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SMALL EIGENVALUES OF CLOSED SURFACES

WERNER BALLMANN, HENRIK MATTHIESEN, AND SUGATA MONDAL

Abstract. We show that the Laplacian of a Riemannian metric on a
closed surface S with Euler characteristic χ(S) < 0 has at most −χ(S)
small eigenvalues.

1. Introduction

Relations between the spectrum of the Laplacian and the geometry and
topology of the underlying Riemannian manifold are a fascinating topic at
the crossroads of a number of mathematical fields. We are concerned with
the case of closed Riemannian surfaces S. Then the spectrum of the Lapla-
cian ∆ is discrete and consists of eigenvalues with finite multiplicity. We
enumerate these in increasing order,

0 = λ0 < λ1 ≤ λ2 ≤ . . .

where an eigenvalue is counted as often as its multiplicity requires.
In [?, ?, ?, ?], Peter Buser and Paul Schmutz studied the Laplace operator

of hyperbolic metrics, that is, Riemannian metrics of constant Gauss curva-
ture −1, on closed orientable surfaces S = Sg of genus g ≥ 2. Based on their
work, they conjectured that the Laplace operator of a hyperbolic metric on
Sg has at most 2g − 2 small eigenvalues. These are eigenvalues below 1/4,
the bottom of the L2-spectrum of the Laplacian on the hyperbolic plane.

In [?], Jean-Pierre Otal and Eulalio Rosas proved a general version of this

conjecture, namely that λ2g−2 > λ0(S̃) for any real analytic Riemannian

metric of negative curvature on Sg, where λ0(S̃) is the bottom of the L2-

spectrum of the Laplacian on the universal covering surface S̃ of Sg, endowed
with the pull back of the Riemannian metric of Sg. In his thesis [?] (see also
[?]), the third named author showed that, for any hyperbolic metric on
Sg, there is a constant ε, which only depends on the systole of the metric,
such that λ2g−2 ≥ 1/4 + ε. In his Bachelor thesis [?], the second named
author showed that the assumption of negative curvature in the result of
Otal and Rosas can be omitted. Since smooth Riemannian metrics can be
approximated by real analytic metrics, the latter result implies that λ2g−2 ≥
λ0(S̃) for any smooth Riemannian metric on Sg. Our main result, ?? below,
improves this weak to a strict inequality.
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For a domain Ω in a Riemannian surface, the bottom of the L2-spectrum
of the Laplacian on Ω is given by

(1.1) λ0(Ω) = inf{R(φ) | φ ∈ C∞cc (Ω), φ 6= 0},
where R(φ) =

∫
‖∇φ‖2/

∫
φ2 denotes the Rayleigh quotient of φ. If Ω is

compact with piecewise smooth boundary, then λ0(Ω) is the first Dirichlet
eigenvalue of Ω, that is, λ0(Ω) is the smallest λ ∈ R such that the problem

(1.2) ∆φ = λφ on Ω̊, φ = 0 on ∂Ω,

admits a non-zero solution φ which is smooth on Ω̊ and continuous on Ω̄.
From this characterization and (??) it is evident that, for any two compact
domains Ω1 and Ω2 with piecewise smooth boundary,

(1.3) λ0(Ω1) > λ0(Ω2) whenever Ω1 ( Ω2.

Suppose now that S is a closed Riemannian surface and let

(1.4) ΛD(S) = inf λ0(Ω), ΛA(S) = inf λ0(Ω), ΛC(S) = inf λ0(Ω),

where Ω runs over all compact embedded discs respectively annuli respec-
tively cross caps in S with piecewise smooth boundary. In each case, the
infimum may also be taken over all finite graphs G in S such that S \G is
an open disc, annulus, or cross cap. Furthermore, we set

(1.5) Λ(S) = min{ΛD(S),ΛA(S),ΛC(S)}.
Our main result is the following

Theorem 1.6. For any closed surface S with Euler characteristic χ(S) < 0,
we have

λ−χ(S) > Λ(S).

