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In our talk we discuss the following topics related to generalisations of com-
mutators

• N -commutators

• nilpotency of odd derivations

• q-commutators, and

• algebras with skew-symmetric identities

Partially these results are published in [Dzh1], [Dzh4].

1 N-commmutators

Let X1 and X2 are vector fields (differential operators of first order). In general
their composition is not a vector field. It is a differential operator of second
order,

X1 = ui∂i, X2 = vj∂j ⇒ X1X2 = ui∂i(vj)∂j + uivj∂i∂j .

To obtain vector field we need to calculate a commutator

[X1, X2] = X1X2 −X2X1 = ui∂j(vj)deri − vi∂i(uj)∂j .

Now we consider k-ary generalisation of commutators. Let

sk =
∑

σ∈Symk

sign σ (· · · ((tσ(1)tσ(2))tσ(3)) · · · )tσ(k)

be standard skew-symmetric polynomial of degree k. Then

[X1, X2] = s2(X1, X2).

In general sk(X1, . . . , Xk) are differential operators of order k.

Problem. Is it possible to define on s space of vector fields V ect(n) a new
tensor operation induced by multiplication sk.



In other words, might it happen that for some k = k(n) all higher differntial
degrees are cancelled ?

As it turned out for some k = k(n) such situation is possible. For example, if
n = 2, then for any X1, . . . , X6 ∈ V ect(2) a differential operator s6(X1, . . . , X6)
is once again a vectoe field. All degree 2,3,4,5,6-parts are cancelled.Moreover,
the number 6 here can not be improved. If one consider s7 instead of s6 here
are cancelled all differential parts including linera part,

s7(X1, . . . , X7) = 0,

for any X1, . . . , X7 ∈ V ect(2), It is easy to see that

sk(X1, . . . , Xk) = 0, ∀X1, . . . , Xk ∈ V ect(2),

if k > 6. As far as s5, it is not well defined operation on V ect(2). For example,

s5(∂1, ∂2, x1∂1, x2∂1, x2∂2) = ∂2
1 .

If one restricts consideration to divergenceless vector fields V ect0(2) ⊂
V ect(2), then s5 will be well-defined operation in V ect0(2).

∀X1, . . . , X5 ∈ V ect0(2) ⇒ s5(X1, . . . , X5) ∈ V ect0(2).

Write divergenceless vector field Xi in a form

Xi = D1,2(ui) = ∂1(ui)∂2 − ∂2(ui)∂1,

where ui is a potencial of Xi. Then 5-commutator in terms of potencials can be
written as a determinant.

Let U be an associative commutative algebra with two commuting deriva-
tions ∂1 and ∂2. Then

s5(D12(u1), D12(u2), D12(u3), D12(u4), D12(u5)) = −3D12([u1, u2, u3, u4, u5]),

for any u1, . . . , u5 ∈ U, where

[u1, u2, u3, u4, u5] =
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and D12(u) = ∂1(u)∂2 − ∂2(u)∂1.

Theorem 1.1 Let n > 1 and N = n2+2n−2. Then sN is well-defined operation
on V ect(n).

An algebra A with a serie of operations ω = (ω1, ω2, . . .), where ωN is N -ary
operation, is called sh-Lie [Stashef] if

∑

σ,i+j=k−1,i,j≥1

(−1)(j−1)isign σ ωj(ωi(aσ(1), . . . , aσ(i)), aσ(i+1), . . . , aσ(i+j−1)) = 0,

for any k = 1, 2, . . ., and any a1, . . . , ai+j−1 ∈ A.



Theorem 1.2 Algebra (Wn, s2, sn2+2n−2) is sh-Lie.

Appears one more question. Is it possible for N > 2 to construct other N -
commutators on V ect(n)? We have established that 5-commutator on V ect0(2)
and 6-commutator on V ect(2) are unique. But for n = 3 there are two nontriv-
ial N -commutators: 10-commutator and 13-commutator. To construct these
commutators easier to use super-derivations language.

