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Metric and topological entropies

of geodesic flows

1. Intr ion

Let M be an n—dim. compact Riemannian manifold of negative sectional curvature.
The geodesic flow ¢t acts on the unit tangent bundle TIM of M preserving the
Lebesgue—Liouville meagure A . This action is ergodic with respect to A and the metric
entropy h/\ , i.e. the entropy of ¢t with respect to A , is not larger than the
topological entropy h of ¢t . If M is locally symmetric then h and h,\ coincide. A
well known conjecture of Katok ([18] ) says that locally symmetric spaces are the only

ones with this property.

The purpose of this paper is to derive a partial result related to this conjecture. We show
the following:

Theorem A: If the metric and the topological entropy of the geodesic flow on TiM

coincide then the mean curvature of the horospheres in M is constant.

For surfaces of negative curvature (i.e. dim M =2) , constant mean curvature for
horospheres is equivalent to constant curvature. In this case our theorem is due to Katok
([18]). Ledrappier ([23]) observed that for 3—dim. manifolds of negative curvature
constant mean curvature for horospheres implies constant curvature. We give a

(different) easy proof of this fact in section 6. Together with theorem A we thus obtain:



Corollary B: If dim M =2 or 3 and if the metric and the topological entropy of the

geodesic flow on TIM coincide then M has constant curvature.

Recall that every nontrivial conjugacy class < 9> in the fundamental group
I'=#(M) of M can be represented by a unique closed geodesic in M of length
£< 9> .Let ¥ be the set of all conjugacy classes in T' . The marked length spectrym
of M is defined to be the element (£< ¥ >) <yY>e ® of the direct product R?
indexed by e . It has been conjectured that the marked length spectrum determines M
uniquely (up to isometry): If S is homotopy equivalent to M and if the marked length
spectra of M and S coincide, then M and S are isometric. This is known to be true
for surfaces (proved by Otal [29] and Croke [4]; for surfaces of constant curvature it
was first derived by Katok [19]). In this paper we extend Katok’s result to arbitrary

dimensions:

Theorem C: Let S be a compact negatively curved locally symmetric space. Assume
that M is compact, negatively curved, homotopy equivalent to S and
that the marked length spectra of S and M coincide. Then M and S

are isometric.

However we derive theorem C only for compact quotients of a real or complex hyperbolic
space; the remaining cases (compact quotients of a quaternionic hyperbolic space or the
Cayley plan) are contained in [12]. Also theorem C can be applied to improve an
important result of Kanai ([17] ), sharpened by Feres and Katok ([8], [9], [10]). The

combination of these results can be expressed as follows:
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Corollary D: Let M be a compact Riemannian manifold of negative curvature and

assume either that

i)  the dimension of M is odd or

ii) the curvature of M is strictly 1/4—pinched.

If the unstable foliation of M is of class C® then the curvature of M

i8 constant.

We refer to [17] and [8] for further results and references. The organization of the

paper and some of the notations used throughout are as follows:

Let M be the universal covering of M and recall that the geodesic flow on TIM

1M) admits continuous invariant foliations W%, W% | W® W% which are

(resp. T
called the strong unstable, unstable, stable, strong gtable foliations. Denote by Wi(v)

the leaf of W' containing v e TiM (resp. v e TlM) . The flip w —— — w then maps
W (v) diffeomorphically onto W3¥(—v) , moreover
Wiv)= U ¢t W) = —Wi(=v).

teR

For veT'M let 7, be the unique geodesic in M with initial velocity 7/(0)=v
and denote by 6 the Busemann function at the point 7 ,(—©) of the jdeal boundary

OM of M which is normalized by 06,(7,(0)) =0 . The canonical projection

1

P:TM— M maps Wsu(v) diffeomorphically onto the horosphere ﬂ; 1(0) and

~

maps W'(v) diffeomorphically onto M . Thus the Riemannian metric <,> on M

lifts to a Riemannian metric gi on Wi(v) which induces a distance d' and a Lebesgue
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. ~
measure A'(i = su,u,5,85) . Let moreover dist be the distance on M induced by the

Riemannian metric and denote by B(x,r) (x e M,r > 0) the open ball of radius r

about x in (M,dist) .

Recall that T'M admits a unique ¢t—inva.ria.nt Borel—probability measure of maximal
entropy, the Bowen—Margulis measure g . Then h = hA is equivalent to A = u. The
measure p admits a family of conditional measures 4' on the leaves of W that are
uniquely determined up to a universal constant. In section 2 we derive a representation
of u as a weak limit of the images under ¢t as t — m of the restriction of p®® to
any open subset A of a leaf of W™ with psu(A) = 1. Section 3 is devoted to a proof
of the fact that for A =p the Radon—Nikodym derivative of the measures A" with

respect to the measures pu on the leaves of W' is a continuous function on TlM

(recall that the measures ,\i on the leaves of W C Tll':{ project naturally to measures
Al on the leaves of W' C TlM) . This function is used in section 4 to construct a
stochastic process on TiMm that preserves a variant of A . In section 5 we derive
theorem A from the results of sections 2 — 4 and a result of Ledrappier ( [22] ). Section 6
is devoted to the proof of Corollary B (compare [23]). In section 7 we use theorem A
and the results of [12] to show theorem C.

Appendix A contains some results on the existence and uniqueness for fundamental

solutions of the Cauchy—problem L _'gf = 0 for certain uniformly elliptic operators L

on M that are needed in section 4. In Appendix B we show that the shift transfor-

mations of the stochastic process on TIM which was constructed in section 4 is ergodic.
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2. A description of the Bowen—Margulis meagure

The Bowen—Margulis measure g on TIM is determined by its family of conditional
measures 4°" on the leaves of W®" which transform under the geodesic flow via
2o ¢_t = ehtﬂsu . The measures 4" on the leaves of WY , defined by
dp" = ™" x dt , are invariant under canonical maps ([26]). If 4*® (resp. 4°) denotes
the image of the measures ;%" (resp. ") under the fip w — —w which maps wit
to W58 (resp. w! to W) then up to a constant dp = dp®® x 4’ = dp” x du®® . The
purpose of this section is to show that u can be described as the weak limit of the
images under the geodesic flow of suitably chosen probability measures on a leaf of W"

or W' or on an arbitrarily chosen fibre TII)M of the unit tangent bundle

M — M.

Let ve T'M andlet A bean open relativ compact neighborhood of v in WY(v) .
The measure 4" on WU(v) then induces a probability measure pp on A by defining
for BCA p,(B) = 4"(B)/u"(A).

Lemma 2.1: For every continuous function @ on TIM the limit

lim J good)Rd#A exists and equals Jgodu.
R-o ‘A



Y

Proof: It suffices to show the lemma for nonnegative functions ¢ which do not vanish
identically, i.e. which satisfy de,u = > 0. By subdividing A if necessary we may
(as in chapter 4 of [25]) assume that there is an open subset C of W®*¥(v), an open
neighborhood B of v in T'M and a homeomorphism %:B — A x C with the

following properties:

i) {w) = (w,v) forevery we A.
ii)  Yw)=(v,w) forevery we C.
ili) Forevery we C, ¢_1(A x {w}) is contained in a leaf of WV
iv) Forevery we A ,. ¢—1({w} x C) i8 contained in a leaf of W™ .

Let ¢ 2 0 be as above and let ¢ e (0,1) . We have to find a number R, > 0 such that

(1—e)ﬁ<J'Agoo¢RdyA<(1+e)ﬁ forall R>R,.

Let d e (0,e/4) be sufficiently small that 1+ 6)_3 >1—¢f2 and
(1+ 6)3 <1+ ¢/2. Since for every w ¢ A the Jacobian at w of ) as a map of (B,x)
into (A x C,u* x i) equals 1 we may assume by choosing C small enough that the
Jacobian of ¢ is contained in ((1 + 6)_1,1 +6) for al we B . This means in

particular
(*) (1 + 6L (AW™(C) < (B) < (1 + EW"(A)*(C) .

As R — o, the diameters of the sets ¢qu-1({w} x C) tend to zero uniformly in
w € A . Since ¢ is continuous, hence uniformly continuous on T'M this implies that

there i3 a number R1>0 such that for every R>R1 , weA and
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W e 'gb_l({w} x C) ga(¢RW) > (,0(¢Rw)-——6ﬂ . By the choice of B we obtain for
R >R,

(%) 1 +6)7t J'qu o ¢ dy — 66u(B) < 155(C) JA¢ o Tl
<(1+6) jB«,o o oRap + 56(B) .

Now the geodesic flow on TIM s mixing with respect to the Bowen—Margulis measure.

Hence there is RO > R1 such that for all R > R0

(%) (1 +61AuB) < ij o $Rdu < (1 + 6)8uB) .
Equations () — (*+*) show that for R > R

(1 + 673 = (1 + 0)5)B"(A) < jAw o ¢RaW" < ((1+6) + (1 + O)D)A"(A) .
By the choice of & this is the required inequality. D

Let again ve T!M and let now B C W5U(v) be an open relativ compact neighbor-
hood of v in WSU(v) . As above the measure 4™ on W*'(v) induces a Borel—proba-
bility measure pg on B.

Corollary 2.2: For every continuous function ¢ on TIM  the limit

lim I good)RdﬂB exists and equals Jgodu
B

R-o
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Proof: As in the proof of 2.1 we may assume that ¢ is nonnegative and that
ﬂ=deu> 0 . Let again €>0 and let &<ef2 be sufficiently small that
1+6)2>1-¢/2 and (1 +8)*<1+e.

Let t5= (log(1 + 6))/h . Since ¢ is continuous, hence uniformly continuous on TIM

we can find 7<t in such a way that |p{¢'w) —p(w)| <8f forall we T'M and

te (—7,7) . Define A= U ¢tB ; by the choice of r and the definition of u"
—<t<7r

usu we then have
-1 R, u u R, su
- <
(o oo ot -l <o [ po 4Tl
< +01] 0o ot +amiA)]
for all R > 0. By lemma 2.1 we can find a number RO > 0 such that forall R > R0
-1, 1 R,u u
(1 + 6 Ba%(A) SJAv°¢ du® < (1 + 6)B™(A) or
-2 8u R, u 2 su
() (1 + 8)2rB4(B) < JA«J o ¢Rdu" < (1 + 8)%2rBu™(B) .
By the choice of §, insertion of (**) into inequality (*) yields for all R > R,
(1-e8"B) < [ oo sta < (1 + )8 (®)

which is the required inequality. m)
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Define a projection =: TIM — oM by #(v) =1, () . For every ve TIM the

restriction 7 of 7 to W®%(v) is a homeomorphism of W®%(v) onto M —n(—v).

