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ENUMERATION OF RATIONAL

CURVES VIA TORUS ACTIONS

11AXlM I(ONTSEVICIl

Max-Planck-Institut für MathClnatik, Bonn
anel University of California, Bcrkeley

INTRODUCTION

This paper contains an attenlpt to fonnulate rigorously anel to check preclictions
in eUlunerative geoilletry of curves following frolli Mirror Synuuetry.

In asense, we almost solved both proble111s. There are still certain gaps in
founelations. Nevertheless, we obtain "doseel" fOflllulas for generating functions in
topological signla-llloelel for a wiele dass of manifolels, covcring nUlUY Calabi-Yau
anel Fano varieties. \~Te reeluceel NIirror Syuuuetry in a basic exanlple to certain
c0111plicated hut explicit identity. \~Te have luade several conlputer checks. All
results were as expected. In particular, we COIl1putcd the "physical" nlllllber of
rational curves of degree 4 on a quintic 3-folds (during 5 nlinutes on Sun), which
was out of reach of previuos algebro-ge0111etric Illcthocls.

The text consists of 5 parts. The first part contail1s the definition of stahle
nlaps used through a11 the paper. vVe establish several basic properties of 1110duli
spaces of stahle Illaps. Also, we give an outlil1e of a contsruction of Gr01110V-\iVitten
invariants for all algebraic projective 01' closed sYlllplectic Illanifolds. For reader
who is interested ll1ainly in conlputations it is enough to look through 1.1 ancl to
the stateillents of theorenls in 1.3.1-1.3.2.

In section 2 we describe few exalnples of counting problenIs in cllulnerativc ge­
onletry of curves. One of exanlples is rational curves on quintics. \~Te give a siIuple
algebro-geolnetric definition für the number of curves without assluning thc validity
of the CleIl1enS conjecture 01' using symplectic Illethocls.

The Illain body of computations is containcd in sectiol1 3. Dur strategy here
is quite standard: we reduce problenIs to questions concerning ehern classes on a
space ofrational curves lying in projective spaces (A. AltInan - S. !\]eiluan, S. I(atz),
anel then use Bott's resicluc fonnula for the action of the group of diagonal lllatrices
(G. Ellingsrud anel S. A. Str~al1me). As a result we get in a11 our exc:unples certain
sunlS over trees.

In section 4 we develop a general scheIne for sUllullation over trees. By Feyn­
Inan rules we know that such a SUIn shoulcl be equal to the critical value of sonle
functional. Using a trick we obtain an equivalent functional which is a quadratic
polynolllial in infinitely Inany variables with coefficients depencling on a finite nunl­
bel' of variables. Thus, a11 our counting pl'oblcnls are reclucecl to the inversion of
certain explicit square Inatrices with coeffcients of hypergeollletric kind. This last
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2 MAXIM KONTSEVICH

step we were not able to acconlplish. Presulnably, there is here a hidden st.ruct.ure
of an integrable systeln and Sato's grasslnanians.

In section 5 we clescribe extensions of our cOlnputation scheIne to other enluuer­
ative problClus, inclucling Calabi-Yau and Fano complete intersections (of arbitrary
dilnension) in projective spaces, toric varieties and gencralized Hag varieties.

1. STABLE 1\'1 APS.

1.1. Definition.
Let 11 be ascheIne of finite type over a field (01' a sluooth scheIne, 01' a cOl1lplex

manifold, or an ahnost cOIuplex luanifold).

Definition. Stahle map is a str'll,ct'll,rc (C; Xl, ... , x k; f) consisting 0/ a connected
compact red'll,ced C'lir'Ve C witk k 2: 0 pairwise distinct marked non-sing'ltlar point~r;

Xi and at most ordinary double singular points, and a map f : C -t V having no
non-trivial first order infinitesirnal automorphisms, identical on V and Xl, ... ,Xk

(<;tability).

The condition of stability I11eans that every irreducible cOlllponent of C of genus 0
(resp. 1) which maps to a point luust have at least 3 (resp. 1) special (i.e. luarkecl
01' sing;ular) points on its normaJ.ization. Also, it lueans that the autolllOl'phisnl
group of (Cj Xl,"" Xkj f) is finite.

For a curve C with at IUOSt ordinary double singular points its aritilluetic genus
Pa (C) := dirn, H 1 (C, 0) can be conlputed fronl the fonnula

Let ß E H 2 (V, Z) be a hOluology dass. (In algebro-geonletric situation ß shoulcl
he an eleluent of the group of 1-dilnensional cydes Iuodulo homological equiV"dlence).

Notation. M g,k(V, ß) denotes tke moduli .stack of ~r;table rnaps to V 01 cnrves 01
arithmetic genus 9 2: 0 witk k 2: 0 marked point~<; such that f* [Cf] = ß.

More precisely, in aigebro-geolnetric setting one can clefine a faluily of Hat luaps
to V as a flat proper lllorphisln C -t S to a schelue S of fini te type over the ground
field anel a Iuap f : C -t lf such that its restrietion to each geolnetric fiber of C
over S is astahle nlap.

In the setting of abuost cOluplex Iuunifolds we consider ;\-1 g,k(lf, ß) as a set of
equivalence dasses of stable luaps cndowed with a natural topology (sec [PD and
an orbispace structure (see the next subsection).

Remark. For Iuany reasons one has to consider curves not in a fixedluanifold V
but in Inanifolds V.\ varying in faluilies. '\Te have not developed the corresponding
fonnalisnl yet. In subsection 5.4 we describe a sinlple exaluple of algebraic 1(3­
surfaces which shows the necessity of fanlilies. It is also deal' fronl our exaIuple
that Olle can consider non-colupact V as weIl.

1.2. Orbispaces.
The notion of orbispace introduced here is a topological counterpart of

(1) aJ.gebraic stacks (from algehraic geoluetry), and
(2) orbifolds, or \T-luanifolds (fronl differential topology).
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'Ve define orbispace as a small topological category C (i.e. a category for which
Ob C anel Mor Gf carry topological structures) satisfying follo\ving axionlS.

A.1. C is a groupoi el (every nlorphisnl is invertible).
A.2. For each ){, y~ E Ob C the set of nlorphii:nns A101'C(){, Y"") is finite.
A.3. Two Inaps fronl Mol' C to Ob C, assigning to a l1lorphisnl its source anel

its target respectively, are locally honleonl0rphisnls (etale nlaps).
Functors between orbispaces which are continous, locally hOll1eOl110rphisnls anel

inducc equivalencc of categories we can call equivalences between orbispaces.
The set 151 of equivalence classes of objects of C has natural induced topology.

V\fe can associate with each elelnent [X] E ISI an equivalence class (modulo interior
antOlnorphisnls) of fini te groups lAu t(X).

1.3. Properties of 1110duli spaces of stable 111aps.
The notion of astahle Illap is a Illixture of the notion of a LlI,table C11.rVe frolll

algebraic geonletry and of the notion of a Cll.sp-cll.rve froln sYlnplectic topology.
By definition froln [P], cusp-curve is a hololl1orphic lllap 1 froln a COlnpact (not

necessarily connected) slnooth cOlnplex curve C to an ahnost-conl~lexnlanifolel V
and a finite collection S~of non-intersecting 2-elelnent subsets of C such that, for
each SES, its iInage f (S) is a l-elenlent set. GIueing points froln pairs 5 E S
together we obtain a curve C with at lnost ordinary double singular point.s and a
Inap f : C -+ V. P. Pansu claüned in [P] that if 11 is compact allel endoweel with a
rimuannian nletric, then the space of equivalence classes of cusp-curves of boundeel
genus anel area is compact and Hausdorff. His clainl is wrong, exactly because the
condition of stability Oll conlponents which are Inapped to a point was forgotten! It
seelns that, after appropriate corrections, thc proof frolll [P) ShOV'lS that thc luocluli
space of stable Inaps of boundecl genus anel area is cOIllpact anel Hausclorff.

Recall that in sYluplectic topology one considcrs usually ahnost-C0I11plex struc­
tures on sYlnplectic lnanifolds compatible in an evident sense with the synlplectic
fonn. Such a structure defines a Riemannian metric on the underlying I11anifold,
anel the riCluannian arca of cach hololnorphic curve coincides with its sYll1plectic
area. The latter is a pure hOlnological invariant. Hence M g,k(V, ß) is cOlnpact anel
Hausdorff in such a situation.

In the next subsection, we provc analogous propcl'tics of Mg,k(V, ß) in algebro­
geolnetric setting.

In 1.3.2, wc describe a situation in which the llloduli space of stable luaps is
SIll00th (as a stack).

1.3.1. Algebraicity and properness.

Theoreln. Le.t V be a projective ~lI,cheme 01 finite type over a field. Then Mg,k(V, ß)
is an algebraic proper stack 01 finite type.

The proof uses results from [DM]. ""ie refere to [DM] for definitions concerning
pl'opcrties of stacks, anel for other technical details as weIl.

Vle want to realize A1 g,n (V, ß) as a quotient stack of ascheine of finite type
lnodulo etale equivalence relation.