Observe that any embedded disc, annulus or cross cap with piecewise
smooth boundary in S can be lifted isometrically to S̃ or a cyclic quotient of
S̃. Hence, by Theorem 1 in [?] and (??), we have Λ(S) ≥ λ0(S̃). In view of

(??) we suspect, however, that always Λ(S) > λ0(S̃). Indeed, for orientable
closed surfaces with hyperbolic metrics, we have

(1.7) Λ(S) ≥ 1/4 + δ(S)

by Theorem 1.1 in [?] (or, respectively, Theorem 2.1.4 in [?]), where

(1.8) δ(S) = min{ π
|S|

,
s(S)2

|S|2
} > 0

with s(S) and |S| denoting the systole and the area of S, respectively.
We emphasize that our proof of ?? gives the strict inequality λ−χ(S) >

λ0(S̃) as opposed to the weak inequality, which would follow from [?] (at
least in the orientable case, as explained further up). The main line of the
proof of ?? follows [?]. As in that reference, our arguments rely mostly
on rather elementary topological properties of surfaces. However, we do not
(and cannot) use the regularity theory of real analytic functions. Instead, we
mostly invoke arguments from the elementary calculus of smooth functions.
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2. Approximate nodal sets and domains

In what follows, S is a closed Riemannian surface with negative Euler
characteristic. We denote by ∆ the positive Laplacian of S. For any λ ≥ 0,
we let Eλ = {φ ∈ L2(M) | ∆φ = λφ} be the λ-eigenspace of ∆ in L2(M)
(where we allow for Eλ = {0}). We let

(2.1) E = ⊕λ≤Λ(S)Eλ
and S be the unit sphere in E with respect to the L2-norm. The assertion
of ?? is that dimE ≤ −χ(S).

Recall that any eigenfunction of ∆ is smooth (elliptic regularity). Hence
each function in S is smooth. For any φ ∈ S,

(2.2) Zφ := {x ∈ S | φ(x) = 0}
is called the nodal set of φ. The connected components of the complement
S \ Zφ are called nodal domains of φ.

Lemma 2.3. For almost any x ∈ Zφ, we have ∇φ(x) = 0.

Proof. The set of points of density of Zφ has full measure in Zφ, and, clearly,
∇φ(x) = 0 at any such point x. �

We say that ε > 0 is regular or, more precisely, φ-regular, if ε and −ε are
regular values of φ. By Sard’s theorem, almost any ε > 0 is regular.

For any ε > 0, we call

(2.4) Zφ(ε) := {x ∈ S | |φ(x)| ≤ ε}
the ε-nodal set of φ. We are only interested in the case where ε is regular.
Then Zφ(ε) is a subsurface of S with smooth boundary, may be empty or
may consist of more than one component, and the boundary components of
Zφ(ε) are embedded smooth circles along which φ is constant ±ε.

Let ε > 0 be regular. Delete from Zφ(ε) all the components which are
contained in the interior of an embedded closed disc in S and obtain the
derived ε-nodal set Z ′φ(ε). By definition, no component of Z ′φ(ε) is contained

in the interior of an embedded closed disc in S. Since Z ′φ(ε) is important in
our discussion, we view its definition also from a different angle: If D ⊆ S
is an embedded closed disc, then the components of Zφ(ε) contained in the
interior of D are compact and bounded by smooth circles. Each such circle
is the boundary of an embedded closed disc D′ in D, by the Schoenfliess
theorem. By definition, the boundary circle ∂D′ of any such disc D′ is also
a boundary circle of a component C of Zφ(ε). There are two possible types
for ∂D′: Either C is in the outer part or in the inner part of ∂D′ with
respect to the interior of D. We say that D′ is essential if C is in the inner
part of ∂D′. In other words, D′ is essential if a neighborhood of ∂D′ in
D′ is contained in Zφ(ε). Essential discs in S are either disjoint or one is
contained in the other; they are partially ordered by inclusion. Therefore
each essential disc is contained in a unique maximal essential disc.

For any regular ε > 0, Yφ(ε) := S \ Z̊ ′φ(ε) is a smooth subsurface of S.

Lemma 2.5. For any regular ε > 0, we have:
1) Yφ(ε) is a smooth and incompressible subsurface of S.
2) Each component C of Yφ(ε) is the union of some component C0 of {φ ≥ ε}
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or of {φ ≤ −ε} with a finite number (≥ 0) of maximal essential discs which
are attached to C ′ along ∂C ′. In particular, φ|∂C = +ε or φ|∂C = −ε.
3) The function φε on S, defined by

φε(x) =


φ(x)− ε if φ(x) ≥ ε,
φ(x) + ε if φ(x) ≤ −ε,

0 otherwise,

belongs to H1(S). Moreover, limε→0 φε = φ in H1(S).

Proof. ??) Since Z ′φ(ε) is a union of components of the smooth subsurface

Zφ(ε) of S, it is a smooth subsurface of S. Hence the complement Yφ(ε) of
its interior is also a smooth subsurface of S.