Let p=Pv; then Tll)M is canonically homeomorphic to # M and consequently the
measure 4°" on WP®Y(v) induces a measure z on Tll)M via u(A) =psu(1r;ln(A)).

1

M- {-v} —R by o(w) = 6_, (P7, a{w)) and let iy be

Define a function o ;T

~

the measure on TII)M whose Radon—Nikodym derivative with respect to 2 equals

e 1%  Then ?Ip is a finite Borel-measure on T;M which does not depend on the

choice of ve TII)M ; moreover the measures ?Ip project to finite measures 'ﬁq(q e M)
on the fibres T(llM of the fibration T'M —— M that can be normalized to probability

1
T M.
measures 4, on T,

1

Lemma 2.3: For every continuous positive function p on T_M and every continuous

function ¢ on T'M the limit limJ (0o ¢¥)pdu_ exists and
R-w 1 P

TpM

equals (Jmu)(JMup) -

Proof: As before we may assume that the function ¢ on TIM is nonnegative with
B= J’tpd,u > 0.Let e (0,1); again we have to find RO > 0 such that forall R > R,

(| mu a1 =€) < [(0 o #™dey < (] i) + ).

Let 0 e (0,¢) be sufficiently small that (1+ 6)6 <l+e and
(1+ 6)_5(1 —8)>1—¢.Let d be the distance on M induced by the Riemannian

metric. Then there is 7> 0 such that |g(w)—¢(w)| <,¢;»4!5(1+(5)_2 for all

1

PM and

W,WE TIM with d(w,w) < 7. There are finitely many points Vi vg €T

1

open neighborhoods U; of v; in TpM with the following properties:
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L
UiﬂUj=¢ for i#j and up(igl U)=1.
For every i e {1, ... ,£} and we U, p(w)/p(v;) € (1 +8) 7,1 +6).
For every ie {l,..,L} there i8 a homeomorphism =

i
neighborhood V; of v; in Wsu(vi) such that for every we U, 1ri(w) e Wi(w)

of Ui onto a

and d(w,ari'w) <T.

For every ie {1,... ,L} the Jacobian of =, as a map of (Ui,?ip) onto (Vi,y.su)

has its rangein ((1 + &) 1,1 + ) .

Let ie {1,..,0} . By Corollary 2.2 there is a number R, >0 such that for all
R>R,

(1 + 87 A (V) < Jv ¢ o $RaE < (14 6BV,

1

Since d(¢Rw,¢R1riw) < d(w,wiw) for all R > 0 this together with iii) and iv) shows

(1+8)(1 - )i (U})B < jU.so o VAl < (1+8)(1 + ) +6)8 (V) -

1

Now ii) implies

(1467w (oo 8™y <[ (0o oM, <1+ 8w (00 6Ny
1 1 1

and consequently by the choice of § for R > Ri
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~ R\, ,~ ~
u—@ﬂL#mbsj%wo¢ mmpsu+emjmmﬁ,
With R, = max{R,|i=1,..,0} weobtainfor R >R,

(l—dﬁjl
T-M

piily < | (oo g™ty < (14 8 | oy
p TPM Tp

M
as required. o

Remark 2.4: Let pe M and let A be the Lebesgue measure on M , Ap be the
normalized Lebesgue measure on Tll)M . It follows as above that for every continuous

function ¢ on TIM the limit 1im (po¢Rd/\p exists and equals J 1. PdA .
M

Roo JT;M
Notice that locally A can be written as a product of the Lebesgue measure on the fibres
of the fibration TIM —— M and the Lebesgue measure on M , moreover the geodesic

flow is mixing with respect to A .

3. Continnity of the Radon—Nikodym derivative

Assume now that the Bowen—Margulis measure u and the Lebesgue measure A on
TIM coincide. For v e T'M let f(v) be the Radon—Nikodym derivative of A®® with
respect to ﬂsn at v whenever this exists and is contained in (0,m) and let f(v)=o

ASU ang ﬁsu are transversals for the same measure on

otherwise. Since the measures
tiMm they define the same measure class. Thus f(v) <o for p—almost every
Ve TlM . Observe that we would obtain the same function { from the above definition

applied to the measures v and p" (see [14]).
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Lemma 3.1: The function f is continuous and finite on all of TlM .

Proof: Recall that the tangent bundles TW® and TW®® of the foliations W%, W5

I of TIM . Since the

define a continuous decomposition of the tangent bundle TT
restriction of the canonical projection TIM — M to the leaves of W" (resp. WS) is
a local diffeomorphism, the Riemannian metric on M induces continuous Riemannian
metrics gu resp. gss on the vector bundles TW" TEsp. TW . Let g be the
Riemannian metric on T'M inducing the Lebesgue~Liouville measure and for v e TIM
let Au) be the determinant at v of the identity (TW" @ TW® g x g%) <

(TTIM,g) . Since g is invariant under the flip w —— —w , the definition of the

metrics gu , gss implies that A is a continuous flip—invariant function on ™M .

Let A" (resp. A%) be the Lebesgue measure on the leaves of WY (resp. W®°) induced

by the metric g" (resp. gss) and define a measure A" on the leaves of W®® by

dxs

—ﬁ(v) = ,B(v)_1 . The Lebesgue—Liouville measure A on T!M then satisfies
dA

dA = dA" x d3® . Since the measures A" are absoluteiy continuous with respect to the
canonical maps, with Hélder continuous Jacobian, the arguments of section 2 of [14]

apply and show that f is finite and continuous on TIM . o

~
For veTM let U(v) be the second fundamental form at Pv of the horosphere
6‘;1(0) , normalized in such a way that U(v) is positive definite. The function tr U

which assigns to v e T!M the trace of U(v) is continuous on M (compare [15],

proof of 3.1) and moreover it is invariant under the action of the fundamental group T'

of M on TIM ,i.e. tr U can be viewed as a continuous function on M .
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Following [24] we say that a function ga:TlM—-ilR is of class C;il for some
je [0,0] if the restriction of ¢ to every unstable manifold is of class ¢ and if the

jets of order < j of these restrictions are continuous on TIM .

Lemma 3.2: tr U is of class c‘l‘l’.

~ ~
Proof: For ve TIM let Z, be the gradient of the Busemann function 6 on M. Z_

~n
is the projection into TIM of the restriction of the geodesic spray to W“(v) .

Every smooth function ¢: M —— R lifts to a smooth functions @ : TIM — R and

~

every smooth vector field X on M lifts to a continuous section of TW" which is

smooth along the unstable manifolds. This applies to coordinate functions on M , the
induced basis vector fields on M and the corresponding Christoffel symbols of the

Riemannian connection on M . Thus if <, > denotes the Riemannian metricon M ,

then for any smooth vector fields X, Y on M the assignment W%(v) — R ,

w— < DyZ Y >(Pw) is the restriction to WY(v) of a function of class Cfl’ on

T!M . But DyZ, =TU(v)X (see [15]) and consequently trU is of class Cﬂ as
claimed.

Let X be the geodesic spray on TIM .

Lemma 3.3: tr U—h = X(log ).
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Proof: For ve T'M and t>0 let ¥,(v) be the Jacobian at v of the restriction of
¢t to (WY(v),A") . Then f(¢tv) is the product of the Jacobian at ¢tv of ¢_t with
respect to 4" , which equals g nt , f(v) and ¢t(v) , L.e. f(¢tv) = 1,/)t(v)e_htf(v) for
all t> 0. By the choice of the measure A" this implies X(log f)(v) =

%E ¢t(v)e_ht I =0 = tr U(v) =] as claimed. =

3.3 shows in particular that our theorem is equivalent to f being constant.

Define g =1 1 ; then

Corollary 3.4: X(g) = g(h—tr U) and X(f) =f(tr U-h).
Corollary 3.5: f and g are of class Cy .

- Proof: It suffices to show that logf is of class Cﬁ . But this follows from 3.1 — 3.3 and
the smooth Livsic theorem (lemma 2.2) of [24]. O

4. A stochastic process on IIM

1

In this section we use the function g on T"M to construct a stochastic process on

N

Im preserving the measure fA . For this let a be the Laplacian on M and denote as

T
usual by vu the gradient of a ¢!-function u:M—R and by div(Y) the diver-

gence of a vector field Y of class c! on M. Lift g to a function of class Cﬁ on

1

TIM which we denote by the same symbol. For ve T™M let gy be the smooth

~
function on M which is induced from the restriction of g to W'(v) . Denote by %
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N

the differential operator on M which acts on functions u of class c? by
u— £ (v) =g div(g vu) . Clearly % is uniformly elliptic, with bounded

coefficients and without terms of order zero.

A function u on M is called £-harmoni¢c for some ¢ e R if (.2;-—5)11= 0.Let ¢
be a Busemann function at 7 (—w) .

2 2
Lemma 4.1: For £ > —-%—- define a(€) = ]21- + (%— + 5)1/2 and

2
ﬁ(£)=121'-(%_+f)1/2 : then the functions e a(6)0 : (3 L.

§{—harmonic .

Proof: Let X =v(f ) andlet trU_ be the function on M which is induced from

the restriction of tr U to W'(v) . Then div(X,)=trU_ (see [14]) and 3.4 shows

that for a > 0 we have g;ldiv(gvve"aa) =— agv-ldiv(gve'aaxv) =

- ae—aa(tf Uv + (h—tr Uv) —a)= (02 - ha)e_ao which proves the lemma. O

S

2
Lemma 4.1 shows in particular that the function p,=¢ b

i8 (—7-) —harmonic .