Fronl the boundness of the Hilbert schenle of I-diluensional subscheines of V it
follows that for (C; X., ß) with fixed Pa(C) and ß, the nluuber of singular points on
C allel the nunlber of irreduciblc cOIllponents of C are bounded.
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In the next step, we will realize J\I{ g,n(V, ß) as a quotient space of aspace of ruaps
of stahle curves into V. For this we can choose a finite collectio11 of hypersurfaces
D i in V such that each non-stahle cOIllponent of any curvc C from J\I{ 91 11 (V, ß)
intersects transversally sorue of Di at least at three non-special points. Then we
cau consider such intersection points as new ruarkcd points on Cf. Finally, we can
glue a fixed snlooth curve of genus bigger than 0 with one luarked point to each
ruarked point on C obtaining a stable curve of a bounded genus. We nlap each
gluec1 cOluponent into a point of V.

This way our I1loduli space is realized locally in etale topology as a closed sub­
space of the space of luaps fronl stahle curves to V with a fixed illlage of the funda~

rnental dass. Such space cau bc realizcd inside the Hilbert schcmc of I-dinlcnsional
subschelues of the product of the universal curve tinles V via graphs of luaps. Thus~

J\I{ 9,11 (V, ß) is an algebraic stack of finite type.
Separatedness and properness of IllOduli of stable luaps follow frolu correspollcling

properties of 1/. Recall that the property of properness iluplies separatedness by
defini tiOll.

If we have a faluily of stable ruaps CI !(, .f : C -+ 11 over a discrete valuatioll
ficlel ]( with thc ring of integers O!{, then there exists a fini te extension LI]( anel
a faruily of stahle curves over CJ L extending the pull-back of CIJe First of a11, wc
cau construct a proper two-diluensional schenle S over Spec( 0 !\') which luaps to
V by taking the dosure of the graph of .f into the product of V anel an arbitrary
rnodel of Cover 0 K. It follows frolu we11-known facts about degenerations of curves
that there exists such an extension LI]( and a curve C' over OL which luaps to V
with the property that the geoluetric fiber of Cf over the closcel point of Spec(OL)
is a connected reduced curve with pairwise distinct Iuarked non-singular points
anel at nlost ordinary double singular points. We cau contract consecutively 11011­
stable cOluponents of this geoluetric fiber anel obtain astahle luap. This proves thc
existence part of the valuative criterion of properness.

Moreover, in such a situation conlponents which we contract a11 have genus zero
and fornl a subforest in the degeneration graph of the curve. One cau see easily
that this subforest does not depenel on the order in which we contract componcnts.
Fronl this uniqueness alld separatedness of V one can cOl1cludc that the 1110duli
stack of stahle nlaps is separated. Hence, we have also the uniqueness part of Ule
valuative criterion of properness. D

1.3.2. Snl0othness.

Theorenl. Let V be (L ,-~mooth proper scherrl,e 01 finite type over a field 'UJhich is
convex in the sense 01 [KM). Then the stack MO,k(V, ß) i,-~ srnooth, and the cor1/,-

plement to the open 3ubset M~ k(V, ß) conL~i,-liting of .~rnooth CUTVC8 i.~ a divi,,.or 'UJith
normal cros.liing3. '

Recal! that convex I1lanifolds V (definition 2.4.2 in [I(M]) are clefinecl as a luani­
folds \Vith vanishing H 1(C, f* Tv ) for any stahle Il1ap of degree zero. It is enough to
check only for SIl100th curves. At the 1110Iuent we now only Olle group of examples,
nalnely, hOlnogeneous projective varieties. In sections 2-4 we will cOllsieler only
projective spaces.

Stable maps have the fo11owiug iInportant property. Let us consider a flat proper
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morphislll C ---t S , of relative dhnension 1 to a schenle S of finite type over the
grollnd field, sections Xi, 'i = 1, ... ,k: of C aver 5, and a lnap f : C ---t V. Vle dahn
that the set of points ]J of 5 such that thc restriction of f to the geolnetric fiber of
Cover p is a stable map, is aJl open subset of 5. Henee, defonnation thcory of a
given stable lnap is equivalent to the defonnation theory of it as of a lnap fronl a
conlpact (non-fixed) curve to V.

First of a11, defonnations of 1-st order of stahle lnap (GI; XI, .•. ,Xk; f) which do
not change the structure of singularities of GI are given by

where Tc denotes the sheaf of veetor fields on C vanishing at points Xi, i = 1, ... , k.
We put Tc in the degree 0 and j*Tv in the degree 1. The hyper-eoholnology grollp
in degree 0 vanishes by the stability condition.

Denote by T the tangent space to M g,k (11, ß) at the point (C; X I, ... , Xk; j). One
can show that we have the fo11owing exact sequence:

o-4 H 1 (C, Fe) -t T -4 EB T;C ® T:C ---t H 2(C, Fe) ,
yEc,in g

where the fourth tenn conles froIn the defonnations of C resolving double points
y. Tangent spaces to two branches of C at y are denoted by T~ C aJlel T;C (in
arbitrary order)j F- denotes the conlplex of sheaves of lellgth 2 usecl abovc.

\~Te are ready now for the proof of the Sllloothlless criteriulll. For arbitraJ.·y lllap
j frOllI a curve C of aritlunetic genus zero to convex V we have H 1 (C, j*Tv ) = O.
Hence H 2 (C, F-) = 0, anel the eliInension of tangent space to M O,k(V, ß) is constant.
One ean elaborate the arguluent abovc for Illaps parauletrized by spectra of Artin
algebras anel show that there is no obstruetions for thc elcfonnation thcory. Also,
we see that luaps froln singular curves fonn a di visor with normal crossings. 0

Frolll the proven properties of M O,k(1/, ß) one can easily deduce the tree level
systenl of GroIllov-Witten invariants on convex varieties (see [I(M]).

1.4. The structure of an interseetion of lllanifolds.
The last theorelll shows that the IllOduli space of stahle lnaps to V inherits

the property of Silloothness of V in SOHle cases. Here we are trying to elefine for
all smooth 11 certain structure on A1 g ,k(V, ß) which pennits us to construct an
analogue of the fundaInental dass. '~Te will do it in the setting of ahnost-eolnplex
real-analytic lnanifolds and describe in 1.4.2 the situation in algcbraic geometry.

Let Y1 , Y2 be two subluanifolds in a. luanifold ..Y (manifolds are real-analytic, 01'

cOlllplex, 01' algebraic). The intersection Z := Y~l n Y2 in general is not S11100th.
Nevertheless, we define its "virtual tangent bundle" [Tz]1Jirt E ](O(Z) by the fonnula

Also, if )(, Y~l ,Y2 are orientecl thell thcre is a. canonical "virtual fUlldalllcntal dass"
{z]virt with values in hOlllOlogy with dosed support
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~ ~

Here Z denotes one-point cOlnpactification of Z and Hd clenotes d-th reclucecl ho-
luology grollp of a punctured space. Number d = di1n(Y1) + di1n(1'z) - din~(~Y) is
the virtual elinlension of Z. Ivlore precisely, one can construct a fundaillental class
in the cOluplex bordisnl gronp with closccl support ndlosed( Z), clefined analogonsly,
when ~\, Y~l, Yi are ahuost-coluplex. The iclea is obvious: Z is hOlll0tOpy equivalent.
to its sufficiently sIllall tubular neighborhood U Z in ..\. In U Zone cau perturbe
gencrically :V1 , Yi anel obtain a transversal intersection. Mention, that in snlooth
situation Z CaJl have pathological topology anel can be not hOlnotopy equivalent
to any of tubular ueighborhoods. It is plausible that one can define a coborclisul
analogue of Borel-Ivloore hOlll0logy anel extenel intersection theory to the SlllOoth
case.

Singular space Z can have several representations as an intersection of genlls at
Z of lnanifolds containing Z. For eXeullplc, we can I1lultiply ){, }'·1, 1'z locally by
);', ·Y1/, y~ where y~{ iutersect transversally 1'~ in one point. Globally oue can pass
froIn X, Yj, Y2 to thc total spaces of vcctor bundles EX, EYl, EY

2 on corresponding
spaces endowed with eillbeddings

Such pairs of representations we call stably equivalent.
If Z is intersection of several subluanifolds Yi, 1 ~ l ~ n in ~Y, then one can

represent Z as an intersection of two subnlanifolds:

Z ~ (1/1 X . . . X Y~l) n diagonal in ~y n

Also, if \ve have two lnaps of lnanifolcls 1'i ~ ..Y, i = 1,2 then the fiber procluct.
Z := yP1 X X Yi carries a structure of an intersection of two lllanifolcls. It follows
froul the identification of Z \Vi th the intersection in Y1 x Y2 x ){ of graphs of fi
nlultipled by Y3- i .

Let space Z carry a systelll of representations of open subsets Ui of Z as inter­
section of a lnanifolds endowed with a systelll of stahle equivalence between nlodels
for Ui n Uj arising froln Ui anel Uj. Such a systeul should bc associative up to a
homotopy, honlotopies between hOluotopies etc. Then we expect that Z has global
virtual tangent bunclle and virtual fundaInental dass. In 30 sense, a11 this should
be a non-linear analogue of an eleInent of j(O(Z) representecl locally as a fonnal
difference of two vector bundles.

Let us return to the 1l10duli space of stahle lnaps. \\Te claiIn that it has a canonical
structure of an orbifoldic version of an intersection of almost-complex lnanifolds.

