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Metric and topological entropies

of geodesie nows

1. Introduction

Let M be an n-dim. eompact Riemannian manifold of negative seetional curvature.

The geodesie flow rpt aets on the unit tangent bundle TIM of M preserving the

LebeBgue-Liouville measure ).. This action is ergodie with respect to ~ and the metrie

entropy h)., Le. the entropy of rpt with respeet to A, is not larger than the

topologieal entropy h of rpt . If M is loeally symmetrie then h and h). coincide. A

well known eonjeeture of Katok ([18] ) says that locally symmetrie spaces are the only

ones with this property.

The purpose of thiB paper is to derive a partial result related to this conjecture. We show

the following:

Theorem A: If the metrie and the topological entropy of the geodesie flow on TIM

eoincide then the mean eurvature of the horospheres in M is constant.

For surfaces of negative eurvature (Le. dim M = 2) , constant mean curvature for

horospheres is equivalent to constant curvature. In this case our theorem is due to Katok

([18]). Ledrappier ([23]) observed that for 3-dim. manifolds of negative curvature

constant mean curvature for horospheres implies constant eurvature. We give a

(different) easy proof of this fact in seetion 6. Together with theorem A we thus obtain:
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Corollary B: If dim M = 2 or 3 and if the metrie and the topological entropy of the

geodesie ßow on TIM coincide then M has eonstant curvature.

Reeall that every nontrivial eonjugacy class < f/J> in the fundamental group

r = 11"1(M) of M can be represented by a unique closed geodesie in M of length

t< 'f/J> . Let ~ be the set of all conjugacy classes in r. The marked length spectrum

of M is defined to be the element (f.< t/J »< 'f/J> E. ~ of the direct produet IR ~

indexed by e. It has been eonjeetured that the marked length spectrum determines M

uniquely (up to isometry): If S is homotopy equivalent to M and if the marked length

speetra of M and S coincide, then M and S are isometrie. This is known to be true

for surfaees (proved by Otal [29] and Croke [4]; for surfaces of constant eurvature it

was first derived by Katok [19]). In this paper we extend Katok's result to arbitrary

dimensions:

Theorem C: Let S be a eompact negatively eurved loeally symmetrie space. Assume

that M is eompact, negatively eurved, homotopy equivalent to Sand

that the marked length spectra of S and M coincide. Then M and S

are isometrie.

However we derive theorem C only for eompact quotients of areal or eomplex hyperbolie

space; the remaining cases (compact quotients of a quaternionie hyperbolic space or the

Cayley plan) are eontained in [12]. Also theorem C ean be applied to improve an

important result of Kanai ([17] ), sharpened by Feres and Katok ([8], [9], [10]). The

combination of these results can be expressed as follows:
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Let M be a eompact Riemannian manifold of negative curvature and

&Ssume either that

i) the dimension of M is odd or

ii) the eurvature of M is strietly 1/4-pinehed.

H the unstable foliation of M is of dass COO then the curvature of M

is constant.

We refer to [17] and [8] for further reaults and references. The organization of the

paper and some of the notations used throughout are as folIows:

N

Let M be the universal covering of M and recall that the geodesie flow on TIM
N

(resp. TIM) admits continuous invariant foliations WSU t WU
, Ws, WSS which are

ealled the strong unstable. unstable. stable. strang stable foliations. Denote by Wi(v)

the leaf of Wi eontaining v e. TIM (resp. v e. Tl~) . The flip w ----+ - w then map8

Wsu(v) diffeomorphieally onto W8S(_ v) , moreover

WU(v) = U rJ>t Wsu(v) =- Ws(_ v) .
te.1R

IN N
For v e. T Miet ,., be the unique geodesie in M with initial velocity ,.,' (0) = vv v

and denote by ()v the Busemann funetion at the point "'v(- m) of the ideal boundary
N N

lJ M of M which is normalized by ()v("'v(O)) = 0 . The canonical projection

1 N N 1
P : T M ----+ M map8 W8U(v) diffeomorphically onto the horosphere rr (0) andv

N N

maps WU(v) diffeomorphically onto M. Thus the Riemannian metrie <, > on M

lifts to a Riemannian metrie gi on Wi(v) which induces a distanee di and a Lebesgue
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N

measure ~i(i = su,u,s,ss) . Let moreover dist be the distance on M induced by the
N

Riemannian metric and denote by B(x,r) (x e. M,r > 0) the open ball of radius r
N

about x in (M,dist).

Recall that TiM admits a unique ",t-4nvariant Borel-probability measure of maximal

entropy, the Bowen-Margulis measure p. Then h = h;\ is equivalent to ;\ = p . The

measure p admits a family of conditional measures pi on the leaves of Wi that are

uniquely determined up to a universal constant. In section 2 we derive a representation

of p as a weak limit of the images under ",t as t --. CD of the restrietion of pSu to

any open Bubset A of a leaf of WSU with psu(A) = 1 . Section 3 is devoted to a proof

of the fact that for ;\ = p the Radon-Nikodym derivative of the measurea ;\U with

respect to the measures pu on the leaves of WU is a continuoUB function on TIM

. . iN
(reca11 that the measures ;\1 on the leaves of Wl CT M project naturally to measures

;\i on the leaves of Wi (TiM) . This function is used in section 4 to construct a

stochastic process on TIM that preserves a variant of ;\. In section 5 we derive

theorem A from the results of sections 2 - 4 and a result of Ledrappier ( [22]). Section 6

is devoted to the proof of Corollary B (compare [23]). In section 7 we use theorem A

and the results of [12] to show theorem C.

Appendix A contains some results on the existence and uniqueness for fundamental

solutions of the Cauchy-problem L - ~ = 0 for certain uniformly elliptic operators L
N

on M that are needed in section 4. In Appendix B we show that the shift transfor­

mations of the stochastic process on TIM which was constructed in section 4 is ergodie.
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2. A description pf the Bowen-Margulis measure

The Bowen-Margulis measure I' on TIM is determined by its family of conditional

measures pSu on the leaves of WSU wbich transform under the geodesie flow via

I'su 0 t/J-t = ehtl'su . The measures I'u on the leaves of WU
, defined by

c1t'u = dl'sU )( dt , are invariant under canonical maps ( [26J ). If pSs (resp. I's) denotes

the image of the measures 1'8U (resp. I'u) under the flip w --+ - w which maps W8U

to WSS (resp. WU to Ws) then up to a constant dl' = dpsu )( dps = dpu )( dl'88 . The

purpose of this section is to show thai p can be described a.s the weak limit of the

images under the geodesic flow of suitably chosen probability measures on a leaf of WU

or WSU or on an arbitrarily chosen fibre T~M of the unH tangent bundle

T 1M--+M.

Let v E. TIM and let A be an open relativ compact neighborhood of v in WU(v).

The measure P.u on WU(v) then induces a probability measure I'A on A by defining

for B C A P.A(B) = l'u(B)/l'u(A) .

Lemma 2.1: For every continuou8 function f{J on

1 im f cp 0 rlJRdJ1A exists and equals f cpdJj .
R-+m A

the limit
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Proof: It suffices to show the lemma for nonnegative functionB tp which do not vanish

identically, i.e. which satisfy Jtpdp, = ß> 0 . By subdividing A iC necessary we may

(as in chapter 4 of [25J) aBsume that there is an open subset C of wss(v) , an open

neighborhood B of v in TIM and a homeomorphism 1/1: B --+ A )( C with the

following propertiea:

i) tKw) = (w,v) for every w E. A .

ii) tKw) = (v,w) for every w E. C .

iü) For every w E. C, 1/1-1(A)( {w}) ia contained in a lea.f of WU
•

iv) For every w E. A, 1/J-l({w} )( C) ia contained in a leaf of Wss .

Let tp ~ 0 be as above and let e E. (0,1) . We have to find a number Ra > 0 such that

(l-e)ß< t cp 0 tjlRdP,A < (1 +e)ß for all R> RO·

Let 6 €. (O,e/4) be sufficiently small that (1 + 6')-3 > 1 - e/2 and

(1 + 6)3 < 1 + f./2 . Since for every w E. A the Jacobian at w of 1/1 as a map of (B,p.)

into (A x C,p.U )( p.S8) equals 1 we may assume by choosing C small enough that the

Jacobian of 1/1 ia contained in ((1 + 6)-1,1 + 6) for all w €. B . This means in

particular

As R --4 (JJ , the diameters of the sets ,pR1/J-l({w} )( C) tend to zero uniformly in

w E. A . Since tp is continuous, hence uniformly continuous on TiM tbis implies that

there is a number R1 > 0 such that for every R > R1 , w E. A and



-7-

W E tjJ-I({w} x C) cp(,pRW) > cp{r/JRw) - 6ß . By the choice of B we obtain for

R> RI

Now the geodesie flow on TIM ia mixing with respect to the Bowen-Margulis measure.

Hence there is Ra > RI Buch that for all R > Ra

Equations (*) - (***) show that for R > Ra

By the choice of 6 thia is the required inequality. CJ

Let again v E TIM and let now B CWsu(v) be an open relativ compact neighbor­

hood of v in WBU(v). As above the measure #su on Wsu(v) induces a Borel-proba­

bility measure li3 on B.

Corollary 2.2: For every continuoUB function <p on TIM the limit

I im f cp 0 ,pR~ exists and equals fcpdp.
R~lD B
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Proof: As in the proof of 2.1 we mayassume that tp is nonnegative and that

ß= frpdjJ > 0 . Let again E: > 0 and let 5 < E:/2 be sufficiently small that

(1 + 6)-3 > 1 - e/2 and (1 + 6)
4 < 1 + E: •

Let to= (log(1 + 6»)/h . Since tp is continuous, hence uniformly continuous on TIM

we can find r ~ to in such a way that Itp(,ptw) - tp(w) I < 6ß for all W E. TIM and

t E. (- r,r) . Define A = U ,ptß ; by the choice of T and the definition of Jju ,
-r<t<r

Jjsu we then have

for all R > 0 . ßy lemma 2.1 we can find a number Ra > a such that for all R > RO

Hy the choice of 6 , insertion of (**) into inequality (*) yields for all R > Ra

which is the required inequality. CJ
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IN N IN
Define a projection 1(": T M -----+ (J M by 7r{V) = 7y{m) . For every v E. T M the

N

restrietion 1rv of 1f to Wsu(v) is a homeomorphism of Wsu(v) onto IJ M -1r{- v) .
N N

Let P =Pv ; then T~M is eanonieally homeomorphie to IJ M and consequently the

measure p,SU on WSU(v) induees a measure p on TIM via P(A) =p,su(~-I1r{A» .. p y

1 N 1 N

Define a funetion u: TpM - {- v} ----t IR by u(w) = 9_w(P1r; 1r{w» and let p,p be
N

the measure on T~M wh08e Radon-Nikodym derivative with respect to l' equals
N

-hu NI·e . Then #p is a finite Borel-measure on TpM which does not depend on the

IN
choiee of y E. TpM ; moreover the measures ~p project to finite measures ~q(q E. M)

on the fibres T~M of the fibration TIM ----t M that ean be normalized to probability

measures P,q on T~M.