~

Let now L/ be the differential operator on M  which is defined by

L (u) = div(g,vu) + 28, < vu,vlog ¢ > . Since the curvature on M is uniformly
bounded and since L_ is uniformly elliptic with bounded smooth coefficients and
without term of order zero, the associated Cauchy problem Lv _'gf =0 admits a

unique weak fundamental solution pv(x,y,t) (see appendix A). Here pv(x,y,t) is the

~

density with respect to the Riemannian volume dy on M of the 1-dim. distribution of
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~ ~

the unique probability measure on the space CO([R +,M) of continuous paths in M
which describes the unique diffusion in M generated by L ¢ With initial distribution 6x

2
(see [16] and appendix A). Since the elliptic differential operator gv(.% + 111—) is
self—adjoint, every weak fundamental solution of its associated Cauchy—problem is
symmetric in the space variables (compare appendix A and [1]). This operator is

related to Lv as follows:

~ ~

Lemma 4.2: i) The function M x M x (0,0) — (0,®) , (x,y,t) —

p,(xy:t)p, (x)/¢,(y) 18 a weak fundamental solution of the

2 :
g, (£ + %*) —  Cauchy problem; in particular

p,(xy.t)e, (x)/e (v) = p (x¥:t)0 (¥)/p,(x) .

ii) Let v be a measure on M which is equivalent to the Lebesgue

measure and which is preserved by the diffusion process generated
by L_.Then v is of the form dv = 9y where ¢: M — [0,0)

2
. . h%, -1
is a smooth function such that (% + 7-)(¢, ¥) =0.

~n

Proof: For a function u on M let f[u] be multiplication by u . Then

2 2
— h - -
[e,] ! (6, ](% + 7)) [p,]u= sovlgv( 4+ %—)sovu = sovl [g,a(p u) + < vg_,p vu
2
+uvp, >+ g— g ¥, u] = div(g vu) +2g <vlogy ,vu>=L u for every smooth

function u on M . From this the lemma follows. o
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~

Lemma 4.2 shows in particular that the diffusion process on M generated by Lv

preserves the measure <p3(y)dy (compare [32]).

For ve Tll‘:{, we W'v) and t > 0 define gov(w) = (pv(Pw) and p(v,w,t) =

¢, (V)P (Pv,Pw,t)/¢ (W) . The lift of L_ to an operator on W'(v) defines a diffusion
process with transition probabilities gov(w)p(v,w,t)/tpv(v) which we call the
{p,—Drocess .

Lemma 4.3: For every t >0 the function (v,w)— p(v,w,t) is measurable and

1

lower semi—continuous on {(v,w) € TIM x TIM |we wi(v)}.

~N
Proof: Let BCM be an open ball of radius r> 0. For xe B and ve'r}[B the

coefficients of the operator L, on B with all its derivatives depend continuously on
v ; hence the same is true for the fundamental solution q, of the Lv-Ca.uchy problem

on B (see [21]). The lemma now follows from the definition of p . o

~N

Let¢ © (resp. Q) be the space of paths ¢: [O,m)——»T1

M (resp.
¢: [0,0) — TlM) , equipped with the smallest s—algebra 2 (resp. %) for which the

~

projections £ — £(t) (t € [0,0)) are measurable. For v e TIM the ¢, —Pprocess on

WU(v) is given by a Markovian family {P"} of probability measures PV

weW'(v)
on  with initial distribution 6w . For every t > 0 and every Borel set A C TiM we
have  PT{E[EM e Al =] . (p(W)/e (p(vw)A"(w) , moreover
ANW(v) -

PY—almost every path in € is continuous. The collection of probability measures
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{P"} 1~ then defines a stochastic process on TIM (by 4.3) which we call the
veT™ M

(—Drocess .

Lemma 4.4: The —process preserves the measure fA.

Proof: For ve TIM the ¢, —Process is given by an action of the semi—group [0,0)
on functions on WY(v) by the kernel (0 (W)/o,(v))p(v,w,t) . Let (tu) — Aty be

~

the action of [0,m) on functions u on TIM which describe the @—process . Choose a

continuous function u on Tllg.[ with compact support and recall d(f)) = dA® x dp®
Then
I(Atu)fd/\ = J(Atu)dAu x 48 =
(*)
[] s wityate)o, (w0, A () (AA® x ()

Let veTM , teR, we ¢thu(v) and le¢ B be a compact neighborhood of

7,(—®) in chl such that {=(v),x(w)} C 0;1 —B . Then the measures 4* on
W(v) (resp. W®(w)) project to measures B (résp. o) on B . Since the
conditionals 4 = 4*® x dt of the Bowen—Margulis measure on the leaves of the stable
foliation are invariant under canonical maps ([23]) the Radon—Nikodym derivative at
7,(-®©) of g with respect to p; equals et - ¢3(w)/¢3(v) . By the above
consideration the integrand of (*) is measurable and lower semi—continuous; thus this
integral is just H p(v,w,) (0, (¥)/0, (w))AA(¥)u(w)(dA" x dp¥)(w) = J ud(f\) which

shows the lemma. s
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1

Let T:TM—T!M be the canonical projection. II induces a measurable

~

projection of  onto €, hence for every we T!M the measure P¥ projects to a
probability measure on € which only depends on Ilw = v and will be denoted by PV .
We then obtain a finite measure P on © by P(B) = j PY(B){(v)dA(v) .

Recall that the semi-—group [0,0) acts on £ by the ghift—transformations
(t,£) — T% where TY(s) = €(s + t) .

Lemma 4.5: P is invariant under the shift transformations.

Proof: For te [0,0) let Rt:Q—-—’TIM be the measurable projection

§ — R, (£) = £(t) . This projection maps the measure P on Q to a Borel-measure

R,(P) on TIM . Since the o-algebra on Q is generated by the sets

RZI(A)(t e [0,w),AC TIM Borel) it suffices to show that R,(P)=Ry(P) for all
~
t>0.Forthislet DC TIM be a compact fundamental domain for the action of T on

T!M and denote by P the measure on 2 which describes the ¢—process.Let ACD
be a Borel set; then R,(P)(IJA) = fA(A) . On the other hand, by the definition of P

we have

Ry(P)IA) = [ PV{E|TE() € TAHVANW) = § PAEIE(0) € DE(E) € dA)}
D JeT

Since the @—process preserves the measure fA it follows

P{¢]¢(0) € D,(t) < d¥(A)} = P{£]€(0) € d(A)£(t) e D} =

P{¢[£(0) € A£(t) € dY™'(D)} and consequently R (P)(TIA) = P{E|€(0) € A} =
Ry(P)(A) . This shows the lemma. a
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5. Proof of theorem A

We continue to use the assumptions and notations of sections 1 — 4. The Laplacian a
~ ~N
on M admits an extension to a linear self-adjoint endomorphism of L2(M) , the space
~
of square integrable functions on M . The top of the spectrum of this extension equals

the negative of the infimum of J | {vn| |2dy/J nzdy over smooth functions 7 on M
with compact support (compare [3], [32]). The following important result is due to
Ledrappier ([22] ):

~
Theorem 5.1: ~ The top of the spectrum of the action of & on LZ(M) is not smaller
2
than —111— , with equality only if the mean curvature of the horo-

~

spheres in M is constant.

Let now ve T!M and recall the definition of the operator .z(, from section 4. For
smooth functions ¢, n on M with compact support we then have J( >4 ¥ g, dy =

Jdiv(gygb)n dy = —J <vyvp>gdy, ie .z; admits an extension to a linear

self-adjoint endomorphism of L2(M) , equipped with the scalar product
(¥,m) —-DJ’ngdy . In particular the top of the spectrum of this action equals the

~
negative of the infimum of J| | v |2gvdy/J nzgvdy over smooth functions 7 on M

~
with compact support. Now vy is a positive function on M which satisfies

2
(% + %—)wv = 0 ; consequently the arguments of Sullivan ( {32] ) imply:
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Lemma 5.2: The top of the spectrum of the action of .L; on L2(M) is not larger

2
than —]i—.

The proof of theorem A now consists in combining 5.1 and 5.2 in a suitable way. For this

we first derive from the results of section 4 an integral formula for functions of class 0121

on TIM .

Via the projection P the Laplace operator for functions on M lifts for every v e TiM
to an elliptic operator for functions on W'(v) which we denote by the same symbol.

1

~
For a function u of class C‘l1 on T°M let vu be the gradient of the restriction of u

to the leaves of W" with respect to the Riemannian metric gu =<,>; Vu is a

continuous section of TW" . Let moreover X be the geodesic spray on T!M and

TiM |

Lemma 5.3: J 1~ [a(p) + < v(log g),vp > —hX(p)]dA =0 for every function ¢
M

~
of class 0121 on T'M with compact support.

1

Proof: Let p:T'M——R bea function of class C2 with compact support. Then

t
AE(0) = AE(0)) = | [88(0) + < 9870 > ~ ghX(0)] (€(5)ds s 2

(Pv,iBt)—martingale forall veT'M where B, is the o —algebra generated by the
Borel cylinder sets up to time t (compare [16] p. 189), in particular

t
J et o) - oA @ar*(e) = ] [8a(6) + < 9870 > — 8hX()] (€(5)4P™(E)

On the other hand, since the (—process preserves the measure fA we have
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~

JJ w(£(1))dPY(E)d(fA)(v) = J ud(f)) for every continuous function u on TIM with

compact support. Thus
t
0= []] Teote) + < g > — grX(0)] (e(e))aseP*(E)A)(Y) =

t [ [8(9) + < v(log g)vp > — hX(p)] A

forall t > 0 as claimed. O

~

Let D be a compact fundamental domain for the action of ' on M . Assume that D
i8 connected, with dense interior int D , and that the topological boundary #D of D
is a compact set of vanishing Lebesgue measure. We denote by TID the restriction of

the bundle TlM to D.

Lemma 5.4: If ¢ is the lift to T!M of a function of class C! on M then

J X(p)dA = 0.
Tlp

Proof: Let ¢y: M — R be a function of class ¢! and let @p=1voP.If v denotes

the gradient of 9% in (M,<,>) then X(y)(v)=<v,vy> and consequently

J o X(9)(v)dw(v) =0 for every xe M where w is the Lebesgue measure on the
T M

(n—1)-dim. standard sphere §%7 ~ T2 M . But J X(p)dA
T!p
L}[ X((p (v)dw(v)dx from which the lemma follows. o
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Every bounded function ¢: Tl(int D) — R can uniquely be extended to a

~

I—invariant bounded function on T'M vanishing on g[}‘EUI‘TI(#)«BD) ; we denote this

extension again by ¢ . If ¢ is continuous then for every 3 e I' the restriction of its

extension ig continuous on Tl('q[(int D)) .

