Polycommutators of vector fields

A.S. Dzhumadil'daev
Institute of Mathematics, Pushkin street 125, Almaty, KAZAKHSTAN

Mathematische Arbeitstagung June 10-16, 2005
Max-Planck-Institut für Mathematik, Bonn, Germany

In our talk we discuss the following topics related to generalisations of commutators

- N-commutators
- nilpotency of odd derivations
- q-commutators, and
- algebras with skew-symmetric identities

Partially these results are published in [Dzh1], [Dzh4].

1 N -commmutators

Let X_{1} and X_{2} are vector fields (differential operators of first order). In general their composition is not a vector field. It is a differential operator of second order,

$$
X_{1}=u_{i} \partial_{i}, X_{2}=v_{j} \partial_{j} \Rightarrow X_{1} X_{2}=u_{i} \partial_{i}\left(v_{j}\right) \partial_{j}+u_{i} v_{j} \partial_{i} \partial_{j}
$$

To obtain vector field we need to calculate a commutator

$$
\left[X_{1}, X_{2}\right]=X_{1} X_{2}-X_{2} X_{1}=u_{i} \partial_{j}\left(v_{j}\right) d e r_{i}-v_{i} \partial_{i}\left(u_{j}\right) \partial_{j} .
$$

Now we consider k-ary generalisation of commutators. Let

$$
s_{k}=\sum_{\sigma \in \text { Sym }_{k}} \operatorname{sign} \sigma\left(\cdots\left(\left(t_{\sigma(1)} t_{\sigma(2)}\right) t_{\sigma(3)}\right) \cdots\right) t_{\sigma(k)}
$$

be standard skew-symmetric polynomial of degree k. Then

$$
\left[X_{1}, X_{2}\right]=s_{2}\left(X_{1}, X_{2}\right)
$$

In general $s_{k}\left(X_{1}, \ldots, X_{k}\right)$ are differential operators of order k.
Problem. Is it possible to define on s space of vector fields Vect(n) a new tensor operation induced by multiplication s_{k}.

In other words, might it happen that for some $k=k(n)$ all higher differntial degrees are cancelled?

As it turned out for some $k=k(n)$ such situation is possible. For example, if $n=2$, then for any $X_{1}, \ldots, X_{6} \in \operatorname{Vect}(2)$ a differential operator $s_{6}\left(X_{1}, \ldots, X_{6}\right)$ is once again a vectoe field. All degree 2,3,4,5,6-parts are cancelled.Moreover, the number 6 here can not be improved. If one consider s_{7} instead of s_{6} here are cancelled all differential parts including linera part,

$$
s_{7}\left(X_{1}, \ldots, X_{7}\right)=0
$$

for any $X_{1}, \ldots, X_{7} \in \operatorname{Vect}(2)$, It is easy to see that

$$
s_{k}\left(X_{1}, \ldots, X_{k}\right)=0, \quad \forall X_{1}, \ldots, X_{k} \in \operatorname{Vect}(2),
$$

if $k>6$. As far as s_{5}, it is not well defined operation on $\operatorname{Vect}(2)$. For example,

$$
s_{5}\left(\partial_{1}, \partial_{2}, x_{1} \partial_{1}, x_{2} \partial_{1}, x_{2} \partial_{2}\right)=\partial_{1}^{2} .
$$

If one restricts consideration to divergenceless vector fields $V_{e c t}^{0}(2) \subset$ $V e c t(2)$, then s_{5} will be well-defined operation in $\operatorname{Vect}_{0}(2)$.

$$
\forall X_{1}, \ldots, X_{5} \in \operatorname{Vect}_{0}(2) \Rightarrow s_{5}\left(X_{1}, \ldots, X_{5}\right) \in \operatorname{Vect}_{0}(2)
$$

Write divergenceless vector field X_{i} in a form

$$
X_{i}=D_{1,2}\left(u_{i}\right)=\partial_{1}\left(u_{i}\right) \partial_{2}-\partial_{2}\left(u_{i}\right) \partial_{1},
$$

where u_{i} is a potencial of X_{i}. Then 5 -commutator in terms of potencials can be written as a determinant.

Let U be an associative commutative algebra with two commuting derivations ∂_{1} and ∂_{2}. Then

$$
s_{5}\left(D_{12}\left(u_{1}\right), D_{12}\left(u_{2}\right), D_{12}\left(u_{3}\right), D_{12}\left(u_{4}\right), D_{12}\left(u_{5}\right)\right)=-3 D_{12}\left(\left[u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right]\right),
$$

