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INTRODUCTION

This paper contains an attempt to formulate rigorously and to check predictions
in enumerative geometry of curves following from Mirror Symmetry.

In a sense, we almost solved both problems. There are still certain gaps in
foundations. Nevertheless, we obtain “closed” formulas for generating functions in
topological sigma-model for a wide class of manifolds, covering many Calabi-Yau
and Fano varieties. We reduced Mirror Symmetry in a basic example to certain
complicated but explicit identity. We have made several computer checks. All
results were as expected. In particular, we computed the “physical” number of
rational curves of degree 4 on a quintic 3-folds (during 5 minutes on Sun), which
was out of reach of previuos algebro-geometric methods.

The text consists of 5 parts. The first part contains the definition of stable
maps used through all the paper. We establish several basic properties of moduli
spaces of stable maps. Also, we give an outline of a contsruction of Gromov-Witten
invariants for all algebraic projective or closed symplectic manifolds. For reader
who is interested mainly in computations it is enough to look through 1.1 and to
the statements of theorems in 1.3.1-1.3.2.

In section 2 we describe few examples of counting problems in enumerative ge-
ometry of curves. One of examples is rational curves on quintics. We give a simple
algebro-geometric definition for the number of curves without assuming the validity
of the Clemens conjecture or using symplectic methods.

The main body of computations is contained in section 3. Our strategy here
15 quite standard: we reduce problems to questions concerning Chern classes on a
space of rational curves lying in projective spaces (A. Altman - S. Kleiman, S. Katz),
and then use Bott’s residue formula for the action of the group of diagonal matrices
(G. Ellingsrud and S. A. Strgmme). As a result we get in all our examples certain
sums over trees.

In section 4 we develop a general scheme for summation over trees. By Feyn-
man rules we know that such a sum should be equal to the critical value of some
functional. Using a trick we obtain an equivalent functional which is a quadratic
polynomial in infinitely many variables with coefficients depending on a finite num-
ber of variables. Thus, all our counting problems are reduced to the inversion of
certain explicit square matrices with coeffcients of hypergeometric kind. This last
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step we were not able to accomplish. Presumably, there is here a hidden structure
of an integrable system and Sato’s grassmanians.

In section 5 we describe extensions of our computation scheme to other enumer-
ative problems, including Calabi-Yau and Fano complete intersections (of arbitrary
dimension) in projective spaces, toric varicties and generalized flag varieties.

1. STABLE MAPS.

1.1. Definition.
Let V be a scheme of finite type over a field (or a smooth scheme, or a complex
manifold, or an almost complex manifold).

Definition. Stable map is a structure (C;zy,...,2k; f) consisting of a connected
compact reduced curve C with k > 0 peirwise distinct marked non-singular points
z; and at most ordinary double singular points, and a map f : C — V having no

non-trivigl first order infinitestmal automorphisms, identical on V and zq,..., 2
(stability).

The condition of stability means that every irreducible component of C of genus 0
(resp. 1) which maps to a point must have at least 3 (resp. 1) special (i.e. marked
or singular) points on its normalization. Also, it means that the automorphism
group of (C;zy,...,z¢; f) is finite.

For a curve C with at most ordinary double singular points its arithmetic genus
pa(C) := dim H'(C,O) can be computed from the formula

2 - 2p.(C) = x(C\ C*™) .

Let 8 € H%(V,Z) be a homology class. (In algebro-geometric situation 8 should
be an element of the group of 1-dimensional cycles modulo homological equivalence).

Notation. M, 1(V,B) denotes the modul stack of stable maps to V of curves of
arithmetic genus ¢ > 0 with k > 0 marked points such that f,[C] = 5.

More precisely, in algebro-geometric setting one can define a family of flat maps
to V as a flat proper morphism C — S to a scheme S of finite type over the ground
field and a map f : C — V such that its restriction to each geometric fiber of C
over S is a stable map.

In the setting of almost complex manifolds we consider M, x(V, 3) as a set of
equivalence classes of stable maps endowed with a natural topology (see [P]) and
an orbispace structure (see the next subsection).

Remark. For many reasons one has to consider curves not in a fixed manifold V
but in manifolds V) varying in families. We have not developed the corresponding
formalism yet. In subsection 5.4 we describe a simple example of algebraic I'3-
surfaces which shows the necessity of families. It is also clear from our example
that one can consider non-compact V as well.

1.2. Orbispaces.
The notion of orbispace introduced here is a topological counterpart of

(1) algebraic stacks (from algebraic geometry), and
(2) orbifolds, or V-manifolds (from differential topology).
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We define orbispace as a small topological category C (i.e. a category for which
ObC and MorC carry topological structures) satisfying following axioms.

A.l. C is a groupoid (every morphism is invertible).

A.2. For each X,Y € ObC the set of morphisms Morc(X,Y) is finite.

A.3. Two maps from Mor C to Ob (), assigning to a morphism its source and
its target respectively, are locally homeomorphisms (étale maps).

Functors between orbispaces which are continous, locally homeomorphisms and
mmduce equivalence of categories we can call equivalences between orbispaces.

The set | S| of equivalence classes of objects of C has natural induced topology.
We can associate with each element [X] € |S| an equivalence class (modulo interior
automorphisms) of finite groups, Aut(X).

1.3. Properties of moduli spaces of stable maps.

The notion of a stable map is a mixture of the notion of a stable curve from
algebraic geometry and of the notion of a cusp-curve from symplectic topology.
By definition from [P], cusp-curve is a holomorphic map f from a compact (not
necessarily connected) smooth complex curve C to an ahnost—com]zlex manifold V
and a finite collection S of non-intersecting 2-element subsets of C' such that, for
each § € §, its image f(S) is a l-element set. Glueing points from pairs S € §
together we obtain a curve C with at most ordinary double singular points and a
map f: C — V. P. Pansu claimed in [P] that if V' is compact and endowed with a
riemannian metric, then the space of equivalence classes of cusp-curves of bounded
genus and area is compact and Hausdorfl. His claim is wrong, exactly because the
condition of stability on components which are mapped to a point was forgotten! It
seems that, after appropriate corrections, the proof from [P] shows that the moduli
space of stable maps of bounded genus and area is compact and Hausdorff.

Recall that in symplectic topology one considers usually almost-complex struc-
tures on symplectic manifolds compatible i1 an evident sense with the symplectic
form. Such a structure defines a Riemannian metric on the underlying manifold,
and the riemannian area of each holomorphic curve coincides with its symplectic
area. The latter is a pure homological invariant. Hence ﬂg,k(V ,3) 1s compact and
Hausdorff in such a situation.

In the next subsection, we prove analogous properties of M, £(V, 8) in algebro-
geometric setting.

In 1.3.2, we describe a situation in which the moduli space of stable maps is
smooth (as a stack).

1.3.1. Algebraicity and properness.

Theorem. LetV be a projective scheme of finite type over a field. Then M, 1(V, )
18 an algebraic proper stack of finite type.

The proof uses results from [DM]. We refere to [DM] for definitions concerning
properties of stacks, and for other technical details as well.

We want to realize M, .(V, ) as a quotient stack of a scheme of finite type
modulo étale equivalence relation.

From the boundness of the Hilbert scheme of 1-dimensional subschemes of V' it
follows that for (C; z., #) with fixed p,(C) and 8, the number of singular points on
C' and the number of irreducible components of C' are bounded.
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In the next step, we will realize M, ,(V, B) as a quotient space of a space of maps
of stable curves into V. For this we can choose a finite collection of hypersurfaces
D; in V such that each non-stable component of any curve C from M, ,(V, B)
intersects transversally some of D; at least at three non-special points. Then we
can consider such intersection points as new marked points on C. Finally, we can
glue a fixed smooth curve of genus bigger than 0 with one marked point to each
marked point on C obtaining a stable curve of a bounded genus. We map each
glued component into a point of V.

This way our moduli space is realized locally in étale topology as a closed sub-
space of the space of maps from stable curves to V' with a fixed image of the funda-
mental class. Such space can be realized inside the Hilbert scheme of 1-dimensional
subschemes of the product of the universal curve times V' via graphs of maps. Thus,
M, .(V, B) is an algebraic stack of finite type.

Separatedness and properness of moduli of stable maps follow from corresponding
properties of V. Recall that the property of properness implies separatedness by
definition.