Let ve Tl(int D) and let B be an open, relativ compact ball about v in W%(v)

with p*%(B) = 1. The next lemma is a slight generalization of corollary 2.2.

Lemma 5.5.: If ¢ is continuous on Tl(int. D) , then for every &€ > 0 there is a

number t(¢) > 0 such that U (p(¢tv)dusu(v) —J pdA|< g for
B 1D
all t> t(e).

Proof: By our assumption ¢ is bounded and hence sup{|p(w)| Iw € TIM} =c<m.

Let € > 0 ; by the choice of D there is then an open connected subset C of int D
with smooth boundary &#C Cint D such that A(T'D —T1C) < ¢/8c.

Since #D and @&C are compact disjoint subsets of M , their distance is strictly
positive. This means that there is a continuous function a:D —— [0,1] with the

following properties:

i) a(X)=1 forevery X e C
ii) a(X)=0 forevery Xe 8D.
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~

The lift of a to TlD then extends to a continuous I'—invariant function a on TIM
N
vanishing on U T1(¢0D) and ay is the lift to T!M of a continuous function on
Yel

TIM which satisfies

i) ” . apdA—J L pdA|<ef8.
T!D )

By the choice of C there is a continuous, I'-invariant nonnegative function 4 on

’I‘lM with the following properties:

iv)  Y(v)=c forevery ve tlp -T1lC.
v) J L vdr<e/d.
T°D

Again 1 is the lift of a continuous function on TlM . Thus an application of corollary

2.2 shows the existence of a number t(e) > 0 such that for all t > t(e) we have

vi) UB aga(t;‘:tw)dpsu(w)—-J _pdA| <e2 and
T°D

vii) |jB Wtw)du™(w)| < e/2.

Since |p(w) —ap(w)| < ¥(w) forall we T!M the lemma follows. o

Now we are ready for the proof of theorem A. Using theorem 5.1 above we argue by

~
contradiction and assume that the top of the spectrum of the Laplacian a on L2(M) is

2
strictly larger than —%— . Then there is a number ¢ > 0, a compact ball KJD of

radius r > 0 and a continuous function u on K with the following properties:
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a) u vanishes on the boundary 6K of K.

2
b) u issmoothon K — 8K and satisfies Au=(—1i—+e)u on K—-8K.

For the existence of such a function see [32].

~N

Extend u by zero to a continuous function on M and denote this extension again by

u.Let ¢ bethelift of u to TM ;since u? is of class C! lemma 5.4 shows
J ™ X((pz)d/\ = 0. On the other hand, Green’s formula implies I;{ A(uz)dy =0 and
TIMm

consequently also J 1™ A((pz)d)\ =0 (recall that u =P o ¢ and hence A(902)(V) =
M

A(uz)(Pv) for all ve Tl(K — 8K) . Via approximation of zp2 by functions of class
¢? we then obtain from lemma 5.3 that JT1~ f< vg,v(goz) > dA =0 as well.
M

Define

g(v)ap(v) + <vg,vp>(v) if ve TI(K — 8D - 6K)
Lo(v) = {

0 otherwise .

The above identity then yields

n? 2 20y 4 1 2 2
J(f¢Lw+r¢)dA:JegodA+2If<vg,v(qp)>dA= ep‘dd=a>0.
Now K is compact and hence there are finitely many isometries in T , say

k
Y % €l for some k>0, such that E = U 1,/)i(D) is a compact connected

1=
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~n
neighborhood of K in M. For ie {1, .. k} we then obtain a continuous function u,

on D by u,(x)=u(44(x)) . The lift of u; to T!D then induces as before a bounded

I'—invariant function w, on TiM . Similarly we obtain a bounded T-invariant

~N
function Ly, on T!M which satisfies Lgoi(v) = Li(di(v)) forevery ve Tl(int D).
For every ¢ e T the restriction of o, and gLy, to ¢(T1(int D)) is continuous.

2 ~
Let ¢ = sup{(| oLy + 2= o?| + 3 |X(A) )W) |ve T'M} 20 = Jewzdk >0 and let
R, >0 be sufficiently large that Rya > 32 cf where 8> 0 is the diameter of E in
(M,dist) . Let ve T'D andlet B be a compact ball about v in W®Y(v) with
" (B) =1 (i.e. the interior of B is dense in B and the boundary 8B of B has
vanishing Lebesgue measure). Choose a compact neighborhood C of B in W®%(v)

such that p®"(C) <1+ af16c <2 . By standard comparison ([15]) there is then a
number R, > 0 such that for every t2 R; —J the intersection with PWB“(qStv) of

the A—neighborhood about P¢tB in (M,dist) is contained in P¢tC.

Recall that lemma 5.5 can be applied to the functions ga? and ¢;Ly, ; consequently

there is a number R, > R, with the following properties:

k
2
i) |e_ht 2 J¢t (pLp, + 8 %— qa?)dksu —a| <af16 for all t>R, (recall that
. B
=1

1

k
y h? 2 . .

J 1 (fgoiLgoi + 7 ¥ JdA = a by the definition of the functions w, and
i=1/T°D

L(pi) .
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k
ii) |e—ht2 J . g%—X(go?)dz\su | <a/16 forall t2 R, (recall that
. B
i=1 ¢
J 1 X(tp?)d,\ =0 for every i e {1, .. ,k} bylemma 5.4).
T'D

Choose R > R, and define 0, = U ¢'B and Ty={yeT|yENPQ # ¢} .
R<t<R +R

For ie{l,..k} let moreover  ={we WY(v)|Pw e MD for some $eTy} .

Since %D CE we have Q,CQ, and nicR u R ﬁ¢tc . Denote by @ the
—B<t<R+R,+
SEERARy

lift of the Busemann function 6 to a function on WY(v) . By the choice of R, R,

and C we then have

Il N

2
iii) |ﬁ5 JQ e ha((piL(pi + g—— ggo?)d,\u —al<af2.
i=l "

2
On the other hand, lemma 5.2 shows J~ (n.%n + %—ﬂz)gvdy <0 for every smooth
M

~

function  on M with compact support.

For ¢ eT define now a continuous function ¢((¢) on M with support in ¢E by

-hd_/2
¢(¥)(vx) = u(x) . Write L =g 4 and apply the above inequality to ((¥)e v ;

we obtain

—h_/2 —h_/2 e VI
(e ¥ (LW ¥ )+ee ‘() ldy<o.
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On the other hand, let w ¢ W"(v) be such that Pw e ¥(D) . Then cpie“hechi(w) =
—hg, ~h6 /2~ —hf /2 h —ho 0
(e “divie vB)EW=(We ¥ divle ¥ g (W)W -2 e Wgx(pd)w)

and consequently by the choice of QO and Qi and the above estimates we have

1

h -hé 2y4,U
R—D- JQ.IG gX(pi)dA" < a/d.

1 i

[l B
[ o B

2
—h
J Q. “olg; + 8- wax" < rltg
i

i=1 i

But this is a contradiction to iii) and hence to the assumption that the top of the

~ 2
L2—spectrum of M is strictly larger than —%— . Thus theorem A now follows from

theorem 5.1 of Ledrappier.

Remark: The above arguments would simplify considerably if we could assume that M
admits finite covers of arbitrarily large injectivity radius. This is for example true if M
is homotopy equivalent to a compact locally symmetric space of negative curvature
(then the fundamental group T = x;(M) of M is residually finite). We do not know
any examples of compact negatively curved manifolds that violate the above property;
however Gromov’s work suggests (see for example [11]) that this property should only
hold in very special cases.

6. Proof of corollary B

For peM and ve T;M let as before U(v) be the automorphism of the orthogonal
complement v' of v in Tll)M which lifts to the second fundamental form of the

horosphere §1(0) where ¥ isalift of v in T'M . U(v) is symmetric with positive
v

eigenvalues; hence the same is true for U(v) + U(-v).
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o~
Assume from now on that the mean curvature of the horopheres in M is constant.

Lemma 6.1: The determinant of U(v) + U(—v) is independent of v € M.

Proof: Let g% (resp. g®") be the Riemannian metric on the leaves of W% (resp.
W) which is the lift of the Riemannian metric on M . Denote by g the restriction of
the Riemannian metric on TIM to the bundle E = TW% & TW! . Since by our
assumption g™ (resp. g°") induces (up to a constant) the measure x*° (resp. p°%)
on the leaves of W™  (resp. W®) the determinant of the identity
(E,g% + g%) — (E,g) is constant.

h ® T’ where TV

Recall that E admits a smooth g—orthogonal decomposition E =T
is tangent to the fibres of the fibration T'M — M . For each v e T'M the fibre TV
of T' at v (resp. TY of T' at v) is canonically isomorphic to v' and with
respect to this identification the metric g is just the product of the Riemannian metric
on T' and the Riemannian metric on v' (see [20]). Let Xy o X,y bean

orthonormal basis of v'  of eigenvectors with respect to U(—v) . Then
(Xl,— U(- V)Xl), ’(xn—l’— U(- V)xn_l) ) (XI,U(V)XI), ’(xn—l’U(v)xn—l) is a
gss + gsu—orthonormal basis of E v hence the determinant of the identity

(E,g% + g®%) — (E.g) at v equals the determinant of the matrix

Id Id
[ | ] where — U(—v) is in diagonal form. But this determinant is
- U-v) | U()

just the determinant of U(v) + U(—v).