First of 3011, near cach point (C; Xl, ... , Xk; f) we will represcnt Mg,k(V, ß) as an
intersection of severa1 infinite-dituensional Frechet subnlanifolds (forgetting tenl­
porarily the presence of the finite group of autolnorphisluS of the stable lllap
(C j Xl, .•. ,X k j f)). Let us choose several closed non-intersecting sinlpIe paralnetrizecl
loops Li on the surface C which divide it into pieces Cj cach of which is either a
SlllOOt.h surface with a non-enlpty boundary anel no luarked points, 01' 30 Sl1100th disc
with one luarkecl point in the interior of the disc, 01' two discs with glued centers.

V\fe consider as thc first approxünation to thc alnbient 11lanifold ..Y, the space ..Y'
of SllloOth lnaps fronl IJ Li into V which are sufficiently elose to fl U Li' This space
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as an infinite-dilnensional ahnost cOl1lplex lnanifold with the cOlnplex structure on
the tangent bunclle induced pointwise from the cOl1lplex structure on Tv .

For each piece Glj of the surface Gf wc introducc thc space Yj consisting of pairs
(J', I'), where J' is a COlllplcx structure on Glj elose to the initial one anel /' is a
J'-hololll0rphic 111ap considered 1110clulo diffeoIll0rphislns of Cj elose to the identity.
For pieces Cj which are two intersecting discs we add SI11a11 flat defonnations:

{(x, y) : x, y E C, :E y = 0, 1:1: I + Iy I ::; I}

elefonn to {(x,V): x,v E C, xv = f, lxi + lyl::; I}, lEI «:: 1.

Spaces Yj are ahnost-complex and they are nlaped into )(' by passing to the
restrietion of nlaps to bounclarics. Their fiber product over X' consists of stable
11laps of curves elose to the initial point endowecl with paralnctrized loops. As usnal,
one can pass to the quotient of all the picture nloclulo the action of t.he procluct. over
loops Li of the "col1lplexified diffeoluorphisll1 group of a cirele" (= replacing curves
Li by elose curves). This action is free exactly clue to the cOllclition of stability.
Finally, we can pass to thc case of two sublllanifolcls, as we already explainecl.

Thus, we will get gernls of Frechet nlanifolcls ~Y anel YPi . The natural nlap of
tangent spaces

TzY~1 EB T Z Y2 ~ Tz.~, z E Z ,

is Fredhohn. In the next subsection we develope a technique proclucing in such a
si tuation fini te-dinlensionallllocleis.

Globally, we can cover Z = M g,k(V, ß) by finitely 111any open sets: ancl on
each of thenl we have an equivalence elass of representations as intcrsections of
lnanifolds. It is alnl0st eIear that different representations on int.ersect.ions of open
sets are equivalent lnoclulo hOlnotopy anel higher honl0topies between honlotopies
on lTIultiple intersections. Unfortunately, we don't kncnv how to fonnulate a11 this
pl'ccisely. Wc have tried to avoid choices anel use a Dolbeaut-type resolvent. The
space Y1 in this case shoulcl be aspace of real-analytic 111aps frolll cOlnplex sUl'faces
to 11 satisfying the SaJlle condition of stability as before. A natural candidate
for ~Y will be the total space of a vector bundle on ..\ arising froln the Cauchy­
RiClnann equatiou, Y2 will be a section of X as of a vector bundle. 'Ve have nlct an
uupleasant difficulty in considering clefonllations resolving double points. Nlay be,
nevertheless, it is possiblc to find aversion of the Dolbeallt cOlllplex which fonn
a cOl1lplex of infinite-dil1lensional vector bundles over a neighborhood of Z in Y~l'

Such a construction, if it exists, will give a rea.lly sinlple definition of the virtual
funclaluelltal elass of Z.

1.4.1. Reduction to finite dhnensional Inanifolds.
Suppose that we have Frechet lnanifolds .~ and Yi with the Fredhohn property

as above anel Z := y~1 n Y2 being cOlllpact.
'.;\Te cau choose Sillooth finite-elinlensional sub-bundles [i C (T;'\. )lz, i = 1,2 such

that
[i n (7)'"j )Iz = 0, (Tx )Iz = [1 + [2 + (7)'1 )lZ + (7),"~ )Iz .

~Te can prolong Ei to neigborhoods of Z in Yi . Then we cau choose sul)Inanifolds
Yi in ){ containing Yi such that
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Subnlanifolds Y~i C ..:\ intersect each other transversally near Z. Froill now on
we cau forget about the ainbient Inanifold ..:Y and consic1er only the systeill of 5
lnanifolds and iuclusions betwecn theIn:

V'le can choose a sub-bundles Fi of finite codilnension in (7)"1 )IZ such that

Then we can choose a. foliation in Yi with tangent spaces to fibcE.s at points {roin
Z equal to :Fi. We can prolong these foliations to foliations of Yi. Near Z these
foliations are tangent to fibers of snlooth fibrations, due to the transv;:rsality con­
clition above. Passing to the spaces of fibers of these folitations in Yi, l'~i \vc obtain
genns of finite-dinlensionaiinanifolds l'i', Yi~ \~~ can take for thc Inicldle terlll thc
SaIllC finite-cliinensional Inanifold as above, Y~l nY2 anel get a new finite-diluensional
systeIll of 5 Inanifolds anel inclusions. We can construct a new alllbient Inanifolel
..:"'(' in which Y/ anel }~ intersect transversally along }~/ n }~ ~ }~l n }'2. Thus, Z
is realizeel as an intersection of finite-cliinensionalluanifolds. One can check that
different proceclures give stably equivalent representations.

1.4.2. Intersections of 111anifolds in algebraic geollletry.
If Y~l, Y2 are subnlanifolds of an algebraic lnanifolcl X then on Z := Yl n )''2

we can construct a structure of 8'll,per-~~cheme. This nIeans that on Z we have a
super-structure sheaf

of Z<o-gradecl super-conunutative rings such that Z is ascheine with respect to
O~ ~lcl Oz are coherent sheaves of O~-lnodules. The fonnula for conlponents of
the lligher structure sheaf is

where i? denotes the elllbeclcling nlap. Also we have a virtual tangent bundle in
j(O(Z) given by thc salne fonnula as in the abnost cOlllplex setting.

Structures (0:2:, (Tz]virt) do not change if wc pass to an equivalent representation
of Z as an intersection of two llulnifolcls. 'Ve call a pair of such structures a "quasi­
lnanifold" .

Dur discussion leads to the preeliction of the existence of thc structurc of quasi­
manifold on Z = Mg,k(V, ß) defined in purely algebro-geoilletric tenns. In fact,
one can define {Tz]virt as the direct itnage of the defornlation sheaf on. the universal
curve. Also, O~ is the USllal structure sheaf on algebraic stack Z, anel 01 is
equivalent to thc first obstruction sheaf. 'Ve are plannillg to write later nlore
about definitions of higher structure sheaves anel virtual tangent bunclles arising
ubiquitously in algebraic geoinetry. For eXaIuple, various lnocluli spaces and Hilbert
scheInes should carry canollical structllres of quasi-Illanifolds. Idea of introducillg
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higher structure sheaves on 11l0eluli spaces existed illlplicitly quite a long tinle ago. It
was recently spelleel out clearly in a letter of P. Deligne to H. Esnault, together with
a proposal to apply it to the algebro-geonletric fornlulation of 1IIilTor SynInIetry.

\Ve finish this subsection with a fornlula which produces a virtual fundanlental
class for a quasi-luanifold Z with Oz = 0 for 11. «0. Note that it is applicable to
the quasi-l11anifold structure arising on the intersection of t\vo manifolcls.

First of all, for cach separatcel scheme Z of finite type over a field anel for
any coherent sheaf F on Z a h0l110logical Chern dass r(F) E CH*(Z) 0 Q is
defined (see [BFNI]). Here CH*(Z) clenotes the Chow group of cydes on Z luodulo
rational equivalence anel regarded as an algebraic counterpart of H;losed(z(c), Z)
for schenles over C. For the definition of thc virtual fUlldalllelltal dass, we will use,
for the sake of SilUplicity, a SlllOOth al11bient luanifolel X. V...,re can prolong the virtual
tangent bundle [Tz]virt to an elel11ent of ](0 ( ..Y) aftcr replacillg ..Y by a sufficiently
sll1a11 neighborhood of Z. Thc fonuula for thc virtual fundalllental dass is

One cau see that for quasi-nlanifolds arising as an intersection of two subluan­
ifolds this froluula gives the same dass as the usual intersection theory of Fulton­
1IIacPherson. For zero-cliluensional Z our fonuula is equivalcnt to the Serre fonnula
for lllultiplicities.

Note that we have for quasi-lllanifolds a refined fundaluental dass with valucs in
CH", 0 Q [CI l C2, ... ] arising fronl the action of ehern classes of [Tz] virt on [Z] virt.
It can he considered as an algebraic version of thc funclaI11ental dass with values in
cOluplex cobordism groups.

1.5. Groluov-Witten invariants.
VVe have a cOl11pact 11lOeluli orbi-space of stable curves anel a virtual funchunental

dass of it in two situations:

(1) V" is a snIooth projective algebraic luanifold over a fielcl , 01'
(2) V is a compact real-analytic sYlupleetic Inanifold endowed with a cOlupatible

real-analytic alnIost-colnplex structure.

The virtual fundanlent a1 dass takes values in eH* 0 Q[Cl, C2 , ... ] anel in n>l< 0 Q
respectively.

