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INTRODUCTION

In two papers -~ n2 12 and 14 of [(He])], published in 1918 and
1920 - E. Hecke introduced what he called "Gr&pencharaktere"

of algebraic number fields, with a view to extending the theory
of L-functions and their applications in analytic number theory.
In the early 1950's, the arithmetic and geometric significance
of those of Hecke's characters that take algebrailc values began
to appear in two different, if overlapping, lines of thought.
(Both of these had been anticipated in special cases by Eisen-
stein exactly one hundred years earlier; but none of the mathe-
maticians working on them in the fifties seems to have been
aware of their precursor at the time.) - First Weil, testing a
conjecture of Hasse, investigated algebraic curves over Q@ with
the property that the number of ]Fp rational points on their
reductions modulo p can be computed in terms of exponential
sums. This led him to a study of "Jacobl sums as 'Grégencharak-
tere'". - Secondly Deuring, developing one aspect of Well's
examples, proved that the (Hasse-Weil) L-function of an elliptic
curve with complex multiplication is a (product of) Hecke L=
function(s). This was then quickly generalized to higher di-
mensional CM abelian varieties by Shimura and Taniyama, with
Weil providing clarification , for iﬁstance, on the Hecke
characters employed in the theory.

Both approaches cover only very limited classes of algebraic
Hecke characters. - Jacobi sum characters were confined to
cyclotomic (today: abelian) fields, and in general, not every
algebraic Hecke character of such a field is given by Jacobi
sums. - The product of several Hecke characters each one of which
is attached to a CM abelian variety does no longer'occur in the
L-function of an abelian variety.
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This last difficulty disappears in a theory of motives, as
proposed by Grothendieck. There one associates with every (smooth
projective) algebraic variety, in some sense, its "universal
cohomology™ which is an obJect of a Tannakian category, and may
therefore be viewed as a representation of some proalgebraic
group. The product of Hecke characters then corresponds essent-
ially to the tensor product of representations. Until the mid
seventies such a category of motives existed only conjecturally;
the morphisms were to be defined by the cohomology classes of
algebraic correspondences, and conjectures on the existence of
sufficiently many algebraic cycles had to be used to show that
the construction actually yielded a Tannakian category - see
{sal. Using this, the semi-simplicity of Frobenius action on .£-
adic cohomology and Tate's conjectures, one could show that a
motive defined over a number field is determined up to iso -
morphism by its ("Hasse-Weil") L-function (defined using the
étale cohomology of the motive). Consequently, two motives (which
may be constructed from different varieties, but are) attached
to the same Hecke character have to be isomorphic, and in parti-
cular, have to have the same periods (defined by "integrating"
de Rham cohomology classes "against" Betti cohomology of the
motive.)

This uniqueness principle is at the centre of our work. We

peruse a variety of consequences of it that can be proven, either
because an analogous uniqueness principle 1s available in a
slightly different framework - see next paragraph - , or because
of the special situation considered - this is the case in chapter
V. - Applications include a refined version of the so called
formula of Chowla and Selberg, deduced from the comparison of

the motive of a basic Jacobi sum Hecke character of an imaginary
quadratic field K to elliptic curves with complex multipli-
cation by K - see chapter III - ; refinements of Shimura's
monomial period relations; generalizations of the formula of
Chowla and Selberg to arbitrary abelian number fields - chapter
IV - ; and the study of motives for the theta series of Hecke
characters of imaginary quadratic fields - chapter V .
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That we can actually prove theorems, not merely do an exegesis

of conjectures, hinges on two insights by P. Deligne. First, he
saw that one could actually construct a theory of motives by
weakening the requirement on the morphisms; they no longer have
to be algebraic but only "absolute Hodge" correspondences - see
chapter 1, section 2. Henceforth, when we speak of "motives",

we refer to this existing theory. Second, Deligne was able to
show that, on an abelian variety over U , every Hodge cycle is
an absolute Hodge cycle. This consequence of the Hodge conJecture
provides enough absolute Hodge cycles to prove the uniqueness
principle for motives of algebraic Hecke characters, within the
category of motives generated by abelian varieties - see chaper I,
theorem 5.1.

In fact, for every algebraic Hecke character of a number field
K , there exists a unique motive in the category of motives over
K generated by abelian varieties with potential complex multi-
plication. Deligne has shown around 1980 that this category is
equivalent to the representations of (a subgroup of) the Taniyama
group, a group scheme which had been introduced by Langlands.
This structure theorem also links the motivic interpretation of
Hecke characters to that proposed by Serre in [S{] more than ten
_years earlier. It was also the starting point for G. Anderson's

- comprehensive motivic theory of Gauss and Jacobi sums, and their

- relations to representations of the Taniyama group, a theory
which he worked out between 1982 and 1984 - see [A 1] and [A 2].
In Anderson's formélism, the basic observation that Fermat hyper-
surfaces provide motives for Jacobi sum Hecke characters of
cyclotomié fields is extended to a class of characters of abelian
number fields which 1is likely to include all sensible candidates
of Hecke characters of "Jacobli sum type". We make essential use
of Anderson's theory when dealing with Jacobi sum Hecke characters.

Thus, I really "take on the left and on the right" very substant-
ial results obtained by others, and numerous little chats with
many people have found their way into the "silent hours of the
night" during which these pages. were written.

*
* *
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It was my intention, in writing up the paper, to also provide

a viable introduction to the background theories. More precisely,
. the reader should get an idea of what they are like, without
however being offered complete proofs. I hope there will be
readers to whom my blend of explanations and quotes appeals,

and 1s actually helpful.

CHAPTER 0 should be completely readable for anyone with some
very basic knowledge of algebraic number theory. It covers the
elementary (as opposed to geometric) theory of algebraic Hecke
characters, including their interpretation via Serre's groups
Sy » and the definition and basic properties of Jacobi sum
Hecke characters according to G. Anderson. (The Jacobi sum
characters of imaginary quadratic fields are largely treated
without reference to Anderson, by way of a fundamental example
which is used in chapter III.)

CHAPTER I falls into five parts.

I § 1 presents the Shimura-Taniyama theory of complex multi-
plication of abelian varieties with a view to introducing motives
for Hecke characters, The existence of the Hecke character
attached to a CM abelian variety 1s derived using a transcendence
result which implies - see [Henn) - that every semi simple abe-
lian E-rational A-adic representation is locally algebraic - cf.
I, 1.4.

I § 2 reviews the theory of motives for absolute Hodge cycles.

We hope that our shortcut through this theory can serve as a
reading guide for [DMOS], chapter II, and also to the correspond-
ing §ections of (A 2). - Deligne's fundamental theorem on absolute
Hodge cycles on abelian varieties is only quoted from [ DMOS],
chapter I, because its proof would have led us to far away from
the geometric study of Hecke characters,

I §§ 3 - 5 cover the "naive" theory of motives for Hecke
characters. In § 4, a motive for every algebraic Hecke character
is constructed "by hand", out of Artin motives and CM abelian
varieties. Its uniqueness up to isomorphism, in the category of
motives generated by abelian varieties, is derived from Deligne's
theorem in § S.
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I § 6 treats the theory of the Taniyama group and its relation
with the category of motives C)ZQ . While in the previous
sections of chaptef I the reader should be able to survive with
a certain knowledge of algebraic geometry, this section is de-
liberately sketchy. In fact, we shall make very little use of
it in later chapters - except through Anderson's theory. Also,
Milne is preparing a book on this subject which will also deal
with Shimura varieties. :

I § 7 briefly reviews Anderson's theory of motives for Jacobi
sum Hecke characters, and also his ulterior motives. For all
the details the reader is referred to his papers.

CHAPTER II is the technical heart of this work. The formalism of
the periods of motives in general, and motives for Hecke characters
in particular, is unfolded here. This "arithmetic linear algebra"
is carried out in great generality. I am afraid this does not
exactly simplify the notation and understanding of this chapter.
But I do hope that this treatment of periods - which, by the way,
is essentially due to Deligne - will be useful for further in-
"~ vestigations. This chapter also contains a brief review of
:Deligné%s rationality conjecture for special values of Hecke L-
<functions. This case of the conjecture is now a theorem by virtue
of recent important results of Blasius [Bl) and Harder (unpublished).
However, Blasius' motivic treatment of the periods ¢t is not
included in my exposition - mainly because he had told me that he
was going to apply it to Shimura's period relations - which are
treated by our formalism in IV § 1. - At the end of chapter II,
after discussing the periods of Jacobl sum Hecke characters
starting from the example of Fermat hypersurfaces, we deduce some
relations between values of the I' function at rational numbers
which were first conjectured and proved by Deligne.

CHAPTER III is devoted to the so called formula of Chowla and
Selberg. We prove a refined version of it, and show that it
"generates'" all period relations produced by Jacobi sum Hecke
characters of imaginary quadratic fields - see III § 3. An
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interesting feature of the motivic treatment of this formula is
that here, it is often convenient to deduce an identity of Hecke
characters from an analytically accessible period relation -
rather than going the other way around.- Cf. also II, 3.5.

CHAPTER IV treats Shimura's relations between periods of CM
abelian varieties and generalizations of the Chowla-Selberg
formula to abelian fields. The most remarkable feature here is
the enormous discrepancy between the potential of the method and
the scarcity of information about concrete situations to which
the method applies. In the Chowla-Selberg case it is often
possible to determine explicitly every single character whose
periods contribute to the formula. But over an arbitrary abelian
field such explicit identities are usually not available, and so -
in spite of the inherent precision of the method -~ one is led to
weaken the period relations in order to get sensible statements.

Compared to the preceding chaptefs, CHAPTER V is really written
"in shorthand". We start by reviewing very briefly U. Jannsen's
recent construction of an honest regard (absolute Hodge cycle)
motive for every newform f on F1(N) c SLZGZ) of weight > 2.
Then we proceed to show that this motive "lies in" l:/gn it f
has complex multiplication. This has to be done by hand, using
Deligne's conjecture for the critical values of these modular
forms.

It is a pleasure to acknowledge the hospitality of the Max-Planck-
Institut fir Mathematik at Bonn, where I stayed from October
1983 through January 1985. About half of this work was written
there, not little influenced by Harder's interest in these
questions, and his willingness to let me organize his seminar
in the winter 1984-85 on motives for absolute Hodge cycles.
Most of the suggestions explicitly acknowledged in the text I
obtained through my stay in Bonn. - For the excellent typing
- my hearty thanks go to K. Deutler at Bonn and C. Gieseking at
Gdttingen.

Gottingen, December 1985,

N. Schappecher
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CHAPTER ZERO:

a c cke Characters

In this chapter we review the elementary theory of algebraic

Hecke characters and fix some basic notation.

1. Definition

-

Let K and E be two number fields, i.e., finite extensions of
Q@ . Let f be a non-zero integral ideal of K, and
T =] n, o € % [Hom (K,E)] a Z-linear combination of embeddings of

K into a fixed algebraic closure E of E.

Definition: [cf. [sGA 4%], Sommes trig. § 5]: An algebraic Hecke

character x of K with values in E, of infinity-type T and

conductor dividing f, is a group homomorphism

from the group Iy of ideals of K prime to § to the multiplica-

tive group of E, such that, for any ideal (a) €I generated by an

£
a€K* with a=z=1(mod £), and o totally positive (i.e., aP >0

for all real embeddings p:K% R, symbolically: a >> 0), one has
Ng
x((a)) = aT =T .

It is understood that, if flf' , characters of conductor dividing

f are identified with the corresponding characters of conductor



dividing £' obtained by restricting to I,, £ I,. The smallest
£ (in the sense of divisibility) such that x extends to a

character of conductor diyiding £ is called the conductor of

X, and dencted fx. - Note that the subgroup of ideals (a) with

«>>0 and a=1 (mod £) has finite index in I..

2. Algebraic homomorphisms

Recall from [SGA 4%], Sommes trig. § 5, the various ways to view
the infinity~-type T of an algebraic Hecke character. In general,

an algebraic homomorphism t:K*-+ E* is a group homomorphism such

that either one of the following equivalent conditions is satisfied.
- {a) For any basis {ei|i= 1,+..,n} of K over @ , there is a

rational function f¢ E(x1,...,xn) such that
t():a.iei) = £(a s.e0a ),
for all (ai)e Q".
(b) t 1is induced by a homomorphism of algebraic groups over E

R

K/Q Em XWE MM

(c) t 1is induced by a homomorphism of algebraic groups over (Q
Re/@ ®n” Fe/p B
(d) There is T =In_ o€ Z(Hom(K,E)] such that for all a€K*,

.. n
tla) = a* =] a®) °.
a



dividing £' obtained by restricting to I, € I.. The smallest
f (in the sense of divisibility) such that ¥ extends to a

character of conductor dividing F is called the conductor of

X, and denoted fx. ~ Note that the subgroup of ideals (a) with

@>>0 and a=1 (mod £) has finite index in I

2. Algebraic homomorphisms

Recall f;om [sGA 4%], Sommes trig. § 5, the various ways to view

the infinity-type T of an'algebraic Hecke character. In general,

‘an algebraic homomorphism t:K*+E* 1is a group homomorphism such

that either one of the following equivalent conditions is satisfied.
. {a) For any basis {ei|i= 1y...,n} of K over @ , there is a

rational function fE€ E(x1,...,xn) such that
t( Z a_iei) = f(a-l.f---ran) )
for all {ai)e Q".
(b) t 1is induced by a homomorphism of algebraic groups over E

X
RK/Q Gm CDE + Gm .

(c) t is induced by a homomorphism of algebraic groups over

RK/Q Gmﬂ'RE/Q m*

(d) There is T =¢ n, o€ Z[Hom(K,E)] such that for all € K*,

1

. n
tla) = ot =T (a”) °.
[o)



CHAPTER ZERO:

é;gegga;g Hecge Cgaggcters

In this chapter we review the elementary theory of algébraic

Hecke characters and fix some basic notation.

1. Definition

Let K and E be two number fields, i.e., finite extensions of
@ . Let £ be a non-zero integral ideal of K, and
T =7 n, o € % [Hom (X,E) ] a Z-linear combinatidn of embeddings of

K into a fixed algebraic closure E of E.

Definition: [cf. [SGA 4%], Sommes trig. § 5]: An algebraic Hecke

character x of K with values in E, of infinity-type T and

conductor dividing f, is a group homomorphism

from the group Iy of ideals of K prime to f to the multiplica-

tive group of E, such that, for any ideal (a) € If generated by an

a €K* with o=z1(mod £}, and o totally positive (i.e., af >0

for all real embeddings p:K% R, symbolically: « >> 0), one has
Ng
x(ta)) = o =TT’ .

It is understood that, if f|f' , characters of conductor dividing

f are identified with the corresponding characters of conductor



(e) Decompose K o E = T]'Fj (finite product of fields).
There are integers mj sach that

m.
t = -IT—NF?/E .
j ]

As explained in loc. cit., the egquivalence of (a) through

(c) follows from elementary facts about algebraic groups,

and (d), (e) are reformulations of (b) using the identifi-
cgg;?g %f the character group of RK/QGm over 3 with

Z ™. An analogous.reformulation of (c) will be given

in § 4. In the sequel we will often identify a type T 1like

in (d) with the algebraic homomorphism t defined by it. Note
that T gives rise to an algebraic homomorphism K* -+ E¥*

if and only if n,=n .. for every 1t € Gal(E/E). This is the
case if T is the infinity-type of an algebraic Hecke

character with values in E.

3. Infinity~types and algebralc Hecke characters

It is not true that, conversely, every-aléebraic homomorphism

K* » E* occurs as infinity-type of an algebraic Hecke character
of K with values in E. The first obvious constraint is that
such an infinity-type has to kill all totally-pésitive units

2 1(mod f) in Okt As these are of finite index in aﬁ . the
proof of Dirichlet's unit theorem implies that there is an
integer w such that, for any embedding ES» € , inducing

an action of complex conjugation, ¢ » ¢ , on Hom(K,E) , and

for any o € Hom(K,E) , one has

{(3.1) n +n. =w.
o g

w 1is called the weight of T (oxr of X) .

Thus, for any complex conjugation of E , we find



w

where BK/m(a) a #(OK/a) for an integral ideal a of K.

(In fact, this is true on a subgroup of finite index of I,

and IQ* is torsion-free.) Therefore the values of an algebraic
Hecke character are pure, in the sense that all embeddings into
€ have the same absolute value. Similarly, they are what

we shall call  (for want of a better term) numbers of CM-type:

An algebraic number a is of CM-type if there is a (necessarily
unique) conjugate a' of a such that, for all embeddings

T:Q(a,a') > @,
one has T(a) 7 f(u').

To make more explicit the restriction on the existence of algebraic
Hecke characters imposed by the homogeneity ' condition

n, tng = cst., let K' be the subfield of K consisting of

all o€ K that are of CM-type. So, K' 1is either totally real

or a CM-field (i.e., a totally imaginary quadratic extension of

a totally real fieid). Then in our infinity-type T = ch'o, n

depends only on OIK. because n, + ng is independent of the

g

choice of complex conjugation. So one gets an element

Tt = : . "EZ ' E)].
zﬂﬂxq“"“ [Hom (K',E)]

The fact that n_ + n_ is independent of ¢ means this:
N o .
(a) if K' 1is totally real, then T'€ Z-I1 (summed over

all T:K%E);

(b) if KXK' 4is a CM-field, then T' belongs to the subgroup
of Z[Hom{K',E)] generated by the CM-types {Encol ng € {o,-1},

n +n = -1}.
o 5 ‘

Since algebraic Hecke characters of finite order are precisely
those whose infinity-type is trivial, we see that

(a) if K' is totally real, then every algebraic Hecke character

x ©of K 1is of the form x = u-Ezfé , where u 1is of finite order

and w €2Z.



W

X X = NK/Q '
where Bxlm(a) = #(oK/a) for an integral ideal a of K.

(In fact, this is true on a subgroup of finite index of Ig,

and 3: is torsion-free.) Therefore the values of an algebraic
Hecke character are pure, in the sense that all embeddings into
C have the same absolute value. Similarly,'they are what

we shall call (for want of a better term) numbers of CM-type:

An algebraic number . a is of CM-type if there is a (necessarily
unique} conjugate o' o©of a such that, for all embeddings

T:Q(a,a') > €,
one has T(a) 7 f(a').

To make more explicit the restriction on the existence of .algebraic
Hecke characters imposed by the homogeneity - condition

n, + ngy = cst., let K' Dbe the subfield of K consisting of

all a€ K that are of CM-type. So, K' 1is either totally real

or a CM-field (i.e., a totally imaginary quadratic extension of

a totally real fieid). Then in our infinity-type T = In0°o, n

depends only on c|K. because n,6 + ng is independent of the

g

bhoice of complex conjugation. So one gets an element

T' = Z n

n -(UIK').EZ[Hom (x',E)].
“(g|K") -

The fact that n_  + n_ is independent of o means this:

{(a) if K' is totally real, then T'€ Z'It (summed over
all T:K%E); : :

(b) if K' 4is a CM-field, then T' belongs to the subgroup
of Z[Hom(X',E)] generated by the CM-types {Ingo | n € {(0,-1},
n_ +n_= =1},
° '3 | _
Since algebraic Hecke characters of finite order are precisely

those whose infinity-type is trivial, we see that

(a) if K' is totally real, then every algebraic Hecke character

x ©of K 1is of the form x = u-szé , where p 1is of finite order

and w €2Z.



(e) Decompose K @jE = ’rfFj (finite product of fields).

3
There are integers mj such that

m,
t = -:[.'TNF;/E ]
As explained in loc. cit., the equivalence of (a) through
(c) follows from elementary facts about algebraic groups,
and (d), (e) are reformulations cof (b) using the identifi-
c;g;?; %f the character group of RK/me over E with

z ™. An analogous reformulation of (c¢) will be given

in § 4. In the sequel we will often identify a type T Llike

in (d}) with the algebraic homomorphism t defined by it. Note
that T gives rise to an algebraic homomorphism K* - E¥*

if and only 4f n_=n__ , for every =t € Gal(E/E). This is the
case if T i1s the infinity-type of an algebraic Hecke

character with values in E.

3. Infinity-types and algebraic Hecke characters

It is not true that, conversely, every algebraic homomorphism

K* ~ E* occurs as infinity-type of an algebraic Hecke character
of K with values in E. The first obviocus constraint is that
such an infinity-type has to kill all totally-pésitive units

= 1(mod f) in Ox+ As these are of finite index in oﬁ , the
proof of Dirichlet's unit theorem implies that there is an
integer w such that, for any embedding ES T , inducing

an action of complex conjugation, o » 't , on Hom(K,E) ,.and

for any o € Hom(K,E) , one has

(3.1) no + n. = w.
w 1s called the weight of T (or of ).

Thus, for any complex conjugation of E , we find



(b) if K' is a CM-field, we have x= u-(@q NK/K')
for some algebraic Hecke character - ¢ of K', and
p a character of finite order of K.

Consequently, the field of values of an algebraic Hecke character

is either Q or a CM-field.

Every algebraic homomorphism T = En_*0:K*+E*  which
satisfies the homogeneity condition n  + n- = cst. as
above is the infinity-type of some algebraic Hecke

character x of K with values in a finite extension

of E. The construction of x is straightforward:
Choose an ideal f such that

(c€o,* | €>>0 ana e = 1(moar)}” = 1,
and take any extension of
X[{{a) | @>> 0 and a = 1{mod £)}

to all of I, (cf.,e.g., [Shim] , Lemma 7.45). Since roots of

svalues of T are extracted in this process one cannot do with-
" out extending E, in general., If we insist on keeping E, we may
pass to T°NL/K-' for a suitable finite (abelian) extension L
of K. Fixing E and K, all one can assert in general is that
m-T, for a suitable m€N, will come from an algebraic Hecke
character of K with values in E. (Cf, [DP], 8.2.) - We shall
not be concerned with the problem of bounding the conductor of
the character Y which we have just shown to exist. For this,
cf. [Schm],I.2.

4. The Hodge decomposition

A- homomorphism RK/Qmm + RE/Qmﬁ over & (cf. §2,(c)) is.a
system of characters of RK/QGm indexed by Hom{E,E). This
yields a description of infinity types whose relation with
the title of this section will become apparent in the next
chapter (see in particular I, 1.7,4.2,6.1.5; cf. [DP], 8.2).



Let t:K* » E* be an algebraic homomorphism, and rt € Hom(E,C).
Then Tot:K*4'(ET)* is again an algebraic homomorphism whose
type will be written

T. = [ nlo,1)0 ,
where ¢ now ranges over all embeddings of K into the algebraic
closure of @ in €, or simply o:K> [C. '

If T = n_*n 1is the type of t, then n_=n(o,t) 1f
and only if c=Ton , for any extension v of T to E.

We have n{o,T) = n{ao,at) for all o€ Aut € because
t:RK/QCBm +'RE/Qmm is defined over Q (cf. I,6.1.2) . .Furthermore,

if t 1is the infinity-type of an algebraic Hecke character
of weight w, then '

w = n{o,t}) + n {co,1) = nl(o,t) + nlo,ct),
for any o€ Hom(K,L), t € Hom(E,T), where c¢ = complex conjugation.
5. Adéles

Algebraic Hecke characters may, of course, be read on the idéles
Ki ©of K: cf. [Ww],[1955¢c] where algebraic Hecke characters were
introduced as characters of the idéle class group "of type (AO)".

First, given ¥ as in § 1, there clearly exists a unique group
homomorphism

sK * *
)(A.KA +E

such that
=1 *
a (1) 1is open in K¥%;

(a) X
= T:K*+> E*;

(B) X g

(c) xl(n#)=,x(ﬁ), for all prime ideals p of K not dividing f.



Let t:K* +~ E* be an algebraic homomorphism, and 1 € Hom(E,T).
Then Tot:K*- (E')* is again an algebraic homomorphism whose
type will be written

T, = ! n(o,1)0 ,

where ¢ now ranges over all embeddings of K into the algebraic
closure of @ in &, or simply o:K-»> C.

iIf T = 7} n_*n is the type of t, then n _=n(o,t) if
and only if g=Toen , for any extension v of T to E.

We have n(o,t} = n(ao,atr) for all a € Aut € Dbecause
t:RK/QGm +”RE/QGm is defined over Q (cf., I,6.1.2).Furthermore,

if t 1is the infinity-type of an algebraic Hecke character
of weight w, then

w = n{(g,7) + n (co,1) = nlo,T) + nlo,ct),
for any o€ Hom(K,C), T € Hom(E,C), where ‘¢ = complex conjugation.
5. Ad€les

Algebraic Hecke characters may, of course, be read on the idéles
Ki of K: cf. [W],[1955¢c] where algebraic Hecke characters were
introduced as characters of the 1déle class group "of type (ﬁo)“.

First, given x as in § 1, there clearly exists a unique group
homomorphism _ *

<K * *
XA'KA +E

such that
-1 * .,
(a) A (1) 4is open in KA'
- . * *.
(b) X pgs = T:K*+E*;

(c) xatnﬁ)=_x(n), for all prime ideals p of K not dividing ¢£.



(b) if K' 1is a CM-field, we have x= u-(@c;NK/K.)
for some algebraic Hecke character - ¢ of K', and
p a character of finite order of K.

Consequently, the field of values of an algebraic Hecke character -
is either Q or.a CM-field.

Every algebraic homomorphism T = In °*0:K*+E*  which
satisfies the homogeneity condition n, + na s cst. as
above is the infinity-type of some algebraic Hecke
character x of K with values in a finite extension
of E. The construction of X i8 straightforward:

Choose an ideal £ such that

{e€o* | €>>0 and e = 1(modf)}’ = 1,
and take any extension of
X|{(a)| a>> 0 and a = 1(mod f)}

to all of I (cf.,e.g., [Shim] , Lemma 7.45). Since roots of
values of T are extracted in this process one cannot do with-
out extending E, in general. If we insist on keeping E, we may
pass to ToN, . , for a suitable finite (abelian) extension L
of K. Fixing E and K, all one can assert in general is that
m+T, for a suitable m€N, will come from an algebraic Hecke
character of K with values in E. (Cf. [DP], 8.2.) - We shall
not be concerned with the problem of bounding the conductor of
the character yx which we have just shown to exist. For this,
cf. [Schm],I.2.

4. The Hodge decomposition

A. homomorphism RK/Qmm -+ RE/Qgh over E (cf. §2L(c)l is.a,
system of characters of RK/QBm indexed by Hom(E,E). This
yields a description of infinity types whose relation with
the title of this section will become apparent in the next
chapter (see in particular I,.1.7,4.256.1&5; cf. [pP], 8.2).



Here, np denotes any idéle having a uniformizing parameter
at p, and 1 at all other components.

Since takes values in E*, it could not be an idéle class

X
A
character, and its restrictions to individual completions of K
are not very interesting. But this can be changed by conveniently

"localizing over E":

Being an algebraic homomorphism, T induces a continuous homomor-
.phism Ki + Eh* - see, e.9., condition (c) of § 2. Given any place
A of E, denote by T, the composite with projection onto the
A-component of Ej:

and write
Xy =X ° T;{: K;'—*EK .

Then X is an idéle class character, i.e., a continuous homomorphism
K* /K* -> E*
A A

If X 1is a finite place, El is a totally disconnected topological
space, SO kerxA‘ contains the connected component of 1 in K3 .
By class-field-theory, X3 factorizes: Gal(Kab/K)*-E* as the

A
1-dimensional A-adic Galois representation with

X, (Frob g) = x(p) € E*&E} ,

for any prime ideal g of K not dividing f. N)A. Here, Frob p

is a "geometric Frobenius" at p, i.e., we normalize the reciprocity
map of class-field-theory to be the reciprocal of the Artin map.
This is done to comply with [DP]. Note that the "eigenvalues" of
Frob p with respect to this A-adic representation are purely of

absolute value (Np)w/z. '



If X is a complex place of E, we get two (possibly equal)
continuous homomorphisms, or "quasi-characters of the idéle
class group" in the sense of [Tt] or [W3], chap. VII:

—_—
1Xl'2xA: %;/K* -+ Eﬁ;:+ c*x ,
according to the two continuous isomorphisms E,aC.

A

If XA 4is a real place, there is just one such character
XA:K;;/K* +IR*“ C*,

In another language, we get for each infinite place )\, one
or two automorphic forms on GL(1,Kp).

6. L;functions.:

To every complex embedding T:E=+ € 1s attached the "Gr&8en-
charakter" (in Hecke's sense) T o x+*If 1t induces the infinite
place A of E, then 1T oY corresponds to {one of) the id€le
class character(s) {j)xk' Consider the Hecke L-function

Lix",s) = ] (tox) (@) Na™S = T[T (1- (tox) (p) 2p~S) '

(a,fx)=1 plt
acnK X

(for Re(s) > % +1).
We write formally

L*(x,8) = (L(X",8))

L4

E>CE

so that L*(yx,s) is an array of L-functions.taking values
in mHom(E,m)= E @mm.

Recall the general form of the functional equation of the L(XT,s) -



If X 4is a complex place of E, we get two (possibly equal)
continuous homomorphisms, or "gquasi-characters of the idéle
class group" in the sense of [Tt] or [W3], chap. VII:

. KH/RH * o
XarpXy® K/ > B, Er
according to the two continuous isomorphisms E,=CT.

A

If X 1is a real place, there is just one such character
Xy :KE/K* +IR*Y C*,

In another language, we get for each infinite place A, one
or two automorphic forms on GL(1,Ka).

6. L;functions

To every complex embedding +t:E+ & 1is attached the "GrdBen-
charakter" (in Hecke's sense) T X+ If T 1induces the infinite
place X of E, then T ooy corresponds to (one of) the idéle

. class character (s) (j)xk' Conslder the Hecke L-function

Lix%,s) = (tox)(a) Na~® = TT (1- (roy) (p) Mp=S) "
(a,£y) =1 pIt
aCnK
(for Rel(s) > % + 1).

We write formally

!

L*(x,8) = (L") o

so that L*(x,s) is an array of L-functions. taking values
Hom(E,C) _
in € = E emm.

Recall the general form of the functional equation of the L(xr,s) -



Here, ﬂp denotes any idéle having a uniformizing parameter
at p, and 1 at all other components.

Since Xa takes .values in E*, it cquld not be an idéle class
character, and its restrictions to individual completions of K
are not very interesting. But this can be changed by conveniently
"locallizing over E":

Being an algebraic homomorphism, T induces a continuous homomor-
phism Ki + Eh* - see, e.g., condition (¢) of § 2. Given any place

A of E, denote by T
A-component of Ep:

A the composite with projection onto the

T

+K* — * *
TX'KA —_— EA + EA ’

and write

= Sl I *
XA-X TA'KA—*EA.

Then Xy is an idéle class character, i.e., a continuous homomorphism
K*/K* + EX* |
‘A A

If X is a finite place, EA is a totally disconnected topological
space, SO ker)(k contains the connected component of 1 in Ki.'
By class-field-theory, X1 factorizes: Gal(Kab/K):vE* as the

A
1-dimensional A-adic Galois representation with

X, (Frob g) = x(p) € E¥% EY v

for any prime ideal p of K not dividing §f. NA. Here, Frob p

is a "geometric Frobenius" at p, i.e., we normalize the reciprocity
map of class-field-theory to be the reciprocal of the Artin map.
This is done to comply with {DP]. Note that the "eigenvalues" of
Frob p with respect to this A-adic representation are purely of

absolute value (Np)wlz.



cf. [He], p. 272 £; [Tt] or [W3], VII-7. Put
o

2

TRis) = m S T(3); Tpls) = Tp (s)Tp(s +1) = 2(2m) "°Tis) .

For a real place v of K (whose existence implies, in the

notation of § 4, that all n(o,T) are equal to %), put
L,(xT,8) = Ty (s+e - 3),

where €=0 or 1, such that the v-component x::K;-+E*

(-1)E*W/2

of X3 satisfies xz(-1) = . For a complex place

v of K, corresponding to the pair " 0,0:K+C of complex
embeddings of K, put

L,(x"ss) = Tgp(s=inf(n(o,t),n(3,7))).
Then, setting
AxTis) =TT 1 (x"us) * Lix",s),
V)|
we get a meromorphic continuation to the whole complex plane

with functional equation of the type

AMxS,s) = elxTys) MDY, 1 - 8),

1/2-s
where e(x',s) = W(xT)°{|dK[ ']fo}.‘ ,for some constant
W(XT) of absolute value 1, and dK the discriminant of K

(over Q). - As XT =fﬂw‘(xT)_1 , this functional equation may be
rewritten as one relating L(xr,s) to L(XT,w+1-5s).

7. Serre's group

In [S&], chap. II, Serre has given an interpretation of algebraic
Hecke characters which generalizes the definitions (b) or (c) of
algebraic homomorphisms recalled in § 2.
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g Put:

xv> 0 if v 1is real
= * =
uA,f (xv) EKA x, = 1 (mod fv) if v[f
xve n; 1f v 4is finitel] .

Then X'A factorizes through K*A/U , and we have the

diagram

A,f

* *
1 *K/Uf-b Ka/un,f" c.,+ 1

N2

E*
where Uf = QB fnK*, and Cf is the ray class group of K
r
mod f. Recall that Cs; 1s a finite abelian group. Now, K*/Uf
is the group of Q-rational points of the {-torus

2.t =(Rye /g B /Tg

where I‘_f is the Zariski-closure of a suitable arithmetic
subgroup I‘f of RK/m Gm. Serre shows how to construct a
Q-algebraic group SK £ of multiplicative type (i.e., SK £
’ r
1s the product of a torus by a finite abelian group) which is
= R*
an extension of C by 2 such that SK,E(W) KA/QA,f .

£ K,
In fact, define Sp . via its character group:
’

X(SK'f) = Hom(sK,fxm{D er/m) =

SK* L3
n'KA/UB:f + Q@ homomorphism

(n,E)| g€ Hom(ZK'fxmﬁLGm/m)

and n=¢£( on K*/Uf

(as Gal(@|@)-module).
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~J
.
—

Put:

xv> 0 if v 1is real
= * =
Up, s (x,) €X}| x = 1(mod £) A4if v
xve n; 1f v 1s finite| .

Then X factorizes through K;/U , and we have the

diagram

A, f

* *
1 »K /Uf-r Kh/uh,f+ Cf + 1

N/

E*

where Uf = Un_fr1K*, and Cf is the ray class group of K

r
mod f. Recall that C; 1is a finite abelian group. Now, K*/Uf
is the group of Q-~rational points of the {@-torus

2%, ¢ =(Rx/m Cn) /Tg o

where ?; 1s the Zariski-closure of a suitable arithmetic
subgroup Ff of RK/Q Gm. Serre shows how to construct a
{-algebraic group SK £ of multiplicative type (i.e., SK £
! r
is the product of a torus by a finite abelian group) which is
= W%
an extension of Cf by Z sgch that SK'f(Q) KA/QA

X,t

In fact, define SK £ via its character group:
’

2

X(Sy ¢) = Hom(Sy (xR , 6 /@) =

cR* m*
n'KA/Ua ¢ * @* homomorphism

[ 4

(n, )| E€ Hom(ZK'fxmm.Gm[cn)

and n=§ on K*/Uf

(as Gal(@|@)-module).



cf. [He), p. 272 £; [Tt] or |[W3], VII-7. Put
S

Fpis) = 2 T(3); Ip(s) = T (s)Tgls +1) = 2(2m) ~°I(s).

For a real place v of K (whose existence implies, in the

notation of § 4, that all n{(o,T) are equal to g), put
T = e - ¥
L, (x ,s) .= FR.(S+E Ak

where €=0 or 1, such that the v-component xE:Ks-*E*

(_1)e+wl2

of Xy satisfies x:(-1) = . For a complex place

v of K, corresponding to the pair o0,0:K+ T of complex
embeddings of K, put

L,(x"ss) = Tg(s~inf(n(a,T),n(T,1))).
Then, setting

AxTes) = TT otx"ss) - Lix',s),
. v|®

we get a meromorphic continuation to the whole complex plane
with functional equation of the type

AMxTes) = e(xTrs) C AT, 1 - 8,
1/2-
where e(x',s) = w(xT)°{|dK| °JNfX}.’ ° ,for some constant
W(xr) of absolute value 1, and dK the discriminant of K

{over Q). - As XV =[Rw°(XT)_1 , this functional equation may be
rewritten as one relating L(XT,s) to L(xT,w+1-s8).

7. Serre's group

In [S&], chap. II, Serre has given an interpretation of algébraic
Hecke characters which generalizes the definitions (b) or (c) of
algebraic homomorphisms recalled in § 2.
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7.2 An algebraic Hecke character of K with values in E
can then be viewed as a representation defined over E of

algebraic groups

SK = l%m sK'f + GL(1) ,

or equivalently, as a.hombmorphism of algebraic groups defined
over Q@:

Sk * Rg/p Cne

1.3 SK sits in the exact sequence of {@-algebraic groups

{obtained as projective limit over f):

(7.3.1)  1+2.+ SK+Gal(Kab/K) ~0,

where ZK can be described as follows.

1.3.2 Given an algebraic Hecke character of K with values

r its infinity-type

i . T

iis obtained simply by restricting to 2.: 2y * Rg/p B (cf.§4)

—and ZK is the largest quotient of RK/Q Gm through which all
infinity-types of algebraic Hecke characters of K factorize.

in E, as a representation SK RE/Q Bm

Let @ be the algebraic closure of @ in €, and consider
temporarily all fields K as subfields of @ . Write

1:E% QcC. Then T°T can be interpreted as a character TT:Z -*Gm

. K
over (@ . Denoting complex conjugation on @ by ¢, and by

GCMc:Gal(ﬁ/m) the subgroup fixing all algebraic numbers of CM-type,

it follows that the character group of Zy is given by:

{ : ‘ P A, for all s € Guy ]
x(ZK) = {)E X(RKIQGm) %
Af{co) + A(o) indep. of ¢ } '

where we identify X(RKiQ G ) =2 [Hom (X,Q)] , and define
23 (0) = A(s-1oc), for s€ Gal(Q/Q),o € Hom(K,Q).
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1.3.3 Consequently, if K'< K is the field of numbers of

CM=-type in K, then ZK = ZK' , and
rzm = mm/Q . 1f K' 1is totally real

ZK' = *RK'/Q Gm/ker(NK,/KézRK,/mefrRKé/me),
if K' is a CM-field with K} as
(maximal totally real subfield.

In particular, for K1c:K2 , the norm maps

N : R & + R €
KZ/K1 Kz/m m K1/Q m

factor through ZK + ZK , allowing us to define
1

2 = lim ZK = lim ZK .
K K CM-field

The infinity-types of-all algebraic Hecke characters can
- be regarded as characters of 2 (identifying Tr on

R with TToN

i ):
K1/Q m K2/K1

f locally constant
_ £ = £, for all SEG
X(2) =3f:Gal(@/Q) » 2 f(ca)+ £f{oc) indep. of
o € Gal (R/@)

CM

7,3.4 Thus, some invariants of Y can be viewed as homomorphisms

of (pro-) algebraic groups. E.g.,

X(2z) % = X(Gm) gives rise to:

~F

f + £(1) + £(c) {(=w) w:Gm*-Z(/m)

£ > £(1) (= n(g,T)) WG > 2(/C)
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7.4 The sequence 7.3.7 admits a natural section over the

finite idéles m;f whose construction is reminiscent of

the way in which we passed from Xa to Xy # for a finite
A A
place X of E, in § 5. As SK(Q) l%m KA/UA.E' thgre is

a natural continuous map

leg +SKUD) QSK(%E‘) .

On the other hand, ZK(mhf) is also a quotient of KB ’

whence a continuous map

giKE > 2 (QE) » S Q).

f and g obviously agree on K*, and as SK(m!ﬁ) is a totally
disconnected topological space, the quotient f/g factors through
a continuous homomorphism

e:Gal (k3°/k) > Sy (Gyf)
which is the section sought.

Given an algebraic Hecke character as a homcmorphism of
{-algebraic groups

x:SK+PE/m cBm !

we can recover as the map induced by x on the @-rational

X
A
points of SK’ RE/@ Gm. As for Xy ! for A a finite place of
E, it is the A-component of

X/ Qpf
Gal(K°/k) § S (Qpf) —D> Ry B (Gaf) = EAL.

It is obvious how to mimick the constructicn of fg“1 at
the infinite place of {@. The result will no longer factor

through Gal(Kab/K), but gives the characters Xy ! for Afe ,
introduced -in § 5.
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8. Jacobl sum Hecke characters

.§,9,1 Historx

~ Although special gases.are already present in Eisenstein

[E1i 3] the notion of Gauss or Jacobi sums viewed as Hecke
characters really starts with André Weil: [w IIl, 19524, for

the cyclotomic case; [W III], 1974d, over abelian number

fields. Cf. also the beautiful {W III], 1974c. Several authors
have then extended the class of characters amenable to Weil's
method - see [Kb],[KL],[Li] -, and proved results about special
values oftheirL-functions(fo-wit,specialcases of Lichtenkaum's
"I-hypothesis"): {Br],[(BL],[Li].

On the other hand, a thoroughly geometric study of Weil's
Jacobi sum Hecke characters - with a view to majorize
exponential sums - was done by Deligne in [SGA 4%], Sommes
trig. - The "motivic" picture of Jacobi sum characters over
cyclotomic fiields isimplicitly discussed in [DMOS], I § 7.

Recently, G. Anderson took up the subject introducing, in
[A2], a very smooth and efficient formalism as well as a
geometric interpretation for a class of Jacobi sum Hecke
characters which includes all Hecke characters of abelian
fields that have ever been proposed as candidates of Jacobi
sum Hecke characters. More precisely, I checked that
Anderson's class coincides with the one defined by Kubert, [Kb].
The geometric interpretation makes it seem very unlikely

that new reasonable candidates for Jacobi sum Hecke characters
of abelian fields can be proposed. Anderson's work (in fact,
essentially already the earlier [A1]) definitely links up

the "TI'-hypothesis"” with Deligne's rationality conjecture of
{[DP]. This has actually been the starting point of the

present work - see [GS’], announcement made after Cor. 1.2.
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7.4 The sequence .7.3.1 admits a natural section over the

finite ideéles m;f whose construction is reminiscent of

the way in which we passed from Xa to Xy for a finite
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place A of E, in § 5. As SK(Q) lim KA/UAJf' there is

a natural continuous map £
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we can recover as the map induced by x on the {g-rational
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points of SK, RE/m G, - As for Xy for A a finite place of
E, it is the A-component of
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It 1s obvious how to mimick the construction of fgm1 at

the infinite place of {@. The result will no longer factor
through Gal(Kab/K), but gives the characters Xy for \|e ,
introduced ‘in § 5.
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8.0.2 In this section we shall, as of 8.2, introduce
Anderson's class of Jacobli sum Hecke characters and briefly
discuss, in 8.4, the corresponding notion of Stickelberger
ideal (of an abelian number field) - which is easily seen

to coincide with Sinnott's ,[Sin]. - Our account of [A2]
will continue in I § 7, where we describe Anderson's motives

for Jacobi sum Hecke characters - alsoc touching upon his
'ulterior motives' -, and will be concluded in II. §4, with the
calculation of their periods in terms of values of the
I-function at rational numbers. - Proofs will often be
replaced by a reference.

To make things more concrete we begin, in 8.1, with a family
of examples of Jacobl sum Hecke characters (all included
_alreédy in [W III], 1974d) which will play a prominent

role in chapter III.

gé; The basic Jacobi sum character of an imaginary.
qguadratic number field.

Let K = Q(/-D) be the imaginary quadratic numper field
of discriminant -D< -8, (The exceptional cases D = 3,4,8
will be treated in 8.3.2.) Pick an embedding

2ni/D) cc .

K< L =alpy) = @le
K 1is the unique quadratic subfield of L. For a prime P
of L not dividing D write L(P) = Z[p ]/P  the residue
field and XD,P the D-th power residue symbol modulo P :
for xe€ L(P),
WNP-1

XD'E(X}E pp U {0} and Xp,p(X) (mod P) = x b

Finally, put e(z) = exp (2mi 2), and denote by tr the
‘trace map from L(P) down to its prime fieldIFp. The basic
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Jacobl sum character of K 1is given by its values on
prime ideals p | D of K as follows.

(8.1.1) J.(p) = (- X (x) t
b 1]1- xEIZ.(P) p,? X} el(tr x)/p)),

where P runs over the primes of I dividing p. Extending

multiplicatively to the group I of all ideals prime to

(D)
D in K , this gives a homomorphism

I(D) + K¥* ,
as is easily seen from the behaviour of Gauss sums under
conjugation: see [W III], 1974c, § 1. But it is by no means
obvious, a priori, that JD is a Hecke character, i.e.,that it
"admits a conductor" f , as in § 1. Suppose we knew this.
Then Stickelberger's theorem would give wus the infinity type
of JD , as follows. Identify as usual .

(Z/DE)* ——— Gal (L/®@)

o —> ot > ¢ (z€ny)

Write the Dirichlet character corresponding to K as.

€:(Z/DZ) * — {1}

l
ela) = o 'K

=1 if = ¢ (complex conjugation)

UalK

Lift € back to % when convenient, also extending it to
numbers not prime to D by 0. Thus e{p) = (i?) (Legendre's
symbol), for all rational primes p. Define, for o running
over . (Z/DZ)*

(8.1.3) n, = J <2 in,= ) <Zs ,
b clay=+1 P
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———
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Finally, put e(z) = exp (27i z), and denote by tr the
trace map from L(P) down to its prime field Fp' The basic
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where

(8.1.4) <.>:@/Z + @ 1is the representative in [(0,1)
of a class mod ZX.

Then an easy calculation, starting, e.g., from [W III],
1974c, § 15, shows that
(n11+ncc)

JD(FPOK = p

Now, the trick ovaauss as a young man, and the analytic
class number formula of Dirichlet give the two equations
(remember that D # 3,4):

w(D) /2

o]
+
=}
n

1 c hD "

o
[
=)
1]

where «¢(D) = #(Z/DZ)* is Euler's ¢-function, and hD
is the class number of XK. Therefore the infinity type of

‘qD would have to be

n

(8.1.5) T, = >

. e(d) _ .
D° 1+(2—~ hD) cl .

o’

[T

This does give an algebraic homomorphism of K* into

(D) -
5 - hD (mod 2)

this is why we had to exclude D = 8 alsol

itself because, by genus Eheory '

It is proved in {W III], 19744, that J, 1is actually a
Hecke character of K , with defining ideal f dividing
a power of D. Alternatively, this follows from Anderson's
interpretation: see I § 7.

8.2 Anderson's formalism

The latent reference for this subsecticon is [A2], § 2.
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8.2,1 Let B be the free abelian group on {/z~{0}.

For a = Zna[aleB let m(a) be the order of the sub-

group of @/Z generated by {a€ Q/Z | n_# 0}. Extend the
function 8.1.4 to B by the rule

<a> = § n <a>.

Let @ be the algebraic closure of @ in € , and let
Gal (@/@ act on B via its action on roots of 1:
Writing Y¥:Gal(@/@) +Z* the cyclotomic character defined
by csﬂ C‘l’(s) , for all s€Gal(@/@®) and 7 € @* a root
of 1, we set ’

a® = (I ntah® = Jn_ (¥(s)al .

Given a number field Kec{@ , write BK= BG(Q/K) the
| subgroup of elements invariant under Gal(@/K). Given K

and a € By , define

8, (2) :G(T/W) /G(T/K) » @

o <o la> .

In the application, K will be abelian over @ and 6

K
will be read on Gal(K/Q@).
also let B’ = {ac ® | na=0 in @/2} , and
0o _ 0
I[BK = IB"° N IBK .
8.2,2 Let p be a rational prime and let B(p) be the

subgroup of IB generated by elements of the form

f
) (plal ,
3=1

where f 1is a positive integer and 0+*a€ Q/Z is
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where
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this is why we had to exclude D = 8 also!
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The latent reference for this subsection is [A2], § 2.
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such that (pf - 1)a = 0.

We assume that, for every rational prime p, an extension
of the p-adic absolute value ||p to @ has been chosen.
So, in any number field L(c @), there is a privileged
prime divisor P of p.

There is a unique homomorphism

gPﬂB(p) + qQ*

such that, for .all integral powers gq = pfz p, and all
0O+a€@/® with (g - 1)a = 0, one has

£ .
) (plal) = - ) C-<a>(q-1) . e(t(g,;})
=1 o P

gl
Py

£ 3
with t(q,z) €Z and tlg,z)= |} P {mod P}, for

P the chosen prime over p J=1 in the field Q(uq_1).

This is Anderson's version of the theorem of Hasse and
Davenport., - Note the - in the exponent of ¢ !

8.2.3 Let Kc@ be a number field which is abelian over

Q. Let a€ B, and § a prime ideal of K with g | m(a).
:Call p the rational prime below p , and write ‘
D(K,p) =Gal (G/@) the open subset of all s such that p°

is the privileged prime above p in K. Thus D(K,p) consists
of full left cosets of the decomposition group D{(p) of llp ’
as well as of G(G/K).

Put

gglap) = g ( ) _ o al) ,
P 5eD(K,p)/G(A/K)
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where g, was defined in 8.2.2: To see that Yo la
actually lies in 1B , note that

()
B, =B ' nacmip fn@} .
8,2.4 A Jacobi sum Hecke character (according to Anderson)

is a character of the form JK(Q), where:

* K is an abelian number field, Kc<@q ,

-*a €<B% ’

and JK(Q) is given on prime ideals § of K not dividing
m(a) by the rule

* Jgla) p) = gpla,p).

The fact that J.(a) is actually a Hecke character of K,
with defining ideal dividing a power of mia) , hinges on
the condition QGZBO, and can either be dug out of [Kbl],
or derived from Anderson’s geometric interpretation:

see I § 7.

8.2,5 Elementary properties of Gauss sums imply that
Jg(a) is galois equivariant:

[0g(a) (a)1° = g (@) (a°) = 3,(a%) (a) ,

for all s €Gal (@§/@ and any ideal a of K prime to
m(a). In particular, JK(E) takes values in K¥*,

8.,2,6 It is plain from the construction that, for L/K

a finite extension and EEJB?(CBO

L ! one has

Jla) = Jgla) e Ny .
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where 9 was defined in 8.2.2: To see that A20_1g
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(p)
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The fact that J,(a) is actually a Hecke character of K,
with defining ideal dividing a power of m(a) , hinges on
the condition EEZBO, and can either be dug out of [Kb],
- or derived from Anderson’!s geometric interpretation:

see I § 7.