Lemma 2.3: For every continuous positive function p on T~M and every continuous

function cp on TIM the limit 1 im J (cp 0 t/JR)pd~ exists and
R~m TIM p

P

Proof: As before we mayassume that the function VJ on TIM is nonnegative with

ß=Jcpd~ > 0 . Let c ~ (0,1) i again we have to find Ra > 0 Buch that for all R> Ra

(J pd~p)ß(l - c) 5 J(cp 0 t/JR)pd~p 5 (J pd~p)ß(l + c) .

Let 6 E. (O,e) be sufficiently small that (1 + 6)6 < 1 + € and

(1 + 6)-5(1 - 6) > 1 - e . Let d be the distance on M induced by the Riemannian

metrie. Then there is T > 0 such that IfP(w) - fP(W) I < p6(1 + 6)-2 for all

W,W E. TIM with d(w,W) < T • There are finitely many points v!' ... ,vt E. T~M and

open neighborhoods Ui of vi in T~M with the following properties:
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l
U. nU. = rP for i f j and ~ (U U.) = 1 .

1 J P i=l 1

For every i E {I, ... ,tl and WE Ui p(w)/P(Vi) E ((1 + 6)-1,1 + 6) .

For every i E. {I, ... ,t.} there ia a homeomorphism 1ri of Ui onto a

neighborhood Vi of vi in WSU(vi) such that for every w E. Ui '1ri(w) E. W8(w)

and d(w,1riw) < T.

For every i E {I, ... ,t} the Jacobian of 1ri as a map of (Up#p) onto (Vp#SU)

has Hs range in ((1 + 6)-1,1 + 6) .

Let i E {I, ... ,l} . By Corollary 2.2 there is a number ~ > 0 such that for all

R>R.
1

Since d(l/JRw,l/JR1riw) 5 d(w,1I'iw) for all R > 0 this together with iii) and iv) shows

Now ii) implies

and consequently by the choice of Ö for R> Ri
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I NI RN IN(1 - e)ß pdPp 5 (cp 0 f/J )pdJ1p 5 (1 + e)ß pdJ1p .
U. u. U.

1 1 1

With Rn = max{Ri li = 1, ... ,t} we obtain for R > RO

as required. CI

Remark 2.4: Let p E. M and let A be the Lebesgue measure on TIM, Ap be the

normalized Lebesgue measure on T~M. It follows as above that for every continuous

function cp on TIM the limit 1 im I 1 cp 0 f/JRd.,\ exists and equals I 1 cpdA.
R-+m T M P T M

P

Notice that local1y A can be written as a product of the Lebesgue mea.sure on the fibres

of the fibration TIM --t M and the Lebesgue measure on M J moreover the geodesie

flow is mixing with respect to A.

3. Continuity of thc Radon-Nikodym derivative

Assume now that the Bowen-Margulis measme p and the Lebesgue measure A on

TIM coincide. For v E. TIM let f(v) be the Radon-Nikodym derivative of ASu with

respect to psn at v whenever this exists and is contained in (O,m) and let f(v) = m

otherwise. Since the measures ASu and J1su Are transversals for the same measure on

TIM they define the same measure class. Thus f(v) < m for p-almost every

v E. TIM. Observe that we would obtain the same function f !rom the above definition

applied to the measures "u and pU (see [14J).
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Lemma 3.1: The function f is continuoUB and finite on all of TIM.

Proof: Recall that the tangent bundles TWu and TWsS of the foliations WU , W SS

define a continuous decomposition of the tangent bundle TT1M of TIM. Since the

restrietion of the canonieal projeetion TIM -+ M to the leaves of WU (resp. Ws) is

a loeal diffeomorphism, the Riemannian metrie on M induces continuous Riemannian

metries gU resp. gSS on the vector bundles TWu resp. TWss . Let g be the

Riemannian metrie on TIM inducing the Lebesgue-Liouville measure and for v E. TIM

let ~u) be the determinant at v of the identity (TWu e TWSS,gU )( gSs) c:.....+

(TT1M,g) . Sinee g is invariant under the flip w-+ - W , the definition of the

metries gU, gSS implies that ß is a continuous fliP.-jnvariant function on TIM.

Let AU (resp. ;\SS) be the Lebesgue measure on the leaves of WU (resp. WSS) induced

by the metrie gU (resp. gSs) and define a measure XSS on the leaves of WSS by

dXS
S

(v) = ,B(v)-1 . The Lebesgue-Liouville measure ;\ on TiM then satisfies
d;\sS

cU = d;\u )( ~8 • Since the measures ;\u are absoluteiy continuous with respect to the

canonical maps, with Hölder continuous Jacobian, the arguments of section 2 of [14]

apply and show that f is finite and continuous on TIM. D

1'"
For v E. T Miet U(v) be the second fundamental form at Pv of the horosphere

0 1(0) , normalized in such a way that U(v) ia positive definite. The funetion tr U
v

'" '"
which assigns to v E. TIM the trace of U(v) is continuous on TIM (compare [15],

proof of 3.1) and moreover it is invariant under the action of the fundamental group r
1'" I

of M on TM, i.e. tr U cau be viewed as a eontinuous function on TM.
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Following [24] we say that a function tp: TIM --+ IR is of dass C! for some

j E. [O,m] if the restrietion of tp to every unstable manifold is of dass cj and if the

jets of order ~ j of these restrictioDB are continuous on TIM.

Lemma 3.2: tr U is of dass C:.
IN N

Proof: For v E. T Miet Zy be the gradient of the Busemann funetion 8y on M. Zy
N

is the projeetion into TIM of the restrietion of the geodesie spray to WU(v).

N N IN

Every smooth funetion cp: M --t IR lifts to a smooth funetions cp: T M ----t IR and

every smooth yector field X on M lifts to a continuoUB aection of TWu whieh ia

smooth along the UDstable ma.nifolds. This appliea to coordinate funetions on M, the

induced basis veetor fields on M and the corresponding Christoffel symbols of the

Riemannian connection on M. Thus if <, > denotes the Riemannian metric on M,
N

then for any smooth vector fields X, Y on M the assignment WU(v) --t IR ,

w --+ < DXZv'Y >(Pw) ia the restriction to WU(v) of a function of dass C: on
N

TIM. But DXZy = U(v)X (see [15]) and consequently tr U is of dass C: as

claimed.

Let X be the geodesie spray on TIM.

Lemma 3.3: tr U - h = X(log f) .
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Proof: For y E. TIM and t 2: 0 let tPt(v) be the Jacobian at v of the restrietion of

rpt to (Wu(v),'\u) . Then f(rptv) ia the product of the Jacobian at rPty of rp-t with

respect to pU, which equals e-ht , f(v) and tPt(v) , Le. f(rptv) = f/Jt(v)e-htf(v) for

all t 2: 0 . Hy the choice of the measure AU this implies X(log f)(v) =

~ 1/!t(v)e-ht It=O = tr U(v) - h aB claimed. [J

3.3 shows in particular that our theorem ia equivalent to f being constant.

Define g = r 1
j then

Corollary 3.4:

CoroUary 3.5:

X(g) = geh - tr U) and X(f) = f(tr U - h) .

f and g are of class C:.

. Proof: 1t suffices to show that log f is of class Cm • But tbis follows from 3.1 - 3.3 and
-- U

the smooth Livsic theorem (lemma 2.2) of [24] . 0

4. A stochastic process on TIM

In tbis section we use the function g on TIM to construct a stochastic process on
N

TIM preserving the measure t\. For this let ~ be the Laplacian on M and denote as

UBual by vu the gradient of a CI-function u: M ---+ IR and by div(Y) the diver-
N

gence of a vector field Y of dass Cl on M. Lift g to a function of class C: on

IN IN
T M which we denote by the same symbol. For v E. T Miet gv be the sIDooth

IV

function on M which is induced from the restrietion of g to WU(v). Denote by ~
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IV

the differential operator on M which acts on functions u of dass C2 by

u ---+ { (u) = g;ldiv(~vu) . Clearly { is uniformly elliptic, with bounded

coefficients and without terms of order zero.

A function u on M ia called {-harmonie for some eE. IR if ({ - ()u = O.• Let ()

be a Busemann funetion at I
V
(- (0) .

2 2
Lemma 4.1: For e~ -} define o(e) = ~ +(} + e)I/2 and

2
ß({) = ~ - (} + ()1/2 j then the functions e-a({)() , e-ß({)B are

e-harmonie.

Proof: Let X = v(B ) and let tr U be the function on M whieh is induced !romv v v

the restriction of tr U to WU(v). Then div(Xy) = tr Uy (see [14]) and 3.4 shows

that for 0 > 0 we have g;ldiy(gyve-(0) = - o~-ldiv(~e-a°Xy) =

- ae-aB(tr U + (h - tr U ) - 0) = (02 - ha)e-aO which proyes the lemma.y v

-hB /2 h2
Lemma 4.1 shows in partieular that the function f/Jy = e v is (- 4) - harmonie.

Let now Lv be the differential operator on M which ia defined by

L (u) = diy( e: vu) + 2g < vu,v log cp > . Since the eurvature on M ia uniformlyv ~ y v

bounded and sinee L is uniformly elliptie with bounded sIDooth coefficients andv

without term of order zero, the associated Cauehy problem Ly - ~ = 0 admits a

unique weak fundamental solution p (x,y,t) (see appendix A). Here p (x,y,t) is thev v

density with respect to the Riemannian volume dy on M of the l--dim. distribution of
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N N

the unique probability measure on the space CO(IR+,M) of eontinuous paths in M

whieh deseribes the unique diffusion in M generated by L with initial distribution 6v x

h2
(see [16J and appendix A). Since the elliptie differential operator ~(~ + r) is

self-adjoint, every weak fundamental solution of its associated Cauchy-problem is

symmetrie in the spaee variables (eompare appendix A and [1]). This operator is

related to L as follows:y

N N

Lemma 4.2: i) The funetion M)( M )( (0,00) --+ (0,00), (x,y,t)--+

Py(x,y,t)cpv(x)/cpy(y) is a weak fundamental solution of the
2

Kv(~ + }-) Cauehy problem; in partieular

pv(x,y,t)'Py(x)/'Py(Y) = pv(x,y,t)'Pv(Y)/CPv(x) .

ii) Let v be a me&8ure on M which is equivalent to the Lebesgue

measure and which is preserved by the diffusion process generated

by L . Then v is of the form dv = tfiJ.y where 1/J: M ---.. [0,00)y

h2 -1
is a smooth function sueh that (~+ r)( VJv 1/1) = °.