Suppose that 2 - 2g - k: < 0; so, that )\.1 9,k exists. vVe havc an evident luap:

Here (C, Xl , ... , Xk) is the stahle curve with lnarked points obtaineel froln (C, Xl , .•. , x k)
by cosecutive cOlltractions of non-stahle con1ponents.

The in1age uncler <b of [Mg,k(V,ß)]virt is a dass in V k X Mg,k which leads to
GronlOV-vVi t ten inval'iant s of V (see [I(M]). It shoulel not dcpcnd on thc choice of
an ahnost-complex structure in the synIplectic case.
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\\'e expect that these classes satisfy a11 axionls poshI1ateel in [I(M]. In fact, thc
definition of stable lllaps was designeel specially for this purpose.

Here we get a refinenlent of the picture froIn (I(M]: Gronl0v-\\Titten invariants
take their values not just in cohonl0logy groups, but in cOInplex coborclisIn groups.
Also, we have line bunelles on M g!k(V, ß) with fibers equal to TXi C, anel we cau
take in account actions of their ehern classes on [Mg,k(V, ß)]virl. It is an essential
additional data, because TXi C are not isolnorphic to the pullbacks of aJlalogous
bunclles on j\lt 9 ,.I.. In the defonnatiou fonnula 6.4.c fronl [1(1'1], one can use Tx i C
instead of TXiC.

1.6. COluparision with other definitions.
It. was proposed earlier several tünes that for the definition of the topological

sigIna l1loclel (=Grolnov-\Vitten invariants) in aigebro-geolnetric tenns one shoulcl
llse the Hilhert scheIne of V and, possibly, nl0dify it. Dur Inoduli space of stable
Inaps does it in asense. Its advantage is Sll100thness in the ease when V is a gen­
eralized flag variety. Also, Dur definition givcs the sarne Inoduli spaee for conlplex
projeetive V eonsidered as an algebraie 01' as a syulplectic manifold.

In sYlnplectic geoIuetry the Inost advanced construction was announcecl recently
by Y. Ruan anel G. Tian in [RT]. They construct apart of Grolnov-\\Titten invariants
(essentially, genus zero invariants) in the case of seIni-positive sYlnplectic manifolds.
Their main idea is that in this case one can ignore curves with singularities, hecause
the diInension of space of dcgenerate curves is strictly less than the ditnension of
the space of sUl00th Cllrves for generic alulost-coIuplex strueturcs. Thc advantage
of approach of [RT] is a control on integrality of arising honl0logy dasses. In
[RT] "ul.uubers of rational eurves" of fixed h0l1l0logy dass passing through several
subnlanifolds were defined in thc ease of thc nUInber of cycles greater than, 01' equal
to 3. Without this condition "nunlber of eurves" should be fractional in exaInples
of quintic 3-folds (see the next section).

Ollr pre-definition should work for all sYlnplectic luanifolds anel, prcsulllably, in
the case of surfaces with boundaries, opening a way to extend Floer's proof of the
Arnolel conjeeture to the case of non senli-positive symplectic nlanifolels.

As we alreaely luentioned, Grolllov-\Vitten invariants should be defined also for
faluilies of not necessarily cOlnpaet synlplectic 01' algebraic Inanifolcls. It is not deal'
at the mOlllent, in which generality such a. theory can be developed. For exaulple,
we don 't know shoulcl falnilies be flat 01' only snl0oth, should the paranletcr space
be Sll100th, etc..

The general scheIne describeel in 1.4 ean be applied in other situations: Inoduli
of veetor bundles on algebraic curves anel surfaces, Inoduli of cOl1lplex struetures
on surfaccs, Inoduli of vector bundles on Calabi-Yau 3-folds. Couunon property
of all such exaInples is that the natural cOlnplcx whose l-st coholnology group
is equivalent to the tangent spacc to thc appropriate 1110duli spaee, has trivial
cohonlology in degrees greater than, 01' equal to 3. Thc nuün probleIn is to define
gooel cOl1lpaetifications in other situations.

2. TIIREE EXA1'IPLES.

In this section ancl in the next one we will use siInplified notations: j\lt g, k (pn , d(P 1])

will be denoted by Mg,k(pn, d) or, sinlply M(P7\ cl) if g = k = O.
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2.1. Rational curves on p 2
•

Dilnension of the space MO,k(P2, cl) is equal to 3d - 1 + k. For k = 3d - 1 it
coincides with the dimension of (P2)k. Hence the number Pd of rational curves on
p2 of degree cl 2: 1 passing through generic J.: = 3d - 1 points is finite and equal to
the degree of the map

- 2 2 kcP : Mo,k(P ,cl) ---t (P ) ,

,.""Te can rewrite it as the integral:

3d-l

Pd _ J g ,p*(cl(O(1);)2) ,

MO,3d-l (P2 ,d)

wherc O(l)i denotes the pullback of the Ene bundlc 0(1) froln the 'i-th factor p2
of (P2 )3d-l .

These nUlnbers are known fronl thc rccursion relations following frolll thc asso-
ciativity equations (see [K1I1)). The first few values of Pd al~e: .

1
1

2
1

3 4
12 620

5
87304

Dur proof of the associativity relations is based (following 'Vitten [,\T]) Oll a
study of the boundary divisors of the 11locluE spaces of stahle rnaps. Here we want
to compute number of curves clirectly.

2.2. Rational curves on quintics.
Let a SIllOOth quintic 3-fold V be given by an cquation Q( Xl , • , . ,xs) = 0 in

hOll1ogeneous coordinates in p 4
. Polynonüal Q of degree 5 can be consiclerecl as a

section of the Ene bunclle 0(5) on P4.
Thc orbispace Mo,o(V, cl[P 1

]) is a subspace of M(P 4
, d). Let Ed be a coherent

sheaf on M(P4 , d) equal to the dircct inlagc under thc forgetfullnap )\110,1 (P4, d) --t

)\I{o,o(P4 ,d) = A-1(P4,d) of cP*(O(5)). Here again <p(C;xl;f) = f(:Cl) E p4. Shcaf
Ed is actually a vector bundle: for any stahle Inap f : C --t p 4 frolll a curve
of aritluuetic genus zero H 1 ( C, f* (O(5))) = 0, because the line bundle 0 (5) is
generatccl by its global section.

Section Q of 0 (5) defines sections Qd of Ed for all cl. I t is clear that M (F, d[P 1] ). .....
coincides with thc scheIne of zeroes of Q d . We dainl that this identification is
cOIllpatible with structures of an intersection of Iuanifolds.

The orbifold )\1{ (P 4
1 cl) has ditnension 5d + 1, the saHle as the rank of Sd. Hence,

we get the algebro-geometrie definition of thc "ntunber of rational curves on qUill­
tic". It should be equal to the integral of the Euler dass of Gd:

Nd := J CSd+l(t'd) '

M(P4,d)

Nunibers Nd are not integers, bccause we use orbifolcls. Thc table of first fcw
lVd is the follbwing;
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1
2875

1

2
4876875

8

3
8564575000

27

4
15517926796875

64

!\'d are relatecl with integer nurubers N~ by thc following forn1l11a:

l\T '""" k-3 l\ TOhd = L..J h d / k ·

k:kld

lV~ is the utuuber of geoluetric (unpararnetrized) rational curves on V with
generically perturbecl ahnost c01l1plex structure. .

Mirror Synuuetry (see [V]) g'ives the following clescription of thc sequence ]\'d:

Let us introduce a functiol1 definecl in a donlain {t : Re(t) ~ 0, IIrn( t) I < 7r} in
the conlplex affine line C:

\Ve dcnote by G(ql, q2) corresponding function of hOluogeneity degree 2 in a dorllain
of the vector space C 2

:

Function G generates a Lagrangean cone [. in thc syrnplectic vector space C 4
:

Oll thc other hand,

I( ) = '""" (511)! H

z L..J ( 1)5 zn.
n2:0

is one of the periods of oue-diruensional variation of Hodge structures Hz with
Hodge nurubers 11.0,3 = h1 ,2 = h2 ,1 = h3 ,0 = 1 arising frolu a rnirror fanlily of Calabi­
Yau 3-folcls. Poincare pairing clefines a covariantly constant syrllplectic structure on
4-düllensional vector bundle H with flat Gauss-Manin connection. "Ve can trivialize
the flat bundle H in the clOll1ain {z : IzI ~ 1, IArg(z )I < 7r}. The union U of 1­
dinlensional terms of the Hodge filtration F: fOrIll a Lagrangean cone in C 4

.

Mirror SYlluuetry predicts that L = U. The sarlle kind of corrcspondencc is
expected for other Calabi-Yau 3-folds.

2.3. Multiple coverings of rational curves on Calabi-Yau 3-folds.
Let Co ~ pI be a srl100th rational curve in a c0111plex 3-fold 17 \vith the nonnal

bunclle Tv /Tco equivalent to O( -1) EB O( -1). In such a situation Mo,o(V, cI[Co])
has a connected cornponent }v1 o,o(Co, cI[Co]) consisting of stahle lllaps C -+ Co of
clegrec d. This conlponent is isorllorphic to /\11 (pI, d) aud has diruension 2d - 2.
The virtual c1irnensiol1 of this coruponent is zero. The obstruction sheaf :Fd is a
vcctor bUl1dle of rank 2d - 2 with the fiber at each point .f : C -+ Co cqllal to
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Dur definition of the contribution of J\ltco will be the integral over it of thc Euler
dass of the obstruction sheaf:

Md:= J c2d-2(Fd)

.AA(Pl,d)

After Aspinwall and 11orrison we expect that lvld = d- 3
.