2 Powers of odd derivations

Here we give reformulation of our problem in terms of super-derivations. It is
well known that a square of odd derivation is a derivation:

ε(D) = 1, D ∈ Der U ⇒ D2 ∈ Der U.

Now we pose the following question: Is it possible to construct some power DN

of odd derivation D such that DN will be derivation also ?
We find that this question is equivalent to the question on N -commutators

of vector fields and to the question on nilpotency of odd derivations.
Suppose that we have an associative algebra A and we need to calculate

alternating sum sk(a1, . . . , ak) =
∑

σ∈Symk
sign σ aσ(1) · · · aσ(k). Let us show

how can appear super-algebras and odd derivations.
Let L be Grassman algebra with generators ξ1, ξ2, . . . . It is an infinite-

dimensional associative super-commutative algebra. Let L(A) = A ⊗ G be
super-algebra with multiplication (a ⊗ ξ)(a′ ⊗ ξ′) = (aa′) ⊗ (ξξ′) and parity
ε(a⊗ ξ) = ε(ξ). Let D =

∑k
i=1 ai ⊗ ξk ∈ L(A). Then

Dk = sk(a1, . . . , ak) ⊗ (ξ1 ∧ · · · ∧ ξk).

So, calculating of sk(a1, . . . , ak) and k-th power of D are equivalent problems.
In particular, Dk = 0 if and only if sk(a1, . . . , ak) = 0. If sk = 0 is identity on
A, then Dk = 0 for any odd derivation D of the form D =

∑k
i=1 ai ⊗ ξi.

Let Ln be an associative super-commutative algebra with odd generators
denoted (α, s), where α ∈ Zn

+ and i = 1, 2, . . . . Define a derivation ∂i : Ln → Ln

by
∂i(α, s) = (α+ εi, s).

Then ∂i became even derivation, commuting each other,

[∂i, ∂j ] = 0, ∀i, j ∈ {1, . . . , n}

and
∩n

i=1 ker ∂i =< 1 >∼= C.

In particular, the dimension of a linear span D generated by commuting deriva-
tions ∂1, . . . , ∂n is dim < D >= n. Then Ln became a D-differential super-
algebra. It becomes a free algebra in the category of D-differential algebras.
Further we use the following notations. If otherwise are not stated us = (0, s)
and ∂α(us) = (α, s). So, Ln is a super-algebra generated by odd elements



∂αus, s = 1, . . . , n and commuting even derivations ∂1, . . . ∂n. We can interpet
Ln as an algebra of super-lagrangians generated by odd elements.

Let us show some examples of calculations of differential operators powers
in Diff Ln.

Example. Let n = 1 and D = u1∂1 ∈ DerL1. Then

D2 = u1∂1(u1)∂1 + u2
1∂

2
1 .

Since u1 is odd element, u2
1 = 0 and

D2 = u1∂(u1)∂1

is a derivation and nilpotency index of D is 3:

D3 = 0.

Example. Let n = 2 and D = u1∂1 + u2∂2 ∈ L2. Since u1, u2 are odd
elements, then

D2 = D(u1)∂1 +D(u2)∂2

and
D4 = (D2)2

= (D(u1)∂1(D(u1))+D(u2)∂2(D(u1))∂1+(D(u1)∂1(D(u2)+D(u2)∂2(D(u2))∂2

+D(u1)
2∂2

1 +D(u2)D(u1)∂2∂1 +D(u1)D(u2)∂1∂2 +D(u2)D(u2)∂
2
2 .

Since u1, u2 are odd elemens and ∂1, ∂2 are even derivations, we see thatD(u1) =
u1∂1(u1) + u2∂2(u1) and D(u2) = u1∂1(u2) + u2∂2(u2) are even elements, and

D(u1)
2 = u1∂1(u1)u2∂2(u1) + u2∂2(u1)u1∂1(u1) = −2u1u2∂1(u1)∂2(u1),

D(u2)
2 = u1∂1(u2)u2∂2(u2) + u2∂2(u2)u1∂1(u2) = −2u1u2∂1(u2)∂2(u2),

D(u1)D(u2) = u1∂1(u1)u2∂2(u2)+u2∂2(u1)u1∂1(u2) = u1u2(−∂1(u1)∂2(u2)+∂2(u1)∂1(u2)).