for any $u_{1}, \ldots, u_{5} \in U$, where

$$
\left[u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right]=\left|\begin{array}{ccccc}
\partial_{1} u_{1} & \partial_{1} u_{2} & \partial_{1} u_{3} & \partial_{1} u_{4} & \partial_{1} u_{5} \\
\partial_{2} u_{1} & \partial_{2} u_{2} & \partial_{2} u_{3} & \partial_{2} u_{4} & \partial_{2} u_{5} \\
\partial_{1}^{2} u_{1} & \partial_{1}^{2} u_{2} & \partial_{1}^{2} u_{3} & \partial_{1}^{2} u_{4} & \partial_{1}^{2} u_{5} \\
\partial_{1} \partial_{2} u_{1} & \partial_{1} \partial_{2} u_{2} & \partial_{1} \partial_{2} u_{3} & \partial_{1} \partial_{2} u_{4} & \partial_{1} \partial_{2} u_{5} \\
\partial_{2}^{2} u_{1} & \partial_{2}^{2} u_{2} & \partial_{2}^{2} u_{3} & \partial_{2}^{2} u_{4} & \partial_{2}^{2} u_{5}
\end{array}\right|
$$

and $D_{12}(u)=\partial_{1}(u) \partial_{2}-\partial_{2}(u) \partial_{1}$.
Theorem 1.1 Let $n>1$ and $N=n^{2}+2 n-2$. Then s_{N} is well-defined operation on Vect(n).

An algebra A with a serie of operations $\omega=\left(\omega_{1}, \omega_{2}, \ldots\right)$, where ω_{N} is N-ary operation, is called sh-Lie [Stashef] if
$\sum_{\sigma, i+j=k-1, i, j \geq 1}(-1)^{(j-1) i} \operatorname{sign} \sigma \omega_{j}\left(\omega_{i}\left(a_{\sigma(1)}, \ldots, a_{\sigma(i)}\right), a_{\sigma(i+1)}, \ldots, a_{\sigma(i+j-1)}\right)=0$,
for any $k=1,2, \ldots$, and any $a_{1}, \ldots, a_{i+j-1} \in A$.

Theorem 1.2 Algebra $\left(W_{n}, s_{2}, s_{n^{2}+2 n-2}\right)$ is sh-Lie.
Appears one more question. Is it possible for $N>2$ to construct other N commutators on $\operatorname{Vect}(n)$? We have established that 5 -commutator on $\operatorname{Vect}_{0}(2)$ and 6 -commutator on $\operatorname{Vect}(2)$ are unique. But for $n=3$ there are two nontrivial N-commutators: 10 -commutator and 13 -commutator. To construct these commutators easier to use super-derivations language.

2 Powers of odd derivations

Here we give reformulation of our problem in terms of super-derivations. It is well known that a square of odd derivation is a derivation:

$$
\varepsilon(D)=1, D \in \operatorname{Der} U \Rightarrow D^{2} \in \operatorname{Der} U
$$

Now we pose the following question: Is it possible to construct some power D^{N} of odd derivation D such that D^{N} will be derivation also ?

We find that this question is equivalent to the question on N-commutators of vector fields and to the question on nilpotency of odd derivations.

Suppose that we have an associative algebra A and we need to calculate alternating sum $s_{k}\left(a_{1}, \ldots, a_{k}\right)=\sum_{\sigma \in \operatorname{Sym}_{k}} \operatorname{sign} \sigma a_{\sigma(1)} \cdots a_{\sigma(k)}$. Let us show how can appear super-algebras and odd derivations.

Let L be Grassman algebra with generators ξ_{1}, ξ_{2}, \ldots. It is an infinitedimensional associative super-commutative algebra. Let $L(A)=A \otimes G$ be super-algebra with multiplication $(a \otimes \xi)\left(a^{\prime} \otimes \xi^{\prime}\right)=\left(a a^{\prime}\right) \otimes\left(\xi \xi^{\prime}\right)$ and parity $\varepsilon(a \otimes \xi)=\varepsilon(\xi)$. Let $D=\sum_{i=1}^{k} a_{i} \otimes \xi_{k} \in L(A)$. Then

$$
D^{k}=s_{k}\left(a_{1}, \ldots, a_{k}\right) \otimes\left(\xi_{1} \wedge \cdots \wedge \xi_{k}\right) .
$$

So, calculating of $s_{k}\left(a_{1}, \ldots, a_{k}\right)$ and k-th power of D are equivalent problems. In particular, $D^{k}=0$ if and only if $s_{k}\left(a_{1}, \ldots, a_{k}\right)=0$. If $s_{k}=0$ is identity on A, then $D^{k}=0$ for any odd derivation D of the form $D=\sum_{i=1}^{k} a_{i} \otimes \xi_{i}$.

