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Quantum symmetric spaces

J.Donin and S.Shnider

1 Introduction

Let G' be a semisimple Lie group, g its Lie algebra, and » € A®2g the Drinfeld-
Jimbo R-matrix (see Section 2). Suppose H is a closed subgroup of G and
M = G/H. Then the action of G on M defines a mapping p: g — Vect(M).
So, the element (p @ p)(r) induces a bivector field on M which determines
a bracket {-,-} on the algebra C*(M) of smooth functions on M. In some
cases this will be a Poisson bracket which we will call an R-matrix Poisson
bracket. The natural question arises whether this bracket can be quantized.

The first case when {-,-} is a Poisson bracket is when the Lie algebra
of H contains a maximal nilpotent subalgebra. In [DGM] it is proven that
in this case there exists a quantization of {-,-}, i.e. there is an associative
multiplication gy, in C®(M) of the form gy = m + h{-,-} + o(h) where m
is the usual multiplication in C*°(M). Moreover, this multiplication will
be invariant under action of the Drinfeld-Jimbo quantum group Uxa. This
means that p, satisfies the condition

zpn(a,b) = pdn(z)(a ®b),

where a,b € C®(M), x € Upg, and A is the comultiplication in Upg. In
[DG1] it is shown that in such a way one can obtain the Ujg-invariant quan-
tization of the algebra of holomorphic sections of line bundles over the flag
manifold of G

In the present paper we consider the case when M is a symmetric space.
It turns out that in this case {-,-} also will be a Poisson bracket and there
is a Upg-invariant quantization ol this bracket.

Morcover, if M is equipped with a G-invariant Poisson bracket {-,}inv,
then there exists a simultaneous Upg-invariant quantization g, of these



brackets in the form
Mo =M+ v{-, Vinw + R{:, -} + o(v, ).

This is the case, for example, when M is a Hermitian symmetric space.
Then {-, }iny coincides with the Kirillov bracket. The usual deformation
quantization of the Kirillov bracket, ju,, is invariant under GG and Ug. Thus,
one may consider the multiplication ji,  as such a quantization of the Kirillov
bracket which is invariant under the action of the quantum group Upg.

Note that the Kirillov bracket is also generated by r in the following
way. Let {-,-}' be a bracket on C®(() that generates by the left-invariant
extension of r as a bivector field on (/. Using the projection G — G/H = M
we can consider (M) as a subalgebra of C*°(G). One can to check that
C°(M) is invariant under {-,-}" if / is a Levi subgroup. For such H the
difference {-,-} — {-, -}’ gives a Poisson bracket on M, the so-called Sklyanin-
Drinfeld Poisson bracket. The quantization of this Poisson bracket is given
in [DG2]. In case M is a symmetric space the bracket {-,-}’ will be a Poisson
one itself and coincides with the Kirillov bracket {-,-}iny (see [DG2]). In [GP]
there is given a classification of all orbits in the coadjoint representation of
G on which r induses the Poisson bracket.

The authors wish to thank D.Gurevich for stimulating discussions about
subject of the paper.

2 R-matrix Poisson brackets on symmetric
spaces

Let g be a simple Lie algebra over the field ol complex numbers C. Fixed a
Cartan decomposition of g and the corresponding root system 2, we consider
the Drinfeld-Jimbo R-matrix

r= Y XoAX_s €A%,
aEQt

where X, are the elements from the Cartan—Chevalley basis of g correspond-
ing to £, and Q% denotes the set of positive roots. For shortness we will
write this A-matrix as r = r; @ rs.
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That r satisfies the so-called modified classical Yang-Baxter equation
which means that the Schouten bracket of r with itself is equal to an in-
variant element ¢ € A%g:

[y lsen = (2, 07) 4 72,07 4 [12,0%) = o (1)

Here we use the usual notation: r!? = rM®r®1, r13 = r ®1® ry, and so
on. Note that any invariant element in A3g is dual up to a multiplicity to the
three-form (=, [y, z]) on g, where (-, ) denotes the Killing form. Therefore, ¢
will be also invariant under all automorphisms of the Lie algebra g.

The R-matrix » obviously satisfies the conditions: a) it is invariant under
the Cartan subalgebra ¢, and b) 0r = —r where § is the Cartan involution
of g, so that 6 X, = —X_,. These conditions determine 7 uniquely up to a
multiple (see [SS]).