If we have a family of stable maps C/I, f : C — V over a discrete valuation
field X with the ring of integers Oy, then there exists a finite extension L/K and
a family of stable curves over Oy, extending the pull-back of C/K. First of all, we
can construct a proper two-dimensional scheme S over Spec(Oy) which maps to
V by taking the closure of the graph of f into the product of ¥V and an arbitrary
model of C over Oy It follows from well-known facts about degenerations of curves
that there exists such an extension L/ and a curve C’' over O}, which maps to V
with the property that the geometric fiber of C' over the closed point of Spec(Oy,)
1s a connected reduced curve with pairwise distinct marked non-singular points
and at most ordinary double singular points. We can contract consecutively non-
stable components of this geometric fiber and obtain a stable map. This proves the
existence part of the valuative criterion of properness.

Moreover, in such a situation components which we contract all have genus zero
and form a subforest in the degeneration graph of the curve. One can see easily
that this subforest does not depend on the order in which we contract components.
From this uniqueness and separatedness of V' one can conclude that the moduli
stack of stable maps is separated. Hence, we have also the uniqueness part of the
valuative criterion of properness. 0O

1.3.2. Smoothness.

Theorem. Let V be a smooth proper scheme of finite type over a field which is
convez in the sense of [KM]. Then the stack My 1(V,B) is smooth, and the com-

plement to the open subset My ,(V, B) consisting of smooth curves 1s a divisor with
normal crossings.

Recall that convex manifolds V' (definition 2.4.2 in [KM]) are defined as a mani-
folds with vanishing H'(C, f*7Tv) for any stable map of degree zero. It is enough to
check only for smooth curves. At the moment we now only one group of examples,
namely, homogeneous projective varieties. In sections 2-4 we will consider only
projective spaces.

Stable maps have the following important property. Let us consider a flat proper
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morphism C — § , of relative dimension 1 to a scheme S of finite type over the
ground field, sections z;, + =1,...,kof Cover §, and amap f :C — V. We claim
that the set of points p of S such that the restriction of f to the geometric fiber of
C over p i1s a stable map, is an open subset of §. Hence, deformation theory of a
given stable map is equivalent to the deformation theory of it as of a map from a
compact (non-fixed) curve to V.

First of all, deformations of 1-st order of stable map (C';zy,...,zk; f) which do
not change the structure of singularities of C' are given by

H'Y(C,T¢ — f*Tv),

where T4 denotes the sheaf of vector fields on C vanishing at points z;, 1 = 1,..., k.
We put 7/ in the degree 0 and f*7y in the degree 1. The hyper-cohomology group
in degree 0 vanishes by the stability condition.

Denote by T the tangent space to _/\;I_g,k(lf, B) at the point (C;zy1,...,z4; f). One
can show that we have the following exact sequence:

0—H'(C,F)>T— P T,CRT;C— HC,F*),
yGCliny

where the fourth term comes from the deformations of C resolving double points
y. Tangent spaces to two branches of C at y are denoted by T,C and T;C (in
arbitrary order); F* denotes the complex of sheaves of length 2 used above.

We are ready now for the proof of the smoothness criterium. For arbitrary map
f from a curve C of arithmetic genus zero to convex V we have H}(C, f*Ty) = 0.
Hence H?(C, F*) = 0, and the dimension of tangent space to ﬂo,k(V, B) is constant.
One can elaborate the argument above for maps parametrized by spectra of Artin
algebras and show that there is no obstructions for the deformation theory. Also,
we see that maps from singular curves form a divisor with normal crossings. O

From the proven properties of My (V, #) one can easily deduce the tree level
system of Gromov-Witten invariants on convex varieties (see [KM]).

1.4. The structure of an intersection of manifolds.

The last theorem shows that the moduli space of stable maps to V' inherits
the property of smoothness of V in some cases. Here we are trying to define for
all smooth V certain structure on M, 1(V, ) which permits us to construct an
analogue of the fundamental class. We will do it in the setting of almost-complex
real-analytic manifolds and describe in 1.4.2 the situation in algebraic geometry.

Let Y7,Y, be two submanifolds in a manifold X (manifolds are real-analytic, or
complex, or algebraic). The intersection Z := ¥ N Y, in general is not smooth.
Nevertheless, we define its “virtual tangent bundle” [Tz]"*"* € K°(Z) by the formula

(7217 := [Tv)iz + [Tw) iz — [Tx)\z -

Also, if X|Y7,Y; are oriented then there is a canonical “virtual fundamental class”
[Z]"*"" with values in homology with closed support

HElosed(Z) = Hy(Z,2) .
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Here Z denotes one-point compactification of Z and Hy denotes d-th reduced ho-
mology group of a punctured space. Number d = dim(Y1) + dim(Y3) — dim(X) is
the virtual dimension of Z. More precisely, one can construct a fundamental class
in the complex bordism group with closed support Q¢/°°¢4(Z), defined analogously,
when X, Y7, Y, are almost-complex. The idea is obvious: Z is homotopy equivalent
to its sufficiently small tubular neighborhood UZ in X. In UZ one can perturbe
generically ¥7,Y, and obtain a transversal intersection. Mention, that in smooth
situation Z can have pathological topology and can be not homotopy equivalent
to any of tubular neighborhoods. It is plausible that one can define a cobordism
analogue of Borel-Moore homology and extend intersection theory to the smooth
case.

Singular space Z can have several representations as an intersection of germs at
Z of manifolds containing Z. For example, we can multiply X, Y7, Y3 locally by
X', Y], Y, where Y] intersect transversally Y7 in one point. Globally one can pass
from X,Y],Y; to the total spaces of vector bundles £¥,EY1, Y2 on corresponding
spaces endowed with embeddings

EN o &y, EyE 7.

Such pairs of representations we call stably equivalent.

If Z is intersection of several submanifolds ¥;, 1 < ¢ < n in X, then one can
represent Z as an intersection of two submanifolds:

Z~ (Y] x---xY,)N diagonal in X" .

Also, if we have two maps of manifolds Y; LN X, 1 = 1,2 then the fiber product
Z = Y] xx Y5 carries a structure of an intersection of two manifolds. It follows
from the identification of Z with the intersection in Y} X Y2 x X of graphs of f;
multipled by Y3_;.

Let space Z carry a system of representations of open subsets U; of Z as inter-
section of a manifolds endowed with a system of stable equivalence between models
for U; N U; arising from U; and U;. Such a system should be associative up to a
homotopy, homotopies between homotopies etc. Then we expect that Z has global
virtual tangent bundle and virtual fundamental class. In a sense, all this should
be a non-linear analogue of an element of K°(Z) represented locally as a formal
difference of two vector bundles.

Let us return to the moduli space of stable maps. We claim that it has a canonical
structure of an orbifoldic version of an intersection of almost-complex manifolds.

First of all, near each point (C; 1, ..., 2k; f) we will represent M, (V, #) as an
intersection of several infinite-dimensional Frechet submamifolds (forgetting tem-
porarily the presence of the finite group of automorphisms of the stable map
(C;z1,...,2k; ). Let us choose several closed non-intersecting simple parametrized
loops L; on the surface C' which divide it into pieces C; each of which is either a
smooth surface with a non-empty boundary and no marked points, or a smooth disc
with one marked point in the interior of the disc, or two discs with glued centers.

We consider as the first approximation to the ambient manifold X, the space X'
of smooth maps from [ L; into V' which are sufficiently close to f| 11 L:- This space
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as an infinite-dimensional almost complex manifold with the complex structure on
the tangent bundle induced pointwise from the complex structure on 7y.

For each piece C; of the surface C' we introduce the space Y] consisting of pairs
(J', f"), where J' is a complex structure on C; close to the initial one and f’' is a
J'-holomorphic map considered modulo diffeomorphisms of C; close to the identity.
For pieces C; which are two intersecting discs we add small flat deformations:

{(z,y): 2,y € C, 2y =0, 2| + |y| < 1}
deform to {(z,y): 2,y € C, zy =¢, |z|+ |y| £ 1}, |¢j < 1.

Spaces Yj’ are almost-complex and they are maped into X' by passing to the
restriction of maps to boundaries. Their fiber product over X' consists of stable
maps of curves close to the initial point endowed with parametrized loops. As usual,
one can pass to the quotient of all the picture modulo the action of the product over
loops L; of the “complexified diffeomorphism group of a circle”(= replacing curves
L; by close curves). This action is free exactly due to the condition of stability.
Finally, we can pass to the case of two submanifolds, as we already explained.