Let \mathcal{L}_{n} be an associative super-commutative algebra with odd generators denoted (α, s), where $\alpha \in \mathbf{Z}_{+}^{n}$ and $i=1,2, \ldots$ Define a derivation $\partial_{i}: \mathcal{L}_{n} \rightarrow \mathcal{L}_{n}$ by

$$
\partial_{i}(\alpha, s)=\left(\alpha+\epsilon_{i}, s\right) .
$$

Then ∂_{i} became even derivation, commuting each other,

$$
\left[\partial_{i}, \partial_{j}\right]=0, \quad \forall i, j \in\{1, \ldots, n\}
$$

and

$$
\cap_{i=1}^{n} \operatorname{ker} \partial_{i}=<1>\cong \mathbf{C} .
$$

In particular, the dimension of a linear span \mathcal{D} generated by commuting derivations $\partial_{1}, \ldots, \partial_{n}$ is $\operatorname{dim}<\mathcal{D}>=n$. Then \mathcal{L}_{n} became a \mathcal{D}-differential superalgebra. It becomes a free algebra in the category of \mathcal{D}-differential algebras. Further we use the following notations. If otherwise are not stated $u_{s}=(0, s)$ and $\partial^{\alpha}\left(u_{s}\right)=(\alpha, s)$. So, \mathcal{L}_{n} is a super-algebra generated by odd elements
$\partial^{\alpha} u_{s}, s=1, \ldots, n$ and commuting even derivations $\partial_{1}, \ldots \partial_{n}$. We can interpet \mathcal{L}_{n} as an algebra of super-lagrangians generated by odd elements.

Let us show some examples of calculations of differential operators powers in Diff \mathcal{L}_{n}.

Example. Let $n=1$ and $D=u_{1} \partial_{1} \in \operatorname{Der} \mathcal{L}_{1}$. Then

$$
D^{2}=u_{1} \partial_{1}\left(u_{1}\right) \partial_{1}+u_{1}^{2} \partial_{1}^{2} .
$$

Since u_{1} is odd element, $u_{1}^{2}=0$ and

$$
D^{2}=u_{1} \partial\left(u_{1}\right) \partial_{1}
$$

is a derivation and nilpotency index of D is 3 :

$$
D^{3}=0 .
$$

Example. Let $n=2$ and $D=u_{1} \partial_{1}+u_{2} \partial_{2} \in \mathcal{L}_{2}$. Since u_{1}, u_{2} are odd elements, then

$$
D^{2}=D\left(u_{1}\right) \partial_{1}+D\left(u_{2}\right) \partial_{2}
$$

and

$$
\begin{gathered}
D^{4}=\left(D^{2}\right)^{2} \\
=\left(D\left(u_{1}\right) \partial_{1}\left(D\left(u_{1}\right)\right)+D\left(u_{2}\right) \partial_{2}\left(D\left(u_{1}\right)\right) \partial_{1}+\left(D (u _ { 1 }) \partial _ { 1 } \left(D\left(u_{2}\right)+D\left(u_{2}\right) \partial_{2}\left(D\left(u_{2}\right)\right) \partial_{2}\right.\right.\right. \\
+D\left(u_{1}\right)^{2} \partial_{1}^{2}+D\left(u_{2}\right) D\left(u_{1}\right) \partial_{2} \partial_{1}+D\left(u_{1}\right) D\left(u_{2}\right) \partial_{1} \partial_{2}+D\left(u_{2}\right) D\left(u_{2}\right) \partial_{2}^{2} .
\end{gathered}
$$

Since u_{1}, u_{2} are odd elemens and $\partial_{1}, \partial_{2}$ are even derivations, we see that $D\left(u_{1}\right)=$ $u_{1} \partial_{1}\left(u_{1}\right)+u_{2} \partial_{2}\left(u_{1}\right)$ and $D\left(u_{2}\right)=u_{1} \partial_{1}\left(u_{2}\right)+u_{2} \partial_{2}\left(u_{2}\right)$ are even elements, and

$$
\begin{gathered}
D\left(u_{1}\right)^{2}=u_{1} \partial_{1}\left(u_{1}\right) u_{2} \partial_{2}\left(u_{1}\right)+u_{2} \partial_{2}\left(u_{1}\right) u_{1} \partial_{1}\left(u_{1}\right)=-2 u_{1} u_{2} \partial_{1}\left(u_{1}\right) \partial_{2}\left(u_{1}\right), \\
D\left(u_{2}\right)^{2}=u_{1} \partial_{1}\left(u_{2}\right) u_{2} \partial_{2}\left(u_{2}\right)+u_{2} \partial_{2}\left(u_{2}\right) u_{1} \partial_{1}\left(u_{2}\right)=-2 u_{1} u_{2} \partial_{1}\left(u_{2}\right) \partial_{2}\left(u_{2}\right), \\
D\left(u_{1}\right) D\left(u_{2}\right)=u_{1} \partial_{1}\left(u_{1}\right) u_{2} \partial_{2}\left(u_{2}\right)+u_{2} \partial_{2}\left(u_{1}\right) u_{1} \partial_{1}\left(u_{2}\right)=u_{1} u_{2}\left(-\partial_{1}\left(u_{1}\right) \partial_{2}\left(u_{2}\right)+\partial_{2}\left(u_{1}\right) \partial_{1}\left(u_{2}\right)\right) .
\end{gathered}
$$

