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In our talk we discuss the following topics related to generalisations of com-
mutators

e N-commutators

nilpotency of odd derivations

e ¢-commutators, and

algebras with skew-symmetric identities

Partially these results are published in [Dzh1], [Dzh4].

1 N-commmutators

Let X7 and X5 are vector fields (differential operators of first order). In general
their composition is not a vector field. It is a differential operator of second
order,

X1 = u¢82-,X2 = ’Ujaj = X1X2 = uiai(vj)@- + uivj@@j.

To obtain vector field we need to calculate a commutator
[Xl,XQ] = X1X2 - X2X1 = ui(‘)j(vj)deri - vzaz(u])(?]

Now we consider k-ary generalisation of commutators. Let

se=Y_ signo (- ((toyte@)to@) * aw)

o—GSymk
be standard skew-symmetric polynomial of degree k. Then
[X1, Xo] = s2(X1, Xa).

In general sx(X1,..., X)) are differential operators of order k.
Problem. Is it possible to define on s space of vector fields Vect(n) a new
tensor operation induced by multiplication sy.



In other words, might it happen that for some k& = k(n) all higher differntial
degrees are cancelled ?

As it turned out for some k = k(n) such situation is possible. For example, if
n = 2, then for any X1,..., X¢ € Vect(2) a differential operator sg(X71, ..., Xg)
is once again a vectoe field. All degree 2,3,4,5,6-parts are cancelled.Moreover,
the number 6 here can not be improved. If one consider s; instead of sg here
are cancelled all differential parts including linera part,

s7(X1,...,X7) =0,
for any Xi,..., X7 € Vect(2), It is easy to see that
Sp(X1,..., Xg) =0, VXq,...,Xi € Vect(2),
if k> 6. As far as sj, it is not well defined operation on Vect(2). For example,
85(01, 02, 101, X201, T20) = 8%.

If one restricts consideration to divergenceless vector fields Vectg(2) C
Vect(2), then ss will be well-defined operation in Vecty(2).

VXiq,...,X5 € V€Ct0(2) = S5(X1, R ,X5) € VectO(Z).
Write divergenceless vector field X; in a form
X = D1 a(u;) = 01(us)02 — O(u;)01,

where u; is a potencial of X;. Then 5-commutator in terms of potencials can be
written as a determinant.

Let U be an associative commutative algebra with two commuting deriva-
tions 01 and 0. Then

s5(D12(u1), D12(u2), D12(u3), D12(u4), D12(us)) = —3D1a([u1, ug, us, ug, us)),
for any ug,...,us € U, where

81u1 al’LLQ 81U3 81U4 81U5

Oouy  Ooug  Douz  Oouy  Oaus

[ul, U2, U3, U4, ’LL5] = 8%11/1 8%11/2 8%11/3 8%11,4 8%11,5
81 agul 81 82u2 81 82U3 81 82U4 8182U5

822U1 822U2 82211,3 82211,4 82211,5

and Dia(u) = 01(u)02 — Oa(u)0.

Theorem 1.1 Letn > 1 and N = n?+2n—2. Then sy is well-defined operation
on Vect(n).

An algebra A with a serie of operations w = (w1,ws, . ..), where wy is N-ary
operation, is called sh-Lie [Stashef] if

Z (—1)(j_1)isignawj(wi(aa(l), e (i) g(it1)s - -+ 5 Go(itj—1)) = 0,
oyiti=k—1,i,j>1

for any £k =1,2,..., and any a,...,a;4j-1 € A.



Theorem 1.2 Algebra (W, s2, 5,24 9,_2) 15 sh-Lie.

Appears one more question. Is it possible for N > 2 to construct other N-
commutators on Vect(n)? We have established that 5-commutator on Vect(2)
and 6-commutator on Vect(2) are unique. But for n = 3 there are two nontriv-
ial N-commutators: 10-commutator and 13-commutator. To construct these
commutators easier to use super-derivations language.

2 Powers of odd derivations

Here we give reformulation of our problem in terms of super-derivations. It is
well known that a square of odd derivation is a derivation:

e(D)=1,D € DerU = D? € DerU.

Now we pose the following question: Is it possible to construct some power DN
of odd derivation D such that D will be derivation also ?

