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INTRODUCTION

Let X be a compact Riemann surface of genus ¢ > 2. The theorem of Narasimhan
and Seshadri gave us the beautiful correspondence between stable vector bundles
of degree 0 on X and irreducible unitary representations of the fundamental group
m1(X). Several extensions of this theorem have been considered and yielded two
algebraic objects: parabolic bundles and Higgs bundles. The notion of parabolic
bundles was introduced by Seshadri [19]. Let D = {p1,...,p.} be a finite set of
points on X. A parabolic bundle is a triple (£, F, %) consisting of a vector bundle
E on X, filtrations £, = Ff > -+ D> Fiy; = 0 at points of D and systems of
weights 0 < of < --- < o, < 1. He gave a correspondence between stable parabolic
bundles of parabolic degree 0 and irreducible unitary representations of m;(X — D)
(cf. [15],{19]). The notion of Higgs bundles was introduced by Hitchin [7]. A Higgs
bundle is a pair (F,¢) consisting of a vector bundle £ on X and a homomorphism
o L - E®x Q4. In this case, he gave a correspondence between stable Higgs
bundle of degree 0 and irreducible representations of m1(X) (cf. [7]). In both cases,
the correspondences induce homeornorphisms between the moduli spaces.

To generalize the correspondences to non-compact and non-unitary cases, Simpson
[22] introduced the notion of filtered regular Higgs bundles and gave a correspondence
between stable filtered regular Higgs bundles of degree zero and stable filtered local
systems of degree zero. He regarded a parabolic bundle (E, ¥, a7) as a filtered sheaf
by setting

E} = Ker(E —» E, [F},,)

for 1‘ea_l munbeys afj- <a< aj«H, (t=1,...,n7=0,... 50, =1— a'fi,afi+, =1)
and £}, = E} ®x Ox(—p;). In this paper, we shall consider only one filtration by
setting B, = N, £} because we can recover the original filtrations from this and
those categories are equivalent. Now, a filtered regular Higgs bundle is a pair (£., ¢)
consisting of a filtered sheal [, with F,y = £, @x Ox(—D) and a homomorphism
v E. — E. @x Q% (log D) which preserves the filtrations. In this paper, we shall
call this object a parabolic Higgs bundle.

Supported in part by a Grant under The Monbusho International Scientific Research Program:
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Let X be a non-singular projective variety over the complex numbers. These results
also have been generalized to higher dimensional cases for usual case by Donaldson,
Uhlenbeck and Yau and for the case of Higgs bundles by Donaldson, Corlette and
Simpson. Simpson [20] constructed three moduli spaces: moduli of semi-simple repre-
sentations of m(X), moduli of coherent Dx-modules and moduli of semi-stable Higgs
bundles on X with vanishing Chern classes and proved that these moduli spaces are
homeomorphic.

Though the correspondence is not yet generalized for parabolic cases on higher
dimensional varieties, the notion of parabolic bundles and parabolic Higgs bundles is
naturally generalized (cl. [14],[25]). Let D be an effective Cartier divisor on X and let
Q be a locally free Ox-module. A parabolic sheaf is a filtered sheaf E, which satisfies
some finiteness conditions (cf. [14]) and the condition Eyy1 = E, Qx Ox(—D) for all
real numbers a. A parabolic {-pair is a pair (., ¢) consisting of a parabolic sheafl .
and a homomorphism ¢ : £, — E.®@x Q with oAp = 0and p(£,) C E,Qx Q. When
1 = Q% (log D), we shall call an 2-pair a parabolic Higgs sheal. In previous papers
[14] and [25], we have constructed moduli schemes of semi-stable parabolic Q-pairs
as well as moduli of semi-stable parabolic sheaves (see Theorem 2.3). The purpose
of this article is to analyze the infinitesimal properties of these moduli schemes. As
in the case of usual stable sheaves, it is expected that the Zariski tangent space of
them at a point corresponding to a parabolically stable Q-pair (E,, ) is naturally
isomorphic to some “Ext-group” Ext)((£.,¢),(£.,¢)) and the obstruction classes
for smoothness at (££., ) are in Ext% ((E.,¢), (E.,#)). Unfortunately, the categories
of parabolic sheaves or parabolic {-pairs are not abelian categories. To avoid this
difficulty, we shall change the definition of parabolic sheaves, i.c. we redefine a filtered
sheaf F. as a family of homomorphisms

{z"b’;"6 : By — Egla > 8}

with i%qo iaE‘ﬁ =1y . Using this new filtered sheaves, the notion of parabolic sheaves
(or, parabolic Q-pairs) is redefined. Then parabolic {2-pairs forms an abelian cate-
gory with enough injective objects (Proposition 1.1). Thus, we get Ext-groups for
parabolic Q-pairs. These Isxt-groups are, in fact, what we need.

To calculate these Ext-groups for parabolic Q2-pairs, we shall introduce tensor prod-
ucts, Hom-sheaves and an operator * for our new parabolic sheaves. Then the Serre

duality theorem for parabolic sheaves is given by the following isomorphism (Propo-
sition 3.7):

' Extiy(E., F. @x wx(D)) = Exty(F., £.)Y.

Here E. is no longer a parabolic sheaf in the meaning of the original definition even
if K, is. Moreover, we shall give a spectral sequence

EP' = Ext% (E., F. ®x APQ) = ExtBH((EL, ¢), (F., 1))
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Using these tools, we can calculate Ext-groups for parabolic -pairs in the case of
curves. In particular, we show that the moduli scheme of semi-stable parabolic Higgs
bundles is irreducible normal quasi-projective variety of dimension

21 —r? —|—Edlm}‘ +Z(n J+1 -1

where g is the genus of curve, 7 is the rank of E, F; is a flag variety of type (n},...,n})
which corresponds to a flag structure at £,; (Theorem 5.2).

In §1, we shall give new delinitions of R-filtered sheaves and parabolic sheaves
and prove that the category of parabolic sheaves is an abelian category with enough
injective objects. The Ext-groups for parabolic sheaves or pairs shall be defined.
In §2, we shall prove that the Zariski tangent space of our moduli scheme at a
parabolically stable Q-pair (E.,¢) is naturally isomorphic to Ext) ((£., @), (E., )
and the obstruction classes of smoothness at the point arc in Ext? ((E.,¢), (E.,)).
In §3, we shall introduce tensor products, Hom-sheaves for parabolic sheaves and
generalize the Serre duality theorem for parabolic sheaves. §4 is devoted to give above
spectral sequence which joins the Ext-groups for parabolic sheaves with those for
parabolic Q-pairs. In the last section, we shall study the moduli schemes of parabolic
Higgs sheaves on non-singular curves. We shall show that the moduli schemes are
normal, quasi-projective, irreducible varieties and calculate its dimensions.

The author would like to express his thanks to Professors M. Maruyama, A. Fujiki,
K. Zuo, K. Oguiso and D. Huybrechts for their helpful suggestions and encourage-
ment. The work was done during the author’s stay at the Max-Planck Institut fir
Mathematik in Bonn. He expresses his hearty thanks to those who enabled his study
at the institute.