We have

$$
\begin{gathered}
\text { quadratic part of } D^{4} \\
=u_{1} u_{2}\left(-2 \partial_{1}\left(u_{1}\right) \partial_{2}\left(u_{1}\right) \partial_{1}^{2}-\left(\partial_{2}\left(u_{1}\right) \partial_{1}\left(u_{2}\right)+\partial_{1}\left(u_{1}\right) \partial_{2}\left(u_{2}\right)\right) \partial_{1} \partial_{2}-\partial_{1}\left(u_{2}\right) \partial_{2}\left(u_{2}\right) \partial_{2}^{2}\right) .
\end{gathered}
$$

Similar calculations show that quadratic part is disappear in D^{6} and it has only differential linear part

$$
\begin{gathered}
D^{6}=u_{1} u_{2} \cdot\{ \\
\left\{-\partial_{1} u_{1} \partial_{2} u_{1} \partial_{1} u_{2} \partial_{2}^{2} u_{2}-\partial_{1} u_{1} \partial_{2} u_{1} \partial_{2} u_{2} \partial_{1}^{2} u_{1}-\partial_{2} u_{1} \partial_{1} u_{2} \partial_{2} u_{2} \partial_{2}^{2} u_{2}\right. \\
+2 \partial_{1} u_{1} \partial_{2} u_{1} \partial_{1} u_{2} \partial_{12} u_{1}+2 \partial_{1} u_{1} \partial_{2} u_{1} \partial_{2} u_{2} \partial_{12} u_{2}+2 \partial_{2} u_{1} \partial_{1} u_{2} \partial_{2} u_{2} \partial_{12} u_{1} \\
\left.-3 \partial_{1} u_{1} \partial_{1} u_{2} \partial_{2} u_{2} \partial_{2}^{2} u_{1}\right\} \partial_{1} \\
\left\{-\partial_{1} u_{1} \partial_{1} u_{2} \partial_{2} u_{2} \partial_{2}^{2} u_{2}-\partial_{1} u_{1} \partial_{2} u_{1} \partial_{1} u_{2} \partial_{1}^{2} u_{1}-\partial_{2} u_{1} \partial_{1} u_{2} \partial_{2} u_{2} \partial_{1}^{2} u_{1}\right. \\
+2 \partial_{1} u_{1} \partial_{1} u_{2} \partial_{2} u_{2} \partial_{12} u_{1}+2 \partial_{1} u_{1} \partial_{2} u_{1} \partial_{1} u_{2} \partial_{12} u_{2}+2 \partial_{2} u_{1} \partial_{1} u_{2} \partial_{2} u_{2} \partial_{12} u_{2} \\
\left.\left.-3 \partial_{1} u_{1} \partial_{2} u_{1} \partial_{2} u_{2} \partial_{1}^{2} u_{2}\right\} \partial_{2}\right\}
\end{gathered}
$$

In other words D^{6} is derivation for $n=2$. It is not difficult to see that

$$
D^{7}=0
$$

In terms of determinants this means that 6-commutator $s_{6}\left(X_{1}, \ldots, X_{6}\right)$ is a sum of fourteen 6×6-determinants and $s_{k}=0$ is identity for $k>6$.

Theorem 2.1 Let $D=\sum_{i=1}^{n} u_{i} \partial_{i} \in E_{n}$ with odd elements u_{1}, \ldots, u_{n} and $n>$ 1. Then

$$
D^{n^{2}+2 n}=0, \quad D^{n^{2}+2 n-2} \in \operatorname{Der} \mathcal{L}_{n}
$$

Theorem 2.2 Let $D=u_{1} \partial_{1}+u_{2} \partial_{2}+u_{3} \partial_{3} \in \mathcal{L}_{3}$. Then

$$
D^{14}=0, \quad D^{10} \in \operatorname{Der} \mathcal{L}_{3}, \quad D^{13} \in \operatorname{Der} L_{3}
$$

3 Escorts of N-commutators

Calculations of N-commutators or N-powers of odd derivations of super-Lagrangians algebra can be reduced to the problem on calculation invariants of $s l_{n}$-modules and $s p_{n}$-modules. Let us show how to do it for the case $s l_{n}$.

Let $W(n)=\operatorname{Der} \mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$ be Witt algebra. As a vector space $W(n)$ has a base $x^{\alpha} \partial_{i}$, where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \alpha_{i} \in \mathbf{Z}_{+}$is a multi-index,

$$
x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}
$$

and

$$
\partial_{i}=\frac{\partial}{\partial x_{i}}
$$

are partial derivations.Let Γ_{n} be a set of multi-indexes. Set for $\alpha \in \Gamma_{n}$

$$
|\alpha|=\sum_{i=1}^{n} \alpha_{i}
$$

and

$$
W(n)_{s}=<x^{\alpha} \partial_{i}| | \alpha \mid=s+1, \alpha \in \Gamma_{n}, i=1, \ldots, n>
$$