Proof: For a funetion u on Miet Cu] be multiplieation by u. Then
2 2

[cpyJ -1 [~] (~ +}-) ['PyJ u = <p;1~( ~ + }-)'PyU = cp;l [~A(<pyU) + < v~,<pvvu

h2
+ uV<Pv > + r &y'Pvu] = div(~vu) + 2~ < v log 'Pv,vu > = Lvu for eyery smooth

funetion u on M. From this the lemma follows. D
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Lemma 4.2 shows in particular that the diffusion process on M generated by Lv

preserves the measure rp~(y)dy (compare [32]).

N

For v E. TIM, w E. WU(v) and t > 0 define cpv(w) = 'Pv(Pw) and p(v,w,t) =

cp (v)p (Pv,Pw,t)/cp (w) . The lift of L to an operator on WU(v) defines a diffusionv v v v

process with transition probabilities cpv(w)p(v,w,t)/'Pv(v) which we call the

cpv-process .

Lemma 4.3: For every t > 0 the function (v,w) --t p(v,w,t) is measurable and
N N

lower semi--eontinuous on {(v,w) E. TIM )( TIM Iw E. WU(v)} .

N 1
Proof: Let B (M be an open ball cf radius r > 0 . For x E. B and v E. TxB the

coefficients of the operator L on B with all its derivatives depend continuously onv

v ; hence the same is true for the fundamental solution qv of the Lv-Cauchy problem

on B (see [21]). The lemma now follows from the definition of p . Cl

moreoverhave

on {} with initial distribution 5 . For every t > 0 and every Borel setw

pV {e I{(tl E. A} = f (rp (W)/'P (v))p(v,w,t)d;\u(w)
AnWu(v) v v ,

N

Let n (resp. n) be the space of paths e: [0,00) --t TiM (resp.
N N

e: [0,00) --+ TIM) , equipped with the smallest u-algebra 21 (resp. 21) for which the
N

projections e--t e(t) (t E. [O,m)) are measurable. For v E. TIM the cp -process onv

wU(v) is given by a Markovian family {pw} u of probability measures pW

WE.W (v)
N

A (TIM we

N

Pv-almost every path in n is continuous. The collection of probability measures
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N

{Pv} 1N then defines a stochastic process on T1M (by 4.3) which we call the
VE.T M

~Droeess .

Lemma 4.4: The <p-proces8 preserves the measure U.

1
N

Proof: For v E. T M the cp -process is given by an action of the semi-group [0,00)v

on functions on WU(v) by the kernel (cp (w)/cp (v))p(v,w,t) . Let (t,u) -----+ Atu bev v
N

the action of [0,00) on functions u on T1M which describe the ~process. Choose a
N

continuous function u on TIM with compact support and recall d(U) = dAU )( dJlsS .

Then

1
N

Let v E. T M J t E. IR, W E. q,twsu(v) and let B be a compact neighborhood of
N N

')'v(- 00) in 8 M such that {1r{v),1r{w)} ( 8 M - B . Then the measures Jlss on

Wss(v) (resp. Wss(w)) project to measures 11. (resp. Ik;,) on B. Since the

conditionals Jls = Jlss )( dt of the Bowen-Margulis measure on the leaves of the stable

foliation are invariant under canonical map8 ([23]) the Radon-Nikodym derivative at

')'v(- 00) of Ik;, with respect to llJ. equals e-ht = cp~(w)/ cp~(v) . By the above

conaideration the integrand of (*) ia measurable and lower aemi--eontinuoua; thus this

integral is just Hp(v,w,t)( 'Pv(v)/'PV(W))dAu(v)U(W)(dAU)( dls)(w) = f ud(fA) which

showsthelenuna. D
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N

Let TI : TIM --+ TIM be the canonical projection. TI induces a measurable

N IN
projection of n onto {}, hence for every w E. T M the measure p W projects to a

probability measure on {} which only depends on TIw = v and will be denoted by p V
•

We then obtain a finite measure P on n by P(B) = JpV(B)f(v)d>.(v) .

Recall that the semi-group [0,(1)) &Cts on {} by the shift-transformations

(t,{) --+ Tt( where Tt{{s) = ({s + t) .

Lemma 4.5: P ia invariant under the shift transformations.

IProof: For t E. [0,(1)) let Rt : {} --+ T M be the measurable projection

e--+ Rt{e) = ((t) . This projection maps the mea.sure P on {} to a Borel-measure

Rt{P) on TIM. Since the u-algebra on n is generated by the sets

R;l{A){t E. [O,(I)),A ( TIM Borel) it suffices to show that Rt{P) = RO{P) for all
N

t ~ 0 . For this let D (TIM be a compact fundamental domain for the action of r on
N N N

TIM and denote by P the measure on {} which describes the tp-process. Let A ( D

be a Borel setj then Ra{P){IIA) = t\{A) . On the other hand, by the definition of P

we have

Since the cp-process preserves the measure t\ it follows

P{{ I((o) E. D,({t) E. d?f,(A)} = P{{ I{{o) E. d1j.(A),{{t) E. D} =
N N

P{{ Ie{O) E. A,{{t) E. dt/J-l{D)} and consequently Rt{P){IIA) = P{{ I{{O) E. A} =

Ra{P){A) . This shows the lemma. 0
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5. Proof of theorem A

We continue to UBe the a.Bsumptions and notations of sections 1 - 4. The Laplacian /:,.
N N

on M admits an extension to a linear self-adjoint endomorphism of L2(M) , the 8pate
N

of square integrable functions on M. The top of the spectrum of tbis extension equals

the negative of the infimum of J1I v1/ 11
2dyIJ1/2dy over smooth functions 1/ on M

with compact support (compare [3], [32J). The following important result is due to

Ledrappier ( [22] ):

Theorem 5.1:
N

The top of the spectrum of the action of 6. on L2(M) is not smaller
2

than -}-, with equality only if the mean curvature of the horo-
N

spheres in M is constant.

N

Let now v e. TIM and recall the definition of the operator :! !rom section 4. Forv

smooth functions t/J, 1/ on Mwith compact support we then have J( ~t/J)1/ ~dy =

Jdiv(gvvt/J)1/ dy = - J< vt/J,V1/ > Sydy, i.e. ~ admits an extension to a linear
N

self-adjoint endomorphism of L2(M) , equipped with the scalar product

(t/J,1/)~J~dy . In pmicular the top of the spectrum of this action equals the

negative of the infimum of J11 V1/112~dYIJ1/2~dy over smooth functions 1/ on M
N

with compa.ct support. Now CPv is a positive function on M which satisfies

2
($ + ~)cp = 0 ; consequently the arguments of Sullivan ( [32J ) imply:v "::I: v
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2 "I

The top of the spectrum of the action of -<. on L (M) is not larger

h2
than -r.

The proof of theorem A now consists in combining 5.1 and 5.2 in a suitable way. For this

we first derive from the results of section 4 an integral formula for functions of class C~
"I

on TIM.

"I 1"1
Via the projection P the Laplace operator for functions on M lifts for every v E. T M

to an elliptic operator for functions on WU(v) which we denote by the same symbol.
"I

For a function u of class C~ on TIM let vu be the gradient of the restriction of u

to the leaves of WU with respect to the Riemannian metric gU = < t >; vu is a

continuous seetion of TWu . Let moreover X be the geodesie spray on TIM and

Lemma 5.3: J 1 "I [t.(cp) + < v(log g),vcp > - hX(cp)] d~ = 0 for every function cp
TM

2 1 "I

of class C on T M with compact support.u

"I

Proof: Let cp: TIM --+ IR be a function of class C~ with compact support. Then

t
cp(~(t)) - cp(~(O)) - J0[gt.(cp) + < vg,vcp > - ghX(cp)] (e(s))ds is a

1"1
(PV,2~\)-martingale for all v E. T M where 2:1t ia the u - algebra generated by the

Borel cylinder sets up to time t (compare [16] p. 189), in particular

t
J(cp(Tt~(O)) - cp(~(O)))dpv(~) = JJ0[gt.(cp) + < vg,vcp > - ghX(cp)] (e(s))dsdpv(e)

On the other hand, since the <,o-process preserves the measure t\ we have
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N

for every continuous function u on TIM with

o=IH: [gt.(cp) + < vg,vcp > - ghX(cp)] (e(s»dsdPV(e)d(fA)(v) =

t I [t.( cp) + < v(log g),vcp > - hX(cp)] cU

for all t > 0 aB claimed. o

o

N

Let n be a compact fundamental domain for the action of r on M. Assume that n
is connected, with dense interior int D , and that the topological boundary 8 D of D

is a compact set of vanishing Lebesgue measure. We denote by TIn the restrietion of
N

the bundle TIM to D.

N N

Lemma 5.4: If <p is the lift to TIM of a function of dass Clon M then

I X(cp)dA = 0 .
TIn

N

Proof: Let 1/1: M ---t IR be a function of dass Cl and let tp = 1/1 0 P . H v1/1 denetes

the gradient of 1/1 in (M,<, » then X(<p)(v) = < v,v1/1 > and consequently
NI N X(cp)(v)dw(v) = 0 for every x ~ M where IIJ is the Lebesgue measure on the

TIM
x

(n -l~m. standard sphere Sn-l N T~M .But I X(cp)dA =
TIDIJ N X(<p)(v)dw(v)dx from which the lemma fellows.

TIM
x



-23-

Every bounded function f{J: T1(int D) --t R can uniquely be extended to a
IV

r-invariant bounded function on T1M vanishing on U T1( .,pOD) j we denote this
tjJe.r

extension again by f{J. H f{J is continuoUB then for every 1/J E. r the restrietion of its

extension is continuou8 on T1(t/.{int D)) .

Let v E. T1(int D) and let B be an open, relativ compact ball about v in Wsu(v)

with I'su(B) = 1 . The next lemma ia a alight generalization of corollary 2.2.

Lemma 5.5.: If f{J ia continuous on T1(int D) J then for every € > 0 there is a

number t(c) > 0 BUch that IJ <p(rjJtv)dj'BU(v) - J cpdA I< c for
B TID

all t > t(e) .

IV

?roof: Ey ocr aBsumpuon If ja oounded 3U hence sud 1<p(w 11 w t T = C < In •

Let e > 0 ; by the choice of D there ia then an open connected subset C of int D

with smooth boundary IJC eint D such that "'(T1n - TIC) < eISe.