Thus, we will get germs of Frechet manifolds X and ¥;. The natural map of
tangent spaces

TYieTl.Y,—-T1T.X, z€ 2,

is Fredholm. In the next subsection we develope a technique producing in such a
situation finite-dimensional models.

Globally, we can cover Z = ﬂg,k(V,ﬁ) by finitely many open sets: and on
each of them we have an equivalence class of representations as intersections of
manifolds. It is almost clear that different representations on intersections of open
sets are equivalent modulo homotopy and higher homotopies between homotopies
on multiple intersections. Unfortunately, we don’t know how to formulate all this
precisely. We have tried to avoid choices and use a Dolbeaut-type resolvent. The
space Y7 in this case should be a space of real-analytic maps from complex surfaces
to V satisfying the same condition of stability as before. A natural candidate
for X will be the total space of a vector bundle on X arising from the Cauchy-
Riemann equation, Y2 will be a section of X as of a vector bundle. We have met an
unpleasant difficulty in considering deformations resolving double points. May be,
nevertheless, it is possible to find a version of the Dolbeaut complex which form
a complex of infinite-dimensional vector bundles over a neighborhood of Z in Y.
Such a construction, if it exists, will give a really simple definition of the virtual
fundamental class of Z.

1.4.1. Reduction to finite dimensional manifolds.

Suppose that we have Frechet manifolds X and Y; with the Fredholm property
as above and Z := Y] N'Y; being compact.

We can choose smooth finite-dimensional sub-bundles &; C (7x);z, i = 1,2 such
that

EN(Tv)iz=0, Tx)z=&+E&+(Tv)iz+ (Tv)z -
We can prolong &; to neighorhoods of Z in Y;. Then we can choose submanifolds
Yiin X containing Y; such that

(Te )y =Ty, ® & .
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Submanifolds ¥; C X intersect each other transversally near Z. From now on
we can forget about the ambient manifold X and consider only the system of 5
manifolds and inclusions between them:

ya‘—)?l(—’?lﬂi}z;)?zb—’yz‘
We can choose a sub-bundles F; of finite codimension in (7y, )|z such that
}-i n (7-}73—.')|Z =0.

Then we can choose a foliation in Y; with tangent spaces to fibers at points from
Z equal to F;. We can prolong these foliations to foliations of }7, Near Z these
foliations are tangent to fibers of smooth fibrations, due to the transversality con-
dition above. Passing to the spaces of fibers of these folitations in Yj, ft we obtaln
germs of finite-dimensional manifolds Y, }A’:' We can take for the middle term the
same finite-dimensional manifold as above, ,le ﬂ}~"2 and get a new finite-dimensional
system of 5 manifolds and inclusions. We can construct a new ambient manifold
X' in which ¥/ and Y] intersect transversally along ¥/ NY] ~ ¥; n¥,. Thus, Z
is realized as an intersection of finite-dimensional manifolds. One can check that
different procedures give stably equivalent representations.

1.4.2. Intersections of manifolds in algebraic geometry.

If ¥7,Y, are submanifolds of an algebraic manifold X then on Z := Y; NY,
we can construct a structure of super-scheme. This means that on Z we have a
super-structure sheaf

0y =P o3

n<o0

of Z<o-graded super-commutative rings such that Z is a scheme with respect to
0% and O% are coherent sheaves of O%-modules. The formula for components of
the higher structure sheaf 1s

O% = (iz)* TO?‘?“' ((iYn )*OYU(?:Y: )"‘OYQ) ’

where 17 denotes the embedding map. Also we have a virtual tangent bundle in
K% Z) given by the same formula as in the almost complex setting.

Structures (0%, [7z]**™) do not change if we pass to an equivalent representation
of Z as an intersection of two manifolds. We call a pair of such structures a “quasi-
manifold”.

Our discussion leads to the prediction of the existence of the structure of quasi-
manifold on Z = M, (V, ) defined in purely algebro-geometric terms. In fact,
one can define [77]"""" as the direct image of the deformation sheaf on the universal
curve. Also, 0% is the usual structure sheaf on algebraic stack Z, and O} is
equivalent to the first obstruction sheaf. We are planning to write later more
about definitions of higher structure sheaves and virtual tangent bundles arising
ubiquitously in algebraic geometry. For example, various moduli spaces and Hilbert
schemes should carry canonical structures of quasi-manifolds. Idea of introducing
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higher structure sheaves on moduli spaces existed implicitly quite a long time ago. It
was recently spelled out clearly in a letter of P. Deligne to H. Esnault, together with
a proposal to apply it to the algebro-geometric formulation of Mirror Symmetry.

We finish this subsection with a formula which produces a virtual fundamental
class for a quasi-manifold Z with O% = 0 for n € 0. Note that it is applicable to
the quasi-manifold structure arising on the intersection of two manifolds.

First of all, for each separated scheme Z of finite type over a field and for
any coherent sheaf F on Z a homological Chern class 7(F) € CH,.(Z) ® Q is
defined (see [BFM)]). Here C'H,(Z) denotes the Chow group of cycles on Z modulo
rational equivalence and regarded as an algebraic counterpart of H¢!°*¢¢(Z(C), Z)
for schemes over C. For the definition of the virtual fundamental class, we will use,
for the sake of simplicity, a smooth ambient manifold X. We can prolong the virtual
tangent bundle [77]"*"* to an element of K°(X) after replacing X by a sufficiently
small neighborhood of Z. The formula for the virtual fundamental class is

2] = (2(—1)*r(o§)) A td([Tz) )

k

One can see that for quasi-manifolds arising as an intersection of two subman-
ifolds this fromula gives the same class as the usual intersection theory of Fulton-
MacPherson. For zero-dimensional Z our formula is equivalent to the Serre formula
for multiplicities.

Note that we have for quasi-manifolds a refined fundamental class with values in
CH. ® QJcy,cp,. . .| arising from the action of Chern classes of [Tz]"'™ on [Z]"'™.
It can be considered as an algebraic version of the fundamental class with values in
complex cobordism groups.

1.5. Gromov-Witten invariants.
We have a compact moduli orbi-space of stable curves and a virtual fundamental
class of it in two situations:

(1) V is a smooth projective algebraic manifold over a field, or
(2) V is a compact real-analytic symplectic manifold endowed with a compatible
real-analytic almost-complex structure.
The virtual fundamental class takes values in CH, ® Qley, ¢2,...] and in Q. ® Q
respectively.
Suppose that 2 — 2¢ — k < 0; so, that ./T/I.g,k exists. We have an evident map:

@ : My (V,8) = VEx My,

(Cizyy..cyz f) o (f(n:l),...,f(mk);(a,il,...,rEk)) .

Here (5, £1,..., %) 1s the stable curve with marked points obtained from (C, 21, ..., z)
by cosecutive contractions of non-stable components.

The image under @ of (M, «(V, #)]"™ is a class in V¥ x M, which leads to
Gromov-Witten invariants of V (see [KM]). It should not depend on the choice of
an almost-complex structure in the symplectic case.
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We expect that these classes satisfy all axioms postulated in [KM]. In fact, the
definition of stable maps was designed specially for this purpose.

Here we get a refinement of the picture from [KM]: Gromov-Witten invariants
take their values not just in cohomology groups, but in complex cobordism groups.
Also, we have line bundles on ﬂg,k(V,ﬂ) with fibers equal to T},C, and we can
take in account actions of their Chern classes on [M, 1 (V, 8)]*""!. 1t is an essential
additional data, because T,,C are not isomorphic to the pullbacks of analogous
bundles on M, x. In the deformation formula 6.4.c from [KM], one can use T, C

instead of T%, C.

1.6. Comparision with other definitions.

It was proposed earlier several times that for the definition of the topological
sigma model (=Gromov-Witten invariants) in algebro-geometric terms one should
use the Hilbert scheme of V' and, possibly, modify it. Qur moduli space of stable
maps does it in a sense. Its advantage is smoothness in the case when V is a gen-
eralized flag variety. Also, our definition gives the same moduli space for complex
projective V considered as an algebraic or as a symplectic manifold.

