotive of

annihilated by the kernel of the homomorphism of the Hecke
algebra !Il' ,

- •

This produces the reallzations deseribed in (DP], 7.6.

1.1.4 In ease N was 1 or 2, or if we want to construct
motives for modular forms on more general congruence Bubgroups,
one has to close the construction of M(f) by passing to the
invariants ~der a finite subgroup.

It 18 fairly clear that, at every stage, we have only applied
absolute Hodge cycles in cutting out the next smaller motive.
But we leave the details to the reader.

The following problem 5eems to be unsolved.
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Three cases oeeur, as -far as the eonstellation Eo c E is
coneerned:

2.1 .2 Eo 18 totally real.

This is the same as saying that E, whieh 1s naturally a CM
fieId, has Eo as 1ts max1mal'totally real subfield. Also, like
in 2.1.1 (1), one sees that.2.1.2 oeeurs if and only if X is
equivar1ant with respect to eomplex eonjugat1on, 1. e.,

( 2 • 1 •2) 1 X (ii) = 'X,,( Q ) ,

for all (. a" ßf) = 1 •

Note also that
yields e 2 = 1
example of X

~ = 1 implies 2.1.2, and that 2.1.2 in turn
(but not necessarily ~ = 1 , as 18 shown by the

w1th (2.1.2)1 of eonduetor (1).)

2.1.3 E = Eo •

By 2.1.1 (i), if Ea is not tatally real, Eo has to be a
CM field. But NOT 2.1.2 daes not imply 2.1.3' ~~cause it mayaIso
be that:

2.1.4 E ~ Eo and Eo is not totally real.

As an example (pointed out to me by J. Tilouine), take X satis­
fying (2.1.2)1, and v a D1r1chlet character of Q such that

K cf tU( vCN.Q·) I Q. ideal of K). Then, for the twist x' (\) 0 NK/~) ,

one 18 in ease 2.1.4.

2.2 Proposition Let f be as in 2.0 and Eo as defined in

2.1. Let M(f) be the motive attached to f ~ 1.1. Then there

1s a natural embedding

inducing on 1 ~ Eo the eoefficient structure of M(f) E ~m(Eo) ,

and such that, for every idempotent e of K ~ Eo with

e(K @ E ) ~ E , the direet faetor e(M(f) x K) of M(f) x K 15o

a motive either for X or for the complex conjugate X , in the

sense cf I, 3.3.
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Proof. We shall essentially generalize Shimura's proo~ o~

theorem 1 in [Shi E]. (For the breader perspect~ve of this
method cf. [Shi FJ, [Ri 1J, (Mom], and [R! 2J.)

First assume that the conductor f of X satis~ies:

(2.2.0) D1f and f = f .

In analogy to the definition of the Hecke operators, the double
class r 1 (N) 6 r 1 (N) , with

6_- (01 151

1
'.) E SL2(lD) •

induces an algebraic correspondence on X1(N) x X1.(N). This can be

lift~d to Ak and closed up in Ak , and actually induces an (absolute­
Hodge~) .endomorphism 6 of the direct sum ~ M(fA), with X running
.1,

through all aigebraic Hecke characters of K defined modulo { , de-
flned over C. Ta see this, note that for any such A, the correspond-

ing theta saries
fi(Z) = -)' A(a)· ~Q

(a,f) = 1

can be wr!tten

where b varies
repres'80ting the
principal ideals
*K , and where

over a fixed system cf integral ideals cf
ray classes cf ideals prime to f module

(0:) generated by elements a == 1(mod f )

K

in

Fb ( z) = La w. cf ~a ) / lf( b) •

(a)
a E b

Thus, by the Shimura isomorphism, HDR(~ M(fA)/~) is generated
A

by the Fb's (and their antiholomorphic counterparts); but on
them ß acts via
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can be written
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Fb(z) = I aW• J1(a)/ :N(b) •
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Thus, by the Shimura isomorphism, HDR(m M(fA)/t) 18 generated
A

by the Fbls (and their antiholomorphic counterparts); but on
them ~ acts via
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Three cases oceur, as far as the eonatellatlon Eo c E 1s
eoncerned:

2.1.2 Eo 15 totally real.

Thia 18 the same as saylng that E, wh1eh 1s naturally a CM
fleld, has Eo as 1ts max1m~ totally real Bubfield. Also, like
in 2.1.1 (i), one sees that,2.1.2 oceurs if end' on1y 1f X is
equivarlant wlth respect to eomplex conjugation, 1. e.,

for all (Q., :Nf) = 1 •

Note also that
yields e 2 = 1

example of X

t c 1 implies 2.1.2, and that 2.1.2 in turn
(but not neeessarily E: = 1 , as is shown by the

with (2.1.2)' of eonduetor (1).)