We have
quadratic part of D4

= u1u2(−2∂1(u1)∂2(u1)∂
2
1−(∂2(u1)∂1(u2)+∂1(u1)∂2(u2))∂1∂2−∂1(u2)∂2(u2)∂

2
2).

Similar calculations show that quadratic part is disappear in D6 and it has only
differential linear part

D6 = u1u2 · {

{−∂1u1 ∂2u1 ∂1u2 ∂
2
2u2 − ∂1u1 ∂2u1 ∂2u2 ∂

2
1u1 − ∂2u1 ∂1u2 ∂2u2 ∂

2
2u2

+2 ∂1u1 ∂2u1 ∂1u2 ∂12u1 + 2 ∂1u1 ∂2u1 ∂2u2 ∂12u2 + 2 ∂2u1 ∂1u2 ∂2u2 ∂12u1

−3 ∂1u1 ∂1u2 ∂2u2 ∂
2
2u1 }∂1

{−∂1u1 ∂1u2 ∂2u2 ∂
2
2u2 − ∂1u1 ∂2u1 ∂1u2 ∂

2
1u1 − ∂2u1 ∂1u2 ∂2u2 ∂

2
1u1

+2 ∂1u1 ∂1u2 ∂2u2 ∂12u1 + 2 ∂1u1 ∂2u1 ∂1u2 ∂12u2 + 2 ∂2u1 ∂1u2 ∂2u2 ∂12u2

−3 ∂1u1 ∂2u1 ∂2u2 ∂
2
1u2 }∂2}



In other words D6 is derivation for n = 2. It is not difficult to see that

D7 = 0.

In terms of determinants this means that 6-commutator s6(X1, . . . , X6) is a
sum of fourteen 6 × 6-determinants and sk = 0 is identity for k > 6.

Theorem 2.1 Let D =
∑n

i=1 ui∂i ∈  Ln with odd elements u1, . . . , un and n >

1. Then
Dn2+2n = 0, Dn2+2n−2 ∈ DerLn.

Theorem 2.2 Let D = u1∂1 + u2∂2 + u3∂3 ∈ L3. Then

D14 = 0, D10 ∈ DerL3, D13 ∈ DerL3.

3 Escorts of N-commutators

Calculations ofN -commutators orN -powers of odd derivations of super-Lagrangians
algebra can be reduced to the problem on calculation invariants of sln-modules
and spn-modules. Let us show how to do it for the case sln.

Let W (n) = DerC[x1, . . . , xn] be Witt algebra. As a vector space W (n)
has a base xα∂i, where α = (α1, . . . , αn), αi ∈ Z+ is a multi-index,

xα = xα1

1 · · · xαn

n ,

and

∂i =
∂

∂xi

are partial derivations.Let Γn be a set of multi-indexes. Set for α ∈ Γn

|α| =
n

∑

i=1

αi.

and
W (n)s =< xα∂i||α| = s+ 1, α ∈ Γn, i = 1, . . . , n > .

Then for any k, s ≥ −1,

[W (n)k,W (n)s] ⊆W (n)k+s.

In other words, W (n) has natural grading

W (n) = ⊕k≥−1W (n)k.

In particular, W (n) has a subalgebra

W (n)0 ∼= gln

and any homogeneous component W (n)k has a structure of gln-module. For
highest weight γ denote R(γ) an irreducible sln)-module with weight γ. Let
π1, . . . , πn−1 are fundamental weights of sln. Then for any k ≥ −1,

W (n)k
∼= R((k + 1)π1) ⊗R(πn−1).



For example,
W (n)−1

∼= R(πn−1).