We find that this question is equivalent to the question on N-commutators
of vector fields and to the question on nilpotency of odd derivations.

Suppose that we have an associative algebra A and we need to calculate

alternating sum sg(ag,...,ar) = desymk SigN 0 Gg(1) " Ag(k)- Let us show
how can appear super-algebras and odd derivations.

Let L be Grassman algebra with generators £1,&s,.... It is an infinite-
dimensional associative super-commutative algebra. Let L(A) = A ® G be

super-algebra with multiplication (a ® &)(a’ ® {') = (ad’) ® (£¢') and parity
ela® &) =¢(€). Let D=3 a; ® & € L(A). Then

Dk:Sk(ala"'vak)®(§l/\”‘/\fk)'

So, calculating of si(aq,...,ax) and k-th power of D are equivalent problems.
In particular, D¥ = 0 if and only if si(a1,...,a;) = 0. If s;, = 0 is identity on
A, then D* = 0 for any odd derivation D of the form D = Zle a; @ &;.

Let £, be an associative super-commutative algebra with odd generators
denoted (a, s), where o € Z'} and i = 1,2,.... Define a derivation 0; : £, — L,
by

Oi(a,s) = (o + €, 5).

Then 0; became even derivation, commuting each other,
[8¢,aj]:0, Vi,jE{l,...,n}

and
Nie, ker9; =<1 >= C.

In particular, the dimension of a linear span D generated by commuting deriva-
tions d1,...,0, is dim < D >= n. Then L, became a D-differential super-
algebra. It becomes a free algebra in the category of D-differential algebras.
Further we use the following notations. If otherwise are not stated us = (0, s)
and 0%(us) = (a,s). So, L, is a super-algebra generated by odd elements



0%g,s = 1,...,n and commuting even derivations 01, ...3d,. We can interpet
L, as an algebra of super-lagrangians generated by odd elements.

Let us show some examples of calculations of differential operators powers
in Diff L,,.
Example. Let n =1 and D = u10; € DerLq. Then

D? = u1 0 (u1)0) + u3d?.
Since u; is odd element, u? = 0 and
D? = u10(uy)0y
is a derivation and nilpotency index of D is 3:
D? =0.

Example. Let n = 2 and D = w101 + w202 € Ls. Since uq,us are odd
elements, then
D? = D(u1)81 + D(UQ)ag

and
D4 — (D2)2

= (D(u1)01(D(u1)) +D(uz2)02(D(u1))01 + (D (u1)0 (D(uz) + D(u2)02(D(uz))d
—|—D(u1)zaf + D(UQ)D(U1)8281 + D(ul)D(U2)8182 + D(UQ)D(UQ)@%

Since u1, ug are odd elemens and 0y, J2 are even derivations, we see that D(u1) =
w101 (u1) + w20 (u1) and D(ug) = u10y(ug) + u2d2(ug) are even elements, and

D(U1)2 = u181 (ul)ugag(ul) + UQ82(U1)’LL181(U1) = —QU1UQ81(U1)82(U1),

D(uz)? = u10; (u2)ugda(us) + w0 (ug)u1dy (ug) = —2uiusd (ug)ds (us2),
D(ul)D(UQ) = u181(ul)uQag(uz)+uz82(u1)u181 (Ug) = u1u2(—81 (’U,l)ag(UQ)+82(U1)81(U2)).

We have
quadratic part of D*

= u1u2(—281 (ul)ag(ul)a%—(ag (ul)al (u2)+81 (ul)ag (UQ))alag—al (ZLQ)aQ(UQ)a%)

Similar calculations show that quadratic part is disappear in D and it has only
differential linear part
DS = wqug - {

{—01u1 Bouy Oyug D3uy — Oyuy Doy Do D3uy — Doy Orun Do Oausy
+2 O1u1 Oouy Orug O12uy + 2 O1uy Oouq Oaug O19us + 2 Doy Opug Ooug D1ouq
—3 01wy O1ug Daug D3y YO,

{=01u1 Oyug Daus aqu — O1u1 Oaug Orus aful — Doy O1u9 Oaug 8%u1
+2 01u1 O1ug Ooug O12u1 + 2 01uy O2uq Orug Or12us + 2 Doy O1ug Daug O12us
—301uy Oyuy Daun Hug 1o}



In other words DS is derivation for n = 2. It is not difficult to see that
D" =0.

