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Abstract. In this paper, we investigate global stabilization phenomena of certain classical
solutions to nonautonomous semilinear parabolic partial differential equations with
Neumann boundary conditions on bounded domains in IRN . Given any such classical
solution u , we prove in particular that there exists a spatially homogeneous, time
almost—periodic classical solution 4 which captures u with respect to an appropriate
Sobolev norm as the time variable goes to infinity. The class of equations which we analyze
here contains in particular Figsher’s type reaction—diffusion equations of population
genetics. Our method of investigation mainly rests upon a combination of some geometric

arguments with parabolic comparison principles.






1. Introduction and Outline.
Consider the class of real semilinear parabolic Neumann boundary value problems of the

form

u, (x,t) = Au(x,t) + s(t)g(u(x,t)), (x,t) € AR

Ran(u) C (uy,uy) (1.1)
5% (x,t) =0 , (x,t) € saxR T

In equations (1.1), 1 denotes an open bounded connected subset of IRN with smooth
boundary 4 and N € [2,0) N Nt , while A stands for Laplace’s operator in the
x—variables. Furthermore, s : RT — R is the restriction to R of a Bohr
almost—periodic function on R which we shall also denote by s, while g: R— R is
sufficiently smooth and possesses at least two zeroes u, and u; such that g(u) >0 for
every u € (uy,u,) . Finally, Ran(u) denotes the range of u and p stands for the

normalized outer normal vector to 1. Consider also the initial value problem

U/(t) = s(t)g(L(t))tER
Ran(u) C [uj,u,] (1.2)
( ) = b € [“0:“1]

) =

The central theme of this article is devoted to the analysis of global stabilization
phenomena of certain classical solutions to problem (1.1) toward classical Bohr
almost—periodic solutions of (1.2) as t — o . This problem is motivated by several
important questions of population genetics, such as the space—time evolution of gene

frequencies in the population of a migrating diploid species when the selection function s
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takes almost—periodic seasonal variations into account ([7], [9], [16]). Following the
works of [12], [14], [19] and [26], the problem of stabilization for solutions to
reaction—diffusion equations within the context of population genetics has been intensively
investigated recently, often for equations in one space dimension and for selection functions
depending on x € 1 but independent of time ([3], [5], [10], [21], [22]). One notable
exception is the work by Henry who, following earlier considerations of Fleming [13], gave
a thorough analysis of the set of all equilibria for some parabolic equations with Neumann
boundary conditions in N space dimensions, using variational and bifurcation—theoretical
arguments [15].

The considerations and the results discussed in the following sections differ from those of
the above articles in at least two respects. On the one hand, equations (1.1) arein N

space dimensions and the selection function depends explicitely and almost—periodically on
time, but remains spatially homogeneous over {1 along with g. On the other hand, we are
not looking for time independent asymptotic solutions but rather for spatially
homogeneous, time almost—periodic solutions such as those satisfying equations (1.2), in
such a way that the vibration spectra of those asymptotic solutions be determined by the
vibration spectrum of 8.

The rest of this article will accordingly be organized as follows. In Section 2, we first prove

the existence of a one—parameter family {ﬁ} R of classical almost—periodic
vE [uO,ul]

solutions to (1.2), under appropriate restrictions on 8 and g ; in addition, we also prove
that every Fourier exponent of 3 is a finite linear combination with integer coefficients of
the Fourier exponents of s, and that each such 3 remains uniformly bounded away from
the two equilibria , and Uy when P € (u0 ,ul) . These facts are then used to prove that
for every (suitably defined) classical solution to problem (1.1) which exists globally in

t € [R'g _there exists a 1 € {ﬁ} A which captures u with respect to an
vE(ug,u,)

appropriate Sobolev norm as t —— o . However, this is not to say that iisa global
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attractor, for 3 depends on u in general. With p € (N,o), the éentra.l idea of the proof
amounts to combining some geometric arguments based on the existence of exponential
dichotomies for the diffusion semigroup on Lp(ﬂ;ER) with parabolic comparison principles.
As an immediate consequence of the above result, we also prove in Section 2 that the

solutions {ﬁ} e ) represent all of the classical time almost—periodic solutions to
vE(u,,u
01

problem (1.1) within the admissible class. While the results of Section 2 hold exclusively
for the case where s has an almost—periodic primitive and hence a time average equal to
zero, we devote Section 3 to the proof of a theorem concerning the case where s has a
strictly negative (resp. strictly positive) time average. In this case, we can prove that U,
(resp. u, ) becomes a global attractor for the solutions to (1.1) a8 t — o , again with
respect to an appropriate Sobolev topology. The method of proof of Section 3 is similar to
that of Section 2, though the corresponding stabilization phenomena have different physical
origins. In Section 4 we apply the results of Sections 2 and 3 to Fisher’s type equations of
population genetics. Finally, Section 5 is devoted to the discussion of some generalizations

and some open problems concerning Neumann boundary value problems of the form

u, (x,8) = Aux,t)+s(x,t)g(u(x,t)), (x,t) € OxRT

Ran(u) C (uo,ul) (1.3)
o =0, (x4) € oxR*

where { — s(x,t) is Bohr almost—periodic for each x € {I. For a short announcement of
our results we refer the reader to [27]. In the second part of this work [28], we develop a
local geometric stability theory through the construction of codimension—one stable
manifolds and of one—dimensional center (inertial) manifolds around each

3 € {1} R . The combination of that theory with the results of this paper then
vE [ugu]
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lead to explicit decay rates concerning the stabilization processes discussed here.

ic Almost—Periodicity of Certain Classical Solutions to Probl 1.1
We begin this section with the analysis of equation (1.2), and we refer the reader to [6],
[8], [11], [18] and [25] for a presentation of all of the basic facts concerning
almost—periodic functions. Let ERB be the Bohr compactification of the real line endowed
with its usual structure of compact topological group [23]. We identify the algebra of all
complex—valued Bohr almost—periodic functions on R with S’(IRB,C) , the commutative
Banach algebra of all complex continuous functions on IRB with respect to the usual
operations and the uniform norm. Let bR be the Haar measure on IRB normalized in
such a way that ug(Rg) = 1. Forevery 8 € #(Rg,C), we have the Fourier series

expansion

s(t)~ ) s, exp[iAt] (2.1)
k€

In expression (2.1) we have defined

£

5 = (o) = lim ¢l l dts(t)x, (t) (2.2)

for each k, with t — xk(t) = exp [—il\kt] for every t € R. Following [8] and [18],

we define the module of s as the set of all finite linear combinations with integer

ent

coefficients of the Fourier exponents {A, } of 8 , and we denote it by Mod(s) . Our
k

first result is the following
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Propogition 2.1. Let s € #(Rp,R) be such that t — j dés(€) =0(1) as [t| — .
0

Let g€ ¢ (1)(IR,IR) , assume that there exist u;; € R with g(uo) =g(uy) =0 and

g(u) > 0 for each u € (up,u;), in such a way that g’(uy) >0 and g’(u;) <0.