Actually, it is not deal' why eonlputations froln [A11] give the sanle answer as \ve
get with the stable curves. In [AM] authors consicler the space of nlaps of rational
curves with 3 11larked points on it into pI and compactified it by Iueans of the
Hilbert scheIne of 1-dilllensional subschenles in pI XpI (they associate \Vith a Iuap
f : pl --4 pI its graph). Then thcy used the Euler dass of a natural cancliclate to
the obstruction bundle anel illtersect it \vith a dass of cocliluension 3. The answer
whieh they get is 1. Of course, we can use A1 0,3(pl, d) instead of j\lto,O(Pl, cl) and
Inodify the definition of "the ntunber of curves" following the sampie 2.1. One can
see easily that the result will be cl3 /Vld. At the InOl1lcnt we clon't, know how to relate
the cOlnpactification frOlll [A:~..'I] and the lnoduli spaces of stable lnaps.

3. FIXED POINTS FORM ULAS.

3.1. Bott fixed points forillula.
Let ..:Y be a snlooth cOlnpact cOlnplex projectivc nlanifold, E be a holonlorphic

vector bundle on ..:Y. \".Te suppose that a cOInplex torus T ~ C x X ... X C X acts
algebraically on (..:Y, E).

Bott's fonnula reduces the conlputation of integrals of characteristic classes of
E over )( to the computations on the subspace of fixecl points .yT. This spacc is
always a union of subvarieties, becausc the real subgroup T rea1 = U(l) x ... x U(1)
is cOlnpact. V\'e denote connected cOlllponents of .yT by )(;.

On each cOlllponent .Y" the vector bundle t: splits illtO the direct sunl of bundles
E;'>" over characters A : T --4 C X

, A E T Y ~ Z EB ... EB Z. Also, the nonnal bundle
Ar; = 7."\ /7."\"' splits into the direct Stlln of bundles Ar;,>.., A E T V

\ {O}.
Vle add to HeVCH(.y, Q) extra generators ei, i = 1, ... , rk(E) of degree 2 obeying

relations

L ck(E) = TI(1 + ei) .
k~O i

Analogously, we add generators eI'>" and n7'>" to HCV(X;, Q).
Let P be a honlogeneous sYl111netric polynolnial (in sufficiently l<u'gc nUlnber of

variables) of degree dirn,e(X). Bott's fornlttla reads:

Here the 1'.h.s. is considered as a rational function on L'ie(T) (each character ).
defines a linear fonn on L·ie(T)). In thc ntunerator anel the denolninator we use a11
generators eI'>" anel n;'>" with fixed index f' Analogons fonnula is valid for finite
co11ections (E( i) ) i = 1,N of equivariallt vcctor bUlldles and hOI11ogeneous polynomials
P in JV groups of variables synlmetric inside each group.
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This fOl'lnula is valid for orbifolels too, bccause the original proof in (B] llses only
the lang;uage of differential fOrIns and transfers inuneclia.tely to the nlore general
setting of orbifolds.

3.2. Fixed points on 1110duli spaces of stable 111aps.
The action of the group T ~ (C x Yl+ 1 of diagonal lllatrices on pn inchlces

an action of T on )\;f 9,k(P71, cl). \~Te will describe the set of fixed points in this
subsection.

Denote by pi, i = 1, ... , n + 1 fixed points of T acting on pn. The point Pi is
the projectivization of i-th coordinate line in C n+1 . Also, denote by lij = lji, 1: =I- j
the line in P n passing through Pi and pj .

Let astahle map f : C --+ p71 represent a point of A1 g,k(pn, d)T. First of aU, the
geolnetric ilnage of f should be invariant under the T-action. One ean see easily
that it nleans that f( C) is a union of lines lij. Seeondly, irnagcs of all 111a.rked anel
singular points, as weIl as of conlponents of C cOlltracted by f, ShOllld lie alnong
points Pi. Thirdly, each irredllcible conlponent Co of C which eIoes not Inap to
a point has genus zero allel Inaps onto Olle of the lincs lij. In SOUle hOlnogeueolls
coordinates it is given by

f(zl : Z2) = (0: ... : 0: z1° :0: ... : 0: z;o : 0: ... : 0), da 21.

\~Te will associate with each point (C;Xl, ... ,Xk;f) E Mg,k(pn,d)T a graph
r. By graph we rnean a finite I-dilnensional ClV-colnplex. Vertices v E 17 er't(r)
correspond to connectecl eOlnponents Cv of j-1 (Ph ... ,PIl+1). Note tha.t each Cv

ean be either a point of C 01' a non-Clnpty union of irreducible cOlnponents of
C. Eelges Q' E Edge(r) corresponcl to irreclucible conlponents Co of genus zero
Inapping to lines lij. "Ve endow r with additional specifications: vertices v will be
labeled by nlunbers fv fro1n 1 to n + 1 defined by the formllia f( G'v) = Piu' Eclgcs
will be labeled by degrees der E N. Also, we associate with each vertex v E Ve1't(r)
its interior genus 9v (=arithlnetic genus of the 1-diInellsion~1part of G'v C C) anel
the set Sv C {I, ... , k} of indices of Inarkeel points lying on Cv.

Our daün i8 that connccted cOlnponcnts of )\;fg,k(pn, d)T are naturally labelecl
by equivalence dasses of connected graphs r with specifications obeying the follow­
ing conditions:

(3)

(4) {l, ... ,k} = II Sv.
vE V ert{ [')

~1ention that fronl the condition (1) it follows that r has no siInple loops.
Each cOlllponent Mg,k(pn, d)r is isornorphic to thc quotient space of the product

of 1110duli spaces of stable curves over thc set of vertices of r rnodulo action of the
automorphism group of r. V\fe will forget about Aut(r) till 3.4.
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3.3. Contributions of connected conlponents.
Fronl now on we assulne that our eurvcs have arithnletie genus zero. Graphs r

in our deseription will be trees and interior genera of all vertiees will be zero.
In 3.3.1-3.3.4, we will assuInc for the sake of sünplieity that therc is no marked

points on eurves. Vle will restore nlarked points in 3.3.5.
\Ve denote M(pn, cl) SÜllply by M (nuInbers n ancl cl are supposcd to be fixed

in this seetion).

For T-equivariant veetor bundle E on orbifold )\.ttr we denote by [E) the corre­
spondil1g elClllent of thc equivariant j( -group with rational coeffieients:

I(~(Mr) ® Q ~ j(O(M
r

) ® T V ® Q .

In 3.3.3-3.3.4, we will clenote by [X] the eleIllent of I(~(Mr) 0 Q corresponcling
to the trivial I-dilnensiol1al bundle cndowed with the action of T by the (orbi­
)charaeter X E T V ® Q.

\Ve will denote the restrietioll of any veetor bunclle [. on M to A1
1

by the salne

sYInbol E. Often, we \vill denote a vector bündle on M
r

by its geolnetrie fibcr at
a point (C, f). In intennediate C0111putations in 3.3.1 we will use decoInposition
of fibers of veetor bundles into fonnal linear conlbinatiol1s of S0111C othcr veetor
spaces arisil1g froIll short exaet sequences. These auxilary vector spaces will not
fonn veetor bundlcs, beeause their diIl1ensions will be not constal1t. Nevcrthelcss,
we will use these veetor spaees as "veetor bunclles" putting eorresponding synlbols.
One eal1 eheck that the final rcsult after all caneellations is a dass of a virtual
equivariant veetor bundle, and our fonnal C0111putations give the correet answer.

3.3.1. N orillal bundle.
-r

The dass of the nonnal bundle to M is

In 1.3.2 we COlllputed the tangent space to J\.tt:

+( L ([Ty(CO)]+[Ty(Cß)))-L[HO(CO,TCCi)]).
yECCi ncß :a:f.ß °

The first sUInnland eorrcsponds to infinitesilnal defonnations of thc nUtp f of
a fixed curve C. The second sunl1nand corresponds to fiat defonnations of C
resolving double singular points. The thircl sUl1ullancl COlnes from defonnations of Ci
preserving sin!!;ular points. Its first part COlnes fronl defonnations of singular points.
vVe retract froln it dasses of 3-climcnsional spaces of veetor fielcls on irredueible
conlpol1cnts ca.

-r
The dass of the tangent spacc to Jvt is by analogous reasons equal to

[TMr] = L [Ty(CO) o Ty(C ß)] +
yECc< nCß :a:f.ß;Cl:'lß~E(lge(r)
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yECe.nCß :rx#ß,a~Edge(r) Q:a~Edge(r)

Here the first sUlnmand corresponds to resolutions of double singular points
which are intersection points of bvo contracted con1ponents, the second Sllnllnancl
COlnes fronl defonnations of singular points on contractecl con1ponents. Again, we
retract classes of spaces of vector fields on contracted C0111pOnellts.

Con1binig all the forn1ulas above we get:

[N~\Ar] = [HO(C, j*(Tpn ))] + [)V~~~] ,

where the "absolute" part of thc nonnal bundle is

[)\rab~] :=
..\A

yECe. nCß :a#ßia,ßEEdge(r)

+ L [Ty(Gf a
) 0 Ty(Gfß)] +

yEC" nCß :oE Edge(r) ,ßf:.Bdge( I~)

+ ( L [Ty(CO)] - L [HO(CO, Tce. )])

yECe. nCß :O#ß,oE Edge(r) a:aEEdge(f)

Note that the first. ancl the third sunllnands in the fonnula for [A(abn ahove are
M

trivial vector bunelles on M
r

twisted with S0111e characters of the torus T. Also,
the tenn [HO(C, j*(Tpn ))] has the saUle nature. Later on we will see that in all
our exaluples a11 equivariant con1ponents of the vector bundlc [ will be trivial too
(er,,.\ = 0 in notations of 3.1).