Since 6D and oe are compact disjoint subaets of M J their distance ia strictly

positive. This mea.ns that there ia a continuous function a: D --+ [0,1] with the

following properties:

i) a(X) = 1 for every X E. C

ü) a(X) = 0 for every X E. on .
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N

The litt of a to TID then extends to a continuoUB r-invariant function a on TIM
N

vanishing on U T I (,pOD) and acp is the lift to TIM of a continuoUB function on
tjJe.r

TIM which satisfies

iii) IJ I acp dA - J I <p dA I< c/8 .
TD TD

By the choice of C there is a continuous, r-invariant nonnegative function ,p on
N

TIM with the following properties:

iv)

v)

I ItXv) = c for every v e. T D - TC.

J1 ,pdA < c/4.
TD

Again ,p is the lift of a continuous function on TIM. Thus an application of corollary

2.2 shows the existence of a number t(c} > 0 such that for all t > t(c} we have

vi) IJB(}Ip(t/ltw)dlU(w)-J I{Jd~1 <c/2 and
TIn

vii) IJ B 1f,(iw)d/iBU(w)l < c/2 .

IN
Since Irp(w) - a<p(w} I 5 tXw} for all w e. T M the lemma follows. o

Now we are ready for the proof of theorem A. Using theorem 5.1 above we argue by
N

contradiction and assume that the top of the spectrum of the Laplacian /l on L2(M) is

2
stricdy larger than -}.. Then there is a number c > 0 , a compact ball K) D of

radius r > 0 and a continuous function u on K with the following properties:
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-25-

u va.nishes on the boundary 8 K of K .

h2
u is smooth on K - 8 K and satisfies t.u = (- r + e)u on K - 8 K .

For the existence of such a function see [32].

N

Extend u by zero to a continuous function on M and denote this extension again by

u. Let cp be the lift of u to Tl~; since u2 is of dass Cl lemma 5.4 shows

I 1 N X(cp2)d.>t = 0 . On the other hand, Green's fonnula implies IN t.(u2)dy = 0 and
TM M

consequentlyalso I 1 N Ä(cp2)d.>t = 0 (recall that u = P 0 cp and hence t.(cp2)(v) =
TM

tt.(u2)(pv) for a.ll v €. T1(K - 8 K) . Via approximation of cp2 by functions of class

C2 we then obtain from lemma 5.3 that I 1 N f< vg,v(cp2) > dA = 0 as well.
TM

Define

{

g(v)Äcp(v) + < vg,vcp >(v)
Lcp(v) =

o

The above identity then yields

if v €. T1(K - 8 D - 8K)

otherwise .

Now K is compact and hence there are finitely many isometries in r, say

k
1/11, ... ,'1h. E. r for some k > 0 , such that E = U tA(D) is a compa.ct connected

T.k: • 1 1
1=
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N

neighborhood of K in M. For i E. {1, ... ,k} we then obtain a continuous function ui

on D by ui(x) = u("1(x)) . The lift of ui to TIn then induces as before a bounded
N

r-invariant function CPi on TIM. Similarly we obtain a bounded r-invariant
N

function Lcpj on T1M which satimes Lcpj(v) = Lcp(dtJ.i(v)) for every v E. T1(int n) .

For every t/J E. r the restrietion of cp. and cp.Lcp. to tJ.(T1(int D)) is continuous.
111

2 N

Let c =sup{( IfcpLcp +}- cp2 1+~ IX(cp2) I)(v) Iv E TlM} ~ er =Jccp2dA > 0 and let

Ru > 0 be sufficiently large that ROo> 32 cß where ß> 0 is the diameter of E in
N

(M,dist) . Let v E. T1n and let B be a compact ball about v in WSU
( v) with

j'su(B) = 1 (Le. the interior of B is dense in B and the boundary 8 B of B has

vanishing Lebesgue measure). Choose a compact neighborhood C of B in Wsu(v)

such that j'su(C) ~ I + 0./I6c ~ 2 . By standard comparison ([15]) there is then a

number RI > 0 such that for every t ~ R1 - ß the intersection with pwsuetPtv) of
N

the ß-neighborhood about PtPtB in (M,dist) is contained in PfjJtC .

Recall that lemma 5.5 can be applied to the functions cP; and CPiLCPi; consequently

there js a number ~ ~ R1 with the following properties:

i)
k 2

Ie-ht ~ Jt (cp.Lcp. + g !:- <p~)dAsU - 0.1 < 0/16 for all t ~ R_ (recall that
.l A. B 1 1 I:l 1 -~
1=1 ~

k

~ J h
2

2l 1 (fcp.L<p. + r "". )dA = 0. by the definition of the functions ""I' and
i=l T D 1 1 1

LCPi) .
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k

Ie-ht l f t g ~ X(cp~)dASU I < 0/16 for all t ~ B.:! (recall that
i=l t/J B

f 1 X(cp~)d'\ = 0 for every i E {l, ... ,k} by lemma 5.4).
TD 1

Für i E. {I, ... ,k} let moreover ni = {w EWU(v) IPw E,pqjn for some 1/J E. r O} .

Since tAD (E we have nO(n. and O. (U tPtc . Denote by 0 the
1 1 1 R~t~R+RO+ß

lift of the Busemann function 0v to a function on WU(v). By the choice of R, RO

and C we then have

iii)

k
1 1: f -hO h

2
2 UIon- e (cp.Lcp. +r gcp. )d'\ - a I< a/2 .

nO . n. 1 1 1
1=1 1

f
h2 2

On the other hand, lemma 5.2 shows ~ (fJ~Jl + r fJ )gvdy ~ 0 for every smooth

function fJ on M with compact support.

For 1/J E rOdefine now a continuous function ((1/J) on M with support in 1/JE by

-hO /2
((1/J)( t/Jx) = u(x) . Write Lv = ~~ and apply the above inequality to ((1/J)e v ;

we obtain
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On the other hand, let w e. Wu(v) be such that Pw E. 1/JtI1.(D) . Then rt'ie-hBLrt'i(w) =

-hO -hO /2 -hO /2 -hO
({1/J)e vdiv{gvv({1/J) )(Pw)=({1f;)e v div{e v ~v((1/J))(Pw) - ~ e gX{ rt'~){ w)

and consequently by the choice of °0 and (}i and the above estimates we have

Hut this is a contradiction to iii) and hence to the assumption that the top of the

2 IV h2
L --5pectrum of M is strictly luger than - '4 . Thus theorem A now follows from

theorem 5.1 of Ledrappier.

Remark: The above arguments would simplify eonsiderably if we eould aBsume that M

admits finite covers of arbitrarily large injectivity radius. Tbis is for example true if M

is homotopy equivalent to a compaet locally symmetric space of negative curvature

(then the fundamental group r = 'K1(M) of M is residually finite). We do not know

any examples of compaet negative1y eurved manifolds that violate the above propertYi

however Gromov's work suggests (see for example [llJ) that tbis property should only

hold in very special eases.

6. P roof of corollary B

For p e. M and v e. T~M let as before U{v) be the automorphism of the orthogonal

complement vJ. of v in TIM which lifts to the second fundamental form of the
. p

hor08phere 0:1(0) where v is a liIt of v in TIM. U{v) is symmetrie with positive
v

eigenvalues; hence the same ia true for U{v) + U(- v) .
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N

Assume from now on that the mean eurvature of the horopheres in M is constant.

Lemma 6.1: The determinant of U(v) + U(- v) ia independent of v E. TIM.

Proof: Let gSS (resp. gSu) be the Riemannian metne on the leaves of WSS (resp.

WSU) whieh ia the lift of the Riemannian metne on M. Denote by g the restnetion of

the Riemannian metne on TIM to the bundle E = TWSS S TWSU . Since by our

assumption gSS (resp. gSu) induees (up to a constant) the measure 1-'8S (resp. pSll)

on the leaves of WSS (resp. wsu) the determinant of the identity

(E,gSS + gSu) ---+ (E,g) ia eonstant.

Recall that E admits a smooth g-orthogonal decomposition E = Th e TV where T V

is tangent to the fibres of the fibration TIM ----+ M . For each v E. TIM the fibre Te

of Th at v (resp. T; of TV at v) is canonically isomorphie to v1 and with

respeet to tbis identifieation the metne g ia just the produet of the Riemannian metne

on TY and the Riemannian metne on y.l (see [20]). Let Xl'''. ,Xn- l be an

orthonormal basis of vJ. of eigenveetors with respect to U(- v) . Then

(XI ,- U(- v)XI ), ... l(Xn- l ,- U(- v)Xn_ l ), (Xl'U(v)Xl ), ... ,(Xn_l,U(v)Xn_1) ia a

gSS + gSU _ orthonormal basis of Ev ' hence the determinant of the identity

(E,gS8 + gSu) ----+ (E,g) at v equals the determinant of the matrix

[
Id I d ] where _ U(- v) ia in diagonal form. But thia determinant ia
- U(- v) U(v)

just the determinant of U(v) + U(- v) .

Corollary 6.2: H dim M = 3 then there ia a constant 0 >: 0 BUch that

U(v) + U(- v) = 0 Id for all v E. TIM.
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Proof: By 6.1 the determinant of U(v) + U(- v) as well as its trace does not depend

on v E. TIM. Since U(v) + U(- v) is asymmetrie automorphism of the 2--dim. veetor

space v.L· the eigenvalues 0 1(v), (}2(v) of U(v) + U(- v) do not depend on

1
v E. TM. Thus 01(v) =01 J (}2(v) =02 for some (}1 > 0, 02 > 0 and

U(v) + U(-v) = oId if and only if 01 = (}2 = o.

Recall the deeomposition TWsU Ei TWsS = Th Ei TV !rom the proof of 6.1. Assume

01 f O2 i then TWsU ia a direct sum of two continuous line bundles Tl, T2 on TIM

where rri is spanned by elements of the form. (Y,U(v)Y) for eigenvectors Y of

U(v) + U(- v) with respect to the eigenvalue 0i(i = 1,2) . Since the restrietion to WSU

of the canonical projection Th EB TV
--t TV ia isomorphism this direct decomposition

induces a decomposition of TV as weIl. But TV is the tangent bundle of the fibres of

the 2-sphere bundle TIM --+ M , hence such a decomposition is impossible. This

implies the lemma. [J

Using corollary 6.2, our coroIlary B !rom the introduction now follows from the

following:

Lemma 6.3: Let M be a compact Riemannian manifold of negative curvature. H

there is a number ° > 0 such that U(v) + U(- v) = ° Id for all

v E. TIM then the curvature of M is constant.