It remains to show that there is no loop c in Yφ(ε) which is not homotopic
to zero in Yφ(ε), but is homotopic to zero in S. We suppose the contrary
and assume without loss of generality that c is simple and contained in the
interior of Yφ(ε). Since c is homotopic to zero in S, it bounds an embedded
closed disc D in S, by ??. Now D is not contained in Yφ(ε) since c is not
homotopic to zero in Yφ(ε). Hence D contains components of Z ′φ(ε). These

are in the interior of D since c lies in the interior of Yφ(ε). But this is in
contradiction to the definition of Z ′φ(ε).

??) For each component of Zφ(ε) which is contained in the interior of an
embedded closed disc, choose an essential disc as explained in our discussion
of the definition of Z ′φ(ε) further up. Since each essential discs is contained in

a unique maximal essential disc, it follows that Yφ(ε) is equal to the (possibly

non-disjoint) union of S \ Z̊φ(ε) = {|φ| ≥ ε} with maximal essential discs.
Hence each of the components of Yφ(ε) consists of some component C0 of
{φ ≥ ε} or of {φ ≤ −ε} together with a finite number (≥ 0) of maximal
essential discs which are attached to C ′ along ∂C ′.

??) For all x ∈ S, we have |φε(x)| ≤ |φ(x)|. Hence φε is in L2(M).
Moreover, φε(x) → φ(x) for all x ∈ S, hence limε→0 φε = φ in L2(M).
Furthermore, φε has weak gradient

∇φε(x) =

{
∇φ(x) if |φ(x)| ≥ ε,

0 otherwise.

It follows that φε is in H1(S). Furthermore, limε→0∇φε = ∇φ in H1(S), by
??. �

We let Y ′φ(ε) be the union of the components C of Yφ(ε) with Euler char-

acteristic χ(C) < 0. That is, Y ′φ(ε) is the union of the components of Yφ(ε)
which are not diffeomorphic to a disc, an annulus, or a cross cap.

Lemma 2.6. For all sufficiently small regular ε > 0, we have χ(Y ′φ(ε)) < 0.

In other words, Y ′φ(ε) is non-empty for all sufficiently small ε > 0.

Proof. Case 1: Assume first that the Rayleigh quotient R(φ) < Λ(S) and
choose a δ > 0 such that

R(φ) ≤ Λ(S)− 2δ.
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By ??.??, we have, for any sufficiently small regular ε > 0,∑
C

∫
C |∇φε|

2∑
C

∫
C φ

2
ε

≤
∫
S |∇φ|

2dv∫
S φ

2dv
+ δ = R(φ) + δ ≤ Λ(S)− δ,

where the sums run over the components C of Yφ(ε). We conclude that there
is a component C such that

R(φε|C) =

∫
C |∇φε|

2∫
C φ

2
ε

≤ Λ(S)− δ.

Since φε vanishes along ∂C, it follows from the definition of Λ(S) that C is
neither a disc, nor an annulus, nor a cross cap. Hence the Euler characteristic
of C is negative.

Case 2: Assume now that R(φ) = Λ(S). This is the only part of the
proof which requires the regularity theory of the nodal sets of eigenfunctions,
and it is needed to establish that the inequality in ?? is strict.

Since E is the sum of the eigenspaces of ∆ with eigenvalues ≤ Λ(S),
the equality R(φ) = Λ(S) implies that φ is an eigenfunction of ∆ with
eigenvalue Λ(S). Now it is a classical result that non-zero eigenfunctions
of the Laplacian cannot vanish of infinite order at any point; see e.g. [?].
Therefore, by the main result of [?], at any critical point z ∈ Zφ of φ, there
are Riemannian normal coordinates (x, y) about z, a spherical harmonic
p = p(x, y) 6= 0 of some order n ≥ 2, and a constant α ∈ (0, 1) such that

φ(x, y) = p(x, y) +O(rn+α),

where we write (x, y) = (r cos θ, r sin θ). By Lemma 2.4 of [?], there is a
local C1-diffeomorphism Φ about 0 ∈ R2 fixing 0 such that

φ = p ◦ Φ.

Note that, up to a rotation of the (x, y)-plane, we have

p = p(x, y) = crn cosnθ

for some constant c 6= 0. It follows that the nodal set Zφ of φ is a finite
graph with critical points of φ as vertices ([?, Theorem 2.5]). It also follows
that, for any sufficiently small ε > 0, the only critical points of φ in {|φ| ≤ ε}
are already contained in Zφ. In particular, the gradient flow of φ can be
used to obtain a deformation retraction of S \ Zφ onto {|φ| ≥ ε}.