Then for any $k, s \geq-1$,

$$
\left[W(n)_{k}, W(n)_{s}\right] \subseteq W(n)_{k+s}
$$

In other words, $W(n)$ has natural grading

$$
W(n)=\oplus_{k \geq-1} W(n)_{k}
$$

In particular, $W(n)$ has a subalgebra

$$
W(n)_{0} \cong g l_{n}
$$

and any homogeneous component $W(n)_{k}$ has a structure of $g l_{n}$-module. For highest weight γ denote $R(\gamma)$ an irreducible $\left.s l_{n}\right)$-module with weight γ. Let $\pi_{1}, \ldots, \pi_{n-1}$ are fundamental weights of $s l_{n}$. Then for any $k \geq-1$,

$$
W(n)_{k} \cong R\left((k+1) \pi_{1}\right) \otimes R\left(\pi_{n-1}\right)
$$

For example,

$$
W(n)_{-1} \cong R\left(\pi_{n-1}\right) .
$$

Let

$$
Q(n)=W(n)_{0}+W(n)_{-1}
$$

be semi-direct sum of $g l_{n}$ with standard module. Let $U=\mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$ be standard $W(n)$-module. Call a $Q(n)$-module M as $(Q(n), U)$-module, if M has additional structure of unital U-module such that

$$
X(u m)=X(u) m+u(X(m),
$$

for any $X \in W(n), u \in U, m \in M$.
Say that M is $(Q(n), U)$-module with base M_{0} if M is $(Q(n), U)$-module and as U-module M is a free module with base M_{0}. Notice that base of $(Q(n), U)$ module has a structure $W(n)_{0}$-module.

Example. $W(n)$ is $(Q(n), U)$-module with base $R\left(\pi_{n-1}\right)$.
Let $\psi: \wedge^{N} W(n) \rightarrow W(n)_{-1}$ be \mathcal{D}-invariant map. Call the following $g l_{0}-$ module support of ψ

$$
\operatorname{supp} \psi=\oplus_{\left(i_{-1} i_{0}, \ldots i_{k}\right)} \wedge^{i_{-1}}\left(W(n)_{-1}\right) \otimes \wedge^{i_{0}}\left(W(n)_{0}\right) \otimes \cdots \otimes \wedge^{i_{k}}\left(W(n)_{k}\right),
$$

where summations are made by $\left(i_{-1}, i_{0}, \ldots, i_{k}\right)$, such that $i_{1}+\cdots+i_{k}=N$ and $-i_{-1}+i_{1}+\cdots+k i_{k}=-1$. Induced map

$$
\operatorname{supp} \psi \rightarrow W(n)_{-1}, \quad \operatorname{supp} \psi\left(X_{1}, \ldots, X_{N}\right)=p r_{-1} \psi\left(X_{1}, \ldots, X_{N}\right),
$$

is called escort of ψ. Here $p r: W(n) \rightarrow W(n)_{-1}$ is a projection,
In [Dzh2] is proved that \mathcal{D}-invariant map can be uniquily restored by its escort. So, to calculate N-commutator it is enough to calculate its escort.

Example. Let us find escort for 5 -commutator on $\operatorname{Vect}_{0}(2)$. We have

$$
\text { supp } s_{5}=\wedge^{2} R\left(\pi_{1}\right) \otimes \wedge^{2}\left(R\left(2 \pi_{1}\right)\right) \otimes R\left(3 \pi_{1}\right) \cong R\left(2 \pi_{1}\right) \otimes R\left(3 \pi_{1}\right),
$$

and calculating of 5 -commutator is reduced to calculation

$$
\operatorname{escort}\left(s_{5}\right)=\operatorname{Hom}\left(R\left(2 \pi_{1}\right) \otimes R\left(3 \pi_{1}\right), R\left(\pi_{1}\right)\right) .
$$

Well known that $\left(R\left(2 \pi_{1}\right) \otimes R\left(3 \pi_{1}\right)\right.$ contains $R\left(\pi_{1}\right)$ with multiplicity 1 . This fact is enough to construct 5 -commutator.

One more observation that makes easier calculations of N -commutators concerns right-symmetric sructure on $W(n)$. On $W(n)$, let o be the multiplication

$$
u \partial_{i} \circ v \partial_{j}=v \partial_{j}(u) \partial_{i} .
$$

Recall that the multiplication \circ is right-symmetric if it satisfies the rightsymmetric identity

$$
X_{1} \circ\left(X_{2} \circ X_{3}-X_{3} \circ X_{2}\right)=\left(X_{1} \circ X_{2}\right) \circ X_{3}-\left(X_{1} \circ X_{3}\right) \circ X_{2} .
$$

Right-symmetric algebras are called also pre-Lie, Vinberg, or Vinberg-Koszul [Gerst], [Koszul], [Vinberg].

Example. ($W(n), \circ$) is right-symmetric.