In case g is a semisimple Lie algebra with a Cartan decomposition, let
r € A%g satisfy the equation (1) for some invariant ¢ € A%g and the previous
conditions a) and b). Then r will be a linear combination of the Drinfeld-
Jimbo R-matrices on the simple components of g. We will also call such r
the Drinfeld-Jimbo R-matrix.

Let gz be a real form of a semisimple Lie algebra g, and G a connected Lie
group with gg as its Lie algebra. Suppose o is an involutive automorphism
of G, and H is a subgroup of ¢ such that G C H C (7, where G7 is
the set of fixed points of ¢ and G is the identity component of G°. The
automorphism ¢ induces an automorphism of the both Lie algebras gz and
g which we will also denote by o. Thus, the space of left cosets M = G/H
turns into a symmetric space (see [He]). We denote by o the image of unity
by the natural projection GG — M. The mapping 7 : M — M,gH — o(g)H,
is well defined and has o as an isolated fixed point, therelore, the differential
T : T, = T, of 7 at the point o multiplies the vectors of the tangent space 7,
by (—1).

The action of G on M defines the mapping of gg into the Lie algebra of
real vector fields on M, p: g — Vectg(M), that extends up to the mapping
p g — Vect(M) of the complexification of gz into the Lie algebra of complex
vector fields on M.

The mapping p induces on M a skew-symmetric bivector field in the
following way. The element p(r;) ® p(ry) € A*Vect(M) generates a bracket
on the algebra C°(M) of smooth complex-valued functions on M, {f, ¢} =



p(r))f - p(re)g, where f,g € C®(M) and p(r1)f is the derivative of f along
the vector field p(ry). 1t is obvious that this bracket is skew-symmetric and
satisfies the Leibniz rule. Therefore it is defined by a bivector field which we
denote by p(r).

From now on we will suppose that the invariant element ¢ € A3g is
invariant under o as well. In case g is a simple Lie algebra this will be
satisfied automatically.

Proposition 2.1 The brackel {-,-} s a Poisson bracket on M.

Proof  Indeed, the bracket is obviously skew-symmetric and satisfying the
Leibniz rule. Further, p(y) is a G-invariant three-vector field on A/, therefore
it is defined by its value at the point o, p(p),. Since ¢ is o-invariant, p(y)
has to be r-invariant, which implies that 7p(¢), = p(¥).. But the operator
7 acts on T, by multiplying by (=1}, so that 7p(p), = —p(®),. Therefore,
p(p) = 0. It means that the Schouten bracket {p(r), p(r)] is equal to zero,
and this is equivalent for the bracket {-,-} to satisfy the Jacobi identity. =

We will call the bracket {-,-} an R-matrix Poisson bracket. Note that
this bracket is not g-invariant and is degenerate in some points of .

Suppose now that there is on M a g-invariant Poisson bracket {-,-}iny.
The case will be, for instance, if M is a Hermitian symmetric space. Then the
imaginary part of the Hermitian form gives a symplectic form w on M, and
the dual to w bivector field determines on M a g-invariant Poisson bracket

{.,.}inu.

Proposition 2.2 The R-matriz and any invariant Poisson brackels are com-
patible, i.e. for any a,b € C the bracket a{-,-} + b{-, }iny is @ Poisson one.

Proof  The straightforward computation (see [DGM]). =

3 Three monoidal categories

We recall that a monoidal category is a triple (C, ®, ¢) where C 1s a category
equipped with a functor @ : C x C — C, a tensor product functor, and a



functorial isomorphism ¢: (X @Y)®@ Z) » X @ (Y ® Z) called associativity
constraint, which satisfies the pentagonal identity, 1.e. the diagram

(XeviezelU 2 (XeYie(zel) % Xo(¥e(el)
b id | 1id® ¢
(Xe(Yez)eU ¢ > Xe((vez e

(1)

is commutative. _

If (E,@, @) 1s another monoidal category, then a morphism from C to C

is given by a pair («, 8) where o : C — C is a functor and 8 : o(X ® Y)—
a(X)®a(Y) is a functorial isomorphism such that the diagram

((XRY)Q Z) A, (X ® Y)®a(Z) A& (A X)®a(Y)Ba(Z)
a(¢) | L é

WXe(rez) L oX)Barez) 08 W(X)Ba(Ea(2))

(2)
is commutative.