. 2. 1 •3 E = Eo •

By 2.1.1 (1), 1f Eo 1s not totally r~al, Eo has to be a
CM fleld. But NOT 2.1.2 does not 1mply 2.1.3 because 1t mayaiso

I" be that:

2.1.4 E ~ Eo and Eo is not totally real.

As an example (pointed out to me by J. Tilou1ne), take X satis­
fy1ng (2.1.2) I,' and v a Dlrichlet· character of Q such that

K 9: In( \) CN,Q') 1 Q. ideal of K). Then, for the twist x· (v 0 NK/ l1l ) ,

one 1s in ease 2.1.4.

2.2 Proposition Let f be as in 2.0 and Eo as defined in

2.1. Let M(f) be the motive attached to f ~ 1.1. Then thera

i5 a natural embedding

induclng on 1 ~ Eo the coefficient structure·of M(f) E ~m(Eo) ,

end such that, for every Idempotent e of K ~ Eo with

eCK 0 E ) ~ E , the direct factar e(M(f) x K) of M(f) x K iso

a motive either for X ar for the complex conjugate X , in the

sense of I, 3.3.
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r

ÖDR(Fb)(z) = LFblw+1(~Yj)
j=1

r
if r1(N)~r1(N) = ö r1(N)~Yj . Here, as Djf ,by 2.2.0,

j=1

Eex/:Nb 15 independent of the ehoiee of a E b , Cl == 1 (mod f.) •

2.2.2 Note that, for the ease 2.2.0, it would have been suffi­
cient to let A above vary over the charaeters of precise
eonductor f . But, for future referenee, we throw in all A

defined module t - understanding that, for them, the motive
denoted M(fx) ·is, for onee, ~ the motive M(f

A
) constructed

in § 1, but,rather the motive obtained by the procedure sketched
in 1 '. 1 .1-3 for f X ' considered as an eigenform on r 1 (N) - where
it 1s not a newform. The proper motive for f A in the sense of
§ 1 1s found inside the eurrent M(fA) as the 1nvar1ants under
the finite group which is the quotient of r 1(N) by the group
r 1 (M) on which f x "ls new" - cf. 1.1.4.

2.2.3 From 2.2.1, we see that we can embed ~(e2rri/D) Into
End· «!) M(f » by sending e2rr1 / D to r~1. 6 • The imaginaryIf, A X
quadratic fleld K c Q(e2rri / D) then induces endomorphisms which

~~ stabilize M(f) c e M(fA) , as is checked agaln on the de Rham
realization, using 2.2.1. Next, 1t 1s easy to see that this
embedding

K e-.... End M(f)

'\

is defined over K.

Moreover, the commutator of the matrices (~ liD) and (~ l~P) lies

in rl(N) if the prime p splits completely in ~(~D). As T
p

i8 0 on M(f}

for all p that stay prime in K, we see that the action of K on M(f}x K we .

defined commutes with the action of E •
o

2.2.4 Thus we know -·in ease 2.2.0 - that M(f)xK 15 of rank 1
over K~ Eo • Sinee the aetlons of· K and Eo eome from alge-
braie eorrespondences ,we see that the one dimensional Galois
representations of e(M(!) x K) form a strletly compatible system
of E-rational X-adle representations - 'where X now denotes finite
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places of E. In v1ew of the L-function of M(f) ovar ~, the
Hecke character dafined by M(f) x K - see I, 1.4 - has to be

either X ar X •

2.2.5 If t 1s arb!trary, we conslder X as a character
defined modulo D ·'i· f • It oeeurs then as ane of the imprimltive
characters A of the above argument, and 2.2.3 and 2.2.4 show
that ItM(f)n = M(f",) - in the sense 2.2.2 - has the required
K ~ E structure. Now, this K-action clearly commutes with the

o G
finite group G such that M(f

A
) 1s the proper motive M(f)

of the newform f.
q.e.d.

2.3.0 Let W be any Hecke character of K, with values in

some CM fleld E', of conductor f' , wi th Infin1ty type 1 ,
* ..such tpat L (,,1) E (E' ®~) • The existence of such • i3

most eas11y deduced from the fact that the modular symbols
generate the first homology of the modular curves - see [Sh! M],
theorem 2. Using this argument, we have already passed to the
newform g( z) = L,( Q) q :N Q' = I bnqn on r 0 (N' ), N' = D· :N € I ,

associated to * as f is to X in 2.0. Write E~ the field
generated by the Fourier coefficients of g.