Proof: Write A(v) = U(v) + U(- v) ; if A(v) = (} Id then U(v) and U(- v)

commute and

2 2 2 2 2 2A (v) = 0 Id = U (v) + 2U(v)U(-v) + U (-v) = U (- v) - U (v) + 2a U(v).
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Choose an orthonormal basis El' ... ,En- l of v! and extend El , ... ,En- l to a

system of parallel vector fields El (s), ... ,En- l (s)(s E. IR) along the geodesie IV' With

respect to the basis El(s), ... ,En_l(s) of (q,sv)! the map U(q,Sy) (resp. U(- fjJSy))

is represented by a symmetrie matrix B(s) (resp. C(s)). Clearly

~ (B(s) + C(s)) = Q •

Let R be the eurvature tensor on M; for y E. TlM we obtain asymmetrie

automorphism R of y! by defining R (X) = R(v,X)y . Clearly R = R . Nowv v v ~

the Riccati equation ( [28] ) shows

~s C(-s) + C2(Q) + R_ = Q= ~B(s) + B2(0) + R
Uö s=o v ws s=O v

or equivalently C2(0) - B2(Q) =~ (B(s) + C(s)) I = 0 . By the above equation this
8=0

means U(v) = ~ Id for all v E. TlM and consequently again by the Riceati equation

the eurvature on M is constant.

7. Proof of theorem C

o

Let S, M be homotopy equivalent eompact Riemannian manifolds of negative

curvature. Assume that the marked length speetra of M and S coincidej then there is

a C1-time preserving eonjugacy A: T1S ---i TIM ([12J). The map Apreserves the

strang stable and the strang unstable foliations on T1S resp. TIM, moreover the

strang stable foliation ia the image of the strong unstable foliation under the flip

:Y: W ---i - W • Thus A can be composed with the time-t-map of the geodesie flow on
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TIM for a suitable t e. IR in such a way that the resulting map, again denoted by A,

commutes with the flips ~ on T1S and TIM.

Assume now that the metric and the topological entropy of the geodesie flow on T1S

coincide. Then the same is true for the metric and the topological entropy of the geodesie
N

flowon TIM; in particular by theorem A the mean curvature of the horospheres in S

and M is constant.

Recall that the Riemannian metric on M and S lifts to Riemannian metrics gi on the

leaves of Wi(i = su,u,s,ss) . These metrics induce a set of conditionals for the

Bowen-Margulis meaSUIe which are preserved by A up to a constant ([12]). Since the

flip w --t - W maps gSU to g8S and gU to gS and A commutes with the flips

there is a number ß> 0 such that for every v e. T1S the determinant at v of the

restriction of dA to (TWi(v),gi) as a linear map onto (TWi(A(v)),gi) equals

~i =su,u,s,ss) .

Recall from 6.1 that the determinant of U(v) + U(- v) does not depend on v e. T1S

(resp. v E. TIM) ; we denote tbis constant value by Os (resp. GM)' Since A

preserves the volume forms on T1S and TIM (see [12]), the computation in the

proo! of 6.1 shows ClMrJ2ClSI = 1 . We formulate tbis as a lemma:

Lemma 7.1: Os = rl'0M .

N N N

For xe. S and v E. T1S there is a unique tPx(v) e. T~S with 1r\1/Jx(v» = 1f{v) . The

IN
map t/J. : v --t ,p (v) is continuous and for every w e. T S its restriction to Wsu(w)x x
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N

is a homeomorphism onto T~S - {tPx(- w)} thai is ab80lutely continuoUB with tespect

to the Lebesgue measute classes. Hs Jacobian with tespect to the measures ASu induced
N

by gSU and the Lebesgue measure Ax on the standard sphete T~S N Sn-1 can be

computed using lemma 3.4 of [12]:

N N

Lemma 7.2: Fot every XE. Sand v E. T;S the Jacobian of tPx I su at v with
W (v)

tespect to the measures ASU, Ax equals oS'

N IV

Similarly we obtain map8 tPy and measures Ay on T;M for y E. M .

IV N I IV N

Let A be the litt of A to a time-pteserving conjugacy Tl S -----i TM. For x E. S

IV IN
and y E. M define a continuouB function It (x,y) : TxS --+ IR by /'; (x,y)(v) =

() (y) . Then
-X(v)

L 7 3 ß \ (TINS) = f e-h~x'Y)d\ .emma.: "x x "x

N N

Ptoof: The map f: T I S ---i TIM which ia defined by f(w) = t/J. 0 X(w) ia a
x y y

homeomorphiam; by 7.2 ita Jacobian at v with respect to the measutes A
X

and Ay

equals 0Me-hl'(x,y)(v)ßa-SI = tr1e-hK(v) . But A (T1S) = A (T1~) whence the
x x y y

lemma. D

COtollary 7.4: {3 = 1 I in particulat Os = GM .
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N

Proof: For x«;. Sand R > 0 let S(x,R) be the distance aphere of radius R about x
IN

and let "\(x,R) be the Lebesgue measure on S(x,R). For v E. TxS we obtain a

homeomorphism v (v,R) of Wsu(q,Rv) into S(x,R) by defining v(v,R)(w) =

R IN R
Pq, tPx(w). For every v E. TxS the Jacobian of v (v,R) at tP v with respect to the

measures ASU on Wsu(q,Rv) and the measures A(x,R) on S(x,R) converges to 1 as

R~ m , and this uniformly in v (see the discussion in section 1 of [13]). Hy lemma

7.2 this implies that the limit I im e-hRA(x,R)S(x,R) exists and equals
R-tm

1 IN
o-S A (T S).x x

N

Using the above notations as weIl for M J choose y E. M and define for every R > 0 a

homeomorphism F(R) : S(x,R)~ S(y,R) by F(R)(PtjlRv) =
N

PIjlRT/Jy(X(IjlRv))(v 10 T~S) . The above considerations then show that the Jacobian of

F(R) at q,Rv converges as R~ m to e-hl'{x,y)(v) , and this uniformly in

IN
v E. T S .x

N

Thus I im A(y,R)S(y,R)e-hR = GM l A (TIM) =
R-tm y Y

R
1 im e-hR Je-hl>{x,y)(v)<L\(x,R)(PIjlRv) = °Sl Je-hl>{x'Y)d~x = OSlß~x(T~S) .

-tlD

IN IN 1 1 n2
Since >'x(TxS) = Ay(TyM) this shows 0M = Os ß j on the other hand Os = jToM

by lemma 7.1 and consequently ß= rr ,i.e. ß= 1 as claimed. D

To finish the proof of theorem C we need the following result from linear algebra:
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Lemma 7.5: Let A be a symmetrie positive definite real (n,n}-matrix with

det A = 1 . Then tr A ~ n with equality only for A = Id .

Proof: The matrix A has n real positive (not necessarily distinct) eigenvalues

n n

o< 01 ~ ... ~ on . Then det A = n 0i = 1 ,i.e. l log 0i = 0 ,and tr A =

i =1 i=1
n

l Gi = n . Thus it suffices to show the following:

i=1

k

For k > 0 let bl' ... ,bk e. IR be such that l bi = 0 . Then

i=l

equality only if bi = 0 for all i E. {I, ... ,k} .

k

l
i=1

b.
e 1 ~ k , with

But (*) is an easy consequence of the convexity of the exponential function whose proof

will be omitted.

AB a corollary we obtain theorem C for manifolds of constant curvature:

o

Corollary 7.6: Let S be an n-dim. compact Riemannian manifold of constant

negative curvature. If the marked length spectra of M and S

coincide, then M and S are isometric.

Proof: We assume that the curvature of S equals -1 and we show that the same is

true for M; the cOlollary then follows from Mostow's rigidity theorem ([27] ). By 7.4,

for every v e. TIM the determinant of the self-adjoin~ automorphism U(v) + U(- v)

of v l equals 2n- 1 and its trace is 2(n -1) . Thus 7.5 shows U(v) + U(- v) = 2 Id

for all v E. TIM and hence by 6.3 the curvature of M ia conatant - 1 . 0
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In the remainder of tbis section we show how the above argument can be modified to

treat compact quotients of the complex hyperbolic spa.ce (Hm .

Thus let S be a compact quotient of (Hm(dim S = n = 2m) , normalized in such a

way that the maximum of the curvature of S equals -1. Let Q1 (resp. Q2) be the

restriction of the differential oI the canonical projection T 1S --t S to TWSU (resp.

TWss) .For every v E. T 1S the restriction of Q1 to TvWSU (resp. Q2 to TvWSS) ia

an isomorphism onto Vi whose inverse we denote by Ql1 (resp. Q2'1). Write

-1
J = Q2 0 Q1 .

For every v E. T1S there is an n - 2 = k - dim. suhspace E of T W SU whosev v

nonvanishing elements are precisely those vectors X for which the sectional curvature

of the plane in TS spanned by v and QlX equals - 1 . The orthogonal complement

Vy of Ev in T y WSU contains all vectors X for which the 'sectional curvature oI the

plane spanned by v and Q1X equals - 4 (compare [12] and the referencea there).

Then TWsU = E EB V is a smooth gSU-orthogonal decomposition which ia invariant

under the action of the geodesic flow.

Let TO be the l-dim. subbundle oI (HID which ia spanned by the geodesie spray.

Then TO mv EB JV is an integrable distribution in TT1(Hm whose maximal integral

manifolds are just the unit tangent bundles of the totally geodesic embedded hyperbolic

planes of constant curvature - 4 in (Hm , the so called (-lines (see [27]). The

boundary of a (-line in {J (HID ia a smooth embedded circle, a 80 called (--circle

( [27]) .
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Lemma 7.1: Let L ((Hm be a (-Hne i then A(T1L) is the unH tangent bundle of

a totally geodesic embedded plane in M.

N N

Proof: Recall that there is a homeomorphism f: 8 S --t {) M such that
N

1(" 0 X= f 0 11". Since X is of class Cl, the smooth structure on 8 S induces via f a
N

Cl _ structure on 8 M (see [12]). Thus the (-eircle 8 L that is the boundary of L
N

in OG:Hm is mapped via f to a Cl-embedded cirde fOL in 8 M and A(T1L) =

lN
{w E T M 11r{w) E f 81,1r{- w) E f {)L} .