The morphism (¢, #) of monoidal categories allow us to transfer addi-
tional structures given on ohjects of C to objects {rom C. For example, let
X € Ob(C). A morphism will be called C—associative if we have the fol-
lowing equality of morphismsof (X @ X) @ X — X

(e @rd) = u(id @ p)o.

Then, for a(X) € Ob(C) the naturally defined morphism a(x)8~! : o(X) ®
a(X) — oX) will be associative in the category C.

Let A be a commutative algebra with unit, B a unitary A-algebra. The
category of representations of B in A-modules, i.e. the category of B-
modules, will be a monoidal category if the algebra B is equipped with
additional structures [Dr]. Suppose A : B - B ®4 B is an algebra mor-
phism, a comultiplication, and ® € B®? is an invertible element. Suppose A
and & satisfy the conditions

(id @ A)A(D) - & = & - (A ®id)(Ab), be B, (3)
(id® @ A)(®) - (A @ id®)(®) = (10 0) (id@ A Qid)(P)- (P 1). (4)
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We define a tensor product functor which we will denote @¢ for C the
category of B modules or simply ® when there can be no confusion in the
following way: given B-modules M,N M @c N = M ®4 N as an A-module
with the action of B defined as b(m @ n) = bym @ byn where by @ by = A(b).
The element ® gives an associativity constraint ¢ : (M QN)® P - M Q®
(N@PL,(m@n)@p — dm @ (Pan ® $3p), where &1 @ ¢, @ &3 = .
By virtue of (3) ® induces an isomorphism of B-modules, and by virtue of
(4) the pentagonal identity (1) holds. We call the triple (B, A, ®) a Drinfeld
algebra. Thus, the category C of B-modules for B a Drinfeld algebra becomes
a monoidal category. When it becomes necessary to be more explicit we shall
denote C(5, A, ®).

Let (B, A, ®) be a Drinfeld algebra and F € B®2 an invertible element.
Put

A(b) = FA(DYF™', be B, (5)

and

d=(1QF) (idRA)F) ¢ - (A@id)(F™") (F@1)". (6)

Then A and & are satisfying (3) and (4), therefore the triple (B, A, ®) also
becomes a Drinfeld algebra which generates the corresponding monoidal cate-
gory C(B, A, ®). Note that the categories C and C consist of the same objects
as B-modules, and the tensor products of two objects coincide as A-modules.
The categories C and € will be equivalent. The equivalence C — C is given by
the pair (o, 8) = ({d, '), where Id : C — C is the identity functor of the cat-
egories (considered without the monoidal structures, but only as categories
of B-modules), and /' : M@ N — M @zN is defined by m@n — Fim@ fon
where Iy @ Fy, = F. By virtue of (3) F gives an isomorphism of -modules,
and (6) implies the commutativity of diagram (2).

Assume M is a B-module with a multiplication g : M @4 M — M which
is a homomorphism of A-modules. We say that p is invariant with respect
to B3 and A if it is a morphism in the monoidal category C(B, A, ®). This
means that

hu(z @y)=pAd)(z®@y) lorbe B, z,y e M. (7)

When g is C-associative, C = C(B, A, ®), then we shall also say that s is a
®-associative multiplication, i.e. we have the equality

e id)(zyz2)=p(idQ )Pt @y 2) forz,y,z€ M. (8)
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Since the pair (Id, F') realizes an equivalence of the categories, the multipli-
cation i = uf"~1: M @4 M — M will be ®-associative and invariant in the
category C.

Now we return to the situation of Section 2. Let g be a semisimple
Lie algebra over € with a fixed Cartan decomposition and an involution .
Let Ug be the universal enveloping algebra with the usual comultiplication
A Ug — Ug®? generated as a morphism of algebras by the equations
Alz)=1@z+z®1 for z € g and extended multiphcatively.

We will deal with the category Rep(Ug). Objects of this category are
representations of Ug[[h]] in C[[/]]-modules of the form E[{%]] for some vector
space [£. We denote here hy E[[h]] the set of formal power series in an
indeterminate & with coefficients in £. By tensor product of two C[[h]}-
modules we mean the completed tensor product in r-adic topology, i.e. for
two vector spaces E; and E, we have [[[h]] ® E:[[R]] = (Ei ®c £2)[[R]]-
As usual, morphisms in this category are morphisms of C[[}]]-modules that
commute with the action of Ug{[h]]. A representation of Ug[[h]] on E[{A]] can
be given by a power series Ry = Ro+ hRy + -+ "Ry, + - € End(E)[[h]]
where Ry is a C representation of Ug in £ and R; € Homg(U(g), £nd(E)).
Hence, Ity may be considered as a deformation of Ry. By misuse of language,
we will say that Ry is a representation of Ug in the space f2.