For any component C of S\Zφ, the restriction of φ to C vanishes nowhere
on C, and hence φ is the eigenfunction for the first Dirichlet eigenvalue of
C. It follows that λ0(C) = Λ(S).

Since φ is perpendicular to the constant functions, the interior of the
complement of a component C as above is non-empty. Hence C can be
strictly enlarged within S, keeping the topological type of C, while strictly
decreasing λ0(C); see (??). It follows that no component C of S \ Zφ is
diffeomorphic to a disc or an annulus or a cross cap (with piecewise smooth
boundary). Thus each component of S\Zφ has negative Euler characteristic.

It follows also that the graph Zφ does not contain non-trivial loops which
are homotopic to zero in S since otherwise S\Zφ would contain a component
which is a disc. Hence, for all sufficiently small regular ε > 0, no component
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of Zε(φ) is contained in a disc and each component of Yφ(ε) has negative
Euler characteristic. Thus Y ′φ(ε) = Yφ(ε), for all sufficiently small ε > 0. �

Lemma 2.7. For all regular ε > 0, we have χ(S) ≤ χ(Y ′φ(ε)).

Proof. By definition, Y ′φ(ε) and S \ Y̊ ′φ(ε) are smooth subsurfaces of S which
intersect along their common boundary, a finite number of circles. Hence

χ(S) = χ(Y ′φ(ε)) + χ(S \ Y̊ ′φ(ε)),

by the Mayer-Vietoris sequence. No component of S \ Y̊ ′φ(ε) is a disc since

otherwise the boundary of the disc would be a loop in Y ′φ(ε) which is not

homotopic to zero in Y ′φ(ε), but homotopic to zero in S. This would be in

contradiction to ??.??. It follows that χ(S \ Y̊ ′φ(ε)) ≤ 0. �

For later purposes, we want to attach signs to the components C of Y ′φ(ε):
We say that C is positive or negative if C is the union of maximal essential
discs with a component of {φ ≥ ε} or a component of {φ ≤ −ε}, respec-

tively. We denote by Y ′φ
+(ε) and Y ′φ

−(ε) the subsets of positive and negative

components of Y ′φ(ε), respectively.

Lemma 2.8. Let ε1 > ε2 > 0 be regular. Then

Y ′φ(ε1) ⊆ Y ′φ(ε2) and χ(Y ′φ(ε2)) ≤ χ(Y ′φ(ε1)).

Moreover, if χ(Y ′φ(ε2)) = χ(Y ′φ(ε1)), then Y ′φ(ε2) arises from Y ′φ(ε1) by at-

taching annuli and cross caps along boundary curves of Y ′φ(ε1). The analo-

gous statements hold for Y ′φ
±(ε1) and Y ′φ

±(ε2) in place of Y ′φ(ε1) and Y ′φ(ε1),
respectively.

Proof. By definition, Zφ(ε2) ⊆ Zφ(ε1). If a component of Zφ(ε1) is contained
in the interior of an embedded closed disc, then also all the components of
Zφ(ε2) it contains. It follows that Z ′φ(ε2) ⊆ Z ′φ(ε1) and hence that Yφ(ε1) ⊆
Yφ(ε2).

Let C1 be a component of Y ′φ(ε1) and C be the component of Yφ(ε2)

which contains it. Let B be the union of the components of Y ′φ(ε1) which
are contained in C. Since ε1 6= ε2, the boundaries of B and C are disjoint, by
??.??. Since the Euler characteristics of the components of B are negative,
boundary curves of B are not homotopic to zero in B.

Assume that χ(C) > χ(B). Then one of the components of C \ B̊ is a
(closed) disc. Then a boundary curve of B would be homotopic to zero in
S in contradiction to the incompressibilty of B; see ??.??. We conclude
that χ(C) ≤ χ(B). Since χ(B) < 0, we also conclude that C ⊆ Y ′φ(ε2).

Therefore Y ′φ(ε1) ⊆ Y ′φ(ε2) and χ(Y ′φ(ε2)) ≤ χ(Y ′φ(ε1)). Equality implies that

the differences C \ B̊ as above consists of annuli and cross caps.