In symplectic geometry the most advanced construction was announced recently
by Y. Ruan and G. Tian in [RT]. They construct a part of Gromov-Witten invariants
(essentially, genus zero invariants) in the case of semi-positive symplectic manifolds.
Their main idea is that in this case one can ignore curves with singularities, because
the dimension of space of degenerate curves is strictly less than the dimension of
the space of smooth curves for generic almost-complex structures. The advantage
of approach of [RT] is a control on integrality of arising homology classes. In
[RT] “numbers of rational curves” of fixed homology class passing through several
submanifolds were defined in the case of the number of cycles greater than, or equal
to 3. Without this condition “number of curves” should be fractional in examples
of quintic 3-folds (see the next section).

Our pre-definition should work for all symplectic manifolds and, presumably, in
the case of surfaces with boundaries, opening a way to extend Floer’s proof of the
Arnold conjecture to the case of non semi-positive symplectic manifolds.

As we already mentioned, Gromov-Witten invariants should be defined also for
families of not necessarily compact symplectic or algebraic manifolds. It is not clear
at the moment, in which generality such a theory can be developed. For example,
we don’t know should families be flat or only smooth, should the parameter space
be smooth, etc. .

The general scheme described in 1.4 can be applied in other situations: moduli
of vector bundles on algebraic curves and surfaces, moduli of complex structures
on surfaces, moduli of vector bundles on Calabi-Yau 3-folds. Common property
of all such examples is that the natural complex whose 1-st cohomology group
i1s equivalent to the tangent space to the appropriate moduli space, has trivial
cohomology in degrees greater than, or equal to 3. The main problem is to define
good compactifications in other situations.

2. THREE EXAMPLES.

In this section and in the next one we will use simplified notations: M, (P™, d[P'])

will be denoted by My x(P",d) or, simply M(P",d) if g = k = 0.
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2.1. Rational curves on PZ.

Dimension of the space Mg 1(P?,d) is equal to 3d — 1 + k. For k = 3d — 1 it
coincides with the dimension of (P%)*. Hence the number P, of rational curves on
P? of degree d > 1 passing through generic k = 3d — 1 points is finite and equal to
the degree of the map

¢ : My (P2, d) — (P)*, HNCizy,...,zk; f) = (f(z1)y- ., flzk)).

We can rewrite it as the integral:

3d—1
ro= [ Tl e,

- =1
Mo ad-1(P2,d) '

where O(1); denotes the pullback of the line bundle O(1) from the i-th factor P?
of (P2)3d -1 .

These numbers are known from the recursion relations following from the asso-
ciativity equations (see [KM)). The first few values of Py ave:

d 1 2 3 4 3]
P, 1 1 12 620 87304

Our proof of the associativity relations is based (following Witten [W]) on a
study of the boundary divisors of the moduli spaces of stable maps. Here we want
to compute number of curves directly.

2.2. Rational curves on quintics.

Let a smooth quintic 3-fold V be given by an equation Q(zy,...,25) = 0 in
homogeneous coordinates in P?. Polynomial Q of degree 5 can be considered as a
section of the line bundle O(5) on P4,

The orbispace M o(V, d[P']) is a subspace of M(P*,d). Let £ be a coherent
sheaf on M(P*, d) equal to the direct image under the forgetful map Mg 1(P*,d) —
Mo o(Pt,d) = M(P*,d) of $*(O(5)). Here again ¢(C;21; f) = f(x1) € P*. Sheaf
&4 is actually a vector bundle: for any stable map f : C — P* from a curve
of arithmetic genus zero H'(C, f*(O(5))) = 0, because the line bundle O(5) is
generated by its global section.

Section @ of O(5) defines sections Qu of £ for all d. 1t is clear that M(V,d[P'])
coincides with the scheme of zeroes of (jd. We claim that this identification is
compatible with structures of an intersection of manifolds.

The orbifold M(P*, d) has dimension 5d + 1, the same as the rank of £;. Hence,
we get the algebro-geometric definition of the “number of rational curves on quin-
tic”. It should be equal to the integral of the Euler class of £;:

Ng:= f esdt1(€d) .
M(P*,d)

Nunibers Ny are not integers, because we use orbifolds. The table of first few
N4 is the following;
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d 1 2 3 4
2875 4876875  B564575000  15517926796875
Na 1 8 27 64

N are related with integer numbers N by the following formula:

Nao= Y k7SN,
k:k|d

N is the number of geometric (unparametrized) rational curves on V with
generically perturbed almost complex structure.

Mirror Symmetry (see [Y]) gives the following description of the sequence Ny:

Let us introduce a function defined in a domain {t : Re(t) < 0, |In(t)| < 7} in
the complex affine line C:

F(t) = %ta + ZN,{G‘H .
d>1

We denote by G(q1, ¢2) corresponding function of homogeneity degree 2 in a domain
of the vector space C?:

G(g1,92) = Fla1/92) a5 -

Function G generates a Lagrangean cone £ in the symplectic vector space C*:
L :={(p,p2,01,42) : pi = 0G/0¢} .

On the other hand,

I(z) = Z (5?1)!2”

135
= (n!)

is one of the pertods of one-dimensional variation of Hodge structures H, with
Hodge numbers h%?% = h'? = h?! = ®0 = 1 arising from a mirror family of Calabi-
Yau 3-folds. Poincaré pairing defines a covariantly constant symplectic structure on
4-dimensional vector bundle H with flat Gauss-Manin connection. We can trivialize
the flat bundle H in the domain {z : |z] € 1, |Arg(z)] < x}. The union U of 1-
dimensional terms of the Hodge filtration F? form a Lagrangean cone in C*.
Mirror Symmetry predicts that £ = 4. The same kind of correspondence is

expected for other Calabi-Yau 3-folds.

2.3. Multiple coverings of rational curves on Calabi-Yau 3-folds.

Let Cp >~ P! be a smooth rational curve in a complex 3-fold V with the normal
bundle 7y /7T, equivalent to O(—1) @ O(-1). In such a situation My o(V,d[Cy])
has a connected component Mg o(Cy,d[Cp]) consisting of stable maps C — Cy of
degree d. This component is isomorphic to M(P',d) and has dimension 2d — 2.
The virtual dimension of this component is zero. The obstruction sheaf Fy is a
vector bundle of rank 2d — 2 with the fiber at each point f: C — Cj equal to

H'(C, *(Tv | Te,)) = C* @ HY(C, £ (O(-1))).
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Our definition of the contribution of M¢, will be the integral over it of the Euler
class of the obstruction sheaf:

M, = / cad—2(Faq) .

M(P1,d)

After Aspinwall and Morrison we expect that Ay = d~2.

Actually, it is not clear why computations from [AM] give the same answer as we
get with the stable curves. In [AM] authors consider the space of maps of rational
curves with 3 marked points on it into P! and compactified it by means of the
Hilbert scheme of 1-dimensional subschemes in P! x P! (they associate with a map
f:P' — P! its graph). Then they used the Euler class of a natural candidate to
the obstruction bundle and intersect it with a class of codimension 3. The answer
which they get is 1. Of course, we can use Mg 3(P', d) instead of Mg o(P!,d) and
modify the definition of “the number of curves” following the sample 2.1. One can
see easily that the result will be d3My. At the moment we don’t know how to relate
the compactification from [AM] and the moduli spaces of stable maps.

3. FIXED POINTS FORMULAS.

3.1. Bott fixed points formula.

Let X be a smooth compact complex projective manifold, £ be a holomorphic
vector bundle on X. We suppose that a complex torus T ~ C* x --- x C* acts
algebraically on (X, £).

Bott’s formula reduces the computation of integrals of characteristic classes of
£ over X to the computations on the subspace of fixed points XT. This space is
always a union of subvarieties, because the real subgroup T = U(1) x--- x U(1)
is compact. We denote connected components of XT by X7.

On each component X7, the vector bundle £ splits into the direct sum of bundles
EA over characters A\: T - CX, A€ TV ~Z @ - -®Z. Also, the normal bundle
N7 = Tx [Tx~ splits into the direct sum of bundles N4, X € TV \ {0}.