Furthermore, let G be any primitive of 1/g over the open interval (ug,u,) . Assume that

lim G(u)=-o (2.3)
u—

lim G(u) = 4o (2.4)
u—u,y

1

and let G~ be the monotone inverse of G . Then the following statements hold:

(A) Forevery € [u0’“1] , problem (1.2) possesses a Bohr almost—periodic solution
b€ S’(l)(IR,IR) . Specifically, if & = U, (resp. b= uy ), we may take i = U,

(resp. i = Uy ) identically on R ; if be (uO,ul) , the solution is uniquely
determined by

t
) = G_l{ J dés(€) + G(b)} (2.5)
0

for each t € R . In the latter case we have the module containment
Mod(1) C Mod(s) (2.6)

(B) Every solution 1 given by (2.5) remains uniformly bounded away from the two
equilibria U, and u; that is



;Euf; (u; - () > 0 (2.7)
and
i'énfa (4(t) —ug) > 0 (2.8)

(C) For every solution 3 given by (2.5), the function t — 1/g(8(t)) is Bohr
almost—periodic.

t
Proof. It follows from a classic theorem of Bohr that the boundedness of t — J dés(¢)
0

implies its almost—periodicity [18], so that the first part of statement (A) is immediate by

separation of variables. Moreover, for every ¢ > 0 there exists &(e) > 0 such that every
t

6( €)—almost period of t —-+J d¢s(¢) is an e—~almost—period of & ; this and a classic
0

criterion of Favard imply relation (2.6) ([8], [11]). As for statement (B), assume that
relation (2.8) does not hold. Then there exists a sequence (t ) CR with A n) — U 28
n — o ; because of relation (2.3), this implies that G( ﬁ(tn)) ——m as n — o . But
this is impossible, for it follows from relation (2.5) that

by

Gh(t) = | des(e)+G(H) (29)
0
t

and hence that G(8(t_)) = 0(1) as n — o, by the boundedness of ¢ ——»J dés(€) .
0

The proof of relation (2.7) is of course similar, with (2.4) replacing (2.3). Finally, we prove
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statement (C). We already know that t — g(ﬁ(t)) € #(Rg,R), so that it remains to

prove that ixéf g(ﬁ(t)) > 0 ; if this is not true, then there exists a sequence (tn) CR such
teR

that g(ﬁ(tn)) —— 0 as n —— o . By the hypotheses concerning g , there exists a

neighborhood /" u
0

exists a neighborhood .4, of u; such that g’(u) <0 forevery u€ 4 .From
1 1

this, the properties of g and the fact that g(ﬁ(tn)) — 0, we easily infer the existence of

of uy such that g’(u) > 0 forevery u € 4 ; similarly, there
0

subsequence (tA) such that (ﬁ(tlﬁ)) C «, is monotone decreasing, or the existence of
0
a subsequence (tA) such that (4t A))C A, is monotone increasing. By the
1

smoothness of g and the fact that g(u) > 0 for each u € (uy,u,), we conclude that
ﬁ(tﬁl)_"'“o as m — o, or that ﬁ(tﬁ) — 1, as A — o . In either case this

contradicts the conclusion of statement (B). We conclude that igf g(i(t)) > 0 which,
tER

together with the almost—periodicity of t — g(#i(t)) , implies that
A
t— 1/g(8(1) € SRRR). .

We shall denote by {ﬁ} A the one—parameter family of solutions of Proposition

€ [uo,ul]

2.1, and by {4} be(u ) those solutions determined by relation (2.5). Let [N/2] be

ot
the integer part of N/2; throughout the remaining part of this paper, we shall assume that
0 hasa 3t [N/2] —boundary in the sense of [1], in such a way that 2 lies only on one
side of A0, and that it satisfies the interior ball condition for every x € &1 . We shall also
write {1 for the compact closure of 2, and denote by 3’2’1(ﬂx{R+,IR) the set consisting
of all functions z € ?(ﬂxIR"',[R) such that (x,t) — 02’Daz(x,t) € ¢ (ﬂx[R+,[R) for all
N

a = (al,...,aN) € NN , 7 € N, satisfying 2 a; + 27 < 2. In a similar way we define

=1
-4 1’O(T'ixIR"',[R) as the set consisting of all z € & ({1 x |R+,IR) with the property that
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N

D% € $(TxRYR) forall a € NV such that ) a;<1. Now fix p € (N0) ; we shall
=1

call a classical solution to problem (1.1) any function

u€ ¥ 2’1(!'thR'*',IR) n ¢(RTR) N & 1’O(T'i!th'*',lR) which in addition satisfies the

following conditions:

(C;) [u(x,t)—u(x,t")| Sc(x)|t—t"| forevery tt’ € IR'(']' and some c € LP(QR) .
(Cy) x —u(xt) € 6MR) for every t ERT .
(C3) (x,t) — u(xt) € #(xRTR) and in fact t —u,(xt) € F(RTR)

uniformly in x € {1.
(Cy) u satisfies relations (1.1) identically.
The main result of this section is then the following

Theorem 2.1. Assume that s and g satisfy the same hypotheses as in Proposition 2.1.
Assume in addition that s is Holder continuous on R andlet u be a classical solution

to (1.1) for some p € (N,o) . Then there exists a d€ {‘A’}i‘/E( such that

uO’ul)

lim sup |u(x,t) - 4(t)] =0 (2.10)
=0 cen

Moreover, the given classical solution satisfies the relations



lim sup |Vu(x,t)| =0 (2.11)
t—o xen
and
im  sup Ix—yl_ﬁ|u(x,t)—u(y,t)| =0 (2.12)
t—o x,y€N
x#y
im  sup |x—y| | Vu(x,t)-Vu(y,t)| =0 (2.13)
t—wo x,y€ef
xty

for every ﬁ € (0,1—p_1N] . Finally, every Fourier exponent of 3 is a finite linear

combination with integer coefficients of the Fourier exponents of s .