NOTATION AND CONVENTION

Let f: X — § be a smooth, projective, geometrically integral morphism of locally
noetherian schemes, let D be an effective relative Cartier divisor and let Ox(1) be
an f-ample invertible sheal. The category of locally noetherian schemes over S is
denoted by (Sch/S). For an S-scheme 7" and an Ox-module £, X7 = X x5 T and
E7 is the pullback of E over X7. We denote by S*(£) the i-th symmetric product,
by §*(F) the symmetric Ox-algebra. £Y means a dual sheaf of £. Tensor product of
Ox-modules £ and F is written by £®@x F. Homy(E, F') is Home, (£, I). Similarly,
we use notations Homy (E, F), Exty (E, F) and £zt (E, F).

Let s be a geometric point of S. For a coherent Oy,-module F, the degree of F'
with respect to Ox (1) is that of the first Chern class of 7 with respect to Oy, (1) =
Ox(1)x, and it is denoted by degg , (1) F or simply deg F. The rank of I is denoted by
rk(F), p(F) = deg F/rk(F), x(F) = Ti(=1)" dimyy) [1’{(3\’,,]7) and F(m)=F ®x
Ox(m). For a parabolic sheaf [, on X,, par-deg(E.) = f deg E,da + vk(E) - deg D
and par- u(F,) = par-deg( £.)/ rk(E).
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1. CATEGORIES OF PARABOLIC SHEAVES

In this section, we shall develop the sheaf cohomology theory for parabolic sheaves.
Unfortunately, the category of parabolic sheaves defined in [14] is not abelian. So,
we shall generalize the notion of parabolic sheaves.

Let D be an effective Cartier divisor on a scheme X. In this paper, we shall regard
R as a category with

Ob(R) =R (the set of all real numbers),

_ {ief} fa>p

Mor(a 8) = {0) otherwise.

An R-filtered Oy-module is a covariant functor from R to the category My of all
Ox-modules. For an R-filtered Ox-module £ : R — My, we denote the Ox-module
E{a) by E, and the Oy-homomorphism E(i""‘a) by ig" for each a > 3. We use
a symbol FE, instead of /£ and sometimes £ means the sheaf E;. The category of
R-filtered Ox-modules and their natural transformations is denoted by Cyx. For an
Ox-module F, the tensor product E.Qy F is defined by setting (F.@x 7)o = Eo@x I
and iﬂE?@F = i“E'ﬁ ® 1dr. We can shift an R-filtered Oy-module by real numbers. A
natural transformation f : £ — F' is often denoted by f. and f(a) : E, — Fj, is
denoted by f,.

Definition 1.1. For an R-filtered O x-module F, and a real number o, Ea]. is an
R-filtered Ox-module with E[a]s = Eq4p and i%[l] = {Bremte For each pair o > f,
we have a natural transformation

Pl Bla). — E[f).
defined by i%7%*7 Bach f: E. — F. induces f[o] : Ela]. — Fla]..

In this paper, we shall change the definition of parabolic sheaves in [14} or [25] as
follows.

Definition 1.2. A parabolic Ox-module (with respect to D) is an R-filtered Ox-
module F, together with an isomorphism of R-filtered O x-modules

jg : E. ®x Ox(=D) = E[1].
such that
(1.1) iOin = idg. @ip: B.®x Ox(=D) = E,

where 1p : Ox(—D) — Oy is a natural map defined by D.
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For parabolic Oyx-modules F. and F., a natural transformation f : E. — F, is
called a parabolic homomorphism if the following diagram is commutative.

E.®x Ox(=D) 224 F.®x Ox(-D)
(1.2) z‘ljg lep

EN), , Fl1].

The module of all parabolic homomorphisms is denoted by Homy(E,, F.). By
Hom x (E., F.), we denotes a sheaf with Hom x(E., F.)(U) = Homy (E.|y, F.|u) for
cach open subset U. Let us denote by Py;p the category of parabolic Ox-modules
and thetr parabolic homomorphisms. Every Oy-module £ can be regarded naturally
as a parabolic Ox-module by setting

E,=EQ®x Ox(—mD) for m—1<a<m.

This structure is called the special structure. Note that the category Mx can be
regarded as a full sub-category of Px,p through the identification £ and f, with the
special structure.

Proposition 1.1. The category Px/p is an cbelian category with enough injective
objects.

Proof. 1t is casy to sec that Py/p is an abelian category. In Py/p, a sequence
f'

0— E =S E, 25 B — 0,
is exact if and only if for each o € R, the following sequence is exact.
0— E. I E, 2 B,

To prove that Px/p has enough injective objects, by virtue of Théoreme 1.10.1 in
[4], it is enough to prove that Pyx,p satisfies Grothendieck’s axiom AB 5) ! and has
a generator. Verification of the condition AB 5) is easy. Recall that ¢ is a generator
if for each object a and each proper sub-object b, then there is a morphism of ¢ — «
which does not factor through b.

Let F. be a proper sub-object of £.. Then there are a real number « and an open
subset U of X such that Fo(U) G E.(U). An element of E,(UN\F,(U) defines a
homomorphism f : (iy);Oy — E, which does not factor through F, where iy : U —
X is the natural inclusion and (2O is the sheal obtained by extending Oy by zero
outside U. Let I{U, a). be a parabolic Ox-module with

I{U,a)s = (tu)Ou ®x OX(—?TLD)
TAn abelian category A satisfies AB 5) if and only if A has infinite direct sums and for each

object a, each sub-object b and each family of sub-objects {a¢; C a| i € I} such that each pair a;
and a; is contained in some ay, (Eiel w)Nb = ZiE,((tg Nb) (see [4]).
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fora+m—1 < 8 < a+m. Then [ : (iy);Oy — E, defines a parabolic homomorphism
v : (U ,a). = E. with ¢, = f. Hence, a direct sum

P U e).

Usiopen,a€R

is a generator of Px/p. [

Now, we can define various derived functors as in the case of usual Oy-modules.
For a morphism f : X — Y, we have the direct image functor f. : Px;p — Cy.
Clearly, it 1s a left exact functor. Hence, we get a right derived functor R f, of [..

For each Ox-module E, let 1,(F) = I,(E). be a parabolic Ox-module which is
constructed from £ as [(U, «). is constructed from (iy )y in the above proof. Then
1, is a functor from My to Px;p. We can easily know the following.

Lemma 1.2. The functor [, is a left adjoinl functor of a forgetful functor I, :
Px;p — My with F,(E.) = E,, i.e. we have a natural isomorphism;

Homy (/.(£), J.) =~ Homx (£, Jo).

Corollary 1.3. For each injective object J. in the category Pxp, all J, are injective
Oy -modules.

Proof. Note that [, is an exact functor. Hence, for each injective homomorphism
FE — FE’, we obtain the desired surjection.

Homx(Io(E'),J.) — Homx(l.(F),J.) — 0

| J
Homy (£, J,) Homx(F, J,)

O

By this corollary, for each parabolic sheaf E,, R [.E, is an R-filtered Oy-module
F. with Fo = R fu(Es) and 5° = R f.(:3°).

For each parabolic Oy-module E., Exti\»(fﬂ.,—) (or, Ext'y(£.,—)) is the i-th
right derived functor of Homy (£.,, —) (or, Homy(FE., —), respectively). By virtue
of Lemma 1.2 and Corollary 1.3, for each Ox-module E' and each «, we have
Homy (I,(E"), E.) = Homy (£’ E,) and hence, for all ¢,

(1.3) Extl (I.(E"), E.} = Exti ([, £,).
An extension of £ by E’ is a short exact sequence of parabolic homomorphisms;

0 — £ — E.— E — 0.
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Two extensions £ and 7 of £ by E! are isomorphicif there is a commutative diagram
of parabolic homomorphisms;

£E:0 — B — E. — E' — 0

[ | [

n:0 — £ — F, — E/ — 0.
By the same proof as in the case of usual “Ext”-groups (cf. [11]), we have

Lemma 1.4. There is a one-to-one correspondence between isomorphismn clusses of
: 1

extensions of E! by I, and elements of the group Exty (£, E.) and the sum of two

extensions 1s given by the Baer sum.