Let
Q(n) = W (n)0 +W (n)−1

be semi-direct sum of gln with standard module. Let U = C[x1, . . . , xn] be
standard W (n)-module. Call a Q(n)-module M as (Q(n), U)-module, if M has
additional structure of unital U -module such that

X(um) = X(u)m+ u(X(m),

for any X ∈W (n), u ∈ U,m ∈M.

Say that M is (Q(n), U)-module with base M0 if M is (Q(n), U)-module and
as U -module M is a free module with base M0. Notice that base of (Q(n), U)-
module has a structure W (n)0-module.

Example. W (n) is (Q(n), U)-module with base R(πn−1).
Let ψ : ∧NW (n) → W (n)−1 be D-invariant map. Call the following gl0-

module support of ψ

suppψ = ⊕(i
−1i0,...ik) ∧

i
−1 (W (n)−1) ⊗ ∧i0(W (n)0) ⊗ · · · ⊗ ∧ik(W (n)k),

where summations are made by (i−1, i0, . . . , ik), such that i1 + · · ·+ ik = N and
−i−1 + i1 + · · · + kik = −1. Induced map

supp ψ →W (n)−1, supp ψ(X1, . . . , XN ) = pr−1ψ(X1, . . . , XN ),

is called escort of ψ. Here pr : W (n) →W (n)−1 is a projection,
In [Dzh2] is proved that D-invariant map can be uniquily restored by its

escort. So, to calculate N -commutator it is enough to calculate its escort.
Example. Let us find escort for 5-commutator on V ect0(2). We have

supp s5 = ∧2R(π1) ⊗ ∧2(R(2π1)) ⊗R(3π1) ∼= R(2π1) ⊗R(3π1),

and calculating of 5-commutator is reduced to calculation

escort(s5) = Hom(R(2π1) ⊗R(3π1), R(π1)).

Well known that (R(2π1) ⊗ R(3π1) contains R(π1) with multiplicity 1. This
fact is enough to construct 5-commutator.

One more observation that makes easier calculations of N -commutators con-
cerns right-symmetric sructure on W (n). On W (n), let ◦ be the multiplication

u∂i ◦ v∂j = v∂j(u)∂i.

Recall that the multiplication ◦ is right-symmetric if it satisfies the right-
symmetric identity

X1 ◦ (X2 ◦X3 −X3 ◦X2) = (X1 ◦X2) ◦X3 − (X1 ◦X3) ◦X2.

Right-symmetric algebras are called also pre-Lie, Vinberg, or Vinberg-Koszul
[Gerst], [Koszul], [Vinberg].

Example. (W (n), ◦) is right-symmetric.



Theorem 3.1 Let N = n2 + 2n − 2 and n > 1. Then N -commutator can be
calculated in terms of right-symmetric multiplication:

sN (X1, . . . , XN ) =
∑

σ∈SymN

sign σ (· · · ((Xσ(1) ◦Xσ(2)) ◦Xσ(3)) · · · ) ◦Xσ(N),

for any X1, . . . , XN ∈ V ect(n).

4 q-commutators

Let (A, ◦) be an algebra with a vector space A and a multiplication ◦. A
q-commutator ◦q on A is defined by a ◦q b = a ◦ b + q b ◦ a. Let (a, b, c) =
a ◦ (b ◦ c) − (a ◦ b) ◦ c be an associator. For some category of PI-algebras
L denote by L(q) a category of algebras A(q) = (A, ◦q), where A ∈ L. Let
[a, b] = a ◦ b− b ◦ a, and {a, b} = a ◦ b− b ◦ a.

Theorem 4.1 Let q2 6= 1. Let Ass be a category of associative algebras. Then
the category Ass(q) is defined by the identity

(q − 1)2(a, c, b) + q[c, [a, b]] = 0

if q2 − 4q + 1 6= 0. If q2 − 4q + 1 6= 0 then Ass(q) is equivalent to Ass. If
q2 − 4q+1 = 0, then Ass(q) is equivalent to the category of alternative algebras.