In terms of determinants this means that 6-commutator s¢(X1, ..., Xg) is a
sum of fourteen 6 x 6-determinants and s, = 0 is identity for k£ > 6.

Theorem 2.1 Let D = Z?Zl u;0; € £y, with odd elements uq,...,u, and n >
1. Then
DV =0, D2 ¢ Der Ly,

Theorem 2.2 Let D = w107 + us02 + ug0s € L3. Then
D' =, D' ¢ Der L3, D' € DerLs.

3 Escorts of N-commutators

Calculations of N-commutators or N-powers of odd derivations of super-Lagrangians
algebra can be reduced to the problem on calculation invariants of sl,,-modules
and spp-modules. Let us show how to do it for the case si,,.

Let W(n) = Der Clzy,...,x,] be Witt algebra. As a vector space W (n)

has a base £®0;, where o = (1, ..., ), ; € Z4 is a multi-index,
o o (07
=t ann,
and
0
0; =
81137;

are partial derivations.Let I',, be a set of multi-indexes. Set for a € I';,

n
la] = Z Q.
i=1

and
W(n)s =< z%0||la| =s+L,ael,,i=1,...,n>.

Then for any k,s > —1,
(W(n)r, W(n)s] € W(n)ps.
In other words, W (n) has natural grading
W(n) = @r>—1W(n).
In particular, W(n) has a subalgebra
W(n)o = gln

and any homogeneous component W (n); has a structure of gl,-module. For
highest weight v denote R(y) an irreducible sl,)-module with weight ~. Let
m1,...,Tp—1 are fundamental weights of si,,. Then for any k£ > —1,

W (n)e = R((k + 1)m1) @ R(mp_1).



For example,
W(n)_l = R(T['n_l).
Let
Q(n) =W(n)o +W(n)-

be semi-direct sum of gl,, with standard module. Let U = Clzq,...,x,] be
standard W (n)-module. Call a Q(n)-module M as (Q(n),U)-module, if M has
additional structure of unital U-module such that

X(um) = X (u)m + u(X(m),

for any X € W(n),u € U,m € M.

Say that M is (Q(n), U)-module with base My if M is (Q(n),U)-module and
as U-module M is a free module with base M. Notice that base of (Q(n),U)-
module has a structure W (n)o-module.

Example. W(n) is (Q(n),U)-module with base R(my_1).

Let ¢ : ANW(n) — W(n)_; be D-invariant map. Call the following glo-
module support of 1)

SUpp = B(i_yig,..ip) N (W(n)-1) ® N(W(n)o) @ -+ @ A (W (n)),

where summations are made by (i_1,19,..., ), such that i; +---+ix = N and
—i_1+11 + -+ ki = —1. Induced map

supp 17[} - W(n)—la supp ¢(X1> o 7XN) = pr—lw(le s 7XN)7

is called escort of ¥. Here pr: W(n) — W (n)_; is a projection,
In [Dzh2] is proved that D-invariant map can be uniquily restored by its
escort. So, to calculate N-commutator it is enough to calculate its escort.
Example. Let us find escort for 5-commutator on Vecty(2). We have

supp ss = A?R(m1) @ A2(R(2m1)) ® R(3m) = R(2m;) ® R(3m),
and calculating of 5-commutator is reduced to calculation
escort(ss) = Hom(R(2m1) ® R(3m1), R(m1)).

Well known that (R(27;) ® R(3m) contains R(m;) with multiplicity 1. This
fact is enough to construct 5-commutator.

One more observation that makes easier calculations of N-commutators con-
cerns right-symmetric sructure on W(n). On W (n), let o be the multiplication

u@z e} ’Uaj = ’Uaj (u)@z

Recall that the multiplication o is right-symmetric if it satisfies the right-
symmetric identity

Xlo(XQOXg—XgoXQ):(Xl OXQ)OXg—(Xlng)OXQ.

Right-symmetric algebras are called also pre-Lie, Vinberg, or Vinberg-Koszul
[Gerst], [Koszul], [Vinberg].
Example. (W (n), o) is right-symmetric.