Since the comultiplication A on Ug gives rise to a comultiplication on
Ug[[k]] and is coassociative, the triple (Ug[[#]],&,1®@1® 1 = 1) becomes a
Drinfeld algebra and the category Rep(Ug) turns into a monoidal category
Rep(Ug, A, 1) with the identily associativity constraint. This is the classical
way to introduce a monoidal structure in the category Rep(Ug). Another
possibility arises from the theory of quantum groups due to Drinfeld. In the
following proposition we suppose that the element ¢ = {r,7]ses s invariant
under the involution o.

Proposition 3.1 1. There is an invariant element @, € Ug[[h]]®* of the
Jorm &, =1 @1 Q@1+ htp -+ - salisfying the following properties:

a) it depends on h*, ie. Oy = D_,;

b) it satisfies the equations (3) and (4) with the usual A;

c) (l’,:l =03 where D' = P30 0, @ P, for ¢ =, Q P, @ Py

d) &y is invariant under the Carlan involution 0 and o;

e) ®,®) = 1, where s is an antitnvolution of Ug such that s(z) = —z
for x € g, an antiautomorphism of g, and ¢} = (s @ s ® s)(Pp).



2. There is an element Iy € Ug[[h]]|®? of the form Fy=1@ 1+ hr +---
salisfying the following properties:

a) il satisfics the equation (6) with the wsual A and with ® =1Q 1@ 1;

b) it s invariant under the Cartan subalgebra ¢;

¢) Fop = Ff = I

d) Fp(Fp)! =1

Proof  Ixistence and properties a)-c) for ® are proven by Drinfeld [Dr].
From his proof which is purely cohomological it is seen that ¢ can be cho-
sen invariant under all those automorphisms under which the element ¢ is
invariant. This proves 1 d). 1 e) can also be deduced from the cohomologcal
construction.

Existence and the property a) for F' are also proven by Drinfeld [Dr]. In
his proof he used the explicit existence of the Drinfeld-Jimbo quanturn group
Ura. A purely cohomological construction of F, not assuming the existence
of the Drinfeld-Jimbo quantum group, and establishing the properties listed
in 2 b)-2 d) is given in [DS]. =

So, we obtain two nontrivial Drinfeld algebras: (Ug, A, ®) with the usual
comultiplication and ¢ from Proposition 3.1, and (Ug, A, id) where A(z) =
FiA(z)Fy ! for z € Ug. The corresponding monoida,l categories Rep(Ug, A, )
and Rep(Ug, A,1) are isomorphic, the isomorphism is given by the pair
(Id, Fy,). Note that the bialgebra (Ug[[h]],A) is coassociative one and is
isomorphic to Drinfeld-Jimbo quantum group Upge. So that the category
Rep(U/g, A, 1) with the trivial associativity constraint is called the category
of representation of quantum group. Underline ones again that if “to forget”
of monoidal structures all three categories are isomorphic to the category

Rep(Ua).

Remark. Define for the category Rep(Ug, A, ®) a category Rep’ with the
reversed tensor pxoduct Ve W=Wge®V, and the associstivity constraint
(VR WY@ U)=d (U@ (W®V)). Denoteby S: VRW - WV
the usual pelmutatlon, v @ w — w@ v, which we will perceive as a mapping
V@W — V@' W. Then the condition 1 ¢) for ® implies that the pair (/d, S)
defines an equivalence of the categories Rep(Ug, A, ®) and Rep'.
The antiinvolution s defines an antipode on the bialgebra Ug. The exis-
tance of the antipode together with the property 1 e) for @, makes Rep(Ug, A, ®)



into a rigid monoidal category, and the equivalence hetween Rep(Ug, A, @)
and Rep’ will be an equivalence between rigid monoidal categories.

The property 2 c) for F}, provides the equivalence of the categories Rep(Ug, A, ®)
and Rep(Ug, A, 1) as rigid monoidal categories (see [DS] for more details).