Theorem 4.2 Let q2 6= 1, q3 6= −1. Let Alt be a category of alternative algebras.
Then Alt(q) is defined by the identities

(a, b, c) + (c, b, a) = 0,

(1 − q + q2)c ◦ {a, b} − q{a, b} ◦ c− (q2 + 1)((c ◦ a) ◦ b+ (c ◦ b) ◦ a)

+2q((a ◦ c) ◦ b+ (b ◦ c) ◦ a) = 0.

Theorem 4.3 Let q2 6= −1. Let Rsym be a category of right-symmetric alge-
bras, i.e., algebras with identity (a, b, c) + (a, c, b) = 0. Then Rsym satisfies the
identity

(q − 1)(−(a, c, b) + (b, c, a)) + (q2 − 1)((a, b, c) − (b, a, c)) − q[[a, b], c] = 0.

If q2+2q−2 6= 0, then this identity is basic identity for Rsym(q). If q2+2q−2 =
0, then this identity and Lie-admissible identity form basis for identities of
Rsym(q).

Theorem 4.4 Let Lei be the category of Leibniz algebras, i.e., algebras with
the identity (a ◦ b) ◦ c = a ◦ (b ◦ c) − b ◦ (a ◦ c). Then Lei(−1) is defined by
skew-symmetric identity and by three identities of degree 5 (they are too huge
to be presented here: they have 9, 60 and 62 terms). T -Ideal of identities for
Lei(1) is generated by the identity (a ◦ b) ◦ (c ◦ d) = 0. If q2 6= 1, then Lei(q) is
generated by identities

(1 − q)a ◦ (b ◦ c) + (q3 − q + 1)a ◦ (c ◦ b) − q2b ◦ (a ◦ c) − (q3 − q)c ◦ (a ◦ b)

−q(b ◦ c) ◦ a+ (q3 + q2 − q)(c ◦ a) ◦ b = 0,

−a ◦ {b, c} + q{b, c} ◦ a = 0.

If (q + 2)(q4 + 2q3 − q + 1) = 0, then these identities are independent.



5 Algebras with skew-symmetric identities

Define non-commutative non-associative polynomials

alia(q)(t1, t2, t3) = [[t1, t2], t3]q + [[t2, t3], t1]q + [[t3, t1], t2]q,

where
[t1, t2]q = t1t2 + q t2t1.

Recall also that an algebra (A, ◦) is called skew-symmetric if a ◦ b = −b ◦ a,
for any a, b ∈ A. Call skew-symmetric algebra sk-Lie if it satisfies the identity
sk = 0. Notice that s3-Lie algebras are nothing else Lie algebras.

Algebras with identity alia(q) = 0 are called q-Anti-Lie-Admissible (shortly
q-Alia). Notice that a class of −1-Alia algebras coincides with a class of Lie-
admissible algebras.

Theorem 5.1 Let A be an algebra with skew-symmetric identity of degree 3.
Then A is either

• 0-Alia

• 1-Alia

• −1-Alia

• q-algebra of some 0-Alia algebra, where q3 6= q.

Standard construction of 0-Alia algebras. Let (A, ·) be associative com-
mutative algebra and f, g : A → A linear maps. Then (A, ◦) is 0-Alia if
a ◦ b = a · f(b) + g(a · b). Denote such algebra as A(·, f, g). Call 0-Alia al-
gebra L special if there exists some standard 0-Alia algebra A(·, f, g) such that
L is isomorphic to a subalgebra of A(·, f, g).

One more example of 0-Alia algebra. Let U be an associative commutative
algebra with derivation ∂ : U → U. Then for any u ∈ U the algebra (U,�),
where � = �u is defined by

a� b = (∂3(a) · b+ 4∂2(a) · ∂(b) + 5∂(a) · ∂2(b) + 2a · ∂3(b)) · u

+(∂2(a) · b+ 3∂(a) · ∂(b) + 2 a · ∂2(b)) · ∂(u),

is 0-Alia. We do not know whether this algebra is special.
For linear maps f, g : U → U define a bilinear map f · g : U × U → U and

a skew-symmetric bilinear map f ∧ g : ∧2U → U by

f · g(u, v) = f(u) · f(v),

f ∧ g = f · g − g · f.