Theorem 3.1 Let N = n? 4+ 2n — 2 and n > 1. Then N-commutator can be
calculated in terms of right-symmetric multiplication:

sn(X1,..., XN) = Z 319”0(“'((Xa(1)OXa(z))OXa(?,))"')O a(N)»
aESymN

for any X1,..., XN € Vect(n).

4 g-commutators

Let (A,o) be an algebra with a vector space A and a multiplication o. A
g-commutator o, on A is defined by a oy b = aob+ gboa. Let (a,b,c) =
ao(boc)— (aob)oc be an associator. For some category of Pl-algebras
£ denote by £@ a category of algebras A@ = (A,04), where A € £. Let
[a,b] =aob—boa, and {a,b} =aocb—boa.

Theorem 4.1 Let ¢> # 1. Let Uss be a category of associative algebras. Then
the category Ass(9) s defined by the identity

(q - 1)2((1, ¢, b) + Q[C7 [(I, b]] =0
if®—4q+1 40 If 2 —4g+1 # 0 then Uss'D is equivalent to Uss. If

¢>—4g+1=0, then Ass(@) s equivalent to the category of alternative algebras.

Theorem 4.2 Let ¢> # 1,¢> # —1. Let Alt be a category of alternative algebras.
Then A9 is defined by the identities
(a,b,c) + (¢,b,a) =0,
(1 —g+¢*)co{a,b} —q{a,b} oc—(¢* + 1)((coa) ob+(cob)oa)
+2¢((aoc)ob+ (boc)oa) =0.
Theorem 4.3 Let g> # —1. Let Rsym be a category of right-symmetric alge-
bras, i.e., algebras with identity (a,b,c) + (a,c,b) = 0. Then Rshm satisfies the
1dentity
(q - 1)(_((170, b) + (b7 ¢, CL)) + (q2 - 1)((0’7670) - (b7 a, C)) - q[[a,b],c] =0.
If > 4+2q—2 # 0, then this identity is basic identity for 9%5t)m(q). If*+2¢—2 =
0, then this identity and Lie-admissible identity form basis for identities of
Theorem 4.4 Let L£ei be the category of Leibniz algebras, i.e., algebras with
the identity (aob)oc = ao(boc)—bo (aoc) Then Leil™V is defined by
skew-symmetric identity and by three identities of degree 5 (they are too huge
to be presented here: they have 9, 60 and 62 terms). T-Ideal of identities for
2eiM) is generated by the identity (aob)o(cod)=0. If ¢> # 1, then Leil@ s
generated by identities
(1—q)ao(boc)+(¢>—q+1)ao(cob) —g?bo(aoc)—(¢° —q)co (aob)
—q(boc)oa+(¢* +¢° —q)(coa)ob=0,
—ao{b,c} +q{b,c} oa=0.
If (g + 2)(¢* + 2¢® — g+ 1) = 0, then these identities are independent.



5 Algebras with skew-symmetric identities

Define non-commutative non-associative polynomials

alial? (ty, o, t3) = [[t1, ta], ts]q + [[t2, ts], talq + [[t3, 11, tolgs

where
[t1,t2]q = tita + qtaty.

Recall also that an algebra (A, o) is called skew-symmetric if a 0 b = —b o a,
for any a,b € A. Call skew-symmetric algebra sj-Lie if it satisfies the identity
st = 0. Notice that s3-Lie algebras are nothing else Lie algebras.

Algebras with identity alia(? = 0 are called g-Anti-Lie-Admissible (shortly
g-Alia). Notice that a class of —1-Alia algebras coincides with a class of Lie-
admissible algebras.

Theorem 5.1 Let A be an algebra with skew-symmetric identity of degree 3.
Then A is either

e 0-Alia

e 1-Alia

e —1-Alia

e g-algebra of some 0-Alia algebra, where q° # q.

Standard construction of 0-Alia algebras. Let (A,-) be associative com-
mutative algebra and f,g : A — A linear maps. Then (A,0) is 0-Alia if
aob = a- f(b) 4+ g(a-b). Denote such algebra as A(-, f,g). Call 0-Alia al-
gebra L special if there exists some standard 0-Alia algebra A(-, f, g) such that
L is isomorphic to a subalgebra of A(-, f, g).