Corollary 6.2: If dimM=3 then there is a constant a > 0 such that
U(v) + U(~v)=ald forall veTM.
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Proof: By 6.1 the determinant of U(v) + U(—v) as well as its trace does not depend
on ve T!M. Since U(v) + U(—v) is a symmetric automorphism of the 2—dim. vector
space v - the eigenvalues a;(v) , ag(v) of U(v)+ U(—v) do not depend on
veT!M . Thus a(v)=a; , ay(v)=a, for some a;>0, a,>0 and
U(v)+ U(-v)=ald ifand only if a; =ay=a.

h

Recall the decomposition TWSU® TW™ =T'®T" from the proof of 6.1. Assume

2 on TlM

a; # aq ; then TWS is a direct sum of two continuous line bundles T , T
where T' is spanned by elements of the form (Y,U(v)Y) for eigenvectors Y of
U(v) + U(-v) with respect to the eigenvalue o;(i = 1,2) . Since the restriction to wht
of the canonical projection TheT' —, TV is isomorphism this direct decomposition
induces a decomposition of T' as well. But T' is the tangent bundle of the fibres of

the 2—sphere bundle TIM — M , hence such a decomposition is impossible. This

implies the lemma. D

Using corollary 6.2, our corollary B from the introduction now follows from the

following:

Lemma 6.3: Let M be a compact Riemannian manifold of negative curvature. If
there is a number a >0 such that U(v) + U(-v)=ald for al

ve TlM then the curvature of M is constant.

Proof: Write A(v)=U(v)+U(-v) ; if A(v)=ald then U(v) and U(-v)

commute and

AY(v) = o®1d = U%(v) + 2U(v)U(=v) + U¥(=v) = U(= v) - U%(v) + 2¢ U(¥) .
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Choose an orthonormal basis El’ ’En—l of v' and extend El’ 'En—l to a
system of parallel vector fields E,(s), ... ,E _,(s)(s € R) along the geodesic 7 . With
respect to the basis E,(s), ... .E _,(s) of (¢°v)* the map U(¢%v) (resp. U(-¢°v))
is represented by a symmetric matrix B(s) (resp. C(s)). Clearly

4 (B(s) + C(s)) = 0.

Let R be the curvature tensor on M ; for ve T!M we obtain a symmetric
automorphism R_ of v' by defining R (X)=R(v,X)v.Clearly R_=R__. Now
the Riccati equation ( [28] ) shows

dc(-s) . c*o)+r_=0=3B@)| +B%0)+R,

=0

or equivalently 02(0) - B2(0) = (ali (B(s) + C(s)) = 0 . By the above equation this
5=0

means U(v) = %Id for all veTM and consequently again by the Riccati equation

the curvature on M is constant. o

7. Proof of theorem C

Let S, M be homotopy equivalent compact Riemannian manifolds of negative
curvature. Assume that the marked length spectra of M and S coincide; then there is
a Cl-time preserving conjugacy A : Tls 5 TiM ([12]). The map A preserves the
strong stable and the strong unstable foliations on Tls resp. TIM , moreover the
strong stable foliation is the image of the strong unstable foliation under the flip

F:w——~w.Thus A can be composed with the time—t—map of the geodesic flow on
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1

T M for a suitable t ¢ R in such a way that the resulting map, again denoted by A ,

commutes with the flips 5 on TIS and TIM .

Assume now that the metric and the topological entropy of the geodesic flow on Tls

coincide. Then the same is true for the metric and the topological entropy of the geodesic

~

flow on TM ; in particular by theorem A the mean curvature of the horospheres in §
~N

and M is constant.

Recall that the Riemannian metricon M and S lifts to Riemannian metrics gi on the
leaves of Wi(i = 8u,u,8,88) . These metrics induce a set of conditionals for the
Bowen—Margulis measure which are preserved by A up to a constant ([12] ). Since the
flip w— —w maps gsu to gss and gu to gs and A commutes with the flips
there is a number B> 0 such that for every ve Tls the determinant at v of the
restriction of dA to (TWi(v),gi) as a linear map onto (TWi(A(v)),gi) equals

&Ki = su,u,s,88) .

Recall from 6.1 that the determinant of U(v) + U(—v) does not depend on ve Tls
(resp. ve TIM) ; we denote this conmstant value by ag (resp. ap) . Since A
preserves the volume forms on TS and T!M (see {12]), the computation in the

proof of 6.1 shows a:l\',‘[ﬁ‘?az's'1 = 1. We formulate this as a lemma:

Lemma 7.1: ag = ﬂzaM .

For xe S and veT'S thereis a unique ¥ (v) e TiS with a(y (v)) = n(v) . The
map ¥ _:v— ¢, (v) is continuous and for every w e TIS its restriction to W(w)
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is a homeomorphism onto letS - {¥(—w)} that is absolutely continuous with respect

to the Lebesgue measure classes. Its Jacobian with respect to the measures AS" induced

by gs“ and the Lebesgue measure A, on the standard sphere TJICS ~ %1 can be
computed using lemma 3.4 of [12]:

Lemma 7.2: Forevery xe€ S and ve T1S the Jacobian of Y| at v with
X X wSU(v)

respect to the measures A" , Ax equals ag -

~n ~n

Similarly we obtain maps '/’y and measures '\y on T;M for ye M.

1

~ ~ ~ ~
Let A be thelift of A to a time—preserving conjugacy TIS — T'M . For xe8§

~N

~
and y e M define a continuous function % (x,y) : T;S —R by &(xy)(v) =

G—K(v)(y) . Then

Lemma 7.3: B (T1S) = J e Brx gy .

1

Proof The map f:T.S — T,M  which is defined by f(w) =19, oK(w) isa

homeomorphism; by 7.2 its Jacobian at v with respect to the measures A X and A y

equals aMe—h'c(x’Y)(v)ﬂagl = gl bav) | Byt Ax(T}cS) = Ay(Tyl,M) whence the

lemma. o

Corollary 7.4: =1, in particular ag = oy -
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Proof: For xe § and R > 0 let S(x,R) be the distance sphere of radius R about x

and let A(x,R) be the Lebesgue measure on S(x,R) . For ve T}ltS we obtain a
homeomorphism » (v,R) of W*%(¢Tv) into S(x,R) by defining {v,R)(w) =

P¢R¢x(w) . Forevery ve T)ltS the Jacobian of »(v,R) at ¢Rv with respect to the
measures A*" on Wsu(gva) and the measures A(x,R) on S(x,R) converges to 1 as
R — o, and this uniformly in v (see the discussion in section 1 of [13]). By lemma

7.2 this implies that the lLimit 1lim e DEA(x,R)S(x,R) exists and equals
R-w

-1 15
ag A (T,S).

Using the above notations as well for M , choose y € M and define for every R >0 a
homeomorphism F(R) : S(x,R) — S(y,R) by F(R)(P¢%v) =

~N
P¢R¢y(x(¢Rv))(v € TJl(S) . The above considerations then show that the Jacobian of
F(R) at ¢Rv converges a8 R— o to e—h'i(x’f")(v) , and this uniformly in

1N
Ve sz ;

Thus 1im A(y,R)S(y,R)e ™" = ap A (TAM) =
R VAN J

]

Lim ¢ OR[N arr)PeRy) = a5t [ BDar = agloa (115).

R-o

Since A (Tlg) =A (TII:[) this shows apl = a_lﬂ ; on the other hand ag = ﬂza
x\TxV T Ty\y M —"S ™ ST M

by lemma 7.1 and consequently = ﬁ2 ,i.e. §=1 asclaimed. o

To finish the proof of theorem C we need the following result from linear algebra:
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Lemma 7.5: Let A be a symmetric positive definite real (n,n)—matrix with
det A=1.Then tr A > n with equality only for A =1d.

Proof: The matrix A has n real positive (not necessarily distinct) eigenvalues

n n
0<als..._<_an.Then det A=T ] ai=1,i.e. z logai=0,a.nd tr A=
i=1 i=1
n
2 a; = n . Thus it suffices to show the following:
i=1
k £ b
(*) For k>0 let by,..,b, €R besuchthat ) b =0.Then ) e 2k, with
i=1 i=1

equality only if bi =0 forall ie {1,..,k}.

But (*) is an easy consequence of the convexity of the exponential function whose proof

will be omitted. m|
As a corollary we obtain theorem C for manifolds of constant curvature:

Corollary 7.6: Let S be an n—dim. compact Riemannian manifold of constant
negative curvature. If the marked length spectra of M and S

coincide, then M and S are isometric.

Proof: We assume that the curvature of S equals —1 and we show that the same is
true for M ; the corollary then follows from Mostow’s rigidity theorem ([27]). By 7.4,
for every ve TIM the determinant of the self-adjoint automorphism U(v) + U(-v)
of v' equals 981 and its trace is 2(n—1) . Thus 7.5 shows U(v) + U(-v)=21d

forall ve T!M and hence by 6.3 the curvature of M is constant —1 . m|
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In the remainder of this section we show how the above argument can be modified to

treat compact quotients of the complex hyperbolic space cH™.

Thus let S be a compact quotient of CHm(djm S = n = 2m) , normalized in such a
way that the maximum of the curvature of S equals —1.Let Q; (resp. Q2) be the
restriction of the differential of the canonical projection Tls s to TWH (resp.
TW58) For every v e T!S the restriction of Q toT vWBu (resp. Q, to TvW“) is
an isomorphism onto v' whose inverse we denote by QII (resp. Q;l) . Write

J=Q§10Ql.

For every ve TS thereis an n—2=k—dim. subspace E, of T W™ whose
nonvanishing elements are precisely those vectors X for which the sectional curvature
of the plane in TS spanned by v and Q1X equals — 1. The orthogonal complement
v, of Ev in vasu contains all vectors X for which the sectional curvature of the
plane spanned by v and QX equals —4 (compare [12] and the references there).
Then TWS' =E®V is a smooth g*"—orthogonal decomposition which is invariant

under the action of the geodesic flow.

Let T0 be the 1—dim. subbundle of CH™ which is spanned by the geodesic spray.
Then T°®V ®JV is an integrable distribution in TT'CH™ whose maximal integral
manifolds are just the unit tangent bundles of the totally geodesic embedded hyperbolic
planes of constant curvature —4 in CH™ | the so called C-lines (see [27]). The
boundary of a C-line in 4¢C€ H™ is a smooth embedded circle, a so called ({-—circle

([27]) -
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Lemma7.7: Let L C CH™ bea C-line;then X(T'L) is the unit tangent bundle of

a totally geodesic embedded planein M.