.2.5 Elementary prdperties of Gauss sums imply that

JK(E) is galois equivariant:

[T (@) (@) 1% = g (a) (2°%) = 3, (a°%) (a) ,

for all s €Gal (@/@) and any ideal a of K prime to
m(a). In particular, J (a) takes values in K*.

8.2,6 It is plain from the construction that, for L/K

a finite extension and gemcho

, ! one has

Jp, (a) = Igla) o Wy p -
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such that (pf - i}a = 0.

We assume that, for every rational prime p, an extension
of the p-adic absolute value ||p to @ has been chosen,
So, in any number field L(c{), there is a privileged
prime divisor P of p.

There is a unique homomorphism

such that, for all integral powers g = pfsz, and all
0+*a€@/Z with (g - 1)a = 0, one has

£
g (7 tpdan = - | gl@dlamt) g (tign),
P j=1 q_‘[ P
4 =1
f J .
with t(q,z) €% and tlg,z)= 3} ¢P~ (mod P), for
P the chosen prime over p 3=1 in the field m(uq_1).

This 1s Anderson's version of the theorem of Hasse and
Davenport. - Note the - in the exponent of ¢ !

8.2, Let Kc@ be a number field which is abelian over
Q. Let a€ By
Call p the rational prime below g , and write

D(K,p) =Gal (@§/@) the open subset of all s such that p°

is the privileged prime above p in K. Thus D(K,p) consists

and p a prime ideal of K with p [ m(a).

of full left cosets of the decomposition group DI(p) of Wlp ,
as well as of G(T/K).
Put

-1

gxfarp) = g_( ¥ _ o 'a) ,
K P 6€ D(K,p) /G(T/K)
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8.2.7 Stickelberger's theorem implies that the infinity
type of J,(a) is 6y(a) - defined in 8.2.1 - ,which takes
values in 2z if ae€ BO

§.3. Example 8.1 revisited

8,3,1 Let us first write our basic characters of 8.1 in
Anderson's notations. So let K = Q(v-D) be of discriminant
-D<-8. Put

We find (8.1.3) that

= <a.> ' = < > .
n, 2p and n, can

Therefore, by the remark following 8.1.5, one has

0
ED €EB .

Since a, clearly belongs to By, the character Jy(ay)
is well defined in Anderson's setup, and it is an easy
exercise to check that

Jp = Jxlay) -

8,3,2 We shall now define, in Anderson's notation, a basic
Jacobi sum character for each of the imaginary quadratic
fields not treated in 8.1 and 8.3.1, i.e., for D = 3,4,8.
In all three cases the class number h is 1, and (in

D
analogy with 8.1.5 for D = 3,4) we shall define JD so
that its infinity type T is 1.1 + 0.¢c = 1. All we have

D
0 =
to do is give an element an Eimm‘ﬂqs) , for D = 3,4,8,

such that
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1 if aga=1

80(v=D) ‘8p! (@) = {0 if ocec .

For D = 3,4, we have tried to make a "classical"” choice

of 2 - see I. 7.5.
We propose as basic characters, JD = JK(QD) with
= 2127 - 1

il
1}

a, = [3]+ (31~ (3]

| I

1 5 7
131+ (31 + [

8.4 The Stickelberger ideal

8.4.1 Definltion. Let K be an abelian number fielgd.
The Stickelberger ideal of K is the ideal of the group
ring 2{Gal(K/@)] consisting precisely of the infinity
types of all Jacobi sum Hecke characters of K. It is
denoted St

K L]

It is not hard to check that our Stickelberger ideal St
coincides with the one defined by Sinnott in [Sin] .

The main property of Sty which we shall have occasion
to use is the following

K

8.4.2 Proposition. Let A Z2[Gal(K/@) ] be the set of
infinity types of all algebraic Hecke characters of K .
Then Sty is a subgroup of finite index in Ag.

See [Sin], Theorem 2.1.

In'general, it is very hard to describe StK inside Ag
and even to give an explicit formula for the index [Ag:Stp].
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1 if g =1

8 (a ) (o) =
@ (/=D). =D {0 if s =c .

For D = 3,4, we have tried to make a "classical" choice

of a, - see I. 7.5.

We propose as basic characters, JD = JK(ED) with

= 127 - 1
a; = 2[3’] [3]
a, = (3] +[3) - [}
_ 1 5 7
28 = '[‘51 + [E] + [g] -

8.4 The Stickelberger ideal

8.4.1 Definition. Let K be an abelian number field.
The Stickelberger ideal of K 1is the ideal of the group
- ring Z[Gal(K/@)] consisting precisely of the infinity
—~types of all Jacobi sum Hecke characters of K. It is
denoted StK .

It is not hard to check that our Stickelberger ideal StK
coincides with the one defined by Sinnott in [Sin] .
The main property of St which we shall have occasion

K
to use is the following

8.4.2 Proposition. Let Ac Z{Gal(K/@)] be the set of
infinity types of all algebraic Hecke characters of K .

Then StK is a subgroup of finite index in AK'

See [Sin], Theorem 2.1.

In general, it is very hard to describe Sty inside A, ,
and even to give an explicit formula for the index {AK:StK].
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8.2,7 Stickelberger's theorem implies that the infinity
type of J,(a) is 6y(a) - defined in 8.2.1 - ,which takes
values in 2Z if a€ BO

8.3 Example 8.1 revisited

8.3.1 Let us first write our basic characters of 8.1 in
Anderson's notations. So let K = Q(v-D) be of discriminant
-D<-8. Put

We find (8.1.3) that.

n, = <a.> and n_ = <ca

1 =D c D> *

Therefore, by the remark following 8.1.5, one has

50
a, €8 .

Since a, clearly belongs to By, the character J.l(a,)
is well defined in Anderson's setup, and it is an easy
exercise to check that

Jn = Jglap)

8.3.2 We shall now define, in Anderson's notatlon, a basic
Jacobi sum character for each of the imaginary gquadratic
fields not treated in 8.1 and 8.3.1, i.e., for D = 3,4,8.
In all three cases the class number h_ is 1, and (in

D
analogy with 8.1.5 for D = 3,4) we shall define Jp so
that its infinity type T is 1.1 + 0.c = 1. All we have

D
0 -
to do is give an element ap EZBQ‘ﬂﬁs) . for D= 3,4,8,

such that
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An interesting case in which both can be done takes us
back to our initial example of 8.1, resp. to 83.2.

8.4.3 Lemma Let K = @(v-D) be any imaginary guadratic
number field, -D its discriminant. Then St, consists

precisely of the types

k-TD +3(1 + @)

with k,J € Z. The index [Ag:Ste] = hy .

{(Recall that T, was defined in 8.1.5, resp. 8.3.2.)
Proof. First observe that the given types are actually
contained in StK. This is true by construction for TD ’
and 1 + ¢ 1is the infinity type of the norm IN , i.e. of
(say) Jglay + caj) , where a; is as in 8.3.2 (but

K = Q(/-D) - cf. 8.2.6).

Secondly, the index of the set of types described is

.hD . In fact , (8.1.5)

1,9(D) - .
TD -Z(T_ -hD)-(1 +c) = hD1 .

unless D = 8 - in which case’ Ap = Sty according to 8.3.2.

On the other hand, it follows from Theorem 2.1 combined with
Theorem 5.3 of [Sin) that [A :Sty] = h,
But, to be sure, our quadratic fields do not really merit

this quote: In fact, suppose QEZBE, and .K = Q(v=D) with

D>8. Put m = m(b) and decompose b = ) b. with
- = 1dim 9

in our case. -

ng [%] .

=
e
v

Y
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Then EdE:Bm(u )’ and since the action of Gal(@/Q)
respects this égcomposition of b we find that

B if K & m(pd)
€
B if K c W(ud)

In the first case, if d ¥ 2, it follows that Qd is a

multiple of % [%l , and therefore in ]Bg . So it

3=1
(3,d)=1

contributes to  J, (b) a Hecke character of Q , i.e.,a
multiple of 1 + ¢ to the infinity type. We are therefore
- reduced to elements b of the form

- 1
b o=ng (31 + 1 by

> . DldIm
Now _lgd € :BK implies that
d d
{bp= T - ; % + 8 - ) % = r'’ny(d)+s-n_(d)},
j: j=1
(3,4)=1 (j.4)=1
£(3)=-1 e(j)=+1

with n1(D) = n, and nc(D) =n, . as in 8.1.3.
Now it is easy to check that
n,(d) = n_(d) = (n; - n.) TT7 (1 - e(p)) = hD-TT (1-e(p)).

pid pid

This means that, if n-+1 1s the infinity type of a Jacobi
sum Hecke character of K , then th n.

g.e.d.
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Then b,€ B , and since the action of Gal(@/@)
=d Qpy)
respects this é%composition of b we find that

Q

]BK if K c m(p,d) .

B if K ¢ m(ud)
b, €

In the first case, if d ¥ 2, it follows that Ed is a

multiple of % [%] , and therefore in :Bg . So it
J=1
(j,q)=1
contributes to JK(Q) a Hecke character of Q@ , i.e.,a

multiple of 1 + ¢ to the infinity type. We are therefore
- reduced to elements b of the form

1
E =n [_] + 2 b .
% 27 DldIm =

Now 1_)d € ZBK implies that

d 4
(b= T - ; .& + 8 E = r'n,(d)+s-n_(d),

d

)

j:
(3,d)=1 (j,d)=1
c(j)=-1 e(j)=+1

LS R

with n1(D) = n,
Now it is easy to check that

and n_(D) = n , as in 8.1.3.
c c

n,(d) -n_(d) = (n, =n) J] (1 = elp)) = h_ ] (1-¢(p)).
1 c 1 c pld D pld

This means that, if n+1 is the infinity type of a Jacobi
sum Hecke character of K , then thn.

g.e.d.
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An interesting case in which both can be done takes us
back to our initial example of 8.1, resp. to 8§3.2,.

8.4.3 Lemma Let K = @Q(vY-D) be any imaginary quadratic
number field, -D its discriminant. Then St
precisely of the types

K consists

k-TD +3+(1 + ¢)

with k,j €Z. The index [Ag:Sty] = hy .

{Recall that TD was defined in 8.1.5, resp. 8.3.2.)
Proof. First observe that the given types are actually

contained in StK. This is true by construction for TD ’
and 1 + ¢ 1is the infinity type of the norm N , i.e. of
(say) Jglay + caj) , where a; is as in 8.3.2 (but

-3
K = Q(/~D) - cf. 8.2.6).

Secondly, the index of the set of types described is
hy . In fact , (8.1.5)

TD -%(%m -hD)-(1 + ¢c) = hD"l '

unless D = 8 - in which case AK = StK according to 8.,3.2.

On the other hand, it follows from Theorem 2.1 combined with
Theorem 5.3 of [Sin] that [AK:StK] = hy, in our case. -
But, to be sure, our quadratic fields do not really merit
this quote: In fact, suppose QEZEE, and . K = Q(/=D) with

D>8. Put m = m(b) and decompose b = }J b. with

1<dIm 9

& i
Ed = Z | ny [ﬁ] .

=
5
rt
Al 3
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CHAPTER ONE:

Motéves for algebraic gecke characters

This chapter contains an exposition of the less elementary

and more geometric parts of the theory of algebraic Hecke

characters. None of the results is original, but all the main
theorems are fairly recent, so this is almost the first time that
they are explicitly put together with a.view to providing a "motivic"
theory of Hecke characters. Compare however [A2] and [BR]. More
precisely, we indicate a proof of Conjecture 8.1 of [DP]iin the
setting of certain motives for absolute Hodge cycles. - We start

out with the key example of the theory:

1. Abelian varieties with complex multiplication

1.1 Let K and E be two number fields (of finite degree;
over (@), and let A be an abelian variety defined over K
such that 2 dim A = [E:Q]. Denote by EndK

morphisms of A that are defined over K, and assume there 1is

A the ring of endo-
an embedding of @-algebras
G
E Q.gz EndK A,
which will be fixed throughout. For any prime power £ in E,

denote by A[%27] the kernel of mulitplication by &% on a,
and define as usual

T,(A) = lim ALR"1(R), V, (A) = T,(A) @,Q, .
n L
Here K is some fixed algebraic closure of K. There is a
natural faithful action of End A on TR(A)' and therefore of
E on Vz(A). As K 1is of characteristic 0, TQ(A) is a free
'zl-module of.rank;z dim A, and VE(A) is a free E o Ql - module
of rank 1. The action of EndKA commutes with the natural action

of Gal(K/K) on T,(A) and V (A). So the Galois-representation
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on Vz(A) is E @ Ql-linear, and splits up as a sum of
1-dimensional A-adic representations, for the places A
of E dividing 2,

xA:Gal{f('/K) + E} .
lé;= The formation of Tg and Vl is, of course, not
restricted to abelian varileties with complex multiplication
by a field E as above. And the part of the "Weil-conjectures"
proved by Weil himself implies that the system of Galois repre-
sentations T£(A}, for £ varying over all rational primes, is a
strictly compatible system of (@~-)rational representations. This
means that there is a finite set . 8§ of places of K - to wit,
the places where A has bad reduction - such that for all primes
2,%2' and any finite place § of K such that pé¢S and p | 2°2,
Tg(A) and ' TL'(A) are. unramified at g (so that the action of
a geometric Frobenius element Frob g at p is well-defined),
and the "characteristic polynomials"

det(1 - Frob p. X|T,(A)) and det(1 - Frob p. X|T,,(A))

have coefficients in @ and are equal. - C£.[ST]. The "Weil~-
conjectures” also tell us that all the eigenvalues of Frob g on
T,(A) are algebraic numbers purely of absolute value vHg.

1.3 In the case of complex multiplication, the system (XA)
of A-adic representations,) varying over all finite places of E,

is itself a strictly compatible system of E-rational Galois represen-

tations. That is to say, for every prime ideal P of K not in

. the set of bad reduction S, there is a number y(§) € E* such that

for any finite place A of E with p [ NA, x(f) maps to X, (Frob 7 )
under FE “-EA . - To prove this, one has to study the reduction

mod p of the abelian variety A : The Galois-action of Frob §
reduces to the geometric Frobenius endomorphism on the reduction

Kp, over the residue class field of X at p. This endomorphism

lies in the centre of the algebra 3, End(ip), and therefore

lifts back to an element (g €EEcQ oy EndKA. Xx(Rr) 1is unique
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on VQ(A) is E e ml-linear, and splits up as a sum of
1-dimensional A-adic representations, for the places A
of E dividing £,

XA:Gal(K/K) + E} .

1.2 The formation of Tl and Vz is, of course, not
restricted to abelian varieties with complex multiplication

by a field E as above. And the part of the "Weil-conjectures"”
proved by Weil himself implies that the system of Galois repre-
sentations Tl(A), for & varying over all rational primes, is a
strictly compatible system of (Q-)rational representations. This
means that there is a finite set .S of places of K - to wit,
the places where A has bad reduction - such that for all primes
2,%' and any finite place p§ of K such that p¢S and p [ 2°2,
T,(A) and Tz.(A)' are. unramified at p (so that the action of

a geometric Frobenius element Frob g at p 1is well-defined),
and the "characteristic polynomials”

det (1 - Frob p. xsz(A)) and det(1 - Frob p. Xsz.(A))

have coefficients in @ and are equal. - C£.[ST]. The "Weil-
conjectures" also tell us that all the eigenvalues of Frobp on
T,(A) are algebraic numbers purely of absolute value vHp .

1.3 In the case of complex multiplication, the system (XA)

of A-adic representations,) varying over-all finite places of E,

is itself a strictly compatible system of E-rational Galois represen-

tations. That is to say, for every prime ideal f of K not in

. the set of bad reduction S, there is a number x(R) € E* such that

for any finite place A of E with p [ N\, x(f) maps to X, (Frob ¥ )
under E %-EA - - To prove this, one has to study the reduction

mod g of the abelian variety A : The Galois-action of Frob P
reduces to the geometric Frobenius endomorphism on the reduction

Kp, over the residue élass field of K at §. This endomorphism
End(xp), and therefore

EndKA. x (B} 1is unique

lies in the centre of the algebra Q@ ,

lifts back to an element x(§) €EcQ Sy



- 25 -

CHAPTER ONE:

Motives gog glgebraic gecke‘characters

This chapter contains an exposition of the less elementary

and more geometric parts of the theory of algebraic Hecke
characters. None of the results is original, but all the main
theorems are fairly recent, so this is'almost the first time that
they are explicitly put together with a.view to providing a "motivic"
theory of Hecke characters. Compare however [A2] and [BL]. More
precisely, we indicate a proof of Conjecture 8.1 of [DP]iin the
setting of certain motives for absolute Hodge cycles. - We start

out with the key example of the theory:

1. Abelian varieties with complex multiplication

1.1 Let K and E be two number fields (of finite degree;

over {), and let A be an abelian variety defined over K
such that 2 dim A = [E:Q@]. Denote by EndKA the ring of endo-
morphisms of A that are defined over K, and assume there is
an embedding of Q@—-algebras

E &Q ®, End; A,
which will be fixed throughout. For any prime power ¢ in z,

denote by A[%"] the kernel of mulitplication by " on a,
and define as usual

= N4 7 =
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Here K is some fixed algebraic closure of K. There is a
natural faithful action of End A on TL(A)' and therefore of

E on VQ(A). As K is of characteristic 0, Tﬁ(A) is a free
ziumodule of rank;2 dim A, and Vz(A) is a free E o @n - module
of rank 1. The action of EndKA commutes with the natural action

of Gal(X/K) on T,(A) and V (A). So the Galois-representation

s
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because reduction of endomorphisms is injective. It is the
number sought. - Cf£. [LCM]}, 2 § 3.

It follows from the theory of Shimura and Taniyama - see
[shT]; cf. [LCM], Chap. 4 - that ¥ extends multiplicatively

to an algebraic Hecke character, i.e., "y admits a conductor”.
But we prefer to deduce this from a much more general result

which will be used later on:

1.4 Proposition: Let xA:Gal(K/K) + E} , for all finite places
A of E, be a strictly compatible system of E-rational A-adic

representations of K. Then there is an algebraic Hecke character

X of K with values in E such that, for every finite place

A of E, X3 is the A-adic representation attached to x {defined
in chapter 0, § 5).

This proposition is just a variant of the main theorem of
{Henn], which in turn is: a corollary of a result in trans-
cendence theory. In fact, Henniart proves that any abelian
semisimple E-rational A-adic Galois representation of K
"is locally algebraic. This means that there is a homomorphism
of group-schemes over EA '
szz/Ex'*Gm/EA (where Z = RK/Q G )

such that the restriciton of TA/EA :Z(EA)-+E; to the subgroup

TT XK. * = 2(Q ) < Z(E.)
vimyn V. o= A

coincides with the reciprocal of the composite map

;ﬁl K ** kg Frob, .1 (x?P k) IeRres, B

on a suitable neighbourhood of 1. - Note that this condition
is the analogue, for a finite place A , of the existence of
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a defining ideal for the representation: see ([S£], III - 2.
This is the reason why proposition 1.4 follows from Henniart's
theorem.

1.5 Let us come back to the abelian variety A over K with
complex multiplication by E. Let Y be the algebraic Hecke
character of K with values in E giving the A-adic representa-
tions Xy of A, i.e., giving the actién of Gal(K/K) on the
torsion points of A.

The Tate-conjecture proved by Faltings - cf. [SchZL in particular
4.2 - implies that, for every L , the mz-subalgebra of

EndCD vg(A) generated by the action of Gal(K/K) is the commu-
tant of EndKA oy mz . Since E o Qg is its own commutant in
Endm£Vi{A) it follows that . E = Q{(x) - the field generated over

@ by the values of x = if and only if E = @ @, End.A, i.e.,

1f and only 1f A is simple over K. In particular, E 1is a
CM-field in that case (it cannot be totally real, as xX = n ).
From this one can deduce that E 1is always a CM-field - but this

proof is of course a little heavy-handed for this elementary fact.
1.6 The c¢haracter Y has weight -1, and, moreover, its infinity-
type T is what we call a CM-type of K (see 0 § 3). To determine

‘T:K*+E* , extend it to a map from ideals of K to 1ldeals of E
so that

x(p)* op = T{p) ,

for almost all prime ideals g of K. The prime ideal decompo-
sition of x(p)'oE can be determined from the fact that

x(p) €EEcCQ @, EndKA+GJ ®p End (Ap)

reduces to the geometric Frobenius on Ep, by letting End A and
End Ap act on the tangent spaces Lie A and Lie 3; - see [Gil].
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It follows from the theory of Shimura and Taniyama - see
[shT]; cf. [LCM], Chap. 4 - that ¥x extends multiplicatively
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1.4 Proposition: Let xA:Gal(E/K) + E} , for all finite places
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representations of K. Then there 1s an algebraic Hecke character

X of K with values in E such that, for every finite place

A of E, X, 1is the A-adic representation attached to x (defined
in chapter 0, § 5).

This proposition is just a variant of the main theorem of
{Henn], which in turn is: a corollary of a result in trans-
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Viewing Lie A as a K omE-module' - cf, [ST], § 7 - the

final result can be Stated like this;

1

T(x) = detp(x @ 1 |Lie A) € E*,

Recall in passing that the algebraic homomorphism

E* > K*

y » dety(1 e y|Lie A~

(or rather, its reciprocal) is often called the -CM-type of A ,
and T (or rather, -T} is called its "reflex-type" (on K).

1.7 An interesting way of rephrasing this description of
the infinity-type of x 1is provided by the Hodge decomposition
of the first singular homolecgy of A. For o¢:K+ T , write '

1,0 0,=1

g . - - .
HY (A,0) = Hy((Ax ©)(0),2) g, €= H "o H '™ .
Then
g-170 = pie (ax. @) = (Lie A) o, C .
g K,o K,o

But Lie A 1is also an E-module. For any t1:E-+C, define ni(o,T1)
to be -1 or 0 according as the action of E on Lie A
agrees with the action of E via E3C on the subspace H;1'0
or not (in which case n(o,T) will be =1). These integers
n(c,T) describe the Hodge decompositions of the H?(A) , for all
¢ , as follows:

Since Ec Q o EndKA, every H?(A,m) has the structure of an

Z
E-vector space (0of dimension 1), The direct factor

o o} n(g,t),(=1t-n(g7))
H1(A,m) oE’TE of H1(A,E) lies in H0 ! .

On the other hand, the identity T(x) = detE(x ® 11| Lie A)_1

means that the n(g,7)'s are precisely the integers attached
to ¥ in chap. 0, §4. Later on in this chapter, we shall
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systematically generalize this kind of correspondence between
infinity-types and Hodge structures on an E-vector space of
dimension one.

1.8 Sticking to our preference for the geometric Frobenius
over the arithmetic one, we define the ("Hasse-Well"-) L-function

of A over K, for Re(s)> % by:

L(&/K,s) = Tdet(1 - Frob payg~%|v, ) 1m) 7",
B

where Ip is an inertia-subgroup at gp; g runs over all finite
primes of K, and it is understocod that the determinant is calcu-
lated using some prime number & such that p f2 . - Cf. [ST].

Since VQ(A) = ® X, + We see immediately that

Ale
L(A/K,s) = ] L(x%,s),
T:E->C

in the notation of 0 § 6.

This is the L-function of A over K defined without reference
to the fact that A has complex multiplication by E. In the
presence of complex multiplication it is, however, more adegquate
to consider the array of L-functions

L*(A/K,s) = L*(x,s) = (L(x',s)) )

T:E+C"

taking values in E omm .

In order to find "geometric" objects over K whose L-functions
include all E-functions of algebraic Hecke characters of K, we
have to pass from abelian varieties (with complex multiplication)
to motives.
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Viewing Lie A as a KX omE-module- - cf, [SsT], § 7 - the

final result can be stated like this;

1

T(x) = detp(x @ 1 |Lie A) € E*,

Recall in passing that the algebraic homomorphism

E* > K*

y + det (1 ey | Lie a)”!

(or rather, its reciprocal) is often called the CM-type of A ,
and T (or rather, -T) is called its "reflex-type" (on K).

1.7 An interesting way of rephrasing this description of
the infinity-type of x 1s provided by the Hodge decomposition
of the first singular-homology of A. For o:K+CT , write

g = - -1'0 0'_1
H1 (A:E) H1((AXK’0E) (€) ,Z) %, T = Hch D@ H0 .
Then
u-170 - pie (ax, @) = (Lie A) o, C
a K,o K,o °

But Lie A 1is also an E-module. For any T:E~+(C, define nl(og,T1)
to be -1 or 0 according as the action of E on Lie A
agrees with the action of E wvia E3C on the subspace H;1'0
or not {in which case n{o,t) will be =-1). These integers
n{og,t) describe the Hodge decompositions of the H?(A) , for all
o , as follows:

Since E < Q g EndKA, every H?(A,Q) has the structure of an
E-vector space (of dimension 1). The direct factor

o} o} n{og,t),{-1-n{gt))
H1(A,Q) °E;r¢ of H1(A,m) lies in Ho rehe .

On the other hand, the identity T(x) = det (x ® 1] Lie A)-1

means that the n(o,T)'s are precisely the integers attached
to X 4in chap. 0, §4. Later on in this chapter, we shall
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2. Motives for absolute Hodge cycles

The lecture notes [DMOS] contain the first detalled exposition

of a theory of motives over fields of characteristic zero which
does not depend on unproven conjectures., They will be our constant
frame of reference when we are dealing with motives. The other
main source for the kind of questions treated here is of course
Deligne's article [DP] which, however, insists on the general
formalism, not attaching any specific meaning to the word motive,
and using a hierarchy of conjectures when needed. In this section,
we éhall quickly review the main concepts and results from the
general theory of motives as constructed in [DMOS], II § 6.~ For a
somewhat different setup of largely the same theory, see [A2].

2.1 AESOLUTE HODGE CYCLES (Reference: [DMOS],I § 1, § 2)

Let X be a field which can be embedded into €', and X a smooth
projective algebraic variety over K. To every place of Q , we
can attach a cohomology theory of varieties X over K:

At infinity, take the algebraic de Rham cohomology

H. . (X) = HBR(X/K).= H® (X

DR Q

).

Zar’'"X/K

For all n, HSR(X) 1s a K-vector space equipped with a descending

filtration F° , the Hodge filtration.

ALl the finite primes 2 of Q can be treated simultaneously:
denote by QAf the ring of finite adéles of Q , and put

Hp £ (X) = Hp£ (X/K) = {l%m H™ ((Xx KK)ét » Z/mZ)} @2 Qug v

where K is an algebraic closure of K. The H;f(X/K) are QAf-
modules with a natural action of Gal(X/K). The Q,-component of
HAf(X) will be written Hitx).
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For any embedding o¢:K - T , denote by o0X the extension of

Xx C , and by

]
scalar K,o

HZ(X) = B (9X(T) ,Q)
the rational singular cohomology (resp., H?(X) ‘the rational

singular homology) of oX(€). The H,(X) are rational Hodge
structures, i.e., -vector spaces together with a decomposition

of the complexifications

H (X) oL = @ nP9
p+gsn
such that H"Y "and HY¥  are interchanged by complex conjugation.

Whenever K 1is given as a subfield of @ (e.g., K = Q,IR), 5,
the inclusion X<, will be written K , the letter B

for o 8
standing for "Betti". (See also 6.0.)

In these cohomology theories, define the Tate twist as follows

(we write um(ﬁ)= {ex* | ¢™=1}.

(1)

Apr{t) = K Upgl=1) = K

QM) = Fls5pl < 0 Qg (-1 = Flor? = 0
Qell) = l%m um(i)az R £ RQuel(=1) = Hom(QA£(1) » Qp £)
0 (1) = 211 Qo Qg (-1) = 33x - @

R, (1) o€ = K7 Q0 (-1) e @ =u"

the involution F_ (see II,
1.6.1) acts on QB(1) as -1

For m€Z,m>0,

em

Q.. (m) = Q..(1)

the involution Fco acts
on -1) as -1
(DB( )

For m€Z,m<0,

Q..(m) =
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2. Motives for absolute Hodge cycles

The lecture notes (DMOS] contain the first detailed exposition

of a theory of motives over fields of characteristic zero which
does not depend on unproven conjectures. They will be our constant
frame of reference when we are dealing with motives. The other
main source for the kind of questions treated here is of course
-Deligne's article [DP] which, however, insists on the general
formalism, not attaching any specific meaning to the word motive,
and using a hierarchy of conjectures when needed. In this section,
we shall quickly review the main concepts and results from the
general theory of motives as constructed in [DMOS], II § 6.- For a
somewhat different setup of largely the same theory, see [A2].

2.1 ABSOLUTE HODGE CYCLES (Reference: [DMOS]},I §'1, § 2)

L]

Let K be a field which can be embedded into € , and X a smooth
projective algebraic varilety over K. To every place of Q , we
can attach a cohomology theory of varieties X over K:

At infinity, take the algebraic de Rham cohomology

HDR(X) = HBR(X/K) = H'(XZar;Q ).

X/K

For all n, HER(X) is a K-vector space equipped with a descending
filtration F' , the Hodge filtration.

All the finite primes £ of Q can be treated simultaneously:
denote by QAf the ring of finite adéles of Q , and put

Haf (X) = Hig(X/K) = {lém H (X K)o

where K 1is an algebraic closure of K. The Hgf(X/K) are Q,¢-
modules with a natural action of Gal(X/K). The Ql—component of
Hpf(X) will be written Hi(x).
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For all me€Z,

"H® (X)) (m) = H (X) .. Q..(m).

For every embedding o¢:K < T of the fixed algebraic closure
K of XK into &, there is the total comparison isomorphism

. £ 05 . .
(2.1.1) HU(X) {m) @Q(ﬂ:xn ) -+ HDR(cx)x thtox) {(m),

the filtration on HDR(OX) = HDR(X) Q 'UG: being given by

K

e uf d
p'zp

FP .

$u

Note that ¢ induces an 1somorphism
Hyf (X X K/K) 5 Hyf(0X/CT),

and H‘;f(XxKK/R)’ is just H,¢(X/K), with the action of Gal (K/K)
*forgotten.

Abbreviate HE'JR(X) (m} x HAf(X) {m) to HA(X) {m). For p€eZ, p>0,
an element tE€ HBP(X/K) (p) 1is called a Hodge cycle (of codimension
p) over K relative to o0:K + T, if

(1) ¢ EHip(x)(p)c:Hip(x)(p) ® (CxQus) (by 2.1.1),

(ii) the HDR-component tDR of t 1lies in

0..2p = pPyP
F HDR(X)(P) = F HDR(X).
The algebraic condition (ii) is clearly equivalent to the
analytic one:

0,0

P 2p
(11) ' - typ€H S H o (X)(p) @ C (by 2.1.7..).
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Condition (i) means that the components of tEIHZP(X)(p) all
correspond to a single element in p(x)(p], under the various
comparison isomorphisms: between Betti and de Rham, Betti and
étale cohomologies.

An absolute Hodge cycle on X over K (of codimension p) is

an element ¢tE€ 3§P(X/K)(p} which is a Hodge cycle relative to

all o0:K + €. The @-vector space of all these absolute Hodge cycles
1s denoted by CgH(X/K), or Cgﬂ(x) if the reference to X is
clear or irrelevant (e.g., K = K - see below) .Clearly,

dim (X/K) < ., The definition of CAH we have given does

QAH
not easily betray its virtues. - Looked at "from the side of

Betti cohomology”, C§H(X/K) is isomorphic to the {Q-vector space
of arrays (talczﬁ + ), where

(1)t euPx)(p)an®?,
such that, fixing any 6:K+ T, we have for all s€Aut T:

2p =
(1i) t0 and tSOU correspond to the same element tDRE H DR(X/K)

under the Betti~-de Rham comparison isomorphism

t, € HZP (X/K) o

0 \}
l(idas} B (/B (prat
Eg;,,,zf”’) DR DR’

(i11) t0 and ts g correspond to the same element

tAf EH (x)(p) under the Betti-étale comparison isomorphism:

2p, . oo
t EH T(xX/F)o—- T
o0 = pp FR) K,Soq

2p
t € HAf(OX)(p)

bs

sz’_
H (X/K)p)3t .
2 /A !
P
t €H

o ((s°0)X) (p)
s90 Af P
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Condition (i) means that the components of te HZP(X)(p) all
correspond to a single element in H p(X)(p), under the various
comparison isomorphisms: between Betti and de Rham, Betti and
étale cohomologies.

An absolute Hodge cycle on X over K (of codimension p) is

an element tE€ qip(x/K)(p) which is a Hodge cycle relative to

all o:K +- C. The @-vector space of all these absolute Hodge cycles
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DR
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seg - pp /R) K,So0

(1ii) t0 ang t Sog correspond to the same element
Af €H p(X)(p) under the Betti-é&tale comparison isomorphism:

2p
t
06 HAf(UX)(p)

s H _(X/Kipl)3 t
Af Af
2p &
t €
A

gogt H ({s°0)X) (p)
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For all me€Z,

H'-(X)(m) = H:.(X) ®.. @..(m).

For every embedding o:K & ¢ of the fixed algebraic closure
K of K into €, there is the total comparison isomorphism

. £0% .
(2.1.1)  HJ(X)(m) @p(CxA%) > Hpp (0X)x Hig(0X) (m),

the filtration on HDR(UX) = HDR(X) =3 ’OE being given by

K

@ uP 3 5 gP
p'sp |

Note that o¢ induces an isomorphism
Hpf (X xKR/K) = Hp g (0X/T),

and Hyf(Xx K/K} is just £(X/K), with the action of Gal(K/K)

forgotten.

Ha

Abbreviate HISR"‘X) (m) x HA.f(X) {m) to Hh'(x) {m). For p€EZz, p>0,
an element tEIq;P(X/K)(p) is called a Hodge cycle (of codimension
p) over K relative to o:K + C, if

(1) teHP(x) (p) <HP(X) (p) @ (TxQ

Af) (by 2.1.1),

(i1) the HDR-compoqgnt thr of t 1lies in

0.2p . wPyP
F HDR(X)(P) = F HDR(X)-

The algebraic condition (il) is clearly equivalent to the
analytic one:

(ii)* . t__eu?0

2p
DR < Hj {(X)(p) « T (by 2.1.1DR).
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(iv) t0 = t°°g ' for all g€ Gal(K/K).

Note that (iv) makes sense because X 1is defined over K, and
so H;(x) = H;Og(x). Given the compatibilities (ii) .and (iil),
the Galois-action may also be read on HDR or ghf, and (iv)
may be replaced by either

2p
(1v) ' t € HDg(x/K) .

-~ which is what we used in our first definition of absolute
.Hodge cycles - , or by

1v)' ot . € [H2P(x Gal(K/K)
(iv) £ af( ) (p) ]

The following proposition sums up the fundamental rationality
properties of absolute Hodge cycles.

2.1.2 Proposition: a) If LoK 1is still -embeddable into T ,
then the natural map

P v o+ P
CAH(X/K) CAH(x/r)

is an ismorphism. -

b) Gal(K/K) acts on CEH(X/K) through a finite quotient.

To prove a), one has to invoke the theory of the Gauss-Manin
connection. as for b), we have already seen that Gal (K/K)
stabilizes cgﬁ(x/ﬁ). This action being continuous and Q-linear
on a finite dimensional (@-vector space it factors through

a finite quotient.

The crucial result justifying in a way the theory we are about
to develop is Deligne's
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2.1.3 Theorem: If K 1is élgebraically closed, and X 1is

an abelian variety over K , then every cycle t GHﬁ?(X)(p)

which 1s a Hodge cycle relative to one embedding o:K + €

is an absolute Hodge cycle.

If K 1s not algebraically closed the conclusion will hold for
cycles t whose HDR- or HAf-component is fixed by Gal(K/K).
The proof starts with the "exceptional"™ Hodge cycles on abelian
varieties with some complex multiplications, studied in

[Weil; 1977 ¢] and used more generally in [Gr 2]. They are shown
to be absolute Hodge cycles by a deformation argument very much
reminiscent of Gross' paper. From there, Delighe goes on to
CM-abelian varieties first, and passes to. the general case by
another deformation argument.

2.1.4 Remark. Every algebraic cycle, i.e., every element of

H;?(X)(p) coming from an algebraic subvariety cf X of codimen-
sion p , via the cycle maps in de Rham and étale cohomology, is
an absalute Hodge cycle. The Hodge conjecture states that any
cycle which is a Hodge cycle relative to one ¢ 1is algebraic.

In this sense Deligne's result proves part of the Hodge con-
jecture for abelian varieties.

2.2 MOTIVES (Reference: [DMOS],II § 6)

Let K as before be a field embeddable into €. The construction
of the category MK of motives over K , via absolute Hodge
cycles, proceeds roughly as follows.

Step 1. Let CUK be the category with objects written h({X), for
X varying over smooth projective algebraic varieties defined
over K , and morphisms the @-vector spaces defined by

Hom(h(X) ,h(Y)), 7 Cp (Xx¥) , if X is connected of dimension n,
and by additivity, via h(XuY) = h(X)® h(Y), in general.
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then the natural map

1% i 1%
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stabllizes CgH(X/E). This action being continuous and Q-linear
on a finite dimensional (Q-vector space it factors through
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The crucial result justifying in a way the theory we are about
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To understand this definition of morphisms, note that

ChrP (xxy) <u2 M*P) (xxy) (n+ p) = @ Hom,  (HF(x),H"" P (¥) (p))

(by Kinneth and duality), so that Hom(h(X),h(Y)) really gives
a family of maps between the graded Betti, resp. de Rham, resp.
étale cohomology of X and Y.

Taking the cycle of the graph of a K-morphism X-+Y yields a
contravariant functor VK -+ CVK , where UK is the usual cate-
gory of smooth projective K-varieties.

It is essential to consider CVK as a tensor category (cf. [DMOS],

"II § 1), the tensor product being given by

h(X) & h(Y) = h(XxY}),

with obvious associativity and commutativity .constraints, and
~h(pt) as identity object.

Step 2. Let ﬁ; be the Karoubian envelope of CVK. This means we
formally adjoin objects to CVK to insure that every idempotent
in Fnd(h(x)), for any Xf arises from a splitting h(X) = M'eM"
in M; . The objects of M; can be represented explicitly as
pairs- (M,p), with M in CUK and p€ End(M), p2 = idM. The
morphisms are given by

_ {£:M~> N|fop
{€]f°p = 0

C_Iof} -
gof} .

Hom ( (M'P) , (N,q))

For every X, there is a standard decomposition, in End(h(X)),
of idh(x) into a sum of pairwise orthogonal idempotents

_ 0 1 2
idh(x) =p +p +p + ...
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(actually a finite sum)}: take pr to be the projection
® H'(X) » H (X) ,

in all cohomology theories. In terms of absolute Hodge cycles,
look at the Kinneth components of the diagonal Ac X x X:

12" (xxx) (n) = & #"H(x) e mY(x)
1=0 -
2n
ct(a)= § wt .
' 120

For all 1, one has nie:CRH(XXX).

So, for every X€ V and 0srs2 dim X, there is an object
hr(X)E M which. singles out the r—th cochomology groups of X.
Whenceagrading on the objects of MK .

The tensor structure on H; is defined by

(M,p) ® (N,q) = (M ® N,p & g)}.

It respects the grading in the sense that the "Kiinneth formula"
holds:

t
Xe ¥)F = o e v,
s+t=r

i.e., one has to check that the Klinneth components are absolute

Hodge cycles. *
Steg We now introduce the Tate twist into M;. The motive

h (P ) € M has precisely the cohomology groups denoted by

@ (=1 in 2.1. Let MK be the category obtained from MK

by inverting the auto-equivalence M» M h (P ) of MK .

In down-to=-earth terms, this means that the objects of MK can
be represented as pairs
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hr(X)E M; which 'singles out the r-th cohomology groups of X.
Whence a grading on the objects of M;{ .

The tensor structure on M; is defined by

{M,p) » (N,gq) = (M ® N,p ® gq).

‘It respects the grading in the sense that the "Kiinneth formula"

holds:

Xo V) =@ x° e ¥Y° ,

s+t=r
i.e., one has to check that the Kiinneth components are absolute
Hodge cycles.

.

Step 3. We now introduce the Tate twist into M;. The motive

h2(P1) € M; has prec}sely the cohomology groups denoted.by

@ (=1} in 2.1. Let MK be the category obtained from .M;

by inverting the auto-equivalence Mw» M » h2(P1) of M;

In down-to-earth terms, this means that the objects of ﬁ can

K
be represented as pairs
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To understand this definition of morphisms,.note that

Cg;p(XxY)¢+H?fn+p)(XXY)(n+-p) =@ Hom, _ (HT (X) ,H* 2P (¥) (p))

(by Kinneth and duality), so that Hom(h(X),h(Y)) really gives
a family of maps between the graded Betti, resp. de Rham, resp.
étale cohomology of X and Y.

Taking the cycle of the graph of a K-morphism X+ Y yields a
contravariant functor VK - CUK ; Where VK is the usual cate-
gory of smooth projective K-varieties, '

It is essential to consider CVK as a tensor category (cf. [DMOS],

IT § 1), the tensor product being given by
h(X) & h{(Y) = h(XxY),

with obvious associlativity and commutativity constraints, and
h{pt) as identity object.

Step 2. Let ﬂ; be the Karoubian envelope of CUK. This means we
formally adjoin objects to CUK to insure that every idempotent
in End(h(X)), for any X, arises from a splitting h(X) = M'eM"
in ﬁ; . The objects of Q; can be represented explicitly as
pairs (M,p), with M 1in CV  and p€End(M), p° = id,. The

morphisms are given by

{f:M+> N|[fop

Hom((M,p), (N,q)) = Tflfop = 0 qu}

gef}

wlu

For every X, there is a standard decomposition, in End(h(X)),
of idh(x) into a sum of pairwise orthogonal idempotents

0 1 2

idh(x) = p +p +p o+ ...
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(M,m) , with M(-Zﬁ:il:_and meEz.

For morphisms we have

sk-m ok-n)'

“Hom((M,m), (N,n)) = Homj. (M & (h%(B")) Ne (k2 (P))
K

for any k.2 m,n.

This definition 1s independent of k , and thus allows to
define the compo;ition of morphisms by choosing k sufficiently
large. '

We write (M,m) as M(m) or M e Q(m). M; is a full sub-
category of MK via M » M(0). The tensor structure on M
is given by

K

M(m) » N(n) = (M ® N)(m+n)} .

The grading on M; extends to HK by

MmE = METm

-

Step 4. QK is almost the category of motives we want. Its

only technical (but important) shortcoming is the sign con--

vention relating the grading of the objects to the tensor structure.
The point is that a good category of motives should be equivalent
to the category of representations of a group scheme - 1.e., should

be a tannakian category (see 2.3 below!). In such a category, the

rank of a representation (i.e., the trace of its identity-morphism
- see [DMOS],II § 1.7) is simply the dimension of the underlying

space, i.e., a positive integer. But in ﬁ . the rank of h(X)

K
turns out to be the Euler-Poincaré characteristic which may of
course be negative. - To put it another way, the problem is that the

cup product which yields the identification of h(XxY) with
h(X) @ h(Y) is not commutative.
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This problem can be overcome by tampering with the commutativity
constraint of the tensor structure on MK :

¥viMeN SNoM ¥=0%T unere
yPrd. P o NI3 % o MP.
The corrected constraint is defined by:

Y:M o N > N o M, ¥= oyP 4 where
Lyp'q - (_1)Pq \;Pl’q .

MK with the commutativity constraint ¥ replaced by Y , is

denoted by MK rand called the category of motives over K

(constructed with absolute Hodge cycles). MK is a tannakian

category, in the sense to be explained below.

2.2,1. ©One shows that MK is a semisimple tannakian category
(i.e., every exact seguence in MK splits), see [DMOS], II 6.5,
and that End M, for every object M of MK is a semisimple

@-algebra.

2.2.2 For practical purposes, it is often sufficient to identify

a motive M 1in MK with the string of its realizations in the

different cohomology theories:
Ho(M)'HDR(M)’Hm(M) {g:K+C;¢ a rational prime).

These realizations are formally defined by extending the cohomo-
logy functors H__:UK-vA__ to MK,where'A;_ is the corregponding

target category: AB= rational Hodge structures; ADR= filtered

finite-dimensional K-vector spaces; A£= finite dimensional
Qﬂ-vector‘spaces with Gal(K/K)-action. For each of the cchomology
theories, the extension of H is possible because the cate-

..

gories A are Karoubian, have a tensor structure with Kiinneth

formula, and the Tate twist is defined (see 2.1).
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This problem can be overcome by tampering with the commutativity

constraint of the tensor structure on MK :

y:MeN SNoM ¥=0%'?  uhere
yPra.MP o N¥3 T @ MP,
The corrected constraint is defined by:

¥:M @ N - N o M, ¥= oyP 4 where
yPrd o (_1)Pe yPT

MK with the commutativity constraint V¥ replaced by V¥ , is

denoted by MK «and called the category of motives over K

(constructed with absolute Hodge cycles). HK is a tannakilan

category, in the sense to be explained below.

2.2.1. One shows that “K is a semisimple tannakian category
‘(i.e., every exact sequence in MK splits), see [DMOS], II 6.5,
_and that End M, for every object M of MK is a semisimple

: ﬁb—algebra.

2.2.2 For practical purposes, it is often sufficient to identify
a motive M in MK with the string of 1its realizations in the
different cohomology theories:

HU(M)'HDR(M)'HQ(M) (0:K+C;% a rational prime).

These realizations are formally defined by extending the cohomo-
logy functors H..:VK4-A_. to MK,where'A;, is the corresponding
DR™ filtered
finite-dimensional K-vector spaces; A£= finite dimensional
Qz—vector spaces with Gal(K/K)-action. For each of the cohomology
. theories, the extension of H is possible because the cate-

gories A are Karoubian, have a tensor structure with Kiinneth

formula, and the Tate twist is defined (see 2.1).

target category: AB= rational Hodge structures; A
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(M,m) , with MEH; and mEZ.

For morphisms we have

Hom ((M,m) , (N,n)) = Homi, M @ (02 (®'))?% ™, ne m?(2")%k "),
K

for any k-2 m,n.

This definition is independent of k , and thus allows to
define the composition of morphisms by choosing k sufficiently
large.

We write (M,m) as M(m) or M e @Q(m). M; is a full sub-

category of “K via M » M(0). The tensor structure on HK

is given by
M{m) » N(n}) = (M ® N)(m+n) .

The grading on M; extends to MK by

M(m) T = MF2m

Step 4. ﬁK is almost the category of motives we want. Its

only technical (but important) shortcoming is the sign con-’

vention relating the grading of the objects to the tensor structure.
The point is that a good category of motives should be equivalent
to the category of representations of a group scheme - i.e., should
be a tannakian category (see 2.3 below!). In such a category, the

rank of a representation (i.e., the trace of its identity-morphism

- see [DMOS],II § 1.7) 4is simply the dimension of the underlying
space, i.e., a positive integer. But in QK , the rank of h(X)
turns out to be the Euler-Poincaré characteristic which may of
course be negative. - To put it another way, the problem is that the
cup'product which yields the identification of h(XxY) with

h(X} ® h(Y) 1is not commutative.
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Then, Hom (M,N}, for M,NE€ MK, consists precisely of the
systems of maps

(fa) = (£ ..f, lail 2)
such that
fDR:HDR(M) + HDR(N)

is a K-linear map preserving the Hodge filtrations, and for
every prime number & ,

is a @-linear map with fg = fz , for all o€ Gal(XK/K), and
such that, for any embedding o¢:K + T, there exists a {@-linear
map '

fo:Ho(M) > HO(N)

such that foe (meAf) corresponds to fA under the comparison

isomorphism (2.1.1)
Ho (M) @ (Cx Q¢ = H, (M) .

(Here we have used the fact that the functor X OE, or in general
I

xKK':VKe-VK, extends to a functor MK + MK,). Note that f

has to respect the Hodge decomposition.

(of

f is an isomorphism, if at least one of fo'f f£ is.

DR’

2.2.3 Remark: For any field extension K's K, the functor

extension of scalars, x_K' , carries over from varieties to

K
motives, xKK':MK - MK" If K'oK 1is finite, so does the

functor restriction of scalars RK'/K:VK'+ Vg v defined by
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¥ — ¥ “spec. K’
Spec K! Spec K é‘/

(or classically, according to {We 41,1.3;) Note, however,
that RK'/K:MK' + MK is not e-compatible.

[ 8]
[PV

TANNAKIAN PHILOSOPHY (Reference: [DMOS],II §§ 1-5; [Sal)

.3.1 Let k be a field, and G an affine group scheme over k,

i.e., a representable group valued functor on k-algebras, or again,
the inverse limit of affine k-algebraic groups (=affine group
schemes of finite type over k). - Cf. (Wa]. The category Rep, (G)
of finite dimensional representations of G over k(=algebraic
morphisms G + GL(V), with a finite dimensional k-vector space

V) has the following properties: '

. Repk(G) is a k=linear abelian category;

. Repk(G) is a e-category - cf. [DMOS], II § 1 - with
commutativity and associativity constraint, unit object
whose algebra of endomorphisms is k , s-compatible Hom -
objects, and duals such that each object is isomorphic to
its double dual;

* there 1s a k-linear, ®-compatible functor

m:Repk(G) > Veck ;
w 1s faithful, additive and exact.

Namely, take for w the functor forgetting the G-action on V.

A (neutralized) tannakian category (over k) is a pair (C,w)

consisting of a e-category C satisfying the first two properties
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v — ¥ ‘spec. K’
Spec K' Spec K é””’

(or classically, according to (We 4],1.3;) Note, however,
that RK'/K:MK' * M, is not e-compatible.

2.3 TANNAKIAN PHILOSOPHY (Reference: [DMOS],II §§ 1-5; [sa])

2.3.1 Let k be a field, and G an affine group scheme over k,
i.e., a representable group valued functor on k-algebras, or again,
the invérse limit of affine k-algebraic groups (=affine group
schemes of finite type over k). - Cf. [Wa]. The category Repk(G)
of finite dimensional representations of G over k(=algebraic
morphisms G -+ GL(V), with a finite dimensional k-vector space

V) has the following properties:

- Repk(G) is a k~linear abellan category;

: Rep, (G) 1is a eo-category - cf. [DMOS], II § 1 - with
commutativity and associativity constraint, unit object
whose algebra of endomorphisms is k , s-compatible Hom -
objects, and duals such that each object is isomorphic to
its double dual;

' there is a k-linear, ®-compatible functor

w:Repk(G) - Ueck,;
w 1is faithful, additive and exact.

Namely, take for w the functor forgetting the G-action on V.