By what we just said, the last assertion follows if Y ′φ
±(ε1) ⊆ Y ′φ

±(ε2). To

show this, let C1 be a positive component of Y ′φ(ε1) and C be the component

of Y ′φ(ε2) containing it. Assume first that C1 6= S, that is, that ∂C1 6= ∅. Now

C is the union of a number of maximal essential discs (with respect to ε2)
with a component C0 of {φ ≥ ε2} or {φ ≤ −ε2}. Since C1 is incompressible
in S and the boundary curves of C1 are not homotopic to zero in C1, ∂C1 is
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not contained in any of the maximal discs. Therefore ∂C1 intersects C0 non-
trivially. Since φ|∂C1 = ε1, we conclude that C0 is a component of {φ ≥ ε2}.
Hence C is positive and therefore Y +

φ (ε1) ⊆ Y +
φ (ε2).

The case C1 = S follows from the Schoenfliess theorem. The proof of the
inclusion Y −φ (ε1) ⊆ Y −φ (ε2) is similar. �

We want fo modify the subsurfaces Y ′φ
±(ε) so that their isotopy type in S

becomes independent of ε as ε→ 0: For any regular ε > 0, we let X+
φ (ε) be

the union of Y ′φ
+(ε) with the components of the complement of the interior

of Y ′φ
+(ε) in S which are annuli and cross caps. Note that φ = ε on the

boundary of such annuli and cross caps. We define X−φ (ε) accordingly and

set Xφ(ε) = X+
φ (ε) ∪X−φ (ε). Note that

(2.9) χ(X±φ (ε)) = χ(Y ′φ
±

(ε)) and χ(Xφ(ε)) = χ(Y ′φ(ε)).

By construction and ??.??, φ|∂C = ±ε for any component C of X±φ (ε).

Observe that X+
−φ(ε) = X−φ (ε), and accordingly for Y ′φ

±(ε).

Lemma 2.10. Let ε1 > ε2 > 0 be regular and suppose that χ(Xφ(ε1)) =

χ(Xφ(ε2)). Then (S,X+
φ (ε1), X−φ (ε1)) is isotopic to (S,X+

φ (ε2), X−φ (ε2));

that is, there is a diffeomorphism of S which is isotopic to the identity and
which restricts to a diffeomorphism between X+

φ (ε1) and X+
φ (ε2) respectively

between X−φ (ε1) and X−φ (ε2).

Proof. By (??), we have χ(Y ′φ(ε1)) = χ(Y ′φ(ε2)). Hence Y ′φ
±(ε2) arises from

Y ′φ
±(ε1) by attaching annuli and cross caps, by ??. The point of the ar-

gument below is that all boundary curves of Y ′φ
±(ε2) arise by attaching an

annulus A to a boundary curve of Y ′φ
±(ε1). Then φ is equal to ε1 on one of

the boundary curves of A and equal to ε2 on the other.
Without loss of generality, we only consider the X+-spaces. It suffices to

show that X+
φ (ε2) arises from X+

φ (ε1) by attaching annuli A such that φ is

equal to ε1 on one of the boundary curves of A and equal to ε2 on the other.
There are several cases in the passage from the Y ′-spaces to the X-spaces.

We exemplify the argument in one of the cases.
Suppose that, in the passage from Y ′φ

+(ε1) to X+
φ (ε1), an annulus A is

attached to Y ′φ
+(ε1) such that φ is equal to ε1 on the boundary curves of

A. Then φ = ε1 on ∂A and either φ > ε2 on A or else, by ??, there are
disjoint annuli A′, A′′ ⊆ A, each of them sharing a boundary curve with A,
such that φ is equal to ε2 on the other boundary curve and such that A′ and
A′′ belong to Y ′φ

+(ε2). By ??, we get an annulus A′′′ in A between A′ and

A′′ and sharing one of its boundary curves with A′ and the other with A′′.
In particular, φ is equal to ε2 on both boundary curves of A′′′. We conlude
that A = A′ ∪A′′′ ∪A′′ belongs to Xφ(ε2). �
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3. End of proof of ??

By the above Lemmas ?? – ??, we obtain a partition of the unit sphere
S in E into the subsets

(3.1) Ci := {φ ∈ S | χ(Xφ(ε)) = i for all sufficiently small ε > 0},
where χ(S) ≤ i < 0. By definition, φ ∈ Ci if and only if −φ ∈ Ci. Hence Ci
is the preimage of the subset Bi = π(Ci) in the projective space P = S/± id
under the canonical projection π : S→ P.