N N

Recall that the tangent bundle TT1M of M admits a sIDooth direct orthogonal
N

decomposition TT1M = TOED Th ED TV
; here the yertical bundle TV is tangent to the

N N

fibres of the fibration T1M --t M and TO is spanned by the geodesic spray (see

[12], [20J). Using these notations as well for (Bm we ihen have dA(Th ED TV
) =

Th ED TV (compare [12J ). The restriction of the canonical projection

Qh : Th Ei TV ---+~ to TWsU is an isomorphism; since V is a l-dim. subbundle

of TWsU this means that for every W E T1
(H

m the dimension of the intersection

dA( (V mJV) ) nT v ia at most one.
w A(W)

Now JdA(V) = dA(JV) by 4.2 of [12]; consequently since V is a I-d.im. subbundle

of TWsU there is for 0 =F X EVa number a(X) E IR such ihat JdA(X) =

a(X)dA(JX) . Together with the above consideraiionB ibis shows that dA(V mJV) nTV

is a l-dim. continuous subbundle of TV which we denote by Z.
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But T
W

T1L nTwWsu(w) = vw .and TwT1L nTwWsa(w) = JVw for every w E. T1L

(see [12J) and hence via integraticfn of a vector field which is tangent to Z we obtain
N

the following: Whenever v E. Ä(T1L) then {w E. T~vM I w(w) E. f8L} ia contained in
N

A(T1L) . On the other hand, A(T1L nWU(v)) ia a C1-embedded plane in TIM
N

which ia mapped via the projection P to a C1-embedded plane H in M. By the
N N

above considerations, A(TIL) contains a .CI-circle bundle B ( TIM IH . But

v E. A(T1L) was arbitrary and A(T1L) is diffeomorphic to B; thus A(T1L) = B . On

the other hand, A(T1L) is invariant under the action of the geodesie flow and

conaequently PtPtw E. H for all w E. B and all t E. [R • This meana B = T1H and

moreover that H is totally geodesie embedded as claimed.

IN
For v E. T M write now ~v = (dA(E))v and ~ = (dA(V))v .

c

Corollary 7.8:
IN

For every v E. T M the subspace Ql(~) of v 1 is invariant

under U(v) and U(- v) .

Prcof: Let L be a (-line in (Hm , let w E. T1L, v = A(w) and let X E. Y. Thenv
the Jacobi field t ---+ A(t) = QltPt (X) is tangent to the totally geodesie embedded

N

plane H = PdA(T1L) (M and the same is true for its eovariant derivative A' (t) .

Thus A' (t) = a(t)A(t) for some function a: IR --+ IR ; but also A' (0) =

U(v)A(O) = U(v)X whieh means that X ia an eigenveetor with respect to U(v).

Similarly we obtain the invarianee of Ql '; under U(- v) . c

Corollary 7.9: The direet decomposition v 1 = Ql( 'v) mQ1(~) ia <, > ­

orthogonal and invariant under U(v) and U(- v) aB weIl aB under
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parallel transport along the geodesic 'Y •y

~: Hy 7.7 and 7.8 we only have to show that Q1( Iv) equals the <, >­

orthogonal complement Q1( ';) l of Q1(';) in v l
. Hut this follows from 7.8 and the

considerations in [12]. o

IN
Hy 7.8 there ia for every v €. T Manumber a(v) > 0 such that Ql ~ is an

eigenspace of U(v) + U(- v) with respect to the eigenvalue a(v) .

N

Lemma 7.10: a(v) ~ 4 for all v €. TIM, with equaltiy only if

U(v) + U(- v) IQl 6
v

= 2Id .

N

Proof: Let v €. TIM be such that b = ~ a(y) 2: 2 ,Le. b = 2(1 + c) for same c 2: 0 .

Let 0 < b1 ~ ... ~ bn- 2 be the remaining n - 2 eigenvalues of ~ (U(v) + U(- v)) ; by

n-2

7.4 and properties of (Bm we then have n bi = (1 + c)-l , in particular b1 ~ 1 .

i=l
1Write cl = b1(1 + c) and ci = bi for i ~ 2 . Since the traee of 2' (U(v) + U(- v))

n-2 n-2 n-2

equals n we obtain l ci = (1 + c)b1 + l bi 5 c + l bi =

i=l i=2 i=l
n-2

E + (n - 2) - 2c = n - 2 - c . On the other hand I Ci = 1 and consequently E = 0

i=l

and b1 = ... = bn- 2 = 1 by lemma 7.5. Since U(v) + U(- v) is symmetrie with

respect to the scalar product <, > on v.L this means that the <, > - orthogonal

complement Ql 'y = (Q1 ~) l of Q1 ~ in y.L equals the eigenspace of

U(v) + U(- v) with reapect to the eigenvalue 2 J whence the lemma. 0



-40-

With the above aBsumptions, let now v E. TIM be aperiodie element of ,pt of period

say r> 0 . Let X ~ ~ and for t E [O,r) let Y(t) = QId,pt(X) . Then Y(t) is an

eigenvector of U(,ptv) with respeet to the eigenvalue ((t) and an eigenvector of

U(- ,ptv) with respeet to the eigenvalue ((t); clea.rly {(t) + ((t) = a(,ptv) . Now

difi'T(X) = dA 0 difi'T 0 d A-l(X) = e2'TX and consequently J: ~log 1IY(t)l 12 dt =

4'T • But ~ log 11Y(t) I 12
= 2( t) sh~ws J:((t )dt = 2'T , similarly we obtain

J:e(t)dt = 2'T . Thus J:a(ifitv) = 4r which implies by lemma 7.9 that a(ifitv) = 4 for

every t ~ [O,r] ,moreover Ql 8 t is an eigenspace of U(,ptv) + U(- ,ptv) with
,pv

respeet to the eigenvalue 2. But periodie orbits of ,pt are dense in TIM and thus by

continuity v.l = Ql( Kv) mQl(';) ia a decomposition into the eigenspaces of

U(v) + U(- v) with respect to the eigenvalues 2 and 4 for every v E. TlM . Hy 7.9 the

arguments in the proof of 6.3 ean now be applied separately to the distribution ~ and

rand show that for every v ~ TIM and every 0*XE' (resp. 0 f X ~ r) thev v

eurvature of the plane in TM spanned by v and X equals -1 (resp. - 4) . Hut ibis

means thai M is locally symmetrie (see [28]) and hence theorem C for quotients of

G:Hm now follows from the Mostow rigidity theorem.
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Appendix A

N

In this appendix we denote by M an arbitrary simply connected Riemannian manifold
N

of bounded negative sectional curvature. Let /j, be the Laplacian on M and consider a
N

differential operator $ on M which acts on functions u of class C2 via

u~ $(u) = 1j;t.(u) + < X,vu >

where as usua! vu is the gradient of u and

N

i) tJ; is a smooth function on M with range in a compact subinterval of (0,00) .
N

ii) X is a vector field on M of uniformly bounded norm.

The following lemma is a consequence of 2.3 of [5] :

N N

Lemma A.l: Let XoE. M and define r(x) = dist(Xo.x)(x E. M) . Then there is a

constant c > 0 independent of Xo such that .t'(cp 0 r) ~

tPi/' (r) + ccp' (r) for every nondecreasing function cp : IR --+ [O,m)

va.nishing identically on (- m,1/2] .

N

Proof: Recall that M has bounded geometryj hence by 2.3 of [5] there is c> 0 such

that /j,(cp 0 r) ~ cp. (r) + ccp' (r) . Since $(cp 0 r) = ~(cp 0 r) + < v(cp 0 r),X > the

lemma follows from the choice of X .
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N

the differential operator on M that is formally adjoint to ~ with

2 N

respect to the L -6calar product on the space of smooth functions on M with compact

support.

N N

Let uO: M --+ IR be continuoua. A continuous function u: M x [O,T) --+ IR with

u(x,O) = uO(x) for all x E. M ia a solution pf the :(- Cauchy problem with initial

!lMl Uo if

1)

2)

uI is of class C2 in the space variable, of dass Cl in the time
11 x (O,T)

variable.

8
~-(Ku=O on Mx(O,T).

We call u a weak solution of the :(- Cauchy problem with intial data Uo if

N

1') ~f cp(x)u(x,t)dx = f(.l rp)(x)u(x,t)dx for every smooth function rp on M with

compact support and for every t E. (O,T) .

N N

A nonnegative measurable map p : M x M x (O,m) ----+ IR ia called a (~)

fundamental solution of the ,!/- Cauchy problem if for every bounded continuous
N

function Uo on M the functiün

[

fSi p(x,y,t)uO(y)dy

u(x,t) =

u 0 (x)

for t > 0

für t = 0
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is a (weak) solution of the $- Cauchy problem with initial data uo.

Recall from corollary 6.2 of [16] that the operator $ induces a unique diffusion on

M . This diffusion ia a stochastic process which can be described as follows: Compactify
N N

M by adding a point w at infinity; Jl = M U{CI)} ia naturally a topological space. Let

W(M) be the set of all continuous maps w: [0,00) ----t Jl with w(t) = w for all

t ~ inf{s ~ 0 Iw(s) = w} = ((w) .

N

Denote by ~ (resp. 93t ) the u-algebra on W(M) generated by the Borel--eylinder

sets (resp. the Borel cylinder sets up to time t) (compare [16] p. 189). The

$- diffusion is then determined by the unique family {Px} lIi of probability
XE.M

N

measures on (W(M),~) with the following properties:

i) Px{w Iw(O) = x} = 1 for all x E. M .

t
ii) f(w(t» - f(w(O» - f0(.t'f)(w(s»ds is a (Px'~t) - martingale for every smooth

N

function f on M with compact support and every XE. M .

N N

Let XoE. M and let B be an open ball of radius r E. (0,00) about Xo in M. Then

there is a unique fundamental solution qB of the equation ~ - ~ = 0 on B x (0,00)

vanishing on the boundary OB of B ([21] chapter IV).

N

Let Bl'B2, ... be an exhaustion of M by open balls such that B"j CBj+1 and
00 N

U B. = M . Define
j=l J
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for x,y E. B.
1

otherwise .

By the maximum principle for parabolic differential equations ([30] section lll) we

have qi ~ 0 and qi+l ~ qi for all i > 0 . Define p(x,y,t) =S?P ~(x,y,t) .
1

N N

Lemma A.2: For every XE. M and every Borel set A ( M , t > 0 we have

p {w Iw(t) E. A} = f p(x,y,t)dy.
x A

Proof: For every t > 0 ,every i > 0 the function qj induces an operator Q~ on

L2(Bj) by (Q~f)(x) = f qj(x,y,t)f(y)dy . If f: Bj --; IR js a contjnuous functjon

vanishing near OBj then the function u: (x.t) -t (Q~f)(x) js a solution of the

equation ~ - ~ = 0 on Bi )( (O,m) vanishing on OB)( (O,m) which satisfies

li m u(x,t) = f(x) . Since such a solution is unique ([21] chapter IV) we have in
t-+O

particular q.(x,y,t + s) =f q.(x,z,t)a.(z,y,s)dz for all x,y E. B. , t,s > 0 . It follows
1 B. 1 ~ 1

1

from the maximum principle for parabolic differential equations ([30] secion m) that

qj(x,y,t) > 0 for all x,y ~ Bj , t > 0 and also f qj(x,y,t)dy:S 1 .