A (neutralized) tannakian category (over k) is a pair (C,w)

consisting of a e-category C satisfying the first two properties
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Then, Hom (M,N), for M,NEZMK, consists precisely of the
systems of maps

(ﬁa) = (fDR'fR |all £)

such that

£ (M) (N)

pr*Hpr Hpr

is a K-linear map preserving the Hodge filtrations, and for
every prime number £ ,

fflzﬂl(M)->H1(N)

is a @-linear map with fi = fz , for all o€ Gal(K/K), and
such that, for any embedding o¢:K + T, there exists a Q-linear

map
fc:HU(M) -+ HO(N)*

such that fc@ (Expaf) corresponds to £, under the comparison
i1somorphism (2.1.1)

H (M) ® (Cx @yf) = H, (oM) .

(Here we have used the fact that the functor XK UE, or in general
’

' -
xyK':Vp» Vo, extends to a functor My = Mi,). Note that £,

has to respect the Hodge decomposition.
f 1is an isomorphism, if at least one of fc'fDR'fz is.

2.2.3 Remark: For any field extension K'> K, the functor

extension of scalars, XKK' , carries over from varieties to
motives, x K':MK > M If K'sK 1is finite, so does the

K K'*
functor restriction of scalars RK'/K:UK'* Vg s defined by
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listed for Repk(G) above, and a e-functor w:C -+ Vec verifying

the third set of conditions.

k

"Tannakian philosophy" exploits the fundamental theorem to the
effect that there is a 1-1 correspondence between affine k-group
schemes G and neutralized tannakian categories over k:

G + (RQPk(G) W )

forget

‘Autww * (C,w),

where Aut®s is the group valued functor on k-algebras R such
that (Autgw)(R) consists of all.R-linear,‘o-compatible auto-
morphisms of the functor XH-m(x)okR on C . = Thus, it is
shown that Aut®w can be represented by an affine group scheme
G over k, and ﬁhat w defines aniequivalence of e-categories
C 4—Rapk(G).

2.3.2 Here is a portion of the dictionary between affine group

schemes and tannakian categories which results from the funda-
"mental correspondence between them. - Cf. [Sal,p. 156 f; [DMOS],
pp. 138-144; and [A2], 3.4 - 3.6.

Suppose (C,w} and (C',w') are neutralized tannakian categories

over k with corresponding affine k—-group schemes G and G'.

Any additive e-compatible functor F:C'+> C . such that

w' = w o F induces a k-morphism F#:G4-G'.

(a) Suppose k ' is of characteristic O . Then C is semisimple
(i.e., every exact sequence in (. splits) if and only if G,
i.e., its connected component G° , is (pro-)reductive.

(b) Suppose the equivalent conditions of (a) are verified. Then
F# is faithfully flat if and only if F 1is fully faithful.

(c) F# is a closed immersion if and only if every object of C
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is isomorphic to a subquotient of F(X), for some object
X of C'.

(d) The objects {xi |1€ I} of € generate the tannakian
category C (i.e., every object of C 1is isomorphic to
an object obtained from the {xi} by a finite number of
operations of the following kind: tensor product, dual,
direct sum, subquotient) if and only if, for every k-algebra
R, the obvious map

G(R) ~ [ ] aut (w(X, )@ R)
iexr R 1k

is injective.

L]

.3.3 As an example of a tannakian category specified by genera-

tors, consider this definition of the Mumford-Tate group of an
abelian variety (cf. [DMOS], pp. 39-47 and p. 63 f; see also 6.0
below): .

Let K = K be an algebraically closed field, and o0:K + C. Let
A be an abelian variety defined over K , and denote by <A>

the smallest full tannakian subcategory of MK containing hT(A)
and @(1). As e-functor on <A> we take the restriction to <a>

of HG:MK + Vec Then (<A>,HU) corresponds to an affine group

0
scheme MT(A) over {Q, called the Mumford-Tate group of A.

From 2.3.2(d) we see that

1
MT (A) & GL(HO(A))x Em.

But we know more: Deligne's fundamental theorem 2.1.3 implies that

HU: <A> »> Hodm

is a fully faithful functor to the category of rational Hodge
structures - see 2.4.3 bhelow. Thus, writing
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is isomorphic to a subquotient of F(X), for some object
X of C'.

(d) The objects {Xi |1€ I} of € generate the tannakian
category C (i.e., every object of (C 1is isomorphic to
an object obtained from the {xi} by a finite number of
operations of the following kind: tensor product, dual,
direct sum, subguotient) if end only if, for every k-algebra
R, the obvious map

G(R) + T | Aut_(w(X,)®, R)
i€l R ik

is injective.

2.3.3 As an example of a tannakian category specified by genera-

tors, consider this definition of the Mumford-Tate group of an
abelian variety (cf. [DMOS], pp. 39-47 and p. 63 f; see also 6.0
below):

Let K = K be an algebraically closed field, and o:K + C. Let
9 be an abelian variety defined over K , and denote by <A>
the smallest full tannakian subcategory of MK containing h1(A)
and @{(1). As o-functor on <A> we take the restriction to <A>
of HU:MK > Vecm. Then (<A>,HU) corresponds to an affine group
scheme MT(A) over @, called the Mumford-Tate group of A.

From 2.3.2(d) we see that

1
MT (A) & GL(HU(A))X Gm.

¢

But we know more: Deligne's fundamental theorem 2.1.3 implies that

Ho: <A> > HodlD

is a fully faithful functor to the category of rational Hodge
structures - see 2.4.3 below. Thus, writing
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listed for Repk(G) above, and a e-functor w:C -+ Veck verifying
the third set of conditions.

"Tannakian philosophy" exploits the fundamental theorem to the
effect that there is a 1-1 correspondence between affine k-group
schemes G and neutralized tannakian categories over k:

G +  (Rep, (G) yuw )

forget

_Autww + {C,w},

where Aut®» is the group valued functor on k-algebras R such
that (Autom)(R) consists of all.R—linear,‘o-compatible auto-
morphisms of the functor XH-w(X)akR on ¢ . = Thus, it is
shown that Aut®w can be represented by an affine group scheme
G over k, and that w defines an equivalence of e-categories
C »-Repk(G).

2.3.2 Here is a portion of the dictionary between affine group
schemes and tannakian categories which results from the funda-
mental correspondence between them. - Cf£. [Sal,p. 156 £; [DMOS],
pp. 138-144; and (A2], 3.4 - 3.6.

Suppose (C,w) and (C',w') are neutralized tannakian categories

over k with corresponding affine k-group schemes G and G'.

Any additive e-compatible functor F:C'-+ C such that

w' = w o F induces a k-morphism F#:G*-G'.

(a) Suppose k ' is of characteristic 0 . Then C is semisimple
(L.e., every exact sequence in (. splits) if and only if G,
i.e., its connected component G° , is (pro-)reductive.

{b) Suppose the equivalent conditions of {(a) aré verified. Then
r¥ is faithfully flat if and only if F is fully faithful.

#

(c) F is a closed immersion if and only if every object of C
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vV = H;(A) (as a QQ-Hodge structure),

®a Yob

a,b,m e V' o Q(m) ,

T =V

for a,b,m Z; a,b 20, and calling Hodge cycles in Ta,b,m

a,b,m

those elements of' T that are pure of type (0,0) 1in

a,b,memm' we find that MT(A) is
the @Q-algebraic subgroup of GL(V) x Gm fixing all Hodge cycles

- in all spaces pd:0.m

the Hodge decomposition of T

The third description of MT(A) is this: define

p:G_ -+ GL(V) x @& over C by uf{z) = (u,(2),z )} and
m m 170 0,1 T 9,0 0 0,1 .1

u..l(z)(v) = (z v'") +v' (z€C*, v=v ' + v/ EHU(A)oG:.)

-Then MT(A) is the smallest Q~algebraic subgroup U of GL(V) x Gm

such that U(T)2>2p(C*).

MT(A) is reductive. This follows alternatively from the existence

of a polarization on A - which is fixed by MT(A) because it de-

2'0'1{ and the existence of which forces

fines a Hodge cycle in T
“MT (A) to have .a compact real form .- , or from the semisimplicity
of <A> , by 2.3.2(a). -In fact the whole category of motives MK
K splits), by [DMOSI],

II.. 6.5, and = <A>. is a full tannakian subcategory of MK.

is semisimple (i.e., every' exact sequence in M

Finally, MT(A) is a torus if and only if all simple factors (up
to isogeny) Ai of A adnmit complex multiplication by a CM-field

E with [Ei:Q] = 2 dim A,.

i i

2.3.4 We have already quoted that, for any field K admitting

an embedding o¢:K - T , the category MK of motives (for abso-
lute Hodge cycles) over 'K is a semisimple tannakian category,
equipped with the e-functor HO:MK + Vecm. The corresponding affine
group scheme over @ 1is denoted G(og). It is proreductive, accor-
ding to 2.3.2(a). G(o) as a whole looks prohibitively big and un-
controllable. In 6rder to make it appear less outlandish, it is

called the motivic Galois group. This terminology takes itsclue
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from the classical son of G{(g} to be discussed in the next
paragraph.

2.4 SPECIAL MOTIVES (Reference: [DMOS], II § 6)

We shall need later on a few subcategories of MK.

2.4.1 Artin motives: Mg

Let cvg- be the‘subcategory of CVK (2.2, step 1) formed by

the h(X}) with X a variety over K of dimension zero. For such
an X, the K-rational points X(K) are just a finite set with a
Gal (K/K)-action,_so consider the finite dimensional rational re-
X(K) ¢ Gal (K/K) , where we may view Gal(K/K) as
a constant group scheme over K. In CUg , one has

resentation {

Hom (h(X),h(Y)) coH(xxy)

_ _Gal(X/K)
(QX(K) xY (X) )

- Hom X(K) ¥(K),

Gal (R/x) (@ 7

Whence a fully faithful functor cvg -+ RepQ(Gal(K/K)) into the
tannakian category of finite-dimensional rational representations
of Gal(K/K). Let Mg
MK containing CV . Thus there is an equivalence of o-categories
between this category hﬁ of (Emil) Artin motives and

1’2@10{n (Gal (K/K)).

be the smallest tannakian subcategory of

For future reference, let us list the realizations of an Artin
motive ME€ Mg. We think of M as a representation of Gal(XK/K),
and denote by MS the underlying finite-dimensional @-vector
space.
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paragraph.

2.4 SPECIAL MOTIVES (Reference: [DMOS], II § 6)

We shall need later on a few subcategories of MK.

2.4.1 Artin motives: Mg

Let CUg- be the subcategory of CUK (2.2, step 1) formed by

the h(X) with X a variety over K of dimension zero. For such
an X, the K-rational points X(K) are just a finite set with a
Gal (K/K)-actlon, so consider the finite dimensional rational re-
mX(K) of Gal{K/K), where we may view Gal(K/K) as
a constant group scheme over K. In CUg ; one has

resentation

0
AH

Hom (h(X),h(Y)) = C_  (XxY)

_ _ _Gal(K/K)
- (QX(K)xY(K))

X (K) QY(K)).

= Homeo . ®%/x) %7

Whence a fully faithful functor CUE > RapQ(Gal(R/K)) into the
tannakian category of finite-dimensional rational representations
of Gal(K/K). Let MO be the smallest tannakilan subcategory of

MK containing CUO. Thus there is an equivalence of oe-categories
between this category Mﬁ of (Emil) Artin motives and

Repm(Gal (X/K)) .

For future reference, let us list the realizations of an Artin
motive ME€ M . We think of M as a representation of Gal(X/K),

and denote by MS the underlying finite-dimensional {@-vector
space.,
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vV = H;(A) {as a Q-Hodge structure),

a,b,m ®a Yob

T =V @V ® @{m) ,

for a,b,m Z; a,b 20, and calling Hodge cycles in Ta,b,m

a,b,m

those elements of T that are pure of type (0,0) in
:bila ¢, we find that MT(A) is
the (Q-algebraic subgroup of GL(V) x Gm fixing all Hodge cycles

" in all spaces pd-b.m

the Hodge decomposition of T

The third description of MT(A) 1is this: define
p:@& -+ GL(V) x & over € by up(z) = (u,(z},z ) and
m m 150, . 0,1 V90 L 0,1, 1
u1(z)(v) = (z v ' U (z€C*, v=v '+ vt €H0(A)@ﬂ:.)
Then MT(A) 1is the smallest {Q-algebraic subgroup U of GL(V) x €.

such that U(T)>p(C*).

MT(A) 1is reductive. This follows alternatively from the existence

of a polarization on A - which is fixed by MT(A) because it de-

2'0'1, and the existence of which forces

fines a Hodge cycle in T
MT (A) to have .a compact real form - , or from the semisimplicity
of <A> , by 2.3.2(a)..In fact the whole category of motives MK
x Splits), by [DMOS],

II. 6.5, and = <A> 1is a full tannakian subcategory of MK.

is semisimple‘(i.é., every' exact seqguence in M

Finally, MT(A) is a torus if and only if all simple factors (up
i of A admit complex multiplication by a CM-field

with [Ei:m] = 2 dim Ai.

to isogeny) A

Ey

2.3.4 We have already quoted that, for any field K admitting

an embedding o:K + T , the category MK of motives (for abso-

lute Hodge cycles) over K 1is a semisimple tannakian category,

equipped with the e-functor HG:MK - Uecm. The corresponding affine
group scheme over @ 1is denoted G(o). It is proreductive, accor-
ding to 2.3.2(a). G(o) as a whole looks prohibitively big and un-
contreollable. In order to make it appear less outlandish, it is

called the motivic Galois group. This termincoleogy takes itsclue
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For all og:K& [T , Ho(M) = Ms

H (Me C = g0+0

Hence for every prime number £,

Ho (M) = M o, @ (as Gal (K/K)-module).

@

"To determine the de Rham realizatlon write M as Spec A, with

A = HKi , where the K,> K are finitely many number fields. Now,

i

HDR(Spec Ki) Ki (as K-vector space)

Gal (K/K)

(Ki oKK)

Gal(K/K)

(RHOWK(Ki'K))

(Q(Spec Ki)(K)QmR)Gal(K/K).

Therefore,

. . ~ — Gal (K/K)

- . HDR(M) = (M OQK) .
. av

2.4.2 Abelian varieties: MK

Let M;v be the tannakian subcategory of MK generated by

motives of abelian varieties and Artin motives over K. Since
all of h(X) is given by the exterior algebra of h1(x), for
an abelian variety X , M;V

h'(x) and Mg X

is already generated by the

2.4.3 Theorem. If K 1is algebraically closed, and o:K = C
1ls any embedding, then the e-functor

g K +> Hodm

into the tannakian category of rational Hodge structures is fully
faithful,
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This is an easy reformulation of Delgine's theorem 2.1.3 above.
Let us give a proof that would work for any category C of
motives generated by varieties of which one could prove that, over
algebraically closed fields, every Hodge cycle on them was
absolutely Hodge: We have to show that any {-linear map

fG:HU(M) - HG(N), for M,N € (C, which over € respects the

Hodge decompositions comes from an "absolute Hodge cycle on

MxN". By the comparison isomorphisms £ = induces a f-linear

@
A
map faf:ﬂaf(M/K)-+ th(N/K), and a T-linear map
fDR'm:HDR(M/E)-+ HDR(N/E) rispecting the Hodge filtrations. There
is a field LoK, say L =L , of finite transcendence degree over
K, and an extension & of 0 from K to L such that £
o]
is already defined over L~. Then (fDR,L'ﬁaf)

on MxN over L relative to g .By assumption on C , as L

DR,T
is a Hodge cycle

is algebraically élosed it is an absolute Hodge cycle. Now
Proposition 2.1.2(a) shows that it can already be defined over
X = K.

Certain classes of algebraic ‘varieties are known to have motives
isomorphic in MK to objects of M;v. E.g., curves (via their
jacobians), but also K3-surfaces and Fermat varieties. We shall

recall these results as we need them.

Since our main concern is with algebrailc Hecke characters we are
eventually going fo concentrate on the subcategory of M;v
generated by abelian varieties with (potential) complex multi-
plication (and Artin motives). First, however, we have to ex-~
plain how motives can be related to algebraic Hecke characters.
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For all o:X& [T , HU(M) = MS

HU(M)G C = HO,O

Hence for every prime number £,

H (M) = Moy D, (as Gal (K/K) ~-module) .

@

"To determine the de Rham realization write M as Spec A, with
A = HKi , where the K,> K are finitely many number fields. Now,

i
HDR(Spec Ki) = Ki {as K=-vector space)
= (Ki GKR)Gal(K/K)
- (iHomK(Ki,f))Gal(ﬁ/K)

(m(Spec Ki)(K)emK}Gal(K/K)‘

Therefore,

_ = Gal (K/K)
HDR(M) = (M OQK) : .

2.4.2 Abelian varileties: M;v

Let M;V be the tannakian subcategory of MK generated by
motives of abelian varieties and Artin motives over K. Since
all of h(X) 1is given by the exterior algebra of h1(x), for
an abelian vériety X, M;V is already generated by the
n'(x) ana M3 . |

2.4.3 Theorem. If K 1is algebraically closed, and o0:K + C
1s any embedding, then the o-functor

H : M3V

o K + Hodm

into the tannakian categbry of rational Hodge structures is fully
faithful.
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3. Motives of rank 1

3.0 The notion of complex multiplication for abelian varieties
generalizes to motives in the following way. Let K be a field
embeddabie into € and E a number field of finite

degree over Q. The category MK(E) of motives over K with
coefficients in E has objects the pairs (M,0), with M a
motive over K (i.e., an object of MK), and ©6:E - End(M) an
embedding of (@Q-algebras. The morphisms in MK(E) are the

-obvious ones, respecting the E-structures. MK(E) is a o-category

via
(M,8) GE(M'.B') = (N,1)

where N 1s the direct factor of Me M' on which

<% End (M)
_ Q\ﬁégmuMQW)

e

agree to define 1. For an alternative description of MK(E),

E & End (M')

see [DP],2.1, "langage B".

The E-structure 9:E -+ End(M) defines E-module structures on
all the realizations of a motive (M,8) in MK(E). Thus, for
0:K =T , HO(M) is an E-rational Hodge structure, i.e., an
E-vector space with a decomposition of Ee C-modules

Hy (M) o T = ® uP4 ,
P.q

P9 and HYP. (cf. 6.0 ands.
Forgetting this Hodge decomposition of HO(M), the pair

such that complex conjugation interchanges

(MK(E)’HG) is a neutralized tannakian category over E ,
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and the corresponding E-group scheme is G(0) me, the motivic
Galois group considered over E. (This is most easily seen in
"langage B" quoted above.) In other words, there is an equiva-

lence of categories induced by Hc'
MK(E) -+ RQPE(G(O)/E)-

The rank of (M,8) in MK(E) is defined to be the trace of
identity in the corresponding representation:

rk(M,8) = rkEM = dimE HU(M).
(This 1s, of course, independent of o .)

The de Rham realization of a motive (M,8) - or, as we shall
simply write, M - in MK(E) 1s a filtered E o K-module, free
of rank rkpM. '

For all prime numbers 2,8,(M) 1is a free E o Qg-module of rank

rk M, with an E ® Q,-linear: action of Gal (K/K) . Since

EaQ, = TT EA"A‘ ranging over the places of E dividing 2 ,
Ale

there is a decomposition of Gal(K/K)-representations
H,(M) = @& H, (M),
2 A2 A

the HA(M) = HZ(M) ®
of M.

being the A-adic Galois representations

Eoszl

The realizations of M oEM' are simply the E-linear tensor pro-

ducts of the realizations of M,M'E€ MK(E).

The functors on MK: extension and restriction of the base field

K clearly induce functors on MK(E) - cf. 2.2.2., In addition,
if EcE' 1is alnecessarily finite) extension, there are functors



- 50 -

and the corresponding E-group scheme is G(og) XQE, the motivic

Galols group conslidered over E. (This is most easily seen in
"langage B" quoted above.) In other words, there is an equiva-
lence of categories induced by Hc'

MK(E) -+ RapE(G(U)/E).

The rank of (M,0) in MK(E) is defined to be the trace of
identity 1in the corresponding representation:

rk(M,8) = rkEM = dimE HO(M).
(This is, of course, independent of o .)
The de Rham realization of a motive (M,8) - or, as we shall
simply write, M - in MK(E) is a filtered E @ K-module, free
of rank rk;M. '
For all prime numbers &,H,(M) is a free E o mg-module of rank
rkEM, with an E e Q,-lifear: action of Gal (K/K) . Since
L 4

E = Q, = 1T EA,.A\,ranging over the places of E dividing & ,

there is a decomposition of Gal (K/K)-representations

H (M) = © H, (M),
L AL A
the HA(M) = Hl(M) QE@Q EA being the A-adic Galois representations
£
of M.°
The realizations of M eEM' are simply the E-linear tensor pro-

ducts of the realizations of M,M'E€ MK(E).

The functors on MK: extension and restriction of the base field
K clearly induce functors on MK(E) - cf. 2.2.2. In addition,

if EcE' is a(necessarily finite) extension, there are functors



- 49 -

3. Motives of rank 1

3.0 The notion of complex multiplication for abelian varieties
generalizes to motives in the following way. Let K be a field
embeddable into € and E a number field of finite

degree over (). The category MK(E) of motives over K with
coefficients in E has objects the pairs (M,0), with M a
motive over K (i.e., an object of MK), and 6:E -+ End{(M) an
embedding of {Q-algebras. The morphisms in MK(E} are the
-obvious ones, respecting the E-structures. Mk(E) is a e-category

via
(M,8) GE(M':S') = (N,1)

where N 1s the direct factor of Me M' on which

E<® End(M)
\—\ End (Mo M')

e

agree to define 1. For an alternative description of MK(E),
see (DP],2.1, "langage B".

E ét End (M')

The E-structure 0:E +End(M) defines E~module structures on
all the realizations of a motive (M,8) in MK(E). Thus, for
g:XK -~ T , HU(M) is an E-rational Hodge structure, l.e., an
E-vector space with a decomposition of Eo T-modules

- o uPd
HU(M) omm @ H ’
P:q
such that complex conjugation interchanges #’?  and qu.(cf. 6.0 ands.
Forgetting this Hodge decomposition of Ho(M)' the pair
(MK(E),HU) is a neutralized tannakian category over E ,
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GEE' : MK(E) - MK(E')

. '
|E 2 M (E')  + M (E)
of extension and restriction of the field of coefficients.
IE is simply forgetting the E'-action, except for that of E.
- oEE' sends M into Me_E' , where E'¢€ MK is the first

E
component of the unit object (E',0') of MK(E').

Assume now that Ki(as well as E) 1is a number field of finite

degree over Q.

3.1 Proposition (cf. [DP], 8.1 (iii)) Let ME MK1E} with
rkpM = 1. If the system of the H, (M), for all finite places
A of E, is a strictly compatible system of E-rational A-adic

Galois-representations x, over .K , then there is an algebraic

Hecke character x of K .with values in E such that for all A
and almost all primes p of K, x(p) = XA(Frob ).

This is just an application of Proposition 1.4 above.

3.2 Remark: Absolute Hodge cycles do not lend themselves to

reduction mod p - or at least, we do not know how to prove

that they do. This is why it is not even known, for a general
motive M in MK . that the Hg(M), for all rational primes

£ , form a compatible system of rational f-adic representations.
This is true for M ECVK by the "Weil conjectures", but it
cannot be shown to carry over to all motives constructed in

Step 2 of the construction of MK' - On the positive side however,
it will be shown in § 6 that every rank 1 motive in M;V(E) has
strictly compatible A-adic representations, and therefore defines
a Hecke character. So, Proposition 3.1. will be shown to be

far from vacuous.

We have now motivated the basic notion in the "geometric" theory
of algebraic Hecke characters:
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3.3. Definition. Let x be an algebraic Hecke character

of XK with values in E. A motive MEIMK(E) is said to be

a motive for x , if rkzM = 1 and for all finite places X
of E , and all prime ideals p of K with p+fx'NA, the:
A-adic representation H, (M) of Gal(K/K)}) 4is unramified at p
and a geometric Frobenius element Frob p€ Gal(K/K) acts on
HA(M) via multiplication by x({p).

In other words, M is a motive for ¥ , if HA(M) = Xy ¢ in the
notation of 0 § 5.

The typical example of a motive for an algebraic Hecke character
is an abelian variety with complex multiplication - see § 1.

4. A standard motive for a Hecke character

Let K be embeddable into T. Let CMK be the Tannakian subcate-
gory of MK (equivalently: of Miv ) generated by the Artin

motives over K and by the motives h1jA), where A is an

abelian variety over K which, over K , has complex multiplication
(in the sense that Endﬁ A contains a number field E of degree
[E:Q)] = 2 dim A.) Given a number field E (of finite degree over
@), we can consider the category CMK(E) of motives M in

CMK that are equipped with an E-action, E+ End(M).

4.1 Theorem. Suppose K is a number field. For any algebraic

Hecke character x of K with values in E ,there exists a

motive M(x) € CMK(E) which is a motive for ¥ , in the sense
of 3.3.

Elementafy and direct proof of 4.1

4.1.0 If yx 1is of the form u.Nw/z , for a character of finite
order p on Gal{(K/K) with values in E* , then we can write
down a motive for x in CMK(E) like this:
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® E' : M (E) -+ MK(E')
|E MK(E') > MK(E)
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- oEE' sends M 1into M@EE' , where E'E:MK is the first

component of the unit object (E',8') of MK(E').

Agssume now that K'(as well as E) is a number field of finite

degree over (.

3.1 Proposition {(cf. [DP], 8.1 (iii)) Let M€ MKIE) with
;kEM = 1. If the system of the HA(M), for all finite places

A of E, is a strictly compatible system of E-rational A-adic
Galois-representations x, over K , then there is an algebraic

Hecke character y of K .with values in E such that for all A
and almost all primes p o0f K, x(p) = xx(Frob F).

This is just an application of Proposition 1.4 above.

3.2 Remark: BAbsolute Hodge cycles do not lend themselves to

reduction mod p - or at least, we do not know how to prove
that they do. This is why it is not even known, for a general

motive_ M in MK » that the HE(M), for all rational primes
2 , form a compatible system of rational 2%-adic representations.
This 1is true for M,ECUK by the "Weil conjectures", but it
cannot be shown to carry over to all motives constructed in

Step 2 of the construction of MK. - On the positive side however,
it will be shown in § 6 that every rank 1 motive in M;V(E) has
strictly compatiblé A-adic representations, and therefore defines
a Hecke character. So, Proposition 3.1. will be shown to be

far from vacuous.

We have now motivated the basic notion in the "geometric" theory
of algebraic Hecke characters:
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M(x) = [nleg E(57)

where (n] € ME(E) is the rank 1 Artin motive for g with
coefficients in E (i.e., s€ Gal(K/K) acts on E via
" multiplication by p{(s) € E*), and E(%?) = m(%g) QQE, E

being here the unit object in MK(E).

Thus calling K' the field of all numbers of CM-type in K,
let us henceforth assume, without loss of generality, that K'
and E are CM-fields - cf. @ § 3.

4.1.1 We now treat the case that the Infinity-type of ¥

is of the form T = ¢'°NK/K, with a CM-type ¢' of K',

i.e., ¥ 1is of weight -1 and the invariants n(o,t), for

g€ Hom (K,C), T€ Hom (E,T), introduced in 0 § 4 are all either
-1 or 0. Exchanging .the rdoles of K and E these same

n(c,tT) also define a CM-type ¢ of the field

Eo = @(k'Y) = (k%) < E ,

called the reflex type of ¢'., By a theorem of Casselman,

«[ShiL] , Theorem 6, there is an abelian variety A defined over
K with complex multiplication by the ring of integers of E,
of CM-type (E,(buNE/Eo
In fact, if one tries to be very neat, A may be constructed as
LIKB)’ for a suitable (abelian)
extension L of K such that yeoN

), such that h,(A) 1is a motive for x. -

being a direct summand in h1(R

LIK takes values in E}¥ ,
and B , provided by Casselman, an abelian variety over L
of CM-type (E,,®) with character XoNp g = cf. [GS], théoreéme 4.1.
4.1.2 All infinity-types of algebraic Hecke characters of K
are Z-linear combinations of the CM=-types discussed in 4.1.1.
- This is an easy exercise, observing the homogeneity condition

n(o,t) + n(co,t} = w, cf£. 0 §§ 3,4.

4.1.3 We can now start on the general case of 4.1 (always under
the assumption that K' is a CM-field). Write the infinity-type
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T of k‘ as

ny
T = TJ'Ti .

with n; €2 and Ti CM-types like in 4.1.1.There is a finite

extension field E'SE such that, for all i , there exists an
algebraic Hecke character Xy of K with values in E' of
infinity-type T, - see 0 § 3. Let A

1 be an abelian variety
attached to

i

Xy as in 4.17.1. Put

é .
ho(a)"E* ") @, [p]

M' = (o B

]
iE
where p = x(Hxlni)is of finite order, and [p] is the Artin
motive for u in HE(E'). Then M' 1s a motive for ¥, if

we consider yx to take values in E' , rather than E. Thus

it remains to "descend the coefficients".

4.1.4 There is a finite ]abelian) extension L of K such
that all characters X4 used in 4.1.3 take their wvalues in

E* when composed with N . Therefore, taking, for simplicity,

LIK

LIK takes its values in the corresponding

L such that every xioN
reflex-field E

° 1 {see 4.1.1), we see that M'XKL is of the
r
form MLGEE' , with M;, a direct factor of the motive: '
®e, . "1
o i .
{:E [(h1(Bi) ' )oEo iE]} oE.[uoNLlK]E p
f’

the Bi being as. B 1n the last sentence of 4.1.1. So, M

is a motive for xeoN

L
LIK in CML(E). In other words, there is

a ‘projector (an absolute Hodge cycle}) n€ EndML(M'xKL) carving

out the E-structure M We have to show that wm is already

defined over K. SinceLit i1s an absolute Hodge cycle it is enough
to show that its Af-component is invariant under Gal(K/K).

But M' 1is a motive for the character Y which takes values

in E. So w cannot possibly be affected by the action of

Gal(K/K) on Hyf(M').

g.e.d.
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M(x) = [nleg E(%F) ’

where {u]l € Mg(E) is the rank 1 Artin motive for pu with
coefficients in E {(i.e., s€ Gal(K/K) acts on E via
multiplication by u(s)€ E*), and E(lz"—") = m(-'i‘-’) @gEs E
being here the unit object in MK(E).

Thus calling K' the field of all numbers of CM-type in K,
let us henceforth assume, without loss of generality, that K
and E are CM-fields - cf. @ § 3.

4.1.1 We now treat the case that the infinity-type of ¥

is of the form T = ¢'°NK/K, with a CM-type ¢' of K',

i.e., ¥ 4is of weight -1 and the invariants n{o,t), for

o€ Hom (K,TC}, T€ Hom (E,C), introduced in 0 § 4 are all either
-1 or 0. Exchanging the rdles of K and E these same

n(c,7) also define a CM-type ¢ of the field

E, = (k') = qk%) c E ,

called the reflex type of ¢'. By a theorem of Casselman,
[ShiL] ., Theorem 6, there is an abelian variety A defined over
K with complex multiplication by the ring of integers of E,

of CM-type (E,%NE/Eo
In fact, if one tries to be very neat, A may be constructed as
LIKB)' for a suitable (abelian)
extension L of K such that YeN

), such that h,(A) 1is a motive for x. -

being a direct summand in h1[R
L1K takes values in E¥ ,
and B , provided by Casselman, an abelian variety over L
of CM-type (E,,%) with character X°NLIK - cf. [GS], théoréme 4.1.
4.1.2 All infinity-types of algebraic Hecke characters of K
are Z-linear combinations of the CM=-types discussed in 4.1.1.
- This is an easy exercise, observing the homogeneity condition

n(og,r) + ni{co,t) = w, cf. 0 §§ 3,4.

4.1.3 We can now start on the general case of 4.1 {(always under
the assumption that K' 1is a CM-field). Write the infinity-type
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4.2 Remark. In view of 1.7 above, the motive M(yx) for

x which was just constructed has its Hodge structure deter-
mined by the infinity-type of y. Explicitly, for all
g:K+C,7:E + T, one finds

n(g,t),w - n(g,T)

Hy(M(X)) oy CcH .

{See 0 § 4 for the notation.)

The proof of theorem 4.1 which we have presented Is "elementary
and direct” in that it starts immediately from the geometry of
the varieties that generate CM, , and does not use Deligne's
theorem 2.1.3 about Hodge cycles on abelian varieties. It does
use Casselman's theorem, i.e., the Shimura—Taﬁiyama reclprocity

law for abelian varieties with complex multiplication.

Using 2.1.3 1t is possible to gain much more insight into the
structure of CMK , reproving theorem 4.1 (via the interpretation
of algebraic characters given in 0 § 7) and generalizing the
Shimura-Taniyama reciprocity law. Specifically, what one has to
do is to identify CMQ' with Repm(E) , for the Taniyama group .
We shall sketch this in § 6 below, thereby obtaining additional.
information about all rank 1 motives constructed from abelian

varieties.

5. Unicity of M(x)

et K and E be number fields of finite degree over @ ,

and consider the category of motives 4aV(E) These are the

mo tives in M;V - see 2.4.2 - with an E-action. Since
CMK is a subcategory of Miv , there always exists - by
theorem 4.1 - a motive M(x) in M;V(E) for a given algebraic

Hecke character x of K with values in E.
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5.1 Theorem. Up toisomorphism, there 1is only one motive M(y)

ay
in MK (E} for a given algebraic Hecke character X of K
with values in E.

Proof. Let M in M;V(E) be any motive for x. For any
g:K“ T, HO(M) is a Hodge structure of rank 1 over E. In

particular, it ig indecomposable and therefore pure of some
weight w (cf. 6.0 below). The relations

(0,7) ,w=-n(o,1)
HUI(M) op L cu”

define invariants n(o,t) for all T:E +{. They actually

satisfy nf{ao,at) = n(o,t), for all a€ Aut € {because E
operates on M through absolute Hodge cycles.)So by 0 §§ 3 and 4,
there is some algebraic Hecke character ¥ of some number field
L>K with values in E having the n(o,t)'s as its invariants.
Let M(Y) € CML(E) be the motive for V¥ constructed in 4.1. By
remark 4.2 the Hodge structure H.,(M{(¥)), for every embedding
T:L+C extending o:K& € , is E-compatibly isomorphic to H_(M).
By theorem 2.4.3, M and M(Y¥) are isomorphic in M2V(E). In
view of 2.1.2(b), they are isomorphic over some finité extension
L' of L. Recalling that M was a motive for Y ,and M(Y¥) for
Y , we £ind that X°NL'/K = ToNL./L . Hence the n{o,T) which
by construction describe the infinity-type of ¥ are also the
invariants attached to the character . Thus we have shown that,
if M is an arbitrary motive for ¥ in M;V(E) , its Hodge
realizations HO(M) are those determined by {(the infinity-type
of) .x , as in 4.2. This establishes. an isomorphism (an absolute
Hodge cycle) between M and our standard motive M(x) over K.
But HAf(M) and ﬁhf(M(X))' are isomorphic Gal(K/K)-representations
by definition.. So the isomorphism is defined over K.

g.e.d.
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4,2 Remark. In view of 1.7 above, the motive M(yx) for

¥ which was just constructed has its Hodge structure deter-
mined by the infinity-type of x. Explicitly, for all
g:K+C,T:E + €, one finds

n(g,t),w - n{o,T1)

HO(M()()) ® T(l:c:[-l .

E,

{See 0 § 4 for the notation.)

The proof of theorem 4.1 which we have presented is "elementary
and direct" in that it starts immediately from the geometry of
the varieties that generate CMK » and dces not use Deligne's
theorem 2.1.3 about Hodge cycles on abelian varieties. It does
use Casselman's theorem, i.e., the Shimura-Taniyama reciprocity

law for abelian varieties with complex multiplication.

Using 2.1.3 it is possible to gain much more insight into the
structure of CMK ; reproving theorem 4.1 (via the interpretation
of algebraic characters given in 0 § 7) and generalizing the
Shimura-Taniyama reciprocity law. Specifically, what one has to
do is to identify CMQ with RepQ(E) , for the Tanilyama group €,
We shall sketch this in § 6 below, thereby obtaining additional .
information about all rank 1 motives constructed from abelian
varieties.

5. Unicity of M(y)

Let K and E be number fields of finite degree over ©Q ,

and consider the category of motives M;V(E}. These are the
av
MK

CMK is a subcategory of M;v » there always exists - by

theorem 4.1 - a motive M(yx) in M;V(E) for a given algebraic

mo tives in - see 2.4.2 - with an E-action. Since

Hecke character yx of K with values in BE.
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5.2 So far we have verified all but part (iii)} of
conjecture 8.1 in [DP] for the category Miv . (In
fact, our description in 4.2 of the Hodge decomposition
of M(x) 1is equivalent to the characterization of the
Hodge filtration given by Deligne in [DP], 8.1 (iv).)

As to [DP], 8.1 (iii), it will be shown in § 6 that every
motive M in CMK(E) has strictly compatible E-rational
A-adic representations HA(M). By proposition 3.1 , this
will settle [DP], 8.1 (iii) for the category CMK' But
in fact, it will automatically take care also of the rank 1
motives in M;v t

2.3 Remark  Every motive of ramk 1 in M;V(E) is isomorphic
to a motive of CM (E).

Proof. Let. M be in M;V(E); let 0:K &> €, and assume

that dimEHG(M) = 1. Then HO(M) is an E-rational Hodge
structure of the kind described in 4.2 and the proof of 5.1.

It occurs as Hé(N), for some N in CML(E), for some number
field L with KcLeK and 0 extending ¢ to L. By 2.4.3 ,
Mx K is isomorphic to a motive in CMz(E). This being true
over some finite extension L' of K (and L), we see that

M is isomorphic to a motive in CMK(E). (E.g., M occurs as

a direct factor in R N.)

L'/K

6. Representations of the Taniyama group

The affine group scheme over ¢ corresponding, by

tannakian philosophy, to the neutralized category of motives
(CMQ'HB) - see § 4 above for the notation - is (isomorphic to)
the Taniyama group introduced by Langlands in [Lgl, 5. This
fact was first proved by Deligne: see [DMOS], IV. Using a
formalism of Tate's completed by an argument of Deligne

- see [LCM], chap. 7 - , the proof can be given much more
explicitly. This second proof is certainly part of the folklore
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on this subject - I myself am indebted to G. Anderson
for explaining it to me - and J.S. Milne is preparing

a book which will contain it in detail. In this section
we shall give an extremely sketchy account of how this
proof proceeds, and then apply the theorem to settle

the only question left open in 5.2. The results of this
section will not be substantiallyused in the sequel. They

are however, essential for G. Anderson's formalism
{section 7), and they complete the pilcture we are drawing
of motives for Hecke characters. - The first two sub-
sections: 6.0 and 6.1, are more detailed than the rest
because they give a more thorough basis to things that
have been used before: rational Hodge structures and the
Serre group. The definition of CM Hodge structures in 6.1
was suggested by R. Pink.

6,0 Rational Hodge structures

6,0.0 A rational Hodge structure of weight w 1s a
finite dimensional (Q-vector space V equipped with a

decomposition

Vo= ®© yPd
p+q=w
pP,gc2

such that (1 o c) VP9 = qu, for c¢ = complex conjugation.

A rational Hodge structure is a finite direct sum of rational
Hodge structures of fixed weights. A homomorphism of rational
Hodge structures V1,V2 is a (@-linear map f:V1+ V2 such
that, for all p,q € Z, one has '

Pq Pq
(f @ 1¢) V1 c V2 .

£.0.1 Reformulated in a tannakian way, the extra structure

on the Q-vector space V amounts to a representation

h: 5+ GL(V} defined over IR, where § = R Gm - see [DeH II],
2.1. The translation is given by the rule

C/R
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h(z)l = multiplication by zPz4 ’
yPq

for zeg* = E(R).

The inclusion IR* <> (* gives rise to a canonical map

;:Gm-*s over° R . Given a rational Hodge structure V, we

set w=h ow :Gma-GL(V). If VvV 1is of weight n, then

w(A) acts as multiplication by A" on Vv ; this Jjustifies

the letter w, and implies that, among the "real Hodge structures"”
h:8+GL(V) /IR, the rational Hodge structures are precisely'those

for which w 1is defined over Q. Over €, denote by Wi > GL(V) /T
the complex cocharacter given by the rule

u(z)l = multiplication by z? ,
vPd

_for' z€CT* = Gm(G). Its (imagewise) complex conjugate

Biz & (vP9 » Z9 . P9

is algebraic (not over T but) over R, and (pp) takes values
in GL(V e R} on @*, Thus it defines an algebraic homomorphism
§ + GL(V) over R, which is none other than h. Either h or p
suffice to characterize the Hodge structure on a given Q@~vector
space V. This is convenient , for instance, in defining the
tensor product of rational'Hodge structures via the tensor
product of real g-representations. - Rational Hodge structures
form é 0-linear @-category.

6.0.2 Define the Mumford-Tate group of a rational Hodge
structure V by generalizing 2.3.3: MT(V) 4is the @-algebraic

subgroup of GL(V)x Gm that fixes all elements of pure type
(0,0) in all spaces of the form

®a ® 6@b

T =V o Q(m),

where a,b,m€Z; a,b20; T being viewed as tensor product
of the natural representations of GL(V}) on V and V, and



- 60 -

the representation: multiplication by Y €,  on

@(1). Equivalently ([DMOS],I. 3.4.}, MT(V) 1is the
smallest @-algebraic subgroup of GL(V) x Em such that
MT (V) (C) contains the image of

C* + GL(V & @) x C*
z > (pl(z),2) .

It is often convenient to identify MT(V) with its first
projection. Thus MT(V) becomes the smallest {~algebraic
subgroup of GL(V) the CT-rational points of which contain
the image of p. The first description then runs:

for all a,b,m , and all

MT(V) (@) = { vy € GL(V) | tev®® o ¥®Ppn (v®2 o voP)T/M

there is A€ @* such that y(t)=lmt

’

6.0.3 As MT(V)(C) receives the cocharacter u , one also has

h:8 =+ MT(V) over R ,
and w:Gm + MT(V) over Q .

p and w have more or less surfaced already in chapter 0,
7.3.4 , and we are now going to reconsider the Serre group 2
in the context of rational Hodge structures of CM type.

6,1 CM Hodge Structures (cf. also [DMOS], III. 1)

6.1,0 Definition: Let V be a rational Hodge structure,

MT (V) its Mumford-Tate group (6.0.2) and w:Gy + MT(V)/Q

the associated cocharacter (6.0. 1/3). V 1is called a

Cﬂ Hodge structure if MT(V} 1is a torus and (MT(V)/w(Gm))(BJ
is compact. :
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CM Hodge structures form a é-subcategory of all rational
Hodge structures. We are going to show that the Mumford-
Tate group of a CM Hodge structure is a quotient of the
Serre group Z, introduced in 0 , 7.3.3. Recall that

Z = lim ZK , where K runs over number fields and ZK

is the quotient of Ry o by a sufficiently small arithmetic
subgroup. Observe that the maps W und | defined in

0, 7.3.4 actually give rise to cocharacters of RK/me
(defined over R, and €, resp.), for all number fields
K (embedded into @ , as explained in 0, 7.3.2).

6.1.1 Lemma Let V be a rational Hodge structure such
that MT(V) 1s a torus.

(i) For any sufficiently large number field K < T,
there exists a unigque homomorphism

U:RK/me -+ MT (V)

of (@-algebraic groups rendering the following diagram

commutative.
Ry 7qCm * € XC mrv) x @
ﬁ\\\ ////”Il
G /T

(i) For K<L , the maps v are compatible via NL/
(iii) v 1is faithfully flat.

K .

Proof. (i) Translate into.a statement on character groups;
the requirement that v be defined over @ then forces
{(for K normal over @ splitting MT(V)):

-1
vE(E) = § we(£9 e o e xry

c_ ),
0€G (K/@) /@ m

for f€ X(MT(V)).
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(ii) follows from the uniqueness of v .
(iii) expresses thefact that pu "generates” the
@-algebraic group MT(V).

6.1.2 Remark Care has to be taken with the galois
action(s) on 2: cf. [Lg] , p. 219/20; (DMOS] , III (1.3),
{(1.8); [DMOS], IV, (B)... Since we just used a galois
invariance in the proof of (i), let us make explicit our
setup : we define a left action of G(Q/@) on

Hom (K vﬁ)

R Gm(ﬁ)= (@*) by the rule

K/@

(z 4. )4 » for seG(Q/Q

18 =
((2) senom (x,T) -, s~ 1og

This transports to a left action on characters

-1

- s _ S
f:R K/Qmm-+ Gm/m via ¢ £ ((zo)) = f((zo) ).

Identifying £ with g n o € Z{Hom (K,0) ], one finds

8
(g n,o)° = g ns_1°co .

This is the action we have used on characters of RK/me

(cf. 0, §§ 2 und 4). Passing to the quoctient ZK and

to the 1limit 2, this yields, for a character

£:G(@/Q) + B of Z (as in 0. 7.3.4): £5(t) = £(s"'t),

for s,t €Gal(@/@). (Note that f(St) = (£59)% )

There is, of course, another left action of Gal(®/Q) on
X(Z), namely by right translation:

(s « £)(t) = £(ts).

In the preceding setup, it is induced by the rule
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(ii) For K<L , the maps v are compatible via N
(iii) v is faithfully flat.
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Proof. (i) Translate into a statement on character groups;
the requirement that v be defined over @ then forces
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(z ) = (zqs)0 on RK/me(ﬁ) - where K has now to be
assumed normal over @ (and always embedded into @). - This

second action will become relevant as of 6.2.0.

6.1.3 Proposition [R. Pink] Let V be a rational Hodge
structure such that MT(V) is a torus. Choose K so that
v exists as in 6.1.1. Then the following are equivalent.

(1) V is a CM Hodge structure.
(11) ker v contains an arithmetic subgroup.

(iii) The subgroup X(MT(Vi) <> x(R
contained in X(ZK).

x/q¥m) 18

Proof. (i) = (ii). Assume (without loss of generality)
that K 1is totally imaginary, say .[K:@) = 2r, and
consider the diagram

Ry /gfp X R XR o MT(V) xR

S'r, =
W N
Cl C/R ~ \ /wx]R

r
(6_/R)

whose commutativity is easily checked using 1.6.1 (i).
According to Dirichlet,the units in RK/QG map to
(Gm/R)r with a finite kernel. As Nm/1z° wix) = x2,
any sufficiently small arithmetic subgroup U of
RK/me is contained in &(Gm/R)r ,'and since
(MT(V)/w(Gm))(EU is compact we can achieve that
v(U) (R) = w(Gm/IU . Now assume furthermore that
Ucker EK/W , the porm—1—subgroup of RK/QGm' Then

U(R) f]w(Gm/RJ is obviously finite. Thus, in view of

the commutative triangle above, we conclude that UcKer v,

provided again that U is sufficiently small.

(ii) and (iii) just express the two possible definitions

of ZK - as quotient of R Gm, or via its character group.

K/Q
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Finally, assuming (iii), we find (cf. 0, 7.3.2)

A(o) = =A(co) }

X(MTV) /WG )) < {AEIX(RK/me)I for all o:K<> @

So, ¢ acts as -1 on X(MT{V)/w(mm)), and
(MT (V) /w(G_)) (R} is a quotient of

r
ker (Nm/ E -~ Em)(FJ ’

m:
]
that is, a quotient of a product of S1 s, and therefore

compact.
g.e.d.

6.1.4 Corollary The o-category of all CM Hodge structures,

together with the functor which, to a CM Hodge structure,

associates its underlying {@-vector space is a neutralized

tannakian category over @ , with the Serre group 2

(see ®, 7.3.3) as corresponding affine group scheme.

It is clear how the mapping v of 6.1.1 defines a repre-
sentation of 2 if the conditions of 6.1.3 are satisfied.
So the proof of 6.1.4 is obvious, but let us illustrate
the corollary in our principal

6.1.5 Example. Let X be an algebraic Hecke character
of K with values in E, and let M(yx) € CMK(E) be
the standard motive for Y constructed in § 4. We know
- remark 4.2 - that the Hodge structures HU(M(x)),for
0:K &~ (@< are given by

n{o,t), w - nlo,T)
HG(M(X)) GE,T CcH ’

the n(og,Tt) describing the infinity type of x as in @, § 4.
Every H_(M(x)) is a CM Hodge structure: in fact, the elements
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Finally, assuming (iii), we find (cf. 0, 7.3.2)

Alo) = =Xx(co) }

X {MT (V) /W(Gm)) < {AeX(R for all o:KS> @

%/q%n) |
So, ¢ acts as -1 on X(MT(V)/w(Gm)), and
(MT(V)/w(Gml)(RJ is a quotient of

ker (N 5 > 6 ) (R)T ,

C/IR°
]
that is, a quotient of a product of S1 s, and therefore

compact.
qg.e.d.

6.1.4 Corollary The o-category of all CM Hodge structures,

together with the functor which, to a CM Hodge structure,

associates its underlying @-vector space is a neutralized

tannakian cateqgory over @ , with the Serre group 2

(see O, 7.3.3) as corresponding affine group scheme.

~.It is clear how the mapping v of 6.1.1 defines a repre-
sentation of Z if the conditions of 6.1.3 are satisfied.
So the proof of 6.1.4 is obvious, but let us illustrate
the corollary in our principal

6.1.5 Example. Let ¥ be an algebraic Hecke character
of K with values in E, and let M(yx) € CMK(E) be
the standard motive for Y constructed in § 4. We know

- remark 4.2 - that the Hodge structures H_(M(x)),for
0:K &> Q<C are given by
n{o,t), w - n(o,T)

HU(M(X)) L CcH ,

the n(o,t) describing the infinity type of x as in @, § 4.
Every HU(M(x)) is a CM Hodge structure: in fact, the elements
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{(z )s = (z_ ) on RK/me(ﬁ) - where K has now to be

g g s’ O
assumed normal over @ (and always embedded into ). - This
second action will become relevant as of 6.2.0.

6.1.3 Proposition [R. Pink] ‘ Let V be a rational Hodge
structure such that MT(V) is a torus. Chocose K so that
v exists as in 6.1.1. Then the following are equivalent.

(1) V 1is a CM Hodge structure.
(1i) ker v contains an arithmetic subgroup.

(1ii) The subgroup X(MT(V]) v, X(R
contained in X(ZK).