Definition 1.3. A parabolic sheaf £, is said to be coherent if the following conditions
are satisfied.

(1.4) All £, are coherent Ox-modules.

(1.5) There is a sequence of real numbers 0 < oy < @y < -+ < oy < 1 such that
15"+ Ea; = B4 are isomorphisms for aj-; < @ < a; (@0 =0, oy = 1).
Clearly, all coherent parabolic sheaves form an abelian sub-category of Px,p. More-
over, when X is an integral scheme, a coherent parabolic sheaf E. is said to be torsion
free if all E, are torsion {ree Ox-modules. We call the above set {a),q,...,} a
system of weights of F. if every ig*t"® : E,,,, — FE4 is not an isomorphism for

i=1,2,...,1

Remark 1.1. (i) By the condition (1.1), il E. is torsion free, then all i%” are injective.
Hence, we get a parabolic sheaf in the meaning of the original definition (cf. [14])

B =EyD Fa D2 Eq 2 Ey =~ Eo®@x Ox(—D)

By this correspondence, the original notion of parabolic sheaves and parabolic homo-
morphisms is same as the notion of torsion free, parabolic sheaves and their parabolic
homomorphisms.

(it) If £, is a torsion free, then the structure of parabolic sheal of E. is uniquely
determined by its underlying structure of R-filtered sheaf. In fact, the isomorphism
Je ¢ E. ®@x Ox(—=D) — E[l]. is uniquely determined by the condition (1.1} and
injectivity of z'[é’o]. Moreover, a morphism in the category Cx between two torsion
free, parabolic sheaves automatically satisfies the condition (1.2). Hence, the category
of all torsion free, parabolic sheaves and their parabolic homomorphisms consisis a
full (not abelian) sub-category of Cy.

(ii1) In a short exact sequence of parabolic Ox-modules
0— £ — E, — E! — 0,

if £, and F. are coherent (or, torsion free), then so is E..
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2. INFINITESIMAL PROPERTY OF MODULI OF STABLE PARABOLIC §2-PAIRS

In this section, let f : X — § be a quasi-projective morphism of noetherian
schemes, let Ox(1) be an f-very ample invertible sheaf and let D Dbe a relative
effective Cartier divisor on X/S.

Definition 2.1. A coherent parabolic sheaf E, is said to be {lat over S or S-llat if

all B, are flat over S. The support of I, is proper over S if the support of each 2,
is. For each object T of (Sch/S), set

Par,\v/D/S(T) = ¢ [, | parabolic Oy -module

E, is a T-llat, coherent /
with support proper over T’

where ~ is an equivalence relation such that F. ~ [ if and only if there is an
invertible sheaf L on T and an isomorphism £, ~ £ @7 L. Then Pary;p/s defines
a functor from (Sch/S) to (Sets) in a natural way.

Now let us consider a deformation situation A" —» A = A"/ — Ag = A’/M with
E. € Parx;p;s(A) where M and I are nilpotent ideals of the noetherian Os-algebra
A" and M1 = 0 (cf. [1]). E. denote the image of E. in Pary/p;s(Ao). We use this
notation for other elements of Pary;p,s(A) or Pary/ps(A’).

Let us show that the deformation theory for Parx,p,s is given by the modules

D(Ao, I, E.) = Exty, (E.,1®a4, E.).

and D(Ag, 1, E,) operates freely on Parx;p;s(A")g,. Here, Parx;p;s(A’)g, denotes
the subsct of elements of Pary/p;s(A’) whose image in Paryx;/p;s(Ao) is F..

Proposition 2.1. @ : Pary;p;s(A’')g, — Parx/p;s(A)g, is @ principal homogeneous
space for the group D(Ao, [, I.).

Proof. Let E. be an element of Pary,p;s(A)g, such that ®~1(£,) # 8. Then, cach
element E! of ®71(E.) determines the extension

eE;:Ovﬁ]®A°E.—>Ei—}E..-—>O

in ExL}‘-A,(E,, 1®4, E.). Since eg; determines the isomorphism class of [/, ®='(E.)
can be regarded as a subset of Extf-ﬂ,(E..,, I @4, I4). Ext}YA,(E,., I @4, I.) contains
a submodule Ext}EA (L] @4, E.). Here, since E, is A-flat, for each extension ¢ in
Ext}\'A(E., I ®.4, E.), we have the following commutative diagram with exact rows.

(: 0 — I®sF — H, — E. — 0

=l 1 Lr
C@A AD : 0 B [®A0 E- — Hy I E* — 0
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This shows that the map p* : Ext‘.j\er (E*,I @ 4, E,) — ExthA(E.,] R4, E_,) s an
isomorphism. Hence, the group Ext:\vﬁo(E., 1 @4, I2.) acts freely on Extf\'A,(E,, I®a4,
E.) by translation. ‘Then, elementary verifications using Baer sums (cf. Lemma 1.4)
show that Extf\'AO(E_,I ®a, E.) acts on ®~1(E,) freely and effectively. O

We shall prove the following along the prool of Proposition 6.7 in [13], but we don’t
use "locally free” resolutions of E,.
Proposition 2.2. There exists an element € of ExtivAo(E’., I ®u, F5.) such that £ =0
if and only if [, 1s liftable to an element of Paryx;pss(A’).
Proof. Clearly, we may replace E. by E, @y Ox(m) so that all £, for 0 < o <1

are generated by its global sections . Then, [, is a quotient of a coherent parabolic
sheal F. = @il4,(0Ox,) € Parx/p;s(A) where I, is the functor defined in §1.

(2.1) 0— K, —F -5 E, —0

Clearly, F. is liftable to F] = @;/,,(Ox,,) in Parx;p;s(A’). By virtue of (1.3), we
may assume that

(2.2) Exty, (Fu, T @4 E.) = Exty (FI,1 @4 E.) = 0.

As in the case of Quot-schemes (cf. Lemma 6.7 in [1]), the obstruction class 5 to
lifting the parabolic quotient F, —» FE, to F! — E’ is in Ext'XA,(I\',,] ®a E.). We
claim that this class is, in fact, in the submodule Ext}A(I\’.,I ®a F.). As in the

proof of Lemma 6.7 in [1], n is determined by the following commutative diagram
with exact rows.

e:0 — IF S F B R — 0

Ls | ll

€0 — I, — G. — F, — 0

il I i

7:0 — I4E. — G — K., — 0

where e is the canonical extension, G, = Coker(/F! (g Fld(I®4E)) and G, =
G. X, .. Then easy calculations show that IG!, = 0. This proves our claim.

Since K. is A-flat, as in the proof of Proposition 2.1, we have a canonical iso-
morphism Ext}\.AO(K.,I ®a, £.) ~ Exty (K., 1®4 E.). Let ij be the image of 7 in
Extfho (K., I ®a, £.). Then, from (2.1) and (2.2), we get an injection

0 =Extk, (P, @4, Fu) — Exty, (K] @4, B2 5, Ext,, (Bl ®a, £2).