The proof of this result will require several steps. First, let H2,p(¢) = Hz’p(Q,C) be the
usual Sobolev space consisting of all complex LP—functions z with LP—distributional

derivatives D% for |a| € [0,2] , equipped with the norm

pl/p
s —lilgy={ 3wl | 14

|a| €[0,2]

where |}-|| D denotes the usual LP—norm. For S € (0,1—p_1N] , let
gl ()= € L5 (T,€) be the Banach space of all complex Hélder continuous functions on

1 with Holderian derivatives D%z of exponent B for |a] € [0,1] and the norm
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lzlly 5= llell; o, + sup _|x-y| | D%(x)-D%(y) | =
L8~ e ™ 1€ 0] x.yen
Xty
(2.15)
max p |D%(x)| + max sup |x—y|_‘6|Daz(x) —D%(y)|
|a|E[01] Eﬁ |a| €[0,1] x,y€N
XFy
It is well known that there exists the continuous embedding
g2P(¢) — w1 B(¢) (2.16)

and that Hz’p(ﬂl) is a commutative Banach algebra with respect to the usual pointwise
operations and a norm equivalent to (2.14) ([1]). Now let H2’p(IR) = H2’p(ﬂ,[R) be the
real component of Hz’p(dl) and let u be a classical solution of Theorem 2.1; for every

t €RY, define u(t) : M— R by u(t)(x) = u(x,t) . It is then clear that u(t) € H2P(R)
because of conditions (C,) and (C,), where

HE’}D(IR) {z e m2PR): 9 ' 2(x)=0,x€ an} (2.17)

Because of embedding (2.16) and relations (2.15), the proof of Theorem 2.1 is thus reduced

to proving the existence of a b€ {ﬁ} A such that ||u(t)—1"i(i;)”2 p 0 as
H
Uy
t — o . Our first step toward this amounts to showing that every classical solution to

problem (1.1) remains uniformly bounded away from the two equilibria u; and u; . In

that we generalize statement (B) of Proposition 2.1. The precise result is the following

Proposition 2.2. Let s and g satisfy the same hypotheses as in Proposition 2.1. Let u
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be any classical solution to problem (1.1). Ther u remains uniformly bounded away from

the two equilibria U, and Lo that is

inf (u(x;t)—ug) > 0

(x,t) Eﬁx{R'g
and
inf (u;-u(x,t)) > 0
(x,t) Eﬁle'g
Moreover,

inf g(u(x,t)) >0
(x,t) EMR

(2.18)

(2.19)

(2.20)

Proof. We first note that it is sufficient to prove relation (2.19), for (2.19) implies (2.18).

In order to see this define u(x,t) = ug + uy —u(x,t) ; it is then clear that 1 is a classical

solution to the Neumann boundary—value problem

] Ran(g) C (“0:“1)

U, (x,t) = Al(x,t) + ?(t)guoml(g(x,t)), (x,t) € xR

hg.% (xt) =0, (xt) € onxRY

(2.21)

where § = — and 8y 4 (1) = g(u0+u1—?i') . In addition, we observe that 5 and
0”1

8y u satisfy exactly the same hypotheses a8 8 and g in Proposition 2.1, and that

071
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inf  (u(xt}-uy) = inf (ul—ﬁ(x,t)) (2.22)
(x,t) MR (x,t) EMRY

Thus relation (2.19) implies relation (2.18). In order to prove inequality (2.19), we first

note that the estimate

s=inf (u;—u(x,0)) > 0 (2.23)
x€fl

holds. Indeed, inequality (2.23) is an immediate consequence of the range condition in (1.1)
and of the continuity of x — u(x,0) on the compact set 1. In order to derive relation
(2.19) from relation (2.23), we now invoke the parabolic maximum principle along with the
argument given in the proof of statement (B) of Proposition 2.1. To this end, define

v:nle'g——;IR by

u(x,t) t
v(x,t) = exp a[ j ﬁ%—des(f)] (2.24)
A 0
b

where /i € (ugu;) and a€ RY n ( max g’(€),0). A direct calculation gives
u,,u
071

Vo(xt) = £ ;t Vu(x,t) (2.25)

and
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Av(x,t) =

E(FE—X'T}IAII(X t) + _(E(X_f)-)- VU(X t) VV(X t) ﬂ(&.;).ﬁ_(i(ﬁln Ivu X t
2
= v, (x,t) + TR (g (u(x,t))w(x,t) (2.26)

g (u(x,t))

upon using (2.24) and (2.25). From relations (2.24), (2.26), the above choice of a and the
first hypothesis concerning u , we conclude that
vE 9’2’1(ﬂxIR+,IR) N ((ﬁxIR’*',IR) N S’I’O(HxIR'*',[R) and satisfies the parabolic boundary

value problem

vy (x,1) € Bv(x,t), (xt) € AR
P 4 (2.27)
Bﬁ (x,t) =0 ’ (x,t) € MxR
We then infer from relations (2.24) and (2.23) that
u(x,0) u,—4
v(x,0) = J T?) <expla J E((% =c, (2.28)
A
b

uniformly in x € {1, and consequently that v(x,t) < ¢, uniformly in (x,t) €T x IR-(l)_ by
the parabolic maximum principle applied to problem (2.27). From relation (2.24) it now
follows that
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t

Glu(x) = [ dés(€) + o 'Ln(v(x,)) + G(A) (2.29)
0

t
where G is as in Proposition 2.1. From the boundedness of t — J dés(¢) and the
0

above uniform bound for v(x,t) , we conclude from relation (2.29) that there exists

Co € R such that
G(u(x,t)) < ¢, (2.30)

for every (x,t) € {1 x [R-g . Assume now that relation (2.19) does not hold; then there exists

a sequence (x_,t )P CTIx RT suchthat Lm u(x ,t_) = u, . Upon using relation
n’'n 0 n''n 1 8

n=1 n—~m
(2.4) we then conclude that G(u(x,,t )) — o a8 1 — o, in contradiction to (2.30).