Let ~ be the finite order character of K such that

been nomalized
cf. 2.2 - , the-in E'E) if and

w
X=IJ·' ,

and ~(~) its field of values. By 2.2, the motive M(g) x K has
a natural K 8 E~ action. Calling E the composite Eo E~· ~(~) ­
in some fixed algebra1c closure of Q - we get the motives with
coefficients in K ~~ E defined over K :

!1(IJ) -• = M(~) ®~(u) (K ® E)

Pr(g) (M(g) x K) -• = ®K® EI (K ® E)
0

• M(f) = (M(f) x K) ~K~E (K 0 ~)

0 -They are all of"rank 1 over K ~ E . - For the next theorem we
suppose that the K actions on M(f) x K and M(g) x K have- -so that, for every idempotent e of K 0 E -

factor e(M(f» 15 a motive for X (wlth values
only if e(M(g» i5 a motive for ~ (with values
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places of E. In view of the L-function of M(f) over ~, the
Hecke character defined by M(f) x K - see I, 1.4 - has to be

either X or X •

2.2.5 If f is arbitrary, we consider X as a character
defined modulo D ·-f· f • It oceurs then as one of the imprimitive

characters A of the above argument, and 2.2.3 and 2.2.4 show
that "M(f)" = M(fA) - in the sense 2.2.2 - has the required
K ~ Eo structure. Now, this K-action clearly commutes with the
finite group G such that M(fA)G i8 the proper motive M(f)
of the ~form f.

q.e.d.

2.3.0 Let, be any Hecke character of K, with values in
same CM field E' , of conductor :f' , with infinity type 1',

* *such that L (*,1) E (E' 0~) • The existence of such $ is
most easily deduced from the fact that the modular symbols
generate the first homology of the modular curves - see [Shi M],
theorem 2. Using this argument, we heve already passed to the
newform g(z) = Lw(a)q:Na"= I bnqn on fo(N'), NI = n·:N.e 1

,

assoclated to , as f 1s to X in 2.0. Write E~ the field
generated by the Fourier coefficients of g. ".

Let ~ be the finite order character cf K such that

and ~(~) its field of values. By 2.2, the motive M(g) x K has
a natural K ~ E~ action. Calling E the composite Eü E~' Q(~) ­

in some fixed algebraie eloaure of Q - we get the motives with
~

coefficients in K ~~ E defined over K:

• ~(ll) = M(ll) ®~(u) (K ® E)
Ft(g) (M(g) x K)

~

• = ®K® E' (K ® E)
0

• M(f) = (M(f) x K) ®K~E (K 0 t)
0

theorem we
x K have

~

K ~"J E -

(with values
(with values

been normalized
cf. 2.2 - , the

~

in E'E) if and

~

They are all of rank 1 over K @ E • - For the next
suppose that the K actions on M(f) x K and M(g)

~

so that, for every idempotent e of
factor e(M(f) is a motive for X
only if e(M(g» i8 a motive for V
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r

6DR(Fb )(z) = I Fb IW+1(6Yj)
j=1

r
if r 1(N)6f1(N) = ö f 1(N)6Yj . Here, as .D\f ,by 2.2.0,

j=1

:Na/:Nb 1s independent of the ehoiee of a E b , er == 1 (mod f )

2.2.2 Note that, for the ease 2.2.0, it would have been Buf~i­

eient to let A above vary over the eharaeters of preeise
conductor f • But, for future reference, we throw in all A

defined modulo t - understanding that, for them, the motive
denot,ed M( f

X
) '18, for onee, BQ.! the mative M( f X) constructed

in § 1, but rather the motive obtained by the procedure sketched
in 1.1.1-3 for f X ' eonsidered as an eigenform on r 1 (N) - where
it 1s not a newform. The proper motive for f X in the sense of

§ 1 15 found inside the eurrent M(fX) as the 1nvar1ants under
the finite group which 18 the quotient of r 1 (N) by the group
r 1 (M) on which f X "ia new" -, cf. 1.1.4.