Theorem 3.1 Let $N=n^{2}+2 n-2$ and $n>1$. Then N-commutator can be calculated in terms of right-symmetric multiplication:

$$
s_{N}\left(X_{1}, \ldots, X_{N}\right)=\sum_{\sigma \in \operatorname{Sym}_{N}} \operatorname{sign} \sigma\left(\cdots\left(\left(X_{\sigma(1)} \circ X_{\sigma(2)}\right) \circ X_{\sigma(3)}\right) \cdots\right) \circ X_{\sigma(N)}
$$

for any $X_{1}, \ldots, X_{N} \in \operatorname{Vect}(n)$.

$4 \quad q$-commutators

Let (A, \circ) be an algebra with a vector space A and a multiplication \circ. A q-commutator \circ_{q} on A is defined by $a \circ_{q} b=a \circ b+q b \circ a$. Let $(a, b, c)=$ $a \circ(b \circ c)-(a \circ b) \circ c$ be an associator. For some category of PI-algebras \mathfrak{L} denote by $\mathfrak{L}^{(q)}$ a category of algebras $A^{(q)}=\left(A, \circ_{q}\right)$, where $A \in \mathfrak{L}$. Let $[a, b]=a \circ b-b \circ a$, and $\{a, b\}=a \circ b-b \circ a$.

Theorem 4.1 Let $q^{2} \neq 1$. Let $\mathfrak{A s s}$ be a category of associative algebras. Then the category $\mathfrak{A s s}^{(q)}$ is defined by the identity

$$
(q-1)^{2}(a, c, b)+q[c,[a, b]]=0
$$

if $q^{2}-4 q+1 \neq 0$. If $q^{2}-4 q+1 \neq 0$ then $\mathfrak{A s s}^{(q)}$ is equivalent to $\mathfrak{A s s}$. If $q^{2}-4 q+1=0$, then $\mathfrak{A s s}^{(q)}$ is equivalent to the category of alternative algebras.
Theorem 4.2 Let $q^{2} \neq 1, q^{3} \neq-1$. Let $\mathfrak{A l t}$ be a category of alternative algebras. Then $\mathfrak{A} \mathfrak{t}^{(q)}$ is defined by the identities

$$
\begin{gathered}
(a, b, c)+(c, b, a)=0, \\
\left(1-q+q^{2}\right) c \circ\{a, b\}-q\{a, b\} \circ c-\left(q^{2}+1\right)((c \circ a) \circ b+(c \circ b) \circ a) \\
+2 q((a \circ c) \circ b+(b \circ c) \circ a)=0 .
\end{gathered}
$$

Theorem 4.3 Let $q^{2} \neq-1$. Let $\mathfrak{R s y m}$ be a category of right-symmetric algebras, i.e., algebras with identity $(a, b, c)+(a, c, b)=0$. Then $\mathfrak{R s y m}$ satisfies the identity

$$
(q-1)(-(a, c, b)+(b, c, a))+\left(q^{2}-1\right)((a, b, c)-(b, a, c))-q[[a, b], c]=0
$$

If $q^{2}+2 q-2 \neq 0$, then this identity is basic identity for $\mathfrak{R s y m}{ }^{(q)}$. If $q^{2}+2 q-2=$ 0 , then this identity and Lie-admissible identity form basis for identities of $\mathfrak{R s v m}^{(q)}$.

Theorem 4.4 Let $\mathfrak{L e i}$ be the category of Leibniz algebras, i.e., algebras with the identity $(a \circ b) \circ c=a \circ(b \circ c)-b \circ(a \circ c)$. Then $\mathfrak{L} \mathfrak{e i}^{(-1)}$ is defined by skew-symmetric identity and by three identities of degree 5 (they are too huge to be presented here: they have 9, 60 and 62 terms). T-Ideal of identities for $\mathfrak{L e i}^{(1)}$ is generated by the identity $(a \circ b) \circ(c \circ d)=0$. If $q^{2} \neq 1$, then $\mathfrak{L e i}^{(q)}$ is generated by identities

$$
\begin{gathered}
(1-q) a \circ(b \circ c)+\left(q^{3}-q+1\right) a \circ(c \circ b)-q^{2} b \circ(a \circ c)-\left(q^{3}-q\right) c \circ(a \circ b) \\
-q(b \circ c) \circ a+\left(q^{3}+q^{2}-q\right)(c \circ a) \circ b=0, \\
-a \circ\{b, c\}+q\{b, c\} \circ a=0 . \\
\text { If }(q+2)\left(q^{4}+2 q^{3}-q+1\right)=0, \text { then these identities are independent. }
\end{gathered}
$$

5 Algebras with skew-symmetric identities

Define non-commutative non-associative polynomials

$$
\operatorname{alia}^{(q)}\left(t_{1}, t_{2}, t_{3}\right)=\left[\left[t_{1}, t_{2}\right], t_{3}\right]_{q}+\left[\left[t_{2}, t_{3}\right], t_{1}\right]_{q}+\left[\left[t_{3}, t_{1}\right], t_{2}\right]_{q},
$$

where

$$
\left[t_{1}, t_{2}\right]_{q}=t_{1} t_{2}+q t_{2} t_{1} .
$$

Recall also that an algebra (A, \circ) is called skew-symmetric if $a \circ b=-b \circ a$, for any $a, b \in A$. Call skew-symmetric algebra s_{k}-Lie if it satisfies the identity $s_{k}=0$. Notice that s_{3}-Lie algebras are nothing else Lie algebras.