In order to prove relation (2.20), we may now argue exactly as in the proof of statement

(C) of Proposition 2.1. -

Remark. It is clear that all four conditions (Cl)—-(C 4) were not used in the proof of
Proposition 2.2.
Our second step toward proving Theorem 2.1 amounts to constructing a

S {ﬁ}A such that u(t) — 8(t) — 0 strongly in LP(R) . To this end, some
v€(uy,u,

preparatory remarks are in order. Let ) € R ; in complete formal analogy with relation

(2.24), it is possible to define i by

( "t

V) = exp a{ J E?—%—des({)} (2.31)
A 0
b
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where @ and /i are as in relation (2.24). It follows immediately from relation (2.31) that

t
Gol(t) = J dés(€) + o Ln(vy) + G(A) (2.32)
0
A A . A -1, -1 A
and hence that u € {u}, with =G “(a "Ln(vy) + G(4)) . Now for every
vE(ug,u,)

t €RY define v(t): TT— R by v(t)(x) = v(x,t) where v(x,t) is given by relation
(2.24). Our strategy to construct the appropriate {i is then the following: we first invoke
the existence of exponential dichotomies for the diffusion semigroup generated by Laplace’s
operator in (1.1) to construct a v, € R in such a way that v(t) — v, in measure on

1 as t — o . We then prove that
Gou(t) — Godi(t) = ™ (Ln(¥(t))-Ln(v,)) (2.33)

converges in measure on {1 as t — o which, together with the uniform estimates of
Proposition 2.2 and the properties of G , implies that ||u(1;)—1“1(1;)||p — 0. To carry out
this program, we denote by A p, A the Lp(C)—rea.ljzation of Laplace’s operator on the
domain Dom(8, ) = B2P(€), where B2P(€) is given by (2.17) with H2P(C)
replacing Hz’p(IR) . It follows from the standard methods of [20] that Ap, 18 the
infinitesimal generator of a compact holomorphic contraction semigroup on Lp(C) s in

addition, Ap’ _y has a discrete point spectrum, namely a(AP’ M= {/\k}kE N+ U {0}
where {A,} N+ CR™, the Ay’s have finite multiplicities and A} — —o as
k€

k — o . This follows from the fact that 1 hasa €3+ [N/2] —boundary, which implies
that the above spectral properties of A p, 4 3T directly inherited from those of the
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corresponding L2—theory. We write {W A 1) for the restriction of the

p, A }tER}S’
corresponding semigroup to LP(R) . Since A y batisfies Neumann boundary conditions

and since exp [or(A . j)t] Co [wAp /(t)] for every t € R, it is clear that

W, (1) 4 does not enjoy exponential decay properties on the whole of LP(R) .
p, A JtER 0

We next identify a codimension—one subspace of LP(R) on which W,  (t)p
p, A JtER 0

decays exponentially rapidly with a rate determined by the largest negative eigenvalue of
8, 4 Let 1, denote the identity operator on LP(R) ; on this space define the operators
P and Q by

P=I-Q

(Qz)(x) = |n|‘1‘[dxz(x) (2.34)

where || stands for Lebesgue’s measure of 1. It is easily verified that P and Q are
projection operators on LP(R) . Our next result states in particular that

W, (t) N decays exponentially on Ran P .
p, A JtER 0

Proposition 2.3. The diffusion semigroup {WA (t) leaves Ran P globally

p, A }tEiR'(*)'

invariant; moreover, if A, denotes the largest negative eigenvalue of Ap Nz there exist
positive constants €3 4 depending on N, p, "1 and the geometry of 1, such that the

estimates
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Wy f0pel, S e e Dl (235
and

18, 4 ¥a (00Pell, < gt exp [;] lal| (2.36)

hold for every t € RY and every z € LP(R) . Finally, {W t) leaves Ran Q
A +
p, A tE[R0

pointwise invariant; that is

WAp /(t)z =1z (2.37)

for every t € R* and every z € Ran Q .

Proof. By Gauss’ divergence theorem and relations (2.34), we see that

Ap’/Q = QAp, = 0, and hence that Ap, 4P = PAp, yon Dom(Ap, ) » which proves

the global invariance of Ran P and Ran Q under {W,  (t) 4 - Since @ satisfies
p,A4 JtER 0

the interior ball condition for every x € 1 we now observe that Ran Q = E(0) , the
one—dimensional eigenspace of A p r,corresponding to the zero eigenvalue; relation (2.37)

a8, /)t] ca[wAp /(t)] for every t ERY . Tt

remains to prove estimates (2.35) and (2.36). Let A, , be the L2(C)—rea.liza.tion of

then follows from the fact that exp

Laplace’s operator on Dom(4, )= Hi’,z(d:) and let {W A (4) be the
’ 2

A Lemg
restriction of the corresponding semigroup on L2([R) . Standard Hilbert space methods then

lead to the estimate
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Iy, (0Pl < esplipl el 239

for every t ERT and every z € L2([R) . In order to prove estimate (2.35) from (2.38), we
now use a smoothing argument of [4]; that is, for each t € R, there exists

c,(N,p,2) € R* such that Wy /(t) maps L2(IR) into LP(R) in such a way that
2,

Wy, (0zlly < cp.m]l=l (2:39)

for every z € L2(IR) . We also note that there exists the continuous embedding

LP(R) — L2(IR) , and consequently that {W A [t is the restriction of
P

+
o

W, (1) 4 to LP(R) . We may consequently write
2,4 JteRy

w t)Pzf| = ||W W t—1)Pz|| =
Wy el =y W, el
=Wy, Wy, (=Pl Copy(pDIIW,  (-1)Pal; <

< ct=l(N,p,ﬂ)exp [Al(t_l)] ”2"2 <

2
P
<oy (NpMexp[-3,110] " exp[Ayed|l2ll (2.40)

which proves estimate (2.35) for every t € (1,0) . As for the case t € (0,1] , pick any
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c € [exp[-A,] @) . Since {W,  (t) 4 18 a contraction semigroup on LP(R) , we
p, 4 JtER 0

then obtain the inequalities

¥

Wyl < el S cexpDa 1l

<c exp[z\lt] "z”p (2.41)

valid for every t € (0,1] and every z € LP(R) . From relations (2.34) and (2.41) we then
infer that

Iy ol <cesmng il + el

<2cexpDyt] ol (2.42)

The desired estimate (2.35) then follows from inequalities (2.40) and (2.42) for a suitably

chosen ¢4 € R . We can prove estimate (2.36) in a similar way. -

Remark. The above proof of estimate (2.35) offers an alternative to the method of [2],
from which inequalities of the same kind can also be deduced. The strategy of [2] is,
however, entirely different from ours: the author first proves the basic estimates within an
appropriate Ll—theory, from which the corresponding LP—inequalities can be obtained
through the Riesz—Thorin interpolation method. Proposition 2.3 will also play an
important role in the second part of this work [28].