4 Quantization

Let A be the sheaf of smooth functions on a smooth manifold M. Let Diff(M)
be the sheaf of linear differential operators on M. A C-linear mapping A :
®¢A — A is called n-differential if there exists an element b= @5 Diff (M)
such that A(a; ® ... ® a,) = :\1(11 . ;\2(12 e 5\,1(1,., where A = :}1 Q@ An
(summation understood). It is easy to see that the element A is uniquely
determined by the form A. We say that A is “null on constants”, il A(a; ®
... ® a,) = 0 in case one of «; is a constant. Such A is presented by =
@7 Diff (M )y where Diff (M )y denotes differential operators which are zero on
constants. From now on we only consider n-differential forms that are zero
on the constants. These forms are elements of the space of differencial n-
cochains of the Hochschild complex of the algebra A. Denote by H™(A) the
Hochschild cohomology defined by the complex of such spaces.

It is known that the space H"(A) is isomorphic to the space of the an-
tisymmetric n-vector fields on M. Suppose that a group ¢ acts on M and
there exists a G-invariant connection on M. In this case Lichnerowicz proved
([Li]) for n < 3 that HZ(A) is isomorphic to the space of the G-invariant an-
tisymmetric n-vector fields on M. Here Hg(A) is the cohomology of the
subcomplex of G-invariant cochains.

We will consider forms Ay : A[[2]]®* — A[[L]] given by power series [rom
Diff(M)®2%{[]] of the form D; ® Dy = 1@ 1 + T hA; ® Ay It means that
Au(a,b) = Dya - Dgb for a,b € A, So, Ao(a,b) = ab. We will also write
Ap i A®? — AL The form gy, @ A®? is called equivalent to A, if there exists a
form £, : A — A, €& = 14+ 5 A such that up(a ® b) = &7  An(€ra @ £xD).

Let M be a symmetric space, as in Section 2. Consider the space A =
C*°(M) as an object of the category Rep(Ug, A, ®,) where &, is from Propo-
sition 3.1.

Proposition 4.1 There is a mulliplication p, on A with the properies:



a) py s Op-associative, i.c.

pa(pn @ud{a @ 6@ ¢c) = pr(td @ pup)Pr(a @b Q ¢), a,b,c € A;

b) pp has the form

pr{a @by =ab+ > Rii(e @ b),

>4
where p; are two-differential cochains, null on constants. Moreover, u, de-
pends only on h?, i.e. pn = p_p;

c) iy is invariant under g and 1;

d) py is commutative, i.e.

fin(a ®b) = (b ® a).
The multiplication with such properties is unique up to equivalence.

Proof  We use arguments from [Li], proceeding by induction. We may
put pty = pp = 0, because the usual multiplication m(a @ b) = «b satisfies
a) modulo h*. This follows because ®, is a series in h? and the A%-term
@ = 0 on M. Suppose we have constructed g; for even 1 < n, such that
1} = Yevenicn ftilt' satislies a)-d) modulo A™. Then,

jn(pr @ id) = pi(3d @ pip )yOn + hy modh™?, (1)

where 7 is an invariant three-form.
The following direct computation using the pentagon identity for &,
shows that 7 is a Hochschild cocycle. By definition

dy =m(Ed @ n) — n(m @ id®* + y(id @ m @ id) — n(id®* @ m) + m(n @ id).

Using (1) and calculating modulo 2"*? we can replace m with u}. Further-
more, the G-invariance of u} implies that

G @1d®?) = (uh @id®*)A @ 1d®)D,
PLrd @y ®1id) = (1d@pu; ®id)(1d @ :d @ A)D,
AP Q@ u}) = (1d®* @ u})(id®* @ A)D.
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Therefore we have the following equations modulo A"+,

pr(id @ ) (id @ i @ id) — pR(id @ up)(id®® @ pp)(1 @ ®4) = A*m(id @ 1)
e @ id)(ph @ id®?) — 12 (id @ p})(pf @ 1d®?) (A @ 1d®?) (@) = h"p(m @ 1d®?)
il @1d)(id @ py @ id) — pi(1d @ p3)(Ed @ pj @ 1d)(id @ A @ id) (D)

=h"y(id @ m @ id)

wr (e @1d)(1d®? @ up) — 1 (id @ p})(id®* @ ) (1d®* @ AY) (@) = A"n(2d®* @ m)
(e @ id)(pf @ 1d®?) — pp (1} @ id)(id @ py ®@1d)(Pr © 1) = h™m(n @ id).