Compactify Bi by adding a point ß at infinity and define W(Bi ) as before. We then
N.

obtain a Markovian system of probability mea.sures {P~}x~Bj on W(Bj) by defining

~~{wIw(t) ~ A} = fAqj(x,y,t )dy . The measures {~~}x~1:t then describe the unique

$- diffusion on Bi ([16] chapter V, section 3).
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N

For a path w E. W(M) with w(O) = X E. Bi and t > 0 let
N

Ti = inf{s 2: 0 Iw{a) E. M - Bi} and tA Ti{W) = inf{t,Ti{w)} . Then Ti is a stopping
N

time for (W(M),~) and consequently

j
tAT.(W)

f(w(tA Ti(W))) - f(w(O)) - I ($ f}(w(s))ds
o

ia a (Px'~t) - martingale for every x E. Bi and every smooth function f with

compact support in Bi .

N

Let {P i } B be the unique family of probability meaBurea on W(M) which ia definedx XE. •
I

by pi {w Iw{t) tS A} = P {w Iw(t) E. A,t< T.(W)} where x tS B. , t > 0 and A CB.x x - I I I

is a Borel-set; by the above consideration these measures describe the ~- diffusion on
• N.

B.. Thus pI = pI for all x E. B. and i > 0 ; since on the other hand clearly
I x x I

P {w Iw(t) E. A} = sup pi {w Iw(t) E. A} we obtain P {w Iw(t) E A} =x . x X
I

sup J q.(x'Ylt)dy = J p{x,y,t)dy by Lebesgue's theorem of monotone convergence.
i A I A

Thia shows the lemma.

Remark: As an increasing limit of continuous functions the function
N N

p : M )( M )( (O,m)~ (O,m) ia measurable and lower semi-continuous.

o

Lemma A.3: The function p is a weak fundamental solution of the $- Cauchy

problem with the following properties:



-46-

N

i} p{x,y,t} > 0 for all x,y E. M, t > 0 .

ii) p(x,y,t + s) = fEtP(x,z,t)p(z,y,s)dz for all x,y E ~ ,all t,s > °.
in} If u: M)( [O,T} --+ IR is a bounded solution of the ~- Cauchy

problem then u(x,t) = f p(x,y,t)u(y,O)dy for all x E ~, t > °,
in paniculary f p(x,y,t)dy = 1 .

iv} If the unique extension of $ to a linear operator on the Hilbert
N

space L2{M} ia self-adjoint then p{y,x, t} = p{x,y ,t} for all

X,y E. M, t > 0 .

N

Proof: Since fex y,udy 5 1 fo even x E M the fucti ns qJx, •Je to

1 N

p{x, · ,tl in L {M} by Lebesgue's theorem of monotone convergence. Let f {resp., rp}

be a continuous {resp. smooth} function on M with compact support contained in some

ball Bi. Then f,cp E. L2{Bj} for a1l j > i and consequently by Lebesgue's theorem,

applied to the positive and negative part of f and cp, we have

Hcp(x)qj(x,y,t)f(y)dydx~Hcp(x)p(x,y,t)f(y)dydx(j~ m) in L2(~ )( ~) . Now

for j > i the fuction u/x,t) = (Qif)(x) is a solution of the equation .l:'-~ = ° on

Bj )( (O,m) *a.nd consequently ~f cp(x)(Q~f)(x)dx = f(.l:'*cp)(x)(Qif)(x)dx

~ ff(.l:' cp)(x)p(x,y,t)f(y)dydx . But this just means that the function u(x,t) =

f p(x,y,t)f(y)dy is a weak solution of the .l:'- Cauchy problem. Moreover since p is

defined by the $- diffusion on M the function u is continuoUB {see [16] chapter V}.

Let x E. Bi and let U be an open neighborhood of x in Bi . For j > i we theIi have

l~lim f q.{x,y,t)dy~lim suPf p{x,y,t)dy;but fp{X'Ylt)dY~l forall XE.~
t~O U J t~O U
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and consequently lim J p(x,y,t)dy = 0 . Since U was an arbitrary neighborhood
t-+O ~-U

of x it follows easily 1im Jp(x,y,t)f(y)dy = f(x) for every continuoUB bounded
t-+O

function f on M. This shows that p is a weak fundamental solution of the $­

Cauchy problem. ii) and iv) follow from corresponding properties of the functions qi .

For the verification of iii) we use the arguments of [5] (thm. 2.2).

Let u: M x [0,T) --+ IR be a bounded solution of the $- Cauchy problem and

define for x E. ~ and t > 0 ii(x,t) =Jp(x,y,t)u(y,O)dy and ii(x,O) = u(x,O) . Then
N

u - ü is a bounded continuous function on M)( [O,T) . Assume for simplicity that the

function uO: y --+ u(y,O) is nonnegative. Choose a nondecreasing function VJ of dass

C2 on (O,m) such that cp(s) = 0 for B E. (0,1/2) and cp(s) = s for s ~ 1 . Let XoE. ~

and define p(x) = tp(dist(xO'x)) . By A.1 there is K > ° such that $p < K . Let
N

N = sup{ 1(u - ü)(x,t) 11 (u,t) E M )( [O,T)} and let R > ° be a large positive

constant and choose i > °sufficiently large that B(xO,2R) ( Bi .

For j > i let Xj: Bj --+ [0,1] be a continuous function with compact support which

satisfies X·(x) = 1 for x E B. 1 . Define a bounded function u.: B.)( [0,(0) --+ IR
J J- J J

by uj(x,t) =Jqj(x,y,t)X/y)u(y,O)dy for t > 0 and uj(x,O) = Xj(X)u(x,O) . Then

uj ---+ Ü pointwise on B(xO,R)( [0,(0).

Let e > °,let x E lJ(xO,R) and let t E. [O,T] . There is a number j(x,t) > i such

that 1ü(x,t) - uix,t) I< e/2 for all j 2: j(x,t) . Then 1uix,t) - u(x,t) I< N + e/2

and hence by continuity of u. and u there is a neighborhood U(x,t) of (x,t) in
J
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M )( [O,T] such that IUj(x,t)(YJs) - u(y,s) I< N + e for all (y,s) E U(x,t) . Now far

(y,s) tS U(x,t) the sequence of numbers &j = uj(y,s) is monotonously increasing and

consequently for eVelY j ~ j(x,t) we have Iaj - u(y,s) I ~ max{ I&j(x,t) - u(y,s) I ,
Iü(y,s) - u(y,s) I} < N + e . But tbis means Iuj(Y,s) - u(y,s) I < N + e for all

(y,s) E U(x,t) and all j ~ j(x,t) . By compactness of B{xO,R) )( [O,T] there is then a

number j(e) > 0 such that Iuj(x,t) - u(x,t) I < E + N for all

(x,t) E B"(xo,R) )( [O,T] and &11 j ~ j(e) .

Let j ~ j(e) and define v(x,t) =u(x,t) - uix,t) -~ (p + Kt) j then 11 ~ 0 on

B(xO,R) )( {O} U 8B(xO,R) )( [O,T) and consequently (see [5]) Iu(x,t) - uj(x,t) I ~

N ~ e (p(x) + Kt) for all (x,t) E B(xO,R) )( [O,T) by the maximum principle. Since

e > 0 and j ~ j(e) was arbitrary tbis implies Iu(x,t) - u(x,t) I ~ ~ (p(x) + K(t» .

Now R > 0 was arbitrary as well, hence u = ü follows (compare [5]). This finishes

the prcof of the lemma. CI

&:marK üi) show in parkillarhat wO have u{x) = IX,y t)my farv

bounded function u on M which satisfies ~ = 0 .
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Appendix B

Resume the assumptions and notations of sections 1 - 4. Recall in particular from
IV

section 4 the definition of the operators {(v E. TIM) and of the probabiltiy measure

P on the space {} of continuous p~ths in TIM that is invariant under the shift

transformations. The purpose of tbis appendix is to show that the sbift is ergodic with

respect to P.

IV

For tbis recall from appendix A that the {- Cauchy problem on M admits a unique

weak fundamental solution Py(x,y,t). Following Sullivan ([32J) we say that 'E. IR

belongs to the Green's region of ~ if S(I) e-(tp (x,y,t )dt < Q) for some pairo y

x,y E. M , x =1= Y . If , belongs to the Green's region then the function

G( : (x,y)~ So1Il e-<tpv(x,y,t)dt is finite for x *y and defines a Green's function

for the operator {-,. Recall from section 4 that the function tfJv is a positive

2 IV 2
(-}-) - harmonic function on M, Le. tfJv satisfies ({ + }-)tfJv = 0 . This implies

IV h2
that the Green's region of M contains the set (- '4 ,(1)) (IR (compare [32J).

2
Moreover for ,> -}- the operator {-, is weakly coercive (and of the dass

considered in [1J, compare [1]) and consequently the Martin-boundary of {-" Le.

the space of minimal ,- harmonie functions on M, can naturally be identified with

DM ([1]).

The next lemma identifies one of these minimal ,- harmonie funetions.
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km aBlt (>? adt aU > 0 be Mn U T sn e-a()Op a

minimal C-harmonie funetion.

Proof: Let Ky(Y E. M U 8 M) be the Manin kernel of M J normalized at a point

xa E. M . Then there are unique positive measures va,vß on 8 M such that

e-a()O(x) =JoEt Ke(x)dva(O, e--ß()O(x) =JoEt Ke(x)dIlJe) for all x ~ ~ .

N

Moreover for va - almost every eE. 8 M the ratio e-ß(C)8(x)/e-a(C)8(x) converges

as x --+ e to the Radon-Nikodym derivative of vß with respeet to va at e (see

[lJ). On the other hand e-ß«()8(x)/e--a(()8(x) --+ CD whenever

x --+ e~ 8 M - 'Yv(- m) whieh means that the measure va ia supported on i v(- m) .

Thua e--a(()8 is minimal. 0

2 N

Next we consider positive (-}-) - harmonie funetions on M. We want to show that

CPv = e-hO/ 2 is minimal. Due to the following result of Sullivan ([32]) this is clear if

~ N

- 4 does not belong to the Green's region of M :

2
Lemma B.2: If there are two linearly independent nonnegative (-}-) - harmonie

N h2
functions on M then - r belongs to the Green's region.

h2
Assume from now on that - r belangs to the Green's region. Call a funetion

N h2
u : M --+ (- CD,mJ ,- superharmonie (C ~ - r) if
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a) u ialower semicontinuOUB.

b) u ia not identically Q).

c) u(x) ~Je'tpv(x,y,t)u(y)dY for all t ~ 0, X E M.