We add to H*"*"(X, Q) extra generators e;, 2 = 1,...,7k(E) of degree 2 obeying

relations
z Ck(g) = H(l -+ e,-) .

k>0 i

Analogously, we add generators e A and n) A to H v(X7,Q).
Let P be a homogeneous symmetnc polynomlal (in <5uﬁ101ent1y large number of
variables) of degree dimc(X ). Bott’s formula reads:

Ple]™ 4 A

/ Pe) =Y [ Plei' +2)

[T + X
Here the r.h.s. is considered as a rational function on Lie(T) (each character A
defines a linear form on Lze(T)). In the numerator and the denominator we use all

A
generators e}’

and n”* with fixed index y. Analogous formula is valid for finite
collections (£());_; n of equivariant vector bundles and homogeneous polynomials

P m N groups of variables symmetric inside each group.
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This formula is valid for orbifolds too, because the original proof in [B] uses only
the language of differential forms and transfers immediately to the more general
setting of orbifolds.

3.2. Fixed points on moduli spaces of stable maps.

The action of the group T =~ (C*)"*! of diagonal matrices on P" induces
an action of T on My ((P",d). We will describe the set of fixed points in this
subsection.

Denote by p;, 1 = 1,...,n + 1 fixed points of T acting on P". The point p; is
the projectivization of i-th coordinate line in C"*1. Also, denote by l;; = lji, i # 5
the line in P™ passing through p; and p;.

Let a stable map f : C — P" represent a point of M, (P",d)T. First of all, the
geometric image of f should be invariant under the T-action. One can see easily
that it means that f(C') is a union of lines /;;. Secondly, images of all marked and
singular points, as well as of components of C' contracted by f, should lie among
points p;. Thirdly, each irreducible component C® of C' which does not map to
a point has genus zero and maps onto one of the lines /;;. In some homogeneous
coordinates it is given by

flz1 :29)=(0: ... :O:z;{"':O: :O:zg":O: oo 20), dy > 1.

We will associate with each point (C;xy,...,zx; f) € Hg,k(P",d)T a graph
. By graph we mean a finite 1-dimensional CW-complex. Vertices v € Vert(I')
correspond to connected components Cy of f~'(py,...,pu+1). Note that each C,
can be either a point of C or a non-empty union of irreducible components of
C. Edges o € Edge(T') correspond to irreducible components C® of genus zero
mapping to lines /;;. We endow I" with additional specifications: vertices v will be
labeled by numbers f, from 1 to n 4+ 1 defined by the formula f(C,) = py,. Edges
will be labeled by degrees d, € N. Also, we associate with each vertex v € Vert(T')
its interior genus ¢, (=arithmetic genus of the 1-dimensional part of C,, C C) and
the set S, C {1,...,k} of indices of marked points lying on C,.

Our claim is that connected components of T\Zg,k(P",d)T are naturally labeled
by equivalence classes of connected graphs I' with specifications obeying the follow-
ing conditions:

(1) if & € Edge(T') connects vertices v,u € Vert(T') then f, # fu ,
(2) 1_X(F)+ Z gv=9,

veEVert(l)
3) > de=d,
acEdge(T)
@ {,....ky= J] S.-
vEVert(I')

Mention that from the condition (1) it follows that I' has no simple loops.

Each component My x(P",d)" is isomorphic to the quotient space of the product
of moduli spaces of stable curves over the set of vertices of I' modulo action of the
automorphism group of I'. We will forget about Awt(T") till 3.4.
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3.3. Contributions of connected components.

From now on we assume that our curves have arithmetic genus zero. Graphs I'
in our description will be trees and interior genera of all vertices will be zero.

In 3.3.1-3.3.4, we will assume for the sake of simplicity that there is no marked
points on curves. We will restore marked points in 3.3.5.

We denote M(P™,d) simply by M (numbers »n and d are supposed to be fixed
in this section).

. . . —-—T
For T-equivariant vector bundle £ on orbifold M~ we denote by [€] the corre-
sponding element of the equivariant K-group with rational coeflicients:

EW(M)eQ~ K (M)eT'@Q.

In 3.3.3-3.3.4, we will denote by [y] the element of K%(ﬂ[ ) ® Q corresponding
to the trivial 1-dimensional bundle endowed with the action of T by the (orbi-
Jcharacter y € TY @ Q.

We will denote the restriction of any vector bundle £ on M to M by the same
symbol £. Often, we will denote a vector bundle on M by its geometric fiber at
a point (C, f). In intermediate computations in 3.3.1 we will use decomposition
of fibers of vector bundles into formal linear combinations of some other vector
spaces arising from short exact sequences. These auxilary vector spaces will not
form vector bundles, because their dimensions will be not constant. Nevertheless,
we will use these vector spaces as “vector bundles” putting corresponding symbols.
One can check that the final result after all cancellations is a class of a virtual
equivariant vector bundle, and our formal computations give the correct answer.

3.3.1. Normal bundle. o
The class of the normal bundle to M 1is

In 1.3.2 we computed the tangent space to M:

Tl = [B(C, S (Te= ]+ D [L(CHOT(CP)] +

YyeCoNCP a8

S (TE+TEH) - SIHNCT, Ton)]

yeECeNCP:a#f

The first summand corresponds to infinitesimal deformations of the map f of
a fixed curve C. The second summand corresponds to flat deformations of C
resolving double singular points. The third summand comes from deformations of C'
preserving singular points. Its first part comes from deformations of singular points.
We retract from it classes of 3-dimensional spaces of vector fields on irreducible
components C?,

—T
The class of the tangent space to M is by analogous reasons equal to

[Txr] = > [Ty(C*) @ T, (CP)] +
YECNCP axF;o,fELdge(T)
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+ > (Ty(C)] = Y [H(C,Tee)] .
yeC2NCPl.oa#F,a¢ Edge(T) aa@¢Edge(T)

Here the first summand corresponds to resolutions of double singular points
which are intersection points of two contracted components, the second summand
comes from deformations of singular points on contracted components. Again, we
retract classes of spaces of vector fields on contracted components.

Combinig all the formulas above we get:

Nr] = [H(C, f*(Ten))] + [N23
where the “absolute” part of the normal bundle is

[-N‘abs] = Z [T,(C*) @ Ty(cﬁ)] +
yECNCHa#Ba,f€Edge(l’)

+ > (T,(C*) ® T,(C#)] +

yECNCP a€ Edge(l') A Lidge(l)

+ > [T,(C)) = > [HYC, Tce))

YyeEC*NCP:a#B,0€ Edge(T) a:a€ Edge(T)
Note that the first and the third summands in the formula for [V “bi? above are

trivial vector bundles on M twisted with some characters of the torus T. Also,
the term [H°(C, f*(7p»))] has the same nature. Later on we will see that in all
our examples all equivariant components of the vector bundle £ will be trivial too
r,A . .
(e;”” = 0 in notations of 3.1).
Hence in the Bott formula applied to M we have only one term which is not
just a mupltiplicative factor with values in the field of rational functions on Lie(T).

This term is
> (T,(C*) @ T, (C?)] .
yEC"NCP:a€Edge(T),A¢Edge(l")

. . . T . .
We will compute corresponding integrals over M~ in the next subsection. Ac-

tually, we will compute some integrals over Mg ; such that the integral over ﬂr
will be equal to their product.

For an arbitrary graph, we define a flag as an edge endowed with an orientation
(an arrow). We denote it by a pair (vertex, edge) of adjacent cells, where the vertex
is the sourse of the arrow on the edge. In general, this notation is ambiguous for
graphs with simple loops. Nevertheless, we will use it, because all graphs in our
computations will be trees.

Notation. for ¢ flag F = (v,a) of T we denote by wr ezpression (Mg, — Ag,)/dq
where u € Vert(T'),u # v i3 the second vertex of the edge «.

We consider wr as a linear finction on Lie(T). The geometric meaning of wp
is the following: it is the character of the action of T on the tangent space to C'¢
at the point C, U C®. The flag F = (v,«) has a canonical dual F = (u,«) and
weights of dual flags are related as wy = —wp.

Our nearest goal is the computation of the contribution of [N"b,s«] in terms of
wr.
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3.3.2. Intersection theory on ./T/i_g,k.

In this subsection %k is an arbitrary integer bigger than, or equal to 3. Let
w;, 1 = 1,..., %k be a sequence of formal variables.
We compute in this subsection the following integral:

k
1
I(w],.-',‘wk) :=—_/ :1;[] (w,'-f-CJ(Tz.'(Cr))) .
Mo,k

Recall that ./\—/{g,k = J_V_lo,k(point,O) denotes the moduli space of stable curves
(Ciz1,...,zx) of genus zero with marked points.