Proof: Recall that there is a homeomorphism f:8S— M such that

~N
oA =1fox.Since X isof class C1 , the smooth structure on 4 S induces via f a

c! —structure on M (see [12]). Thus the C-circle 4L that is the boundary of L
in SCH™ is mapped via { toa Cl-embedded circle fOL in M and X(T'L)=

{w « T'M | n{w) € 0L, (— w) € {8L} .

1

~ ~
Recall that the tangent bundle TT'M of M admits a smooth direct orthogonal

decomposition TTIM = 70 @ TN ® TV ; here the vertical bundle TV is tangent to the
~N ~N

fibres of the fibration TlM —M and T0 is spanned by the geodesic spray (see
[12], [20]). Using these notations as well for CH™ we then have dK(T]1 OT") =

e TV (compare [12]). The restriction of the canonical projection
Qh : ThGTv—-»Th to TW® is an isomorphism; since V is a 1-dim. subbundle
of TW®" this means that for every we T!CH™ the dimension of the intersection

dX((VveJv ) ) N TV is at most one.
K(w)

Now JdX(V) = dR(JV) by 4.2 of [12]; consequently since V is a 1—dim. subbundle
of TW® thereisfor 0# X € V anumber a(X) e R such that JAX(X) =

a(X)dX(JX) . Together with the above considerations this shows that dX(V ® JV) N TV

is a 1-dim. continuous subbundle of T® which we denote by Z .
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1 su, .\ _ , 1 88, \ _ 1
But T T'LNT W (w)= V. and T TL N T W (w) = JV, forevery we T'L

(see [12]) and hence via integration of a vector field which is tangent to Z we obtain
the following: Whenever v e K(TIL) then {we TII,VIUI | #(w) € fdL} is contained in
X(T'L) . On the other hand, X(T'LN W) is 8 Cl-embedded plane in T'M
which is mapped via the projection P to a Cl-embedded plane H in Iti . By the

above considerations, A(T'L) contains a Cl-circle bundle BCT1M|H . But
Ve K(TIL) was arbitrary and K(TIL) is diffeomorphic to B ; thus K(TIL) =B . On
the other hand, K(TIL) is invariant under the action of the geodesic flow and

1

consequently Pq’:tw eH forall weB and all teR . This means B=T"H and

moreover that H is totally geodesic embedded as claimed. o

For ve T'M write now g = (dA(E)), and ¥ = (dK(V)), -

1

Corollary 7.8: For every veT'M the subspace Q,( %) of v' is invariant

under U(v) and U(-v).

Proof: Let L bea C-line in CH™ ,let we T'L, v=X(w) andlet X e % . Then
the Jacobi field t — A(t) = Q1¢t(x) is tangent to the totally geodesic embedded

plane H= PdK(TlL) CM and the same is true for its covariant derivative A’(t) .
Thus A’(t) = a(t)A(t) for some function a:R—— R ; but also A’(0) =
U(v)A(0) = U(v)X which means that X 1is an eigenvector with respect to U(v) .

Similarly we obtain the invariance of Q; ¥ under U(—v). o
Corollary 7.9: The direct decomposition v' = Q,( a;v) ®Q,( 1;) is <,>-

orthogonal and invariant under U(v) and U(—v) as well as under
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parallel transport along the geodesic Yy -

Proof: By 7.7 and 7.8 we only have to show that Ql( JV) equals the <, >~
orthogonal complement Q,( 7"1)1 of Ql( ¥) in v' . But this follows from 7.8 and the

considerations in [12]. O

1

By 7.8 there is for every veT'M a number a(v)>0 such that Q; 7% is an

eigenspace of U(v) + U(—v) with respect to the eigenvalue a(v) .

Lemma 7.10:  a(v) <4 forall v e T'M , with equaltiy only if
U(v) + U(=v) _
Q& =21d.

Proof: Let ve TIM be such that b= %a(v) >2,ie. b=2(1+¢) forsome €20 .
Let 0 <b;<..<b _, bethe remaining n—2 eigenvalues of %(U(v) + U(-v)) ; by

n—2
. m _ -1 . .
7.4 and properties of CH™ we then have | | b, = (1 +¢€) , in particular by <1.
i=1
Write ¢; =b;(1+¢) and ¢;=b; for i22. Since the trace of %(U(v) + U(-v))
n—2 n—2 n—2
equals n we obtain z ci=(1+s)b1+ z b <e+ 2 b, =
i=1 i=2 i=1
n—2
e+ (n—2)—2¢=n—-2-—¢. On the other hand 2 ¢; =1 and consequently £=0
i=1
and b, =..=b _,=1 by lemma 7.5. Since U(v) + U(-v) is symmetric with

respect to the scalar product <, > on v* this means that the < , > — orthogonal

complement Q1 43"t,=(Q1 7",)l of Qlig in v' equals the eigenspace of

U(v) + U(—v) with respect to the eigenvalue 2, whence the lemma. O
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With the above assumptions, let now v e T'M be a periodic element of ¢% of period
say 7>0.Let Xe ¥ andfor te [0,7) let Y(t)=Q,d¢"(X). Then Y(t) is an
eigenvector of U(qbtv) with respect to the eigenvalue ¢(t) and an eigenvector of

U(- q&tv) with respect to the eigenvalue ((t) ; clearly £(t) + {(t) = a(¢tv) . Now

.
dg7(X) = dX 0 dp” o d X ~}(X) = e2X and consequently J' dlog |1 Y(1)] |2 dt =
0
: T
4t . But %flog | 1Y(8)] |2 = 2({(t) shows JOC(t)dt = 2r , similarly we obtain

T T
J ¢(t)dt = 27 . Thus J a(¢tv) = 47 which implies by lemma 7.9 that a(¢tv) =4 for
0 0

every te [0,7] , moreover Q, & is an eigenspace of U ¢tv +U —¢tv with
1 ty

respect to the eigenvalue 2. But periodic orbits of ¢>t are dense in T!

M and thus by
continuity v' =Q,(&)®Q,( %) is a decomposition into the eigenspaces of
U(v) + U(—v) with respect to the eigenvalues 2 and 4 for every v e TiM . By 7.9 the
arguments in the proof of 6.3 can now be applied separately to the distribution & and
¥ and show that for every ve TIM and every 0#Xe &, (resp. 0 #Xe ?",) the
curvature of the plane in TM spanned by v and X equals —1 (resp. —4) . But this
means that M is locally symmetric (see [28]) and hence theorem C for quotients of

CH™ now follows from the Mostow rigidity theorem.



In this appendix we denote by M an arbitrary simply connected Riemannian manifold

~

of bounded negative sectional curvature. Let A be the Laplacian on M and consider a

~

differential operator .£on M which acts on functions u of class 02 via
(%) u— #(u) = ya(u) + < X,vu >

where as usual vu is the gradient of u and

~
i) ¢ is a smooth function on M with range in a compact subinterval of (0,») .

~

ii) X is a vector field on M of uniformly bounded norm.

The following lemma is a consequence of 2.3 of [5]:

Lemma A.1: Let xje It[ and define r(x) = dist(xyx)(x € 1\'}) . Then there is a
constant ¢ > 0 independent of x, such that #por)<
" (1) + cp’(r) for every nondecreasing function ¢:R— [0,m)
vanishing identically on (- o,1/2] .

Proof: Recall that M has bounded geometry; hence by 2.3 of [5] thereis ¢ > 0 such
that a(por) <" (r) +cp/(r) . Since Hpor)=ya(por)+ <v(por)X> the

lemma follows from the choice of X . o
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* ~N
Denote by .¢ the differential operator on M that is formally adjoint to .# with

~

respect to the Lz—ﬂca.la.r product on the space of smooth functions on M with compact

support.

~ N

Let ujg:M—R be continuous. A continuous function u:M x [0,T)— R with

u(x,0) = uy(x) for all xe M is a golution of the .#— Cauchy problem with initial

data u, if

1) u is of class C2 in the space variable, of class ¢! in the time
M x (0,T)

variable.

2) Ju—%u:ﬂ on M x (0,T).

We call u a weak solution of the .¥— Cauchy problem with intial data u, if

1) %TJ e(x)u(x,t)dx = J( .z’*tp)(x)u(x,t)dx for every smooth function ¢ on M with
compact support and for every t € (0,T).

~ N

A nonnegative measurable map p:MxM x (0,0)— R is called a (weak)
fundamental solution of the .#— Cauchy problem if for every bounded continuous

~N
function u, on M the function

Jﬁ P(X,y,t)uo(y)dy for t>0
u(x,t) =
vy (x) for t=0
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is a (weak) solution of the .#— Cauchy problem with initial data ug -

Recall from corollary 6.2 of [16] that the operator .¢ induces a unique diffusion on

M . This diffusion is a stochastic process which can be described as follows: Compactify
~ ) ~
M by adding a point « at infinity; M = M U {w} is naturally a topological space. Let

W(M) be the set of all continuous maps w: [0,) — M with w(t)=w for all
t > inf{s > 0| w(8) = w} = ((w) .

~
Denote by B (resp. %t) the o-algebra on W(M) generated by the Borel—cylinder
sets (resp. the Borel cylinder sets up to time t) (compare [16] p. 189). The

-#—diffusion is then determined by the unique family {P_} o of probability
Xe

measures on (W(M),8) with the following properties:

i) P {w[w(0)=x}=1 forall xeM.

i) 1(w(t)) —{(w(0)) —J:)(.z’ f)(w(s))ds is a (Px"Bt) — martingale for every smooth

~N ~

function f on M with compact support and every x e M .

Let x,e M andlet B be an open ball of radius re (0,0) about Xy in M. Then
there i8 a unique fundamental solution qp of the equation % “gf =0 on B x (0,m)
vanishing on the boundary B of B ([21] chapter IV).

Let B, ,B,, .. be an exhaustion of M by open balls such that Bj C Bj+1 and

m ~N
U B.= M. Define
=1
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qBi(x,y,t) for x,y e B,

q-(x,y,t) =
! 0 otherwise

By the maximum principle for parabolic differential equations ([30] section II) we

have q; 20 and %4129 forall i > 0. Define p(x,y,t) = sup qi(x,y,t) .
i

~

Lemma A.2: For every xe M and every Borel set ACM , t>0 we have
Poww() e A} = [ plxyi)dy .