Hence, if £ = é(7) = 0, then E. is liftable to an A’-flat quotient of F. Conversely,
if E. is liftable to E. € Parx;p;s(A’), then, by virtue of (2.2), 7 : F. —» E. can
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be extended to an A’-linear map =’ : I/ — [£’. Clearly, 7
L3 - b

£E=0. O

Remark 2.1. When A’ contains a field, we can give the obstruction class more explic-
itly. For each element E. in Pary;p;s(A), let

is surjective. Hence,

fo 00— (114/]) ®AE,. —-p—) _E... —q—) E. — 0
be the canonical extension. We have a long exact sequence
Exty, (£.,1®aE.) — Ext, (B, M @4 £.) =
Exty, (B.,(M/I)®a E.) = Bxtk, (B.,1®, E.).

Then, we can show that §({o) is the obstruction class for lifting £, to Pary/p/s(A).
8(&o) 1s represented by the following exact sequence

0— Q@i FE. — M4 E. — E. — E. — 0.

Now, suppose that f: X — 5 is smooth, projective and geometrically integral and
S is a scheme of finite type over a universally Japanese ring =. Let 2 be a locally
free Ox-module of finite rank and let 7 : ¥ = Spec(S*(2V)) — X be the natural
projection map.

Definition 2.2. A parabolic Q-pair is a pair (F., ) consisting of a parabolic Ox-
module F, and a parabolic homomorphism ¢ : E. — E. @x  with p A = 0. We
say that (F., ) is coherent (or, torsion free) if [, is.

By Remark 1.1 (i}, the original notion of parabolic Q-pairs in [25] is same as that
of torsion free, parabolic §2-pairs.

By the condition ¢ A ¢ = 0, E. has a structure of parabolic Oy-module with re-
spect to m*D. This correspondence gives us an equivalence between the category of
parabolic Q-pairs and Py,r.p. By Proposition 1.1, Py/r.p has enough injective ob-
jects. For parabolic -pairs (E., ) and (£, ¢'), we denote by Ext', (( E., ), (£, ¢'))
the Ext-group Ext} (£., E.). The deformation theory for parabolic Q-pairs is given
by Extx ((£.,¢), (£, ) and Exti (2., ¢), (£.,)).

For convenience of readers, let us recall some notion defined in [14] and [25].

Definition 2.3. A coherent parabolic Q,-pair (£.,¢) on a geometric fibre X, is said
to be parabolically stable (or, parabolically semi-stable) if it is torsion free and for
every coherent -invariant para.bolic sub-sheaf I, of £, with 0 # F # F,

/\ \ Tn
fo (rk F / i el (or, <, resp.)

for sufficiently large integers m. Here, “p-invariant” means o(F,) C F, @x .
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Let «. be a set of real numbers {ay,a2,...,} with 0 < oy < oy < -+ <
a; < 1 and let H, be a set of numerical polynomials {H, H,, Ho,..., H;}. Let us
denote by Pa‘rﬁ;,‘:i}:’,js (or, Parfi’}ﬁﬁ%) a sub-functor of Pary .. p/s such that (£,,¢) €
Pary/repys(T) is a T-valued point of it il and only if for all geometric points ¢ of T', the
system of weights of E.|x, s o, (F.,@)x, is pala,bolically stable (or, parabolically
semi-stable, resp.), x(E(m)y,) = H{(m) and x((£/i5*"° (Lo ))m)x,) = Hi(m)
for i = 1,2,...,! (e1y1 = 1). By virtue of Theorem 1.11 of [25], Par{f];ﬁﬁ?s and

Hay,ou,88
Pa.ryf;r.ﬁfs are open sub-functors of Pary,p/s.

In the previous paper [14] and [25], we have constructed moduli schemes of Seshadri

equivalence classes of parabolically semi-stable Q-pairs.

Theorem 2.3 (Theorem 4.6 of [25]). Assume that all «; are rational numbers.

e Hyory,88 Hy o

Then there exist an S-scheme MQ/MD/S and a morphism T : Pary 1 — AIQ/\/D/S
such that
(1) M@'J'\,O}bjs is locally of finite type and separated over S,
(i1) Ms?:f;/b/s conlains an open sub-scheme Mn/,\/D/s which is a coarse moduli
}l. e, ,3

scheme for the functor Pary /i 5s and
(iil) for each geometric point s of S, Y(k(s)) induces a bijection

H¢ 8 Ho -
PaTV/:D;s(A( 5))/ ~ = M, /,\CT/D/S(A(S))a
where ~ means the Seshadri equivalence relation (cf. Definilion 1.12 of [25]).
If S is a noetherian scheme over a field of characteristic zevo or dim X/S < 2, then
Afg/'f'/bls is quast-projective over S. When 1 =0, M&'{{f:,bfs is @ moduli scheme of

Seshadri equivalence classes of parabolically semi-stable sheaves M)‘\L.[;I’;'/‘S.

Remark 2.2. If (E. ) € Pm{f,,:D’/l(T) then (E.,¢) is a flat family of parabolic
(-pairs i.e. all i%” are injective and all E/if* °(E,,,,) are T-flat. In fact, the first
assertion follows from Remark 1.10 of [25}. Since all £, are T-flat and 1% By,
E.lx, ., are injective, the local criterion of flatness implies that £ /i (£, )

are T-flat. Hence, the morphism T is defined by the condition (4.6.4) in Theorem
4.6 of [25].

Theorem 2.4. Let s he a k-valued geometric point of S and let (E.,p) be an Q-
pair corresponding to a k-valued geometric point x of(ﬂdg/",'(‘:,b/s),. Then the Zarisk:
langent space of (‘Mn/,\/D/S) at x is naturally isomorphic to Bxty ((E.,¢),(E.,¢)).
If Ext% J(Bay0), (Eyp)) = 0, then A[g/')’”,D/S is smoolh al x over S. Morcover,
if S = Spec(k) for a field k and if Extk,((E.,¢), (Fs,¢)) = 0 for all parabolically

e

semi-stable Q-pairs (E.,p) on a geometric fibre X,, then MQ/MD/S is normal.
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Proof. The moduli_ Méﬁ,‘)ﬁb/s was constructed as an inductive limit ol a family of

open immersions M' — M? — ... parametrized by positive integers. Each M® is a
good quotient of a scheme R by a PGL(V,)-action where V, is a free =-module. On
the scheme X, = X Xxg R, we constructed an R*-flat parabolic Q-pair (£°, ) and a
surjection ¥ : V, @z Ox, —» E¢(m.) for some integer m,. This (E¢, %) determines a
map ¢°: R¢ — ParﬁiﬁB’/’S. The map Toq® is just the quotient map £ : R® — M¢. By
the definition of R¢, it is easy to see that the smoothness of R® over S at a point z
is equivalent to the formal smoothness of the functor Pa.l?},’::'é;’;g over S at ¢°(z). To
prove normality of the moduli scheme, it is enough to show that all R® are smooth.
So, the last assertion follows from Proposition 2.2. Moreover, by the completely same
proof as that of Proposition 6.4 of [13], the quotient map £ : £~ (M) — M® is a
principal fibre bundle with group PGL(V,) where M¢ = MenN f‘vfg/‘/;\f’/‘p/s. Hence,
vanishing of Ext% ((£.,¢), (£.,»)) for a parabolically stable Q-pair (E,, ) implies
the smoothness of the moduli scheme over S at the corresponding point.