The value of the integral [ is a rational symmetric function in variables w;. We
can expand it as a finite Laurent series:

1S
I(wy,...,wg) = Z Hw{'"‘_l(ml e Tde )0

dy ,...,deO:z d;=k—3 i=1

where, following Witten [W] we denote by (rq4, ... 74, )0 the rational constant
k
[ e,
- 1i=1
Mo,k

The generating function for these numbers and analogous numbers for higher
genera was predicted in [W] and computed rigorously in [K]. The result is quite
complicated. However, for genus zero case the formulas for intersection numbers
are very simple. Physicists new it already for a long time.

_ (k=3
Lemma. (74, ...Tg.)o = 3741 -

Proof: intersection numbers for My are uniquely defined by the following
properties (see [W]):

(1) (T()T()T())() = 1,

(2) (74, ...7q,)o 1s invariant under permutations of d;,

(3) if d; = 0 then

(le...Td*)(): Z (ng---de—l"‘Tdk>0‘
j22:d; 21

One can check easily that H—(;ﬁ,_—?:—, satisfies all the conditions above. O

i=1

L k k=3
Corollary. I(wi,...,wy) = Hwi_l X (Z wi"l) .
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3.3.3. Contribution of J\/’“ﬂbf-.

The space ﬂr is isomorphic to the product of Ho,val(v) over verticesv € Vert(T)
such that their valency val(v) := #{flags (v, o)} is at least 3. (Recall that we omit
the action of Aut(I') temporarily).

The contribution of

> [T,(C®) @ T,(C¥))

yeCNCH:a€Fdge(l'),f¢Edge(T)
i the multiplicative form is equal to

val{v)=3

II I o ¥ o

vEVert(l'}, val(v)>3 \ flags F=(v,a) flags F=(v,a)

This formula follows from 3.3.2 and the fact that T,(C®) is trivial as a line bundle
and T acts trivially on T},(C?).

Terms
> [T,(C*) ® T, (C*)]
yeCoNCl:a#8:a,F€EEdge(T)

correspond to vertices of I' of valency 2. Their contribution is

-1
H : (wFl(v) + sz(v)) ’
veEVert(IM:val(v)=2

where Fi(v), 1 = 1,2 are two flags containing v. Note that one can rewrite this
expression as

val(v)}—3

I IIowe| 2w

vEVert(I):val(v)=2 \ flags F=(v,a) flags F=(v,a)

The contribution of terms

- Y HC"Ten)

aEEdge(T")

m equivariant JX-group is equal to

- Y (Fere] 4 0]+ [wee))

aEEdge(T")

where F(«) is any of two flags containing edge «. We rewrite this as

- > lwrl = Y 0.

flags F a€Edge(T")
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The contribution of

> [T, (C™)]

yECNCP axB,a€Vert(l))

Z [wr].

flages F=(v,a):vai(v)>2

we rewrite as

Hence, the contribution of last two terms in the formula for .N’%b.’; is equal to

> [wrl + ) [0).

flags F=(v,a):val{v)=1 acldge(T)

Let us forget for a moment about the sum of [0] over edges. Then the contribution
above can be expressed in the multiplicative form as the product of wg over tails
(i.e. lags F = (v,«) with val(v) = 1). We replace wr by (wg)™! ((wp)_l)_2 and
note that the exponent —2 is equal to val(v) — 3 again.

Conclusion: the contribution of

Neb— % o)

a€Edge(T)
in the multiplicative form is equal to

val(v)—3

—1 -1
0| O« £ w

vEVert([') \ flags F=(v,a) flags F'=(v,a)

3.3.4. Contribution of [H°(C, f*(7p»))]-
The space of global sections of the vector bundle f*(7pn ) is equal to the subspace

of
G H(@C,f(Ten))

a€ldge(T)

given by the condition that the values of sections at each vertex v will be the same
for all edges o adjacent to v. More precisely, we have the following short exact

. . =T
sequence of equivariant vector bundles on M :

0BG F(To) = @ BCFTo)—» @ (T, Prec) o
o€ Edge(l") vEVert(T)

First, we study contributions of [H®(C'®, f*(Tpn)]. Edge o passes through two
points p;,p; € (P™)T. In some coordinate z = (z; : z3) on P! ~ C°, the map [ is

given by

Xi(f(2)) = =, X;(f(2)) = 23, Xi(f()) =0 for k #4,5.
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Here Xy, & = 1,n + 1 are homogeneous coordinates on P". We have a short
exact sequence of vector bundles on [;;

O—r']}‘j—)Tpn—bJ\flU — 0

inducing a corresponding exact sequence of vector bundles on M.

One can check using this exact sequence that the following elements form a base
of HY(C®, f*(Tpn)):

(1) 2°X;0/0X;, —da € a < da,

(2) 2*X;0/0Xy, —doa <a <0, k#£2,y,

(3) 2°X;0/0Xy, 0L a<dys, k#1,7.

Note that there is exactly one base element (¢ = 0 in the first group) on which
T acts trivially. Thus, in all we have #Edge(T") terms [0] cancelled with analogous
terms in 3.3.3.

Homogeneity degree of z under the action of T is equal to wp = (A; — Aj)/daq,
where F' is a flag of I' containing o and a vertex projecting to p;. Degree of
coordinate Xy is equal to Ag.

The contribution of T,,, P" @ Cv(M~1 where f, = 1 is equal to

(1 —val(v)) Z [Ai — /\j] ,

Ji#i

because vectors X;0/0X;, j # ¢ form a basc of T, P".
Putting all terms together we get the formula for the contribution of [H(C, f*(Tpn))]+
#Edge(T')[0] in the multiplicative form:

de
IT (wp)de I1 [T(awr + 25, =2} | x I (da)?x

flags F=(v,a) ks fu, fu:F=(u,a)a=0 a€Edge(T)

1—val(v)

x ]I II Gsn =29
veEVert(l') \ J:i# fo
3.3.5. Marked points.

The only result of the introducing of marked points is that one has to replace
the exponent (val(v) —3) in the last formula in 3.3.3 by (vel(v) — 3 + #5,). We
leave all checking to the reader.

It 1s reasonable to change a little bit graphs associated with connected compo-
nents of the fixed point set. Namely, we replace any graph [* with specifications as
in 3.2 by a new graph T'. Vertices of T are vertices of T together with a k-element
set T = Tail(f) (tails of f) Elements of T' are numbered from 1 to k&, tail ¢ has
number #(¢). Edges of T are edges of I together with one edge ay for each tail t € T
connecting ¢ with the unique vertex v of I" such that ¢t € §,. Also we define f; to
be equal f, for t € S,. We pose d,, to be equal to 0 for all ¢ € T. Then, for any
flag F' of T containing a tail as an edge, formally wi' = 0.

In the sequel we will denote M by M
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3.3.6. Contributions of vector bundles in examples.

As we already mentioned in 3.3.1, in all three examples from the section 2 vector
bundles arising on Mg .(P",d)' split into direct sums of trivial bundles twisted
with characters of T. Thus, their contributions will be rational functions on Lze(T)
depending on I'. Computation of these contributions is easier than that of the
previous ones.

In the example 2.1 the contribution of line bundles O(1); is

[T On#s,

vEVert(I')

or, using the modified graph f,

I A

t€ Tail (T)
In the example 2.2 the contribution of &, is
H H . ((IAfUL + bAfvz ) x H (SAIU )1—u“l(v) N
o€ Edge(l):(vy,v2) - vertices of & \ a,6>0:a+4b=5d, vEVert{l")

Here we use the short exact sequence (omitting zeroes from the left and the right):

H(CO6) — @ BC, o) - B (06, ec™ ™)

a€Edge(T) vEVert(I')
In the example 2.3 the contribution of Fy is
. H{v)—1
11 I @ +0a) ) JI ()@
a€Bdge(T):(vl,v2) - verticesof o \ a,0<0:a+4b=1—-d, vEVert(I')

It follows from the short exact sequence

B (=D, )0 C™ ) S BU(C o) = B H(CT(O-1) -

vEVert(I') a€dge(T)

3.4. Final sum.
In each example the integral over the corresponding moduli space of stable maps
is equal to the sum over equivalence classes of appropriate graphs of

———( formula from 3.3.3)( formula from 3.3.4)( formula from 3.3.6) .
F Aut(T)

The last formula from 3.3.3 is corrected in the first example according to 3.3.5.
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4. CRITICAL VALUES.

