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Abstract. In this paper, we investigate global stabilization phenomena of certain classical

solutions to nonautonomous semilinear parabolic partial differential equations with

Neumann boundary conditions on bounded domains in !RN . Given any Buch classical

solution u, we prove in particular that there exists a spatially homogeneous, time

almost-periodic classical solution A which captures u with respect to' an appropriate

Sobolev norm as the time variable goes to infinity. The class of equations which we analyze

here contains in particular Fisher's type reaction-diffusion equations oI population

genetics. Our method of investigation mainly rests upon a combination of Borne geometrie

arguments with parabolic comparison principles.
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1. Introduction and Outline.

Consider the dass of real semilinear parabolie Neumann boundary value problems of the

form

[

Ut (x, t) = ~u(x, t) + s(t)g(u(x,t)), (x,t) E O)(IR+ }

Ran(u).c. (uO,u1)

~ (x,t) = 0 , (x,t) E /JOxlR+

(1.1)

In equations (1.1), n denotes an open bounded connected subset of !RN with smooth

boundary an and N E [2,CD) n~ ,while fJ stands for Laplace's operator in the

x-variables. Furthermore, s : IR+ -----t IR is the restrietion to IR+ of a Bohr

almost-periodie function on IR whieh we shall also denote by s, while g: IR -----t IR is

sufficiently smooth and possesses at least two zeroes uo and u1 such that g(u) > 0 for

every u E (uO,u1) . Finally, Ran(u) denotes the range of u and J3 stands for the

normalized outer normal vector to an. Consider also the initial value problem

(1.2)

The eentral theme of trus article is devoted to the analysis of global stabilization

phenomena of certain classical solutions to problem (1.1) toward classieal Bohr

almost-periodie solutions of (1.2) as t ---+ CD . This problem is motivated by several

important questions of population genetics, such as the spaee-time evolution of gene

frequencies in the population of a migrating diploid species when the selection function s
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takes almost-periodie seasonal variations into aecount ([7], [9], [16]). Following the

works of [12], [14], [19] and [26], the problem of stabilization for solutions to

reaction-diffusion equations within the eontext of population genetics has been intensively

investigated reeently, often for equations in one spaee dimension and for selection funetions

depending on x En but independent of time ( [3], [5], [10], [21], [22]). One notable

exeeption ia the work by Henry who, following earlier considerations of Fleming [13], gave

a thorough analysis of the set of all equilibria for same parabolie equations with Neumann

boundary eonditions in N spare dimensions, using variational and bifurcation-theoretical

arguments [15].

The considerations and the results diseussed in the following seetions differ from those of

the above articles in at least two respeets. On the one hand, equations (1.1) are in N

space dimensions and the selection function depends explicitely and almost-periodically on

time, but remains spatially homogeneous over n along with g. On the other hand, we are

not looking for time independent asymptotic solutions but rather for spatially

homogeneous, time almost-periodie solutions such a.s those satisfying equations (1.2), in

such a way that the vibration spectra of those asymptotie solutions be determined by the

vibration spectrum of s .

The rest of this article will accordingly be organized as follows. In Seetion 2, we first prove

the existenee of a one-parameter family {A} A of classieal almost-periodic
vE [uO'u1]

solutions to (1.2), under appropriate restrietions on s and g; in addition, we also prove

that every Fourier exponent of A is a finite linear combination with integer coefficients of

the Fourier exponents of S , and that each such A remains uniformly bounded away from

the two equilibria uo and u1 when f., E (uO'u1) . These facts are then used to prove that

for every (suitably defined) classical solution to problem (1.1) which exists globally in

t E IR! ' there exists a ~ E {A} A which captures u with respeet to an
vE(uO'u1)

appropriate Sobolev norm as t ---+ m . However, this is not to aay that A ia a global
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attractor, for A depends on u in general. With p E (N,(I)) , the central idea of the proof

amounts to combining some geometrie arguments based on the existenee of exponential

diehotomies for the diffusion semigroup on LP(O;!R) with parabolie eomparison principles.