Hence in thc Bott fornl111a applied to j\lt we have only one t.crn1 which is not
just a Il1upltiplicative factor with values in the field of rational functions on Lie(T).
This term is

L (Ty(CO) 0 Ty(Gfß )] .

yEcn nCß :oE Edge(f)'ß~Edge(r)

vVe will COUlpute corrcsponding integrals over j\.1f in the next subsection. Ac­

tually, we will con1pute SOlue integrals e>Ver J\lto,k such that the integral ove!' M
r

\vill be equal to their product.
For an arbitrary graph, we elefine a flag as an edge cndowed \vith an orientation

(an a1'row). V\Te denote it by a pair (vertex, cclge) of adjacent cells, where the vertex
is the sourse of the arrow on thc eclge. In general, this notation is alubiguous for
graphs with sin1ple loops. Neverthcless, wc will use it, because all graphs in our
COll1putations will be trees.

Notation. for a fiag F = (v, 0') of r 'Wc dcnote by tu F expreL~~'iion (A fu - Afu )Ido

'Where tl E Ve7't(r),1L =1= v is the second 'uertex 0/ the edge 0'.

vVe cOllsider W F as a linear finction on Lie(T). The geo111etric lneaning of tu F

is the following: it is the character of the action of T on the tangent space to Co
at the point Cv U Co. The flag F = (v, 0') has a canonical dual F = ('ll, 0') anel
\veights of dual flags are related as w F = -wF.

Dur nearest goal is the cOluputation of the contribution of [A(ab~] in tenns of
..\A

WF·

\
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3.3.2. Intersection theory on Atfo,k.
In this subseetion k is an arbitrary integer bigger than, or equal to 3. Let

Wi, i = 1, ... ,k be a sequence of fon1lal variables.
vVe cOlnpute in this subsectioll the following integral:

k

[(WI, ... ,wd :=J g(w; + Cl~Tx;(C)))
Mo,k

Recall that MO,k = Atfo,k(point,O) denotes the 11loduli space of stahle curves
(C;Xl, ... ,Xk) of genus zero with 11larked points.

The value of the integral I is a rational symllletric function in variables Wj. 'Ve
ean expand it as a finite Laurent series:

k

I(Wl," . 1 Wk) = L IIw;di
-l (7d 1 ••• Td,l:)O 1

d 1 , ... ,d",2:':o:L dj=k-3 ;=1

where, following '~Titten [vV] we denote by (Td 1 ••• 7dk)0 the rational constant

The generating function for these nUlllbers anel analogous llUl1lbers for lügher
genera was predicted in [W] ancl eonlputecl rigorously in [r(]. The result is quite
eonlplicated. However, for genus zero case the fornullas for intersection lltunbers
are very silnple. Physicists new it already for a long thne.

(k-3)!
Lenul1a. (7d 1 ••• Td",)O = d1! ... d,l:! .

Proof: intersection numbers for MO,k are uniquely clefined by the following
properties (sec [W]):

(1) (707070) 0 = 1,
(2) (7d 1 ••• 7dlJo is invariant nucler penllutations of dj 1

(3) if d1 = 0 then

(7d 1 .•. Tdll)O = L (7d2' •• 7dj -1 ... Tdk)O .

j2:':2:dj 2:':1

(k-3)!One ean check easily that - satisfies a11 the conditions above.d 1 ! ... d",! o

k

Corollary. I(wl, ... , lVk) = IIw;1 X

i=l
(t wil) k-3 .

1=1
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3.3.3. Contribution of JVab i'!..
M

The space M
f

is isolll0rphic to the proeluct of MO,v(d(v) over vertices v E V c1·t(f)
such that their valency val(v) ;= #{fiags (v, er)} is at least 3. (Recall that we oluit
the action of Aut(f) tenlporarily).

The contribution of

L [Ty(C Q

) (9 Ty(Cß)]

yECO nCß :O'EEdge(f) ,ß1:.Edge(f)

in the nlultiplicative fOrIn is equal to

( ( )

V(l[(V)_3)

rr rr -1 '""" -1'W F ~ Wji"

vEVert(f), val(v)2::3 flags F=(v,n) Hags F;:;:(v,n)

This fonnula follows fronl 3.3.2 anel the fact that Ty ( CO') is trivial as a line bunelle
and T acts triviallyon Ty ( Cß).

Tenns
L [Ty(GfO') (9 Ty(Cß)]

yEG'a nG'ß :O'~ß;a,ßEEdge(r)

correspond to vertices of f of valency 2. Their contribution is

rr (W FI (v) + W F2 (v)) -I ,

vEVert(f):val( v)=2

where Fi(v), i - 1,2 are bvo Rags containing v. Note that one can rewrite this
expreSSIon as

The contribution of ternlS

L [HO(CCt, Tco)]
C'tEEdge(f)

in equivariant j(-group is equal to

L ([-WP(C't)] + [0] + [wP(O')])

aEEdge(f)

where F (Q') is any of two Rags con t aining cclge Q'. Wc rewri te this as

- L [WF]
flags F

L [0].
aE Edge(I')
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The contribution of

yEC" nCß :a#ß,O'E V ert( r)

we rewrite as

L [tOF].
Hags F=(v,O'):val(v)'2:2

Hence, the contribution of last two tenns in the fonnula for Arab~ is equal to
A1:

Rags F=( vla):val( v)=l

L [0].
aE Edge(r)

Let us farget for a 11101nent about the SUlll of [0] over edges. Then the contribution
above can be expressecl in the Inultiplicative fonn as the product of 10 F aver tails

(i.e. flags F = (v,a) with val(v) = 1). "Ve replace 'WF by (WF)-l ((1OF)-1)-2 and
note t.hat the exponent -2 is cqual to val(v) - 3 again.

Conclusioli: the contribution of

Ar(&b~ ­
M

oEEdge(r)

in the multiplicative fonu is equal to

[0]

( ( )

val(l!)-3)

rr rr -1 '""'" -1W p ~ W F
vEVert(r) Hags F=(vlo) Hags F=(v,a)

3.3.4. Contribution of [HO(C, j*(Tpn ))].
The space of global sections of the vector bundle j*(Tpn) is cqual to thc subspace

of
E9 HO(CO, f*(Tpn))

aEEdgc(f)

given by the conclitioll that the values of sections at each vcrtex v will be the SaIue
for all edges Cl' acljacent to v. Ivlore prcciscly, we havc thc follo\ving short exact

sequence of equivariant vect.or bundles on ;\1 r:

0-+ HO(C,j*(Tpn)) --t E9 HO(CO,j*(Tpn)) -+ E9 (TpJtJpn 0 CVa1(V)-1) --t 0
oE Edge(f) vE V crt(r)

First, we stuely contributions of [HO( Co, f*.(Tpn )]. Eclge 0' passes through two
points p~, pj E (P n)T. In SOlne coordinate z = (Zl : Z2) Oll pl ~ Glo, the luap j is
given by
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Here ){k, k = 1, n + 1 are hOlnogeneous coordinates on pn. We have a short
exact sequence of vector bundles on Iij

o-t 7[ .. -t Tpn -t )V,.. -t 0
I] I]

inclucing a corresponding exact sequence of vector bundles on )\.tt r .
One cau check using this exact sequcnce that the following elelnents fonn a base

of Ho(C n , f*(Tpn )):

(1) za "Yi8j 8~){i, -da:::; a :::; den
(2) Za){i8j8Xk: -rla:::;a::;O, kf:.i,j,
(3) zn ..Y j 8j8Xk , 0::; a:::; da, k: f:. i,j.

Note that there is exactly one base elelnent (a. = 0 in the first group) on which
T acts trivially. Thus, in all we have #Edge(f) tenns [OJ cancellccl with analogous
tenns in 3.3.3.

Homogenei ty clegree of zunder thc action of T is cqual to tu F = (A i - Aj ) j cln ,

where F is a flag of f containing 0' anel a vertex projecting to Pi. Degree of
coordinate X k is equal to Ak .

The contribution of TI)!tJ P" (9 cval(v)-l where Iv = i is equal to

(1 - val(v)) L [Ai - Aj] ,
j:j:f;i

because vectors X i 8j8..Yj , j f:. i fonn a base of Tpjp n
.

Putting a11 terms together we get the fOrll1Ula for the contribution of [HO (CI, f* (Tpn ))]+
#Edge(r)[O] in the Inultip1icative fornl:

x rr
vEVert(r)

3.3.5. Marked points.
Thc on1y' resu1t of the introducing of Inarked points is that Olle has to rep1ace

the exponent (val(v) - 3) in the last fonnula. in 3.3.3 by (val(v) - 3 + #Sv). \~Te

leave a11 checking to the reacler.
It is reasonahle to change a. little bit graphs associatecl with connected COInpo­

nents of the fixed point set. Nalnely, we replace any graph r with specifications as
in 3.2 by a new graph r. Vertices of rare vcrtices of r together with a k-clelnent
set T = Tai I (r) (tails of r). Elenlents of T are nunlbered froIn 1 to k, tail t has
nUInber i(t). Eclges of f are eclges of r tagether with one edge O't for each tail t E T
connecting t with the unique vertex v of r such that t E Sv. Also we define ft to
be equal fv for t E Sv. V-le pose dat to be equa1 to 0 for all t E T. Then, for any
flag F of r containing a tail as an eeIge, fOfllla11y tu];] = O.