For tangent spaces, by Corollary 6.4.1 of [13], we may assume that S = Spec(k)
with algebraically closed field k. Let k[t] be a k-algebra with ¢* = 0. Since ¢ :
£~1(M?) — M= is a principal fibre bundle, it is easy to see that the natural map

Hoyxoss (1. rHeoe  (q
Pary 257 skt @) — Ma/x)p/s(k[t])(5.0)-
is bijective. Since the action defined in Proposition 2.1 is compatible with any maps

of deformation situations, this bijection induces the desired isomorphism of k-vector
spaces. [

Remark 2.3. 1f we set 2 = 0 in Theorem 2.4, we get the corresponding results for

the moduli scheme ]\'If/‘l’;’ s

3. TENSOR PRODUCTS, HOM-SHEAVES AND SERRE DUALITY THEOREM FOR
PARABOLIC SHEAVES

Let us define parabolic tensor products for parabolic sheaves E, and F.. For each
real number a, let us set

(E.@x )a=( D (£ @x Fuy))/Ra

] +ag=c

where R, is a sub-Ox-module of @, ya,=a( Fa; ®x Fa,) generated locally by sections
of types

() ig " (2) @y -2 @17 (y) (¢ € Bay,y € Foyy a1 + a2 = @) + 0 = @)
(i) e = j#7(z) (v € Ep@®x Fy, f+7=0)
where 7% is the isomorphism

(1@7r())o((je(B —1))7'®1) : Eg®x Fy — Eg1@x Ox(—=D)@x Iy — Eg_1@x Fiyy1.
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For each pair of real numbers a > £, a homomorphism

i5ler. (B ®x F.)a — (E.®x F.)s
is defined by setting for local sections ¢ € Fy, and y € Fy,, (o + a2 = &),

1E_®F (tr®y mod R,) = z",?'ﬁ""’( Y®y mod Rg

o]

= z2®:i2% " (y) mod Rg.

It is easy to see that this definition is well-defined and these homomorphisms {37 5. }
make (£, @x F.). an R-filtered Ox-module. Moreover, to define an isomorphism
JE.F., let us consider isomorphisms

Jo = B,(1®Jr(7)) : @(Ea-'v ®x F, @x Ox(-D)) — @(Ea—w Qx Fiyi)-
¥ ¥
Then it is easy to see that J, (R, @y Ox(—D)) = Raqy and that

IEeyxF =J« mod R.®x Ox(—D)

is an isomorphism (F. @x Fl.). ®x Ox(—D) ~ (E. @x F.)[1]. which satisfies the
condition (1.1). Thus, we get a parabolic sheaf (£. @y F.)..
We have a family of canonical maps

fa,ﬁ : Eor ®x F,B — (E- Qx F*)a+,6-
These maps defines a canonical parabolic bilinear map
f-u,* . E* X qu h— (E- ®4\’ F-)-

i.e. each local section b € Fj (or, a« € E,) induces a parabolic homomorphism
fep(—=,b0) 1 Bo — (E.®x F.)[B]. (or, fa-(a,—): F. = (E. ®x F.)[a]., resp.). It is
easy to see that this parabolic bilinear map has a universal property as in the case
of usual tensor products.

Example 3.1. Let E, and F, be parabolic sheaves Assume that F. has the special
structure. Then (E, Qx F.)o >~ E, @x F and 1 LE oF, = =1%% @ idp. In particular, for
objects in M x C Px/p, parabolic tensor products of them are same as usual tensor
products for Ox-modules.

“shift” are commutative.

Lemma 3.1. For each o € R, (Ela]. @x F.)u ~ (B, Qx Flal). ~ (£, ®x FJ)[al..
Proof. Clear. O

Definition 3.1. A coherent parabolic sheaf [, is said to be locally free, if £, are
locally free O x-modules for all & and E,/i%" (£s) ave locally free Op-modules for all

a< B <a+l. If X isintegral, the ranks of E, have a constant value. It is called
the rank of F..

Clearly, two operations “tensor” and
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Locally free parabolic sheaves of lank one (call them parabolic invertible sheaves)
are obtained locally by shifting invertible sheaves with special structure. More gener-
ally, every locally free parabolic sheaf F, is locally a direct sum of parabolic invertible
sheaves.

Example 3.2. Let F. and F. be parabolic sheaves. Assume that F, is locally free.
Set / = X —D. lLeti:U — X be an inclusion map. Since £, @y Fy C E, ®x
W F) =10 (EQyx F), all B, ®x Fj are regarded as sub-modules of ¢,.7*(£ @y I7).
In this case,

(-En- ®X F*)o' = Z (Eﬁl ®X FC‘Q)

ajtoz=a

as a sub-module of 7,.*(E ®x F') and iOE"feF_ is the natural inclusion map.
Tensoring a parabolic sheal induces a right exacl functor.

Proposition 3.2. For any czract sequence of parabolic sheaves
0— E LB LB — 0,

the sequence
y _ Jeid
Ei ®X wa f;et" E* @X -‘[4- @'} Ei’ ®,\' .F... — 0

15 exact,

Proof. We shall prove in Lemma 3.5 that the functor ® x F. has a right adjoint functor
Hom(F.,—).. For the functor Hom(F,, —)., lelt exactness is clear. Then our claim
follows from standard arguments. [

In the above proposition, if f ® 7d is injective for any short exact sequences, F, is
sald to be parabolically flat.

Proposition 3.3. A coherent parabolic sheaf E. 1s parabolically flat if and only if it
is locally free.

Proof. If E. is locally free, it is locally a direct sum of parabolic invertible sheaves.
Hence, it is clearly parabolically flat.

Conversely, assume that E, is parabolically flat. The question is local, so we may
assume that X is an affine scheme. Since the category of Oy-modules My is a full
sub-category of Px/p, all £, must be locally free and of finite rank. Then all 157
are injective. Without loss of generality, we may identify £, with a sub-module of
Es. If E. is not locally free, we may assume that for some 0 < o < 1, E_,/E is
not a locally free Op-module. Then for some ideal / of Oy containing Ox(—D),
rl‘or‘l")“‘(.E_C,/E,CJ,\'/I) # 0. Let J. be a parabolic sheaf such that Jo = Ox, Jg =1
for 0 < f<@and Jg = Ox(—D) for a« < 8 < 1. Then we have a natural injection
é:J. — Ox[—al.. It is easy to see that (F. @x J.)o 15 given by the exact sequence

0 — E@x [ -5 E®(Eeo ®x 1) - (E. ®x J.)o — 0
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where f(e®a) = (ea, —1% *(e)®@a) and g is the composite map of the natural injection
E®(E.a®x 1)~ (£o®x Jo) B (£i_a ®x Jo) — Bp(E_pg @x Jg) and the quotient
map ®g(E_g Qx Jg) = (F. ®x J.)o. On the other hand, (£. @x Ox[—al.)o ~ F.

Hence, we obtain the [ollowing exact commutative diagram.