Lemma 3.2. Let ε > 0 and U ⊆ S be the subset of φ such that ε is φ-
regular. Then U is open and the isotopy types of (S,X+

φ (ε), X−φ (ε)) are

locally constant as functions of φ ∈ U .

Proof. Note that U is open since S is compact. Consider the map

F : U × S → R, F (φ, z) = φ(z).

Since E is finite dimensional, any two norms on E are equivalent. In partic-
ular, F is continuously differentiable. If φ ∈ U and z ∈ S satisfy φ(z) = ε,
then dφz 6= 0, and hence dF(φ,z) 6= 0. Choose a vector v ∈ TzS with
dFz(v) 6= 0 and coordinates (x, y) of S about z such that z = (0, 0) and
v = ∂/∂y. Then, by the implicit function theorem, there are open in-
tervals I 3 0 and J 3 ε, an open neighborhood W of φ in E, and a
smooth function y : W × I × J → R such that F (ψ, x, y(ψ, x, τ)) = τ for
all (ψ, x, τ) ∈ W × I × J . It follows that the families of curves {φ = ε}
depend smoothly on φ ∈ U ; and similarly for −ε. The claim of ?? now
follows easily from the construction of the X±-spaces. �

Now we are ready for the final steps of the proof of ??

Proof of ??. For Bi = π(Ci) as above, we show that π : S→ P is trivial over
Bi. To that end, we note that, for φ ∈ Ci, we have −φ ∈ Ci and that

(S,X+
−φ(ε), X−−φ(ε)) = (S,X−φ (ε), X+

φ (ε)).

Now (S,X+φ(ε), X−φ (ε)) is not isotopic to (S,X−φ (ε), X+
φ (ε)), by ??. Hence

the partition of Ci into the open subsets Ui,j with the same isotopy type
has the property that Ui,j ∩ −Ui,j = ∅. Note also that Ui,j ∪ −Ui,j is the
preimage of a subset Vi,j in P. It follows that π|Bi is trivial. We conclude
that −χ(S) > dimP = dimE − 1, by Lemma 8 in [?] (see also the final
paragraph in the proof of Lemme 5 in [?]). �
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Appendix A. On the topology of surfaces

For the convenience of the reader (and the authors), we collect some facts
from the topology of surfaces.

In what follows, let S be a surface of finite type, that is, S is diffeomorphic
to the interior of a compact surface with boundary, with Euler number
χ(S) ≤ 0. In other words, S is of finite type, but is not diffeomorphic to
the sphere or the real projective plane. In the orientable case, the first two
assertions are Corollary A.7 and Proposition A.11 in [?].

Lemma A.1. Any homotopically trivial simple closed curve in S bounds an
embedded disc. �

Lemma A.2. Let c0 and c1 be smooth two-sided simple closed curves in
S which are freely homotopic (up to their orientation) and which do not
intersect. Then c0 ∪ c1 bounds an embedded annulus in S. �

Lemma A.3. Let C ⊆ S be a connected subsurface with smooth boundary
which is closed as a subset of S. Assume that C contains a closed curve
which is homotopic to zero in S, but not in C. Then S \ C̊ contains a
connected component which is diffeomorphic to a closed disc.

Proof. Without loss of generality we may assume that C̊ contains a smoothly
immersed simple closed curve c which is homotopic to zero in S, but not in
C. Now c bounds a smooth disc D in S, by ??, and B = C ∩D is a smooth
and closed subsurface in D. Furthermore, B is connected since c = ∂D ⊆ B
and B 6= D since otherwise c would be homotopic to zero in C. Hence the
interior of D contains boundary circles c′ of B, and the interior D′ of any
such c′ in D is disjoint from C. By the Schoenfliess theorem, any such D′ is
diffeomorphic to a disc. �

A subsurface C ⊆ S is called incompressible in S if any closed curve in
C, which is homotopic to zero in S, is already homotopic to zero in C.

Corollary A.4. Let C ⊆ S be a connected subsurface with boundary which is
closed as a subset of S. Assume that no component of S \ C̊ is diffeomorphic
to a closed disc. Then C is incompressible in S.

For a proof of the following result, we refer to Chapter 1 of [?].

Theorem A.5. Let S be a compact and connected surface with χ(S) < 0
and L ⊆ S be a closed one-dimensional submanifold. Let F : S → S be a
diffeomorphism which is isotopic to the identity and such that F (L) = L.
Then F leaves all components of L and S \ L invariant.
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