K/Qmm) is

Proof. (i) = (ii). Assume (without loss of generality)
that K 1is totally imaginary, say [K:@] = 2r, and
consider the diagram

= R/t F —ZEs MI(V) xR

S‘r
- w N _ .
C\! T/R ~ \ /wxm

r
(Gm[R) G /R
m

whose commutativity is easily checked using 1.6.1 (i}.
According to Dirichlet,the units in Rx/mm@
(th/I{)r with a finite kernel. As NG:/R o W(x) = x2,

any sufficiently small arithmetic subgroup U of

Re /q¥n IS contained in w(E /R)T , and since
(MT(V)/w(Gm))(IU is compact we can achieve that

v(U) (R) < w(ﬂim/ZR) . Now assume furthermore that

Ucker EK/W , the norm-1-subgroup of RK/me. Then

U(R) r\w(Gm/IU is obviously finite. Thus, in view of

the commutative triangle above, we conclude that UcKer v,
provided again that U 4is sufficiently small.

map to

(ii) and (iii) just express the two possible definitions

of 2Z, - as quotient of R

K , or via its character group.

K/QGm
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of E define endomorphisms of the motive M(x), and
therefore in particular elements of type (0,0) in
T1'1 = HU(M(x))v ® HG(M(x)), so that

MT(HU(M(X)))C=GLE(H6(M(X))/Q = RE/me;

on the other hand, we shall show that, for all o,

the corresponding map Vg factors through ZL , for

a suitable number field L. More precisely, remember that,
when working with the Serre group Z, we consider all number
fields as embedded into @ (cf. 0, 7.3.2). Pick a finite

Galois extension L of @, L<@, which contains K and E.
Then

VoiRp oSy * MT(H (M(X))) R oG

exists, and is given by the formula in the proof of 6.1.1
above. Now, p.*(_zrnT - T) = % n(a,T)nT , and thus one easily
finds that Vg r @8 2 homomorphism over {: RL/QGm -+ RE/me,
is given precisely by the array of numbers

{n(so,t)| s€G(L/@),T€Hom (E,@)} ; cf. 0, § 4. As the
n(o',t)'s come from the infinity-type of a Hecke character, we
know - 0, 7.3.2 - that Vg factorizes through ZL , and
RE/me/m - which
then corresponds to HU(M(x)) via 6.1.4. If o 1is just

the fixed embedding of K into - @ , this representation

v is nothing but the infinity type of ¥ , viewed as a

o
representation of 2 as in 0, 7.3.2.

therefore defines a representation GG:Z e

6.1.6 Corollary Let W be the algebraic closure of {
in € , and o some embedding @ <> €. The pair (CHg H ) -
see § 4 above - is a neutralized tannakian category over {

with 2 as corresponding group scheme.

Proof. We show that Ho establishes an equivalence of cate-

gories hetween the motives CME and all CM Hodge structures.
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By theorem 2.4.3 we are reduced to showing that

(a) 1if M 1is a motive in CM= , then HO(M) is a
CM Hodge structure;

(b) every CM Hodge structure arises in this way.

Since there are no non trivial Artin motives over a,

for (a) it suffices to show that H?(A) is a CM Hodge
structure if A/@ is an abelian variety with complex multi-
plication as in 1.1 - but this is a special case of 6.1.5.

As to (b), any representation of Z breaks up - over a
suitable number field E - into a direct sum of characters
A2+ Rg/q®n: ADY such A 1is the infinity type of some
Hecke character x with values in E, defined over a suitable
number field XKc{. We have seen in 6.1.5 how these infinity
types arise from the Hodge structures HO(M(x)) = HU(M(x)><K@).

6.1.7 Remark It follows (for example, from 6.1.4 and
the definition of CMﬁ ...) that every CM Hodge structure
is polarizable. - In fact, it is more customary - cf. [Lg] ,

p. 215 £ - to define a CM Hodge structure as a polarizable

rational Hodge structure whose Mumford-Tate group is abelian.

6.2 Taniyama extensions

We now start setting up the formalism for determining the
group scheme corresponding to (CMQ’HB)‘ Proofs are essentially

6.2.0 Definition. A Taniyama extension is an exact

sequence of affine group schemes over (@

1+2 ¥ 702 Gal(Q/m -+ 1,
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By theorem 2.4.3 we are reduced to showing that

(a) 1if M 1is a motive in CME , then HO(M) is a
CM Hodge structure;

(b) every CM Hodge structure arises in this way.

Since thefe are no non trivial Artin motives over T,

for (a) it suffices to show that H?(A) is a CM Hodge
structure if A/@ is an abelian variety with complex multi-
plication as in 1.1 - but this is a special case of 6.1.5.

As to (b), any representation of 2 breaks up - over a
suitable number field E - into a direct sum of characters

Az RE/me' Any such X is the infinity type of some
Hecke character x with values in E, defined over a suitable
number field Kc {. We have seen in 6.1.5 how these infinity
types arise from the Hodge structures HU(M(x)) = HO(M(x))<K@).

" 6.1.7 Remark It follows (for example, from 6.1.4 and
the definition of CME ...) that every CM Hodge structure
is polarizable. - In fact, it is more customary - cf. [Lg] ,

pP. 215 £ - to define a CM Hodge structure as a polarizable

rational Hodge structure whose Mumford-Tate group is abelian.

6,2 Taniyama extensions

We now start setting up the formalism for determining the
group scheme corresponding to (CM
omitted.

CD,HB). Proofs are essentially

6.2.0 Definition. A Taniyama extension is an exact

sequence of affine group schemes over (@

13 % TgGal@/CD) -1,
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of E define endomorphisms of the motive M(yx), and
therefore in particular elements of type (0,0) in
L HO(M(x))v ® H (M(X)), so that

MT(Hc(M(X)))‘:GLE(HO(M(X))/Q = RE/me;

on the other hand, we shall show that, for all o,

the corresponding map Vg factors through ZL , for

a suitable number field L. More precisely, remember that,
when working with the Serre group 2, we consider all number
fields as embedded into § (cf. 0, 7.3.2). Pick a finite
Galois extension L of @, L<c@, which contains K and E.

Then

VoiRp q€n * MT(H (M(X})) €Rg oG

exists, and is given by the formula in the proof of 6.1.1
above. Now, p*(%-nT . T) = ¥ n(c,‘r)nT , and thus one easily
finds that Vy, + @s a homomorphism over Q: RL/me + RE/Qmm'
is given precisely by the array of numbers ‘

{n(so,1)| s€G(L/@),T€Hom (E,T)} ; cf. 0, § 4. As the
n(c',t)'s come from the infinity-type of a Hecke character, we
know - 0, 7.3.2 - that Vg factorizes through ZL , and
therefore defines a representation GU:Z > RE/me/m - which
then corresponds to HG(M(x)) via 6.1.4. If o 1is just

the fixed embedding of K into © , this representation

Vo is nothing but the infinity type of ¥ , viewed as a
representation of Z as in 0, 7.3.2.

6.1.6 Corollary Let T be the algebraic closure of @
in € , and o some embedding @ <> C. The pair (CMg,HJ) =

see § 4 above - is a neutralized tannakian category over (Q

with 2 as corresponding group scheme.

Proof. We show that H0 establishes an equivalence of cate-

gories between the motives CM@ and all CM Hodge structures.



- 67 -

where 2 1is the Serre group, together with a homomorphism
of topological groups €:Gal(@/Q) - T(Af) such that
Ppf ° € = id.

Implicit in this definition is the requirement that the
action of T on 2 by conjugation - which, as 2 1is
abelian, factors through Gal(@/@) - be the second galois
action described in 6.1.2.

Any Taniyama extension may be written as inverse limit of
sequences (with finite adelic splittings eg)

(6.2.1) 132+ T+ Gal (E2P/@) » 1

E

over finite normal extensions E of @ contained in Q.
Given 6.2.1, choose any set theoretic splitting

. ab N
aE.Gal (E°-/Q) ‘ TE(E)

uéiand define, for s €Gal (Eab/m),

1

(6.2.2) ¢ (s) = eE(s)“ ap(s) (mod zE(E)),

a class in ZE(EAf)/ZE(E) which is independent of the
choice of ag. Next, for A any character ZE > Gm defined
over @ and s€Gal (Q@/@), define the "cocycle":

= * *
(6.2.3) Ccp (s, 1) Mepis)) € EXg/E* .
These finite idéle classes have the following properties,

valid for all s,t€ Gal (Eab/m); AA"E Homa (ZE,Gm); 2 S
being defined as in 6.1.2.

6.2.4 Lemma (ii cE(st,A) = cE(s,AS cE(t,A)..




- 68 -

(1i) cp (6,05 = e (£,25).
(1ii) If F>E, then cF(s,A ° NF/E) = cE(s,A).
(iv) If ¢ = complex conjugation, then: éE(c,A) = 1

if and only 1if e€(c) € T(Q).

(v) cE(s,A) cE(s,A') = cE(s,A-l').
{In (iii), use that Eif/E* e Sif/F*, by Hilbert 90})

6.2.5 Proposition. Two Taniyama extensions T and T' are
isomorphic (as exact sequences of affine group schemes over
@ with finite adelic splittings), if and only if the

corresponding cocycles Cg * cé are equal, for all E.

6.3 The group scheme for (CMm,HB).

6.,3.0 Let U be the affine group scheme over @ which
corresponds, by tannakian philosophy, to the neutralized
category of motives (CMQ'HB)' defined in § 4 above. Then
Il 1is naturally endowed with the structure of a Taniyama
extension

1+2 % 0 ¢ cal @m »1.

In fact, ¢ 1is given (via 2.3.2, (b)) by the fact that the
Artin motives (2.4.1) are contained in CMm (note that 1l
is, in fact, proreductive: cf. 2.3.4); and 1 corresponds
via 2.3.2 (c) to the functor CMm -+ CM@ , M Mxmﬁ (the
condition of 2.3.2, (c¢) is satisfied because every object
M of CM= is defined over some number field XK , and

Q
M € CM contains M as a direct factor if viewed over

Rx/a @
@) , where we make use of 6.1.6. The exactness is then
straightforward; the fact that the galois action on Z comes

out right is slightly more subtle (cf. [DMOS], IV, B),
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(ii) cglt, A% = cp(e,2%).
(iv) If c¢ = complex conjugation, then: éE(c,A) =1

if and only if e(c) € T(Q@).

{v) cE(s,A) cE(s,A') = cE(s,A- A').
(In (iii), use that Eif/E* C— Eif/F*, by Hilbert 90})

6.2.5 Proposition. Two Taniyama extensions T and T' are

isomorphic (as exact sequences of affine group schemes over
@ with finite adelic splittings), if and only if the

corresponding cocycles Cg cé are equal, for all E.-

6.3 The group scheme for (CMQ,HB).

6.3.0 Let U be the affine group scheme over @ which
" corresponds, by tannakian philosophy, to the neutralized
Q'HB)’ defined in § 4 above. Then
"1l -is naturally endowed with the structure of a Taniyama

~category of motives (CM
extension
1+2 ¥ 0 9 cal @m 1.

In fact, ¢ is given (via 2.3.2, (b)) by the fact that the
Artin motives (2.4.1) are contained in CMm (note that 1
is, in fact, proreductive: cf. 2.3.4); and i corresponds
via 2.3.2 (c) to the functor CMQ +> CME», M Mxmﬁ (the
condition of 2.3.2, (c) is satisfied because every object
M of C(CMz 1is defined over some number field K , and

@
RK/QM € CMQ contains M as a direct factor if viewed over
@), where we make use of 6.1.6. The exactness is then
straightforward; the fact that the galois action on 2 comes

out right is slightly more subtle (cf. [DMOS], 1V, B},
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where 2 1is the Serre group, together with a homomorphism
of topological groups e€:Gal(@/@) -+ T(Af) such that
Waf © € = id.

Implicit in this definition is the requirement that the
action of T on 2 by conjugation - which, as 7 is
abelian, factors through Gal(@/@) - be the second galois
action described in 6.1.2.

Any Taniyama extension may be written as inverse limit of
sequences (with finite adelic splittings eg)

(6.2.1) 1+2z + T+ Gal (E®P/m) ~+ 1

over finite normal extensions E of @ contained in Q.
Given 6.2.1, choose any set theoretic splitting

a_:Gal (Eab/m) + T_(E)

E’ ‘E

and define, for s € Gal (Eab/m) ’

-1

(6.2.2) CE(s) = e_(8) aE(s) {mod ZE(E))r

E

a class in ZE(EAf)/ZE(E) which is independent of the
choice of ag: Next, for A any character ZE + Gm defined

over @ and s€Gal (@/Q), define the "cocycle":
(6.2.3) CE(S,A) = A(cE(s))EIEif/E* .
These finite idéle classes have the following properties,

valid for all s,t€ Gal (Eab/m): A A" € Homa (ZE,Gm); A S
being defined as in 6.1.2.

6.2.4 Lemma (i) cglst,d) = cg(s,A9 e (t,h). .
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or at least confusing ... .- Finally, the finite adelic
splitting € required for a Taniyama extension, comes
from the fact that the étale realization HAf(MY of
a motive M of (M, carries an action of Gal(Q/Q).,

@
and is, on the other hand, isomorphic to HB(M)QQQf'

géé&i We shall now write down, generalizing Tate
(c£. [LcMl, 7 § 3; [B1) , § 4), a "cocycle” gg(s,A), for
every CM field E normal over (@ , which can be easily
shown to be the cocycle corresponding to U in the setup
of 6.2. Let M € CME(E) be of rank 1. For any sc€ Gal(Q@/@),
the conjugate motive M® is defined in CMW and carries
the action of E transported by s, with respect to which
it is also of rank 1 over E. Thus, fixing identifications
] .
E — HB(M)
& s
E — HB(M )
{where Hy denotes the realization H_  , for o the
identical embedding @§ <= ), there is an element
a € Exf such that the following diagram commutes.

0 @ Qpf
E;, ———> H (M
A A
a l S
E o Q f
E. ——A>» 5 _(M5)
af af

6.3.2 Theorem Up to multiplication by an element of E*,

a depends only on s and on the representation

Gm/m corresponding to the CM Hodge structure HB(M).

A:Z - RE/Q

The proof is easy from what we already know - but it does,
of course, use the absolute Hodge cycle theorem . -
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Rewriting A:2 - RE/me/Q as AiZgp > G, ‘defined over
E, we shall write the class a-E* as gE(s,A), thereby
defining the cocycle characterizing 1.

6.3.3 Lemma (i) gE(s,A) has the properties analogous to
(1) ,(ii),(iii) and (v) of 6.2.4.

(ii) gE(c,l) = 1, for all A.

w

(1i1) gg(s,0) ' *S = ¥(s)™¥ . E¥,

A s _ Y(s)
where Y(s) € 2* is such that ¢~ =¢ , for every root
of unity ¢ € §*, and w is the weight of the Hodge
structure HB(M).

In the case where A 1is a CM type (i.e., M = H1(A), for
some CM abelian variety A/F) and A° = A, the class
.gE(s,A) is given by the Shimura-Taniyama reciprocity law.
This class field theoretic description of gE(s,A) will
be generalized in 6.4, and the fact that it does describe
gg Will be equivalent to the isomorphism between 1 and
the Taniyama group ...

6.4 The Taniyama groﬁp

We proceed to define Tate's second cocycle fE(s,l)— generalizing
it the same way we generalized 9p in 6.3: cf. [LCM], 7 §§ 1,2,
and [Bl1l], § 4.

6.4.0 First, generalize Tate's "half transfer":

Given a CM field E normal over @ , choose a system of
representatives (remember that Ec{)

v:Hom (E,T) -~ Gal {Eab/m)
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Rewriting A:Z2 —+ RE/me/W as  A:Zp> G , defined over

E, we shall write the class a-E* as gE(s,A), thereby
defining the cocycle characterizing 1.

6.3.3 Lemma (i) gE(s,A) has the properties analogous to
(i), (i), (iii) and (v) of 6.2.4.

(ii) gE(c,A) = 1, for all .

(141) gg(s,0) "¢ = v(s)™ . E*,

A s _ Y(s)
where Y(s) € 2* 1is such that z° =¢ , for every root

of unity ¢ € @*, and w is the weight of the Hodge
structure HB(M).

In the case where )X 1is a CM type (i.e., M = H1(A), for
some CM abelian variety A/@) and 25 = A, the class
gE(s,A) is givenby the Shimura-Taniyama reciprocity law.
This class field theoretic description of gE(s,A) will
be generalized in 6.4, and the fact that it does describe
= 9g will be equivalent to the isomorphism between U  and
~the Taniyama group ... -

6.4 The Taniyama group

We proceed to define Tate's second cocycle fE(s,A)— generalizing
it the same way we generalized g, in 6.3: cf. [LCM], 7 §§ 1,2,
and [Bll, § 4.

6.4.0 First, generalize Tate's "half transfer":

Given a CM field E normal over @ , choose a system of
representatives (remember that Eciﬁ) ‘

v:Hom (E,T) - Gal (E3P/q)
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or at least confusing ... - Finally, the finite adelic
splitting € required for a Taniyama extension, comes
from the fact that the étale realization ﬂnf(Mi of

a motive M of CMCD carries an action of Gal{(@/@),

and is, on the other hand, isomorphic to HB(M)oqnf.

6.3.1 We shall now write down, generalizing Tate

(c£. [LcM), 7 § 3; [Bl]l , § 4), a "cocycle" gE(s,A), for
every CM field E normal over @ , which can be easily
shown to be the cocycle corresponding to U in the setup
of 6.2. Let M € CM=(E) be of rank 1. For any sE€ Gal(Q/Q),

]
the conjugate motive M® is defined in CM~ and carries

Q
the action of E transported by s, with respect to which
it is also of rank 1 over E. Thus, fixing identifications

e .
E —_ HB(M)

£ )
E —> H(M%)

{(where Hp denotes the realization H; . for o the
identical embedding @ < ), there is an element
a € Eif such that the following diagram commutes.

0 o Qpf
A A
l a S
E o Q¢
E ¢ — A, H f(ms)
A A

6.3.2 Theorem Up to multiplication by an element of E*,

a depends only on s and on the representation
A:Z » RE/ Gm/m corresponding to the CM Hodge structure HB(M).

Q

The proof is easy from what we already know - but it does,
of course, use the absolute Hodge cycle theorem . -
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such that V(T)IE =t and v(et) = cv(t), for c = complex
conjugation. Then, for s€ Gal(@/@) and A:Z; > G = over
E (or over T), write A as

and set

-n
VE{s,A) = T _ (v{sr)-1-(leab)-v(T)) v,

T:ES @

an expression well defined in Gal(Eab/m);

6.4.1 Notations In the situation of 6.4.0, denote by

rE:Eif/E*-+Gal(Eab/E) the reciprocal of the classical

Artin map, i.e., e sends a uniformizer ™ to a

gecmetric Frobenius at w. - Recall the cyclotomic character
¥ defined in 6.3.3 (iii), and note that one has-

r.(¥(s})) = s ¢
@ |mab

m=for all s€ Gal(@/Q). - Finally, for X as before, write

as usual w =n (any 1) the weight of A (or: of the

¥ et
corresponding Hodge structure).

6.4.2 Proposition/Definition.  With the preceding notations,
there exists, for any s€ Gal(@/@), a unique class
fE(sz) € Eif /E*l such that

(1) rE(fE(s,A)) = VE{S,A),

and (ii) £-(s,0) "% = ¥(s) ™V . E*,
For the proof, cf. [LCM], 7, 2.2.

6.4.3 One can show that fE(s,A) gives the cocycle attached
to the Taniyama group ¥ defined by Langlands in [Lgl, § 5 -
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except possibly for a certain number of renormalizations,
of the sort carried out in [DMOS], I1I. We have not taken
the time to check the details, and for us € will be the
Taniyama extension characterized by fE(s,A) (whose
existence is not proved here.) We do however call this €
the Taniyama group.

6.2 The Main Theorem, Consequences

6.5.1 Theorem. The cocycles fE(s,A) and gE(s,A) are

equal: the Taniyama extension il corresponding to (CMQ,HB)

is isomorphic to the Taniyama group € .

The reader may obtain a complete proof of fE = 9g from
[LCM], chap. 7 : the one crucial property of g (therefore
of "e") not demonstrated in Lang - theorem 4.2 of [LCM]}, 7 -
has simply been built into our motivicconstruction of
gE(s,k)l In translating Lang's setup . into our notations one
has to identify a CM abelian variety A/T with the motive
H1(A) - cf. 1.1 above. Thus instead of the CM types ¢

(of weight + 1} in Lang, we consider representations A

with n. = -1 or 0, of weight -1.

6.5.2 We shall use the following notation for the Taniyama
group U :

J ¢ _
1 +2 + T~ Gal (/@) + 1

Ja
cafy

We write Kt = ¢f1(Gal (§/K)), for any number field K< .

And if E 1is a finite normal extensicn of @, also contained

in @ , such that Kc:Eab , then we write KEE for the image

of KE in the quotient L2 (6.2.1) of T. One might call
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except possibly for a certain number of renormalizations,
of the sort carried out in [DMOS], III. We have not taken
the time to check the details, and for us ¥ will be the
Taniyama extension characterized by fE(s,A) (whose
existence is not proved here.) We do however call this U
the Taniyama group.

6.5 The Main Theorem, Conseguences

6.5.1 Theorem. The cocycles fE(s,l) and gE(s,A) are

equal: the Taniyama extension Il corresponding to {CMm,HB)
is isomorphic¢ to the Taniyama group T .

The reader may obtain a complete proof of fE = dp from
[LCM], chap. 7 : the one crucial property of g (therefore

of "e") not demonstrated in Lang - theorem 4.2 of [LCM], 7 -
has simply been built into our motivicconstruction of
gE(s,A)! In tranélating Lang's setup . into our notations one
has to identify a CM abelian variety A/@ with the motive
H1(A) - cf. 1.1 above. Thus instead of the CM types ¢

(of weight + 1) in Lang, we consider representations A

with n_ = -1 or 0, of weight -1,

6.5.2 We shall use the following notation for the Taniyama

group €

3 ¢ _
1 +2 +~ T+ Gal (T/@) ~+1

‘Ja
¢ af)y

We write T = ¢-1(Gal (@/K)), for any number field Kc{ .

K
And if E is a finite normal extension of @, also contained
in @ , such that Kc:Eab , then we write KcE for the image
of KE in the quotient T {(6.2.1) of T. One might call

E
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such that V(T)IE =t and v{ct) = cv(t), for c = complex
conjugation. Then, for s€ Gal(@/@) and AiZo > G over
E (or over {), write A as

and set

-n
vgls,0) =TT __(v(s-r)_1~(leab)-v(T)) T,
T:ES @

an expression well defined in Gal(Eab/Q).

6.4.1 Notations In the situation of 6.4.0, denote by
rE:Esf/E*-+Ga1(Eab/E) the reciprocal of the classical

Artin map, i.g., g sends a uniformizer mT to a

geometric Frobenius at m. - Recall the cyclotomic character

Y defined in 6.3.3 (iii}, and note that one has

r (Y(s)) = SI

ab '

0 Q

for all sé€ Gal(@/@). - Finally, for A as before, write
as usual w = n.+n_. (any t) the weight of A (or: of the
corresponding Hodge structure).

6.4.2 Proposition/Definition. - With the preceding notations,

there exists, for any s€ Gal(f/@), a unique class
fE(s,A)E Esf/E*, such that

(i) rE(fE(S'A)) = VE(S'A)'

and (11) £.(s,0 "% = ¥(s) ¥ . E¥,

For the proof, cf. [LCM], 7, 2.2.

6.4.3 One can show that fE(s,A) gives the cocycle attached
to the Taniyama group ¥ defined by Langlands in [Lgl, § 5 -
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1+Z+KE+Gal(W/K)+1
¢ <_J *le@/x)
& &%)

a Taniyama extension over K. It is the inverse limit of

(6.5.3) (R S A Gal(E?P/K) + 1

KtE(Af) <

Note that KEE is abelian, if K>E.

6.5.4 Scholion. Let- K@ be a number field, and write
Hp for the fibre functor H_ on CMy » with o = the

B
inclusion K & @. Then KC is the affine group scheme

corresponding to (CMK,HB).

-Cf£. [DMOS], p. 265.

6.5.5 Scholion. Let Kc{I be a number field which is galois

over Q. Then the structure ¢, (i.e., 6.5.3 with E = K)

‘is isomorphic to Serre's group S

K’ i.e. to the sequence

0, 7.3.1, equipped with the section ¢ of 0, 7.4. - Equivalently,

there is an isomorphism

ab .
kY ¥ Sk

compatible with the finite adelic splittings a and € .

Two proofs of 6.5.5 are possible: First, a direct proof using

only the cocycle fE characterizing T - cf. [Lgl , p. 224;

second, using the fact that Ts& ll, one can exploit the existence
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of M{x) in CMK, for any Hecke character x of K,
~to identify Homﬁ(KG,Gm) with Homﬁ(SK’Gm) - cf. [DMOS],
Iv, (D) and (E). :

6.5.6 The first proof of 6.5.5 would provide us with a
new method to construct M(x) (via 6.5.1): Viewed as a

representation KE +> RE/me over @ , the motive M(y)
is simply the Hecke character ¥ of K with values in E,
interpreted as in ®, 7.2,

y .
SK > RE/me over @ ,

¥ , via the canonical map Kt - tab.

and pulled back to ' K

K

6.5.7 Corollary. Let K and E be number fields, and
" Kc@. Let M be a motive in CMy (E). Then the system of
A-adic representations, for A running over the finite

places of E,

H,y (M) = Hz(ﬁ)o (where A|% )

Eo QREA

is a strictly compatible system of E-rational Galois

representations.

Recall that the statement of the corollary means that
there is a finite set I of places of K such that
for any prime ideal p of K not contained in I ’
and any place A of E with p | NA, the Galois
representation HA(M) is unramified at p (so that
the action of a geometric Frobenius element Frob p at
B on HA(M) is well defined), and the "characteristic
polynomial"

detEAH - Frobpg +» X | H, (M)) € E, [X]
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A-adic representations, for A running over the finite

places of E,

Hy (M) = H) (Me (where A|2 )

E o mEEA

is a strictly compatible system of E-rational Galcis
representations. )

Recall that the statement of the corollary means that
there is a finite set I of places of K such that
for any prime ideal p of K not contained in I ,
and any place X of E with g [/ NA, the Galois
representation HA(M) is unramified at g (so that
the action of a geometric Frobenius element Frob p at
p on HA(M) 1s well defined), and the "characteristic
polynomial”

detEA(1 - Frobp - X| H,y (M)) € E, [X]
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1 > 2 > € + Gal (W/K) ~ 1
¢ ‘_l %G @/x)
& @)

a Taniyama extension over K. It is the inverse limit of

ab
(6.5.3) 1 -’-ZE +KEE + Gal(E"/K) =+ 1

£ _j 'E
KEE(A ) <

Note that KEE is abelian, if KoE.

6.5.4 Scholion. Let XKc@ be a number field, and write
Hy for the fibre functor H_ on CMg , with o = the

B -
inclusion K & {. Then

corresponding to (CMK,HB).

KE is the affine group scheme

Cf£. [DMOS], p. 265.

6.5.5 Scholion. Let Kc{I be a number field which is galois

over Q. Then the structure ¥, (i.e., 6.5.3 with E = K)

is isomorphic to Serre's group S

K* i.e. to the sequence

0, 7.3.1, equipped with the section ¢ of 0, 7.4. - Equivalently,

there is an isomorphism

ab .
k¢ = Sk

compatible with the finite adelic splittings o and € .

Two proofs of 6.5.5 are possible: First, a direct proof using

only the cocycle fE characterizing ¢ - cf. [Lgl , p. 224;

second, using the fact that €31, one can exploit the existence
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actually has coefficients in E S—» Ey which are
independent of the place Ao,

One proof of 6.5.7 (via 6.5.1) uses the fact - due to
Langlands, [Lgl, p. 226/227; cf. [DMOS], III, 3.17 -
that there is a natural homomorphism W, -+ T(T), where

@
W is the global Weil group of @. See [DMOS], IV,

Q

remarques 2,3 (p. 262). - As Greg Anderson has pointed
out (see [A2], 5.7), 6.5.7 as well as a few other
important corollaries of 6.5.1 can also be obtained

using R. Brauer's induction lemma:

6.5.8 Lemma  The Grothendieck group of Rep (T x &) is
generated by the representations of the form

for number fields K and characters x:,T -+ Gm/m .

In fact, TxE€ is the inverse limit of (C-algebraic

. groups whose connected. components are tori. And the
Grothendieck group of RepE(G), for G a G-algebraic
group such that GO is a torus, is generated by the
representations induced from 1 dimensional characters
of subgroups of finite index.

Now, to deduce 6.5.7 from 6.5.8 , assume (without loss
of generality, applying Ry ) that K =@ in the claim
of 6.5.8, and note simply that

detp(1 = Frob g-X | Indy ;0 (x) =TT (1 - x(m+X) € E [X),
plp

at good places p.
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6.5.9 The corollary 6.5.7 allows to unconditionally
define the L-function of a motive M 1in CMK(E)

{or, equivalently, M in CMm(E)): For s€C with
Re(s) >> 0 , put (cf. 1.8 above):

1

I
s P, -
| B0 BT,

L*{M/K,s) = T] det, (1 - Frob pNp
p
where g runs over all finite primes of K, and the
determinant is calculated using any A such that g JINA.
. It is well known that the product converges for Re(s)
sufficiently big, defining an element

L*(M/K,s) € E @ €= clomELD)

(With our definition of strict compatibility, we have no
control, a priori, about the Euler factors of the primes
P in the bad set I . This problem disappears however,
in the light of 6.5.81) |

If E=Q (i.e, M 1is considered without E action), then
we write simply L(M/K,s) for the ("Hasse-Weil") L-function
of the motive M.

Recall that, as functions on € (a priori on {Re(s) >> 0}),
the following L-functions coincide:

L*(M/K,s) = L*(RK/QM/W.SI.

{This generalizes-the identity recalled before 6.5.9.)
In terms of L-functions, 6.5.8 reads:

6.5.10 Corollary. For any motive M in CMK ’ there exist
number fields L1,...,Ln and, for every 1 =

1...,n, an

algebraic Hecke character x; of L; with values in a suitable

field Ec(C , and an integer m,; , such that

i
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the following L-functions coincide:
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(This generalizes the identity recalled before 6.5.9.)
In terms of L-functions, 6.5.8 reads:
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number fields L1,...,Ln and, for every i
algebraic Hecke character x; of L; with values in a suitable

field Ec<C€ , and an integer m. such that

there exist

K !
=1,...,n, an
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actually has coefficients in E & EA which are
independent of the place A

One proof of 6.5.7 (via 6.5.1) uses the fact - due to
Langlands, [Lgl, p. 226/227; cf. [DMOS}, III, 3.17 -
that there is a natural homomorphism W, + T(Z), where

@
W_ 1is the global Weil group of Q. See [DMOS], IV,

T

remargques 2,3 (p. 262). - As Greg Anderson has pointed
out (see [A2], 5.7), 6.5.7 as well as a few other
important corollaries of 6.5.1 can also be obtained

using R. Brauer's induction lemma:

6.5.8 Lemma The Grothendieck group of Repn(T x T) is
generated by the representations of the form

IndK/m (X) P

for number fields K and characters x:KE - mm/m .

In fact, TxC is the inverse limit of C-algebraic
groups whose connected. components are tori. And the
Grothendieck group of Repm{G), for G a C-algebraic
group such that G0 is a torus, is generated by the
representations induced from 1 dimensional characters
of subgroups of finite index.

Now, to deduce 6.5.7 from 6.5.8 , assume (without loss
of generality, applying RK/Q) that K = @ in the claim
of 6.5.8, and note simply that

det (1 - Frob p+X | Indy (X)) = pT;[ (1 = x(p)X) € E [x],

at good places p.
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. n m,
L(M/K,s) = ﬂ- L(Xips) 1 -
i=1

Here, L(xi,s) is the L-function L(x;,s) of 0, § 6,
with 7T:E < (.

6.5.11 Amazingly enough, the same line of thought also
gives an alternative proof of the unicity theorem 5.1!
For this, we refer to [A2] , 5.7.5.

6.6 Motives of rank 1 arising from abelian varieties

From 3.1, 5.3 and 6.5.7, we can now deduce that conjecture
(pP] , 8.1, (iii) is also true - like all the rest of
conjecture (DP], 8.1 - in the category M%V of motives.
over the number field K which can be constructed from
the cohomology of abelian varieties {(with or without
complex multiplication). Joined with 5.1, this gives

.the

6.6.,1 Theorem Every motive M 1in J[;v(E), for a number
-field E, of rank 1 over E, is isomorphic in A[;V to a

motive M(x) - see 4.1 - , for some algebraic Hecke character
of K with values in E. '

7. Anderson's motives for Jacobi sum characters

This section continues 0 § 8. *

7.1 The basic example (Reference: [DMOS] , I § 7)

1.1.1 For integers mz2 0, n>1, let x; ¢;l> Ep-1 be

the Fermat hypersurface of dimension n - 2 and degree m,
given in projective coordinates by the equation

m m
X, +t ... + X = 0.
1 n
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The twisted primitive cohomology motive

n - n n-1 -
ho i (2) (=1 = [hiXp) /4*h @) ] 0 Q(-1),

a priori an object of M

Q’ decomposes over @(p ) under

the action of the group
n n n
G, = (121 pm)/(diagonal)s:Aut {Xm/m(um)).

Specifically,write the characters of G; as

7 fa] € o 2 3
a = a € & —-2Z/%, a, = 0, all a, # O,
s : i=1 ™ i=1 i
i=1
n aim
With 2((C1'-..'Cn) (mod diag.)) = | I ci .
i=1

n
Define the eigenmotive hprim(xm)a as the image of

[hprim{xg) ® @(p )T x @n ) under the projector

~, . P =— ] Clg) o g(g)_1 '

where C(g) 1is g, viewed as endomorphism (= absolute Hodge
correspondence) of h(x;). Here, m(um) in the tensor product
is (the first component of) the unit object of Mm(m(“m}} -

n
prim(xm)g is an object of
Mo (@(p_)) of rank 1, and that its L-function is given,
Qg m

cf. 3.0 above. One shows that h

in terms of the Jacobi sum Hecke characters of 0, 8.2, by
the relation [see 6.5.9 for the notation]

Lh L (X)(=1)/QUep)es) = (L(T

T
prinm*n’a R (ca) ,s))

Qe TGHom(m(um),m) *

11,2 As Jacobi sum Hecke characters are galois equivariant —

see 0, 8.2.5 - all the components of this array of L-functions
are actually equal (as meromorphic functions on @). On the
other hand, the sum of projectors
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The twisted primitive cohomology motive

hooin (KB) (=1) = (R0 /4% @™ )] @ 0(-1),

a priori an object of M decomposes over Q@(p_) under

Q r
the action of the group

n n n
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n
a=1] l[a] ¢

i=1

1 -

13

nes

i

a;m
with g((§1....,cn)(mod diag.)) | ci

. n
Define the eigenmotive hprim(xm)a as the image of
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1]
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correspondence) of h(x;). Here, m(pm) in the tensor product
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Mm(“m) (m(um)) of rank 1, and that its L-function is given,
in terms of the Jacobi sum Hecke characters of 0, 8.2, by
the relation [see 6.5.9 for the notation] :

= T
(x> ( 1)/m(u ),8) = (L(Jm(um) (ca) ",s))

T€Hom (@ (p ) ,T) :

7.1,.2 As Jacobi sum Hecke characters are galois equivariant -

see 0, 8.2.5 - all the components of this array of L-functions
are actually equal (as meromorphic functions on €). On the
other hand, the sum of projectors
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. n m i
L(M/K,s} = T] Llyy,s) .
i=1

Here, L(xi,s) 'is the L-function L(xI,s) of 0, § 6,
with 1:E <~ (.

6,5.11 Amazingly enough, the same line of thought also
gives an alternative proof of the unicity theorem 5.1!
For this, we refer to [A2] , 5.7.5.

. Motives of rank 1 arising from abelian varieties

From 3.1, 5.3 and 6.5.7, we can now deduce that conjecture
{pP] , 8.1, (iii) is also true - like all the rest of
conjecture (DP], 8.1 - in the category Miv of motives
over the number field K which can be constructed from
the cohomology of abelian varieties (with or without
complex multiplication). Joined with 5.1, this gives

the

6.6.1 Theorem Every motive M in JL;V(E), for a number
field E, of rank 1 over E, 1s isomorphic in AZ;V to a

motive M{x) - see 4.1 - , for some algebraic Hecke character

of K with values in E.

7. Anderson's motives for Jacobl sum characters

This section continues 0 § 8.

7.1 The basic example (Reference: [DMOS] , I § 7)

7.1.1 For integers mz 0, n>1, let X; eds P pe
the Fermat hypersurface of dimension n - 2 and degree m,
given in projective coordinates by the equation

X
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@ Poa
0€Gal(0(um)/@) =

(the galois action being thatjf0.8.2.1) is an absolute
Hodge correspondence of h(x;) ® Q(p_) defined over Q.
Thus, there is a motive M(a) in M@ » with coefficients
in @ (the action of G; is only defined over Q@(p_}) of
rank [Q(um):m] such that

(x%)

Mla) (1) x @lug) = hyy, (X ca

in

in Mm("m) : consequently.

L(M(é_) /Q,s) = L(Jm(um) (E):s)
(an identity of functions on C.)

7.1.3 The motive h(x;), and therefore also Ml(a), is

(isomorphic to) a motive in M;v , and in fact, by the
same token, in CM - cf. 5.3.

- m

ey

~This is shown by Shioda induction: see [A2], § 9 for
a detailed proof of how to express h(X;) in terms of
the Fermat curves xi,xi and of Eﬂ . As the Jacobian
of Fermat curves are well known to admit complex
multiplication (over m(um)) this directly proves the

stronger assertion.

~J

. 1.4 Thus we have indicated how to construct, for
§av
Q
representation of the Taniyama group, whose L-function

is the Hecke L-function of Jm(u )(g). Note that, in
view of 6.5.7, this already provgs that Jm(u
Hecke character, and more precisely, a Hecke ®haracter

a as above, a motive M(a) in » and in fact a

)(g) is a

unramified outside m - because this is true of the
f-adic representations of x;.
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Anderson, in [A1], and especially in [A2], has genera-
lized this construction of M(a) to all Jacobi sum Hecke
characters, in the sense of 0, 8.2.4.

7.2 Anderson's first theorem (Referencef [A1] or [A2])

Let K be an abelian number field and ac€ IB% (for the

notation, see 0, 8.2). There is a motive M, (a) in CM
of rank [K:@] such that

@

L(Mg(a),8) 5 L(Jg(a),s).

Upon extension of scalars, MK(g)x K acquires the structure

of a motive of rank 1 in CM (K), which is a motive for
Jp(a), in the sense of 3.3.

The crucial point about this theorem is that M, (a) - is
constructed from the cohomology of Fermat hypersurfaces’

x;. This will make it possible to calculate the periods .

of My(a) 1in terms of values of the I'-function at rational
numbers: see II § 41 In [A1], MK(E) is explicitly constructed
as sitting in twisted Fermat hypersurfaces; in [A2], the
theorem is no longer stated the way we just did but rather

embedded in a much more general formalism which we shall
now sketch very roughly.

7.3 Anderson's ulterior motives (Reference: (a2] )

7.3.1 An arithmetic Hodge structure W of weight w€Z ig
¢ a finite dimensional @ vector space WB , with a

decomposition
Wy C= © warb
a,beq
a+b=w
" a,b_.b,a - ion:
such that (1 & ¢c)W =W , for c¢ complex conijugation;
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now sketch very roughly.
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*» a finite dimensional @ vector space WB , with a

decomposition
Wy o C = © Wb
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(2] Pca
oEGal(m(pm)/Ql -

(the galois action being thatjf0.8.2.1) is an absolute
Hodge correspondence of h(x;) @ m(um) defined over Q.
Thus, there is a motive M(a} in MQ » with coefficients
in @ (the action of G_ is only defined over Qp)) of
rank [(D(u.m) :@] such that
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in

in M@(Hm) ; consequently
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(an identity of functions on .)

7.1.3 The motive h(X;), and therefore also M{a), is

(isomorphic to) a motive in MSV , and in fact, by the

same token, in CMQ - cf. 5.3.

This is shown by Shioda induction: see [A2], § 9 for
a detailed proof of how to express h(xg) in terms of
the Fermat curves x;,x; and of D' . As the Jacobian
of Fermat curves are well known to admit complex
multiplication (over m(um)) this direct%y proves the

stronger assertion.

7.1.4 Thus we have indicated how to construct, for
a as above, a motive M(a) in MSV, and in fact a

representation of the Taniyama group, whose L-function
is the Hecke L-function of Jm(u )(E)' Note that, in

view of 6.5.7, this already prov@s that JQ(u )
Hecke character, and more precisely, a Hecke @haracter

(a) 1is a

unramified outside m - because this is true of the
f-adic representations of x;.
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of W, ®# & of the same dimension

* a @-linear subspace WoR B

as W such that

B
(1) for all a€ Q/%, writing
a - a',w-a' a _ a
F (WB e €C) = lﬁ we and F wDR = WDRHF (WBOE),
a'eq
a'za
one has

- pd .
(FaWDR) oL =TF (WB ® T);

(ii) there is a @-linear involution .Fw:WB-vWB making the

following triangle commute.

-

An arithmetic Hodge structure is a finite direct sum of
arithmetic Hodge structures of fixed weights.

It is obvious how the notion of arithmetic Hodge structure

is a generalization of the "part at infinity" of a motive

over @ - cf. [DP], 1.4 , for the last requirement, (ii).

We shall write w_(M) ‘for the arithmetic Hodge structure

given by a motive M in Mm . The fractional exponents permitted
in the decomposition of WB ® C will be needed to accomodate

individual Gauss sums ...

A morphism of arithmetic Hodge structures is a Q-linear map
of the WB's which respects the Wa'b's and the WDR's.
Just like Hodge structures, arithmetic Hodge structures form

a tannakian category over @ , say AH , neutralized by the



- 82 -.

functor Wi W into @ vector spaces.

B

7.3.2 Write 2niﬁ£ for the Pontrjagin dual of @/2Z, and
consider the pairing

A
211 T x Q/% —_ T*
(2nin, a) — <2min,a> = exp (2wi<na>),

where the function <.> on @/ was defined in 0, 8.1.4.
A ‘
Given O#%a€ Q/%Z, define y(a):2mi & = C* by

vy{a) (2mi n) = <27i n,a> .T(<~a>).

For each integer mz2 1, we define the arithmetic Hodge

structure of weight 1, Em by:
‘ A A
A e factors through 27i(Z/m%)
. (Em)B = {e:21i 2@
' and ]} e(2mimj) = 0
jel z/z
<a>,<-a>_ .. 1
Em C-y(a), if 0¢aemz/x
¢ (E)pp = 7 1 @-y(a).
0¢a€ﬁ T/ Z

1.3.3 Call Ci the smallest tannakian subcategory of AH
containing w_{(M) , for all objects M of CMW , and E, v
for all mz21. Write ¥ Afor the affine group scheme over
@ which corresponds to (CM, WF>WB). The @ vector space
(Em)B , viewed as a representation of T , is denoted Eﬁ
by Anderson, and he defines

E = l&ml]%,

using the inclusions of arithmetic Hodge structures E *E,

for min.
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functor W k> WB

into @ vector spaces.
A
7.3.2 Write 27mi:Z for the Pontrjagin dual of @/Z, and

consider the pairing

A
271 T x @Q/% — Cc*
{2min, a) — <2min,a> = exp (2mi<na>),

where the function <.> on @/Z was defined in 0, 8.1.4.
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Given O+a€ @/, define y(a):2ni T + T* by

vy{(a)(27i n) = <271 n,a> .T(<-a>).

For each integer mz2 1, we define the arithmetic Hodge
structure of weight 1, Em by:

A A
e factors through 2mi(Z/mz)

A
e (B ), = {e:211 Z2~-+Q

m' B and § e(2mimj) = 0
jelz/m |
<a>,<=a>_ .. 1
E_ = C-y(a), if 01=a€m3/z
e (E)yp = 1 @-y(a).

1
OtaEE Z/2

2.3.3 Ccall (M the smallest tannakian subcategory of AH
containing w_(M) , for all objects M of CMm , and Em ’
for all mz1. Write U ffor the affine group scheme over
@ which correspeonds to (CM, WP>WB). The @ vector space
(E )5 » viewed as a representation of T , is denoted E

by Anderson, and he defines
E = lim ﬂ%,

using the inclusions of arithmetic Hodge structures Em-*En '

for min.
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* a Q«linear subspace Wor of Wy @ C of the same dimension
as WB such that
(1) for all a€ Q/Z, writing
a - a',w-a' = a
Fo(Wy @ @) = a‘gm W and FaWDR WopNF (WBGE),
a'za
one has

_ oa .
(FaWDR) ® L = F (W e T);

(1i) there is a @-linear involution ‘Fm:WB'*wB making the

following'triangle commute.

An arithmetic Hodge structure is a finite direct sum of
arithmetic Hodge structures of fixed weights.

It is obvious how the notion of arithmetic Hodge structure

is a generalization of the "part at infinity" of a motive

over @ - cf. [DP], 1.4 , for the last requirement, (ii).

We shall write w_(M) for the arithmetic Hodge structure

given by a motive M in MQ . The fractional exponents permitted
in the decomposition of WB ® C will be needed to accomodate

individual Gauss sums ...

A morphism of arithmetic Hodge structures is a (Q-linear map

of the WB's which respects the Wa'b

Just like Hodge structures, arithmetic Hodge structures form

1 )
s and the WDR s

a tannakian category over Q@ , say AH , neutralized by the
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By tannakian philosophy, the functor mw:CM(n + CM

corresponds to a morphism
$:E + T

with T the Taniyama group (6.5).
Furthermore, there is an arrow

~ A ~

J:271 2 + T

which arises as follows.

1.3.4 Let V be a ] vector space with an admissible @-linear
A

action of 2ri Z. Then V can be decomposed into eigenspaces

over  (C:

Ve = o v{a) ’
acEW/x

and one finds, for all s€ aAut ¢ , that
{(1es) V(a) = V(?(sla)a)

with Y the cyclotomic character: see 0, 8.2.1; or 6.4.1.
Conversely, every decomposition respecting the galois ac%ion
on @/ comes from an (admissible) representation 2mi T+ GL(V).

Now, given a representation W of T , and a€@/%, put

Wla) = @ wPTtar.dTeaz

P,g€X

The decomposition W e € = & W(a) is compatible with the

galois action on @Q/Z - look at EL - and therefore comes
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from a representation 27i £-+GL(W). This action of

2ni 2 depends naturally on W and thus defines the
desired morphism J:27ni £ + T. Since motives have honest
regard Hodge structures: with integral exponents, it is

" plain that the image of J is contained in the kernel

of $ . = And more is true:

1.4 Anderson's second theorem ([A2], Theorem 8)

1.4,1 The sequence
]

A
1=2mi 2 —> T —> ¢ — 1

L

is exact.

. n
2.4.2 Recall from 7.1.1 the motive hprim(xm)( 1) . According
to 7.1.3, it may be viewed as giving a representation of the
Taniyama group € , and hence, via $ , a representation of

T .
There is an isomorphism of T representations

A
n on ,2ni %
hPrim (xm)(—1) 2 (Em ) .

The superscript denotes, of course, the subspace of elements
invariant under J(2wi ﬁ).

7.4,3 Use the embedding 3 , like in 7.3.4, to decompose

Eeo T = 6 E(a) .
ac€Q/zZ

Note that dim&E(a) =1 or O according‘as a*0 or a=0=0
in (@/Z. Recall from 6.5.2 our notations for the Taniyama group.
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By tannakian philosophy, the functor NW:CMW + CM

corresponds to a morphism
'5:?5-*!

with € the Taniyama group (6.5)}.
Furthermore, there is an arrow

~ A o~

J:2mi 5 > T

which ‘arises as follows.

71,3.4 Let V be a @ vector space with an admissible 0-linear
A

action of 2wi Z. Then V can be decomposed into eigenspaces

over C:

Ve €= & V(a) ’
acQ/z

and one finds, for all s€ Aut € , that
(1e8) Vv(a) = V(T(sla)a)

with ¥ the cyclotomic character: see 0, 8.2.1; or 6.4.1.
Conversely, every decomposition respecting the galecis acEion
on @/ comes from an (admissible) representation 2mi Z+ GL(V).

Now, given a representation W of T, and a€Q@/%, put

Wia) = @ wp+<a>,q—<a>

P,d€Z

The decomposition ‘W e € = ® W(a) is compatible with the
galois action on @/Z - lock at Em ! - , and therefore comes
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For all t € T(d), calling s €Gal (/@) the image
$09 (), and for all 0+a€@Q/Z, cne has

TE() =E(¥(s)

a.

1.4.4 Last but not least Anderson proves that there is

a substitute for the galois action on the eigenspaces E(a) ,
which shows their relation to Gauss sums. In stating it

he makes use of a fixed chosen embedding of mg inte €, for
every L. In fact, recall (0,8.2.2) that in the treatment of

Jacobi sum Hecke characters we also fixed, at least, an

extension of the absolute value from @ to @ , for

1,
every L.

Let p and & be two distinct rational primes, and write
Frob p € Gal(@l/@) for a geometric Frobenius element (well
determined up to Gal(ﬁ/mab) and up to the inertia group

of the chosen extension of ||p .) Call «, the g-component
of the splitting o of ?Af'— see 6.5.2.

There exists Fl(p,%) € T(C) satisfying

* a,(Frob p) = F(F(p,0))

* for all positive integers f and all 0*a€Q/Z
such that (pf-1)a =0 in @/2 , one has

~ £ £ i
try (F(p,2) |E(a)) = g (] [pal),
Pi=1

with gP as in O, 8.2.2.
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7.4.5 In the setup of Anderson's second theorem, the
motives MK(Q) of 7.2 are obtained like this: First,

it is enough to consider elements a = | néa]&BE
0*a€/Z
with naZO for all a. For such a , put

E (a) = o E(a) en, .
a 2

MK(E) then appears as a (Q-rational representation of T
such that

{a) o C = ® IE(oca) .
k2 0€Gal (K/Q) -

As QEIBO , the action of 274 2 on My (a) is trivial
which, by 7.4.1, makes it a representation of ¢ , i.e.,

a motive in CMm'.

For all details of Anderson's construction we refer to [A2].
Our discussion of this work will be taken up again in II § 4
where we give an account of his period calculations.