4.1. Feynman rules and summation over trees.

Here we will describe a general formula well known in physics combinatorics
which gives values of certian infinite sums over trees. For an additional information’
on summation over trees and graphs one can look to the chapter 7 in [ID].

The initial data consist of a finite or countable set of indices A, symmetric non-
degenerate matrix ¢ = (¢%%), ¢°® = ¢%%, a,b € A, and an infinite sequence of
symmetric tensors with lower indices:

Cul...ak; a; € A, k > 0.

Here coefficients of tensor ¢*, C. are complex numbers or elements of a topological
field of characteristic zero (for example, a field of formal power series in auxilary
variables with coeflicients in C). We assume that all inifnite series appearing later
are convergent in an appropriate topology.

These data defines a function on the set of equivalence classes of finite graphs.
Let " be a graph and Flags(T') be the set of its flags. The weight of the graph is
defined as

wl):= Y IT "% I Crmsen

maps aEldge(T) vEVert(T)
fillags(T)—A \ Fy 1y - Hags Fi,... F, - tlags
containing o containing v

Note that in all our examples one can choose an appropriate set of indices and

tensors g, C' such that the sum of contributions of connected components of ./_‘/f—r
corresponding to any abstract tree (without specifications dq, fu, Sy) will be equal
to the weight of this tree. We will show in 4.1.1 how to choose A, g, and C in all
our examples.

Define the “tree-level partition function” (just an element of the ground field)
by formula

tree | __ ___.__.1
Z'7 = Z T Aui(T) w(Il) .

I': equivalence classes of
finite nonempty trees I'

Let us introduce auxilary formal variables ¢,, « € A and a series

S(pa)i=— Y. f"”"f—‘ﬁ’wZ% Y. Caraibar - Py -

<

a,bcA k20 21,..,0r €A

Here g.p denote matrix coefficients of the inverse matrix (g)_':

(9as) = (*")7" .

Later it will be convenient to refer to the first summand in the formula for S
as to “kinetic” part and to the second summand as to the “potential” part of the
“action” functional S, in analogy with the classical mechanics.
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Formula. Z'"® = Crit S(¢.), where the Lh.s. denotes the critical value of func-
tion S.

This formula follows from a more general formula

;—x(T)

log ((dﬁt(gﬂ'hg))_]/z./eﬂ%d H d(,t'“) = Z : m'w(r)

a€A I": equivalence classes of
connected nonempty graphs I’

where both sides of the formula are considered as formal power series expansions
at h — 0.

The last formula is the usual expansion of integrals over Feynman diagrams.

The argument above is valid only in the case of coefficients with values in C
when A is finite, ¢* is real-valued and positive-definite, C, are sufficiently small
and the integral above is convergent.

A direct proof of the formula Z!"¢ = Crit S(¢.) can be obtained by a formal
inversion of the map (¢.) — dS)4.) and evaluating S to the critical point,

4.1.1. Action functionals in three examples.

Let us first describe the situation without marked points on curves (and tails on
graphs).

We denote variables by ¢;; 4 where ¢ # j, 4,7 € {1,...,n+ 1}, d > 1. Hence,
the set of indices is

A=({1,...,n+1}*\ diagonal) x N .

For any graph I, we put on each flag F' = (v, o) the composite index iy, d , where
d=da, 1= fy, ] = fu (here ,as usual, u denotes the second vertex of «).
Potential pait of the action is standard:

0 1 -
SP t(rﬁ*) = Z fiCi Z l_' Z (vijl it '+J”i_?‘kdk)k 3(;51'1'1,(11 SR ¢dek )

E1<i<n+1 k>1 JupeednideFd
dyyeendyide>1

where v;j.q := d/(A; — Aj) is equal to w3! for corresponding flags F and

pi= [T =2,

Jig#E

and some constant ¢; depending on the situation. Potential part consists of the
contribution of J\fa_vl;,’# divided by the product of wz' and multiplied by one factor

i; in the contribution of [H(C, f*(7pr))], and ¢; coming from the vector bundle
on M. We will find another formula for SP°/(4.) in the next subsection.

Coefficients ¢4#'7?" will be non-zero only for ¢ = j',j = ¢',d = d'. This
garantees that graphs with indices on flags which have non-zero weight will be in
one-to-one correspondence with graphs with specifications of the type introduced
in 3.2. We will denote ¢*»47%® simply by ¢***. Inversion of the matrix ¢ is reduced
to the inversions of numbers ¢*¢.
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Contribution of [HY(C, f*(Tpr))] in ¢*7¢ (with removed factor x; and added
factors wr') is equal to

_ - ar; +bA; :
w2 (d)? p; lpj ! H H (—-d—J - /\k) .

k#1,7 a,b>0:a+b=d

The contribution of &; in the example 2.2 is equal to

(252:;)7! I (eni+by).
a,b>0:a+b=54d

Constant ¢; in the potential part is 5A;.
In the example 2.3, the contribution of Fy is equal to

Ak IT  (ex+br).
a,b<L0:a4+b=1—d

Constant ¢; in the potential part is (—X;)7".

In both examples 2.2 and 2.3, we multiply ¢*/'¢ by z¢, where z is a new formal
variable. Thus the resulting critical value will be a series in z with coefficients equal
to Ng and My respectively.

In the example 2.1, we add variables @7),-, 1 <1< n+1=3 Matrix ¢ is the
same as above for indices from the set A (no contributions from vector bundles),
and

gi;ij,d — 0’ gi:j — 6ij )“2 )

Here §;; is the Kronecker symbol. The potential part is equal to

ot it 1 1
§*Murd) = D M) DT

p1<i<n+l k21T >0

k41-3 7 1
Z Z ('Uz’jl,dl +"'+Uijkdk) + (¢ijl;dl "'¢’ijkdk)(¢:il qﬁ_.ll)
g

As before, we multiply matrix coeficients of ¢ by extra variables:

gu,d — Z;iglj'd, g:;z — 79 gl,l )

Exponents of variables z;1,2z; count the total degree of curves and the number of
marked point)s respectively. Then in the resulting sum over trees considered as a
series in z;, zo we have to extract monomials of the form zfzgd_'. It can be done
by a contour integration.
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4.2. Potential part of the action functional.

SPot(4,) comes essentially from the intersection numbers of Mg .

In the sequel of this subsection we use some auxilary set of indices I and two
sequences of variables v;, ¢;, ¢ € I. Later we will set v; := w,!. In the notations
of the previous subsection, we consider only a summand of 57°! corresponding to
a fixed point p, € P" and omit multiples fi., c..

Define a function S by the formula

S(vs, ) = Z Z (viy + -+ vik)k_3¢i1 B
k>1 '.' el

Theorem. S(v., ¢.) = Crit B(€), where

B(¢) = = + Z bid; exp (£vi +'€v; oyt élP (€vi) g, Seepln) § exp(Evi)

v; +v
i,J€I i T iel iel Vi

Note that in the final form we will have n 4+ 1 distinct variables §; corresponding
to different parts of S

The rest of this subsection will be devoted to the proof of the theorem.

First of all, we dismantle the definition of § into simple pieces, doing opposite
to what was done in 3.3.3. May be it is not the most economical way to prove our
formula.

Denote by Si the k-th summand in the definition of S. For & > 3, we have:

1 .
Si(va, @x) = L Z (vi, +"’+’Ufk)k_3¢f1 c Py =

f1yein €1

k—3)! iy
=(A—') Z 2. 1] d;!

SiR€1 dy,. ., dg 205 dj=k=3 j=I1

Let us introduce more notations:

24 —Z¢.d,, z mzzdﬁd P=E7"Y gieap(Eur)

el 31

We can rewrite the formula for S§; above as

)

(U*,¢¢) = ( COeff,s 3 Z (Zdlfdl_l)... (degdk"l) _

di,...,di 20
-3y A.
= T COBffe—RZ .
Thus,

Z S = Coeffe-a Z gl—;%)'zk = Coefff—3 ((I;(Z)) )

k>3 k>3



26 MAXIM KONTSEVICH

where

~ 23 Z4 (1- 2)? 1 3
Z) = _— ! Yz _
We)=153+5 34" 5 9Tz Tg

(1 Z!