The next geometric result is an easy consequence of Proposition 2.3 and of the parabolic

maximum principle; it plays a crucial role in the construction of the appropriate attractor
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A~ oA
u € {u} .
QE(uO,ul)

Propogition 2.4. Let s and g satisfy the same hypotheses as in Proposition 2.1 and let
v(t) : 1 — R be defined by v(t)(x) = v(x,t) where v(x,t) is given by relation (2.24).
Fix t, € R" and define V(i) =W A J(t—to)v(to) for every t € [t,,m) , where

)

W, }t) 4 18 the diffusion semigroup of Proposition 2.3. Then the inequality
P, tER 0

v(t) < ¥(t) holds for every t € [to,cn) , pointwise everywhere on . Moreover,
V(t) - Qv(to) —— 0 strongly in LP(R) as t — o, where Q is the projection operator
defined in relation (2.34).

Proof. Since v(t,) € H 2 P(R) , it follows from the fact that {W (t) is the
L Ao, Jrer?

restriction of a holomorphic semigroup and from elliptic regularity theory that ?(t) €
Hf’}p([R) for every t € (t,,0) ; in addition,
V€ A [ty),ELP®) n 6 ((1y,0),B2PR)) and satisfies the Neumann initial value

problem

"#'(t):Ap (1) on 0,4 E (t5,0)
19 (tg) =v(t,) » (2.43)
h%ﬁil=0 on AN, t E(to,m)d

Now, define v : {1 x [ty®) by V(x,t) = ¥(t)(x) ; it follows from the above remarks,
embedding (2.16) and relations (2.15) that ¥ € #(1)( x (1,,0),R) and that
x — V(x,t) € 3’(2)(H,IR) for every t € [tg,m) ; this along with relations (2.43) leads to
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?t(x,t) = AV(x,t), (x,t) € x(t,,0)
g(x,to) = v(x,to) ,x €1 (2.44)
-g% (x,t) =0, (x,t) € Bﬂx(to,m)

We furthermore notice that ¥ € ¢21(Ax(to,m),R) n ¢(flx [t,,0),R) n €O (t),0)R),
as a consequence of the corresponding property for v . The first statement of the lemma
then follows from relations (2.27), (2.44) and the parabolic minimum principle applied to
the function V(t) — v(t) . As for the second statement, we note that Qv(t) = Qv(t,) for
every t € [t,,m) , from the definition of V(t) and relation (2.37). Hence

%) - @utegl, = ¥ - QS =
=||w (t=t)Pv(t )], — 0
A D, 0 0/llp
as t — o, by relation (2.35) of Proposition 2.3. -
We now combine the above results to prove the following
Proposition 2.5. Let s and g satisfy the same hypotheses as in Proposition 2.1; for
t € IR'(']' , let v(t) be as in Proposition 2.4. Then there exists o € RT such that
v(t)——-——w0 in measureon ! a8 t — .
Proof. In fact we prove the stronger result that there exists 0 € R such that

v(t) — v, strongly in Ll(IR) . To this end, consider the function

t — Qv(t): [R'(']' — [R'(']' ; it is clearly differentiable on R with a non positive
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derivative, for the inequality
axlt) ¢ mrlldx(ap, ) =0 (2.45)

holds as a consequence of (2.27), and for (x,t) — v,(x,t) € € (HXIR+,[R) holds as a
consequence of the first part of (C4) . Hence

lim Qv(t)=inf Qv(t)20 (2.46)
t—o ter?

Define vy =inf Qv(t) ; we first observe that v, € R . In order to see this we rewrite

+
tEIRO

expression (2.24) as

v(x,t) = p(t)exp [a G(u(x,t))] (247)

where

t
o(t) = exp —a[G(h) + [ dés( f)} (2.48)
0

t
with G as in Proposition 2.1. It then follows from the boundedness of t — j d ¢s(€)
0

that @y =inf ¢t) > 0.1t also follows from estimate (2.18) that there exists ¢, € R

+
tElRO

such that exp[a G(u(x,t))] 2 ¢y for every (xt) €T x R, since G is monotone

increasing on (u,,u,) . Combining these facts with relation (2.47) then gives
g o'l g
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vog=inf Qv(t) 2 cgpy > 0 (2.49)

+
tElRO

In order to show that v(t) — v, strongly in LI(IR) , let

(v(t) = Qv(t))" = max(v(t) = Qv(t),0), (v(t)— Qv(t))” = min(v(t) - Qv(t),0) be the
positive and negative part of v(t) —Qv(t) , respectively. Let ||-||; be the usual
Ll—norm; as a consequence of relation (2.46) and of the definition of v, , we first notice

that for every € > 0, there exists t € 0 such that the sequence of inequalities
v (®)—v,ll; < [v®)-Qv(Wl; + 0] e =

=2 ‘L ax(v(t)(x) - Qv(t)x)F + [0 € (2.50)

holds for every t 2t ¢ » Since

‘]; dx(v(t)-Qv(t))(x) = £ dx(v(t)-Qu(t)) " (x) + I'L dx(v(t)—Qv(t)) (x) =0

by definition of the operator Q . Now define
0 = {x €0 v(t)(x) - QV(t)(x) > 0} (2.51)

Upon using the definition of o and the results of Proposition 2.4 with 1;0 = te , we then

see that there exists ?e 2 te such that the sequence of estimates



—924 —

][ dx(v(5)(%) = V()Y = | dx(v(£)(x) = Q(t)(x)) €
nt
t

<[ ax(FOm - vt Jo) + | ax(Qult ) - Qu(t)(x) &
at nt
t t

(2.52)

< tL dx | ¥(t)(x) — Qv(t )X} + [0]1Qv(t,) —Qv(1)] <

<I¥w-avt I, + 191 1Qv(t vyl € (1+]0])e

holds for every t 2 ?e . The combination of estimates (2.50) and (2.52) then shows that

v(t) — Vo strongly in Ll(IR) as t — o, and hence in measure on 1. -
We conclude our second step toward proving theorem 2.1 by the following result.