Since the equations are congruences modulo A**? and A*® =1 modh™*?
the equations remain valid if we multiply on the left by any expression in ¢
and leave the right side unchanged. Multiply the left side of the first equation
by ((1d@A®1d)®)(P@1), the left side of the third equation by ¢ @1, the left
side of the fourth equation by (A @ id @ id)®, leave the remaining equations
unchanged, then add the five equations with alternating signs. Using the
pentagon identity in ® and the identity (g @ ¢d)(id @ id @ y3) = yp @ piy
(2d @ 13 ) (e ® id @ id), we conclude that dy = 0.

Since g is semisimple the cochains invariant under g and 7 form a subcom-
plex which is a direct summand. The arguments from the proof of Propo-
sition 2.1 show that there are no three-vector fields on M invariant under g
and 7 . Hence the cohomology of this subcomplex is equal to zero, i.e. 7 is
a coboundary. Further, there is a g and 7 invariant connection on M (see
[He] 4.A.1). The property &' = @32 and commutativity of g; imply that
Me®@b®c) =nc®@b® a). It follows from this that there is an invariant
commutative two-form i, such that dp, = 5, which gives that g} + 2%,
satisfies to a)-d) modulo h"*t?, Therelore, proceeding step-by-step we can
build the multiplication .

Uniqueness of such a multiplication can be proven by the similar coho-
mological arguments. m

Now we suppose that on the algebra A there is a g and 7 invariant mul-
tiplication g, : (A ® A)[{v]] = A[[v]] which is associative in the usual sense
and such that po = m where m is the usual multiplication on A. Denote by
A, the corresponding algebra. Let H™(A,) be the Hochschild cohomology of
this algebra. Since HZ ,(Ag) = 0 it is casy to see that Hg (A,) =0 as well.
It allows us, using the arguments from the proof of Proposition 4.1, to state
the following

11



Proposition 4.2 There is a mulliplication p,, on A depending on two for-
mal variables with the properies:
a) pyn is ©p-associative, i.e.

(o @) (e @b ¢) = pn(1d @ pup)Pr(e ®b6@c), «,b,c€ A
b) tup has the form

fon(@a®@b) =, (a®@b) + > Ry i(a®@b),
i>4
where p,; © (A® A)|[v]] — A[[v]] are two-differential forms being null on
constants. Moreover, .., depends only of h?, i.e. j,p = piy—n;
¢) ptyn is invariant under g and ;
d) pon coincides with yy from Proposilion 4.1.
The multiplication with such properties is unique up lo equivalence.

The multiplication pu, exists when M is a Hermitian symmetric space.
In this case g, can be constructed as the deformation quantization of the
Poisson bracket {-, - }in, which is the dual to the imaginary part of Hermitian
form on M. Such a quantization also can be given using the arguments of
Proposition 4.1 and has the form

i (a, by = ab+ él/{(l, b}iny + o(v).

Remark. Given g,, the multiplication g, can be constructed directly
using pp from Proposition 4.1. Namely, let ji, and fi, are bidifferential opera-
tors which present i, and iy, respectively. Thanks to the invariance of these
operators it is easy to show that the bidifferential operator i, = 1, - fip can
be taken as a presenting one for s, which satisfies Proposition 4.2. Indeed,
let A denotes a comultiplication which appears on the algebra Diff () due to
the G-invariant connection on M. This is an A-linear morphism of algebras,
A : Diff(M) — Diff(M)®.4 Diff (M ). Then the associativity conditions for g,
and s, can be expressed through the corresponding bidifferential operators
as follows (we again use the notations fi, = fi,1 ® fi,2 and so on):

(D1 @ l]'v2)(l}u ®1)=(ju1 ® Aﬂui’)(l ® /IV) (2)
(Aftar @ fina)(ftn @ 1) = (fimy @ Aftnz)(1 @ jin )P (3)

12
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Now observe that the operators i, @1 and Ajipy @ jin; commute. Indeed, one
can assume that in the presentation fiy = fin) @ fine (summation understood)
operators jip; are of the form p(x) where @ € Ug and p : Ug — Diff (M)
induced by the action of & on M. So that the commutativity follows from
the G-invariance of ji,. Similarly, the operators 1 @ [, and fip; ® Afing
commute. Now, taking the products of left and right sides of (2) and (3),
respectively, and using just proved commutativity, we obtain

(Aftont @ fon2)(for @ 1) = (fom @ D2 )(1 @ fun) P,

which equivalent to ®-commutativity of g, x.