Proof: For every t >0, every i>0 the function q;, induces an operator Qi on
L2(Bi) by (Qif)(x) =qu(x,y,t)f(y)dy .If f:B;— R is a continuous function
vanishing near @B, then the function wu:(xt)— (Qif)(x) is a solution of the
equation .4-——%: 0 on B, x(0,w) vanishing on 8B x (0,@) which satisfies

lim u(x,t) = f(x) . Since such a solution is unique ([21] chapter IV) we have in
t=0
particular qi(x,y,t +8) = J, qi(x,z,t)qi(z,y,s)dz forall x,ye B
B.
i

;0 L8>0, It follows

from the maximum principle for parabolic differential equations ( [30] secion III) that
q;(x,y,t) > 0 forall x,y e B;, t >0 and also qu(x,y,t)dy <1.

Compactify B; by adding a point 8 at infinity and define W(B,) as before. We then

obtain a Markovian system of probability measures {P;}xeB. on W(B,) by defining
1

Pi{w w(t) e A} = J q;(x,y,t)dy . The measures {P;} then describe the unique
A X

eM
- diffusion on B, ([16] chapter V, section 3).
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For a path w e W(M) with w(0)=xe B, and t> 0 let
7, =inf{s 2 0|w(s) e M~B,} and tA r;(w) =inf{t,r;(w)} . Then 7. is a stopping

time for (W(;I),‘B) and consequently
tAT,
(1A ) =) - [ )
0

is a (P,,B,)— martingale for every xe€ B, and every smooth function f with

compact support in Bi .

Let {Pi}x B. be the unique family of probability measures on W(M) which is defined
i

by Pl{w|w(t)e A} =P _{w|w(t) e At < 7(w)} where xeB,, t>0 and ACB,

is a Borel—set; by the above consideration these measures describe the .#— diffusion on

Bi . Thus P; = P; for all xe Bi and 1> 0 ; since on the other hand clearly

P_{w|w(t)e A} =sup Pi{w|w(t) € A} weobtain P_{w|w(t) e A} =

i
sup JAqi(x,y,t)dy = JA p(x,y,t)dy by Lebesgue’s theorem of monotone convergence.
i

This shows the lemma. a

Remark: As an increasing limit of continuous functions the function
p:Mx M x (0,0) — (0,0) is measurable and lower semi—continuous.

Lemma A.3: The function p is a weak fundamental solution of the .¢— Cauchy

problem with the following properties:
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~
i) p(x,y,t) >0 forall xyeM, t>0.

ii) plxyt+s)= J Mp(x,z,t)p(z,z,',s)dz forall x,ye M, all t5>0.

iii) If u:Mx [0,T) — R is a bounded solution of the .#~ Cauchy
problem then u(x,t) = Jp(x,y,t)u(y,ﬂ)dy forall xeM, t>0,

in particulary Ip(x,y,t)dy =1.
iv)  If the unique extension of ¢ to a linear operator on the Hilbert

space L2(M) is self-adjoint then p(y,x,t) = p(x,y,t) for all

~
xyeM, t>0.

Proof: Since qu(x,y,t)dy <1 forevery x e M the functions gq;(x, - ,t) converge to

p(x, * ,t) in Ll(M) by Lebesgue’s theorem of monotone convergence. Let f (resp. o)

be a continuous (resp. smooth) function on M with compact support contained in some
ball B; . Then fpe L2(Bj) for all j>i and consequently by Lebesgue’s theorem,
applied to the positive and negative part of f and ¢, we have

[[ Axa oo i)yt — [ [ exdpx)f(s)ayds(i —a) in LM x M) . Now
for j>i the function u(x,t)=(QJ(x) is a solution of the equation 28 =0 on
B, x (0,0) aad consequently gfj Ax)(QN)(x)dx = I( 2 6)(x)(QIn(x)dx

— JJ'( < )(x)p(x,y,t){(y)dydx . But this just means that the function u(x,t) =
Jp(x,y,t)f(y)dy is a weak solution of the .#— Cauchy problem. Moreover since p is

defined by the #— diffusion on M the function u is continuous (see [16] chapter V).

Let x € B, andlet U be an open neighborhood of x in B, . For j>i we then have

1<lim | q(xy,t)dy<lim supJ p(x,y,t)dy ; but Jp(x,y,t)dy <1 forall xeM
U -0 U

t=0
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and consequently lim J p(x,3,t)dy = 0 . Since U was an arbitrary neighborhood

t-0 M-u

of x it follows easily lim Jp(x,y,t)f(y)dy = f(x) for every continuous bounded
t-0

function f on M . This shows that p is a weak fundamental solution of the & —

Cauchy problem. ii) and iv) follow from corresponding properties of the functions g -

For the verification of iii) we use the arguments of [5] (thm. 2.2).

Let u:Mx [0,T)— R be a bounded solution of the .- Cauchy problem and
define for xe M and t> 0 u(xt)= I p(x,y,t)u(y,0)dy and u(x,0) = u(x,0) . Then

~
u—1u is a bounded continuous function on M x [0,T) . Assume for simplicity that the

function uy:y — u(y,0) is nonnegative. Choose a nondecreasing function ¢ of class
c? on (0,w) such that ¢(s) =0 for s e (0,1/2) and ofs) =5 for 82 1. Let x;e M
and define p(x) = cp(dist(xo,x)) . By A.l1 thereis K >0 such that Zp< K . Let

N = sup{|(u —u)(x,t)| |(ut) e M x [0,T)} and le¢ R >0 be a large positive
constant and choose i > 0 sufficiently large that B(x,2R) C B; .

For j>1i let X; Bj — [0,1] be a continuous function with compact support which
satisfies xj(x) =1 for xe B 1 Define a bounded function U Bj x [0,0) — R
by uj(x,t) = J qj(x,y,t)xj(y)u(y,O)dy for t>0 and uj(x,O) = xj(x)u(x,O) . Then

uj—»ﬁ pointwise on B(x,R) x [0,m) .

Let €>0,let xeB(xyR) andlet te [0,T] . There is a number j(x,t)>i such
that |u(x,t) —uj(x,t)|< ef/2 for all j> j(x,t) . Then |uj(x,t) —u(xt)|< N +¢/2

and hence by continuity of u; and u there is a neighborhood U(x,t) of (x,t) in
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M x [0,T] such that Iuj(x t)(y,s) —u(y,8)|< N+ ¢ forall (ys)e U(x,t). Now for

(y,8) € U(x,t) the sequence of numbers 3=

consequently for every j> j(x,t) we have |aj——u(y,s)| < ma.x{|aj(x,t) —u(y,8)| ,

uj(y,s) is monotonously increasing and

|u(y,8) —u(y,s)|} <N+¢€ . But this means |uj(y,s) —u(ys)| <N+e for al
(v.8) € U(x,t) and all j> j(x,t) . By compactness of B(x),R)x [0,T] there is then a
number e)>0 such  that |uj(x,t) —u(xt)| <e+N for all
(x,t) € H(xO,R) x [0,T] andall j2> j(e).

Let j>je) and define xt) = u(xt) —uxt) - NEE(p+Kt); then v<0 on
B(xg,R) x {0} U 8B(x,R) x [0,T) and consequently (see [5]) |u(x,t)—uj(x,t)| <
N+ie —g— (p(x) + Kt) for all (x,t} € B(x,,R) x [0,T) by the ma.ximum principle. Since
£>0 and j>j(¢) was arbitrary this implies |u(x,t) —u(x,t)| < g (Ax) + K(1)) .
Now R > 0 was arbitrary as well, hence u=u follows (compare [5] ). This finishes

the proof of the lemma. m]

Remark: iii) shows in particular that we have u(x) =Jp(x,y,t)u(y)dy for every

bounded function u on M which satisfies .Zu=0.



—49 —

Appendix B

Resume the assumptions and notations of sections 1 — 4. Recall in particular from

section 4 the definition of the operators £(v e 'l‘ll'\vd) and of the probabiltiy measure
P on the space 2 of continuous pa;ths in T!M that is invariant under the shift
transformations. The purpose of this appendix is to show that the shift is ergodic with
respect to P.

~
For this recall from appendix A that the .z(v — Cauchy problem on M admits a unique
weak fundamental solution p (x,y,t) . Following Sullivan ([32]) we say that (eR

belongs to the Green’s region of M if J s pv(x,y,t)dt <o for some pair
0
xyeM, x#y . I (  Dbelongs to the Green’s region then the function
©
GC : (x,y) ——»J e_Ctpv(x,y,t)dt is finite for x#y and defines a Green’s function
0

for the operator .i{r——( . Recall from section 4 that the function v, 18 a positive
2 ~ 2
(- %——) — harmonic function on M ,ie. ¢_ satisfies (.ﬁ{r + %—)(pv = 0 . This implies
~ 2
that the Green’s region of M contains the set (—%—,m) CR (compare [32]).

2
Moreover for (> —111—- the operator .2; — (¢ 18 weakly coercive (and of the class

considered in [1], compare [1]) and consequently the Martin—boundary of #£— ¢, i.e.

the space of minimal ( — harmonic functions on M , can naturally be identified with

81\7[ ([1]) -

The next lemma identifies one of these minimal { — harmonic functions.
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2
LemmaB.1: Let (>-i andlet a(¢)>0 be asin 44 Then eV g

minimal {—harmonic function.

Proof: Let Ky(y e MU M) be the Martin kernel of M , normalized at a point

~

X, € M . Then there are unique positive measures ”a’”ﬁ on 01\'7{ such that
e‘“(C)”(x)=J' R ACUAGE e_ﬁ(C)ﬂ(x)=Jaﬂ K,(x)dvgé) for all xeM .

Moreover for v —almost every { e §M the ratio e—ﬁ(()ﬂ(x)/e—a(C)B(x) converges

as x — ¢ to the Radon—Nikodym derivative of v, with respect to v

a
[1]). On the other hand e—ﬁ(()ﬂ(x) /e—a(()ﬂ(x) — o whenever

x—{ € dM -1 (- o) which means that the measure v is supported on 7 (- ).

at ¢ (see

Thus e—a(()() is minimal. a

n? y
Next we consider positive (—7—)—harmonic functions on M . We want to show that
v, = e /2 i5 minimal. Due to the following result of Sullivan ([32]) this is clear if

2 ~
~ 1% does not belong to the Green’s region of M :

2
Lemma B.2: If there are two linearly independent nonnegative (— %—) — harmonic

~ 2
functions on M then - %— belongs to the Green’s region.