As an immediate consequence of the above result, we also prove in Section 2 that the

solutions {A} A represent 9!l of the classical time almost-periodic solutions to
IIE(uO'u1)

problem (1.1) within the admissible class. While the results of Section 2 hold exclusively

for the ca.se where s ha.s an almost-periodic primitive and hence a time average equal to

zero, we devote Section 3 to the proof of a theorem concerning the case where s has a

strict1y negative (resp. strictly positive) time average. In this case, we can prove that Uo
(resp. u1 ) beeomes a global attractor for the solutions to (1.1) as t ----i (I) , again with

respeet to an appropriate Sobolev topology. The method of proof of Seetion 3 is similar to

that of Section 2, though the eorresponding stabilization phenomena have different physieal

origins. In Section 4 we apply the results of Sections 2 and 3 to Fisher's type equations of

population genetics. Finally, Section 5 is devoted to the discussion of some generalizations

and some open problems coneerning Neumann boundary value problelIlB of the form

[

u t (x, t) = &u(x, t)+s(x,t)g(u(x,t)), (x,t) E OxlR+ }

Ran(u).c. (uO'u1)

~ (x, t ) = 0 , (x,t) E IJOx IR+

(1.3)

where t ----i s(x,t) is Bohr almost-periodie for each x En.For a short announcement of

our results we refer the reader to [27]. In the second part of this work [28], we develop a

Ioeal geometrie stability theory through the eonstruetion of codimension-one stable

manifolds and of one-dimensional center (inertial) manifolds around each

AE {A} A • The eombination of that theory with the results of this paper then
IIE [uO'u1]
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lead to explicit decay rates concerning the stabilization processes discussed here.

2. Asymptotic Almost-Periodicity of Certain Classical Solutions to Problem (1.1).

We begin tbis section with the analysis cf equation (1.2), and we refer the reader to [6],

[8], [11], [18] and [25] for a presentation of all of the basic facts concerning

almcst-periodic functions. Let iRB be the Bohr compactification of the real line endowed

with its usua! structure cf compact topological group [23]. We identify the algebra of all

complex-valued Bohr almost-periodic functions on iR with 'if(lRB,G:), the commutative

Banach algebra of all complex continuous functions on IRB with respect to the uaual

operations and the uniform norm. Let ,uB be the Haar measure on !RB normalized in

such a way that ,uB(IRB) = 1 . For every s E ~(iRB'()' we have the Fourier series

expansion

In expression (2.1) we have defined

t
Bk = ~B(BXk) = ,!im Cl f dtB(t)Xk(t)

t-UD 0

(2.1)

(2.2)

for each k, with t --t Xk(t) = exp [-iAkt] for every t E IR . Following [8] and [18],

we define the module of s as the set of all finite linear combinations with integer

coefficients of the Fourier exponents {Ak} • ..+ of s , and we denote it by Mod(s). Dur
kE~ .

first result is the following
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t

P Qj)9 tu 2 1. Let 5 E \HKE'K be such that t --+ Jde s(e) = 0(1) as Itl --+ m .

o
Let g E '6(I)(IR,IR), assume that there exist UoI E IR with g(uO) = g(ul ) = 0 and,
g(u) > 0 for each u E (uO'u1) ,in such a way that g' (uo) > 0 and g' (ul ) < 0 .

Furthermore, let G be any primitive of 1/g over the open interval (uO,u1). Assum,e that

tim G(u) = --<D

u---+uO

tim G(u) = +m
u---+u1

and let G-1 be the monotone inverse of G . Then the following statements hold:

(2.3)

(2.4)

(A) For every t, E [uO'u1] ,problem (1.2) possesses a Bohr almost-periodic solution

AE ~(1)(IR,IR). Specifically, if ft = Uo (resp. ft = u1 ), we may take A= Uo
(resp. A= u1 ) identically on IR; if f" E (uO'u1) , the solution is uniquely

determined by

for each t E IR . In the latter case we have'the module containment

A
Mod(u) CMod(s)

(2.5)

(2.6)

(B) Every solution A given by (2.5) remains uniformly bounded away from the two

equilibria Uo and u1 ; that ia
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inf (u1 - A(t)) > 0
tEIR

and

in f (A (t) - uO) > 0
tEIR

(C) For every solution A given by (2.5), the funetion t --+ l/g( A(t)) is Bohr

almost-periodie.