Proposition 2.6. Let s and g satisfy the same hypotheses as in Proposition 2.1. Let u

be any classical solution to problem (1.1). Then there exists a 4 € {0} R such
uE(uO,ul)

that u(t) — ﬁ(t) —— 0 stronglyin LP(R) as t — .
Proof. We define 4 by relation (2.31), where v i8 the positive number constructed in

Proposition 2.5. We first conclude from relation (2.47) and the proof of Proposition 2.5
that

v(x,t) 2 cg 9y > 0 (2.53)
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uniformly in (x,t) € {1 x R} , 50 that the estimates
| Ln(v(x,t))-La(vy)| < max(v " (x,t)ivg)) | v(x.t)-v, | <
< -1, -1 §
A max((c5 ‘Po) ) )| v(x,t) Vol (2.54)

hold for every (x,t) € {1 x [R40' - Letting c¢ = max((cs 990)_1;"61) , it then follows from
relation (2.33) that

| Gou(t) — Gofi(t)| < a-lcslv(t)—v0| (2.55)

Hence Gou(t) — Goti(t) — 0 in measureon €l a8 t — o by the result of Proposition
2.5. In order to conclude that Gou(t) — Goﬁ(t) —— 0 strongly in LP(R) , it is then

sufficient to prove that there exists Cr € RY such that

IGou(t)-Gos (1)l 1y = max| Glulx))-G(H(M)] < ¢ (2.56)
x €N

But estimate (2.56) follows immediately from the uniform estimates (2.7), (2.19) and from
the fact that G is monotone increasing on (u0'“1) . It remains to prove that

u(t)—4(t) — 0 in LP(R) . To this end, write

w(t) = Gou(t) (2.57)
w(t) = God(t) (2.58)

for every t € Rt . Since Ran G =R , it follows that there exists y(x,t,4) € (uy,u;) such
that G(y(x,t,4)) = w(t) + a(w(x,t) — w(t)) for every (x,t) € T x IR':]' and every
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4€ (0,1) . Upon using the mean—value theorem and the inverse function theorem, we then

obtain

u(x,t) — 4(t) = GL(w(x,t)) - GTH(H(Y)) =

1
= j da(G7Y) (W(t) + s(w(x,t) — W(t)))(w(t,x) — W(t)) =
0

1
= [ ds glr(xt, )(w(xt) = ¥(1) (2:59)
0

We conclude from this and from the smoothness of g on the compact interval [uo,ul]

that there exists Cg € R such that
[u(x,t)-0(t)] < cg|w(xt) —w(t)| (2.60)

for every (x,t) €11 x IR'(')' . But inequality (2.60), relations (2.57) and (2.58) and the first
part of the proof then imply that

llu(t) = Bl € cgllGou(t) - Gone)ll, — 0
strongly in LP(R) as t — o . -

We can now complete the proof of Theorem 2.1. It is here that conditions (C,)—HC,)

preceding the statement of Theorem 2.1 all play their crucial role.

Proof of Theorem 2.1. It remains to prove that u(t) — i(t) — 0 strongly in H ‘2/;,p(IR) .
Let p(Ap’ _y) be the resolvent set of Laplace’s operator Ap’ _y and fix

2
Ay € p(Ap’ ) NR. We first renorm Hj,p(lR) by
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It follows from the closed graph theorem and from standard elliptic theory that the norm
(2.61) is equivalent to that defined by (2.14). Since we already know that

u(t) — 8(t) — 0 strongly in LP(R) as t — w , it remains to prove that

Ap) J,u(t) —— 0 strongly in LP(R) as t — o . We first notice that if u is a classical
solution to problem (1.1), then it follows from conditions (C,)~C,) that

t—u(t)€ ¥ ([R'g,Lp([R)) ne (1)(IR+,LP([R)) , and that this function satisfies the

ordinary differential equation

{ u’(t) = Ay pu(t) + s(t)gou(t) , t € [R+} (2.62)

Ran(u(t)) C (up,u,) LERT
on LP(R) . Now define y € ¢@®Y,LP®R)) n ¢(D®T LPR)) by y(t) = u(t) — (1) ; it

follows from this definition and from relations (2.62) and (1.2) that y satisfies the

differential equation

v (1)=4, pr(t) + s(t){gou(t)gou(t)} (2:69)

on LP(R), and that Ap, )= Ap’ u(t) forevery t € IR'(|)' . Thus it remains to prove
that

£(t) = s(t)(gou(t) — godi(t)) — 0 (2.64)

y'(t) —0 (2.65)
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strongly in LP(R) . Since s is bounded, the former statement is an immediate consequence

of Proposition 2.6 and of the smoothness of g since

1
(u(x)-8(4(t) = | dag’ )+ s(ulxt)- SN (u(x)-4())
0

for every (x,t) €11 x RT ; this implies the inequality

| g(u(x,t))-g(8(1)) | < cglu(x,t)—i(t)] (2.66)

for some cg € Rt since ﬁ(t)+4(u(x,t)—{i(t)) € (ugp,uy) - This leads to the desired

conclusion

lgou(t)-got ]l € egllu(t}-(t)ll, — 0 (2.67)

as t — o . We conclude the proof in showing that statement (2.65) holds. In order to
accomplish this we first project equation (2.63) onto the subspaces Ran P and Ran Q,
where P and Q are the projection operators defined by relations (2.34). We obtain

’(4) =
Py’(t) = Ap, #Fy(t) + PA(t) (2.68)
Qy’(t) = Qf(t) (2.69)
. _ _ 2,p " . . .
since A D, A= QAp, =0 on HPF(R), and it follows immediately from relations

(2.69) and (2.64) that Qy’(t) — 0 strongly in LP(R) . It remains to show that
Py’(t) — 0 strongly in LP(R) . In order to accomplish this we first pick ty € RY and
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we invoke the variation of constants formula to rewrite relation (2.68) as

1 :
Pr(t) =Wy [(i=tg)Py(tg) + L,d{w“m JeRe) (o)
for every t € (to,m) . We next notice that f is Hlder continuous on RY asan
LP(R)—valued function. In fact, this is an immediate consequence of the Holder continuity
of s and that of the functions t — gou(t) and t — goﬁ(t) , since the latter functions
have LP—norms uniformly bounded in t from the basic estimates (2.7), (2.8), (2.18) and
(2.19) (The Holder continuity of t — gou(t) follows immediately from relation (2.67)
and condition (C, ), while that of t — goﬁ(t) follows from the fact that &i(t) has a
uniformly bounded derivative according to equation (1.2)). It then follows from relation

(2.70) and the standard arguments of [20] and [17] that
t
Py’(t)=4_ W t-t )Py(t,) + | déa_ W t—&)P{f( £)(t
HORTNPL AR lﬂew MPCORLOR0)