Algebras with identity alia $^{(q)}=0$ are called q-Anti-Lie-Admissible (shortly q-Alia). Notice that a class of -1 -Alia algebras coincides with a class of Lieadmissible algebras.

Theorem 5.1 Let A be an algebra with skew-symmetric identity of degree 3. Then A is either

- 0-Alia
- 1-Alia
- -1-Alia
- q-algebra of some 0-Alia algebra, where $q^{3} \neq q$.

Standard construction of 0-Alia algebras. Let (A, \cdot) be associative commutative algebra and $f, g: A \rightarrow A$ linear maps. Then (A, \circ) is 0-Alia if $a \circ b=a \cdot f(b)+g(a \cdot b)$. Denote such algebra as $A(\cdot, f, g)$. Call 0-Alia algebra L special if there exists some standard 0-Alia algebra $A(\cdot, f, g)$ such that L is isomorphic to a subalgebra of $A(\cdot, f, g)$.

One more example of 0-Alia algebra. Let U be an associative commutative algebra with derivation $\partial: U \rightarrow U$. Then for any $u \in U$ the algebra (U, \odot), where $\odot=\odot_{u}$ is defined by

$$
\begin{aligned}
a \odot b= & \left(\partial^{3}(a) \cdot b+4 \partial^{2}(a) \cdot \partial(b)+5 \partial(a) \cdot \partial^{2}(b)+2 a \cdot \partial^{3}(b)\right) \cdot u \\
& +\left(\partial^{2}(a) \cdot b+3 \partial(a) \cdot \partial(b)+2 a \cdot \partial^{2}(b)\right) \cdot \partial(u),
\end{aligned}
$$

is 0 -Alia. We do not know whether this algebra is special.
For linear maps $f, g: U \rightarrow U$ define a bilinear map $f \cdot g: U \times U \rightarrow U$ and a skew-symmetric bilinear map $f \wedge g: \wedge^{2} U \rightarrow U$ by

$$
\begin{gathered}
f \cdot g(u, v)=f(u) \cdot f(v), \\
f \wedge g=f \cdot g-g \cdot f
\end{gathered}
$$

Let $i d: U \rightarrow U$ be identity map.
Recall that an algebra with identities r sym $=0$ lcom $=0$ is called Novikov, where

$$
\begin{gathered}
\operatorname{rsym}\left(t_{1}, t_{2}, t_{3}\right)=t_{1}\left(t_{2} t_{3}-t_{3} t_{2}\right)-\left(t_{1} t_{2}\right) t_{3}+\left(t_{1} t_{3}\right) t_{2} \\
\operatorname{lcom}\left(t_{1}, t_{2}, t_{3}\right)=t_{1}\left(t_{2} t_{3}\right)-t_{2}\left(t_{1} t_{3}\right) .
\end{gathered}
$$

Example of Novikov algebra: (\mathbf{C}, \circ), where $a \circ b=\partial(a) b, \quad \partial=\frac{\partial}{\partial x}$.

Theorem 5.2 Let (A, \circ) be a Novikov algebra and $u, v \in A$. Define on A a new multiplication \star by $a \star b=(a \circ b) \circ u+v \circ(a \circ b)$. Then (A, \star) is 1-Alia and satisfies the identity $s_{4}=0$. In particular, $(A, \star) s_{4}$-Lie-admissible.

Corollary 5.3 Let (U, \cdot) be an associative commutative algebra with $D \in \operatorname{Der} U$ and $u, v, w \in U$. Then (U, μ) is s_{4}-Lie-admissible, where $\mu=i d \cdot\left(u \cdot D^{2}+v\right.$. $\left.D+w \cdot D^{0}\right)$. Here we set $D^{0}=i d$.

Corollary 5.4 Let (U, \cdot) be an associative commutative algebra with $D \in \operatorname{Der} U$ and $u \in U$. Then the following algebras are s_{4}-Lie:

- $\left(U, u \cdot\left(i d \wedge D^{2}\right)\right)$
- $\left(U, u \cdot D \wedge D^{2}\right)$

Notice that the map $D: U \rightarrow U$ induces a homomorphism

$$
D:\left(U, i d \wedge D^{2}\right) \rightarrow\left(U, D \wedge D^{2}\right)
$$

It is easy to check:

$$
D(a) \cdot D^{3}(b)-D(b) \cdot D^{3}(a)=D\left(D(a) \cdot D^{2}(b)-D(b) \cdot D^{2}(a)\right)
$$

So, we obtain a central extension

$$
0 \rightarrow K \operatorname{Ker} D \rightarrow\left(U, i d \wedge D^{2}\right) \rightarrow\left(U, D \wedge D^{2}\right) \rightarrow 0
$$

Theorem 5.5 Let A be skew-symmetric algebra with skew-symmetric identity of degree k. Then A is s_{k}-Lie.