(2.7)

(2.8)

t

PrOcl.t foliows from a Uassie theorem of Bohr that the boundedness of t ----+ Jdes( e)

o
implies its almost-periodicity [18], so that the first part of statement (A) is immediate by

separation of variables. Moreover, for every € > 0 there exists o( E) > 0 such that every

t

6( E)-almoSt period of t ----+f des( e) is an E-alm05t-period of A; this and a classie

o
criterion of Favard imply relation (2.6) ([8], [11]). As for statement (B), assume that

relation (2.8) does not hold. Then there exists a sequence (tn) (IR with A(tn) --+ Uo as

n --+ (J) ; because of relation (2.3), this implies that G( A(t )) --+ --<D as n --+ (J) • Butn

this is impossible, for it follows from relation (2.5) that

t n

G( A(tn)) = f desw + G(:')
o

(2.9)

t

and henee that G( A(tn)) = 0(1) as n ----+ m , by the boundedncss of t ----+f des( e) .
o

The proof of relation (2.7) is of course similar, with (2.4) replacing (2.3). Finally, we prove
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statement (C). We already know that t --+ g( A(t)) E ~(IRB,IR), so that it remains to

prove that inf g(A(t)) > 0 j ifthis is not true, then there exists a sequence (tn) C IR such
tEIR

that g( A(tn)) --+ 0 aB n --+ (I) • Ey the hypotheses concerning g, there exists a

neighborhood f of Uo such that g' (u) > 0 for every u E f ; similarly, there
Uo Uo

exists a neighborhood A' of u1 such that g' (u) < 0 for every u E A'u . From
u1 1

this, the properties of g and the fact that g(A(tn)) --+ 0 , we easily infer the existence of

subsequence (t A) such that (~(t A)) C. A' ia monotone decreasing, or the existence ofm m Uo
a subsequence (t A) such that (A(t A)) C. f is monotone increasing. By then n u1

smoothnesB of g and the fact that g(u) > 0 for each u E (uO,u1) , we conclude that

~(t&) --+ Uo as & --+ (I) , or that ~(tA) --+ u1 as A--+ (I) • In either case this

contradicts the conclusion of statement (B). We conelude that inf g(~(t)) >·0 which,
tEIR

together with the almost-periodicity of t --+ g( A(t)) , implies that

t --+ l/g(A(t)) E ~(IRB,IR). •

We shall denote by {A} AE[ ] the one-parameter family of solutions of Propositionv uO,u1

2.1, and by {A} A E( ) those solutions determined by relation (2.5). Let [N/2] bev uO,u1

the integer part of N/2 ; throughout the remaining part of this paper, we shall assume that

n has a ~3+ [N/2] -boundary in the sense of [1], in such a way that n lies only on one

side of an, and that it satisfies the interior ball condition for every x E an . We shall also

write n for the compact closure of n, and denote by ~2,1(n)(lR+ ,IR) the set consisting

of all functions z E ~(n)(lR+ ,IR) such that (x,t) --+ a7nQz(x,t) E ~(n)(lR+ ,IR) for all

N

a = (al' ... ,oN) E NN, 1 E N ,satisfying 1: 0j + 2; ~ 2 . In a similar way we define
j=l

~l,O(n)(lR+,IR) as the set consisting of al1 z E ff(n)( IR+ ,IR) with the property that
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N

Dll'z E ~ (nxlR+,IR) for all ll' ErIf such that L ll'j ~ 1 . Now fix p E (N,m) ; we shall
j=l .

ca.ll a classical solution to problem (1.1) any function

u E t4'2,1(O)(IR+,IR) n tf(n)(IRÖ,IR) n t4'l,O(n)(lR+ ,IR) which in addition satisfies the

following conditions:

(Cl) Iu(x,t)-u(x,t I) I ~ c(x) It-t I I for every t,t I E IRÖ and some c E LP(O,IR) .