+Wy (tg)PI) (2.71)

for every t € (t,,m) . Since {W A (t)] is the restriction of a holomorphic
p, A

+
tElRO

semigroup to LP(R) , we now can estimate the first term of relation (2.71) as
-1
I, oSyl <ot P, (2.72)

so that Ap, Vil Ap I(t—tO)Py(tO) —— 0 strongly in LP(R) as t — o . We conclude
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in a similar way that W,  (t—t;)Pi(t) — 0 strongly in LPR) as t —iw,a8a
p, A

consequence of relations (2.35) and (2.64). Finally, a similar statement holds for the second
term of (2.71) when t, is sufficiently large, upon using estimate (2.36), the Holder
continuity of f along with variations on the theme of the proof of Theorem 5.8.2 of [20].
We conclude that Py’ (t) — 0 strongly in LP(R) as t — o , and hence that relation
(2.65) holds. Finally, the very last statement of Theorem 2.1 follows immediately from
relation (2.6). -
Remarks. (1) Upon exploiting the Banach algebra properties of Hi,’,p([R) along with the
basic estimates (2.7), (2.8), (2.18), (2.19) and statement (C) of Proposition 2.1, it is
possible to show that u(t) — ﬁ(t) — 0 strongly in H ‘2/,’,1’(!2) if, and only if,
v(t) —vy— 0 strongly in H a&p(lR) as t — o . Thus, the stabilization property of the
function (2.24) toward Vo i8 in fact not merely limited to the convergence in measure on
{1 as in Proposition 2.5.

(2) As an immediate consequence of Proposition 2.2 and of Theorem 2.1, we note that
the two equilibria u, and u; can never be attractors under the hypotheses of Theorem

2.1. This is intuitively understandable since, with s € S(IRB,[R) , the hypothesis

t t
t —-&Jd{s({) =0(1) as |t] — o means that t — J dés(¢) is almost—periodic,
0 0

and hence that pup(s) =0 (take relation (2.2) with k = 0 ). Therefore, every classical

solution u to (1.1) stabilizes around a spatially homogeneous solutions i which oscillates

almost—periodically between the equilibria u, and u, . But | depends on u in general.
(3) Because of relation (2.6), every Fourier exponent of the attractors

U € {ﬁ} A is a finite linear combination with integer coefficients of the Fourier
vE(ug,u,)

exponents of 8. The oscillation properties of the 8’8 are thereby completely controlled by

those of the selection function s .
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(4) In the second part of this work [28], we shall in fact prove that
u(t) - §(t) — 0 in H%P(R) with a polynomial rate of decay. The proof of such a
result lies beyond the scope of the method used in this article, and requires a more subtle

construction of local invariant manifolds around each u following the methods of [24],

[29], [30], [31] and [32].

While Theorem 2.1 establishes the asymptotic almost—periodicity of every classical solution
to problem (1.1), it also implies that the spatially homogeneous solutions

de {ﬁ} A e are the only time almost—periodic classical solutions to problem (1.1)
vE(u,,u
01

within the admissible class. The precise result is the following

Corollary 2.1. Let s and g satisfy the same hypotheses as in Theorem 2.1 and let u be
a classical solution to problem (1.1). Then t — u(x,t) is the restriction to [R'g of a
Bohr almost—periodic function for each x € {1 if, and only if, u(x,t) = ﬁ(t) for every

(x,t) €T x IR'[*)' , for some 1 € {ﬁ}A :
vE(ug,u,)

Proof. The statement follows immediately from relation (2.10) and from elementary

properties of almost—periodic functions. -

In the next section, we investigate the stabilization properties of the classical solutions to

problem (1.1) when pp(s) #0.

3. The Two E 'liria.uoa.l;du1 Gl Atiractors.
If the selection function s has a non zero time average pp(s) , the classical solutions to
problem (1.1) are no longer uniformly bounded away from the two equilibria u, and u, .

In fact, if pp(s) <0 (resp. pg(s) > 0), and if g satisfies the same hypotheses as in the



—32—

preceding sections, we can show that u, (resp. uy ) becomes a global attractor. The
notion of classical solution used in this section is exactly the same as that of Section 2, and

the precise result is the following

Theorem 3.1. Let 8 € #(Rg,R) be such that up(s) # 0 and assume that g satisfies the
same hypotheses as in Proposition 2.1. Assume in addition that s is Holder continuous on
RY andlet u be a classical solution to problem (1.1). Then either pp(s) <0 and we

have

lim sup [u(x,t)—uy| =0 (3.1)
or pp(s) >0 and we have
lim sup |u(xt)—u;| =0 (3.2)
t—w xEn‘

Moreover, relations (2.12) and (2.13) still hold for every B € (0,1—p—1N] .

Proof. Let u(t), t € RT , be as in the preceding section; it is then sufficient to prove that
u(t) —uy, — 0 strongly in H ?j,p(ﬂ%) a8 t — o in the first case, and that
u(t) —u; — 0 strongly in Ha’,p(IR) in the second case. Let v(t): 1— R be asin

Proposition 2.4, that is

v(t) = p(t)exp[aGou(t)] (3.3)

according to relation (2.47), where



t
ot =exp[-a{c(ﬁ) +jdes(e)}] (3.4
0

We first notice that estimates (2.23), (2.27) and (2.28) of Proposition 2.2 remain

unchanged in this case, for they are independent of the hypothesis concerning
t

t ——rJ d£s(€) . Therefore, if ¢, is as in relation (2.28), we still have the estimate
0

vl = max [vxt)] e (35)
@, x €N

uniformly in t € IR'(*)' . We then conclude from relations (3.3) and (3.5) that the inequality

|lexp [aGou(t)] ”m s EE%) (3.6)

holds for every t € IR'(')' . Now if pp(s) <0, it then follows from relation (3.4) that

o(t) — o a8 t — m, s0 that exp[aGou(t)] — 0 uniformlyon {l a8 t — © asa
consequence of relation (3.6). Hence Gou(t) — —wo uniformly on {1 which, together
with relation (2.3), implies statement (3.1). In order to get relation (3.2), we first perform
a transformation identical to that described at the beginning of the proof of Proposition
2.2. It is then clear that relation (3.2) is a consequence of (3.1). It remains to prove that
A, 4A(t)— 0 strongly in LP(R) as t — o . But this can be done in exactly the
same way a8 in the proof of Theorem 2.1, upon replacing y(t) = u(t )—ﬁ(t) by

3(t) = u(t)ug - .

Remark. In the second part of this work [28], we shall in fact prove that

u(t)—uy;— 0 in H 2‘/",p(IR) exponentially rapidly. Again, the proof of this will require
H
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a more elaborate construction of local stable manifolds around , and u; .

In the next section, we discuss several examples which illustrate the use of Theorems 2.1

and 3.1.