Such a construction of p,, gives a more detailed information about this
multiplication. For example, if we set [«, 8], = p1,(a, b)— g, (b, a) and [a, b, 1 =
iy n(a, b) — pon(b,a) for ¢, b € A, then

[(L: b]u,h = [ ) ]uﬁh(ﬂ« ® b)‘ (4)

Suppose now that A with the multiplication g, has a trace, i.e. a functional
tr : A — C which satisfies the property

tr(p(a, b)) = tr(p.(b,a)) fora,be A
It follows from (4) that the same trace will be also satisfy the property
tr(ptwn(a, b)) = tr(p,n(b,a)) for a,b e A,

1.e. it respects the new multiplication.

Now let us consider A = C®°(M) as an object of the category Rep(Usg, A, 1)
of representations of the Drinfeld-Jimbo quantum group Uzg. As we have
seen in Section 3, the multiplications gy and g, can be transfered to this
category in the following way:

fn = pady!

- -1
fon = puply .

We may obviously assume that 7} has the form

Fp=1®1~- éh{-,-} + o(h).

Then we have the following
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Theorem 4.3 Let M be a symmelric space over a semisimple Lic group.
Then the multiplications fiy, and fi, 5 (the second ezists when M is a Hermi-
tian symmelric space) salisfy the following properties:

a) fup and fu, ) are associative;

b) fin and i, have the form

(e @ b) = ab+ —‘l)—h{a, b} + o(h)

1
fop(a @ b) = ab+ s(h{a, b} + v{a,b}iny) + o(h,v)

¢) fin and i, p are invariant under Upg;

d) fon coincides with ji,;

e) Let S = FRSF" where S denotes the usual transposition, S(a @ b) =
b®@a fora,be A. Then fiy is S-commulative:

in(a®b) = 1 S(b®a) for a,be CP(M).
The multiplications with such properties are unique up to equivalence.

Remarks. 1. If a trace ¢r is well defined for the multiplication p, 5 (see
the previous Remark), then setting r{«, b) = tr(Fh(a @ b)F;' we obtain a
trace for i, 5 with the property

(r(jun(a, B)) = ir(fun(S(a, b)),

2. The action of the real Lie group & and 7 on M induces an action on
C=(M)[[R]]. 1t follows from Propositions 4.1 and 4.2 that g and p,, are
invariant under G and 7. This implies that fi;, and g, » will be invariant under
a “quantized” action of (i and 7. This new action appears by taking of tensor
products of C*(AM). Namely, let ¢ be either an element of G or ¢ = 7, then
for @, b € C**(M) define goja = goa, gop(a®b) = Fi(g®g)F; ' (a®b), where o
denotes the usual action. The multiplications ji; and ji,, are invariant under
this quantized action, i.e., for example,

4 Op ft‘,‘h((t, b) = flu.hf} Op (a ® b)

3. We may consider a complex symmetric space M = G/ H, where (' is
a complex semisimple Lie group and H a complex subgroup. As above, one
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can construct the multiplications p, and jip on the space C*°(M) that also
will give a multiplication on the space of holomorphic functions on M. The
previous remark remains valid for the complex group .

In particular, the group G itsell may be considered as a symmetric space,
G = (G x G)/D where D is the diagonal. The action of & x G on G is
(91,92) 09 = 91997 "5 (91,92) € G x G, g € G. 1In this case (g1, 92) =
(g2,61), T(g) = ¢~'. For ¥ to be o-invariant R-matrix on the Lie algebra
g =0 @ e of G x G it must be of the form 7 = (r,7) € A%g, & Ay C
A%(g1 @ g2) where the Lie subalgebras g; and g, correspond to (G x 1) and
(1 x ). In this example Ug = (Ug)®* D Ug @ Ug and the elements d,
and F have the forms ®, = (Pp, @) and o= (Fh, Fr) corresponding
to ¥ where ®; and I are the elements from g appropriated to ». Then,
p(®1) = id, so that for pt5 one can take the usual multiplication m on C*(G),
and fip(a,b) = m(Fu(a ® b)F;'). Therefore, C*°(G) may be considered as
an algebra (and even bialgebra) in the category Rep((U/g)®2, A, 1) with the
multiplication fi (and the comultiplication & = F3A(«) where A is the usual
comultiplication).
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