1.2 Elliptic curves

Let us mention in passing the geometric reasons that
have motivated our choices of the basic characters of
the exceptional imaginary quadratic fields: 0, 8.3.2.
Itis easilychecked that J is the Hecke character of the
elliptié curve

3

ud + v3 =1, or of y(1 -y) = x3,

the latter one being @-isogenous to the first one. In fact,

u3 + v3 = 1 1is also the strong Weil curve for F0(27). These

coincidences seemed to give some geometric privilege to this



- 86 -
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For all t € T(&), calling se€Gal (T/@ the image
¢ (t), and for all 0+a€ Q/Z, one has

T E(a) = E(¥(s)

a).

7.4.4 Last but not least Anderson proves that there is

a substitute for the galois action on the eigenspaces E(a) ,
which shows their relation to Gauss sums. In stating it

he makes use of a fixed chosen embedding of ml into €, for
every &. In fact, recall (0,8.2.2) that in the treatment of
Jacobl sum Hecke characters we also fixed, at least, an
extension of the absolute value ||£ from @ to @ , for

every 2.

Let p and & be two distinct rational primes, and write
Frob p€ Gal(Q/Q) for a geometric Frobenius element (well
determined up to Gal(ﬁ/mab) and up to the inertia group

of the chosen extension of ||P .) call a, the &f-component
of the splitting a of fmf'- see 6.5.2.

There exists rF"’(p,.?.) € T(T) satisfying

. az(Frob p) = $(Fip,L))

e for all positive integers f and all 0#+a€Q/Z
such that (pf-1)a =0 in @/ , one has

£ .
trm(’f(p,z)fm(a)) = g (] I[pal),
P =y

with gp as in ©, 8.2.2.
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choice of J3.

On a more historical. basis, J, was chosen because it is
the Hecke character of the famous lemniscate y2 = x3 - X

cf. [HS]' § 1.

As to @(v/-2), any Jacobi-sum Hecke character of infinity
type 1 corresponds to 'a Q-curve, in the sense of [Gr 1], § 11.
But we do not know of any such curve that has attracted

individual interest.



CHAPTER TWO:

The Periods of Algebraic Hecke Characters

Although we introduce in this chapter the basic notion of our
work, the constructions we have to present are quite formal.
More precisely, we review what mey be called the "arithmetic
linear algebra" needed for our purposes:

- In § 1, we define the periods of a motive M in AZK(E) -
K and E number fields -, and the periods c¢i(M) , for
M in lém(E) , introduced by Deligne [DP] to formulate his
rationality conjecture for critical values of L-functions
of motives. The periods of a Hecke Character y of K with
values in E are simply those of any motive M attached to
x in the sense of I.3.3, or the ci(RK/Qm) .

- Deligne's rationality conjecture (and its proof in the case
of Hecke characters) is recalled (resp. quoted) in § 2.

- § 3 15 devoted to the study of the behaviour of our periods
"under twisting". Very similar calculations have also been
done by Blasius.

- § 4 continues and closes our discussion of Anderson's motives
for Jacobi sum Hecke characters by recalling their periods.
They will be needed in chapters III andlV.

1. The periods of a motive

léga Let K and E be finite extensions of @ , and let M

be a motive defined over K with coefficients in E , of rank r
over E . Thus, in the notation of I.3.0, M 1is an obJect of
ﬂK(E) . But the linear algebra which we are about to present
would work in any sensible theory of motives, not Just the parti-
cular one using absolute Hodge cycles with which we work here.
The constructions of this section are all (essentially) present
in various sections of [DP].
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1.1 Definition of p(M)

The component at infinity of the comparison isomorphism I,2.1.1
yields an isomorphism of free K ® E ® € modules of rank r,

(1.1.1) I: f HC(M) @C — HDR(M) ®C,

where an unmarked ® 1is always over Q and ¢ runs through
all distinct embeddings of K into € ; so the K-linear
structure on the left hand side is obtained from identifying
K®C with cion(k,C)

The K ® E® € modules compared in 1.1.1 are extensions of
scalars up to € of

-~ the EHom(K,C) module @ HU(M) , on the left;
o

- the K ® E module HDR(M) , on the right.

Choose bases y,,...,y, - where y,; = (yio)o with HG(M) =
r

structures, and define
p(M) € (K® E o €)* = (¢5)Hon(k,C) x Hom(E,C)

to be the determinant of the matrix representing the isomorphism
1.1.1 relative to these bases.

Changing the bases multiplies p(M) by an element of

¥* ¥*
(g%)Hon(K,C)  esp. of (K ® E)* . Thus, p(M) will be regarded
modulo these operations, defining a class

p(M) € (k e £ @ ¢)¥/(g%)Hon(K,C) (K ® E)" .

1.1.2 Remark. Let detEM be the maximal E-linear exterior
. T o

power of M , 1i.e., the direct factor of M B in ALK(E)
r

whose o-realization (for any o : K< C ) is & HG(M) . Then
' ' B

detEM is a motive of rank 1 over E , and it is clear from the
definition of p that
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(1.1.3) p(detz M) = p(M) '.

1.2 Components of p(M)

Although p(M) is really a class mod(E )EOR(K,C) (¢ & my*

we continue to think of our period via representatives, as an
in (c )Hom(K €) x Hom(E,C)

array of complex numbers, , and
we write
(1.2.1) p(M) = (p(Mo,7)) .

’

with p(M;o,7) € C , for all ¢ € Hom(K,C) , r € Hom(E,C)
Similarly, we occasionally write, for ¢ : K< ¢C ,

p(M;0) = (p(M;0,7))_ € (E®€)",

and for 1v.: E“~— ¢ ,

*
p(M;,7) = (p(Mjo,7)) € (K®C) .
(If K=E, the two roles of this field still have to be neatly
separated!)

All these components are actually determinants (with respect
to certain bases) of comparison isomorphisms derived from 1.1.1.

For example, decompose our basis elements wy; as
(1.2.2) wy = (wy ) € Hpp(M) ® ¢ =§ Hpgp (M) ®,o C -

By its very construction, 1.1.1 is the direct sum of isomorphisms

(1.2.3) I :H(M)em——-H

o R ®k,0 -

So, p(M;g) is the determinant of I with respect to the
bases {Yicli and {wio'i . - Note that {wi by is a K9 @ E

o
basis of HDR(M) aK,o K° .

1.3 Field of coefficients

1.3.1 If E' o E 1is a (finite) extension, and M' = M ®_ E' -~

see I,3.0 -, then HU(M') = Hc(M) ®p E' , for all ¢ , and

E
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®Er
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whose o-realization (for any o : K& C ) is A HG(M) . Then
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detEM is a motive of rank 1 over E , and it is clear from the
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HDR(M’) = HDR(M) ®; E' . Hence, p(M') 1is simply the image
of p(M) under the natural map

(KeE®C) —» (K®E' ®¢C)" .

Observe that, if we know that M' in /%K(E') is of the form

M @; E' , for some M in A%K(E) , then p(M) can be recuperated
from p(M') because, assuming E'/E +to be galois with group

G and letting G act trivially on K , one has

* * *G ¥* »* 5+
(ko E o¢)*/ (e ) HB(K'C) (reE)*] = (keEeC)*/(EV)HMK,C) ¢ o 5

In fact, use the exact sequence

LE.*)HOHI(K,{B) (KQ E! )*

L * Hom(K,C) *
1 - E'" - (B ClkeE)* - LB — _
(E'7) (K® E) (5 )R ) o)

- 1 ’

as well as "Hilbert 90" for E'= and (K ® E')" to conclude
that -

H1(G,'.(E'*)H°m(K’m) (ke B)*) = 0.

1.3.2  Suppose now that M' in /%K(E') is given, and that
M = M'|p , in the notation of I,3.0. Using a basis [e%} of
E' over E to obtain bases {Yi} and {w;] for M from
those chosen for M' , one finds that

p(M) = NEt/E(P(M')) .

In terms of components, this means that

p(M;,T)é W P(M' ;)T'>’
T! |E='r

for t ¢ Hom(E,C) and t' ¢ Hom(E'C) restricting to

—

Field of definition

o~

POy

4.1 If K' 2K 1is a finite extension and M is defined over
*
K , then p(M X K') is clearly the image in (K'@E®C) /
1
(E*)Hom(K ,C) (K' ® E)* of p(M) wvia the natural map
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K@E®C L, K'@®E®C .

In practice it is often convenient to extend the base field
in order to have eigendifferentials for the action of E de-
fined over K' - cf. for example, 1.5.2 below. However, unlike
1.3.1, extending K does in general throw away information
about p(M) : If K'/K 4is galois with group G acting tri-
vially on E , then

~

1(a, (BHHERK'C) | (g1 £)*) 2 Hom(G,E") .

Put another way, different K'/K-forms of M' will in general
have different periods p(M) .

1.4.2 Suppose now that M' in ALK,(E) is given, and define
M = Ry, /M’ , in /LK(E) . Then Hpp(M) is Hpp(M') , but
considered as K ® E module. Therefore, for every g:Kc_, € ,
-— 1
Hpp(M) & € = @  Hp(M') &, .C,
o ‘K-o

where o' varies over the embeddings of K' +that restrict to
o on K . Thus, if w] = (wic.)o. - like in 1.2.2 - make up

a basis of HDR(I'I') over K' @ E , then {wid,|1=1,...,r';cv K=°]

is a basis of HDR(M) aK,o C over E@K ®K.c C . Here, '
is the rank of M!' over E . And since

HO(M) = <] HU|(M') ?
o' |K= o

it follows that

(1.4.3) p(M;0) = (. TT p(M';0")) D, ,
0"|K=0

where Dc € (E® C)* will now be computed. This factor comes

in because the -{Wig,l are not necessarily a basis of
HDR(M) ®% o K9 .
First, given the basis !wi|i=1,...,r'l of HDR(M') over

K' ® E , and choosing a basis {as} of K' over K , take
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K®RE®C c—, K'@®ES®C .

In practice it is often convenient to extend the base field
in order to have eigendifferentials for the action of E de-
fined over K' - cf. for example, 1.5.2 below. However, unlike
1.3.1, extending K does in general throw away information
about p(M) : If K'/K is galois with group G acting tri-
vially on E , then

u'(a, (EF)Hom(K'C) (1o 5)*) T Hom(G,EY) .

Put another way, different K'/K-forms of M' will in general
have different periods p(M) .

1.4.2 Suppose now that M' in ALK.(E) is given, and define
M = Ry, M’ , in ALK(E) . Then Hpp(M) is Hpp(M') , but
considered as K @ E- module. Therefore, for every s :tKc_, C ,

Hpp(M) @ € = 'li‘=° Hpr(M') @y 1 €y

~where o©' wvaries over the embeddings of K' that restrict to

¢ on K . Thus, if uj = (wi ,) - like in 1.2.2 - make up

a basis of HDR(M') over K' @ E , then {wi 1= 500, T 0! |k = UI

is a basis of Hj M) @ C over E®@ K ® C . Here, !
DR K,o K,o

is the rank of M' over E . And since

HO'(M) = . @ Hgl(M')
c IK=
it follows that
(1.4.3) p(M;o) = ( TT p(M';6")) D_,

U'IK==0 g

*
where DU € (E®C) . will now be computed. This factor comes
in because the -|Wic,} are not necessarily a basis of

HDR(M) ® o K9 .

First, given the basis {wi|i=1,...,r'} of HDR(M') over
K' ® E , and choosing a basis {a } of K' over K , take
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HDR(M') = HDR(M) ® E' . Hence, p(M') 1is simply the image
of p(M) under the natural map

(K®E®C) —s (K®E'®C) .
Observe that, if we know that M' in /%k(E') 'is of the form
M @ E' , for some M in A%K(E) , then p(M) can be recuperated
from p(M') because, assuming E'/E to be galois with group
G and letting G act trivially on K , one has

(Ko B e¢) /(2 )EOR(KC) (ke )" o (ke Eec) /(5 )HOR(EC) i o

In fact, use the exact sequence

o m* _ me*yHom(K,C) x (B )Rom(K,C) (ygpi)*
L E (E ) (K®E) (Ea*)Homﬁ(,C)n(KQbEf)*

as well as "Hilbert 90" for E'" and (K ® E')* to conclude
that

H1(G;(E'*)H°m(K’m) (K® E')) = 0.

1.3.2 Suppose now that M' in /“K(E') is given, and that
M= M"E » in the notation of I,3.0. Using a basis {ell of
E' over E to obtain bases fy;} and {w;} for M from
those chosen for M' , one finds that

p(M) = NE'/E(p;M')) ,

In terms of components, this means that

p(M;,7)= TT pM';,7'),
T'h3=T

for 1 € Hom(E,C) and ' € Hom(E'C) restricting to 7 .

Field of definition

1.4
1.4.1

.4. If K' 2K is a finite extension and M is defined over
*
K , then p(M Xy K') 1is clearly the image in (K'®E®C) /
!
(55 Hom(K",€) (1 & B)* of p(M) via the natural map
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fag wlly o as basis of Hpp(M) over K ® E . For every
?
c : KceuC , the factor D is then the determinant of

o
lat to the b !
idHDR(M) ®K,c ¢ » re ative to e bases lwioili,o}\Kz q,on the

left, and [(aswi)oli’s , on the right. Thus,

(1.4.4) D= det((ag") ,_o)‘r' et ., (EoC) .

S,o' lK—
Second, note that the undeterminacy of the determinants

(1.4.5) 5(K'/K,0) = det((od) )

S,o' lK"—'U

is just what is allowed for in the definition of p(M) :

On the one hand, changing the basis {a.} of K'/K multiplies
*

§(K'/K,0) by k% , for some element k € K , so that the array

(1.4.6) 5(K'/K) = (5(K'/K,0))y € (K®C)" =y (K®E®C) "

' * *

gets multiplied by k € K ., (K® E) . On the other hand,

1.4.5 gives §(K'/K,g) only up to a sign since no ordering was

imposed on {¢o' K = ol , and in general, there does not seem

to be a reasonable way to fix these signs simultaneously in ¢

We are saved by the fact that p(M) is only well defined up to
* Hom(K,C) |,

factors in (E ) !

. 2 * %
It is plain that §(K'/K)* ¢ K _, (K® E® C) . Thus,
calling e(M') ¢ {0,1} the rank of M' over E taken modulo 2
we have shown:

(1 '407) p(RK,/KM') = NK,/K(p(M')) G(K'/K)G(M‘)

1.4.8 Remark. Recall the following characterizations of
§(K'/K) , in the case that K' is normal over K . For

1

o' + K <, € call ¢ the restriction of o' +to K . Then

K°(6(K'/K,0)) k'  is the (at most quadratic) extension of
1

K9 such that Gal(X'S /K9(s(K'/K,5))) 1is the kernel of the

sign character |

Gal(K'® /K%). — {41}
sign of the permutation t »— st

s — 1
of the set Gal(X'0 /K9)
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This and the condition that 6(K'/K,c)2 € (KU)* characterize
the numbers defined by 1.4.5.

Furthermore, by the classicél theory of the discriminant, there
is an ideal b of K° such that

6(K'/K,c)2- UKU = L?K,U'/Kc'bz ,

where o 5 1is the ring of integers of Kc and 19 ot is
K : s K7 /K°

the relative discriminant ideal of K'c' over K .

1.5 Examples

1.5.0 Let n €Z and consider the n-~th Tate motive @(n) in
My - c£. I,2.1 and I,2.2, Step 3. The comparison isomorphism

0g(n) @ € > gp(n) @

is simply the identity on € . Rational bases are, say, (2mi)®
on the left, and 1 on the right. Therefore

o(a(n)) = (2r)® ¢ ¢* .

1.5.1 Let A De an abelian variety with complex multipli-
cation by E (necessarily a CM field) defined over K , as
in I,1.1. Assume that the galols closure of E over @ can
be embedded into K . Let o € Hom(K,C) and 7 € Hom(E,C) ,
and recall the Hodge exponents n(o,T) of H1(A) defined in
I,1.7. Then there is a (holomorphic or antiholomorphic) 1-form

1 O /0 -n{c,T),1+n(o,T
0 4 u, . € Hi(a%/x%) n yR(esT),Tenlo,T)

such that, for all e € EcsEnd (A%) , one has
K

T
e*(wo T) = e Ww
’

o,T

(Note that, by assumption on K and E, e ¢ K° .)
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This and the condition that 6(K'/K,g)2 e (k°)" characterize
the numbers defined by 1.4.5.

Furthermore, by the classical theory of the discriminant, there
is an ideal b of K° such that

2

' 2 _
5(K'/K,q)< - 00 = &K'U'/Ko.b ,

where o 5 1s the ring of integers of Kg and 19 ' is
K K'7 /K9
o

the relative discriminant ideal of K'°' over K

1.

n

Examples

1.5.0 Let n €Z and consider the n-th Tate motive @(n) in
Mg - ¢f. I,2.1 and I,2.2, Step 3. The comparison isomorphism

QB(n) ® C = QDR(n) ®C

is simply the identity on € . Rational bases are, say, (2ni)®
on the left, and 1 on the right. Therefore

*

pla(n)) = (ari)? ¢ ¢

" 1.5.1 Let A be an abelian variety with complex multipli-

" cation by E (necessarily a CM field) defined over K , as

in I,1.1. Assume that the galois closure of E over Q@ can
be embedded into K . Let ¢ € Hom(K,C) and T € Hom(E,C) ,
and recall the Hodge exponents n(o,T) of H1(A) defined in
I,1.7. Then there is a (holomorphic or antiholomorphic) 1-form

' - T
0 4 ug , € Hi(a%/x%) n wnlesT) 14nlo,T)

such that, for all e € E<+End _(A°) , one has
K

T
e*w = e'w -
(W 1)

T,T

(Note that, by assumption on K and E, e ¢ K° .)
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fag wil; o as basis of Hpg(M) over K @ E . For every
»
c ¢ KcepC , the factor DU is then the determinant of
)
idHDR(M) . ¢ » relative to the bases {wic'}i,c’lK= g2 on the

left, and {(aswi)g}i,s , on the right. Thus,

= a' -r! * *
(1.4.4) D_ = det((ag )3’°'|K=U) €eC <, (-E ®C) .
Second, note that the undeterminacy of the determinants

(1.4.5) 6(K'/K,0) = det((al) )

S!U! lK=U

is just what is allowed for in the definition of p(M) :

On the one hand, changing the basis [asl of K'/K multiplies
. »*

§(K'/K,0) by kP , for some element k € K , so that the array

(1.4.6) 8(K'/K) = (8(K'/K,q))y € (K®C)" c (KRE®C) "

gets mﬁltiplied by k ¢ K# c., (Ko E)* . On the other hand,

1.4.5 gives §{(K'/K,g) only up to a sign since no ordering was

imposed on {¢'|g = o} , and in general, there does not seem

to be a reasonable way to fix these signs simultaneously in ¢ .

We are saved by the fact that p(M) is only well defined up to
* Hom(K,C) :

factors in (E ) !

It is plain that s(K'/K)° ¢ K c_, (K® E® C)* . Thus,
calling ¢(M') ¢ {0,1} the rank of M' over E taken modulo 2
we have shown:

(1.4.7) P(RKt/KM') = NKt/K(P(M')) 6(K'/K)€(M') .

1.4.8 Remark. Recall the following characterizations of
8(K'/K) , in the case that K' is normal over K . For

g' : K =<, C call o the restriction of o' to K . Then

K (6(K'/K,0)) K'9'  is the (at most quadratic) extension of
1 .

K such that Gal(K'C /K9(s(X'/K,o))) is the kernel of the

sign character |

Gal(K'® /K%). —— {1}
sign of the permutation t +— st

S '_'_""_' 1
of the set Gal(K'C /X9)
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Choosing any nonzero rational cycle YO y So that Hq(A)=E%Yn ’
we find that

(1.5.2) p(Hy(A);0,7) = [w
Y

o,7 !
a
up to the usual undeterminacy. .

By the definition of an abelian variety, A admits a polari-
zation, i.e., a correspondence

o BUA) x HI(A) -~ @(-1) ,

and its Rosati involution necessarily induces complex conju-
gation ¢ on E . So, ¢ gives an E semilinear isomorphism

(1.5.3)  H'(A) T A .

(We have used the fact that H1(A) = H1(A)V.) Hence,

p(H (A);0,7) = 2ni - p(H (A)(-1)50,T)

(1.5.4) | = 2ni - p(H'(A);0,7c)

- 2rri
p(H,(A)j0,7c)

This relation generalizes Legendre's period relation from
elliptic curves to abelian varieties - here in the case of
complex multiplication. It allows to express all periods of

A in terms of 2rmi and periods of holomorphic 1-forms on A .

There is also the following relation, which is valid under
quite general circumstances: see 1.6.6. below.

(1.5.5) p(H (A)jc0,7) = p(H (A)j0,c7) .

Since E 1s a CM field, the right hand side may also be
written as the complex conjugate of p(H1(A);G,TC) .

1.6 Definition of ci(M)

1.6.0 It follows from 1.4.7, 1.5.4, and 1.5.5 that, for any

abelian variety A as in 1.5.2, with real periods p(H1(A);G,T).
the period p(RK/mH1(A)) is essentially 2ni . We shall
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now recall Deligne's device to separate holomorphic from anti-
holomorphic periods over @ . VWe generalize it very slightly
by working over a totally real field K .

—_

.6.1 So, let M be, as before, a motive with coefficients

in E defined over K ; but assume that K 1is a totally real
number field. Then, for every o : Kc— R c € , the realization
H&(M) carries the involution

F, : H (D
induced by complex conjugation on H f(M) , or directly by
A

1x.c:MxK'oll: "MXK,ccC =M><K,oa:.

Clearly, F_® 1C(H§q) = ng .
Write the + (resp. - ) eigenspace of F_ as
HX(M) = {y € H.(M) | Fy =+ vl .

Both are E submodules of H&(M) t being defined over K ,
the action of E on M commutes with F_ . Then

dim ((H'-'(M) ® ¢) N o #HPY) = dim ( @ gPd ) .,
® ®
E®C [of P*q a E®C P>qQ o

In order to include the ng's we impose the

1.6.2 Assumption: There is m € {+,-1 such that, for all

o : Key €, the involution F_ @ 1@ acts as multiplication
by w1 on all spaces ng that occur in the Hodge decompo-
sition of Hb(M) .

This hypothesis will be made whenever we speak of the periods
cI(M) , to be defined presently.

1.6.3 The comparison isomorphism 10(1'2‘3) transforms
F @c on HM)®C into 1® ¢ on H. (M) ® C .
on [e} DR K,r
(See [DP], 1.4, for the proof; cf. I,7.3.1 above.S Thus
H;(M) ® R is real with respect to the real structure
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now recall Deligne's device to separate holomorphic from anti-
holomorphic periods over Q . Ve generalize it very slightly
by working over a totally real field K .

1.6.1 So, let M be, as before, a motive with coefficients
'in E defined over K ; but assume that K is a totally real
number field. Then, for every o : Ko s R c € , the realization
H&(M) carries the involution

F, : H (D

induced by complex conjugation on H f(M) , or directly by
A

1x et Mxy g€ = Mxy € =Mxg C.
Clearly, F, ® 1o(H%) = HP |
Write the + (resp. - ) eigenspace of F_ as

HE(M) = {y € H(M) | Foy =+ vl .

Both are E submodules of HU(M) : Ybeing defined over K ,
the action of E on- M commutes with F_ . Then

+
dim ((E=(M) ® ¢) " ® #PY) = dim (  gPd )y |
(2] R
E®C o ptq © E®C p>q °

In order to include the ng's we impose the

1.6.2 Assumption: There is w € {+,-}1 such that, for all
:=?_ﬁ'c_¢ € , the involution F_ ® 1m acts as multiplication
by w1 on all spaces ng that occur in the Hodge decompo-
sition of Hc(M) .

This hypothesis will be made whenever we speak of the periods
cI(M) , to be defined presently.

1.6.3 The comparison isomorphism 10(1.2.3) transforms
F_®c on Hb(M) ® C into 1® ¢ on HDR(M) S

(See [DP], 1.4, for the proof; cf. I,7.3.1 above.s Thus

H;(M) ® R is real with respect to the real structure
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Choosing any nonzero rational cycle Yo 1+ SO that H'{(A):E-Yn ,
we find that

(1.5.2) p(Hy(A)30,7) = [u,

Yo

up to the usual undeterminacy. .

By the definition of an abelian variety, A admits a polari-
zation, 1i.e., a correspondence

v H'(A) x H'(A) - @(-1) ,

and its Rosati involution necessarily induces complex conju-
gation ¢ on E . So, ¢ gives an E semilinear isomorphism

(1.5.3)  H'(A) T H (A1) .

(We have used the fact that H,(A) = H'(A)Y.) Hence,

p(H-](A) 30,7) = 2ri - p(H1(A)('1);U’T)

(1.5.4) ' = 2ni - p(H'(A)0,7C)

- 2mi
p(H (A)j0,7c)

This relation generalizes Legendre's period relation from
elliptic curves to abelian varieties - here in the case of
complex multiplication., It allows to express all periods of

A in terms of 2ri and periods of holomorphic 1-forms on A .

There is also the following relation, which is valid under
gquite general circumstances: see 1.6.6. below.

(1.5.5) p(Hy(A)iea,7) = p(H (A)sm,0m) .

Since E is a CM field, the right hand side may also be
written as the complex conjugate of p(H1(A);n,Tc) .

Definition of ci(M)

1.6
1.6,

abelian variety A as in 1.5.2, with real periods p(H1(A);G,T).
the period p(RK/QH1(A)) is essentially 2ni . We shall
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-1 -
I, HDR(M XK,O:R)' gnd H"(M) is purely imaginary.

Recall the comparison of the Hodge filtration on HDR(M) with
the Hodge decomposition of HG(M) :

] 1
FPH. (M) ® ¢ = I1.( ® gP 9y,

With = as in 1.6.2, define the K ® E 1linear subspace
T
F'Hpp(M) of Hpp(M) by

F"HDR(M) ® € = I( ® ® ng )y o,
0:KewC p>q

and put

FF"'e.. (M) ® C = I(® ® HPY) ,
DR s p>gq o

Note that, if HG(M) is homogeneous of even weight w = 2p ,
1T ' ~ P -1 _ wp+1

then F'Hp (M) = F'Hpp(M) and F HDR(T) = F HDR.(_M) . If

w 1is odd, then 1.6.2 is vacuous, and F HDR(M) = F HDR(M) =

POV /25 ) | -

Then a count of dimensions shows that the isomorphism I of
1.1.1 induces isomorphisms of free K ® E ® € modules

(1.6.4) 1t . ? H;-‘(M) ® C —'-"—oHER(M) T,

wbere we have put
Hpp (M) = HDR(M)/F+HDR(M) .

1.6.5 In analogy to p(M) above, we define (under the
assumption that K 1s totally real, and that 1.6.2 holds):

cE(M) ¢ (K ® E & ¢)*/(g5)Hon(K,C). (¢ o £)*

to be the determinant of I:, computed with feSpect to E  Dbases
of the HI(M)'s on the left, and a K @ E basis of Hf(M) , on
the right.
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As with p(M) , write the coordinates:
() = (ct(Mig,m)) e (¢5)Hom(K,E) x Hon(E,T)
Note that, if K = Q@ , one has simply
ct(M) ¢ (E@ C)'/E" .

1.6.6 Remark. In the general situation of 1.1, with no
assumption on K or E , we have

Fo: H (M) = H, (M),

L= =]

for all g ¢: K, € . So, one can choose E bases lyicl of
HO(M) such that Fw(Yia) = Yi(cq) * for all ¢ . Since 1 ® ¢
coincides with F_ on HDR(M) - via I - one sees that

p(M;co,ct) = p(M;o,7) ,

up to the usual indeterminacy .

1.7 c and p
Consider the following

1.7.0 Situation. Let K and E be totally imaginary number
fields, and M a motive with coefficients in E defined over
K, of rank r over E . Let Ko be a totally real subfield
of K (e.g., KO=Q), and put M, = RK/KO(M) . Assume (for

simplicity) that M is homogeneous of weight w . Suppose that,
for all ¢ € Hom(K,C) and r € Hom(E,C) , the subspace

HO(M) ®E,T C c HU(M) ®C

is of pure Hodge type (n(g,t),w-n{(c,r)), for some n(o,r) €Z .
(If r=1, this is automatic and has been used before; for
instance, in the proof of I,5.1.) Note .that, for all s€Aut C ,
: w oW
- L ’
one has n(se¢,s7) = n(o,r) . Finally, assume that HE 2 _
for all ¢ : K <C . '

o,

Under these circumstances we shall now compute the periods
cf(MO) in terms of p(M) , using basically the same method as
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As with p(M) , write the coordinates:
() = (cE(Mio,m)) e (¢F)fon(KiE) x Hon(E,E)
Note that, if K = @€ , one has simply
ct(M) ¢ (E® C)/E" .

1.6.6 Remark. In the general situation of 1.1, with no
assumption on K or E , we have

oo

Fo: H (M) - H (M),

for all ¢ : K., € . So, one can choose E Dbases {Yicl of
HO(M) such that Fw(Yic) = Yi(cqg) ° for all ¢ ., Since 1 ® c
coincides with F_ on HDR(M) - via I - one sees that

p(M;co,cr) = p(M;o,1) ,

up to the usual indeterminacy .

1.7 ¢ and p
-Consider the following

=1,7.0 Situation. Let K and E be totally imaginary number
fields, and M a motive with coefficlents in E defined over
K, of rank r over E . Let Ko be a totally real subfield
of K (e.g., KO=Q), and put M = RK/KO(M) . Assume (for

simplicity) that M is homogeneous of weight w . Suppose that,
for all ¢ ¢ Hom(K,C) and r ¢ Hom(E,C) , the subspace

HG(M) ®E,T C c HU(M) ®C

is of pure Hodge type (n(o,7),w-n(o,r)), for some n(g,r) €Z .
(If r =1, this is automatic and has been used before; for

instamce, in the proof of I,5.1.) Note that, for all s€Aut C ,
. W W

= n C 2'2 _
one has n(sg,st) = n(g,r) . Finally, assume that HE =0,
for all ¢ : K <C .

Under these circumstances we shall now compute the periods
cf(MO) in terms of p(M) , using basically the same method as
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- - ,
Ic HDR(M xK'UZR), gnd HH(M) is purely imaginary.

Recall the comparison of the Hodge filtration on HDR(M) with
the Hodge decomposition of HG(M) :

1 1
FPH__ (M) ® ¢ = I1( & P9,
DR . K,O' pgap a

With n as in 1.6.2, define the K ® E 1linear subspace
F"HDR(M) of Hpp(M) by

F“HDR(M) ® ¢ = I( ® ® HPY )
c:Kaeat p>q ¢

and put

F'H (M) ® ¢ = I(® o H9I) .,
_ DR ap>qU

Note that, if HG(M) is homogeneous of even weight w = 2p ,
then FTHyp(M) = FPH (M) and F-“HDR(lf) = FPMHDREM) . If
w 1is odd, then 1.6.2 is vacuous, and F HDR(M)'= F HDR(M) =
F(W+1)/2HDR(M) .

Then a count of dimensions shows that the isomorphism I of
1.17.1 induces isomorphisms of free K @& E ® € modules

(1.6.4) 1t . <: H;-'(M) ® C —Z»HBR(M) ®C ,

where we have put
. + +
Hpp(M) = Hpp (M)/FTHpp (M)

1.6.5 In analogy to p(M) above, we define (under the
assumption that K is totally real, and that 1.6.2 holds):

ctM) € (K ® E ® €)%/ (g5)Hon(K,C) (¢ o 5)*

to be the determ;nant of Ii, computed with respect to E bases
of the H§(M)'s on the left, and a K ® E basis of HBR(M) , on
the right.
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in 1.4.2 above. (Cf. [DP], 8.16.)

1.7.1  Let "o € Hom(K ,€) , and start by choosing an E
basis of H+ (M) = & H (M)] : Denote by S(o_) the
0 U|K =

set {o :t Ko ®|0|K = ool modulo the action of complex con-
0

Jugation ¢ . For each g = {o,co} € S(co) , choose a basis
Yioli=1,...,r °f H(M) over E, and take
[Yic + Fm(yic)|i=1,...,r;(c,cc| € S(co)l

as E basis of H (M ). - Note that F (yi ) € H (M) - see

remark 1.6.6 -, and that our construction does. not depend on
the choice of the representatives o € o .

1,7.2 There is a unique direct factor (K ® E)* of XK ®E
such that

w
(K@ EY o¢C = cl(o'T”n(c’T)gz}cKcaE@c ,

with n(o,t) as in 1.7.0; and the quotient HDR(M ) of
HDR(MO) is isomorphic (as K, ® E module) to the direct factor

Hpp(M) @ gp (K ® E)T of Hye (M)

Starting from a basis {wi} of HDR(M) ‘over K®E , with
~ components

Wy = (U5,6,000,7 ¢ ® Hpp(M) B gp oer C=Hppi) ®C,
(o)

C

consider the E @ K &, o ¢ basis of H (M ) ® 9%

o' o K

{wi,E'l i=1,...,7; 0 € S(o )}

- 5 w
where Wy S.p =0 if o0 € ¢ and n(o,r) < 5 .

i,0,7 !

Then we find
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(1.7.3)  c"(Ms0,7) = (T T p(Mje,7)). D' (ag,T)

a =g
KO 0

w
n(o,r) <3

where DV ¢ (K @®E® m)* ~ well determined up to

* Hom(K ,C)
E) - (K, @ E)" - is the determinant of the identity

on HDR(M ) ® ¢ , computed with respect to the basis

{wi }i, , on the left, and some K, ® E basis of HE (M) »
on +he right. To compute D' note first that (k®E)Y is, in
fact, a free Ko ® E module, because Ko‘ is totally real.
Pick a basis of it:

. (K ¢ K,]
{ej ‘ ,j"-—*'],..., ——z———-—} .

If {w;li=1,...,r} 1is the K® E basis of H R(M) used

before, with wy projecting to wI in HDR(M ) , then

!ej w Ij ; isa K ® E basis of H+R(M ) . Thus, writing
st e (K ®E® m) - well determined, as usual, up to
*)Hom(Ko,E).(Ko ® m)* - the array with components

' =1,-..,[K.=K.}/2;
(1.7.4) 6+(00,T) = det(e% / ° w )
. U'K=°o’ n(c,'r)<§
o

we see that
(1.7.5) Dt = ()M
where e(M) = r(mod 2)

1.7.6 Like in 1.4.8, let us also give an abstract characteri-
zation of &' - cf. [HS], 4.5.

Start with one fixed 1, € Hom(E,C) . For each 0, : Ky e C

*
independently, choose 6+(co,70) € € such that the group
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(1.7.3) c+(MO;U°JT) = ( .I_r P(M;U,T)) . D+(00,T) ’
: 0|K0= o

n(o,r) <

njs o

where D' € (K, ® E ® C)" - well determined up to

« Hom(K_,C)
E ) (K ® E) - is the determinant of the identity

on HDR(M )® ¢, computed with respect to the basis

{wi }i » on the left, and some K  ® E basis of HDR(M ),
on the right To compute D' note first that (K®E)"Y is, in
fact, a free Ko ® E module, because Ko is totally real.
Pick a basis of it:

, . (K ¢ K]
Iej | 3=1yeeey ——=1} .

If {wili- yeee,rl is the K ® E basis of HDR(M) used
before, with wy; projecting to wI~ in HDR(M ) , then

{e‘_j w Ij { 1is a K ® E basis of H R(M ) . Thus, writing
6T e (K ® E® C) - well determined, as usual, up to

Hom(K0,¢)
) (K ® ¢) - the array with components

j=1 y eee ,EK’! Ko]/z;

(1.7.4) 8% (a,,7) = det(e%

olKo=co , n(o,1-)<%
we see that

(1.7.5) D" = (%)=

where ¢(M) = r(mod 2)

1.7.6 Like in 1.4.8, let us also give an abstract characteri-
zation of 6+ - cf. [HS], 4.5.

Start with one fixed 1t ¢ Hom(E,C) . For each 0, : K, c C

independently, choose 6+(oo,70) € ¢ such that the group
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in 1.4.2 above. (Cf. [DP], 8.16.)

1.7.1 Let o, € Hom(KO,C) , and start by choosing an E
basis of HT (Mo) =[ & H (M)1T : Denote by S(oo) the
% °|K =q, g
o)

set {g¢ : K C‘*'c|°'K = col modulo the action of complex con-
o

jugation ¢ . For each g = |o,co} € S(oo) , choose a basis
{Yicli=1,...,r -of HO(M) over E , and take
Yig * Fulvig)li=t,.cuyrilo,col € 8(o )}

+
as E basis of HUO(M0)° - Note that Fm(Yig) € Hco(M) - see
remark 1.6.6 -, and that our construction does. not depend on

the cholce of the representatives o € g .

1.7.2 There is a unique direct factor (K @ E)YT of K®E
such that

"
Kem*ec - u.:l(o,f)ln(c:.'r) < 3 cKeE®C

with n(o,r) as in 1.7.0; and the quotient HBR(MO) of
HDR(MO) is isomorphic (as K, ® E module) to the direct factor

Hop (M) @ g (K @ E)t of Hpp (M)

Starting from a basis {wi} of Hpp(M) over K®E , with
components

€@ HDR(M) ®
O,T

C=Hpp(M) @ C ,

wy = (“’1,0,7)0, K®E,o®T

consider the E ® Ko &

:+ *
K ¢ basis of HDR(MO) ®Ko,c C

0% 0

lwi,b—" l i='],.-.,I‘; E e S(O’O)l )

where w; = . = , 1f o €o and n(o,r) < % .

w
i,U s T

Then we find
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—, G for all ¢ : K <. C with clK =0,%
s € Gal(@/K ) W w' o
n(so,1,) <5 e n(o,7 ) <%

acts on 6+(00,7°) via the sign character

sign of the permutation of the set
s — ( w
io|K0=oo1n(c,-ro)<-2-l inguced by s .

It remains to define 6+(a°,pTo) , for all 60 € Hom(Ko,G)
and p € Gal(@/Q) . We put

4+, -
8% (0,007y) = epiag) - 67 (o o )P,

where the signs e(p;o ) are defined as follows. For each

o, ¢ KO cvC , choose an ordering of the set of infinite

places of K 1lying above the place of Ko induced by 0y -
Note that, for any 7t , the set lolK ==c°]n(c,7)~<%} is
o}

in bijection with the places of K above o '. Then. e(pio,)
is the sign of that permutation of the places above Oq which
transforms the chosen ordering into the image under p of
the chosen ordering on the set of places above p_100 . = The
choices made are compensated by the indeterminacy of 6t up

* Hom(KO,G)
to (E ) .

1.7.7 Let us now derive the analogue of 1.7.3 for ¢ . In
the notation of 1.7.1, '

‘Yic - Fm(Yic)|i=1"'°’r;lc'cal € S(UO)}

is a basis of H; (MO) over E . Note that here we have to
o _

take a pafticular choice of representatives {o} of S(Uo)
One way to do this - which we adopt - is again to fix one
embedding To ¢ Ec,C , and to use the set

{0]0‘K0==00 and n(U,TO) < %I .

Define accordingly,

~ - +
- (2 =



- 102 -

by their components:

~ W og,r if o € ¢ and n(c,'r)'<g->n(c,'ro)
Yi,0,T _

~0j g,p 0 ¥ o €0 and nlo,r) < 3 < n(o,7,) -
This gives
(1-7-8) C-'(MO;CODT) = ( ! ‘ p(M;U!T))'D—(Uo!T) ’
U|KO=UO

where D~ 1is defined like D' 1in 1.7.3, with {wi,g} re-
placed by lwi E} . In particular, like in 1.7.5,
’

(1.7.9) D~ = (s7)(M)

where the quotient &F7/6° is given - up to the usual indeter-
minacy - by the rule

a{ﬂclK =00|n(0,'r)<g- < n(c,'ro)}
= (-1) © ,

6+(00.T)

(1.7.10) —
8 (GO'T)

for all o € Hom(Ko,C) , T € Hom(E,C) , and T, @as fixed

above.

1.7.11 Corrigendum. Formula 1.7.10 emends our foolish ne-
gligence at the end of the proof of [GS], 9.3, and again in
(GS'], 3.3. There we asserted, for K =@, K quadratic,
and r=1, that ¢’ = ¢~ . In "proving" Deligne's conjecture
in that case, we compensated this mistake by overlooking the
fact that the complex conjugate of 2ni 1is -2pi , in the
application of [DP], 5.18. The same false replacement of c¢~
for ¢ gtill slipped into [HS], formula 11 - cf. instead,

3.1. below -, where it_was finally caught by Blasius.

1.7.12 Lemma

(1) 8% depend only on K,» K, E, and the family of "CM-

types" of K ({o € Hom(X,C)|n(oc,T) < gl),r ‘Ecy @
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by their components:
) .{ Wy gop 0 i O € ¢ and n(o,t) < g > n{o,T )

Wy oor if ¢ € ¢ and n(o,t) < g < n(g,To) .

This gives

(1.7.8) "M 30,,7) = ( TT p(Mig,7))-D (o ,7) ,

0| =g
Ko o)

n(GrT)'cg

where D~ is defined like D' in 1.7.3, with {uo, =} re-
placed by lﬁi ;}-. In particular, like in 1.7.5,
]

(1.7.9) D~ = (s7)c(M) |

where the quotient 6+/6- is given - up to the usual indeter-
minacy - by the rule

#lo|g =o4lnle,T) <3 < n(o,7)]
o) ‘

= ("1) ?

6+(0097)

(1.7.10) ‘
’ & (UO’T)
for all o, € Hom(KO,G) , T € Hom(E,C) , and T, @as fixed
above.

1.7.11 Corrigendum. Formula 1.7.10 emends our foolish ne-
gligence at the end of the proof of [G3S], 9.3, and again in
(GS'], 3.3. There we asserted, for K, = @ , K quadratic,
and r=1 , that c* = ¢~ . In "proving" Deligne's conjecture
in that case, we compensated this mistake by overlooking the
fact that the complex conjugate of 2ni 1is -2ri , in the
application of [DP], 5.18. The same false replacement of ¢~
for ¢¥ still slipped into [HS], formula 11 - cf. instead,

5.1. below -,.where it was finally caught by Blasius.

1.7.12 Lemma

(i) ¥ depend only on K_, K, E, and the family of "CH-
types" of K (o € Hom(k,C)|n(g,7) < 35}),

tEcy €
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-, 9% for all 0 : K <. € with cIK =0,
s € Gal(Q/K “) W w' o '
n(sc,'ro)<z o n(c,'ro)<§

acts on 6+(GO,TO) via the sign character
sign of the permutation of the set

s +— ( . w )
[°|Ko=°oln(°’70)<§| induced by s

It remains to define 6+(co,pTo) , for all ¢
and p € Gal(Q/Q) . We put

o € Hom(KO,C)

8% (0,007y) = elpiag) 6% (s o )P

where the signs e(p;co) are defined as follows. For each

Oy ¢ Ko cs € , choose an ordering of the set of infinite

places of K lying above the place of K, induced by o, -
Note that, for any t , the set ic|K ==co]n(c;7)<:%1 is
0

in bijection with the places of K above o, ; Then ¢(p;9,)
is the sign of that permutation of the places above ¢, which
transforms the chosen ordering into the image under p of
the chosen ordering on the set of places above p-qco . - The
choices made are compensated by the indeterminacy of 6t up

x Hom(K_,C)
to (E ) .

1.7.7 Let us now derive the analogue of 1.7.3 for ¢ . In
the notation of 1.7.1, '

lYic - Fm(yic)]i=1,...,r;{c,co| € S(o )}

is a basis of H; (MO) over E . Note that here we have to
o _ .

take a particular choice of representatives {o} of S(co)
One way to do this -~ which we adopt - is again to fix one

embedding To * EcsC , and to use the set

{clclK°==oo and n(o,7 ) < %} .

Define accordingly,

wy 7 € Hpg(My) & ¢ 0

+
€ =H,p(M ) ®
DR( o) 0?%

0'% K
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* Hom(KO,C)

(11)  (sT)% € (89 (k, ® B)" .

(iii) Let K'/K be an extension of degree n , and denote by

6'v e (K, ®E ® ¢)® the s*-factor relative to K'/K,

and the exponents n(o',r) = n(olK,T) . Then, for all

o, € Hom(Ko,C) and T € Hom(E,C) :

v
M = '|_r 6(K'/K,U) ,

T n il
6-(00,7) clKO =g

n(c,'r)<g

where &6(K'/K) has been defined in 1.4.5/6.

(iv) If K. =@, and K a CM field with maXimal real sub-

0
field F , then - up to a factor in (E® 1) - ,

st = disc(F) |,

where we take one and the same root of the absolute

discriminant of F , for all embeddings of E into C .

Parts (i) and (ii) are plain. In part (iii) note that the
various indeterminacies actually do work out: If, for k € K* ’
6(K'/K,0) 1is replaced by k° 8(K'/K,o) , then we obtain in
the formula the factor

.
TT % e (x%EN"cc”.
U‘K =UO
° W
n(o,'l‘)<§
The proof of (iii) is straightforward. (iv) is also easy to

prove once one observes that Hom(F,C) naturally identifies
itself with S(ida) . - Cf. [DP], 8.17; and 1.4.8 above.

1.8 Application to Hecke characters

We now resume the discussion of the "unique" motive M(x) in
Mg'(E) vhich we have attached in chapter I (I,4, I,5; also
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I, 6.5.6) to a given algebraic Hecke character x of K
with values in E . Write its periods as

p(x) = p(M(x)) € (X ® E ® ¢)*/(e")Hom(KC) (y o g)* |

with components p(y;o,T) . And if RK/QM(X) satisfies hypo-
thesis 1.6.2, it makes sense to write

*
ct(x) = ct(Ry g(x)) € (E@C)/E
with components c¢X(y;r) .

Recall that, by definition (I, 3.3), M(x) is of rank 1 over
E , and that 1ts Hodge decomposition is given by the invariants
n(g,7) attached to x in 0,4, the weight of the Hodge
structure being the weight w of y : see I, 6.1.5. It follows
that, if none of the n(o,T)'s equals g , then

(1.8.1) ef(x) = 8300 ( TT plee,m)), -

n(U,T) <§

In fact, this is Just a reformulation of 1.7.3,tresp. 1.7.8,
with 8X(y) ¢ (E® €)"/E" equal to the factor given by 1.7.4,
resp. 1.7.10, relative to the data @, K, E, and the n(g,7)'s
of x - see 1.7.12 (1). |

1.8.2 In a nutshell, the observation which is basic to our
work is that, by theorem I, 5.1, all these periods do not
depend on the particular geometric construction of a motive
‘M(x) in MLV(E) attached to x .

As a first illustration of this principle we shall now give a
list of six basic properties of the periods p(x) all of
which follow from two different ways of writing the M(x) in
question. These 1somorphisms of motives are all easily checked
on the A-adic representations, i.e. precisely, Ey verifying
that the motives on both sides of what we shall write as an
equality are motives for one and the same character. In each
case 1t is indicated, how the period relation follows Ifrom the
corresponding isomorphism of motives. - The reader will notice
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I, 6.5.6) to a given algebraic Hecke character y of K
with values in E . Write its periods as

o(x) = p(M(x)) € (X ® E ® ¢)*/(g")Hom(KC) (y ¢ )™,

with components p(yx;o,T) . And if RK/QM(X) satisfies hypo-
thesis 1.6.2, it makes sense to write

* *
cX(x) = cZ(Rg /gM(x)) € (E® C) /E"
with components c¥(y;t)

Recall that, by definition (I, 3.3), M(yx) is of rank 1 over
E , and that its Hodge decomposition is given by the invariants
n(o,r) attached to x in 0,4, the weight of the Hodge
structure being the weight w of ¥ : see I, 6.1.5. It follows
that, if none of the n(o,7)'s equals g , then

(1.8.1) i) =8%(x) C T71 p(x;c:r,'r)),r .

n(c,‘l‘) <¥

In fact, this is Jjust a reformulation of 1.7.3, resp. 1.7.8,
with 8%(y) € (E® €)"/E* equal to the factor given by 1.7.4,
- resp. 1.7.10, relative to the data @, K, E, and the n(o,t)'s
of x - see 1.7.12 (1).

1.8.2 In a nutshell, the observation which is basic to our
work is that, by theorem I, 5.1, all these periods do not
depend on the particular geometric construction of a motive
M(x) in AL;V(E) attached to yx .

As a first illustration of this principle we shall now give a
list of six basic properties of the periods p(y) all of
which follow from two different ways of writing the M(yx) in
question. These isomorphisms of motives are all easily checked
on the )r~adic representations, i.e. precisely, by verifying
that the motives on both sides of what we shall write as an
equality are motives for one and the same character. In each
case it is indicated, how the period relation follows from the
corresponding isomorphism of motives. - The reader will notice
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% Hom(KO,C)

(11) (652 e (29 (k, ® B)" .

(iii) Let K'/K Dbe an extencion of degree n , and denote by

6'" € (K, ®E @ €)* the st-factor relative to K'/K,

and the exponents n(¢',7) = n(o|K,T) . Then, for all

0, € Hom(KO,G) and T € Hom(E,C€) :

1t
6_...(6_0’.12.— T_]' s§(K'/K,9) ,

+ n - A
6_(00,1') G|KO =0

n(U,T)':g

where &(K'/K) has been defined in 1.4.5/6.

(iv) If K, =@, and K aCM field with maximal real sub-

field F , then - up to a factor in (E® 1) - ,

8T = +/disc(F) ' ,

where we take one and the same root of the absolute

discriminant of F , for all embeddings of E into C .

Parts (i) and (ii) are plain. In part (iil) note that the
various indeterminacies actually do work out: If, for k € K* ,
5(K'/K,g) is replaced by k% 8(K'/K,g) , then we obtain in
the formula the factor

_
TT &%« (KOO'ET)* cC .
°|Ko=°0

The proof of (iii) is straightforward. (iv) is also easy to
prove once one observes that Hom(F,C) naturally identifies
itself with S(idQ) . - Cf. [DP], 8.17; and 1.4.8 above.

1.8 Application to Hecke characters

We now resume the discussion of the "unique" motive M(y) in
,%;V(E) which we have attached in chapter I (I,4, I,5; also
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the analogy of our list to the table in (DB], § 2.

1.8.3 Let yx and x' Dbe two algebraic Hecke characters of
K with values in E . Then

M(x.-x"') = M(x) @ M(x') 5 »plx.x") = p(x)-p(x") .

Since the motives are of rank 1 over E , it is clear that
the isomorphism on the left implies the simple period relation
on the right.

1.8.4 Let E be @, and denote by I +the absolute norm of
ideals of K . Then, for all n eZ ,

ME™) = o(-n) xgK; p@%) = (2m1)™" .