4. Application to Figher’s Type Equations of Population Genetics.

We are primarily concerned with the applications of the preceding results to problems of
the form (1.1) which occur in population genetics, such as Fisher’s equations and its

variations. We begin with the following

Example 4.1. Consider the problem

. (4.1)
(1, (x,t)=Au(x,t)+(cos(w;t)+cos(wyt))ulx,t)(1-u(x,t})(au(x,t)+(1-a) (1~u(x,t))]
, (x,t) € xRt
{Ran(u) C (0,1)
:3% (x,t) = 0 , (x,t) € oaxRT

where a € (0,1) , and where {w;,wy} CR/{0} is rationally independent. Here we have
g(u) = u(1—u)(au+(1—a)(1—u)) with uy=0, u; =1 and s(t) = cos(w,t) + cos(wyt) .
We can easily verify that all of the hypotheses of Theorem 2.1 are satisfied. We conclude
that every classical solution to problem (4.1) remains uniformly bounded away from

Uy = 0 and u =1, and that it stabilizes around a spatially homogeneous, time

quasiperiodic attractor de {ﬁ} A 0.1) . In addition, we note that every Fourier
ve(o0,1 ,

exponent A of 1 is of the form A = k,w) + kowy where k1,2 €T . Theset {w,,w,} is

thereby a possible integer basis for the set of all Fourier exponents of 3.



— 35—

Remark. Equation (4.1) often occurs in certain problems of population genetics, such as
the description of the space time evolution of the fraction of one of two alleles in the
population of a migrating diploid species when the selection function s takes quasiperiodic
seasonal variations into account ([9]}, [19], [26]). In this context, the result of Example
4.1 means that both alleles will persist in the population for all times, and that the
fractions of the two alleles will eventually evolve nearly quasiperiodically in time with
oscillation properties entirely controlled by those of the seasonal variations.

In contrast to Example 4.1, we now consider the following

Example 4.2. Consider the problem

(4.2)
[(u, (x,t)=8u (x,t)+(cos(w;t)+cos(wot)—1)u(x,t)(1-u(x,t))exp [—u(x,t)] ]
, (x,t) € nxR*
{ Ran(u) C (0,1)
I (xt) =0 , (x,t) € R

where {w;,w,} is asin Example 4.1. Here g(u) = u(1—u)exp[—u] sothat uy =0 and
u; = 1. Moreover, s(t) = cos(w;t) + cos(wyt) —1 with pp(s) = -1, and it is easily
checked that all of the hypotheses of Theorem 3.1 hold. We conclude that every classical

solution to problem (4.2) converges to uy = 0, irrespective of the actual values of w; and

602 .

Remark. In the context of population genetics, the result of Example 4.2 means that only

one of the alleles will eventually survive in the population.
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Example 4.3. Conclusions entirely similar to those of Example 4.1 hold for the boundary

value problem

u, (x,t)=Au(x,t)+sin(wt)sin(xu(x,t)) , (x,t) € axrt
Ran(u) C (0,1) (4.3)
-g% (x,t) =0 , (x,t) € xR

where g(u) = sin(7u), uy=0 and u; =1; here 8(t) = sin(wt) with w € R/{0} , and

all of the attractors {4} be(0.1) are of course time periodic with period 7= 27| wl_l .
ve(0,1

Example 4.4. Conclusions similar to those of Example 4.2 hold for the boundary value

problem

(4.4)
(u, (x,t)=Au (x,8)+(sin(wt)+1ulxt)(1-u(x,t))(au(x,t)+(1-a) (1= (xt)))]
, (x,t) € xR
) Ran(u) Q (011)
—gﬁ(x,t) =0 , (x,t) € xRt

where a € (0,1) , with the exception of the fact that the global attractor is now u =1
instead of u,=0.
We conclude this article with some remarks and with the discussion of some open

problems.

5. Some Remarks and Some Open Problems.

It is first natural to ask whether the results of the preceding sections remain valid in the



case of Neumann boundary value problems of the form

u, (x,t)=8u(x,t) +s(xt)g(u(xt)), (x,t) € DRT

Ran(u) C (uo,ul) (5.1)
-g% (x,t) =0 , (x,t) € xR

where the selection function depends explicitely on x € {1 in such a way that t — s(x,t)
is Bohr almost—periodic for each x € {1, and where g satisfies the same hypotheses as

above. If 8 is sufficiently smooth on {Ix R | let 5(t) = max s(x,t) ; then 8 € #(Ry,R)

Bi
x€N
and, upon using essentially the same arguments as above and the condition
1
t ——rJ’ dés(£) =0(1) as |t| — o, we can prove that every classical solution u to
0
(5.1) stabilizes around a spatially homogeneous, time almost—periodic solution
3 € {4} R of the initial value problem
vE [uy,u,)
B(t) =F(t)g(h(t)), t ER (5.2)

Ran(u) C [uj,u,)
4(0) =2 € [uy,uy)

in the sense of relations (2.10), (2.11), (2.12) and (2.13) of Theorem 2.1.

On the other hand, let g(t) = min 8(x,t) ; we can then also prove that conclusion (3.1)
x €N
(resp. conclusion (3.2)) of Theorem 3.1 remains valid in the case of a classical solution to

problem (5.1), provided that the condition ug(s) <0 be replaced by up(s) < 0 (resp.
that pp(s) > 0 be replaced by up(s) >0).

It is, however, also worth mentioning that there exists in relation with problem (5.1) the
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additional possibility of having pp(8) < 0 < pg(8) . This, of course, does not occur for
problem (1.1) where s(x,t) = s(t) for every x € {I1. In this case, it is tempting to
conjecture that there exists a unique time almost—periodic solution to problem (1.1} which
is neither identically equal to u; non identically equal to u, and which is a global
attractor for all classical solutions to (1.1). This was in fact recently proved in [16] when
t — 8(x,t) is periodic, but remains an open problem in the general almost—periodic case.
The source of this difficulty lies primarily in the fact that there is no natural substitute for
the notion of Poincaré time—map in the almost—periodic case.

Finally, if s(x,t) = s(t) for every x € {1 and if s i8 Bohr almost—periodic but not

periodic, there exists the additional possibility of having ug(s) = 0 without having
t

t— J dés(£) = 0(1) as |t| — o . This is for instance the case for the function
0

14)
8(t) = 2 k_2exp [ik_zt] , because of the notorious difficulty of small divisors (in the
k=1

@
preceding exemple, the sequence (Ak = k_2)k=1 of all Fourier exponents of 8 converges
to zero as k — o , which precludes the primitive of 8 from being almost—periodic). We

did not investigate this case any further.
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