'I. 2.2.3 From 2.2.1, we see that we can embed l1l(e2TTi / D) into
End/t(~ M(f~» by sending e2ni/D to r-1·6. The imaginary

qUadra~lC fleld K c Q(e2rri / D) then induces endomorphisms which
stabilize M(f) c ~ M(fA) , as i5 checked egeln on the de Rham
rea11zation, using 2'.2.1. Next, it i8 easy to see that this
embedding

K c............ End M(f)

"'\

i5 defined ovar K.

Moreover, the COßDDutator of the matrices (~. liD) and (~ l~P) lies

in r 1 (N) if the prime p sp1its completely in ~(~D). As T
p

i8 0 on M(f)

for all p that 8tay prime in K, we see that the action of Kon M(f)x K we

defined commutes with the action of E •
o

2.2.4 Thus we know - in ease 2.2.0 - that M(f)xK is of rank 1
over K~ Eo • Sinee the aetions of K and Eo eome from alge-
braie eorrespondenees ,we see that the one dimensional Galois
representations of e(M(f) x K) form a strictly eompatible system
of E-ratlonal A-adie representatlons - 'where A now denotes finite
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in E· E ) .

2.4 Theorem. There 1s an isomorphism af motives with

coefficients in K ® ~ , defined over K,

Proof. First, note that, If w = 1 , then M(f) and M(g)
1/ avboth 1ie in ~K - cf. 1.2.1 - , and I, 5.1 gives us the iso-

morphism of the theorem. - For w ~ 2, we aha11 construct this
absolute Hodge correspondence via the relation between periads
and L-values: By 1.1 and the construction of f and g, we
have

*="L _(X,s)
. D f {

= *L m( 'f, s) ,
Dft .t-

where, on the right, we have Written the L-functions of C § 6
for the eharacters X and W , considered as taking values in
I'V

E , deleting the Euler faetors abave N, re5p. Nt • Such Euler
-*factars, taken at critical integers s, 11e in E ,and will

therefore be disregarded in the argument that folIows.

*Sinee w ~ 2 , it is well-known that no eomponent of L (X,w)
vanishes. Also, L(W T ,1) ~ 0 , for all T , by construction.

w .
Therefore, as X = ~ · w ,it follows fram 11, 2.1 - which, for
K imaginary quadratie, was already proved in [as] and (GS'] - ;
using 11, 1.8.1/3 and 11, 1.7.12 (iv), that

* fV '" @w * l'oJ - *L (M(~) ~ M(g) ,w) = L (M(f),w) E (E ® a:) ,

,..., *uP. to a factar in (E @ 1) •

Naw, as Deligne points out - [DP], 7.6 - the motive M(f) 15
constructed in such a way that

L*(M(f),w) = C+(RK/~M(f)(W» E (E 0 ~)*/E* .
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Similarly, the analogous relation for the 1eft hand aide of
2.4.0 follows from [DP] , 7.2 - or from the observation that
IV IV 0w av
M(~) ~ M(g) i5 in At K j cf. the ~lrst sentence of this proof.

As K 18 1maginary quadratic, 2.4.0 then 1mplles via II, 1.7.3-6 ­
note that M(f) 1s of Hodge type (w,O) + (O,w) so that II, 1.7
app11esI - that

-v N ®w
p(M(~) ® M(g) ) =

IV

p(M(f» •

Thus we have shown that the two motives to be compared in 2.4,...,
are cf rank 1 over K ~ E , defined over K; they are motives

wfor the same algebralc Hecke character - to wlt, ~. i = X - ,

in the sense of I, 3.3, extended to our situation where the
coefficient algebra may be a product of flelds; and they heve
the same periode p. Slnce we are in a "rank 1 situatl~n, thi8 18
sufflcientto physically construct an absolute Hodge correspondence
between them '"establishlng thelr Isomorphi8m: .. all. i t comes really
down to 18 choosing basea - i. e., each time a non trivial
element - for the various rea11zatlons of the two motives.

q.e.d.

2.4.1 Remark. Richard Pink, in an unpublished note, has shown
that the absolute Hodge correspondence we just constructed i6
actually an algebraic cycle, in the special case where
K = Q(~), , 1s the Hecke character of the lemniscate
y2 = 4x3- 4x - cf. I, 7.5 -,ar, in other words, of Xo(32),

2
and X = W •

2.4.2 Corollary. M( f) "lies in 11 C)(«l (Eo ) , in the sense

that it 1s isomorphie in JllQ(Eo ) to an object ,af C.IltQ(Eo ) ; or

agaln, that M(f) , viewed as a representation cf the motivic

Galois grcup, i5 equ1velent to the inflation of a representation

cf the Taniyama group.