-r -r
In tohe sequel we will denote)\.tt by)\.tt .
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3.3.6. Contributions of vector bundles in exanlples.
As wc alreacly nlclüionccl in 3.3.1, in all three cxalnplcs fronl the scction 2 vector

bundles arising on Jvto,.(pn, d)r split into direct sunlS of trivial bundles twisted
with charactcrs of T. Thus, their contributions will be rational functions on L1:e(T)
depeneling on r. COlnputation of these contributions is easier than that of the
preVlOUS oues.

In the exalnple 2.1 thc contribution of line bunclles O( 1)i is

II (A )2#5..,
. /.., ,

vEVed(r)

01', using the I1l0dified graph r,

II AJt
tE Tail (r)

In thc exalnple 2.2 thc contribution of Cd is

Here we use the short exact sequence (Ollli tt.ing zcroes fronl thc left anel thc right ):

HO(C,f*(O(5))) ---+ EB HO(C a ,f*(O(5))) ---+ EB (O(5)PJ..,)®C V
(d(V)-I)

oEEdge(r) vE F ert(r)

In the exaluple 2.3 the contribution of Fd is

II (II (dA/tit + bAftl2J) X II (_Af..,)val(v)-I.
oE Edge(r):( vI l v2) - vertices of 0 a,b <0 :a+b;;;; I-da vE F ed (r)

It follows fronl the short exact scquence

EB (0 (-1)P! v ) '9 C va I ( v) - 1) ---+ H 1
( C, f* (0 (- i ))) ---+ EB H I(Gf er, f *(0 (-1 )))

vEFert(r) o:EEdge(r)

3.4. Final SUlll.

In each exalnple thc integral over thc corrcsponding nl0duli space of stable Inaps
is cqual to the SUln over equivalcnce classes of appropriate graphs of

1
-----::.......-( fonnula froln 3.3.3)( fonnula froln 3.3.4)( fonnula frolll 3.3.6) .
#Aut(r)

The last fonnula froln 3.3.3 is corrected in the first exanlple according to 3.3.5.
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4. CRITICAL VALUES.

4.1. Feynlllan rules and sUl1lluation over trees.
Here we will elescribe a genera.l fonnula weIl known in physics cOl1lbinatorics

which gives values of certian infinite SUllIS over trees. For an additional infonnation'
on sumluation over trees anel graphs one can look to the chapter 7 in [ID].

The initial elata consist of a finite 01' countable set of indices .4, synunetric non­
degenerate Inatrix 9 = (gab), gab = gba, 0., b E A, anel an infinite sequence of
synlllletric tensors ,vith lower indices:

Here coefficients of tensor g*, C* are cOlnplcx nUlubers 01' elelnents of a topological
field of characteristic zero (for exarnple, a field of fonnal power series in auxilary
variables with coefficients in C). \Ve aSSlune that a11 illifnite series appearing later
are convergent in an appropriate topology.

These data defines a function on thc set of equivalencc classes of finite graphs.
Let f be a graph and Flags(f) be the set of its Rags. The weight of thc graph is
defined as

w(f) := L
maps

f: Flag8(f) --4 A

rr gf(Fdf(F'J)

nEEdge(f)
F I ,F2 - lIags
containing Cl

rr Cf(Fd ... f(Pd
vE V erle r)

F i , ... ,F/c - Hags
containing v

Note that in all our exalnples one cau choose an appropriate set of indices anel

tensors g, C such that the sunl of contributions of connectecl conlponents of M
f

corresponding to any abstract tree (without specifications da, Iv, Sv) will be equal
to the weight of this tree. Vle will show in 4.1.1 how to choose A, g, and C in a11
our exalnples.

Define the "tree-Ievel partition function" (just an eleruent of the ground field)
by formula

ztrce := 1L #Aut(f) w(r)
r: cquivnlcnce classes or
finite nonempty t.rces r

Let us introduce auxilary fonnal variables <Pa, a E .4 and aseries

S( rP.) := - L gab~a rPb +L J.~! L Ca lak rPa I ... rPa k
a,bEA 1>20 aI, ... ,llkEA

Here gab denote luatrix coefficients of thc inverse luatrix (g )-1 :

Later it will be convcnient to refer to the first sunImand in the forn1ttla for S
as to "kinetic" part anel to the second sUlluuand as to the "potentiaP' part of the
"action" functional S, in analogy with the classical lllechanics.
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Fornlula. Z tree = Gf1'it S( 1J*), wherc thc l.h.!3. denote!3 the critical 'Ual1Le ollunc­
tion S.

This formula follows fronl a l1I0re general fonnula

:. log (CdetC271"1i9))-1/2 JeHf'-l TI d</>a) = L
a EA I: cquivalence classes of

cOllllected IIOllempty graphs r

n,- ",(r)

#Au,t(r) w(r) ,

t.....

where both sieles of the fonnula are considered as fornul1 power series expansions
at Ii. -t O.

The last formula is the usual expansion of integrals over Feynrnan diagranIs.
The argUl1lent ahove is valid only in the case of coefficients wit.h values in C

when A is finite, g* is real-valued anel positive-definite, C* are sufficiently SIllall
anel the integral above is convergent .

A direct proof of the fonllula ztree = Crit S( 1J*) can be obtained by a fonnal
inversion of the lllap (1J*) J---t dSI(4).) anel evaluating S to the critical point.

4.1.1. Action functionals in three exalnples.
Let us first describe the situation without 111arkeel points on curves (anel tails on

graphs).
\~Te denote variables by 1Jij,d where 'i i= j, i, j E {I, .. " 11. + I}, d '2: 1. Hence,

the set of indices is

A= ({1, ... ,n+1}2\ diagonal) xN.

For any graph r, we put on each flag F = (v, 0') the COlllposite index ij, d ; where
cl = da, i = Iv, j = lu (here ,as usual, 1t elenotes thc second vertex of 0').

Potential pa:rt of the action is standard:

where Vij,d := d/(Ai - Aj) is equal to WF] for corresponeling Hags F anel

{L i = II (,\ i - ,\ j) ,
j:j#i

and sOllle constant Ci depending on the situation. Potential part consists of the
contribution of Arab~ divided by the procluct of W FI anel nIultiplieel by one factor

Jvt
Pi in thc contribution of [HO(C, j*(Tpn ))], anel Ci cOllling fraIlI the vector bunclle
on M. V'Ve will find another fonnula for spot(</1*) in the next subsection.

Coefficients gij,dji' j' ,d' will be non-zero only for 'i = j', j = i', d = d', This
garantees that graphs with indices on flags which have non-zero weight will bc in
one-to-one correspondence with graphs with specifications of the type introelucecl
in 3.2. vVe will denote gij,djji,d siluply by gij,d. Inversion of the luatrix 9 is reclucecl
to the inversions of nunIhers gij,d .

I
1
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Contribution of (HO (C', f*(Tpn ))] in gij,cI (with rernovcd factor ~li anel aeldeel
factors w Ft

) is equal to

2d-2(dl)2 -) -1
-W F . ~li Pj

The contribution of Cd in thc exalnple 2.2 is equal to

(25AjAj)-t II (aAj + bAj)
a,b2:0:a+b=5d

Constant Ci in thc potential part is 5Ai.

In the exaInple 2.3, the contribution of Fd is equal to

AjAj II (aAi+bAj)
a,b<O:a+b=l-d

Constant Ci in the potential part is (- Ad-] .
In both exanlples 2.2 and 2.3, we tnnltiply gij,d by zd, where z is a new fonnal

variable. Thus the resulting critical value will be aseries in z with coefficients equal
to J\Td anel Md respectivcly.

In the exaulple 2.1, we adel variables Ji, 1:S i :s; n + 1 = 3. Nlatrix 9 is the
salne as above for indices frolu the set A (no contributions fronl vector bundles),
ancl

gi;ij,d -- 0 gi: j -- c.. \ 2--, -- v,) Ai .

Here bij is the I(ronecker SY111bo1. Thc potential part is equal to

As before, we Inultiply 111atrix coeficients of 9 by extra variables:

Exponents of variables Zt, Z2 count the total elegree of curves anel the Illunber of
Inarkecl points respectively. Then in the resulting S1.Ull over trees consiclered as a
series in Zl, z; we have to extract monolnials of the form zrz~d-I. It can be done
by a contour integration.
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4.2. Potential part of the action functional.
spot( 4>*) COlnes essentially frolll the intersectioll ntllnbcrs of JV(O,k.

In the sequel of this subsection we use SOUle auxilary set of indices land two
sequences of variables Vi, <Pi, i E I. Later we will set Vi := 10;1. In the notations
of the previous subsectioll, we considcr ouly a sUllllnand of spot correspolleling to
a fixed point p. E po anel Olllit lnultiples J-l., eil<'

Define a fUllctioll S by the fonnula

Theorenl. S(v*, <P*) = erd B(~)) where

Note that in the final fOrIll we will have 11. + 1 distinct variables ~i corresponding
to different parts of spot.