Let id : U → U be identity map.
Recall that an algebra with identities rsym = 0 lcom = 0 is called Novikov,

where
rsym(t1, t2, t3) = t1(t2t3 − t3t2) − (t1t2)t3 + (t1t3)t2,

lcom(t1, t2, t3) = t1(t2t3) − t2(t1t3).

Example of Novikov algebra: (C, ◦), where a ◦ b = ∂(a)b, ∂ = ∂
∂x
.



Theorem 5.2 Let (A, ◦) be a Novikov algebra and u, v ∈ A. Define on A a
new multiplication ? by a ? b = (a ◦ b) ◦ u+ v ◦ (a ◦ b). Then (A, ?) is 1-Alia and
satisfies the identity s4 = 0. In particular, (A, ?) s4-Lie-admissible.

Corollary 5.3 Let (U, ·) be an associative commutative algebra with D ∈ Der U

and u, v, w ∈ U. Then (U, µ) is s4-Lie-admissible, where µ = id · (u · D2 + v ·
D + w ·D0). Here we set D0 = id.

Corollary 5.4 Let (U, ·) be an associative commutative algebra with D ∈ Der U

and u ∈ U. Then the following algebras are s4-Lie:

• (U, u · (id ∧D2))

• (U, u ·D ∧D2)

Notice that the map D : U → U induces a homomorphism

D : (U, id ∧D2) → (U,D ∧D2).

It is easy to check:

D(a) ·D3(b) −D(b) ·D3(a) = D(D(a) ·D2(b) −D(b) ·D2(a)).

So, we obtain a central extension

0 → KerD → (U, id ∧D2) → (U,D ∧D2) → 0.

Theorem 5.5 Let A be skew-symmetric algebra with skew-symmetric identity
of degree k. Then A is sk-Lie.

Example of 1-Alia algebra. Let U be associative commutative algebra with
derivation ∂ : U → U. Then for any u ∈ U the algebra (U, ∗u), where

a ∗u b = (∂2(a) · b+ ∂(a) · ∂(b)) · u,

is 1-Alia. Notice that if u = 1 ∈ ker ∂, then this identity is not minimal. The
algebra (U, ∗1) satisfies the identity

(t1, t2, t3) − (t1, t3, t2) + 2t2(t1t3) − 2t3(t1t2) = 0.

This identity for (U, ∗u), u = 1, is minimal. In particular, algebras (U, ∗1) and
(U, ∗u), where u 6∈ ker ∂, are not isomorphic.

Theorem 5.6 Let (U, ·) be associative commutative algebra with derivations
D1, D2, D3 ∈ Der U and u1, u2, u3 ∈ U. Let ω = u1D2 ∧ D3 + u2D1 ∧ D3 +
u3D1 ∧D2. Then the algebra (U,ω) is s4-Lie.

Corollary 5.7 Let D1, D2 ∈ Der U. Then (U,D1 ∧D2) is s4-Lie.



Following V.T. Filippov [Filipov] say that (A, ◦) is J -Lie if A is s4-Lie and
(A, jac) under 3-map (jacobian) jac(a, b, c) = (a ◦ b) ◦ c+ (b ◦ c) ◦ a+ (c ◦ a) ◦ b
is 3-Lie:

jac(a, b, jac(c, d, e)) =

jac(jac(a, b, c), d, e) + jac(c, jac(a, b, d), e) + jac(c, d, jac(a, b, e)),

for any a, b, c, d, e ∈ A.

Theorem 5.8 Let (U, ·) be an associative commutative algebra, u1, u2, u3 ∈ U,

and D1, D2, D3 ∈ Der U, such that [D1, D2] = [D1, D3] = [D2, D3] = 0. Let
ω = u1D2∧D3 +u2D1∧D3 +u3D1∧D2. Then the algebra (U,ω) is J-algebra.
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