Vi~ I, 5.1, this corollary implies that, for an idempotent e of
K @ Eo as in i.2, the motive e(M(f) x K) is isomorphie to one
of the standard motives - see I § 4 - M(X) o~ M(X) •
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Similarly, the analogous relation for the left hand side of
2.4.0 follows from CDP] , 1.2 - or from the observation that
f\J N ~ W 11 av
M(~) 0 M(g) is in /~K ; cf. the first sentence of this proof.

As K 15 imag1nary quadratic, 2.4.0 then implies via II, 1.1.3-6 ­
note that M(f) 1s of Hodge type (w,O) + (O,w) so that II, 1.1
applies! - that

IV

p(M(f» •

Thus we have shown that the two motives to be compared in 2.4,...,
are of rank 1 over K ~ E , def1ned over K; they are motives
for the same algebraic Hecke character - to wit, ~. ~w = X - ,

1n the sense of I, 3.3, extended to our situation where the
coeffic1ent algebra may be a product of fields; and they heve
the same periods p. Slnce we are in a ·rank 1 situatl~n, this 1s
suf'f1c"1ent to physically construct an absolute Hodge correspondence
between them ,. estab11shing the1r 1somorphism:· all 1t comes really
~own to 18 choosing basea - 1. e., each time a non trivial
element - for the varlous.realizations cf the two motives.

q.e.d.

:: 2.4.1 Remark. Richard Pink, in an unpublished note, hes shown
.. that the absolute Hodge correspondence we just eonstructed i5

actually an algebraic cyele, in the special ease where
K = Q(~), , 15 the Hecke charaeter of the lemniseate

y2 = 4x3- 4x - cf. r,. 7.5 -, or, 1n other words, cf Xo(32),
2

and X = ~ •

•

2.4.2 Corollary. M(f) "lies in" C){«l(Eo)' in the sense

that i t 15 isomorphie in Jt~(Eo) to an object of CJt:lQ(Eo ) ; or

egein, that M(f) , viewed as a repres~ntation of the motiv1c

Gelais group, 1s equivalent to the inflation of a representatio~

of the Taniyama group.

Via I, 5.1, this corollary implies that, for an idempotent e cf
K ~ E as in i.2, the motive e(M(f) x K) is isomorphie to oneo
of the standard motives - see I § 4 - M(X) or M(X) •
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-in E· E ) •

.2.4 Theorem. Thera is an isomorphism of motives with

coeffieients in K ~ ~ , defined over K,

M(t) •

~ ~

Proof. First, note that, if w = 1 , then M(f) and M(g)
both 118 in Al~v - cf. 1.2.1 - , and I, 5.1 gives us the 1so­
morph1sm of the theorem. - For w ~ 2, we shal1 eonstruct th1s
absolute Hodge eorrespondenee via the relation between periods
and L-values: By 1.1 and the eonstruction of f and g, we
have

*L (X, s)
D f :E

*L (t, s)
Df' ~

• where, on the right, we have written the L-functions of G § 6

for the characters X and • , consldered as taking va1ues in
fV

E , deleting the Euler faetors above N, resp. N' . Such Euler
.......*faetors, taken at crltical integers s, 11e in E ,and will

therefore be disregarded in the argument that fellows.

*Sinee w ~ 2 , it i8 well-known that no component of L (x,w)
vanishes. Also, L(~T,1) ~ 0 , for all T , by construction.

W .
Therefore, as X = ~ ., ,it fo1lows from II, 2.1 - which, for
K imaginary quadratic, was already proved in [GS] and [as'] - ,
using II, 1.8.1/3 end II, 1.7.12 (iv), that

* IV ...... ®w * l'l"J - *(2.4.0) L (M(~) ® M(g) ,w) = L (M(f),w) E (E 0~) ,

,..., *up to a lactor in (E @ 1) •

Now, as Deligne points out - (DP), 7.6 - the motive M(f) 1s
constructed in such a way that

* - + ~ ~ * -*L (M(f),w) = c (RK/~M(f)(w» E (E ~ t) /E .
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1. References

The references were retyped betore the printing, but could not be
proofread. Thls explains the great number of errors in them:

• Two references are mlss1ngz
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~ I thank K. Rlbet for point1ng out most ot the following Errors

1!l~~:
p. 26 1. -13 (~)-1 .
p. 28 1. -12 delete: "From this one can deduce that E 18 always

a CM field"
p. 30 1. -6 de1ete: last parenthesis.
p. 132 1. -10 cf. CDFJ , 1 .5.
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