This follows from 1.5.0 and 1.4.1. Note that, if K is also

, o - y
Q , then (27i)™™ = c(.) (™) - see I, 2.1 for the action of
F_ on the Tate motive.

1.8.5 Remark. If y is the Hecke character of H,(A)", for
A an abellan variety with complex multiplication, like in I,1,
then .y =:N71 . Thus 1.8.3 and 1.8.4 reprove "Legendre's
period relation", 1.5.4. '

1.8.6 Let E'/E be a finite extension, y an algebraic
Hecke character of K with values in E . Then, with 1i the
inclusion E* Ll B (also viewed as homomorphism of algebraic
groups), '

M(iex)= M(x) ®; B' ; pliex)= i(p(x)) .
This is Jjust an application of 1.3.1.
1.8.7 Let again E'/E be a finite extension, but let a

Hecke character ' of K with values in E' be given.
Then, denoting NE'/E the norm homomorphism E'* - E* R

M(NE'/EOX') = detE(M(X)IE) ’ p(NE'/EOX) = NEr/E(p(X)) .
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Recalling that detE was defined in 1.1.2 (and the restriction
of coefficients |p in I, 3.0), the period relation is implied
by the isomorphism, because of 1.1.3 and 1.3.2.

1.8.8 Let K'/K be a finite extension, and denote by NK'/K

the relative norm, on ideals of K' . Then, for Yy an algebraic
* ¥*

Hecke character of K, and J : K < K! the inclusion,

M(X oNK’/K) = M(X) XK K' ; P(X’ NK'/K) = j(P(X)) ’
as follows from 1.4.1.

1.8.9 Given again a finite extension K'/K , but a Hecke
character ' of K' with values in E , write now J for
the inclusion of ideals of K into ideals of K' , and
Ngi g for the norm K" - K . Let egi /g De the finite
order character of K which, via Artin reciprocity, corres-
ponds to the character

gt /K ° Gal(R/K) - {+ 1} .
sign of the permutation of the set
G(R/K)/G(R/K') given by s

g8 +—
Then the following isomorphism of motives is an easy gene-
ralization of Prop. 3.2 of [Mar], p. 35 f.

M(eKt/K‘(Xiﬂj)) = detE(RKl/KM(X')); p(X'°J) = NKt/K(p(X')) .

The period relation follows from 1.1.3, 1.4.2, 1.8.3, and the
fact that p(eK,/K) = §(K'/K) which will be proved in 3.2
below.

1.8.10 It is usually clear how these formulas for the periods
p can be used to derive relations between periods et , using
1.7, resp. 1.8.1. However, care must be taken not to apply
1.8.3 inside 1.8.1, unless both factors in question satisfy
the conditions of 1.7.0 with the same system of "CM-types"

fon(a,r) < %lT € Hom(E,C) °*
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Recalling that det; was defined in 1.1.2 (and the restriction
of coefficients |E in I, 3.0), the period relation is implied
by the isomorphism, because of 1.1.3 and 1.3.2.

1.8.8 Let K'/K be a finite extension, and denote by NK'/K

the relative norm, on ideals of K' . Then, for yx an algebraic
* *

Hecke character of K, and J : K <, K' the inclusion,

M(X‘,NK'/K) = M(X) xK K' 5 P(X° NKl/K)'= j(P(X)) )
as follows from 1.4.1.

1.8.9 Given again a finite extension K'/K , but a Hecke
character yx' of K' with values in E , write now J for
the inclusion of ideals of K 1nto ideals of K' , and
Ng:/x for the norm K'" - K . Let exi g be the finite
order character of K which, via Artin reciprocity, corres-
ponds to the character '

sign of the permutation of the set
G(R/K)/G(K/K') given by s

s V—

Then the following isomorphism of motives is an easy gene-
ralization of Prop. 3.2 of {Mar], p. 35 f.

M(GKI/K‘(X!OJ)) = detE(RK'/KM(X')); p(X'°j) = NK'/K(p(X')) .

The period relation follows from 1.1.3, 1.4.2, 1.8.3, and the
fact that p(sK./K) = §(K'/K) which will be proved in 3.2
below. .

1.8.10 It is usually clear how these fofmulas for the periods
p can be used to derive relations between periods ct y, using
1.7, resp. 1.8.1. However, care must be taken not to apply
1.8.3 inside 1.8.1, unless both factors in question satisfy
the conditions of 1.7.0 with the same system of "CM-types™

{o|no,m) <31, Hom(E,C) °
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the analogy of our list to the table in [DB]}, § 2.

1.8.3 Let yx and y' Dbe two algebraic Hecke characters of
K with values in E . Then

Mix-x') = M(x) ® M(x") ; plx.-x') = p(x) - p(x") .

Since the motives are of rank 1 over E , it is clear that
the isomorphism on the left implies the simple period relation
on the right.

1.8.4 Let E be @ , and denote by N the absolute norm of
ideals of K . Then, for all n €Z ,

HM@®) = e(-n) xgK;  p@") = (2mi)7 .

This follows from 1.5.0 and 1.4.1. Note that, if K is also

: n
@, then (2ni)™2 = c(') M) -~ see I, 2.1 for the action of
F_ on the Tate motive.

1.8.5 Remark. If x 1s the Hecke character of H,(4) , for
A an abelian variety with complex multiplication, like in I,1,
then y.y =N~ . Thus 1.8.3 and 1.8.4 reprove "Legendre's
period relation", 1.5.4. ‘

1.8.6 Let E'/E be a finite extension, y an algebraic
Hecke character of K with values in E . Then, with 1 the
inclusion E* s E'* (also viewed as hbmomorphism of algebrailc
groups),

M(ioy)= M(x) ® E' ; pliex)= i(p(x)) .
This is Just an application of 1.3.1.
1.8.7 Let again E'/E be a finite extension, but let a

Hecke character y' of K with values in E' ©be given.
. *
Then, denoting NE'/E the norm homomorphism E'* - E ,

M(NE'/on') = detE(M(X)lE) H P(NEv/E°X) = NEl/E(P(X)) .
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See section 3 for the most common illustrations of this
problem.

A relation deduced, with no such difficulty, by combining
1.7.12 (1), 1.7.12 (ii1i), 1.8.3 and 1.8.8, is the formula
which plays a crucial role in [HS]: If K,K' and y are
like in 1.8.8, and n = [K':K] , then

C+(X° NK'/K) + n-1
(1.8.11) =0 T7 8(K'/K,ya)),_* 87 (x) .

N n(o,1) <%

2. Periods and L-values

As usual, let K and E be number fields, and yx a Hecke
character of K with values in E .

2.0 Let «t ¢ Hom(E,C) . An integer s is called critical
for (the L-function of) x' , if the I'-factors on both sides
of the functional equation of L(y',.) do not have (a zero
or) a pole at s . It is an easy exercise to work out what
this means, using the formulas in 0, § 6 -~ cf. [(DP], 1.3, 3,

8.15 - :

2.0.1 If {o,co}l , for ¢ € Hom(K,C) , induces a complex
place of K , then n(g,7) has to be different from % ,
for a critical s to exist. Thus critical integers (for
Hecke characters) can only occur, if K is totally real or
totally imaginary, and in the latter case, one has a disjoint
union

Hom(X,C) x Hom(E,C) = {(U,T)anU,T)<:¥l 0 l(c,T)|n(c.T)>'g| .

2.0.2 If K is totally real, the character uN" - with | of

. finite order and n € Z - admits critical integers s if and

only if, for all infinite places v of K , the constants €y
defined for y in 0, § 6 are equal to, say, ¢ € {0,1} . Then
the set of all critical s for “:Nn is

{s > n|s = n+te(mod 2)} u {s < n|s 4 n+e(mod 2)} .

2.0.3 If K is totally imaginary, critical s exist for

xT , if and only if, for all ¢ ,

w .
n(o,r) < 5 or n(g,r) > % )
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If this is so, then the set of critical integers for y -
independently of r1 - is the interval

inf , .
n(a T§>< n(o ), n(c’2)>% n(g,7)]

In all cases, we can therefore say "critical for y", ‘inde-
*

pendently of r . - Recall the notation L (y,s) from 0, § 6;

and c+(x) from 1.8.

2.1 Theorem [Siegel, Blasius, Harder]. If s is critical

for y , then

L*(X y8)
(g T5)

€cE®1 c,E@eC.

In other words, Deligne's conjecture {(DP], 2.8 is true "for
all algebraic Hecke characters".

For a discussion of the history and overall structure of the
proof, see [HS], § 5. Let us Just recall that Siegel's part
of the theorem concerns the case where K is totally real;
Blasius proves it for K a CM field; and Harder extends

the information provided by Blasius' result to all totally
imaginary fields. For Blasius' part, see his paper [B1};
Harder's results have not been written up yet.

2.2 Remark. One of the key constructions in [Bl] is the
construction, for M = RK/Q M(x) , of a motive that plays a
role analogous to detEM in 1.1.3, with p replaced by ct .
One can use this language to derive all the formulas relative
to ¢t which we have presented.

3. Twisting

3.0 We continue to consider an algebraic Hecke character
of the number field K with values in the number field E .
Assume that K 1is totally imaginary, and that y admits
some critical integer s - see 2.0.1 .
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If this is so, then the set of critical integers for -
independently of 1~ - is the interval

(n(c?$§<12'- nlowt) n(of?§>§ alem] -

In all cases, we can therefore say "caritical for y", inde-

*
pendently of T . - Recall the notation L (yx,s) from 0, § 6;
and c*(y) from 1.8.

2.1 Theorem [Siegel, Blasius, Harder]. If s 1is critical

for x , then

L*(x,s)
C+(x . :N_S) )

€EE®1 ., E®C .

In other words, Deligne's conjecture [DP], 2.8 is true "for
all algebraic Hecke characters".

For a discussion of the history and overall structure of the
proof, see [HS], § 5. Let us Just recall that Siegel's part
of the theorem concerns the case where K 1is totally real;
Blasius proves it for K a CM field; and Harder extends

the information provided by Blasius' result to all totally
imaginary fields. For Blasius' part, see his paper [B1];
Harder's results have not been written up yet.

2.2 Remark. One of the key constructions in {Bl] is the
construction, for M = RK/Q M(x) , of a motive that plays a+
role analogous to detEM in 1.1.3, with p replaced by c¢ .
One can use this language to derive all the formulas relative
to ¢t which we have presented.

Twisting

3.

3.0 We continue to consider an algebraic Hecke character y
of the number field K with values in the number field E .,
Assume that K 1is totally imaginary, and that y admits
gsome critical integer s - see 2.0.1 .
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See section 3 for the most common illustrations of this
problem.

A relation deduced, with no such difficulty, by combining
1.7.12 (1), 1.7.12 (iii), 1.8.3 and 1.8.8, is the formula
which plays a crucial role in [HS]: If K,K' and y are
like in 1.8.8, and n = [K':K] , then

C+(xo NK'/K) _

(1.8.11) c+(xn)

C TT s/, - 67" .

n(o,T) <%

2. Periods and L-values

As usual, let K and E Dbe number fields, and yx a Hecke
character of K .with values in E .

2.0 Let 17 ¢ Hom(E,C) . An integer s 1is called critical
for (the L-function of) x' , if the I'=factors on both sides
of the functional equation of L(x',.) do not have (a zero
or) a pole at s . It is an easy exercise to work out what
this means, using the formulas in 0, § 6 - cf. [(DP], 1.3, 3,
8.15 -~ :

2.0.1 If {o,co} , for o € Hom(K,C) , induces a complex
place of K , then n(g,r) has to be different from 3% ,
for a critical s to exist. Thus critical integers (for
Hecke characters) can only occur, if K is totally real or
totally imaginary, and in the latter case, one has a disjoint
union

Hom(K,C) x Hom(E,C) = {(c,r)|n(c,r)<=§l 0 {(o,7)|n(a,T)>F} .

2.0.2 If K is totally real, the character uN" - with |, of
finite order and n €Z - admits critical integers s if and
only if, for all infinite places v of K , the constants €y
defined for U; in ©, § 6 are equal to, say, ¢ € {0,1} . Then
the set of all critical s for ulfl is

fs > n|s = n+e(mod 2)} v [s < n|s & n+e(mod 2)} .

2:.0,3 If K 1is totally imaginary, critical s exist for
T 4 if and only if, for all ¢ ,

w N
n(g,7) < 5 or nlg,t) > %
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3.1 Write N for the absolute norm (of ideals of K) . Then

(3.1.1) cH(x N 1) = (2nt) (K 1 Q12 F(y
(This rectifies formula (11) of [HS] - cf. 1.7.11.]

3.1.1 1is a special case of [(DP], 5.1.8, which follows from
the characterizing properties of @(1) - see I, 2.1. - In
trying to derive 3.1.1 from 1.8.1 (for yXN_') , 1.8.3, and
1.8.4, the subtlety is that ¢t becomes c* because, for

vg € H (M(x)) and a € oz(1) ® E,

Yo ®g ¢ * Flyy ® @) = (y_ - F (v )) & « ;
cf. 1.7.7.

2.2 Next, let u be a Hecke character of K of finite order,
‘with values in E . (In view of 1.3.1, there is no 1loss of |
generality, for our period calculations, in assuming that u
and yx both take values in the same field E . This will be
assumed in those of the following formulae which involve both

'pw and y.) Then 1.8.3 gives:

(3.2.0) plu x) = p(w) »plx) .

We shall compute p{p) using the explicit description of the
Artin motive M(p) given in I, 2.4.1.

3.2.1 Let F Dbe the finite abelian extension of K correspon-
ding to u by class field theory. Thus, reading , on

I = Gal(K/K) ~ for some fixed algebraic closure K of K -
via geometric Frobenii , F is the fixed field of ker(y) .
There are two actions of " on F ® E inducing the natural
action of I' ‘on Fc KX :

. the trivial action of T on E : (f®e)Y ==Y ® e ;

« the action (f@® e)Yl =zfYoe ulyle .

Clearly y[Y:I = (18 u(y))-yY , for all y e Fe@ E and
y €T . - We shall usually work with the first action.In
particular, this is the action for which we have the
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3.2.2 Lemma Hj(F/ker(p),(F ®E)) = 0.

Proof (suggested by M. Lorenzl: Let A = T/ker(u), and write
E = QX1/P) , with P € QX] irreducible. Then F ® E =
F{X1/(P) . Factor P = Pq...P . in F{X] . Acting on F[X]
through the coefficients 4 permutes the ideals (P1),....(Ps) ,
since it stabilizes (P) . So, writing the orbits one by one,
we have

t 51
(P) - Tr—ﬂ— (Pij) ]

i=1 j=1

and for each 1 , 4 permutes the (Pij) transitively.

Then
* t *

(F®E) =] A, ,
f=1 1

as A-module, where
84
A = ;EE'FfX]/(PiJ) .
1 * 1 *
Since H (4, ] Ay) =® H (8,A;) we are reduced to the case
i i

of a transitive A-action. In othef words, if 511 is the sub-
group of 4 stabilizing F[X]/(Pi1) , then

* *
Ay = Ind§i1((F[X]/(Pi1)) ) -
By Shapiro's lemma and Hilbert 90 ,

H'(8,A]) = H'(a;» (FLX1/R,,0)") = 0.

q.e.d.

Applying the lemma to [u] € H1(P/ker(u),(F ® E)*) , we find
aunit ¢ € (F ® E)* such that, for all y €T ,

(3.2.3) g¥ = (1@ uly)) & .
(In fact, the lemma implies that any 0 + & € F® E satisfying

3.2.3 1les in (F® E)° :) & is well-determined up to a
factor in (K ® E)* . = In terms of our second action, we
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3.2.2 Lemma H1(P/ker(p),(F ® E)*) = 0.

Proof [suggested by M. Lorenz]: Let a = [/ker(u1), and write
E = a{X]1/(P) , with P € @ X] irreducible. Then F ® E =
F(X]/(P) . Factor P = Py...Pg in F{X] . Acting on F{X]
through the coefficients 4 permutes the ideals (P1),...,(Ps) ,
since it stabilizes (P) . So, writing the orbits one by one,
we have

t_ 51
(P) =-|-|--|-|_ <Pij) ]

i=1 J=1

and for each i , & permutes the (Pij) transitively.

Then
* t »*
(FGE) ='|IA ’
1=1 *

as-A-module, where
s

Ay = ;Eq F[X]/(Pij) .

Since H1(A, [T AI) =® H1(A,A:) we are reduced to the case
i i

of a transitive A-action. In othef words, if A11 is the sub-
group of 4 stabilizing F(X]/(P;,) , then

Ay = Indgg ((FLXI/(P1)7)

By Shapiro's lemma and Hilbert 90 ,
1 * 1 *
H'(8,4;) = H (8,4 (FIX1/P;4)) ) =0 .
q.e.d.

Applying the lemma to {n] € H1(F/ker(u),(F ® E)*) , we find
a unit g € (F ® E)* such that, for all y ¢ T ,

(3.2.3) e = (1@ pu(y)) § .

(In fact, the lemma implies that any O # £ € F ® E satisfying
3.2.3 lies in (F @ E)* :) & 1is well-determined up to a
factor in (K ® E)* . = In terms of our second action, we
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3.1 Write N for the absolute norm (of ideals of K) . Then

(3.1.1) oty N 1) = (2nt)LE 2 Q1/2 Fy
(This rectifies formula (11) of [HS] - cf. 1.7.11.]

3.1.1 1is a special case of ([DP], 5.1.8, which follows from
the characterizing properties of @(1) - see I, 2.1. - In
trying to derive 3.1.1 from 1.8.1 (for XZN:1) , 1.8.3, and
1.8.4, the subtlety is that ct becomes ct because, for
Yo € HU(M(X)) and o € 0z(1) ® E ,

Yo 8 @ + Fly, @ a) = (v, - F(y ) @ o ;

cf. 1.7.7.

3.2 Next, let p be a Hecke character of K of finite order,
‘with values in E . (In view of 1.3.1, there is no 1loss of
generality, for our period calculations, in assuming that
and yx both take values in the same field E . This will be
assumed in those of the following formulae which involve both

w and y.) Then 1.8.3 gives:

(3.2.0) plu x) = p(u) plx) .

We shall compute p(u) using the explicit description of the
Artin motive M(u) given in I, 2.4.1.

3.2.1 Let F ©be the finite abelian extension of K correspon-
ding to u by class field theory. Thus, reading y on

I = Gal(K/K) - for some fixed algebraic closure X of K -

via geometric Frobenii , F is the fixed field of ker(y) .

There are two actions of T' on F ® E inducing the natural
action of T 'on FcX:

. the trivial action of T on E : (f®@e)Y=fY®e;

o the action (f@® &)Yl = £Y @ y(y)e .

Clearly yEY] = (1®uly))-yY, forall yeFeE and
y € T . - We shall usually work with the first action.In
particular, this is the action for which we have the
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have

o ENT) =¢"' k@E)cKoE.

Now, the motive M(u) really "is" E viewed as the one di-
mensional E 1linear representation of T given by p . On

the other hand, HDR(M(u)) = (K ® E)EF] - see I, 2.4.1 -, so

£ isa K®E basis of HDR(M(p)) . Therefore, for each

c : KcWw @@ c €, the period p(upjo) can be computed like this:

take 1 as E-basis of H_(M(u)) = E; for any extension
~ ~ ° e a @ id’E *
g : K @ of o , the inverse of 2% =¢ e (@ ® E)

is a K°®E basis of HDR(M(;;))-@K’U K° e Hpp (M(1) ®,c C=E®C ;
we find

(3.2.4) pluio) = §3 .

Let us analyze the indeterminacy: € was well determined up
to (K ® E)* ; on the other hand, if we pick s5 instead of
o , with s € Gal(Q/K”) , we find,

~ R, a

(o4
g30 - g99 59 _ (1@ 4(57's5)) - £]

< (1e a5 1s5)) g% .

~

*
Thus, the array (go)0 ke, € (K®E®C) is well deter-
mined up to a factor in (E*)Hom(K,w) (K ® E)* , and we have

(3.2.5) p(u) = (gg)c € Hom(K,C) -

This establishes in particular the formula left unproven in
1.8.9 above. - Let us restate 1.8.9 for finite order characters,
using the well known role of the transfer map in class field
theory:

3.2.6 Let K'/K Dbe a finite extension, and u' a character
of finite order of K' (always with values in E ). Denote by
Ver?, : Gal(K/X) - Gal('K/K')ab the transfer map. Then



- 112 -

p(u'e Verg,) = Ngo x(0(u')) .

This formula implies the following invariance lemma a special
case of which was needed as formula (12) in (HS] - cf. also
1.8.11.

3.2.7 Lemma Let K and X be as in 3.0. Let K'/K be

a finite extension and X' a Hecke character of K' with

values in E (like x) , such that, for all T : Ec_,C ,

lo"K | ot € Hom(K',tI:);n'(c','r)<%'-} =in€Hom(K_,ﬁ:)|n(n,-r)<%i .

Then, for any u' as in 3.2.6, one has

Ci(l-l"x’). _ ci‘(xl)
ct((p'oVerﬁ,)x) B cE(y)

This follows from 1.8.1, 1.7.12(1i), 1.8.3, and 3.2.6. Note that,

unlike 3.1, the use of 1.8.3 inside 1.8.1 is licit here because

K and K' are totally imaginary. In fact, even if we had, say,

pu' = p eoN for some totally real field K_  and with F_
0 K'/Ko ’ 0

acting on Hc (M(“o)) as -1 (i.e., u, Iinvolves a nontrivial
o

sign character), no such signs would be visible over K' , and
F_: Ho,(M(p')) - Hcc'(M(“')) simply identifies these two
spaces. :

3.2.8 Ve shall now develop.an analogue of 3.2.6, with NK'/K
Teplaced by Tate's "half transfer" - cf. I, 6.4.0. Let

and K be as before - but assume that K is a CM field. (We
can always reduce to this case by 3.2.6: see @, § 3.) Let

Ko c K be a totally real subfield of K . (The important case
will be K, = @ .) Fix an embedding 0, ! K, = C , and con-
sider K as embedded into Q c € , by using some fixed ex-
tension of 04 (which will not show up in the notation).
Choose a system of representatives,

_ _ o
v : Homy (K, Q) - Gal(m/Koo)

0%
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p(ute Very,) = Ny n(p(u')) .

This formula implies the following invariance lemma a special
case of which was needed as formula (12) in [HS] -~ cf. also
1.8.11, .

3.2.7 Lemma Let K and X be as in 3.0. Let K'/K be

a finite extension and X' a Hecke character of K' with

values in E (like x) , such that, for all 1 : Ec_—,C ,

lch|o-ermmKuchnqcnfydgx=heﬂmﬂ&mnnwﬂ)<g .

Then, for any u' as in 3.2.6, one has

Ct(p'.x') '__ Ct(x')
cE((u'eVerg,)x)  ctly)

This follows from 1.8.1, 1.7.12(i), 1.8.3, and 3.2.6. Note that,
unlike 3.1, the use of 1.8.3 inside 1.8.1 is licit here because
K and K' are totally imaginary. In fact, even if we had, say,
V“l =y, °NK'/K° , for some totally real field KO and with F_

T'acting on HU (M(po)) as -1 (i.e., M, dinvolves a nontrivial
| o)

sign character), no such signs would be visible over K' , and
F_: Hc'(M(“')) - Hcc'(M(”')) simply identifies these two

oo

spaces.

3.2.8 Ve shall now develop an analogue of 3.2.6, with NK'/K
replaced by Tate's "half transfer" - cf. I, 6.4.0. Let ¥

and K be as before - but assume that K is a CM field. (We
can always reduce to this case by 3.2.6: see @0, § 3.) Let

K, c K be a totally real subfield of K . (The important case
will be K = Q .) Fix an embedding o, : K, = C , and con-
sider K as embedded into Q< € , by using some fixed ex-
tension of Tq (which will not show up in the notation).

Choose a system of representatives,

o (KT - Cal(T/K)

v : Hom
I{d o}
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have
(K@E)EF] =g'1 (K®E)c K®L,

Now, the motive M(u) really "is" E viewed as the one di-
mensional E linear representation of T given by u . On

the other hand, Hpp(M(n)) = (K ® E)T1  see 1, 2.4.1 -, so

£ isa K®E basis of HDR(M(“)) . Therefore, for each

c : KewQc ¢, the period p(up;o) can be computed like this:

take 1 as E-basis of H_(M(u)) = E; for any extension
~ ¢ ~ o @ idg »
6 : K—~ T8 of o, the inverse of g% = ¢ € (A& E)

is a KY®E basis of HDR(M(u))-@K,G K°c Hpp (M(1)) ® o C=E® C ;
we find

(3.2.4) p(uio) = %g .

Let us analyze the indeterminacy: € was well determined up
to (K @ E)* ; on the other hand, if we pick 85 instead of
¢, with s ¢ Gal(8/K”) , we find,

~ A=~ a

(o}
gS0 - g90 S0 _ (1@ u(5's5)) - 2]
= (1® u(51s5)) -0 .

= *
Thus, the array (gc)c tKeae € (K® E®C) is well deter-
mined up to a factor in (E*)Hom(K,c) (K ® E)* , and we have

(3.2.5) p(u) “.(gg)g ¢ Hom(K,C) -

This establishes in particular the formula left unproven in
1.8.9 above, - Let us restate 1.8.9 for finite order characters,
using the well known role of the transfer map in class field
theory: '

3.2.6 Let K'/K be a finite extension, and u' a character
of finite order of K' (always with values in E ). Denote by
Ver%, : Gal(K/K) - Gal(K/K')ab the transfer map. Then
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in such a way that v(cg) = cv(o), for c¢ = complex conjugation.
For each T € Hom(E,C) , define the "half transfer" map attached

to ¥ and T , relative to Ko v Ty o

V(- ,7) : Gal(T/K.°) - Gal(K®O/K)

by the rule

V(s,m) = T [v(so) 'ev(c)1 2017 ) (moa cal(T/k2P)) .

g K=Uo
o

V 1is independent of the choice of v , and for all

: o
s,t € Gal(ﬁ/Koo) and T € Hom(E,C) , one has the cocycle
relation

(3.2.9) V(st,t) = V(s,tr) V(t,r) .

Now, let pu be any finite order character on K with values
in E . Define

-, 0 ‘ * Hom(E.T
b .t Cal(T/K°) - (B5)Hom(E.W)
by the rule

(3.2.10) () = (u(v(s™h,m))), .

Let K Fec @ be as in 3.2.1, and define a left action of

. o

Gal(ﬁ/Koo) on Maps(Hom(E,Q),(F @ E)*) by using the trivial
action on E'  and the natural actions on F  and Hom(E,Q) -
cf. 3.2.1. Then there exists a unit

)*Hom(E,ﬁ) *Hom(E, T)

me (F®E e (E® T)

a
such that, for all s € 6al(W/K. °) ,
(3.2.11) n% = (1® o (s)):m .

In fact, we can put (see 3.2.3/4, with K =@ and 5 = v(o)) :
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(3.2.12) = ( TT pluse)®@ ) .

U|K0=Uo

n 1is determined by 3.2.11 up to a factor in

a -
0 @ E)*(a(ﬁ/xo% \ Hom(E, @))
o L]

It is convenient to write n as a matrix (“T +,) , with in-
- L
dices T,7' € Hom(E,Q) , and entries :

T (gvle)®rynlo,m) o g* |
7lg =

(3.2.13)  np 0, =

o)

o
Then, for s € Gal(Q/K °) ,

1
W(V(s,r )5 eT,sT!

’

(3.2.14) (n,‘_’_r,)s =

‘and, for m_ ='(n,r T')T' e (0@ B)" , with s acting via the
?

first action introduced in 3.2.1,

(3.2.15) ()%= (1@ u(V(s,m)) " n .

What makes these formulas interesting is their connection with
the periods ct , and thereby, via 2.1, with L-values:

3.3.0. Example. Let A Dbe an abelian variety with complex
multiplication by E defined over K - cf. I § 1. Call x its
Hecke character: M(y) = H1(A) . Then by 1.8.1, 1.8.3 and 3.2.13
(with K = @), one finds for any finite order character u of
K (with values in E):

+ .

C"(}J"X) *
(3.3.1) - = (nT T)T e (E® Q) .

c=(x) ’
(The Justification for applying 1.8.3 inside 1.8.1 is the same
as in 3.2.7: K is totally imaginary.) Thus, by 3.2.14 with

s fixing Tt , the T-component ¢ of this quotient of periods
?
generates the abellan extension of E’ corresponding to the

character W' (V(.,7)) of Gal(T/E") . And if, by chance, both
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(3.2.12)  n= ( TT plwo)7))

ClK T%
o

n 1is determined by 3.2.11 up to a factor in

T -

o0 #(G(T/K,%) \ Hom(E,T))

(Ko ® E) .

It is convenient to write n as a matrix (nT T,) , with in-
?

dices rt,7' € Hom(E,Q) , and entries

.(5.2.13) TIT"T| - —rr (gV(U)@'T')n(G,T) ¢ ﬁ* ]

oI =0
Ko (o}

o
Then, for s € Gal(ﬁ/Ko°) ,

-1,
=T - T
u(v(s,r))s" sT,sT! 7

(3.2.14)  (n; ;)% =

and, for mn_ =(n__,)., € (§®E)" , with s acting via the
H

first action introduced in 3.2.1,

(3.2.15) (0% = (1@ u(V(s, )N " n .

What makes these formulas interesting is their connection with
the periods ct , and thereby, via 2.1, with L-values:

3.3.0 Example. Let A ©be an abelian variety with complex
multiplication by E defined over K - cf. I § 1. Call x its
Hecke character: M(x) = H1(A) . Then by 1.8.1, 1.8.3 and 3.2.13
(with Ko = @), one finds for any finite order character u of
K (with values in E):
T+

C-(}J‘X) %
(3.3.1) —_— = (ﬂT T)T e (E®T) .

c=(x) !
(The Justification for applying 1.8.3 inside 1.8.1 is the same
as in 3.2.7: K 1is totally imaginary.) Thus, by 3.2.14 with

s fixing 1 , the T-component e r of this quotient of periods

generates the abelian extension of E' corresponding to the

character M' (V(.,7)) of Gal(ﬁ/ET) . And if, by chance, both
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in such a way that v(cog) = c¢v(o), for c¢ = complex conjugation.
For each T € Hom(E,C) , define the "half transfér" map attached

to x and T , relative to K0 sy 05

V(s ,T) :_Gal(ﬁ/Kzo) ~ Gal(k®%/Kk)

by the rule

V(s,7) = T [v(s0) 'sv(c)] 'n(c’T)(mod Gal(T/K2P)) .

-9k T %
O

V 1is independent of the choice of v , and for all

. . o
s,t € Gal(ﬁ/Koo) and T € Hom(E,C) , one has the cocycle
relation '

(3.2.9) V(st,r) = V(s,tr) V(t,7) .

Now, let u be any finite order character on K with values
in E ., Define

By * Gal(ﬁ/KZ°) ~ (g*)Hom(E,T)
by the rule
(3.2.10) uo(s) = (u(V(s'1,T)))T .

Let Kc Fc @ be as in 3.2.1, and define a left action of

: o

. Gal(ﬁ/Koo) on Maps(Hom(E,Q),(F ® E)*) by using the trivial
action on E  and the natural actions on F  and Hom(E,Q) -
cf. 3.2.1. Then there exists a unit

ne (F@ E)*Hom(E,ﬁ) c ., (E® m)*Hom(E,C)

. _a
such that, for all s ¢ Gal(T/K°) ,
(3.2.11) n® = (1® bo(s))m .

In fact, we can put (see 3.2.3/4, with K =T and & = v(o)) :
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* * »* -

L (ux,0) and L (x,0) are in (E ® C) , then their quotient
in (E® m)* has the same property. Thus, in particular, for
all 1 : Ec, @,

x7,0). L*(uy,0) ord . -
(5o3.2) RO ey (00 omaen ) e o)t
L(x ,0) L (x,0)

3.3.3 It is easy to generalize the statements of this example
to arbitrary Hecke characters X of K . Assume for simplicity,
that s = 0 1is critical for y . Define V to be the transfer
defined by the system of invariants

n(oc,r) =
0 if n(o,t) >0 .

Then 3.3.1 holds for x , with n_ _ replaced by ﬁ} . - de-

. . ’ ’
fined relative -to ﬁo(s) =.(},1(V(s"1,1')))T instead of 1
So here, too, 3.3.2 follows.

0

éi;i= Finally, let us lift ouf convention 3.0, and consider
the case that K is totally real (embedded into @).. Assume
for simplicity that s = 0 is critical for the character

x = wlN® . Then (2.0.2) F_ acts on Hy (Ry j(n))  as (-1)"

if n > 0 , and as -(-‘I)n y if n<0, Thus, if n<0,
putting n1 = (-1)% , we obtain
cF(um™) =1 = c"@")

4.1 |
(3 ) o (u 1)

P(RK/QM(X)) = P(SK/Q'(u °Ver2)'1fl) .

In the case n > 0 the signs get reversed, and we find, for
m=-n>0, '

L(u,m) e (u ) Q
(3.4.2) m = m =p(€K/Q'(p0VeI‘K )) .

Since the construction of & , such that 3.2.3/4 hold, clearly
works over all base fields, we get in particular that
Gal(Q/@) acts on p(eK/Q-(uaVerE)) ¢ (E® ﬁ)* via the character
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But for all Dirichlet characters of @ , such elements are
classically given by Gauss sums, and more precisely by their
"root numbers"; see [DP], 6.4, 6.5. This most incredible
coincidence does NOT repeat itself over algebraic number
fields K 'different from Q ! 1In fact, the components of
p{u) generate the corresponding abelian extensions of K ,
and can therefore not all lie in &2 . - The last sentence
of [HS], § 4 is therefore INCORRECT - and should never have
been put in there in the first place.

3.5 Let K and E be érbitrary number fields.

3.5.1 Proposition Let M and M' be two motives in 4 % (E) ,

of rank 1 over E , such that

(1) M and M' become isomorphic over XK ;

(11) p() =p(') in (k@ E® )" /(8")HRKE) (x o £)* |

Then M= M' in A PY(E) .-

Proof, By I, 6.6.1, we have M = M(x)»M'=M(x') , for certain
characters ¥, x' of K with values in E ; and (i) implies
that %' = u x , for some finite order character of K - cf.

6, 3 and I, 6.15. Hence, by 1.8.3,

By 3.2.3/4, this means that u = 1, and I, 5.1 finishes the
proof. (In fact, a direct argument can be given, using (ii)
once more.)

3.5.2 The proof of 3.5.1 shows that the K/K-forms of rank-1-
motives in Abﬁv(E) are parametrized by the periods '
p{u) e (K®E® kK2%)* | for . running over the finite order
characters of K . '
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But for all Dirichlet characters of @ , such elements are
classically given by Gauss sums, and more precisely by their
"root numbers"; see [DP], 6.4, 6.5. This most incredible
coincidence does NOT repeat itself over algebraic number
fields K .'different from @ ! In fact, the components of
p(u) generate the corresponding abelian extensions of K ,
and can therefore not all lie in dab . = The last sentence
of [HS], § 4 is therefore INCORRECT - and should never have
been put in there in the first place.

3.5 Let K and E be érbitrary number fields.

3.5.1 Proposition Let M and M' be two motives in 4 z'(E) ,

of rank 1 over E , such that

(L) M and M' become isomorphic over K ;

(11) p(M) = p(M') in (K ® E @ ¢)*/(£")Hom(K, ) (g @ EY* |

Then M S M' in AZV(E) .

" Proof, By I, 6.6.1, we have M = M(x) M' = M(x') , for certain
- characters ¥y, x' of K with values in E ; and (i) implies
that %' = u x , for some finite order character of K - cf.

0, 3 and I, 6.15. Hence, by 1.8.3,

M'

‘i=.pr

= p(u) .

By 3.2.3/4, this means that u = 1, and I, 5.1 finishes the
proof. (In fact, a direct argument can be given, using (ii)
once more.)

3.5.2 The proof of 3.5.1 shows that the K/K-forms of rank=1-
motives in ﬁbiv(E) are parametrized by the periods

p(up) €¢ (K® E Q-Kab)* , for u running over the finite order
characters of K .
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L¥(ux,0) and L"(x,0) are in (E ® €)* , then their quotient
in (E® m)* has the same property. Thus, in particular, for
all v : Ec, 0,

L T T.O- L* ’ d * ), *
(3.3.2) ° ﬁ-;—-—) € ()%, and l’-Mlor er(“)eE c(E®C) .
L(X 10) L (Xto)

3.3.3 It is easy to generalize the statements of this example
to arbitrary Hecke characters X of K ._Assume for simplicity,
that s = 0 1is critical for ¥y . Define V to be the transfer
defined by the system of invariants

C -1 if n(e,r) <0

’H(U,T) =
0 if n(a,'r)_>_'0 .

Then 3.3.1 holds for x , with 7 replaced by 7 - de-

. . T,T STy
fined relative to ﬁo(s) = (p(?(s'1,7)))7 instead of 1
So here, too, 3.3.2 follows.

(o]

3.4 Finally, let us lift our convention 3.0, and consider
the case that K is totally real (embedded into ®@).. Assume
for simplicity that 8 = 0 1s critical for the character

x = wIl® . Then (2.0.2) F_ acts on HB(RK/QM(“)) as (-1)B

if n>0, and as =-(-1)®, if n<0 . Thus, if n<O0 ,
putting n1 = (-1)¢ , we obtain
cfum™®) =1 = @)

(3.4.1) o (0 1)

p(RK/QM(X)) = P(EK/Q'(U. °Verg) ’ ]Nn) .

In the case n > 0 the signs get reversed, and we find, for
m=-n>0,

L(u,m) ¢t (u ™)

4, —_— a ——
(3:4.2) (2ri)® cT(I?)

= Bley jq* (o Verg ))

Since the construction of € , such that 3.2.3/4 hold, clearly
works over all base fields, we get in particular that
Gal(Q/Q) acts on p(eK/Q-(uaVerﬁ)) € (E® E)* via the character
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4. The periods of Jacobi sum Hecke characters

4.0 The gamma function, i.e., the meromorphic continuation of

o

r'(s) = I e *x® %? (Re s > Q)
o
satisfies the following functional equations - for s € € , and

meZ , n>1.

(4.0.0) sT (s) = T(1+s)

(4.0.1) SIT r(&d) - (2n) ¢ n®  r(s)
=0

(4.0.2) r(s)r(1-s) T

The first one'implies that T induces a well-defined map
(4.0.3) r:e/z - ¢/ ,

and D. Rohrlich once stated the conjecture that all relations
satisfied by (4.0.3), composed with

0:*/@* - m*/ﬁ* ,

follow from (4.0.1) and (4.0.2) - see [LD], ex. 4.

4.1 The basic example

Let us resume the situation of I, 7.1.1, assuming n > 3 . On the
affine open part '

' X
m m . i
Yz + [ ) + Yn = -1 (Yi = X?)

of the Fermat hypersurface Xg , the n-2 form

2

[

a, day ay_ _4

2
Y ooanT—A 00 A‘Y—
2 el n-1

o]
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is an eigenform for the character a = z;{aj] of Gm , 1f

—a(modz) = -a'j , and ’EJ >> 0 . Its period against a suitable
n-2 simplex is computed as

-1 n 21'rj.-a‘_j
(4.1.0) (2ni) ;ﬂ: (1-e )I‘(-<aj>) ;

see [DMOS], I, 7.12-7.14. This allows us to compute the periods
of the motive M(a) x Q(um) which, by construction, has the .
structure of a motive with coefficients in Q(um) . But M(a)
is constructed in such a way that M(a) ® E is isomorphic, in
Molaluy)) , to Rﬂ(pm)/Q(M(E) x @(py)) . Thus we find, using

1.3.1, 1.4.2 - 1.4.8, and, in the case where 0 1is critical for
J(a) , 1.7, 9, 8.2.7: :

"
(4.1.0) p(H(®) = ~/a(@Gg) - T T Fl-ag0

(epm=1 T
rs—— n
(4.1.2) ct(M(a)) = /a*(alu)) I'( k)1
2 -J Yo (k_>>Tr_> :)Er 2

vwhere d(m(pm)) (resp. d"'(m(um))) is the discriminant of
Q(pm) (resp. of the maximal totally real subfield of Q(um) -
see 1.7.12 (iv)). These expressions are well-determined up to
a factor in @ , as they should be for a motive in /(,Q(m)
Also, we claim that, 1f s = 0 1is critical for J(a) , then

(4.1.3)  cT(m(a)) = v/a7(@luy)) + T T Tae)™

(ka) > (-ka) J=1

with d(@(y,)) = d*(@(pm))-d‘(a(um)) . In fact, by the behaviour
of the discriminant in towers, we have

mi=k  omik 2

2
d™(a(py)) = d+(°(um))°ET|' (e P -e ™1

the product being over any set of representatives k of

Z/m E) mod {+1} . This shows that (~d” (@) ’) € (m(um)ec)
equals & - given by 1.7.10 - , up to a factor in Q(um)
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-1
(1) pi@) = Al [T T g™
(k,m)=1

e ypTaE— n
(4.1.2) ct(M(a)) = ~/aT(aln.)) - r(ak)""
Vo @y ey >ikay g |83

_where d(@(p )) (resp. d*(Q(u,) ) is the discriminant of

,;Q(pm) (resp. of the maximal totally real subfield of Q(pm) -
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a factor in Q , as they should be for a motive in Ao(@) .
Also, we claim that, if s = 0 is critical for J(a) , then

(4.1.3) (@) = v/a(e(u)) - T ‘ﬁ‘r(a k)~

(k) > (-ka) J
with d(m(um)) = d+(Q(pm))-d-(Q(um)) . In fact, by the behaviour
of the discriminant in towers, we have

omi=E  onik 2

d7(a(u,)) = d"(m(um))-t‘g' (e ™ -e ™

the product being over any set of representatives k of

@/mz)" mod {+1} . This shows that (~a~ (@) 3) € (m(um)a:c)
equals & - given by 1.7.10 - , up to a factor in Q(um)
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4. The periods of Jacobi sum Hecke characters

4.0 The gamma function, i.e., the meromorphic continuation of

r'(s) = j e XxS 9X (Re 8 > 0)
X
o]
satisfies the following functional equations - for 8 € € , and
meZ, m>1.

(4.0.0) sT (s) = T{1+s8)
m-1 E'él 1-8
(4.0.1) ;ﬂ'r(%-i) = (2m ¢ n° (s
=0 :
(4.0.2) - r(s)r(1-s) = srfns .

The first one implies that I induces a well-defined map
(4.0.3) rse/z - c/Q°

and D. Rohrlich once stated the conjecture that all relations
. satisfled by (4.0.3), composed with

G*/Q* - q:*/ii* ’

follow from (4.0.1) and (4.0.2) - see [LD], ex. 4.

4.1 The basic example

Let us resume the situation of I, 7.1.1, assuming n > 3 . On the
affine open part '

' X
m m . _ i

of the Fermat hypersurface Xg » the n-2 form

2

1]

)

dy dy
Y 2 n~1

ees Y n A see A
2 & V-1

fa]
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Note that - as it ought to be: [DP], 1.7 - c*(M(a)) and
i¢(m)/2c'(m(g)) are real, where ¢ 1is Euler's phi function.

4.2 Periods ofIAnderson's motives

If K is any abelian number field and a E]Bg - see 0, 8.2 -,

then the periods of Anderson's motive Mg(a) - see I, 7.2;

I, 7.4.5 - for the Jacobi sum character Jy(a) can be computed
by formulas which immediately generalize 4.1.1-4.1.3. In fact,
note that periods are built into the notion of arithmetic Hodge
structure - see I, 7.3.1/2. - We shall only give the final ex-
pression that Anderson obtains for the periods corresponding

to the critical values of all Jacobi sum Hecke characters. It
contains 4.1.2 as a special case, and 4.1.3 follows from it via
3.1.1. = The formula for p(MK(g) x K) is stated in 4.4.2.

4.2.1 If K 1is totally real, then F_ acts trivially on
HB(MK(E)) , for any a E]Bg . (Essentially, this is so because
Jg(a) is "pulled down" from some totally imaginary extension of
K.) Thus,-by 2.0.2 above,.the critical values of the character

. . n .
Je(a) = u N7 % - with ‘a=) nlal and yp of finite order -

a
are Just the elements of

{s € 22+1|s_<_2na| u fs € 22|s>2na|
a a

We put

Critg(a) = 2Z o () n,,») .
a

4.2.2 If K 1is totally imaginary, then 2.0.3 implies that
the critical s for JK(Q) are precisely those in

: ta) < s < (t £ 11teG'6/0)1
CritK(E) = - s €Z < _> 3 < ( c_a_> or a (
with (ta) < (tca J

Here, as usual, ¢ denotes complex conjugation; the galois
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action is that defined in @, 8.2.1.

4.2.3 Notation. d(K) , resp. dY(K) , denotes the discriminant
of K , resp. of the maximal totally real subfield of K ; and
d(K) = a*(K)- a°(K) . For all a¢B, g=9) nfal , extend
4.0.3 by the rule a

r(a) =TT r(a) ® e c*/a* .
a

.

.2.4 For all abelian number fields K , all a GIB% and all
s = n € Crity(a) , one finds

(4.2.5)  c*(M(a)(n) =nPLE 2 0V2)0(-)% ) |2 T poa)T.

4.3 Lichtenbaum's "I'-hypothesis"

As Anderson points out, the period calculation 4.2.5, Joined
with theorem 2.1 above, yilelds the following theorem on the
critical L-values of Jacobi sum Hecke characters which contains
the most general formulation of what Lichtenbaum had called
his I'~hypothesis - see [Li), [KL].

4.3.1 Theorem. For all abelian number fields K , all

a EIB?{ , and all s =1 € Critg(a) ,

. _\n
pBlK 201 (=) gy 1/2 I(0g)-L(Jyx(2),n) € @ .
(c2) 2 (cc®
Note that, in deriving this statement from 2.1, one has to use,
as in 4.1, that M(2) ® K is isomorphic, in #y(K) , to
RK/Q(MK(Q) x K) , where MK(Q) x K has a natural structure of
a motive with coefficients in K that makes it into a motive
for JK(Q) . Recall also that JK(Q) is galois equivariant -

see @, 8.2.5 - , so that the L-functions of all of its conjugates
coincide.
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a emg , and all s =n € Critg(a) ,

-nfK: @] | 4(=)%py,1/2 . -
w | d (K)| (UQ> ;WGCE)T(UE) L(JK(E)’n) e Q.

Note that, in deriving this statement from 2.1, one has to use,
as in 4.1, that M(a) ® K is isomorphic, in /‘LQ(K) , to
RK/Q(MK(Q) x K) , where Mg(a) x K has a natural structure of

a motive with coefficients in K +that makes it into a motive
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see 0, 8.2.5 - , so that the L-functions of all of its conjugates
coincide.
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Note that - as it ought to be: [DP], 1.7 - c+(M(g)) and
i¢(m)/ac'(M(g)) are real, where ¢ is Euler's phi function.

4.2 Periods of Anderson's motives

If K is any abelien number field and g € B -~ see 0, 8.2 -,
then the periods of Anderson's motive MK(Q) - see I, 7.2;

I, 7.4.5 - for the Jacobi sum character Jx(g) can be computed
by formulas which immediately generalize 4.1.1-4.1.3. In fact,
note that periods are built into the notion of arithmetic Hodge
structure - see I, 7.3.1/2. - We shall only give the final ex-
pression that Anderson obtains for the periods corresponding

to the critical values of all Jacobi sum Hecke characters. It
contains 4.1.2 as a special case, and 4.1.3 follows from it via
3.1.1. - The formula for p(MK(g) x K) 4is stated in 4.4.2.

4.2.1 If K is totally real, then F_ acts trivially on
HB(MK(E)) , for any a E]Bg . (Essentially, this is so because
JK(g) is "pulled down" from some totally imaginary extension of
Ki) Thus,.by.2.0.2 above,.the critical values of the character

n, ‘
- with a = E:nata] and p of finite order -

a

JK(E) = u- N
are Jjust the elements of
Hezmﬂagl%lUNEZMS>2%}.
a a
We put

‘CritK(g) a 2Z n (Z n,,=) .
a

4.2.2 If K 1is totally imaginary, then 2.0.3 implies that
the critical s for Jyp(a) are precisely those in

' ta) < s < (tca) f 11tec(6/o)1
Critg(a) = {s €Z (& S (tog) fora
with (ta) < (tca) J

Here, as usual, ¢ denotes complex conjugation; the galois
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Finally, it should be pointed out that, in the case that K
is totally real, every critical s for JK(Q) either lies
in Critx(g) or is related to an element of CritK(ug) , by
the functional equation.

4.4 '-relations

1 Theorem. ' Let K< @ be an abelian number field. If

4‘.4‘.
a,b EIB% satisfy JK(g) = JK(Q) , then

(Tloa))s e g(k/a) = TOR);eg(km)

in (ke ¢) K .

Proof. By construction, the motive Mg(a) x K has a natural
structure of a motive with coefficients in K with respect to
which it is a motive for JK(Q) . For all o , one has

(4.4.2) p(M, (2) x Kiidg,a) =T(oca)™ .
(The fact that complex conjugation creeps into this formula is

- clearly seen in our basic example: I, 7.1./2, and 4.1.0 above.)
By I, 5.1, the theorem follows.

4,4.3 Corollary ([A2], 8.6) f a and b are in BO such

. e e e em——e K

that CritK(g) + @, and

L(JK(E)vS) = L(JK(_b_),S) ’

as meromorphic functions on € , then

T I'(ca) = a1 T(ob) ,

(ca) > {oca) (od) > (och

in ¢/ .
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Proof. The hypothesis implies: immediately, that

CritK(g) = CritK(g) ; and, modulo an exercise in analytic
number theory, that JK(Q) = JK(TQ) , for some 1 ¢ G(K/R) .
Then, the theorem yields what is claimed, in view of 0, 8.2.7.

Known variants of the theorem used to be encouraging companions
to the T-hypothesis when this was still unproven. Its motivic
proof is a nice illustration of our central theme: how to

derive period relations from character identities. More precisely,
it is a compatibility result inside one family of motives for

a class of Hecke characters. In that sense it is the analogue,

for Anderson's motives, of Shimura's monomial relations, as de-
rived from the standard motives of Hecke characters in chapter IV
below. '

4.4.4 A different instance of our main theme occurs when JK(Q)
is of finite order, and MK(Q) is compared to'an Artin motive.
This was already pointed out by Deligne in [DP], 8.9 - 8.13. Let
us briefly rederive the results in our setting.