0 0
| | |
0 — .1 <, Kern
| [ |
0— £l L EeE.el) 5  (EeJ) —0

li‘};“‘m l(i"E"" 0) lrr
0—  F_.®1 — E_, — E_,®(Ox/I) —0

|

|
(B /E)Y®T — E_o/E — (E_G/E)f)(ox/f) — 0

| |

0 0
The connecting homomorphism Kern — (£_,/E) @x I induces an isomorphism
Kern/q' (Feo ®x 1) ~ Tor?* (F_o/E,Ox/1).
On the other hand, we have the following exact commutative diagram
0 — Eo®l 5 (B.@J) =5 (B.®J)o/¢(Eea®I) — 0
I |19 | @@,
0 — Bl — B, 2 E_o ® (Ox/1) — 0.
Note that A's(1 ® ¢)o = (1 @ @)ook = 7. Hence, by the snake lemma,
Ker(1 @ ¢)o ~ Ker(1® ¢)o = Kern/g'(E_o @x 1) = Tor ¥ (E_o [ E,Ox /1.
Thus, (1 ® ¢)o: (F. @ J.)o — (£ ® Ox[—al.)o is not injective. O
Definition 3.2. Let £, and F, be parabolic sheaves. For each & € R, let us set
Homx (E., F.)o = Homx(E., Flal.)

[.8]

For each o > 3, the homomorphism 75" induces the natural hornomorphism

'aaﬁ N ; n 4 , A A
Uomx (B TOMX (s Fl)o — Homx(E., I)g.
Moreover, the canonical isomorphism

HHonu(L‘g, Foyp)) ®x Ox(- H’Hom;‘ (Fg, Fatpr1)
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induces an isomorphism
JHomx (B, F)(@) : Homx (E., Fl)o @x Ox(—D) — Homx(E., Fl)as1.

It is easy to see that these isomorphisms make Homy (E., F.). a parabolic sheaf. It
is called a parabolic Hom-shealf.

Lemma 3.4. For each o € R, there are natural isomorphisms

Homx (E., F.)[a]. = Homx (E[—al., F.). ~ Homx (E., Fla).)..
Proof. Clear. O
Example 3.3. If £, has the special structure, then Homx (E., F.), >~ Homx (£, I,)
and i'c;{,oﬁmx(E.,F.) ~ (1%P).. In particular, Homy ((Ox)., F.). ~ F, if (Ox). has the
special structure. If, furthermore, F. has the special structure, Homy (E., F.). also

has the special structure.

Lemma 3.5. There 1s a natural isomorphism of parabolic sheaves
Homx ((F. ®x F.)u,Gh)e >~ Homx (E., Homx (F., Gl

Proof. Clear by the universal property of the canonical parabolic bilinear map f.. :

E.x F. > (E.®x F.).. O

Let us introduce two more operations for parabolic sheaves F,. Let i, be an

inductive limit lim £p. For each & > B, we have a natural homomorphism z'QE”B D By —
B>a

Eg induced by 3" and have an isomorphism jz(e) : Eo @x Ox(—=0) — Eaq1. Thus,
we obtain a parabolic sheaf E.. If E, is a coherent parabolic sheafl corresponding
to a filtration £ = Fi(E} D Fo(F) D -+ D F(F) = £ @x Ox(—D) and weights
0<o <ay < - <a <1, then £, is a parabolic sheal with £, = F;(£2) for all
g <a<o(i=1,...,0+L,ao=ar— 1,141 = 1 + ).

Secondly, let us set V(E.), = LY, (the dual sheaf of E_,), ?S(%) = (i577)V for
a > fand jyplea) = (Je(—a = 1) ®tdoypy)Y. Then V(E.). is also a parabolic
sheaf.

Now let F' be a parabolic sheaf with special structure. Then we have
Homx (B, F)o ~ Homy (E[~1)—a, F) ~ Homy (F_y @x Ox(D), F).
In particular, we have a natural isomorphism of parabolic sheaves.
(3.1) EY ~V(E. @x Ox(D)). ~ V(E.). @x Ox(=D).
where EY = Homy(E.,Ox).. We have a canonical homomorphism

B, — EYY,
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If this is an isomorphism, 2, is said to be reflexive. A coherent parabolic sheal £,
is reflexive if and only if all E, are reflexive, since (£Y), = (E£,)"Y. In particular,
locally free parabolic sheaves are reflexive.

Lemma 3.6. [f E. is locally free, then there are canonical isomorphisms

(3.2) (EY ®@x F.). ~ Homx(E., F.).,

(3.3) Extl (F., F.) ~ H(X,(EY ®x F.)o) ~ H (X, Homx (E., F.)).

Proof. For (3.2), since we have a canonical map, it is enough to prove it locally. Then
(3.2) is clear since we may assume that E. is a direct sum of parabolic invertible

sheaves. For (3.3), the result follows from parabolically flatness of EY, (3.2) and
Corollary 1.3. O

The Serre duality theorem can be generalized for parabolic sheaves as follows.

Proposition 3.7. Let X be a non-singular projective variety of dimension n over an
algebraically closed field k. Let wy be a dualizing sheaf on X. Then for all locally
free parabolic sheaves E, and F.,, there are natural isomorphisms

(3.4) 6" : Exty (E., F. ®x wx (D)) =5 Exty(F., E.)

If, moreover, D is non-singular, then this formula holds for all coherent parabolic
sheaves F, and F..

Proof. If P — FE., and Q. — F. are resolutions of finite length by locally {ree
parabolic sheaves of finite rank, then Ext’ (L., F. ®x wx (D)) is canonically isomor-
phic to hypercohomology H' (X, (())Y ®@x Q:): @x wx(D)). By Corollary 1.3, this
is isomorphic to HF (X, ((P2)Y ®@x Q:); ®x wx(D)). Since for locally free parabolic
sheaves P. and Q.,

(PY ®@x Q.)o = ((Q¥ ®x P.)5)¥ ®x Ox(—D) = ((QY ®x L.)o)” ®x Ox(-D),

by the Serre duality theorem for complexes, we obtain (3.4). O

Remark 3.1. 1) If D is not smooth, a coherent parabolic sheal F. does not always
have a locally free resolution of finite length.
2)  The theorem can be gencralized to isomorphisms of R-filtered &-modules

0: : Exti(EL, F. @y wx (D)) ~ V(Exti (I, £.).).
VH™ (X, Homy (Fu, £.).))..
3)  Even for locally free parabolic sheaves E., in general,
Homx(E., E.)Y # Homx(E., E.)

though we have Homx(E., E.)Y ~ Homx (E., E.)..
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4., EXT-GROUPS FOR PARABOLIC §)-PAIRS

Let (E., ) be a parabolic Q-pair. Let » be the rank of Q and let B = $*(QV).
Then we have the following Koszul exact sequence of B-modules.

£:0 — A (O)2x B-5 S ANaex B -5 0VexB-5 B2 0y — 0
Here d' is given locally by

d((wr A Aw) @) =3 (=1 (wi A Ay A Aw;) @ w;b.

i=1

Since all /\i(QV) ®x B are flat over X, £ @x L. is also an exact sequence. Let us
denote E! = E, @x AY (YY) ®x B and d; = idg, @ d'.
Let us define §' : EX — Ei71 by
Fle@®@ @i A Aw)@b) =3 (—1) T we®@ (wi A Aw; A Aw;) ® b
i=1

Then it is easy to see that §'6't! = 0 and §dt' + d'6"*' = 0. Let us set £ =
E.Qx A (QV) ®x S¥(0Y). Then Ei = @>0Li*. Note that d'(£1%) C E-Y*! and
§Y(EY*) C BV, Let us set & = d' — & for i > 1. Then 9'9'*! = 0.