We can replace W(Z) by ¥(Z) = log 15, because we take the coefficient

of the monomial £~ and Z has pole of the first order at £ = 0.
1 (1 - Z)*
Coeffe-2 (¥(2)) = — 5 IOJl £2de =

2me 2
|E]=1

1
=‘2— f )"09‘1_2(6)616,

where regular function A(€) is defined by conditions

e

Now we can integrate by parts:

Coeffs-s(\I’(Z))z—% f A(€) (loJ . (€)>!d€=

Py +

¢l=1

=~ f AT = rese, (A(€) dlog(1 - 2(0) = (6.
€]=1

Here & is the root of equation Z(€) = 1. Note that by the definition of A(£) its
derivative at £y vanishes. Hence,

Coef fe-a (U(2)) = Crit A(E).

We can compute A(£) explicitly:

A’(f) (6 fZ( )) —2 é(zqﬁ' exp 6?) ) _EZ¢1 Clp 5”0)

2 2 iel el

l\?]l—‘

¢
Al€) =5+

v; + vy

enp(Eni+ ;) -
20

+Z¢.emp(§‘ui)— 1 _deemp(évi)
i 2 i

icl : icl i
After adding to the formula above two terms Si(v., ¢.) and Sa(v., ¢.) which do
not depend on £ we obtain B(£). O

- du -
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4.2.1. Effect of marked points.

We need a generalization of previous computations to the case when some v; are
equal to zero (for curves with marked points).

Now we have two groups of indices I, J, and variables v;, ¢;, 7 € I, and ¢ j: 1€
J. Potential S(v., ¢, ¢ ;) is defined by the formula

S = Z % Z% Z Z (Uil +o +v'-_k )k+l“3(¢i1 .. 05.',,)(95]'1 Q;Sj;) :

E>1 020 dy,.ix€1 jiyeaft€J

One can rewrite it as

Z% > (vil-I—---+vs,¢)k_3¢i1---¢5.'A.e$p(<5(v,-l+-...|_v,.k))’

E>1 iy, i€

where ¢ = Z qgj. Thus, we can use previous formulas from 4.2 with ¢; replaced
JEJ
by ¢iexp(Pv;).

4.3. The structure of the resulting functional.

Note that we have the following general scheme in all examples: the sum over
trees is equal to the extremal values of a function in infinitely many variables ¢,
and finitely many variables £, and q~5,.. (variables A are considered as constant and
the result should not depend on them). The resulting functional is quadraetic in
¢. Thus, we can, in principle, find its extremal value by solving a system of linear
equations. This system is infinite and it is not easy to solve it. At the moment we
don’t know how to proceed.

4.4. Examples.
We will not write the formula for the example 2.1,
It is convenient to rescale variables ¢, as

bijd W Gija cxp(Pivija)-

For 2.2 (curves on quintics) the functional is

5
OYEPVICE | B | (CZYR ROV OVY

atb=dia,b>1 k=1 & — &
z = exp (—td - ) Gijadiid +
;d T (exi+ory) A= Ap ) T
1#] a+b=5d:a,b>1

VLY b
2 td !
bLadygtdt AT A=Ay
LI #i

). 5 £
_Z’/i/\_!CZ_/\inqsij,d‘}‘ZT/i()\ ¢5:3, Z E’

i3,d i,
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Here v; denotes 1-[—5('\/\'—:‘\—) The extremum is taken over variables ¢, and &,.
i —Aj

The result does 110‘&1 Jd;iepend on A, and is equal (conjecturally) to the function F(t)
from 2.2 minus 5¢3 /6.

If we specify A to be equal to roots of 1: X, := exp(2m/~1j/5), then by
homogeneity at the extremal point we have {; = ZA; for some = = =Z(¢). The last
summand in the formula for the functional is equal to 5=°/6. Note that = is in a

sense opposite to t because in the first term we have the exponent
exp (—(t +Z)d) .

In general we expect that the cubic term from the main formula of 4.2 corre-
sponds to the contribution of maps of degree zero in the potential (see [IXM]).

For 2.3 (multiple coverings), we will write only a formula for the functional with
fixed A-s: Ay = —Ay = 1. After some simplifications and changings of notations we
get the following formula:

ordi 2tk (2N TS i) or | X
2 i ‘3‘"’“*’(“"("’“‘))‘;5’*_22‘_:/; +¥k2+ 6

k1 k

Indices k,! take values in the set {1,3,5,...}. Conjecturally, the critical value of
this functional (with fixed ¢) is equal to Liz(e').

5. GENERALIZATIONS.

5.1. Higher genera.

We don’t know at the moment how to treat higher genus curves in the same
way as we do it with rational curves. One basic problem is that the moduli space
of stable maps is never smooth for higher genus. May be, this is not a serious
obstruction if one adopts the general phylosophy of hidden smoothness presented
in 1.4, and one can apply Bott’s formula ignoring singularities. If all these will
work, we will use intersection numbers on M, ; including numbers computed in
(K] and, may be, something else.

We hope, that the generating function over all genera (“string partition func-
tion”) will be equal to a sum over graphs and reduces finally to a Feynman integral
with auxilary matrices among fields (as in [K]). Also, we hope that a trick from 4.2
will work in quantum case too, reducing the final integral to a finite-dimensional
one via an elimination of free fields.

The simplest case from which it is reasonable to start is the case of the projective
plane. How many curves of genus g and degree d in P? pass through generic 3d—1+¢
points?

5.2. Flag spaces and toric varieties.

All our computational scheme works well for any generalized flag space G/ P,
where G 1s a semi-simple algebraic group and P is a parabolic subgroup.

All we need is that the moduli spaces of genus zero stable maps are smooth and
the Cartan subgroup T has isolated fixed points and isolated 1-dimensional orbits

on G/P.
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The first problem is to compute genus zero Gromov-Witten invariants on flag
varieties. As was explained in [KM)], heuristic arguments of [GK] don’t give the
whole information encoded in the potential.

Moduli spaces of genus zero stable maps to a toric variety are not smooth in
general. Nevertheless, it is possible that the Bott formula can be modified and
applicable again.

5.3. Complete intersections.

We can treat any smooth complete intersection of hypersurfaces in projective
space in the same manner as quintic 3-folds. In generalizations to other varieties
endowed with a torus action, we should consider equivariant vector bundles gener-
ated by global sections. If we have realized V' as a zero set of a section of such a
vector bundle transversal to zero section, then all the machinery applies.

5.4. Families.

Let us consider counting problems of genus zero curves on I{3-surfaces. The
first impression is that it should be trivial, because there are no non-trivial curves
on non-algebraic Kahler surfaces and Gromov-Witten classes are invariant under
deformations.

Let us consider now a 1l-parameter holomorphic family of K 3-surfaces Sy such
that Sy is algebraic and, for almost all ¢, S; is not algebraic. The union § := |, S,
is a non-compact 3-dimensional complex variety with the trivial first Chern class.
Hence, we expect that compact rational curves on a generic small almost-complex
perturbation of S are isolated and there will be finitely many of them sitting on S
m the limit as the perturbation tends to zero. D. Morrison (private communication)
proposed to consider a particular 1-parameter deformation of Ii'3-surfaces, namely,
the twistor family of Kahler structures with a fixed Ricci-flat metric.

It seems that considering Gromov-Witten invariants of total spaces of families
1s reasonable only for genus zero curves, otherwise parasitic contributions to the
virtual tangent bundle appear.

For V being a generic quartic surface in P? the Picard group Pic(V) ~ Z is
generated by the plane section. Thus, degrees of curves on V' are divisible by 4.
The dimension of the space of curves of degree 4d on V is equal to 2d? 4 1 and the
genus of the generic curve of degree 4d is also equal to 2d* + 1. Hence, we expect a
finite number of rational curves of degree 4d with 2d% 4+ 1 nodes. We beleive that
these numbers fit into the picture above, because generic quartic has a canonical
1-st order non-algebraic deformation. Unfortunately, we were not able to define
numbers of rational curves on quartics following pattern of section 2. Presumably,
there should be a Mirror relation between these numbers and a variation of Hodge
structures with one of periods equal to

I(z) _ Z (4?1)!2" .

14
= (n!)
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