Example of 1-Alia algebra. Let U be associative commutative algebra with derivation $\partial: U \rightarrow U$. Then for any $u \in U$ the algebra $\left(U, *_{u}\right)$, where

$$
a *_{u} b=\left(\partial^{2}(a) \cdot b+\partial(a) \cdot \partial(b)\right) \cdot u
$$

is 1-Alia. Notice that if $u=1 \in \operatorname{ker} \partial$, then this identity is not minimal. The algebra $\left(U, *_{1}\right)$ satisfies the identity

$$
\left(t_{1}, t_{2}, t_{3}\right)-\left(t_{1}, t_{3}, t_{2}\right)+2 t_{2}\left(t_{1} t_{3}\right)-2 t_{3}\left(t_{1} t_{2}\right)=0
$$

This identity for $\left(U, *_{u}\right), u=1$, is minimal. In particular, algebras $\left(U, *_{1}\right)$ and $\left(U, *_{u}\right)$, where $u \notin \operatorname{ker} \partial$, are not isomorphic.

Theorem 5.6 Let (U, \cdot) be associative commutative algebra with derivations $D_{1}, D_{2}, D_{3} \in \operatorname{Der} U$ and $u_{1}, u_{2}, u_{3} \in U$. Let $\omega=u_{1} D_{2} \wedge D_{3}+u_{2} D_{1} \wedge D_{3}+$ $u_{3} D_{1} \wedge D_{2}$. Then the algebra (U, ω) is s_{4}-Lie.

Corollary 5.7 Let $D_{1}, D_{2} \in \operatorname{Der} U$. Then $\left(U, D_{1} \wedge D_{2}\right)$ is s_{4}-Lie.

Following V.T. Filippov [Filipov] say that (A, \circ) is J-Lie if A is s_{4}-Lie and $(A, j a c)$ under 3-map (jacobian) $j a c(a, b, c)=(a \circ b) \circ c+(b \circ c) \circ a+(c \circ a) \circ b$ is 3-Lie:

$$
\begin{gathered}
j a c(a, b, j a c(c, d, e))= \\
\operatorname{jac}(j a c(a, b, c), d, e)+\operatorname{jac}(c, j a c(a, b, d), e)+\operatorname{jac}(c, d, j a c(a, b, e)),
\end{gathered}
$$

for any $a, b, c, d, e \in A$.
Theorem 5.8 Let (U, \cdot) be an associative commutative algebra, $u_{1}, u_{2}, u_{3} \in U$, and $D_{1}, D_{2}, D_{3} \in \operatorname{Der} U$, such that $\left[D_{1}, D_{2}\right]=\left[D_{1}, D_{3}\right]=\left[D_{2}, D_{3}\right]=0$. Let $\omega=u_{1} D_{2} \wedge D_{3}+u_{2} D_{1} \wedge D_{3}+u_{3} D_{1} \wedge D_{2}$. Then the algebra (U, ω) is J-algebra.

References

[Dzh1] Dzhumadil'daev, A.S.: N-commutators, Comment. Math. Helv. 79 (2004), no. 3, 516-553.
[Dzh2] A.S. Dzhumadil'daev, A remark on the space of invariant differential operators, Vestnik Moskov. Univ, Ser. 1 Mat.Mekh, 1982, No.2, 49-54, $116=$ Engl. transl. Moscow Univ. Math. Bull., 37(1982), No.2, p.63-68.
[Dzh3] A.S. Dzhumadil'daev, Cohomologies and deformations of rightsymmetric algebras, J.Math. Sci, 93(1999), No. 6, 1836-1876; math.DG/9807065.
[Dzh4] A.S. Dzhumadil'daev, Minimal identities for right-symmetric algebras, J. Algebra, 225(2000), 201-230.
[Filipov] V.T. Filipov, n-Lie algebras, Sibirsk. Mat.Zh. 26(1985), no. 6, 126140, 191=engl. transl. Siberian Math. J., 26(1985), no.6, 879-891
[Stashef] J. Stasheff, T. Lada, Introduction to SH Lie algebras fo physicists, Inter. J. Theor.Physics, 32(1993), No.7, 1087-1103.
[Gerst] M. Gerstenhaber, The cohomology structure of an associative rings, Ann. of Math., 78(1963), 267-288.
[Koszul] J.-P. Koszul, Domaines bornés homogènes et orbites de groupes de transformations affines, Bull. Soc.Math. France 89(1961), 515-533.
[Vinberg] E.B. Vinberg, Convex homogeneous cones, Trudy Moskov. Matem. Obschestva, 12(1963), 303-358= Transl. Moscow Math. Soc., 12(1963), 340-403.