Lemma 4.1. The sequence
C:O——rE,:-g—»---———»F2 f1—>FG—rE — 0
is exact, where 3°(e ® b) = be.

Proof. Since all homomorphisms preserve filtrations, we may ignore parabolic struc-
tures. Note that the question is local. Clearly, 3°9' = 0 and Coker(d') = E®g B =
E. Hence, ( is exact at E° and 8 is surjective. Now, let us take an element z € £
with &(z) = 0. Set x = S x¢ (zx € EL). Since

& (z) = —8 (o) + mz (d(28) — 8 (wipn)) + & (m) = 0,

we have §'(zg) = 0, d'(zy) = 6'(3,;,“) (:=0,...,m~—1)and d'(z,) = 0. Since E Q@ £

is exact, there exists an element 2/ _, € L7} such that d*~"(z! _,) = 5. Then

d(mr) = 8(d™ (2],00)) = —d (8 (a]2))-

Hence, we get an element 2/, _, € B, such that z,_, = &'+ (2,_,) — 6+ (2! _,).
Continuing this procedure, we get elements @}, € £ such that z = d*'(2}_,) —

§F1(z)) for k=0,...,m with ., = 0. Then 8£+1(E raa) =2 0O
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Let (F., ) be another parabolic Q-pair. For each 7, we have the canonical isomor-
phism

¢' : Homp(EL, F.) =+ Homy(E., F. @x N'Q).
We can easily verify the commutativity of the following diagram.
Hompg(E:, F.) ey Hompg( £t F,)
(41) qugn J'¢i+1
: by :
Homy (E., . @x AIQ) % Homy(E., F. @x AFIQ)
Here, A, 3 (f) = m(p @ 1) f — m2(f ® 1)e.

E. #, E. @y Q 18, FLoex AQox 0

1 -
Fo@x N P Ry Qex NQ TH  Foex A
(MeRQuv)=e@ (wAv), T(eQuUv)=e® (vAuw))

Proposition 4.2. For parabolic Q-pairs (E.,¢) and (F., ), there is a spectral se-
quence

(4.2) ED = Exty (B, P @x APQ) = Bxti(Eayi), (P )
Moreover, if E, is Ox-locally free, then there is a canonical isomorphism
(4'3) EXt’i\'((E-: 90)7 (F-ad))) = ]IT(/\,a C'((P1¢))'

where C*(,) is a complez of Ox-modules with C{p,v) = Homx(E., F. @x AN'Q)

and d"c.(wp) = )‘Zw.dz)' In particular, there is another spectral sequence

(4.4) B3 = HP(X, HY(C"(¢,9))) = ExtRT((E., 0), (P ).

Proof. Let us take an injective resolution 0 — F., — I! of F. as a parabolic B-
module. Let ¥' : I} — [} @x 0 be the Q-pair structure induced by its B-module
structure. Then we obtain a double complex C** = C*(p,¢"). By Lemma4.1 and the
commutativity of the diagram (4.1), for each i, 0 — Homp(E., I}) — C*(p, ') is
exact. Hence, we get a resolution

0 — Homp(L., 1)) — C"".

This induces a quasi-isomorphism of complexes Homp( ., ;) ~ tot C**, where
tot C°" is the total complex of C**. The first spectral sequence is given by the
spectral sequence of the double complex C**.

If E, is locally free as a parabolic Ox-module, then for each 7,

0 — Homx(E., I ®x /\jQ) — Gj(%%b')
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gives us an injective resolution ol Homyx(F., F. @x A'Q2). Hence, we have quasi-
isomorphisms

Homp(E., 1)) ~tot C*" =~ C*(p, ).

Hence, Ext (( F., @), (F., %)) is isomorphic to the hypercohomology H' (X, C* (¢, 1)).
Finally, (4.4) is usual spectral sequence of the hypercohomology. O

Remark 4.1. The map A, ) : Homx (E., F.) = Homy (L., F. ®x Q) gives us an Q-
pair structure on Homy (E., F.). If Q@ = Q% the hypercohomology H' (X, C* (¢, %))
coincides with H%, (X, Hom x (E., F.)) the Dolbeault cohomology with coefficients in
Hom x (F£., F.) that is defined by Simpson [23]. For a Higgs bundle (£,¢), by the
isomorphism (4.3), we have

Hpo (X, E) = Extfx((ox,m, (E,0)).
5. MODULI SPACES ON CURVES

Let X be a smooth projective curve of genus g > 2 over an algebraically closed
field k. Let D = p; + ...+ pn be a reduced divisor. Let M = M(d,{cl,nl}) (or,
ﬂTIHiggs = ﬂ?lmggs(d, {a?,n?})) be the moduli scheme of Seshadri equivalence classes
of parabolically semi-stable bundles £, (or, parabolically semi-stable Hig;__,s bundles
(E., ), resp.) with (leﬁE = d, rk(E) = r, flag structure of type (n},...,n; ) at p;
and weights {a},...,al'} at p; (note that r = n}). Let F} = Flag(n},...,n) be a
flag variety of type (n},...,n¥).

Theorem 5.1 (Mehta and Seshadri[15]). The moduli scheme M(d,{al,nl}) is
an irreducible normal projective variely of dimension 1 + r%(g — 1) + Y%, dim F;.
It is smooth at points corresponding to parabolically stable bundles.

Let us verify this theorem by calculating Bxtl (£., £.) (for irreducibility, see the
proof of Theorem 4.1 of [15]). Though those are calculated by usual cohomology
theory using isomorphism (3.3), we shall show it by a method which can be applicable
to non-locally free sheaves in higher dimensional cases. By our duality theorem,
Ext%(E.,E.) = 0. So, the moduli scheme M is normal and it is non-singular at
points corresponding to parabolically stable bundles. 2, has a parabolic sub-sheaf I
(with special structure). Set G. = E./E. The natural short exact sequence

0 —F— FB, — G, — 0,
yields a long exact sequence
0 —s Homy(E., E.) -5 Homy (£, £.)
2 ExtL (G, E.) <5 Exth (£, E.) 2 Exth (£, E,) — 0.

Let us assume that £, is parabolically stable, then it is parabolically simple i.e.

Homy(E.,E.) = k-idg,. By Corollary 1.3, Extl (£, E.) ~ Exti (£, E). Since
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G.@x QL(D) ~ f’,, by the duality theorem, Exty (G., E.} ~ HonL\(E_,C‘ )V. The
parabolic sub-sheaf E of E. is annihilated by all parabolic homomorphisms ¢ : £. —

G.. So, il E,, = V' D> .- D VH > VAT =0 is the flag structure which detelmmes
the para,bolic structure of E. at p;, then

Homy (£.,G.) ~ Homy (E./E,G.)
= @ {f € Badi(V) | (VD) WG =1,...,0))
Thus, we conclude that the dimension of the tangent space at I, is
(5.1) dimyg Extl(E,.,E,.) =14+ ?‘2(g -1)+ Z dim F;.
. 1=1
For the moduli scheme of parabolic Higgs bundles, we have the following.

Theorem 5.2. The moduli scheme M ;,,,(d, {aJ, j}) is an irreducible normal quasi-
projective variety of dimension

2(1 4 r¥( —1)+Zc11mF +Z AR L

Moreover, M iges(d, {a}, n} ) is smooth al points corresponding to parabolically stable
Higgs bundles.