By 0, 8.2.7, the Jacobi sum Hecke character JK(Q) is of finite
order if and only if (¢a) = 0 , for all o € Gal(K/Q) . If this
is so, then - by I, 5.1 - MK(cg) x K 1is isomorphic, in ;%K(K) ,
to the Artin motive of JK(cg) = JK(Q)"1 , and we deduce from
4.4.2, for Mg(ca), and 3.2.4, with 6 =T = id , the following
theorem which contains conjecture 8.13 of [ DP], and, together with
4.4.6, is equivalent to theorem 7.18 in [DMOS], chap. I. It also
implies, of course, 4.4.1 and 4.4.3 above.

4.4.5 Theorem, For all abelian number fields K , and all

a GZBE such that (sa) = 0 for each o ¢ G(K/Q) , reading

the finite order character JK(g) on Gal(ﬁ/K)ab , one has

(1) T(a) e T/

(11) T(a)® = Jp(a)(s) T(a) , for all s € G(T/K) .

Part (i) was first proved directly by Koblitz and Ogus in the
appendix to [DP]. - It is shown in [Sch r] that a good deal of
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Proof. The hypothesis implies: immediately, that

CritK(g) = CritK(Q) ; and, moduloc an exercise in analytic
number theory, that JK(Q) = JK(TQ) , for some T ¢ G(K/Q)
Then, the theorem yields what is claimed, in view of 0, 8.2.7.

Known variants of the theorem used to be encouraging companions
to the T-hypothesis when this was still unproven. Its motivic
proof is a nice illustration of our central theme: how to

derive period relations from character identities. More precisely,
it is a compatibility result inside one family of motives for

a class of Hecke characters. In that sense it is the analogue,

for Anderson's motives, of Shimura's monomial relations, as de-
rived from the standard motives of Hecke characters in chapter IV
below.

4.4.4 A different instance of our main theme occurs when JK(Q)
is of finite order, and MK(E) is compared to an Artin motive.
This was already pointed out by Deligne in [DP], 8.9 - 8.13. Let
us briefly rederive the results in our setting.

By ®, 8.2.7, the Jacobi sum Hecke character JK(Q) is of finite
order if and only if <(ca) = 0 , for all o € Gal(K/Q) . If this
is so, then - by I, 5.1 = MK(ca) x K is isomorphic, in /%K(K)

. to the Artin motive of JK(ca) = JK(a) , and we deduce from
4.4.2, for Mg(ca) , and 3.2.4, with @ =17 = id , the following
theorem which contains conjecture 8.13 of [DP], and, together with
4.4.6, is equivalent to theorem 7.18 in [DMOS], chap. I. It also
implies, of course, 4.4.1 and 4.4.3 above.

4.4.5 Theorem. For all abelian number fields K , and all

P such that, (oa) = O for each = ¢ G(K/Q) , reading

a €

the finite order character JK(Q) on Gal(ﬁ/K)ab , one has
(1) T(a) ¢ T 0"

(11) T(a)® = Jp(a)(s) - T(a) , for all s € G(T/K) .

Part (i) was first proved directly by Koblitz and Ogus in the
appendix to [DP]. - It is shown in [Sch rr] that a good deal of
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Finally, it should be pointed out that, in the case that K
is totally real, every critical s for JK(Q) either lies
in CritK(g) or is related to an element of CritK(-g) , by
the functional equation.

4.4 T'-relations

4.4.1 Theorem., Let K< @ be an abelian number field. If
a,b € BY satisfy Jy(a) = Ju(b) , then

(Tload)s e arm) = (T0R);eq(k/m) »

in (K ® c)l*/K* .

Proof. By construction, the motive MK(Q) x K has-a natural
structure of a motive with coefficients in K with respect to
which it is a motive for JK(Q) . For all o , one has

(4.4.2) p(Me (2) X Kijidg,n) = T(oca)™ .

(The fact that complex conjugation creeps into this formula is
clearly seen in our basic example: I, 7.1./2, and 4.1.0 above.)
By I, 5.1, the theorem follows.,

q.e.d.

4,4.3 Corollary ([A2], 8.6) I a and b are in Bg such
that CritK(g) + ¢, and

L(Jg(a),s) = L(Jg(b),s) ,

as meromorphic functions on € , then

T T(oa) = T T(ob) ,

(ca) > (g ca) (ob) >Coch

in ¢/ .
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(ii) can be derived from 4.0.1, 4.0.2 using only classical re-
sults on the arithmetic of Gauss sums.

4.4.6 As in [DMOS], I, 7.18, the preceding theorem can be
complemented to give the behaviour of ['(a) under all of
Gal(Q/Q):

r'(a)
(111) For all t € G(T/Q) , the quotient ——3 lies in K,
a

and for all ¢ € Gal(K/Q) , one has

( T'(a) )c T (oa)
r@¥ r(a)t '

Proof. Writing & the "period" 3.2.3 of the Artin motive of
Jy(a) , we have

I‘(g_)t - gt®t i

for all t ¢ G(ﬁ/@) . This and the galois equivariance @, B.2.5:

Jp(a)(s) = Jp(ta)(t7'st) (s € G(T/K))

*

easily imply that T(a)/(a)® ¢ K* .
The last claim is proved by analysing the action of Gal(%/Q) on
End/g(Mc(a)) = K : Just imitate the argument on [DMOS], p. 93;
the details are left to the reader. :
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CHAPTER THREE:

Elliptic Integrals and the Gamma Function

The subject of this chapter is a natural continuation of

IT, 4.4: - we now compare Anderson's motives for Jacobi sum
Hecke characters to elliptic curves with complex multiplication.
This gives essentially a refinement of the so-called formula of
Chowla and Selberg - which originally is due to M. Lerch.

1. A formula of Lerch.

1
1.9 Let Kc—+C be an embedded imaginary quadratic field,

-D its discriminant, and Jp = Jg(a;) the basic Jacobl sum
Hecke character of K defined in @, 8.1 for D 4 3, 4, 8 and
in 0, 8.3 for arbitrary D . The infinity type TD of JD

(9, 8.1.5) is written

TD =n, - 1 + n.-c ,

and hD denotes the class number of K ,

Let x be any fixed Hecke character of K (with values in some
CM field E o K ) whose infinity type is -1 . Then there exists
a character of finite order p of K , with values in E , such
that

h n
(1.1) wex D= 35w e,

Let us now comupte the periods ¢’ of motives attached to both
sides of the equation. They have to be equal by I, 5.1. On the

left hand side, use II, 3.3.3 for the present . , and II, 1.8.1/3
as well as II, 1.7.12(iv). On the right, use II, 4.2.5 observing

®, 8.1.3 and 0, 8.3.1, and remembering that (HK(-QD)><K) ® E is

a motive for J51 considered as Hecke character of K with values
in E . This gives, for D ¢ 3,4,8 :

h - n 1/2 D-1
(1.2) ;o pT[geT) Dy o (v al=) “(oy) / '_‘|‘I;I‘(%)).r
? T =
€?3)=1

where T runs over the complex embeddings of E , and = 1is the
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CHAPTER THREE:

Elliptic Integrals and the Gamma Function

The subject of this chapter is a natural continuation of

II, 4.4: - we now compare Anderson's motives for Jacobi sum
Hecke characters to elliptic curves with complex multiplication.
This gives essentially a refinement of the so-called formula of
Chowla and Selberg -~ which originally is due to M. Lerch.

1, A formula of Lerch

1
1.0 let Kc— o+ C be an embedded imaginary quadratic field,

-D its discriminant, and Jp = Jy(ap) the basic Jacobi sum
Hecke character of K defined in ¢, 8.1 for D 4 3, 4, 8 and
in 0, 8.3 for arbitrary D . The infinity type TD of JD

(0, 8.1.5) is written

TD=n1-1+nc'C,

and hD denotes the class number of K .

Let x ©Dbe any fixed Hecke character of K (with values in some
CM field E 2 K ) whose infinity type is -1 . Then there exists
a character of finite order u of K , with values in E , such
that

h n
(1.1) wex D= Jghew e,

Let us now comupte the periods ¢t of motives attached to both
sides of the equation. They have to be equal by I, 5.1. On the
left hand side, use II, 3.3.3 for the present 1 , and II, 1.8.1/3
as well as II, 1.7.12(iv). On the right, use II, 4.2.5 observing
®, 8.1.3 and @, 8.3.1, and remembering that (MK(-QD)><H) ® E is
a motive for J51 considered as Hecke character of K with values

in E . This gives, for D % 3,4,8 :

h - n 1/2 D=1 .
(1.2) R, L et = (e jal) SV T,
e?3)=1

where T runs over the complex embeddings of E , and e is the
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(1i) can be derived from 4.0.1, 4.0.2 using only classical re-
sults on the arithmetic of Gauss sums,

4.,4.6 As in [DMOS], I, 7.18, the preceding theorem can be
complemented to give the behaviour of T'(a) under all of
Gal(Q/Q):

I'(a)

(1ii) For all t € G(T/Q) , the guotient rﬁ?fﬁ= lies in X ,
and for all o € Gal(k/Q) , one has =

( r(a) )c T(oa)

r@?t’ = T(oa)t )

Proof. Writing & +the "period" 3.2.3 of the Artin motive of
JK(Q) , we have

r(ja_;)t = gtﬁt ’

for all t € G(Q/Q) . This and the galois equivariance @, 8.2.5:

Jp(a)(s) = Jp(ta)(t7'st) (s € G(T/K))

easily imply that T(a)/r(a)® e x* .

The last claim is proved by analysing the action of Gal(W/Q) on
Enq/ﬁ(MK(g)) = K : Just imitate the argument on [DMOS], p. 93;
the detalls are left to the reader.
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Dirichlet character corresponding to K c Q@(upp) .

Let F be any finite abelian extension of K such that ¢ takes
values in K* on ideals which are norms from F . (Note that F
has to contain the Hilbert class field H of K .) Then there
exists an elliptic curve A defined over F - such that H1(A) is
a motive for the Hecke character ¢ = (onF/K , considered as
character of F with values in K). This i1s a special case of
Cagsselman's theorem, i. e., theorem 6 in [Shi L] - cf. I, 4.1.1.
Note that, in terms of A , the inclusion K<, F 1is given by

the action of End A on the tangent space of A at the origin. -
Cf. also [GS] § 4 .

From II, 1.8.6 and II, 1.8.8, we find that, for all 1 : E <
which restrict to To ° K-~C,

‘ hD-[F s H]
(1.2.1) P(XiTgT) =TT plyso,7,)
U|K=T°

up to a factor in E .

1.2.2 By II, 1.5.1 and 1I, 1.6.6, p(w;c,To) is, independently
of 7, and o. with o|x =7, , equal (up to the usual indetermin-
acy) to Q, » a fundamental period of the elliptic curve A°/F9 .,

In other words, the complex lattice Ao corresponding to the pair
(A9(c),w’) , for a holomorphic 1-form w on A/F whose class is

an F ® K basis of HgR(A) , satisfies

AU- Q = Qc- K « € .

We now make the following

1.3 Assumption. F may be chosen to be the Hilbert class field

’ *
H of K . In other words, x takes values in K on all principal
ideals on which it is defined.

1.3.1. Remark. Characters yx of type -1 which satisfy 1.3
exist for all imaginary quadratic fields K - their construction
1s straightforward. The field of values E is then of degree hD
over K - see [Ro], cf. [Sch 0], E . - It can have subfields which
are galois over K only insofar as the few roots of unity in K*

afford Kummer extensions corresponding to elements in the class
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group of K - cf. [Gr 1], § 15 for the case ﬁhere h, is odd
(and y equivariant under complex conjugation).

1.3.2. Since JD is galois equivariant, and therefore, in
particular, takes values in K , and since hy kills the class
group of K , 1.1 and 1.3 imply that u takes values in K .
Thus, if D 4 3,4 , then p 1is at most quadratic. In this case,
the factor ﬁ}'T simply becomes, independently of v , any non-
zero element AQ of K% ¢ @ such that

Ai = u(s)ALl , for all s ¢ Gal(Q/K) .

By 1.2.1, 1.2.2, and 1.3.2, formula 1.2 becomes an identity of
vectors with identical components:

If D4 3,4,8 , then, up to a factor in K ,

(1.4) , . a o~ (zfﬁ)%( éD - hp) QFF rd)
Mo eoE/K) S KT (g§1 1 D
€ | =

1.4.1 Before discussing 1.4 let us write down the corresponding
relations for D = 3,4,8 . In these cases we simply take x::JB1
in 1.1: all three class numbers are 1 . The corresponding
elliptic curves AD/K were briefly discussed in I, 7.5. They
are actually defined over @ and we have isomorphisms of motives
in /%Q(m) : '

~/

H1(AD) = MK(QD) ’

because AD is constructed such that L(H1(A)/Q,s) = L(JD,s) .

Thus, writing Np = f w the real period of a nonzero differ-
Ap(R) .

ential of the first kind w on AD/Q , we find the following

identities of classes in € /@ :

r(_;})z
N3 g+ Tleas) = r(2) '
1 1
T (==
0, ¥ T(ea) = ()T (7)
Q P(4)
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group of K --cf. [Gr 1], § 15 for the case where hD is odd
(and § equivariant under complex conjugation).

T1.3.2 Since JD is galois equivariant, and therefore, in
particular, takes values in K , and since hD kills the class
group of K, 1.1 and 1.3 imply that . takes values in K .
Thus, if D % 3,4 , then p is at most quadratic. In this case,
the factor %}'T simply becomes, independently of T , any non-
zero element Aﬁ of K% ¢ T such that

AS = u(s)Au , for all s ¢ Gal(@/K) .

By 1.2.1, 1.2.2, and 1.3.2, formula 1.2 becomes an identity of
vectors with identical components: '

If D4 3,4,8 , then, up to a factor in K* ’

1,0(D
(1.4) , . 0~ (:@)i(y'hn) —H-D"' ey
Mo eGH/AK) T K m (3§1 1 D
€ =

1.4.1 Before discussing 1.4 let us write down the corresponding
relations for D = 3,4,8 . In these cases we simply take x==J51
in 1.1: all three class numbers are 1 . The corresponding
-elliptic curves AD/K were briefly discussed in I, 7.5. They
"are actually defined over Q and we have isomorphisms of motives
in /%Q(Q) :

~

H'(Ap) ¥ Mlay) ,

because A is constructed such that L(H1(A)/Q,s) = L(JD,s) .

Thus, writing Op = j w the real period of a nonzero differ-
Ap(R)

ential of the first kind w on AD/Q , we find the following

identities of classes in C*/Q* :

.y ) F(1)2
~ a
1 1
T T (=
0 N Tea) - (3)T(3)
Q r(g)
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Dirichlet character corresponding to K c Q(pp) .

Let F Dbe any finite abellan extension of K such that yx takes
values in K  on ideals which are norms from F . (Note that F
has to contain the Hilbert class field H of K .) Then there
exists an elliptic curve A defined over F ' such that Hi(A) 1is
a motive for the Hecke character ¢ = (onF/K , considered as
character of F with values in K). This is a special case of
Casselman's theorem, i. e., theorem 6 in [Shi L] - cf. I, 4.1.1.
Note that, in terms of A , the inclusion K c F is given by

the action of End A on the tangent space of A at the origin. -
Cf. also [GS] § 4 . |

From II, 1.8.6 and II, 1.8.8, we find that, for all r : E < C

which restrict to To ¢ K-C,

h

+[F : H]
(1.2.1) P(XiTgT)

D = Tr P(¢35s70) ’

0|K=TO

up to a factor in E* .

1.2.2 By II, 1.5.1 and II, 1.6.6, p(w;a,To) is, independently
of T, and o witn U‘K =T, , equal (up to the usual indetermin-
acy) to Q_ , a fundamental period of the elliptic curve AC/FC

In other words, the complex lattice Ao corresponding to the pair
(A9(¢),w”) , for a holomorphic 1-form w on A/F whose class is
an F ® K basis of H%R(A) , satisfies

Ac' Q@ = Qo' K e C .

We now make the following

1.3 Assumption. F may be chosen to be the Hilbert class field

: *
H of K . In other words, yx takes values in K 9on all principal
ideals on which it is defined.

1.3.1. Remark., Characters yx of type -1 which satisfy 1.3
exist for all imaginary quadratic fields K ~ their construction
is straightforward. The field of values E 1is then of degree hD
over K - see [Ro], cf. [Sch 0}, E . - It can have subfields which
are galols over K only insofar as the few roots of unity in K*
afford Kummer extensions corresponding to elements in the class
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r(la)z

var

T (1)T(2)
08 ~a I‘(cge) = _8__..%_. .

6 =

(by II, 4.0.2)

To be sure, in the first two cases, it seems much more natural to
go the other way: the formulas for n3 and 04 are classically
well-known (cf. § 2 below), and they imply, by II, 3.5, that

An ¥ My(ay) over K, and in fact over Q@ . This then shows
what was claimed in I, 7.5: that, for D = 3,4, the elliptic
curves A, described are such that H1(AD) is a motive for Jp .

1.4.2 Multiplying 1.4 with its complex conjugate ylelds a re-
lation up to a rational number. In order to put it into a classical
shape we apply II, 4.0.2 to the product on the right once, and use
the following relation which is proved by arguments of the kind
well-known in the context of the analytic class number formula for
real quadratic fields:

. 5 |
(1.4.3) ;EE sin(n %) rag -JB"hD .
e(3) =1

' This version holds for all D > 0O such that --D is the discri-
minant of a gquadratic field. In fact, the more natural right hand

side, —/5T°(D)/2 was replaced by —/ﬁ’hD in order to make it
come out right for D = 8 .

Thus, writing 2m the number of units of K , we get the
following relation, which can be checked for the exceptional
cases D = 35,4,8 directly from 1.4.1:

1.4, Iy =D, g ‘ e(d)m
eded) bl 7 %% 3 ol F

Note that the complex conjugate Ku of A is not intrinsically

. 3 * -
defined: K(a,) need not be a CM field. But, as Aﬁ e K, 3

i
is well-determined up to a sign - which is inessential for 1.4.4.
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1.4.5 Up to the interpretation of the factor 4 Ku -Mﬁ1hD ,
1.4.4 is easily seen to be the exponential of a precise identity
found by M. Lerch in 1897 (and rediscovered later by Chowla and

Selberg), taken modulo O* - see § 2 below. In this analytic
_ . _n
identity, the factor A Ku ~/D D appears as the 12-th root of

] A(AU) , where A(nc is the discriminant of the lattice A,
o
mentioned in 1.2.2. - See 1.5.6 below.

1.5.1 The left hand side of 1.4 - or of 1.4.4 ~ only depends on
the field K . In fact, two elliptic curves over H coming from
different characters y of K (like in 1.2) are twists of each
other, by a finite order character of H of the form p-» NH/K -
so we can use II § 3. Similarly, if any elliptic curve C/H

with complex multiplication by K 1s given, it will be the twist
of an A 1like in 1.2, by a finite order character of H - and
again II § 3 tells us by which factor in H®® to modify the
left hand side of 1.4 in order to get the formula for the product
of periods of the CY% . - For the more general case where C 1is
defined over some F o H , see § 3 below. There we shall also
discussfpossible motivic interpretation of 1.4.4.

1.5.2 H/K-curves.

An elliptic curve A with complex multiplication by K defined
over H 1is called an H/K-curve, if it is H-isogenous to all
conjugates A% , with ¢ ¢ G(H/K) . If ¢ 1is the Hecke character
of H with values in K such that H1(A) = M(y) , then A is
an H/K-curve if and only if, for all ¢ € G(H/K) and all ideals
e of H on which ¢ 1is defined, one has

g () = y() .

If A 1is an H/K-curve, then

By

¢ = woiONH/K,

where 1 1is the inclusion of ideals of K into ideals of H .
The character yeoi of K with values in K satlsfies
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1.4.5 Up to the interpfetation of the factor 8, EU —/5'hD ,
1.4.4 1s easily seen to be the exponential of a precise identity
found by M. Lerch in 1897 (and rediscovered later by Chowla and
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h
identity, the factor A A —JD appears as the 12-th root of

|| A(A ) , where A(Aog is the discriminant of the lattice Ay
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the field K . In fact, two elliptic curves over H coming from
different characters y of K (1like in 1.2) are twists of each
other, by a finlte order character of H of the form “°‘NH/K

so we can use II § 3. Similarly, if any elliptic curve C/H
with complex multiplication by K 1s given, it will be the twist
of an A 1like in 1.2, by a finite order character of H - and .
again II § 3 tells us by which factor in Hab to modify the
left hand side of 1.4 in order to get the formula for the product:
of periods of the C% . - For the more general case where C 1is
defined over some F o> H , see § 3 below. There we shall also
discussfpossible motivic interpretation of 1.4.4.

“1.5.2 H/K-curves.

‘An elliptic curve A with complex multiplication by K defined
over H is called an H/K-curve, if it is H-isogenous to all
conjugates A% , with ¢ € G(H/K) . If ¢ 1s the Hecke character
of H with values in K such that H1(A) = M(y) , then A is
an H/K-curve if and only if, for all ¢ € G(H/K) and all ideals
¢ of H on which ¢ 1is defined, one has

g9) = y(a)
If A is an H/K-curve, then

* = ¢010NH/K,

where i 1is the inclusion of ideals of K into ideals of H .
The character yoi of K with values in K satisfies
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L

(by II, 4.0.2)

0g ~% TI(cag) = — .

Q VT

To be sure, in the first two cases, it seems much more natural to
go the other way: the formulas for 03 and 04 are classically
well-known (cf. § 2 below), and they imply, by II, 3.5, that

Ap = Mp(ap) over K, and in fact over Q . This then shows
what was claimed in I, 7.5: that, for D = 3,4, the elliptic
curves AD described are such that H1(AD) is a motive for JD .

1.4.2 Multiplying 1.4 with its complex conjugate ylelds a re-
lation up to a rational number. In order to put it into a classical
shape we apply II, 4.0.2 to the product on the right once, and use
the following relation which is proved by arguments of the kind
well-known in the context of the analytic class number formula for
real quadratic filelds:

: D
(1.4.3) ;lj: sin(m g> -th
e(3) =1

This version holds for all D > 0O such that --D is the discri-
minant of a quadratic field. In fact, the more natural right hand

. h
side, _¢51¢(D)/2 was replaced by -Jf? D in order to make it
come out right for D =8 .

Thus, writing 2m the number of units of K , we get the
following relation, which can be checked for the exceptional
cases D = 3,4,8 directly from 1.4.1:

(1.4.4) 8, Eh I [:£§L a, 0, ~4 ai}g;z)* T(%)e(J)m .

o € G(H/K) Q

Note that the complex conjugate Zu of A“ is not intrinsically

defined: K(s ) need not be a CM field. But, as Az € K, 5,

is well-determined up to a sign - which is 1nessent1al for 1. 4 4.
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(1.5.3) w-(yoi) = Jg'-N°

for some character 1 of K of exponent two. Now we can imitate
the arguments that have led us to 1.2, and from there to 1.4,
obtaining 1.4 with the periods 1, of the A% . It is not always
easy, however, to identify the character p for a given H/K-
curve A .,

1.5.4 Standard Q-curves

Assume D > 3 1is odd, and recall from [Gr 1] § 11 the fundamental
Hecke character of H attached to the field K = @(~/-D ) :
reading the Dirichlet character € of K as a character

fog/ /B - o - lx 1]

_every principal ideal of K prime to —J:B admits an unique
generator « €K' with e(a) = 1, Call Xp any extension to
all ideals of K prime to D, so Xp is a Hecke character of
K with values in some CM field E of degree hD over K . Put
*D = XD'°NH/K - this is- the fundamental Hecke character of H
with values in K we were alluding to above. We claim that

hy e

. (1.5.5) XD = JDN ’

with no twisting character u .

One way to prove (1.5.4) is by direct attack. - We leave this as
an exercise to the reader, noting only that, if hD is odd, one
can get away without really looking at the definition of JD

see [BL], lemma 3.4. - This direct proof of 1.5.4 verifies 1.4
with Au =1, and QU the pegiod of AD , with AD,Q{ being
the standard Q-curve of K : H (AD) = M(¢D)

Alternatively, one can show that p =1 if one has an independent
way of checking that 1.4 holds for the OU of AD , with

Au =1 - cf. II, 3.5. Now, Gross has shown - see [Gr 1], 21.2.2
and [Gr 3], 5.6 - that the analytically proved relation 1.4.4

can be refined directly to yield exactly this: 1.4 for ‘AD

with Au =1 . (In the case hy odd, this elementary argument
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of Gross was quite an important ingredient in the proof of the
F-hypothesis for imaginary quadratic fields of odd class number:
see [BL], a paper completed before the advent of Anderson's mo-
tives.)

1.5.6 For any D, let A/H and A'/H be elliptic curves with
complex multiplication by K , with characters ¥, ' , respectively
so that

Hy(A) = M(4) and Hy(A') = M(¢')

Put v = ¢'/¢ . Assume we know 8, in 1.4 applied to the periods

a, of A® . Then, for n! corresponding to A'9 | one has

(1.5.7) 'l;l'oc', e A(wi)."l:’l'na.

where 1 is as in 1.5.3. This then determines the factor A;
which has to be used in 1.4 for the ﬂ& . - Cf., [BG], 10.5, where
the analysis of the factors is finer than our motivic methods
permit. There, Gross refers back to [Gr 4] § 4; cf. the analogous
passages in [GS], §§ 4, 9. - The formula recalled after [GS], 10.1,

implies that the two expressions A A —JD and ] A(Ac) -

see 1.4.5 - do transform the same way under changemen% of the
curve A/H . So, it is enough to check they are equal for one
such A ., This is what we have indicated, in 1.5.4, for D odd. -
For curves that are no longer defined over H , see 3.2 below.

2. An historicsal aside

I am indebted to R. Sczech for pointing out to me that an analytic
formula which implies 1.4.4 occurs as identity no. 163 in E.
Landau's paper [La]. Thanks to Landau's bibliographical scrutiny,
this paper contains references to what probably is a fairly
complete history of this formula, prior‘to 1903.

Special cases, including @(—~/-4') - the lemniscatic case - and
Q(—~/=3 ) were known early in the 1gth century, 'the main reference
being Legendre's book [Le] - e.g., 1&re partie, n& 146, 147;

pp. 209 f. By the middle of that century, the lemniscatic formula
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' n
(1.5.3) u.(yot) = Jgl-w°

for some character |4 of K of exponent two. Now we can imitate
the arguments that have led us to 1.2, and from there to 1.4,
obtaining 1.4 with the periods f; of the A% . It is not always
easy, however, to identify the character p for a given H/K~-
curve A .,

1.5.4 Standard Q-curves

Assume D > 3 is odd, and recall from [Gr 1] § 11 the fundamental
Hecke character of H attached to the field K = Q(=/-D ) :
reading the Dirichlet character € of K as a character

€ 1 og/ ~-D - o - iz 1}

every principal ideal of K prime to —/:B admits an unique
generator a € K* with e€(a) = 1 . Call Xp any extension to
all ideals of K prime to D, so Xp is a Hecke character of
K with values in some CM field E of degree hy, over K . Put
vD = XD"NH/K,— this i1s the fundamental Hecke character of H
with values in K we were alluding to above. We claim that

o)) “ne

(1.5.5) Xp. = JpN ,

with no twisting character u .

One way to prove (1.5.4) 1s by direct attack. - We leave this as
an exercise to the reader, noting only that, if hD 1s odd, one
can get away without really looking at the definition of Jj -
see (BL], lemma 3.4. - This direct proof of 1.5.4 verifies 1.4
with Au 1, and Q, the period of AD , with AD,Q{ being-:
the standard Q-curve of K: H (Ap) = M(vD)

Alternatively, one can show that p =1 if one has an independent
way of checking that 1.4 holds for the QU of AD , with

Au =1 - cf. II, 3.5. Now, Gross has shown - see [Gr 1], 21.2.2
and [Gr 3], 5.6 - that the analytically proved relation 1.4.4

can be refined directly to yield exactly this: 1.4 for ‘AD

with Au = 1 . (In the case hy odd, this elementary argument
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of 1.4.1 above could be used, without further comment, by Eisen-
étein: {Ei 1], p. 186. - It is this part of the history that
Chowla and Selberg were aware of when writing their papers: the
annonncement [CS] (see § 4 for our formula) and the final version
[sc] (§§ 8, 12). - C£. [ww], 22.8.

In the analytic proofs of 1.4.4, the I'-values, or rather their
logarithms, usually enter through the evaluation of '

L'(e,1) = - ) e(n) 2282
n=1

via Kummer's series for 1log I'(x) - i.e., the identity derived in
[Ku]. This part seems to have been done first by A. Berger - see
(Bel, p. 29/30 - as early as 1883. When Lerch rediscovered this
argument in 1897 - [Ler], p. 302 £ - Kronecker, using his "first"
limit formula - cf. [Wel, VIII § 6 - , had already expressed
L'(e,1) 1in terms of various constants and (logarithms of) special
values of theta series which correspond to the Qc's in our
notation - see [Kr], art. XVI, formula 7. Putting both parts to-
gether, Lerch deduces our identity (more precisely, its logarithm)
as formula 26 of [Ler], p. 303.

Weil points out ~ [We 2], IX §§ 2,4 - that Lerch could have used
his determination, in 1894, of the derivative at s=0 of the
Hurwitz zeta function, in order to relate L'(¢,1) to values of
log I' . But using Kummer's series for this seems to have been
closer to the taste of the day: in fact, J. de Séguier, a Jesuite
professor of mathematics at the University of Angers, rediscovered
this part of the proof in 1899 - see [dS 2] § 10 - although, as
Landau does not fail to point out ([Lal, p. 177), he looses a
factor of g along the way. de Séguier should have been especially
well prepared to put together both parts of the proof because he
had published, in 1894, a whole book - [dS 1] - on Kronecker's
series of mémoires [Kr]. But our identity does not seem to have
caught his interest.

Landau, in [Lal, gives new proofs of both parts of our identity.
The part done first by Berger allows him to illustrate the use
of divergent Dirichlet series - the theory of which he develops
in the 3rd section of this paper -, see {Lal, 177-179.
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I do not know of any occurence of our identity between [Lal and
{cs], i.e., between 1903 and 1949.

Well seems to have been the first to envisage a geometric proof

of our identity - see [W III], 1976 b (and 1976 b*). He did not
succeed in general; but in a slightly later menuscript - [W III],
1977 ¢ - he provided what Gross could then develop into an essential
tool for his geometric proof of 1.4 32_32 factors in ﬁ* - sSee

[Gr 2]. This proof tracks down periods along a family of abelian
varieties which, at one point, contains (a factor of) the Jacobian
of a Fermat curve - whence the I'-values -, at another a power of

the elliptic curve A - whence F any Qg . Gross' deform-

ation argument, in turn, provided a key step in Deligne's proof
of the fundamental theorem‘I, 2.1.3 on absolute Hodge cycles on
abelian varieties - see (pMosl, I, 4.8, 4.11 - : it enabled him
to show that certain "exceptional cycles", presented in [W III],
1977 ¢ as would-be obstructions to the Hodge conjecture, were
at least absolutely Hodge. Since it is basically this theorem

I, 2.1.3 - along with Anderson's motives - on which our deduction
of 1.4 rests, the story of the geometric proofs has come almost
full circle.

An amazing kind of a geometric revindication of the log in front
of 1.4.4 which naturally comes out of the analytic proofs is
provided by Falting's theory of the modular height of abelian
varieties - cf. [DP], 1.5. Should the original identity really

be viewed as an identity of the (logarithmic) heights of two ... ?

The attempt, in [Morl, to generalize the identity along analytic
lines has, so far, not been linked to the geometric vein. The same
can be said of the analogues for real quadratic fields in [Den].
If these theories have a geometric meaning it can be expected to
be fairly different from the one we encountered with 1.4.

3. Twists and multiples

5.0 Either one of the following two properties characterize the
imaginary quadratic fields among all CM fields.
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3.0.1 The set of all CM types of K forms a Z basis of the

—————

group of infinity types of all Hecke characters of K ;

3.0.2 Each element of Z[Hom(K,f)]l] is the infinity type of a
Hecke character of K .

Taking everything modulo E:o , the infinity type of the norm N
on K, i.e., 1+c 1if K is imaginary guadratic, these conditions
amount to:

3.0.3 The group of all infinity types of Hecke chracters of K ,
taken modulo Z ¢ , is a free Z module of dimension 1.

We know, from 9, 8.4.3, that the subgroup StK of infinity types
of Jacobl sum Hecke characters of K , taken modulo its element

14c , is precisely h .GZ[Hom(K,C)]/E:o) , for h the class
number of the imaginary quadratic field K . The refinement 1.4

of Lerch's period relation 1.4.4 was deduced by writing the gener-
ator T of StK/ E.U es h-a € h- @Z[Hom(K,C)]/ 2‘ o) . Since we
are working in a onedimensional Z module, the following remark

is plain.

3 1 Remark., If, in the arguments 1.1 - 1. 4, the character Jp
is replaced by any Jacobi sum Hecke character of X (and n
“are changed accordingly), then the period relations between
Télliptic integrals of CM type and values in TI'(Q) that one finds
are all powers of 1.4, up to twisting by the norm or by finite
order characters - see II1 § 3 - , and up to I'-relations - which
should all follow from II, 4.0.

c ! DnU

2.1.1 In [St], Stern, proving a conjecture of Legendre, shows

that at most 2L of the values IT(d) | 0 < j <D} are in-
dependent. with respect to the relations II, 4.0.1/2. Unlike Landau -
(Lal, p. 179 - we do not see 1.4 (or 1.4.4) as a relation which
"allows to reduce.the number of independent values" in this set.
Instead, 1.4 goes beyond II, 4.0 in that it relates two different
kinds of transcendental constants: elliptic integrals and TI'-values.
This is also the use which is made of 1.4 in transcendence theory:
to transport transcendence results from elliptic integrals to
certain combinations of I'-values ...
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A remark similar to 3.1 also applies if we look at 1.4 from the
point of view of the elliptic curves:

3.2 Let F be a finite extension of H , and A'/F an elliptic
curve with complex multiplication by K . Write ¢' the Hecke
character of F with values in X such that H1(A') = M(y"')

As in 1.5.6, let us compare A' to a curve A/H , H1(A)==M(¢)
for which 1.4, with all of its constants, is assumed to be known.
Then §' = v-. (*"NF/H) , for some finite order character v of

F , with values in K . It follows, as in 1.5.7, that (assuming
F/K galois, for simplicity)

2.1 1 . [F : H]

where 1 1s the inclusion of ideals of K into ideals of F .,
Then 1.4 yields, for D # 3,4,8,

[F : H]

A (%—)- D-1 F1H]

(3.2.2) Ku_.__.... I Q' L (3/__‘)2 D) D)][. f
(voi) c€G(F/K) © it 1

e(:])-1
3.3 Gross once asked me for a direct motivic interpretation of
:f;;zh's relation 1.4.4. Remember that we have obtained 1.4.4 by
mindlessly multiplying 1.4 with its complex conjugate. - I pro-
pose the following identity of periods in G*/Q* .as an answer to
this question:

(3.3.1) °+([RK/mM(“'XhD)]|0) = ¢"(M(ap)(-n;) @ K|q) .

In fact, 1.4.4 is deduced from 3.3.1, using the arguments of 1.2 -
1.4 as above, by virtue of II, 1.8.2, an analogue of II, 1.3.2 for

ct , and II, 1.6.6.

Note that, in case hD =1, 3.3.1 corresponds to studying the
Hasse-Weil L-function of the elliptic curve A, instead of separat-
ing itsCM factors L(x,s) and L(X,s)
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CHAPTER FQOUR:

Abelian Integrals with Complex Multiplication

In I1II we have studied the relations between periods of Hecke
characters of imaginary quadratic fields and values of the gamma
function. One aimof this chapter 18 to generalize these results to
Hecke characters of abelian CM fields - see § 2. In order to do so,
however, we first have to analyze a phenomenon which occurs for all
CM fields K of degree [K : @] > 2 : the monomial period relations
implied by Z linear relations among CM types of K . These relations
were discovered by Shimura - see Lshi P], [Shi 0] - ; their motivic
version (up to factors in ﬁ* ) 1is already present in {DP], 8.18 =-
8.23; and their motivic proof (up to T ) was explained in [(DB] .

1. Shimura's monomial relations

1.0 Let K be an algebraic number field, and X4 o for i=1,...,r ,
a collection of algebraic Hecke characters of K all of which take
values in one number field E . Assume there are integers ny such

" that

(1.0.0) 1| |1 XyT = Mo,

for some character of finite order u . Then, by I1I, 1.8.3, we get
the period relation

it

(1.0.1) :ﬁ: pixy) L =p(n) in (K@ E e c)/(EHHRKE), (k@ B)* .

Furthermore, we know how to compute p(p) from uy : - see II, 3.2.
In particular, for all ¢ € Hom(K,E) , T € Hom(E,C) , the complex
number p(ujo,T) lies in the composite of the maximal abelian ex-

tension of K° with E' ;

(1.0.2) p(uso,r) € [(k9)8P.E"1" « ¢* .

1.1 Shimura's basic relations

1.1,0 Assume that, in the situation of 1.0, each X4 is of weight
-1 , and that, for all ¢ € Hom(K,C) , T € Hom(E,C) , the Hodge
exponents n,(c,T) of x; - see ®, § 4 - are all either -1 or O,
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for all i = 1,...,r . Then 1.0.0, with unspecified u of finite _
order, is equivalent to a Z 1linear relation between CM types of K .
(Given r CM types of K , one has to choose E such that

characters X3 with values in E exist, corresponding to the types.)
As mentioned before - III, 3.0 = nontrivial such relations exist if
and only if K contains a CM field of degree at least 4.

1.1.1 In the situation o: 1.1.0, let us assume, without loss of
generality, th?t E is a CM field, and let us fix embeddings
1

K< ¢C, E < (C which allow us to consider K and E as sub-
fields of € .

There exist abellan varieties Ai with complex multiplication by E
defined over K such that H1(A1) ™ M(xi) - see I, 4.1.,1, If
ni(c T) = =1, there exists a holomorphic differential form w i

4
i
?

i R [

(

g
on AY , defined over K° E' € ¢, such that e (w(i)) = e wé
for all e € E , and

(1.1.2) . plxgie) = [ wll)
(1)

o .

(up to the usual indeterminacy), for any E basis Ygi) of Hq(Ai) -
cf. II, 1.5.1.

Y

Putting o = 1 in 1.1.2 shows that 1.0.1 implies Shimura's basic
period relations, as stated, e. g., in theorems 1.2 and 1.3 of {Shi P].
Note, however, that the passage to antiholomorphic periods is normal-
ized differently in Shimura's paper; he simply inverts the correspond-
ing holomorphic period, whereas we are obliged to also multiply by
2ni - see II, 1.5.4.

The same translation also establishes propositions 1.4, 1.5, and 1.6
of [Shi P)]. - Cf. [DP], 8.18 and [DB] for motivic interpretation and
proof of all these relations in C /@

Instead of explicitly stating these results up to ﬁ* , let us discuss
finer relations provided by our formalism of the p(xi),



- 136 -

for all i = 1,...,r . Then 1.0.0, with unspecifiéd uw of finite
order, is equivalent to a Z 1linear relation between CM types of K .
(Given r CM types of K , one has to choose E such that

characters X4 with values in E exist, corresponding to the types.)
As mentioned before - III, 3.0 - nontrivial such relations exist if
and only if K contains a CM field of degree at least 4.

1.1.1 In the situation of 1.1.0, let us assume, without loss of
generality, that E 18 a CM field, and let us fix embeddings
1 1

K< ¢, E =€ which allow us to consider K and E as sub-
fields of € .

There exist abelian varieties Ai with complex multiplication by E
defined over K such that H1(Ai) - M(xi) - see I, 4.1.1, If

ni(U,T) a -1 , there exists a holomorphic differential form w i

A A

(
on Ai , defined over K°- £ e €, such that e (wéfl) = e wéf
for all e € E , and

(1.1.2) Plxgio,m) = [ wll)
(1)
g

(up to the usual indeterminacy), for any E basis Ygi) of Hﬁ(Ai) -
cf. II, 1.5.1.

Pﬁiting o =1 in 1.1.2 shows that 1.,0.1 implies Shimura's basic
period relations, as stated, e. g., in theorems 1.2 and 1.3 of [Shi P].
Note, however, that the passage to antiholomorphic periods is normal-
ized differently in Shimura's paper; he simply inverts the correspond-
ing holomorphic period, whereas we are obliged to also multiply by

2nl - see II, 1.5.4.

The same translation also establishes propositions 1.4, 1.5, and 1.6
~of (Shi P]. - Cf, [DP], 8.18 and [DB] for motivic interpretation and
proof of all these relations in € /& .

Instead of explicitly stating these results up to T , 1let us discuss
finer relations provided by our formalism of the P(Xi)-
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CHAPTER FOUR:

Abelian Integrals with Complex Multiplicatiogr

In III we have studied the relations between periods of Hecke
characters of imaginary quadratic fields and values of the gamma
function. One aimof this chapter is to generalize these results to
Hecke characters of abelian CM fields - see § 2. In order to do so,
however, we first have to analyze a phenomenon which occurs for all
CM fields K of degree (K : @) > 2 : the monomial period relations
implied by Z linear relations among CM types of K . These relations
were discovered by Shimura - see (shi P], {(Shi 0] - ; their motivic
veraion (up to factors in T ) is already present in [(DP], 8.18 =-
8.23; and their motivic proof (up to L ) was explained in [DB] .

1. Shimura's monomial relations

1.0 Let K be an algebraic number field, and Xy o for i=1,...,r ,

a collection of algebraic Hecke characters of K all of which take

values in one number field E . Assume there are integers ny such
~that

I ni
(1.0.0) Irq Xy = Mo

for some character of finite order u . Then, by II, 1.8.3, we get
the period relation

(1.0.1) :ﬁ: pix) L = () in (K8 Ee o)/(e)HounkKe), (k& B)*

Furthermore, we know how to compute p(p) from uy : - see II, 3.2.
In particular, for all ¢ € Hom(K,C) , T € Hom(E,C) , the complex
number p(p;e,r) lies in the composite of the maximal abelian ex-

tension of K° with E' ;

{1.0.2) p(pio,t) € [(K")ab-E"]* cc .

1.1 Shimura's basic relations

1.1.0 Assume that, in the situation of 1.0, each Xi is of weight
=1 , and that, for all o € Hom(K,C) , T € Hom(E,C) , the Hodge
exponents ni(o,f) of x; - see 8, § 4 - are all either ~1 or O,
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f1.2 Shimura's refinement

1 1
1.2.0 As before, let K<—»C , E <—+C be embedded algebraic

number fields; E a CM field. Let x be an algebraic Hecke
character of K with values in E , and n(o,r) 1its Hodge ex-
‘ponents. Call Ko € K the fixed field of

{s € G(Q/Q)ln(é1,7) = n(1,7r) , for all r € Hom(E,C)} .
Likewise, let E° c E be the fixed field of
{s € ¢(3/Q)|n(c,81) = n(o,1) , for all ¢ € Hom(K,C)} .

’Ko and Eo are each either Q@ or a CM field. From their definition,

it follows that n descends to a functiqn
n, .: Hom(Ko,C) X Hom(Eo,c) - Z
:such that

(=) n(o,7) = no(UIKorTlEo) ’

for all o € Hom(K,C) , T € Hom(E,C) .

The following constructions will only depend on the function n
or equivalently, on the algebraic¢ homomorphism

o 4

t ¢ R G ~- R G
K,/@ "m E,/@ 'm

defined by the no(oo,To)'s - see 9, § 2(&), and 0, § 4 . For all
‘finite extensions Ko c L and E c_i» F , the extended algebraic
‘homomorphism

LetoN g Ry ;G = Ry Gy

18 given by the function n on Hom(L,C) x Hom(F,C) defined by
-equation (¥%). Thus, for L =K, F = E, we find the infinity type
~of the Hecke character yx . Writing w its weight, we have, for

;¢ = complex conjugation, that
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no(co,To).+ no(co,cfo) =W,

independent of (o,,7,) .

i
1.2.1 There exists a finite extension Ejc—, F , F a CM field,
and a Hecke character x, of K, with values in F and infinity
type 1ot ., - Furthermore, there exists a finite abelian extension

L of K, such that X = Xo° NL/KO takes values in E, .

~t T I
1,2.2 Taken modulo t(Kg)ab- E °]* , the period p(i;?,ro) - for
¥ € Hom(L,C) , T, € Hom(E,,C) - depends only on t,o, := EIK , and
o
r

o“ It will therefore be written

» o Toq s
p(tiog,7,) € € /(K)20 £ 1",

If Xy 0 for i=1,...,r , are as in 1.1.0, and such that

o

(1.2.3) meyx = IIT1' X1

for some u of finite order, then

I
(1n204) p(t;1lTo) ’E}* Il:': p(Xi;“lT) 4

for any extension Tt of To to the common field of values E of
x and the Xy o = Again, all that matters here, are the infinity

types of the X{ v

Relation 1.2.4 almost establishes conjecture 1.7 in [Shi Pl. The

only difference is that Shimura wants the period which we denote by
T

p(t;1,To) to be well defined up to [Kgb- E; o]* , where E; is

the maximal totally real subfield of E° . To achieve this, we simply

repeat remark 8.22 of [DP] in our context:

First, note the naturality of the formation of p(t) , which is
easily proved on the level of Hecke characters, by transport of
structure - cf. [ DP], 8.18.4:
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n,(0,,Ty) + Nylagscty) = w,

independent of (o,,7,) .
i
1.2.1 There exists a finite extension E, F, F aCMfield,
and a Hecke character x, of K, with values in F and infinity
type i°t . - Furthermore, there exists a finite abelian extension
L of K. such that ¥ = y_o N takes values in E_ .
o" "L/K, o

o

P4 T N As
1.2.2 Taken modulo E(Kg)ab- E °1" , the period p(x:c.fo) - for
¥ € Hom(L,C) , t € Hom(E,,C) - depends only on t,o, := EIK , and
o

o" It will therefore be written

4 Q

» o Too®
p(tiog,my) € € /(K20 € °1" .

If Xy 0 for i=1,...,r , are as in 1.1.0, and such that

T

(1.2.3) ey = Irr; Xi o

for some pu of finite order, then
r
{(1.2.4) P(t31n"'°) %{* 1' |1 P.(Xi;1n7) ’

for any extension Tt of To to the common field of values E of
X and the Xy *+ = Again, all that matters here, are the infinity

types of the vy, ...

Relation 1.2.4 almost establishes conjecture 1.7 in [Shi P]. The
only difference is that Shimura wants the period wh;ch we denote by

T
p(t;1,7,) to be well defined up to (K2°. E! °1" , where E! is
‘the maximal totally real subfield of E, . To achieve this, we simply

Tepeat remark 8.22 of [DP] in our context:

First, note the naturality of the formation of p(t) , which is
.easily proved on the level of Hecke characters, by transport of
structure ~ cf. [DP], 8.18.4:
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1.2 Shimura's refinement

1 1
1.2.0 As before, let K= € , E <+ C be embedded algebraic

number fields; E a CM field. Let y be an algebraic Hecke
character of X with values in E , and n(o,r) its Hodge ex-
ponents. Call K, c K the fixed field of

{s ¢ a(W/2)|n(s81,7) = n(1,7r) , for all r € Hom(E,C)} .
Likewise, let E° c E be the fixed field of
{s ¢ ¢(8/0)|n(c,81) = n(o,1) , for all ¢ € Hom(K,C)| .

Ko and EO are each either Q@ or a CM field, From their definition,

it follows that n descends to a function

n, : Hom(Ko,C) X Hom(EO,C) - Z

such that
(*) n(U:T) = no(U'lxopTlEo) ’

for all ¢ € Hom(K,C) , T € Hom(E,C) .

The following constructions will only depend on the function n
or equivalently, on the algebraic homomorphism

(o) ?

t :'RKO/Q € - REO/Q Cn

defined by the no(ao,fo)'s - see 0, § 2(c), and 0, § 4 . For all
finite extensions Ko c L and Eo c_i¢ F , the extended algebraic
homomorphism ’

is given by the function n on Hom(L,C) x Hom(F,C) defined by
equation (*), Thus, for L =K , F a E, we find the infinity type
of the Hecke character ¥ . Writing w its weight, we have, for

¢ = complex conjugation, that
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1.2.5 If a : Kl — K, and B : E,—E! are isomorphisms of
fields, then

p(Bta:aoa.TOB'1) = p(tio,,T,)

From this, II, 1.6.6, and the fact,that complex conjugation c¢ in-
duces a well defined automorphism of Ko as well as E, » we obtain
the equations

(1.2.6) P(Ei0,,7,) = p(f;coo;cfb) = p(t;o c,7 )
= p(ctejo,,7,) = p(tio,,7,)

g
(Note that (Koo)".:‘b is stable under c¢ , even though ¢ does not in

- - o
general commute with other automorphisms of (Koo)ab!)

Thus, by Hilbert 90, the periods p(t;oo,To) are represented by

5] T
real numbers; they are well determined. up to a factor in C(Ko°)abE; °]*.

1.2.7 Remark. D. Blasius has informed me that he has not only
found the above results independéntly, by the motivic formalism; but
that he has also managed to prove conjecture 1.7 of [Shi P] adapting
Shimura's proof - as in {Shi P), section 5+, thus improving upon his
1981 Princeton thesis (unpublished) in which a partial result was
obtained.

~Let us now go on to examine a few standard properties of the

:_p(t;do,To) - cf. [DP], 8.18 for the relations up to T .

1.2.8 For finite extensions KO c Ké ’ Eo C——+-E5 ’ o
field, put

p(i°t°N sg! T') =p(-t-o.l T )
Ké/Ko’ ’ ’ lKo’ IEO ’

but consider the left hand side as being well determined up to
1 ]
(ke H)P(EH)T' T L - crf. 11, 1.8.6/8.

1.2, If u and u' are two algebraic homomorphisms K* - E* ’

1 1
both satisfying n( )(o,r) + n( )(O,CT) = ¢8t , independent of (o,7) ,
then - in the sense of 1.2.8 -~ ,
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p{ujo,t)* p(ut;o,r) = p{uru';o,r)
1.2.10 From 1.2.9 and II, 1.8.4, we get:

p(t;UO-To)' P(tiUO:C‘TO) = (2"i)w
where
wan (o,,7,) + n (r,,ct,).