One more example of 0-Alia algebra. Let U be an associative commutative
algebra with derivation 0 : U — U. Then for any u € U the algebra (U, ®),
where ® = ©,, is defined by

a®b= (%) b+ 40*(a)-9(b) +50(a) - 9*(b) + 2a - *(b)) - u
+(0%(a) - b+ 30(a) - D(b) + 2a - D*(b)) - D(u),

is 0-Alia. We do not know whether this algebra is special.
For linear maps f,g : U — U define a bilinear map f-g: U x U — U and
a skew-symmetric bilinear map f A g : A2U — U by

f-g(u,v) :f(’LL)f(’U),
fng=Ff-9—9g-f
Let ¢d : U — U be identity map.

Recall that an algebra with identities rsym = 0 lcom = 0 is called Novikov,
where

rsym(ty, ta, t3) = ti(tats — tata) — (t1ta)ts + (t1t3)te,
lcom(tl, t2, tg) = tl(tgtg) — tg(tltg).

Example of Novikov algebra: (C, o), where aob = 09(a)b, 0= a%.



Theorem 5.2 Let (A,0) be a Novikov algebra and u,v € A. Define on A a
new multiplication x by axb = (aob)ou+wvo(aob). Then (A,*) is 1-Alia and
satisfies the identity s4 = 0. In particular, (A,*) s4-Lie-admissible.

Corollary 5.3 Let (U,-) be an associative commutative algebra with D € Der U

and u,v,w € U. Then (U, i) is s4-Lie-admissible, where p = id - (u - D* + v -
D +w- D). Here we set DY = id.

Corollary 5.4 Let (U,-) be an associative commutative algebra with D € Der U
and u € U. Then the following algebras are sy4-Lie:

o (U,u-(id A D?))
e (Uyu-DAD?
Notice that the map D : U — U induces a homomorphism
D : (U,id A D*) — (U,D A D?).
It is easy to check:
D(a) - D3(b) — D(b) - D3(a) = D(D(a) - D*(b) — D(b) - D*(a)).
So, we obtain a central extension

0 — Ker D — (U,id A D*) — (U, D A D*) — 0.

Theorem 5.5 Let A be skew-symmetric algebra with skew-symmetric identity
of degree k. Then A is si-Lie.

Example of 1-Alia algebra. Let U be associative commutative algebra with
derivation 0 : U — U. Then for any u € U the algebra (U, *,,), where

a %, b= (0%(a) b+ 0(a)- (b)) - u,

is 1-Alia. Notice that if u = 1 € ker 9, then this identity is not minimal. The
algebra (U, 1) satisfies the identity

(tl,tQ,tg) — (tl,tg,tQ) + 2t2(t1t3) — 2t3(t1t2) =0.

This identity for (U, *,), v = 1, is minimal. In particular, algebras (U, 1) and
(U, %), where u & ker 0, are not isomorphic.

Theorem 5.6 Let (U,-) be associative commutative algebra with derivations
D1,Ds,D3 € DerU and ui,us,us € U. Let w = uy Dy A D3 + us Dy A D3 +
us D1 A\ Dy. Then the algebra (U,w) is s4-Lie.

Corollary 5.7 Let D1, Dy € Der U. Then (U, D1 A Ds) is s4-Lie.



Following V.T. Filippov [Filipov] say that (4,o) is J -Lie if A is s4-Lie and
(A, jac) under 3-map (jacobian) jac(a,b,c) = (aob)oc+ (boc)oa+ (coa)ob
is 3-Lie:

jac(a, b, jac(c,d,e)) =

jac(jac(a,b,¢), d, e) + jac(c, jac(a, b, d), e) + jac(c, d, jac(a, b, €)),

for any a,b,c,d,e € A.

Theorem 5.8 Let (U,-) be an associative commutative algebra, uq,us,us € U,
and Dy,Dy,Ds € DerU, such that [Dy,Ds] = [D1, D3] = [Da, D3] = 0. Let
w = u1 Dy A D3 +ug D1 A D3 +wus Dy A Dy. Then the algebra (U,w) is J-algebra.
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