2
Assume from now on that —%— belongs to the Green’s region. Call a function

~ 2
u:M~-— (—o,m] (—superharmonic ({2 — ]zl-—) if
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a) u is lower semicontinuous.

b) u is not identically o .

c) x))JC x,y,t)u(y)dy foral t>0, xeM.

~N ~

If u is a positive ¢ — superharmonic functionon M andif A C d M is any set then

the reduction R‘: of u on A is defined to be the infinum of the class A of all

positive superharmonic functions v on M which majorize w on a neighborhood AO

N ~

of Ain MUSM.If ul,u2 € A thensois u; Au,=min{u;,u,} and consequently

Rﬁ <u.Apoint £ € 8M ig called a pole for u if u =R {¢} (see [6]) .

Lemma B.3: 7v(— o) is a pole for P, -

Proof: By the definition of the topology of M U @ M there is for every neighborhood

~

Ag of ¢ in MU M anumber ceR suchthat AyD U H_l(s) Since RA>RB
8<c
for A DB it suffices (via renormalization) to show the following: If u is a positive

2 ~
(- %—)—ha.rmonic function on Q=M- U 0"1(5) such that wu(x)— 1 for
8<0

x—-r{eﬁ_l(O) then u2 g .

Choose x, € q 1(0) and definefor R21 Qp =0QN B(xq,R) . Via a small deformation
of QR we may assume that the boundary 0QR of Qp 18 smooth and contains
67(0) N B(x(,R) and that moreover LU g =9, 0, Cap for r<R.
>1
h2
For (> - T the operator .2", — (¢ admits a Green’s function on QR , and the Martin

boundary of QR can naturally be identified with the topological boundary 0QR .Fixa
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point x, € ﬂl and let K§’R be the Martin kernel of .(,—C on QR , normalized at
x(yeQp U8 QR) . Then there is a unique measure YeRr OB 9 Qp of total mass
ez )) such that ¢ V(x) = J K§R(x)dv, p(€) for all xeQp . Define a
measure T/C'R on 00R by

de’H

0 otherwise

. 1
<R 1 if  §edQpNg (0)
dv (o={

and let uc R be the positive ( —harmonic function on QR corresponding to the
measure 75'® . Then U, B'(x) —il= e—a(()ﬂ(f) if x—¢edQpN 0_1(0) and
u R(x)—-bO if x—ife 8QR—9_ 1(0) . By the maximum principle we have

moreover u (R < e—a(()ﬂ .

]

For a fixed number { > — h2/4 the function u ¢(R™U is ( —subharmonic on

~h?/4,R

QR and vanishes on 4 QR . Thus the maximum principle implies u—h2/4 R 2u (R

Choose a sequence R, C (0,w) such that R, — o (i— ) and that the measures
VC R On ad QR C M converge weakly to a measure v on the Martin boundary 4 of
™M

2
) (compare [1] and [6] and recall that for C>—%— the Martin boundary of

~ ~

equals the topological boundary in M U @ M) . Then the functions ue R, converge

uniformly on compact subsets of 2 to a positive ¢ —harmonic function ue on Q.

Clearly ()0 >u, and moreover u,(x)—— 1 whenever x— ¢ el 1(0) . But

e—a(()ﬂ is minimal and consequently u = e—a(()a .
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2
If u is any positive (- %—)—harmonjc function on Q with u(x)— 1 for

x—ife 0_1(0) then by the maximum principle u(x)2u R(:n:) forall xeQp,
R>1,in particular also u(x) 2 u, p(x) . But this means u2lim u,p = (9
] i-ND ’ i
. n2 : ~a(()¢
and since ¢ > -z was arbitrary also u> sup e =@, as claimed. o
¢ >—h2/4

A RE for ADB B.3 also shows the following: If QCM is a

-
domain with smooth boundary whose closure in MU &M does not contain 7 (- m) ,

2
then p, is smaller than every positive (— %—)—ha.rmom'c function u on £ which

Remark: Since R

satisfies u(x) — gav(x) for x— (e dQNM.

2 ~ ~
By our assumption J+%— admits a Green’s function on M ; thus M can be

compactified by adding the Martin boundary & .gM . Choose X, € M and let

K£(§ e MU 8 4 M) be the Martin kernel at ¢ , normalized at Xg -

~ ~N ~
Lemma B.4: Let U be an open neighborhood of £ € 8 oM in M Uua oM . Then

~ ~N

the closureof M- U in M U 8§ M does not contain a pole of K‘f .

~

Proof: Assume to the contrary that there is an open neighborthood U of ¢ in & o M

N ~

such that the closure of M—-TU in M U M contains a pole z of K£ . Since the sets
Uf(s,r) ={yeM|y x| Kc.(x) -Ky(x)| <e forall xeM with dist(x,xy) <1}

form the basis for the filter induced on M by open neighborhoods of ¢ in MU 8 M

~
there is an open subset V of M with the following properties:
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~ ~
i)  The closureof V in MU 8 M does not contain ¢ .

~N ~

ii) The closureof V in MU @M contains 2.

Let¢ 6 be a Busemann function at 2z and define for an integer j>0

V.=vn U ).
J t<—j

~ ~ ~

Vj is an open subset of M whose closurein M U 8 M contains z . Since z is a pole

for Kf the reduction of KE on V.i equals KE ; thus there is a probability measure Y

~ ~
on the boundary V. of V. in M such that K, = K dv(y) on M-V. (see
i i § Jgy. ¥V i i
[1], [6]). Let v be a cluster value in the weak topology of the measures v; a8
j—— o (we may assume X gv j for all j).Then v is supported on the intersection
of 8 ,M with the boundary & ,V of V in MU 8 M. But

0 4MNE,VCO,M-¢ and K, =JKCd1(C) . a contradiction which shows the

lemma. m]
. h2
Corollary B.5: p, is a minimal (—3~) — harmonic function.

Proof: Let v be the unique measure on & , M such that ¢ = J Kedu(f) ; we have
to show that v is supported at a single point ([6], [1]). By 46 ¢ has a pole at

7v(— o) ; thus for v—almost every (e 8 zM the same is true for KC . Let
~
fed _yM be such a point and assume that v, is not a constant multiple of Kf .

Then there is an open neighborhood U of ¢ in MU @ < M such that the reduction of
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p, o U does not coincide with P, -

~

~ ~
By lemma B.3 the closure of M—U in MU dM does not contain 7 (- o) ; thus the
closure of U in MU M contains an open neighborhood of 7v(— o) . By the

definition of the topology of MU &M this means that U contains a cone
C={1_(t)|Pw=peU,x(w,w)<e,n(w)=17,(-o),te [0,0)} and hence the
w

reduction of p, on C does not coincide with @, - But the boundary of C is smooth
except at the vertex p and consequently this contradicts the remark following lemma

B.2 and shows the lemma. (m)

Remark: Let M be a simply connected Riemannian manifold of bounded negative

~

curvature and assume that the mean curvature of the horospheres in M is constant. Let

h > 0 be this constant and let § be a Busemann function in M . Then e_hol 2
2 ~

positive (— %—) — harmonic function on M (with respect to the Laplace operator a) .

2
Thus —%— is contained in the Green’s region; our arguments above show that the

2
Martin boundary for the operator A + 111_ has a natural identification with the ideal

is a

~
boundary & M . This generalizes a result of Sullivan ([31]).
Recall now from 4.5 that the Borel measure P on the space ! of continuous paths
£€: [0,0) — T!M is invariant under the shift transformations T*: §— th where

TtE (8) = £(s8 + t) . Using the notations of section 4 we are now ready to show:

Proposition B.6: The shift is ergodic with respect to P .
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Proof: Let ACQ be a measurable set which is invariant under the transformations
Tt(t > 0) . Assume that P is normalized, i.e. P(Q2) =1 ; we then have to show that
a="P(A) equals 0 or 1.

Define a function %: TIM — [0,1] by %(v) =PY(A). This function is measurable

and Lifts to a function on T'M which we denote again by . By the definition of P

~

and the T'-—invariance of A we have for every ve T!M and every t20

W) = PY{E T € A} = [(0,(9)/i, (7))p(r,w,) W)X () . (%)

Let wv be the projection to M of the restriction of ¢ to the unstable manifold

2
. . h
WY(v) . By () the function ¥,p, satisfies (& + 7)o, ¥,)=0 . Thus by the

maximum principle either "bv vanishes identically or 1/1v > 0. Assume ¢v > 0 ; then

2
v ¥, i8 a positive (- 111—) —harmonic function for % which satisfies ¢ 9 <¢_ .

2
But by B.5 p, isa minimal (— %—) —harmonic function and consequently ¥, is

constant, i.e. 1 is constant along the leaves of the unstable foliation. But 4 is
measurable and the unstable foliation of TIM is ergodic, hence ¢/ is constant almost

everywhere on TIM with respect to the Lebesgue measure. Clearly this constant equals

a=P(A).

Let R, : 02— T!M be as in the proof of 4.5 (t € (0,0)) . Then the finite intersections
of sets of the form REI(B)(B cT'M Borel, t € (O;m)) form a N —stable generator for
the o—algebra on Q. Thus under the assumption « € (0,1) there are for every € > 0
Borel sets Bl,...,Bl C T'M and numbers t1, ...t} ¢ (0,0) (k>0 and i=1,...,2)

with the following properties:
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k .
i) Thesets B, = N R, i_l(B‘li) are pairwise disjoint.
=1 7j

L
i) P(U B)>1-a-¢
1=

1
)

i) P(AN(U B))<e.
i=1

But since 1 is constant on TlM we have by the Markov property and the definition of

L
P that P(ANB,) = aP(B;) forevery ie {1,..,L} ,ie. P(AN(U B))=
i=1

[
aP( U B,) .If we choose ¢ < a(l—a)/(1 + a) , this is a contradiction and hence the
i=1

proposition follows. o
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