1.2.11 "Reflex Principles"

"Reflex principled' - like theorem 2.3 of {Shi P]; theorem 1.2 of
{shi 0]; proposition 8.20 of {DP] - are formal consequences of the
general formalism of the periods concerned - i.e., in our case, of
formulas 1.2.5, 1.2.8 = 1.2.10. They typically serve to trace the
periods through arguments in which the rdles of the fields K, and
E, above are interchanged. See, for instance, the use that Deligne

makes of [DP], 8.20; cf. [HS], p. 35.

Theorem 1.2 in {Shi 0] has the advantage of being particularly simple
and general. But it seems to require a formalism of periods that are

essentially only determined up to a factor in 3* . = So, we content

ourselves with a refined version of [DP], 8.20.

Let t" : REO /0 O = Bg /e G, be the algebraic homomorphism defined

by the invariants n*(f g ) = n, (c o ) . Define p(t iT91%% ) as
in 1.2.1/2, via p(x*,T,U ) for a suitable Hecke character Y* of
some finite abelian extension F of Ej with values in K .
Assume, as in II, 1.8.1, that none of the n (0,,7,)'s equals

% W o %(no(oo,fo) + n,(0,,c7,)) . Then we have the following identity

of classes in C*/(Mab)* , where M 1is the smallest Galols extension

of Q@ contained in ¢ which contains both Ko and Eo .

(1.2.12) TT p(t71,0,) = TT pltiog,1) .
o‘o Uo .
no(0031)<§ no(U°|1)<§

The proof is straightforward - cf. (DP], 8.20. - Further refinements
of 1.2.12 may be treated using the construction of Blasius mentioned
in II' 2.2 L )
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p(uso,t)+ p(u'io,r) = p(uut;o,r) .
1.2.10 From 1.2.9 and II, 1.8.4, we get:

p(tioy,T,) " P(tio ,er ) = (2m1)Y
where
w=n(o,,7,) + n,(rg,er ).

1.2.11 "Reflex Principles"

"Reflex principled’ - like theorem 2.3 of LShi P]; theorem 1.2 of
{Shi 0]; proposition 8.20 of [DP] - are formal consequences of the
general formalism of the periods concerned - i.e., in our case, of
formulas 1.2.5, 1.2.8 - 1.2.10, They typically serve to trace the
periods through arguments in which the r8les of the fields KO and
Eo above are interchanged. See, for instance, the use that Deligne
makes of [DP}, 8.20; cf. [HS], p. 35.

Theorem 1.2 in [Shi 0] has the advantage of being particularly simple
and general. But it seems to require a formalism of periods that are
essentially only determined up to a factor in ﬁ* . - S0, we content
ourselves with a refined version of [DP], 8.20.

»
Let t : E /m m RKO/Q m be the algebraic homomorphism defined

by the invariants n (To,ao) = no(oo,ro) . Define p(t*;TO,UO) as
in 1.2.1/2, via p(x*,T,o ), for a suitable Hecke character Y* of
some finite abelian extension F of E° with values in Ko .
Assume, as in II, 1.8.1, that none of the no(co,To)'s equals

% W = %(no(oo,To) + no(co,cTO)) . Then we have the following identity

of classes in C*/(Mab)* , where M 1is the smallest Galois extension

of Q contained in @ which contains both Ko and Eo .

(1.2.12) T p(t'51,0,) = TT pltiog,1) .
% % ‘
n0(°0’1)<§ nO(U°s1)<“2’

The proof is straightforward - c¢f. (DP], 8.20. - Further refinements
of 1.2.12 may be treated using the construction of Blasius mentioned
in II, 2.2 ...
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ad AL :
1,2.5 If a : K} — K, and B : E,— E! are isomorphisms of

fields, then

p(Btaso @7 871) = p(tiog,Ty)

From this, II, 1.6.6, and the fact, that complex conjugation c¢ in-
duces a well defined automorphism of Ko as well as E, » we obtain
the equations

(1.2.6) P(ti0,,7,) = P(t3°°oicf6) ’ p(tjo, e,7 )
= p(ctejo,,T,) = p(t;co,To) .
(Note that (Kz°)9b is stable under ¢ , even though ¢ does not in
general commute with other automorphisms ofl (Kzo)ab!)
Thus, by Hilbert 90, the periods p(t;co,fo) are represented 5y

a T
real numbers; they are well determined. up to a factor in C(Ko°)abE; o7,

1.2.7 Remark. D. Blasius has informed me that he has not only
found the above results independently, by the motivic'formalism; but
that he has also managed to prove conjecture 1.7 of [Shi P] adapting
Shimura's proof - as in {Shi P}, section 5=, thus improving upon his
1981 Princeton thesis (unpublished) in which a partial result was
obtained.
~Let us now go on to examine a few standard properties of the
._p(t;oo,To) - cf. [DP], 8.18 for the relations up to T .

1.2.8 For finite extensions K, € K, , E, & E
field, put

1t N et ' = t:q! t
P( e Ka/KOQU ' T ) P( o |K°,T |E°) ’
‘but consider the left hand side as being well determined up to
1 1 '
L(kHP(E:H)T'1" . - cf. II, 1.8.6/8.

1.2.9 If u' and u' are two algebraic homomorphisms K - E' ’
both satisfying n(')(o,f) + n(')(G,CT) = ¢cst , independent of (o,T) ,
then - in the sense of 1.2.8 - ,
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1.2.13 For examples of these period relations, the reader should
consult section 2 of {(Shi P] . - As will be indicated in § 2, the
precise relations of the form (1.0.1) are liable, in principle, to
yleld much more information in concrete circumstances (in particular,
if u can be computed) than the coarser but more flexible periods
p(t;c,ro) with their increased indeterminacy.

2. Abelian integrals and the gamma function

2.0 In this section we consider a finite imaginary abelian extension
K of @, with Galois group G . We fix a privileged embedding

Kc—-l—bc L]

2.1 Let x ©be any algebraic Hecke character of K (with values in
some number field E). Write its infinity type as

(2.1.0) t = 2; no € z[6] .
o €G

By 0, 8.4.2, there exists for y ,

. a smallest positive (or: nonzero of smallest absolute value)
integer h , such that there is

e an element a E]B,OC y - 8ee @, 8.,2.1 -
« and a character of finite order p of K,

satisfying,
(2.1.1) ue x® = Je(a) .

Thus, up. Xh takes values in K , and via I, 5.1 we can translate
2.1.1 into the period relation

(2.1.2) px™1) = (Tloca)™) o € (Ko &) k",

using II, 4.2.3 and II, 4.4.2.

2.1.3 The left hand side of 2.1.2 1is easily expressed in terms of

p(p) and p(x) ; so any information one has about u can, in
principle, serve to relate p(x) to values of the gamma function.
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But already the very explicit case discussed in chapter III shows
that y will usually not be easy to determine from x , h and 2a .’

2.1.4 Therefore, let us now discard finite order characters in 2.1.1.
Then a is determined by yx and h wup to addition of an element

'_'13 € ]Bg such that Jp(b) is of finite order. In other words, a is
such that, for all o € G , one has

(2.1.5) Ko™'®) =n_ .

By II, 4.4.5, this determines (I'(oca)) ¢g Up to a factor in
b\ #* * » c
(k) e c ¢ .

Using 1.2.6 and the notation of 1.2.8 above, it follows for all in-
finity types t as in 2.1.0 and all a € By with 2.1.5 that,for all

o € G , we have the period relation in R /(K®*° nR)" ,

(2.1;6) p(t;1,o)h = F(acg)'1 .

2.1. Considering both sides of 2.1.6 as representing classes in
C this relation verfies Gross' period conjecture - see [Gr 2].
§ 4 - for all motives in JL;V(K) of rank 1 over K . In fact, all

these motives are determined bj their Hodge realization (say, at
id_ : @< C ); but they all come from motives of the form M(x)

in /ﬂﬁv(E) , for some ¥ as above - see I, 5.3; I, 6.1.4, and

I, 6.1.6. - This remark covers (and therefore indicates possible re-
finements of) the first two examples discussed by Gross in [Gr 2]

p. 206/7; as for example 3 (p. 207/8), a motivic version of it will
be established in chapter V below.

2.1.8 Suppose € 1is a class of (smooth projective) @-algebraic
varieties for each of which one can show that every Hodge cycle on
it is an absolute Hodge cycle. For Lc T, let A (€], be the
smallest Tannakian subcategory of /fLL which contains C,ICL as well
as all motives of the form h(xL) , wWhere X, is a variety over L
which becomes isomorphic, over U , to a variety in €. Then Gross'
period conjecture holds for the Hodge realizations of all motives in
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But already the very explicit case discussed in chapter III shows
that y will usually not be easy to determine from x , h and a .

2.1.4 Therefore, let us now discard finite order characters in 2.1.1.
Then a 1is determined by y and h up to addition of an element
D€ ]Bloc such that J K(p_) is of finite order. In other words, a is
such that, for all o € G , one has

(20105) %(0‘12) LI ¢ .

o

By II, 4.4.5, this determines (I'(cca)) up to a factor in

ab.* » » - g € G
(K%Y e c ¢ .
Using 1.2.6 and the notation of 1.2.8 above, it follows for all in-
finity types t as in 2.1.0 and all a € ZIBK with 2 1.5 that,for all
o € G , we have the period relation in R /(K n]R)

(2.1.6) p(t;1,0)B =r(acg)'1 .

2.1. Considering both sides of 2.1.6 as representing classes in
C this relation verfies Gross' period conjecture - see [Gr 2].
§ 4 - for all motives in /L;v(l{) of rank 1 over K . In fact, all

these motives are determined by their Hodge realization (say, at
id_ : @ C ); but they all come from motives of the form M(y)

in /{,?{V(E) , for some ¥ as above - see I, 5.3; I, 6.1.4, and

I, 6.1.6. - This remark covers (and therefore indicates possible re-
finements of) the first two examples discussed by Gross in [Gr 2] _
p. 206/7; as for example 3 (p. 207/8), a motivic version of it will
be established in chapter V below.

2.1.8 Suppose € 1s a class of (smooth projective) @-algebraic
varieties for each of which one can show that every Hodge cycle on
it is an absolute Hodge cycle. For Lc @ , let /L[ﬂ]L be the
smallest Tannakian subcategory of //(/ which contains C/% as well
as all motives of the form h(XL) , where X; is a variety over L
‘which becomes isomorphic, over @ , to a variety in €. Then Gross'
period conjecture holds for the Hodge realizations of all motives in
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1.2.13 For examples of these period relations, the reader should
consult section 2 of [Shi P] . - As will be indicated in § 2, the
precise relations of the form (1.0.1) are liable, in principle, to
yield much more information in concrete circumstances {(in particular,
if u can be computed) than the coarser but more flexible periods
p(t;c,?o) with their increased indeterminacy.

-

2. Abelian integrals and the gamma function

2.0 In this section we consider a finite imaginary abelian extension
K of @, with Galois group G . We fix a privileged embedding

Kc——1"c'

2.1 Let y be any algebraic Hecke character of K (with values in
some number field E). Write its infinity type as

(2.1.0) t = }_‘ n o € z[6) .
€

o G

By 0, 8.4.2, there'exigts for y ,

. a smallest positive (or: nonzero of smallest absolute value)
integer h , such that there is

« &an element 2 G]Bg y - see 0, 8.,2.,1 -
. and a character of finite ofder p of K,

satisfying,

(2.1.1) we x® = Jg(a) .

Thus, - xh takes values in K , and via I, 5.1 we can translate
2.1.1 into the period relation

- * *
(2.1.2) puxi1) = (T(oca)™) ¢ € (K@ )K",
using II, 4.2.3 and II, 4.4.2.
2.1.3 The left hand side of 2.1.2 is easily expressed in terms of

p(p) and p(x) ; so any information one has about up can, in
principle, serve to relate p(y) to values of the gamma function.
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/ZEE?IE(K) of rank 1 over K . Moreover, the results of this section

would then extend to all motives in ﬂl[ﬁT]K(E) attached to Hecke
characters yx of K , in the sense of I, 3.3,- This follows from
our proof of I, 5.1; from I, 5.3 and I § 6.

2.1.9 We saw in 2.1.5 that working modulo finite order characters in
2.1.1 allows to express a 1in terms of x and h . As for h , let
us simply remark that it may always be replaced with the index

EAK : StK] of 0, 8.4. We refer to (Sin] for a number of results on
this index.

2.2 Looking at things the other way around, let now a GJBE be
given. Then there exist

. a positive integer r
. algebraic Hecke characters Xqr9ee X of K 1like in 1.1.0
above :

. integers Dyseeesny,

« a character of finite order u of K

such that
i I ni
(202.1) u' || X = J (E) L]
i=1 i K

Let E be a finite extension of K which is a common field of
values for u . and all the X{ * Write J the inclusion
*
(K@ ¢)* s (E® €)" . Then 2.2.1 translates into the period relation

n
(2.2.2) e T el * = 3@ )™, ¢ ) -

By section 1 above, this relation "does not depend" on the particular
choice of xi's - in the sense that all such relations arising from
a can be seen to be equivalent without recourse to the right hand
sides ., - Conversely, all I'-relations arising from comparing the

left hand sides of two instances of 2.2.2, for two different

a,a' € By , via 1.0.1 already follow from II, 4.4.5, and are there-
fore, if taken modulo @ , compatible with Rohrlich's conjecture -
see II, 4.0 - , by virtue of the remark we made following theorem
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II, 4.4.5. Shimura's feelings about this, expressed at the end of
(Shi P] § 4, are therefore proven to have been correct.

We leave it to the reader to write weaker versions of 2.2.2,
neglecting finite order characters in 2.2.1.

2.3 Biquadratix

Let Kc— C be an abelian imaginary field of degree four over Q .

2.3.1 If K 1s cyclic, then there is a aimple abelian variety A
with complex multiplication by K , defined, say, over K » and all
such simple abelian surfaces are isogenous to some conjugate of A .
2.2.2 relates certain products of T' values to periods of the A% g
E. g., when K = Q(us) , one finds precisely the well known expressions
of the periods of the Jacobian of x5+Y5 = 1 in terms of T - cf.

II, 4.1, or Rohrlich's appendix to LGr 2].

2.3.2 If K is not cyclic, call K' its real quadratic subfield,
and F1 ’ F2 the two distinct imaginary quadratic subfields of K .
Every abelian variety A with complex multiplication by K is iso-
genous to the product of two CM elliptic curves - cf. [Sch A] for the
exceptional r8le that such K play among all CM fields. All Hecke
characters ¥y of K 1like in 1.1.0 can be written as

(2.3.3) X = U(cpi" NK/Fi) ’

for some i € {1,2} , and some Hecke character ®; of F, of in-
finity type o4 » for some embedding oy ¢ Fi <., €©; and u some
character of finite order of K . The only nontrivial relations of
the form 1.0.0 over K are consequences of the relations ¢551=Ir4
over Fi . Thus, the corresponding period relations reproduce
Legendre's relation on elliptic curves with complex multiplication
by Fy; - ef. II, 1.8.5. Similarly, it is easy to check that 2.2.2
does not produce any new relations between the elliptic integrals
with CM by F1 or Fz , and T wvalues, beyond what follows from
II § 4 and III, 1.4 - cf. III § 3 .
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II, 4.4.5. Shimura's feelings about this, expressed at the end of
{Shi P] § 4, are therefore proven to have been correct.

We leave it to the reader to write weaker versions of 2.2.2,
neglecting finite order characters in 2.2.1.

2.3 Biquadratix

Let Ko C be an abelian imaginary field of degree four over Q.

2.3.1 If K 4is cyclic, then there is a simple abelian variety A
with complex multiplication by K , defined, say, over Kab , and all
such simple abelian surfaces are isogenous to some conjugate of A ,
2.2.2 relates certain products of I values to periods of the A%'s.
E. g., when K = Q(us) , one finds precisely the well known expressions
of the periods of the Jacobian of X5+Y5 = 1 in terms of T - cf,

II, 4.1, or Rohrlich's appendix to Lar 2].

2.3.2 If K 1is not cyclic, call K' 1its real quadratic subfield,
and F1 ’ F2 the two distinct imaginary quadratic subfields of K .
Every abelian variety A with complex multiplication by K is iso-
genous to the product of two CM elliptic curves - cf., [Sch A] for the
exceptional rdle that such K play among all CM fields. All Hecke
characters y of K 1like in 1.1.0 can be written as

(2.3-3) X = Ll(q’i" NK/Fi) ’

for some i € {1,2] , and some Hecke character ®; of F; of in-
finity type o4 » for some embedding oy 3 F& &y C; and p some
character of finite order of K ., The only nontrivial relations of
the form 1.0.0 over K are consequences of the relations mf5i=lf'
over Fi . Thus, the corresponding period relations reproduce
Legendre's relation on elliptic curves with complex multiplication
by F, - cf. II, 1.8.5. Similarly, it is easy to check that 2.2.2
does not produce any new relations between the elliptic integrals
with CM by F, or F, , and T values, beyond what follows from
IX § 4 and III, 1.4 - cf. III § 3 .

1
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xttﬁflﬁ(x) of rank 1 over K . Moreover, the results of this section

would then extend to all motives in ALEE7]K(E) attached to Hecke
characters y of K , in the sense of I, 3.3,~ This follows from
our proof of I, 5.1; from I, 5.3 and I § 6.

2.1.9 We saw in 2.1.5 that working modulo finite order characters in
2.1.1 allows to express a 1in terms of ¥ and h . As for h , let
us simply remark that it may always be replaced with the index

EAK : StK] of 0, 8.4. We refer to [Sin] for a number of results on
this index.

2.2 Looking at things the other way around, let now a E]Bg be

given. Then there exist

» a positive integer r
- algebraic Hecke characters Xqre0e91Xp of K 1like in 1.1.0
above

. integers RyyeeosRy,

« a character of finite order u of K

such that
r n,

(2.2.1) we TT xy = Jg(a) .
i=1

let E be a finite extension of K which is a common field of
values for u . and all the Xy « Write the inclusion

»* *
(K®C) c» (E®C) . Then 2.2.1 translates into the period relation

, 2 ! -1
(2.2.2) p(u;‘i)'Ep(xi;‘l) = J((T(oca)™ ) eq) -

By section 1 above, this relation "does not depend" on the particular
choice of x,;'s - in the sense that all such relations arising from
a ‘'can be seen to be equivalent without recourse to the right hand
sides . - Conversely, all I'-relations arising from comparing the

left hand sides of two instances of 2.2.2, for two different

a,a' e:mﬁ y via 1.0.1 already follow from II, 4.4.5, and are there-
fore, if taken modulo § , compatible with Rohrlich's conjecture -
see II, 4.0 - , by virtue of the remark we made following theorem
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CHAPTER FIVE:

Motives of CM Modular Forms

Let K be a CM field with maximal totally real subfield Ko .
Given a Hecke character x. of K with corresponding theta series
f (a Hilbert modular new-form relative to Ko), there should be a
motive M(f) for £ whose periods could be computed in terms of
special values of L*(x,s) . If one could not only construct the
motive M(f) in Mg(E ) - with E_ the field generated by the
Fourier coefficients of £ - but also show that, since f comes
from yx , M(f) 1ies in AJ' , and in fact in (A, , then
theorem I, 5.1 would allow to compare M(f) and M(yx) , and
thereby yield II, 2.1 for x (or closely related characters),
provided certain non vanishing results are available, about the
special values of L(x,s) mentioned before.

This hypothetical "modular proof" of II, 2.1 seems a long way off
at the moment - cf. Oda's work [0d 1], [0d 2]. However, it prbvides
the romantic background for what we actually prove in this chapter:
First of all, we consider only the case that K is-imaginary
quadratic. In this case, recent observations of U. Jannsen's,

in connection with his more general theory of mixed motives,

easily give us the actual motive M(f) whose realizations were
already described in [DP] § 7 - this is discussed in § 1 below.
Then, after introducing the theta series for Hecke characters of

K wedo prove , in §2 , that M(f) 1lies in CDKQ .

But in order to do so, we have to use II, 2.1 for Hecke characters
of K - in this case the theorem was first proved in [GS], [GS'].

1. Motives for modular forms

Let k>0 and N > 1 be integers. Let f£(z) = i;anqn
| 2niz n 21
(g =e ) be a newform on TO(N) of weight k+2 with

character ¢ , which is an eigenfunction for the Hecke operators

Tp » p prime, p [ N :

Tpf = apf poag =1,

Put E_ = @(a |(n,N) = 1) <*C . It is known that E_  1is a
number field of finite degree over @ .
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1.1 Theorem [Eichler-Shimura-Deligne-Jannsen]

There exists a motive M(f) 13_4%@(E0) of rank two over E

such that

Ly(M(£),8) = (TT dety (1-Fyp™° |Hy(M(£)77), = () agn ),
p/N . n

where 1T € Hom(Eo,C) , i:]: p prime, Fp 1s a geometric

Frobenius element at p , and Re s >> 0 .

The proof of this theorem is indicated in [Ja], Cor. 1.4, build-
ing upon [DR] and [DP] § 7. Let us sketch very briefly how one

can show that the realizations written in (DP], 7.6 actually are
. realizations of a motive in ALQ , by using a somewhat different
argument - which, however, was also suggested to me by Jannsen.

1.1.1  Write A = Y1(N) , and Kb = X1(N) the modular curves
without, and with cusps. Suppose N > 3 and denote by
Ty d A1 - Ao the universal elliptic. curve. Put

Ak=A1 XA v e X.A. A1

L ' o J
Y

k factors

if k> 2 . Choose a smooth compactification R, of 4, - cf.,
for instance [DR], 5.5. Let Z be a desingularization of Kﬁ\Ak .
Then, by (DH III], Cor. 8.2.8, one has in the diagram

H‘é”(Ak,cn) LN Hk+1‘(- ,0) — HEI(E  \A,,0)

N

that
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1.1 Theorem [Eichler-Shimura-Deligne-Jannsen]

There exists a motive M(£) in MG (E ) of rank two over E

such that

Ly(m(2),8) o= (TT detg (1-Fpp™® 1y (M(£)))7), = () g n7°)

p(N (n?;;=1

where 71 € Hom(Eo,C) R 'ﬂ:* p prime, Fp is a geometric

Frobenius element at p, and Re s > 0 .

The proof of this theorem is indicated in [Ja), Cor. 1.4, build-
ing upon [DR] and [DP] § 7. Let us sketch very briefly how one
can show that the realizations written in [(DP], 7.6 actually are
realizations of a motive in ﬁbo y by using a somewhat different
argument - which, however, was also suggested to me by Jannsen.

1.1.1  Write A = Y1(N) , and Io = X1(N) the modular curves
without, and with cusps. Suppose N > 3 and denote by
my oAy - AO the universal elliptic. curve. Put

A =A X eee X A
k l1 AO AO 1
Al

k factors

if k> 2 . Choose a smooth compactification Kk of A, - cf.,
for instance [DR]), 5.5. Let Z be a desingularization of IE\A
Then, by [DH III], Cor. 8.2.8, one has in the diagram

g o
H‘é“(Ak,m) LN Hk”(Ik,cn) - Hk+1(Kk\Ak,Q)

k -

o

Hk+1(Z,Q)

that
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CHAPTER FIVE:

Motives of CM Modular Forms

Let K be a CM field with maximal totally real subfield K, .
Given a Hecke character x of K with corresponding theta series
f (a Hilbert modular new-form relative to Ko), there should be a
motive M(f) for £ whose periods could be computed in terms of
special values of L*(x,s) . If one could not only construct the
motive M(f) in AtQ(EO) - with Ej the field generated by the
Fourier coefficients of f - but also show that, since f comes
from y , M(f) 1lies in AZSV , and in fact in CL%Q , then
theorem I, 5.1 would allow to compare M(f) and M(x) , and
thereby yield II, 2.1 for x (or closely related characters),
provided certain non vanishing results are-available, about the
special values of L(x,s) mentioned before.

This hypothetical "modular proeof" of II, 2.1 seems a long way off
at the moment - cf. Oda's work [0d 1], [0d 2]. However, it provides
the romantic background for what we actually prove in this chapter:
First of all, we consider only the case that K 1is imaginary
quadratic. In this case, recent observations of U. Jamnsen's,

in connection with his more general theory of mixed motives,

easily give us the actual motive M(f) whose realizations were
already described in [DP] § 7 - this is discussed in § 1 below.
Then, after introducing the theta series for Hecke characters of

K wedo prove, in §2 , that M(f) 1lies in CD&Q .

But in order to do so, we have to use II, 2.1 for Hecke characters
of K - in this case the theorem was first proved in [GS], [GS'].

1. Motives for modular forms

Let k>0 and N > 1 be integers. Let f(z) = i;anqn
2niz n 1
(q=e ) be a newform on PO(N) of weight k+2 with

character ¢ , which is an eigenfunction for the Hecke operators

Tp y p prime, p [ N :

Tpf = apf : ay = 1 .

Put E = @(a |(n,N) = 1) <*C . It is known that E, is a
number field of finite degree over @ .
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H¥*1(4,,0) := In(p) = ker(a) = ker(d) .

As Hk+1(Kk) and Hk+1(2) are honest regard motives, and a
comes from an absolute Hodge cycle a : Hk+1(Ik) - 55+ (z) | its
kernel, too, defines a motive in A%Q ’ 1nside of which one now
continues to cut out the desired submotive:

1.1.2 By Liebermann's trick - see [DR], 5.3 -, preferably

modified by taking the part where [m1] XeooX [mk] act as
Mg+ oot My , for sufficiently many collections of integers
(myseeey mk) , one obtains a motive with realizations

1 1 ®k
H!(Ao,(R nk’*Q) ) .

1.1, Next, take invariants under the action of the symmetric
group Sk , and finally pass to the submotive of

H}(AO,Symk(R1nk'*Q)) = H1(I5.J*Symk(R1ﬁk,*°))

annihilated by the kernel of the homomorphism of the Hecke
algebra T ,

" This produces the realizations described in [DP], 7.6.

1.1.4 In case N was 1 or 2, or if we want to construct
motives for modular forms on more general congruence subgroups,
one has to close the construction of M(f) by passing to the
invariants under a finite subgroup.

It is fairly clear that, at every stage, we have only applied
absolute Hodge cycles in cutting out the next smaller motive.
But we leave the details to the reader.

The following problem seems to be unsolved.
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1.2 Problem. Show that for "generic" f of weight k+2 > 3 -

and in particular for alz) = ] (1-qn)24 ? = M(f) does not
1
av
lie in Mg (E]) .

1.2.1 For k =0 , that is, if f has weight two, M(f) "is"

essentially the abelian variety attached to f by Shimura - see,
e.g., {Shim)], Thm. .7.14. So, M(f) € /bgv for k=0 .

2., CM modular forms

1

2.0 Let K be an imaginary quadratic field, embedded K &——C

in a fixed way, and write -D the discriminant of K . Let ¥
be an algebraic Hecke character of K , of conductor £ , with
infinity type w.1 , for some w> 1. Denote by E 2 K the
number field generated by the values of yx . Write the theta
serles f attached to ¥ , and an embedding T : E<»C :

£7(z) = ) x"(0)a™ = ) ol o7,
(urf)=1 n 21

where ¢ runs over all integral ideals of K prime to f , and

a, = 2; x(e) - thus, a; =1 . - By Hecke, [Hel, n2 23, 27,

Na- =n
£f7(z) is, for each T , a newform of weight w+1 (i.e.,

k = w=1 , 1in the notation of § 1) on -FO(N) , with N =D-Nf ,
and character ¢ given on prime numbers p / N by
. x(p-o)
e(p) = (E?) -———ﬁ—h- .
P

2.1 As in 1, call E, the field @(a |(n,N)=1) , and write
Q(e) the field generated by the values of ¢ .

2.1.1 Lemma - (1) E=K:E

(o}

(11) E, 2 Qe) .

The proof is left to the reader.
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1.2 Problem. Show that for "generic" f of weight k+2 2 3 -

and in particular for a(z) = q T (1- n)24 ? = M(f). does not
1
av
lie in Mg (E,) -

1.2.1 For k = 0, that is, if f has weight two, M(f) "is"

essentially the abelian variety attached to f by Shimura - see,
e.g., (Shim), Thm..7.14. So, M(f) € 42V for k =0,

2. CM modular forms

1
2.0 Let K be an imeginary quadratic field, embedded K ——C

in a fixed way, and write -D the discriminant of K . Let ¥
be an algebraic Hecke character of 'K , of conductor % , with
infinity type w.1 , for some w > 1 . Denote by E > K the
. number field generated by the values of yx . Write the theta
serles f attached to ¥ , and an embedding T : E<C :

fT(z) = 2 XT(.O-)qmn' - 23;‘1 qn ,
(‘a’f)=1 nz 1
where @ runs over all integral ideals of K prime to f , and
a, = E; x(e) - thus, ay =1 . - By Hecke, [He], n2 23, 27,

Na. =n
£f7(z) is, for each 1 , a newform of weight w+1 (i.e.,

k = w=1, in the notation of § 1) on I‘O(N) , with N =D-Nf,
and character € given on prime numbers p X N by

(p- o)
e(p) = (D) "—pp—wf‘-‘- :

2.1 As in 1, call E_j the field Q(anl(n,N)==1) , and write
Q(e¢) the field generated by the values of ¢ .

2.1.1 Lemma - (i) E =K' E

o]

(ii) E, 2 o(e) .

The proof is left to the reader.
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B1(4,,0) := In(p) = ker(a) = ker(3) .

As Hk+1(Ik) and Hk+1(2) are honest regard motives, and o
comes from an absolute Hodge cycle & : Hk+1(Ik) - Hk+1(2) , its
kernel, too, defines a motive in A%Q s, Inside of which one now
continues to cut out the desired submotive:

1.1.2 By Liebermann's trick - see [DR], 5.3 -, preferably
modified by taking the part where [m1] XeoeX Emk] act as
My*eeermy , for sufficiently many collections of integers
(m1,..., mk) , one obtains a motive with realizations

1 1 Rk
H!(Ao,(R nk,*Q) ) .

1.1, Next, take invariants under the actioﬁ of the symmetric
grdup Sk , and finally pass to the submotive of

gy 100) = 1R, 3,50

annihilated by the kernel of the homomorphism of the Hecke
algebra T , '

" This produces the realizations described in [DP], 7.6.

1.17.4 In case N was 1 or 2, or if we want to construct
motives for modular forms on more general congruence subgroups,
one has to close the construction of M(f) by passing to the
invariants under a finite subgroup.

It i3 fairly clear that, at every stage, we have only applied
absolute Hodge cycles in cutting out the next smaller motive.
But we leave the details to the reader.

The following problem seems to be unsolved.
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Three cases occur, as far as the constellation E0 c E is
concerned:

2.1.2 Eo is totally real.

This is the same as saying that E , which is naturally a CM
field, has Eo as its maximal totally real subfield. Also, like
in 2.1.1 (i), one sees that 2.1.2 occurs if and only if y 1is
equivariant with respect to complex conjugation, i. e.,

(2.1.2)" X (%) =x(s) ,

for all (a, Nf) = 1 .

Note also that € = 1 implies 2.1.2, and that 2.1.2 in turn
yields e = 1 (but not necessarily € = 1 , as is shown by the
example of yx with (2.1.2)' of conductor (1).)

2.1.3 E= E, .

By 2.1.1 (1), 1if E, 1s not totally real, E, has to be a

CM field. But NOT 2.1.2 does not imply 2.1.3 because it may also
be that: :

2.1.4 E # Eo and E0 is not totally real.

As an example (pointed out to me by J. Tilouine), take yx satis-
fying (2.1.2)', and v a Dirichlet character of Q@ such that
Kd Q(v(Ne)| s ideal of K). Then, for the twist x-(voN

K/Q) ’
_one is in case 2.1.4.

2.2 Proposition Let f be as in 2.0 and Eo as defined in

2.1. Let M(f) be the motive attached to £ by 1.1. Then there

is a natural embedding

K 8 E, ©— Endjp(M(£) x K) ,

inducing on 1 ® E; the coefficient structure of M(f) € ﬂh(Eo)

and such that, for every idempotent e of K®E, with

e(K ® E)) S E, the direct factor e(M(f) x K) of M(f) x K is

a motive either for yx or for the complex conjugate ¥ , in the

gsense of I, 3.3.
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Proof, We shall essentially generalize Shimura's proof of
theorem 1 in [Shi E]. (For the broader perspective of this
method c¢f. [Shi F], [Ri 1]}, [Mom], and [Ri 2].)

First assume that the conductor f of y satisfies:

(2.2.0) DIf and T=f.

In analogy to the definition of the Hecke operators, the double
class P1(N)6'P1(N) , with

P
D

5 = ) € SL,(Q) ,
0o 1

induces an algebraic correspondence on x1(N) X x1(N). This can be
lifted to Ak and closed up in Ik, and actually induces an (absolute-
Hodge-) .endomorphism & of the direct sum & M(fk)' with X running

through all aigebraic Hecke characters oflK defined modulo £ , de-
fined over €. To see this, note that for any such X, the correspond-
ing theta series _
£,(z) = ; A(a) - N0
(a,f) = 1

can be written
£,(2) = ¥ a(0)'F,(2)

where b varies over a fixed system of integral ideals of K
representing the ray classes of ideals prime to £ modulo
piincipal ideals (a) generated by elements o = 1(modf) in
K , and where

P2 = T o M@/ W)
(a)
a €b
Thus, by the Shimura isomorphism, HDR(@ M(fk)/C) is generated
P\

by the F 's (and their antiholomorphic counterparts); but on
them A acts via
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Proof. We shall essentially generalize Shimura's proof of
theorem 1 in [Shi E]. (For the broader perspective of this
method cf. [Shi ¥], [(Ri 1], [Mom], and [Ri 2].)

First assume that the conductor f of y satisfies:

(2.2.0) D|f and f = f.

In analogy to the definition of the Hecke operators, the double
class P1(N)6‘F1(N) , with

1 1
5

5 = € SL,(Q) ,
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induces an algebraic correspondence on x1(N) X x1(N). This can be
lifted to Ak and closed up in Kk, and actually induces an (absolute-
Hodge-) .endomorphism & of the direct sum & M(fl), with A running

: . A
through all algebraic Hecke characters of K defined modulo £, de-
fined over €. To see this, note that for any such Ay the correspond-

g‘ A(a) - &
(C:f = 1

ing theta series
fi(z)

can be written

N ' -1 )

£,(2) =) A(e)7F (2) ,

where b varies over a fixed system of integral ideals of K
representing the ray classes of ideals prime to £ modulo
piincipal ideals (a) generated by elements o = 1(mod L) in
K , and where

Cow
F,(2) = 20‘ _dN(a)/N(b) ]
(a)
a €b
Thus, by the Shimura isomorphism, HDR(® M(fk)/m) is generated
A

by the F 's (and their antiholomorphic counterparts); but on
them A acts via
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Three cases occur, as far as the constellation E0 c E 1is
concerned:

2.1.2 E0 is totally real.

This is the same as saying that E , which is naturally a CM
field, has EO as its maximal totally real subfield. Also, like
in 2.1.1 (i), one sees that 2.1.2 occurs if and only if x 1is

equivariant with respect to complex conjugation, i. e.,

(2.1.2)! X(8) =%x(a) ,

for all (a, Nf) = 1 .

Note also that ¢ = 1 implies 2.1.2, and that 2.1.2 in turn
yields e2 = 1 (but not necessarily ¢ = 1 , as is shown by the
example of x with (2.1.2)' of conductor (1).)

-2.,1.3 E=E_ .

—_—= 0

By 2.1.1 (i), if E, 1is not totally real, E, has to be a

CM field. But NOT 2.1.2 does not imply'2.1.3 because it may also
be that:

2.1.4 E+$ E; and E, is not totally real.

As an example (pointed out to me by J. Tilouine), take x satis-
fying (2.1.2)', and v a Dirichlet character of Q such that
K¢ Q(vGNl)I 0. ideal of K). Then, for the twist y.(veN
_one is in case 2.1.4,

K/Q) ’

2.2 Proposition Let f be as in 2.0 and Eo as_defined in
2.1. Let M(f) be the motive attached to f by 1.1. Then there

is a natural embedding

K GQ Eo — End/K(M(f) x K) ,

inducing on 1 ® E, the coefficient structure of M(f) € ﬂm(Eo) ,

and such that, for every idempotent e of K @& E0 with

e(K ® E)) ¥ E , the direct factor e(M(f) x K) of M(£f) x K is

a motive either for x or for the complex conjugate X , in the

sense of I, 3.3.
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. T N o«
(2.2.1)  8pp(F)(2) = § Fy|q(oyy) = r (27D TP
4=1

b y

r
if r,(N)sr,(N) = v T,(N)sy: . Here, as D|f , by 2.2.0,
1 1 29 01 3

No/ Nb  is independent of the choice of « € b , o« = 1(modf) .

2.2.2 Note that, for the case 2.2.0, it would have been suffi-
cient to let ) above vary over the characters of precise
conductor £ . But, for future reference, we throw in all
defined modulo £ - understanding that, for them, the motive
denoted M(fk) 18, for once, not the motive M(fk) constructed
in § 1, but rather the motive obtained by the procedure sketched
in 1.1.1-3 for f, , considered as an eigenform on r,(N) - where
it is not a newform. The proper motive for fk in the sense of
§ 1 is found inside the current M(fl) as the invariants under
the finite group which is the quotient of T,(N) by the group
P1(M) on which fk "is new" - cf. 1.1.4.

2.2.3 From 2.2.1, we see that we can embed Q(eZ"i/D) into

Enq/c(e M(fk)) by sending eZ”i/D to rf1'A . The imaginary
l .
quadratic field K c Q(ezni/p) then induces endomorphisms which

stabilize M(f) c @ M(fk) , as 1s checked again on the de Rham
realization, using 2.2.1. Next, it is easy to see that this
embedding

-

2

K c, End M(f)
\is defined over K .

Moreover, the commutator of the matrices (é l{D) and (ié l? ) lies
P

in Pl(N) i1f the prime p splits completely in Qpy) . As Tp is 0 on M(f)

for all p that stay prime in K, we see that the action of K on M{f) % K we -

defined commutes with the action of Eo.

2.2.4 Thus we know --in case 2.2.0 -~ that M(f)xK is of rank 1
over KQOEO . Since the actions of K and Eo come from alge-
braic correspondences y we see that the one dimensional Galois
representations of e(M(f) x K) form a strictly compatible system
of E-rational \-adic representations - where )\ now denotes finite
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places of E . In view of the L-function of M(f) over Q , the
Hecke character defined by M(f) X K - see I, 1.4 ~ has to be
either x or ¥ .

2.2.5 If f is arbitrary, we consider x as a character

defined modulo D f* f . It occurs then as one of the imprimitive
characters )\ of the above argument, and 2.2.3 and 2.2.4 show
that "M(£)" = M(fk) - in the sense 2.2.2 - has the required

K@ Eo structure. Now, this K-action clearly commutes with the
finite group G such that M(fk)G is the proper motive M(f)

of the newform £ .
g.e.d.

2.3.0 Let ¢ Dbe any Hecke character of K , with values in
some CM field E' , of conductor f' , with infinity type 1 ,
such that L*(¢,1) € (E' @ G)* . The existence of such ¢ is
most easily deduced from the fact that the modular symbols
generate the first homology of the modular curves - see [Shi M],
theorem 2. Using this argument, we have already passed to the
newform g(z) =2v(a)qn°'=2bnqn on I‘O(N'), N* =D-N £,
associated to ¢ as f is to yx in 2.0. Write Ej the field
generated by the Fourier coefficients of g . '

2.3.1 Let p be the finite order character of K such that

w
X T H-¥

and @Q(u) 1its field of values. By 2.2, the motive M(g) x K has
a natural K ® Eé action. Calling E  the composite Ed Eé‘Q(p) -
in some fixed algebraic closure of Q - we get the motives with
coefficients in K ®q E defined over K :

*B(W) = M(n) ey (K@ E)

* M(g) = (M(g) x K) @ gpr (K® E)
0

v M(£) = (M(£) x K) ®pop (K@ E)
[#]

They are all of rank 1 over K & E . - For the next theorem we
suppose that the K actions on M(f) x K and M(g) X K have
been normalized so that, for every idempotent e of K® E -

cf. 2.2 - , the factor (M(£)) 1is a motive for x (with values
in E'E) if and only if E(E(g)) is a motive for ¢ (with values
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generated by the Fourier coefficients of g .
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* M(IJ.) = M(}.l) ®Q(u) (K ® E)
*© M(g) = (M(g) x K) & g, (K@ E)
‘ o
¢ M(£) = (M(£) x K) ®op (K&K
Q

They are all of rank 1 over K @ E . - For the next theorem we
suppose that the K actions on M(f) x K and M(g) X K have
been normalized so that, for every idempotent e of K® E -

cf. 2.2 - , the factor o(M(f)) 1is a motive for ¥x (with values
in E-E) if and only if 3S(M(g)) 1is a motive for ¢ (with values
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r N ¢
(2.2.0)  app(F)(2) = Y By |q(byy) = v (2D TP g

b ?

r
if P1(N)6F1(N) = U I‘1(N)6Yj . Here, as -D|f , by 2.2.0,
J=1

Ne/ Nb is independent of the choice of o € b , a = 1(modf) .

2.2.2 Note that, for the case 2.2.0, it would have been suffi-
cient to let A above vary over the characters of precise
conductor f . But, for future reference, we throw in all )
defined modulo £ - understanding that, for them, the motive
denoted M(fx) ‘18, for once, not the motive M(fk) constructed
in § 1, but rather the motive obtained by the procedure sketched
in 1.1.1-3 for fl , considered as an eigenform on F1(N) - where
it is not a newform. The proper motive for fl in the sense of

§ 1 is found inside the current M(fl) as the invariants under
the finite group which is the quotient of T,(N) by the group

F1(M) on which fk "is new" - cf. 1.1.4.

2.2.3 From 2.2.1, we see that we can embed Q(ezni/D) into

En%/c(® M(fl)) by sending e2mi/D 4y r71’A . The imaginary
A

quadratic field K c Q(eZ"i/D) then induces éndqmorphisms which
stabilize M(f) c @ M(fl) , as is checked again on the de Rham
realization, using 2.2.1. Next, it is easy to see that this
embedding

K . End M(f)
\is defined over K .

Moreover, the commutator of the matrices (é 1{0) and (cl) 13p) lies
in l"l(N) if the prime p splits completely in Q(',LD). Ag Tp is 0 on M(f)
for all p that stay prime in K, we see that the action of K on M(f)x K we
defined commutes with the action of E .

2.2.4 Thus we know - in case 2.2.0 - that M(f)xK 1is of rank 1
over KGOEO . Since the actions of K and E° come from alge-
braic correspondences y we see that the one dimensional Galois
representations of e(M(f) x K) form a strictly compatible system
of E-rational A-adic representations - -where A now denotes finite
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in E-E )

2.4 Theorem. There is an isomorphism of motives with

coefficients in K ® ¥ , defined over K ,

~ e B, oW ~
() @ ey M) FPE T T (1) .

Proof. First, note that, if w = 1 , then M(f) and M(g)
both lie 1n.JL§V - ¢f. 1.2.1 - , and I, 5.1 gives us the iso-
morphism of the theorem. - For w > 2 , we shall construct this
absolute Hodge correspondence via the relation between periods
and L-values: By 1.1 and the construction of £ and g , we
have

*(M(£),s) = (Y aT n"8). | = 1¥ X,8)
Ly(M(£),8) = () ag n™®) %, ¢ Lo g0
Ly (M(g),s) = () oy n™%) g ¢ = Lo phe)

where, on the right, we have written the L-functions of 0 § 6
for the characters x and ¢ , considered as taking values in
% , deleting the Euler factors above N , resp. N' . Such Euler
factors, taken at critical integers s , lie in B , and will
therefore be disregarded in the argument that follows.

Since w > 2 , it is well-known that no component of L*(x,w)
vanishes. Also, L(¢7,1) + 0, for all T , by construction.
Therefore, as ¥ = ww s 1t follows from I1, 2.1 - which, for
K imaginary quadratic, was already proved in [GS] and [GS'] - ,
using II, 1.8.1/3 and II, 1.7.12 (iv), that

(2.4.0)  L*(M(p) ® M(g)®Y ,w) = L"(A(£),w) ¢ (E@ )",
up'to a factor in (E ® 1)* .

Now, as Deligne points out - [DP], 7.6 - the motive M(f) is
constructed in such a way that '

L (M(£),w) = o¥(Ry /gli(£) (W) € (E® €)"/E" .
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Similarly, the analogous relation for the left hand side of
2.4.0 follows from [DP], 7.2 - or from the observation that

L ~J

M(u) ® M(g)®w is in AZEV i cf. the first sentence of this proof.

As K is imaginary quadratic, 2.4.0 then implies via II, 1.7.3-6 -
note that M(f) 1is of Hodge type (w,0) + (O,w) so that II, 1.7
applies! - that

p(M(u) ® M(g)®¥) = p(M(£)) .

Thus we have shown that the two motives to be compared in 2.4
are of rank 1 over K @ E , defined over K ; they are motives
for the same algebraic Hecke character - to wit, u- Ww =Y -,
in the sense of I, 3.3, extended to our situation where the
coefficient algebra may be a product of fields; and they have
the same periods p . Since we are in a rank 1 situation, this is
sufficlent to physically construct an absolute Hodge cberSpondence
between them establishing their 1isomorphism: all it comes really
" down to is choosing bases - i, e., each time a non trivial
element -~ for the various realizations of the two motives.

g.e.d.

2.4.17 Remark. Richard Pink, in an unpublished note, has shown
that the absolute Hodge correspondence we Jjust constructed is
actually an algebraic cycle, in the special case where

K = Q(=/-4"), ¥ 1is the Hecke character of the lemniscate

¥° = 4x9- 4x - of. I, 7.5 - , or, in other words, of XO(BZ),
and % = ¢2 .

2.4.2 Corollary . M(f£) "lies in" CA,(E,) , in the sense

that it is isomorphic in H#o(E)) to an object of CHQ(E,) ;5 or

again, that M(f) , viewed as a representation of the motivic

Galois group, is equivalent to the inflation of a representation

of the Taniyama group.

Via I, 5.1, this corollary implies that, for an idempotent e of
K ® E, as in 2.2, the motive e(M(f) X K) 1is isomorphic to one
of the standard motives - see I § 4 - M(x) or M(X) .
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Similarly, the analogous relation for the left hand side of
2.4,0 follows from [DP], 7.2 - or from the observation that

~ ~S

M(u) ® M(g)®w is in Alﬁy ; cf. the first sentence of this proof.

As K 1is imaginary quadratic, 2.4.0 then implies via II, 1.7.3-6
note that M(f) is of Hodge type (w,0) + (O,w) so that II, 1.7
applies! - that
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are of rank 1 over K ® E , defined over K ; they are motives
for the same algebraic Hecke character - to wit, p- vw =% = ,
in the sense of I, 3.3, extended to our situation where the
coefficient algebra may be a product of fields; and they have
the same periods p . Since we are in a rank 1 situation, this is
sufficient to physically construct an absolute Hodge cbrrespondence
between them establishing their isomorphism: all it comes really
down to is choosing bases - i. e., each time a non trivial
element - for the various realizations of the two motives.,
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"that the absolute Hodge correspondence we Just constructed 1is
actually an algebraic cycle, in the special case where
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y2 = 4x3- 4x - cf. I, 7.5 -, or, in other words, of Xo(32),
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again, that M(f) , viewed as a representation of the motivic

Galois group, 1s equivalent to the inflation of a representation

of the Taniyama group.

Via I, 5.1, this corollary implies that, for an idempotent e of
K®E  as in 2.2, the motive e(M(f) x K) is isomorphic to one
of the standard motives - see I § 4 - M(x) or M(KX) .
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in E-E) .

2.4 Theoren. There is an isomorphism of motives with

coefficients in K ® ¥ , defined over K ,

~ o~ B am W ~
M) o pn M) XTE 7 T H(s) .

Proof. First, note that, if w =1 , then M(f) and M(g)
both 1ie in A g’ - cf. 1.2.1 - , and I, 5.1 gives us the iso-
morphism of the theorem. - For w=> 2 , we shall construct this
absolute Hodge correspondence via the relation between periods
and L-values: By 1.1 and the construction of £ and g , we
have

*

* o~ T -8 ~ - :
Ly(B(£),8) = ) ag n™®)r 1§ e, g Lo F%e)
* ~ . ] - *

Ly (Mg),8)=() by n™*) g, g = Lo phe)

where, on the right, we have written the L-functions of 0 § 6

for the charactérs x and ¢ , considered as taking values in

E , deleting the Euler factors above N , resp. N' . Such Euler
factors, taken at critical integers s , lie in E , and will
therefore be disregarded in the argument that follows.

Since w > 2 , it is well-known that no component of L*(x,w)
vanishes. Also, L(§ ,1) 3 0, for all 7T , by construction.
Therefore, as x = - vw y, 1t follows from II, 2.1 - which, for
K imaginary quadratic, was already proved in [GS] and [GS'] - ,
using II, 1.8.1/3 and II, 1.7.12 (iv), that

(2.4.0)  L(M(w) @ M(g)®Y,w) = L(M(£)yw) € (E® ©)”,
up to a factor in (E ® 1)* .
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ERRATA (March 1986)

1. References
The references were retyped before the printing, but could not be
proofread. This explains the great number of errors in them:

» Two references are missing:
p. 155 (bottom):

[{DF] P. Deligne, Preuve des conJjectures de Tate et de Shafarevitbh
(d'aprés G. Faltings]. Séem. Bourbaki, no. 616, année 1983/84.

p. 156 (bottom):

(HS] G. Harder, N.ngéhappacher, Speclal values of Hecke L-functions
and abelian integrals; in: Arbeitstagung Bonn 1984, Springer
Lecture Notes Math. 1117 (1985); 17-49.

\

+ Corrections of~existing references:

(A2] ‘ Compos. Math. 57 (1985); 153-217.
{pBl Brylinski -

(EL 1] J. reine angew. Math. 30

[Gr 31 Birkhduser (PM 26)-1982; 219-236

(Krl (lined) ... 309-317; 1980:
(Lal (line 4) der Vertheilung -

(Lel Exercices

[Lil 26 (Birkh#user), 1982; 207-218.
[(Ri 2] newforms of weight 2; in: ...
{Sch 0] (Théorie des nombres)

{Sch 2] N. Schappacher

"{Sch '] the classical T'-function;

2. I thank K. Ribet for pointing out most of the following Errors
in the text:

.26 1. -13 . (<Np)”]

. 28 l. -12 delete: "From this one can deduce that E is always
a CM field"

p. 30 1. -6 delete: last parenthesis.

p. 132 1. -10 cf. [DF], 1.5. '

p. 147 1. 6 Lieberman's trick