Proof. For normality and smoothness, it is enough to show that for all paraboli-
cally semi-stable Higgs bundles (E., ), Bxt%((E., ), (£.,©)) = 0 . By the spectral
sequence (4.2), we get an exact sequence
0 — Homyx ((£.,¢), (B, ) == Homy(E., E.) — Homx (E., E. @x M (D))
L+ Bxty ((£ey ), (Bny ) = Bxty (Eu, B.) = Bxtiy(B., B. @x Qx(D))
— EXti’((E*’ "P)a (E*’(P)) — 0.
By the Serre duality theorem for our case, we have isomorphisms,
Exti(F., B.) ~ ExtyH(E., £, @y Q4 (D))
Exti (£, B. @x N4 (D)) ~ Exty (£, £.)Y
and 6 is given by f — fo — ¢f. Hence,
Ext ((Ee, ); (Enyp)) 2 Homx ((Ex ), (£2,9))".

Let f : (E.,©) — (£.,$) be a parabolic homomorphism. € = (E., ) has a Jordan-
Holder filtration € = E° D 1 D .- D E™ D ™ = 0. Set GF = E/E* . U f
is not zero, it induces a non-zero map G' — G7 <+ G7 for some 7,j. Since G* and
G7 are stable and have same slope, it must be an isomorphism. But G # G7. This
contradiction shows that Ext%((E., ), (E.,¢)) = 0.
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If we admit connectedness, the dimension of Ext ((E.,0), (£.,0)) with stable /2.
is the dimension of Mpjgg,. In this case,

dimy Extl ((E.,0), (£.,0)) = dimy, Exty (E., E.) + dimy Ext} (E., E.).
Let us set G = £2,/£.. Then we have

0 — Homy(E., E.) — Homy(F., G.) — Exty(E,, £,)
s Bxty(E., B.) — Exty(F.,G.) — 0.
The dual map of « is
Homy (L., 5. @x Q4 (D)) — Homy(E., E. ®x Q4 (D).
Hence, Extk(£.,G.) = 0. Clearly, Homy(E.,G.) = Homy(G.,G.) and its dimen-

sion is Z,J(nf — 1?.f+1)2. Thus, we obtain the desired dimension.
Connectedness is proved by the method of Simpson (cf. Corollary 11.10 of [20]).
We have a Gy,-action on My;gee by (E., ) — (E., tp). By Corollary 5.12 of [25] for

each parabolically semi-stable Higgs sheaf (/2. ¢}, 1in[1)(.E_, te) always exists in Mp;ggs.

Let (E.,¢) be a parabolically stable Higgs sheaf fixed by the G,,-action. Suppose
that ¢ # 0. By the proof of Corollary 11.10 of [20], it is enough to prove that there is
a parabolic Higgs bundle (F., ) not isomorphic to (F.,¢), such that lim (F. t)) =

tms

(E.,¢). By the proof of Theorem 8 of [22], there is a decomposition such that
E. = @,_E? and ¢(E?) C EP™' @x Qk(log D). Since (£.,¢) is parabolically sta-
ble, par- u(E%) < par- u(E.) < par- u(E!). Then, par-deg(Homx(E!, E°).) < 0
and so, deg(Hom x(EL, E?)) < 0. By the Riemann-Roch theorem, Ext)(E!, £?) ~
HY(X,Homx(E!, E?)) # 0. Now by the same argument as the proof of Lemma 11.9
of [20], we can find a desired (F.,%). O

Remark 5.1. In [10) Konno constructed a moduli space of stable parabolic Iiggs
bundles on a Riemann surface as a hyperkahler quotient by a gauge group. His
definition of parabolic Higgs bundles is different from ours. He defined a parabolic
Higgs bundle as a pair (E., @) of parabolic bundle F. and a parabolic homomorphism
¢ B, — £, ®x QL (D).

Let P be the moduli functor for J‘_':{Higgs- Let NP be a sub-functor of P such
that (£.,¢) € NP(T) if and only if ¢ € Hom,\'T(E,.,E'* ®x Q% (D). Clearly, NP

is a closed sub-functor of P. We constructed Mmggg as a geometric quotient by
an algebraic group G = PGL(V) of some G-scheme R. On Xpg, we have a nniversal
family of parabolically semi-stable Higgs sheaves (E*, @) and surjections V@;Ox,, —»
E. Then there exists a unique closed sub-scheme NR of R such that a morphism
[ : T — R factors through NR if and only if f~(@) € Homy, (f*(E.), f(E): ®x
Q% (D)) (cf. [25] Corollary 2.3). Clearly, NR is G-invariant. Hence, we obtain the
geometric quotient NM of NR by G. NM is a closed sub-scheme of M. By the prool
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of Theorem 2.3, NM is the moduli scheme for the functor NP (modulo Seshadri-
equivalence relations) and it contains the coarse moduli scheme N M of stable objects
as an open sub-scheme. Fix a line bundle L. Let N My be the fibre of the canonical
map NM — Picy over L. Then NAMj is the moduli scheme which corresponds
to the moduli space constructed by Konno. He proved that his moduli space is a
hyperkahler manifold of dimension 2((¢g — 1)(r* - 1) 4+ %, dim F}).

In the case of usual Higgs bundles, their moduli space contains the cotangent
bundle of the moduli space of stable bundles as an open subset (see Hitchin [7]). In
our case, Mpjgs also contains a vector bundle on M and N M contains the cotangent.
bundle of M where M is the locus of stable parabolic bundles of M. Let Miges b
the open sub-scheme of Ml.[-,ggs consisting of points which correspond to (E.,¢) with
stable fs.. We have a canonical map x : Mg, — M. There is an étale surjective
map p: M’ — M and a parabolic sheaf £, on Xy flat over M’ which determines
the map p. Let

F z(fk t),.(HOTIl_xM,(E*, E. x Q}\(D)))
G =(fu)«(Homy,,, (E., E.®x Q% (D))

Since dimensions of Homy,, (E.|x.., Eulx.. ®x Q% (D)) (or, Homy,, (E.|x.., F.|x., @x
5 (D))) are constant, F (or, G, resp.) is locally free. Let V (or, W, resp.) be a
vector bundle over M’ whose sheaf of sections is F (or, G, resp.). The canonical
flat family of parabolic Higgs bundles on Xv induces a map V. — My, Clearly
this map induces a bijective map V — Mg, . xa M'. Since both of them are
smooth, it is an isomorphism. Moreover, we have a map W — NM N Mg, ..
By Serre duality theorem, W is the pull-back of the cotangent bundle T*M of M.
Since T*M is smooth, by the Zariski’s main theorem, we obtain a map 7™M —
NM N M., 1t is easy to see that the Zariski tangent space of NM at (£.,¢)
is Ker(Extl ((E., ), (E.,¢)) LN Extk((E.,¢),(G.,®))) where G. = E./E.. Since
Ext} (E.,G.) = 0 and the natural map Homy(E.,G.) — Homx (E.,G. @x QL (D))
is a zero map (@ = 0), Homy (£., (. @x Q4 (D)) ~ Exty((E.,9), (G.,@)). Cokerd ~
Exty ((E., @), (£, ) ~ Homy ((E., @), (E.,¢))". Hence,

dimy Kerd = 2((g — 1)(7‘2 —1)+ Zdim F)y=dim1M.

=1

Since the map T*M — NM N My, is bijeclive, we conclude that it is an isomor-
phism.
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