The rest of this subsection will be devoted to the proof of tbc tbeorenl.
First of a11, we disillantie the definition of Sinto simple pieces, doing opposite

to what was done in 3.3.3. NIay be it is not the nl0st econolnical \vay to prove Dur
fonnula.

Denote by Sk the k-th sUllulland in the definition of S. For k ~ 3, we have:

(k - 3)1
= -'------'--

k!
it, ... ,ikEI

Let us introduce lllore notations:

d 00

Zd := L cPi d1' Z:= L Zd~d-1 = ~-1 L ePi eX]J(~vd
iEI d=O iEI

We can rewrite thc formula for Sk above as

- (h~ - 3)1 c' ff Zk
- h;! oe, e- 3 ,

Thus,
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-- Z3 Z4 (1 - Z)2 1 3 2 Z
\lJ(Z) := + +... = log-- + -2 - - .

1·2·3 2·3·4 2 1-Z 4 2

-- (J Z)2
We can replaee W(Z) by ':IJ (Z) = -2 log 1~z' beeause we take the eoeffieient

of the lnonolnial ~-3 anel Z has pole of the first order at ~ = o.

1 f (1 - 2)2 1 2
Coef ff.- 3 (\lJ(Z)) = 2Jri 2 log 1 _ 2 ~ d~ =

If.)=l

= 2~i f .4'(0 log 1 _ ~(O dC
1f.1=1

where regular function A(~) is defined by eonditions

Now we ean integrate by parts:

Coeff~-3 (1J1( Z)) = - 2~i f .4(0 (log 1 _ ~(O)' dE. =
1€1=1

1. f A(0 Z' (E.l )dE. = l'es~o (A(E.) d log(1 - Z(E.))) = .4(E.o) .
2Jrl 1 - Z ~

1f.1=1

Here ~o is the root of equation Z(e) = 1. Note that by the definition of A(e) its
derivative at ~o vanishes. Henec,

Coefff.-3 (\lJ(Z)) = C1"lt A(~).

vVe ean COlllPUtC A(e) explieitly:

After adcling to the fonllula above two tenns Sl(V*, 4>*) anel S2(V*l 4>*) which da
not c1epend on ewe abtail1 B(~). D

1
~.
"1
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4.2.1. Effect of Inarked points.
vVe need a generalization of previolls cOlnputations to thc case v.'hen SOI11e Vi are

equal to zero (for curves with lnarkecl points).
Now we have two groups of indices I, .1, anel variables Vi, <Pi, i E 1~ and ~j: j E

J. Potential S(V*, <P*, ~ j) is elefined by thc fonnula

One ean rewrite it as

L ,,~! L (Vi, + ... + Vi, ),-3 ePi, ... ePi, exp (~(Vi, + ... + Vi,)) ,
k~:1 i1,,,·,i k EI

where ~ = L ~j. Thus, we ean ase previous fonnulas froln 4.2 with <Pi replacecl
jEJ

by <Pi e:cp(~ vd.

4.3. The structure of the resulting functional.
Note that we have the following general scheIne in all extunples: the SUUl over

trees is equal to thc extrelnal values of a function in infinitely Inany variables <P*
anel finitely Inany variables e. and ~* (variables ,,\ are consielerecl as constant and
the reslllt shoulcl not clepenel on theIn). The resulting functional is q'lladratic in
<p. Thus, we can, in principle, find its extrelnal value by solving a systeul of linear
equations. This systenl is infinite anel it is not easy to salve it. At thc nloment we
dou't know how ta proceeel.

4.4. Exalnples.
\~Te will not wri te the fornllila for the exalnple 2.1.
It is convenient to rescale variables <P. as

</>ij,d ~ <Pij,d eJ.:p (<PiVij,cl) .

For 2.2 (curves on quintics) the functional is
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Here l/i elenotes Tl. . ~tl. _,\. ). The extrenlunl is taken over variables rP* anel ~*.
):) #1 I )

The result does not clepencl on A* anel is equal (eonjeeturally) to the fllnetion F( t)
fronl 2.2 rninus 5t 3 /6.

If \ve speeify A to be eqllal to roots of 1: Aj:= e:cp(21rHj /5) , then by
hornogeneity at the cxtrenlal point we have ~j = BAj for sorne B = B(t). The last
slunrnand in thc fonnula for the funetional is equal to 533 /6. Note that :=: i5 in a
sense opposite to t beeause in the first tenn we have the exponent

exp (-(t + 3)d) .

In general we expeet that the eubie tenn fron1 the Iuain fonuula of 4.2 eorre­
sponds to the eontribution of Iuaps of degree zero in the potential (see [I(Nl]).

For 2.3 (InuItipie coverings), we wi 11 wri te only a fonnula for the funetional with
fixeel A-s: Al = -A2 = 1. After SOl1lC sirnplifieations und changings of notations we
get t.he following fOrIllUla:

Indices k,l take values in the set {1,3,5, ... }. Conjecturally, the eritieal value of
this funetional (with fixed t) is cqual to L'i3 (ei).

5. GEN8RALIZATIONS.

5.1. Higher genera.
V\Te elon't know at the 11lo111ent how to treat lligher genus curves in the san1e

way as we do it \vith rational eurves. One basic problen1 i8 that the Inocluli spaee
of stahle l11aps is never Sll100th for higher genus. Nlay be, this is not a serious
obstruetion if one adopts the general phylosophy of hidden Sllloothness presentecl
in 1.4, anel one ean apply Bott's fonnula ignoring singularities. If all these will
work, we will use interseetion nurnbers on M U,k including nlunbers eon1puted in
[K] anel, Inay be, SOlllething else.

We hope, that thc generating function over a11 genera ("string pa,rtition fune­
tion") will be equal to a sunl over graphs anel reduces finally to a Feynlnan integral
with auxilary Iuatrices an10ng ficlds (as in [K]). Also, we hope that a trick from 4.2
will work in quantuIll ease toD, reelucing the final integral to a finite-dinlensional
one via an eliluination of free fielcls.

The sil11plest ease froln which it is reasonable to start is the case of the projective
plane. How Inany curves of genus 9 anel degree d in p2 pass through gcneric 3d-l+g
points?

5.2. Flag spaces and toric varieties.
All our con1putational scheIlle works well for any generalizecl flag space G/ P,

where G is a seIlli-silllple algebraie group anel P is a parabolie subgroup.
All we need is that the Inocluli spaces of genus zero stable 11laps are Sl1100th anel

the Cartan subgroup T has isolateel fixed points anel isolated I-dimensional orbits
on G/P.
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The first problein is to cOlnpute genus zero Grolnov- \~Titten invariants on flag
varieties. As was explained in [KNl], heuristic argulnents of [GI(] don't give the
whole infonnation encodecl in the potential.

110cluli spaces of genus zero stable luaps to a toric variety are not snl00th in
general. Neverthcless, it is possible that the Bott fonuula can be nl0difieel anel
applicable again.

5.3. COlllplete intersections.
\Ve can treat any sluooth conlplete intersection of hypersurfaces in projective

space in the salne manner as quintic 3-folcls. In generalizations to other varieties
enclowed with a torus action, we shoulcl consicler equivariant veetor bundles gener­
ated by global sections. If we have realizecl V as 30 zero set of a section of such a
veetor bUlldle transversal to zero section, then 3011 the Inachinery applies.

5.4. Faillilies.
Let us consider counting probleills of genus zero curves on j(3-surfaces. The

first inlprcssion is that it should be trivial, because there are no non-trivial curves
on non-algebraic I(ähler surfaces anel Groillov-vVitten dasses are invariant under
clefonnations.

Let HS consieler now a I-paralneter holoinorphic faluily of j(3-surfaces St such
that So is algebraic and, for almost all t, St is not algebraic. The union S := Ut St
is a non-colnpact 3-diluensional cOlnplex variety with the trivial first. Chern dass.
Hence, we expect that cOlupact rational curves on a generic slna11 ahnost-conlplex
perturbation of S are isolateel anel there will be finitely Inany of theIn sitting on So
in the lünit as the perturbation tends to zero. D. Morrison (private conullunication)
proposed to consider a particular I-paran1eter defonnation of j(3-surfaces, naillely,
the twistor fanüly of I(ähler structures with a fixed Ricci-flat 11letric.

It seClllS that consiclering Groillov-\Vitten invariants of total spaccs of faluilies
is rcasonable only for genus zero curves, otherwisc parasitic contributions to thc
virtual tangent bundle appeal'.

For V being a generic quartic surface in p3 the Picarcl group Pi.c(17 ) ~ Z is
generated by the plane section. Thus, elegrces of curves on V tue divisible by 4.
The diluension of the spaee of eurves of elegree 4d on V is equal to 2d2 + 1 anel thc
genus of the generic curve of elegree 4d is also equal to 2d2 + 1. Hence, we cxpect a.

finite number of rational curves of elegree 4d with 2(P + 1 nodes. \Ve beleive that
these numbers fit into the picture ahovc, bceause generic quartic has a. canonieal
l-st order non-algcbraic defonuation. Unfortunately, we were not able to define
nUlubers of rational curves on quartics following pattern of section 2. Presumably,
there should be a Mirror relation between these nUlnbers and a variation of Hodge
structures with one of periods cqual to

j( ) = '""" (4n)! 11

z ~ ( 1)4 Z71,.
n>O
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