H u ia a positive ,- superharmonie function on M and if A ( 8 M is any set then

the reduction R~ of u on A is defined to be the infinum of the dass A of an

positive superharmonie functions v on M which majorize u on a neighborhood AO

of A in M U 8 M . If ul'~ t;. Athen so is u1 Au2 = min{ul'u2} and consequently

R~~u.Apoint {E 8M iacalledamfor u if u=Ru{O (see [6]).

Lemma B.3: "1 (- Q») isa pole for C{} •v v

Proof: By the definition of the topology of M U 8 M there is for every neighborhood
N N

AO of e in M U 8 Manumber e t;. IR such that AO) U (11(s) . Since RA ~ RB
s5c u u

for A) B it suffices (via renormalization) to show the following: If u is a positive

h2 N 1
(- r) - harmonie funetion on {l = M - U0- (s) such that u(x)~ 1 for

s:50

x~ et;. 0-1(0) then u ~ C{}v .

Choose Xo t;. (/1(0) and define for R ~ 1 {lR = {l nB(xO,R) . Via a small deformation

of 0R we mayassume that the boundary 8{}R of nR is sIDooth and contains

8 1(0) nB(xO,R) and that IDoreover U 0R = n, n (nR for r ~ R .
R>1 r

2
For ,> -}- the operator ~ -, admits a Green's function on {lR' and the Martin

boundary of {lR can naturally be identified with the topologieal boundary 811R . Fix a
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point xl E. 01 and let K;,R be the Manin kerne! of ~ - ( on 0R' normalized at

xl (y E. 0R U 8 {lR) . Then there is a unique measure 11',R on 8 (lR of total mass

e-a(()O(x1) BUch that e-a(()O(x) = f Ki,R(x)dV(,R(e) for all XE. 0R . Define a

measure jjC,R on IJ 0R by

otherwise

and let u',R be the positive ,- harmonie function on 0R corresponding to the

measure jjC,R. Then u(,R(x) --+ 1 = e-a(()OW if X --+ e E. {} 0R n0 1(0) and

u"R(x) ---+ 0 if x --+ ee. 8 {lR - (11(0) . By the maximum principle we have

more<>ver U CR ~ e-a(()O .

For a fixed number ,> -h2/4 the function u, R - u 2 is ,- subharmonie on
I -h /4,R

0R and vanishes on 8 {lR . Thus the maximum principle implies u 2 ~ u, R .
-h /4,R 1

Choose a sequence ~ C(O,CD) such that ~ --+ CD (i --+ CD) and that the measures

1I(,R. on 8 nR (M converge weakly to a measure v on the Martin boundary IJ n of
1

h2
o (compare [1] and [6] and recall that for ,> -r the Martin boundary of n

equals the topological boundary in M U8 M) . Then the functions u,,~ converge

uniformly on compact subsets of {} to a positive ,- harmonic function u, on n.
Clearly e-a(()O ~ u( and moreover u((x) --+ 1 whenever X --+ e E. 0\0) . But

e--a(')8 is minimal and consequently u = e--a(')[J .
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2
If u is any positive (- }-) - harmonie function on {} with u(x) --+ 1 for

x --+ eE. 0-1(0) then by the maximum principle u(x) ~ u 2 (x) for all x E. nR '
I -h /4,R

R > 1 • in particular also u(x) ~ u(,R(x) . But this means u ~ ~ im u"',R. = e-{}(()O
l~m " 1

2
and since (> -}- was arbitrary also u ~ s up e-a(()O = C{Jv as claimed. Cl

( >-h2/4

N

Remark: Since R~ ~ R~ for A) B B.3 also shows the following: H n CM is a

domain with smooth boundary whose closure in M U8 M does not eontain I
V
(- m) ,

h2
then "Pv is smaller than every positive (- r) - harmonie function u on n which

satisfies u(x) --+ C{Jv(x) for x~eE. 8 nnM .

2 N N

By our assumption $+}- admits a Green's function on M thus M can be

compactified by adding the Martin boundary 8 $ M . Choose XoE. M and let

Ke(e E. M U 8 $ M) be the Martin kernel at e,normalized at xO.

Lemma B.4: Let U be an open neighborhood of eE. 8 $ M in M U 8 $ M . Then

the closure of M - U in M U8 M does not contain a pole of Ke.

Proof: Assume to the contrary that there ia an open neighborhood U of e in 8 $ M

such that the closure of M - U in M UDM contains a pole Z of Ke.Since the sets
N N

Ue(e,r) = {y E. MI y 1- xO' IKe(x) - Ky(x) I < e for all x E M with dist(x,xo) < r}

form the basis for the filter induced on M by open neighborhoods of e in M U 8 $ M

there ia an open subset V of M with the following properties:
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N N

i) The closure of V in M U 8~M does not contain e.
N N

ü) The closure of V in M U 8 M contains z.

Let 8 be a Husemann function at z and define for an integer j > 0

1y. = y n U (J (t) .
J t<-j

N N N

Yj is an open subset of M whose closure in M U 8 M contains z. Since z ia a pole

for Ke the reduction of Ke on Vj equala Ke;thus there is a probability mea.sure vi

on the boundary 8 VI' of y. in ~ such that Kt = f K dv.(y) on ~ - V. (see
1 '- W. Y J 1

J
[1], [6]). Let v be a cluster yalue in the wea.k topology of the measures IIj as

j --+ m (we may aBaume Xo~ Y j for all j) . Then 11 is supported on the intersection
N N N

of IJ~M with the boundary a~ Y of Y in M U8~ M . Hut
N N

8 .i' M n 8 .i' V C 8 .i' M - e and Ke= f K(dv«() , a contradiction which shows the

lemma.

Corollary H.5:
2

'Pv is a minimal (-}-) - harmonie function.

?roof: Let v be the uilq e weas re on 8.i'Msc bat p = fKed ;we h

to show that v ia 8upported at a single point ([6], [1]). Hy 4.6 'Py has a pole at
N

'y(- m) ; thus for 11- almost every eE. 8~M the same ia true for Ke . Let
N

eE. IJ~M be such a point and assume that 'Py ia not a constant multiple of Ke.
N N

Then there ia an open neighborhood U of e in M U IJ~M such that the reduction of
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<{J on U does not coincide with <(J •y y

By lemma B.3 the dosure of M - U in M U 8 M does not contain 'v(- m) ; thus the
N N

closure of U in M U aM contains an open neighborhood of 'y(- m) . By the
N N

definition of the topology of M U 8 M this means that U contains a cone

C = {,_(t) IPw = P E. U , x(w,w) < E: , 1C(w) = 'v(- m) , t E. [O,m)} and hence the
w

reduction of <{Jy on C does not coincide with <{Jy. But the bounda.ry of C is smooth

except at the vertex p and consequently this contradicts the remark following lemma

B.2 and shows the lemma.

N

o

Remark: Let M be a simply connected Riemannian manifold of bounded negative
N

curvature and assume that the mean eurvature of the horospheres in M is constant. Let

h > 0 be tbis eonstant and let 8 be a Busemann funetion in ~. Then e-hO/2 is a

2 N

positive (-}-) - harmonie funetion on M (with respeet to the Laplace operator 6).
2

Thus -}- is eontained in the Green's region; our arguments above show that the

2
Martin boundary for the operator 6 +}- has a natural identifieation with the ideal

boundary 8 M . This generalizes a result of Sullivan ([31J).

Recall now from 4.5 that the Borel measure P on the space {} of eontinuous paths

e: [O,m) ---+ TIM is invariant nnder the shirt transformations Tt : e---+ Tte where

Tt((s) = ((s + t) . Using the notations of seetion 4 we are now ready to show:

Proposition B.6: The shift is ergodie with respeet to P.
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Proof: Let A (n be a measurable set which is invariant under the transformations

Tt(t ~ 0) . Assume that P is normalized, Le. P(O) = 1 ; we then have io show thai

a = P(A) equals 0 OI 1.

Define a funetion 1/J: TlM ---+ [0,1] by tf.(v) = pV(A) . This funeiion is measurable
N

and lifts io a function on TIM whieh we denote again by t/J. By the definition of P

t IN
and the T - invarianee of A we have for every v e. T M and every t ~ 0

7/i...v) = pV{e IIITte E A} = f( cpv(w)/cpv(v))p(v,w,t)7/i...w)dAu(w) . (*)

Let 1/Jv be the projection to M of ihe restrietion of 1/J to the unstable manifold

2
WU(v) . By (*) the function 'l/Jv<Pv satisfies ({ + }-)(<pv1Pv) = 0 . Thus by the

maximum principle either 1/Jv vanishes identically or 1/Jv > 0 . Assume 1/Jv > 0 ; then

2
<P 1/1. is a positive (-!;-) - harmonie function for .:t which satisfies <p,p < <p •

VV If: V vv- v

h2
But by B.5 <Pv is a minimal (- r) - harmonie funetion and eonsequently 1/Jv is

constant, Le. 1/J is eonstant along the leaves oI the unstable foliation. But 1/J ia

measurable and the unstable foliation of TIM is ergodie, hence 1/J ia eonstant almost

everywhere on TlM with respect to the Lebesgue measure. Clearly this eonstant equals

a = P(A) .

Let Rt : {} ---+ TIM be as in the proof of 4.5 (t e. (0,00)) . Then the finite intersections

of sets o{ the {arm R;1(B)(B (TIM Borel, t e. (O~m)) form a n- stable generator tor

the u-algebra on n. Thus under the assumption a e. (0,1) there are for every E > 0

i i C 1 i i ( ) (k d . D)Borel sets BI"" ,Bk T M and numbers tl' ... ,tk e. O,m > 0 an 1 = 1, ... ,.{..

with the {ollowing properlies:
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ii)

iü)
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k 1.
The sets B. = n Rt i- (B~) are pairwise disjoint.

1 j=1 j J
I..

P( U B.) > 1 - a - €
. 1 11=

f.
P(A n(U Bi)) < € •

i=1

But since T/J is constant on TIM we have by the Markov property and the definition of

l
P that P(A nB.) = oP(B.) for every i E. {I, ... ,l} ,Le. P(A n(U B.)) =

1 1 i=1 1

I..
aP( U B.).If we choose e < 0(1 - 0)/(1 + 0) , this is a contradiction and hence the

. 1 11=

proposition folIows. o
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