(C3) (x,t) --t ut(x,t) E ~(n)(IR+,IR) and in fact t --t ut(x,t) E ~(IR+ ,IR)

uniformly in x En.

(c4) u satisfies relations (1.1) identically.

The main result of this section is then the following

Theorem 2.1. Assume that s and g satisfy the same hypotheses a.s in Proposition 2.1.

Assume in addition that s is Hölder continuous on IR+ and let u be a classical solution

to (1.1) for sorne p E (N,m) . Then there exists a ~ E {~} t,E (u
o
'u

1
) such that

lim sup Iu(x,t) - A(t) I = 0
t---i(l) xEn

Moreover, the given classical solution satisfies the relations

(2.10)
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lim sup IVu(x,t) I = 0
t---+m xEn

and

lim sup Ix-y I-ßIu(x,t)-u(y,t) I = °
t-+m xiyEn

XfY

. tim sup Ix-yl-ß,Vu(x,t)-Vu(y,t)I =0
t--+m xiyEn

XfY

for every ßE (O,l-p-IN] . Finally, every Fourier exponent of A is a finite linear

combination with integer coefficients of the Fourier exponents of s .

(2.11)

(2.12)

(2.13)

The proof of this result will require several steps. First, let H2,P(() = H2,P(n,() be the

usual Sobolev space consisting of all complex LP-functions z with LP--distributional

derivatives naz for IalE [0,2] , equipped with the norm

(2.14)

where 1I-lIp denotes the usua! LP-norm. For ßE (O,l-p-IN] , let

~l,ß(() = ~l,ß(n,() be the Banach space of all complex Bölder continuous functions on

n with Hölderian derivatives naz of exponent ß for IalE [0,1] and the norm
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(2.15)

- max sup IDQz(x)I + max sup Ix-YI-ßIDQz(x)-DQz(y)I
laIE[O,l] xErI lai E [0,1] x1yEn

xfY

It is weil known that there exists the continuous embedding

(2.16)

and that H2,P«() is a commutative Banach algebra with respect to the usua! pointwise

operations and a norm equivalent to (2.14) ([1]). Now let H2,P(IR) = H2,P(n,lR) be the

real component of H2,P«() and let u be a c1assical solution of Theorem 2.1j for every

t E 1R6 I define u(t): n---+ IR by u(t)(x) = u(x,t) . It is then c1ear that u(t) E H ~P(IR)

because of conditions (C2) and (C4), where

H]P(IR) = { Z EH2,P(IR):~ (x) = 0, x E on } (2.17)

Because of embedding (2.16) and relations (2.15), the praof of Theorem 2.1 is thus reduced

to proving the existence of a AE {A} A such that 11 u(t)-A (t) 11 2 --+ 0 as
IIE(uO'u

1
) ,p

t ---+ m . Dur first step toward this amounts to showing that every classical solution to

problem (1.1) remains uniformly bounded away from the two equilibria Uo and u1 . In

that we generalize statement (B) of Proposition 2.1. The precise result is the following

Proposition 2.2. Let s and g satisfy the same hypotheses as in Proposition 2.1. Let u
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be any classica! solution to problem (1.1). Then u remains uniformly bounded away from

the two equilibria Uo and u1 ; that is

and

Moreover,

inf (u(x,t)-uO) > 0

(x,t) EnXlRÖ

inf (u1-u(x,t)) > 0

(x,t) EnxlRÖ

inf g(u(x,t)) > 0

(x,t) EnxlR!

(2.18)

(2.19)

(2.20)

Proof. We first note that it is sufficient to prove relation (2.19), for (2.19) implies (2.18).

In order to see this define 11(x,t) = Uo+ u1 - u(x,t) ; it is then clear that 11 ia a classica!

solution to the Neumann boundary-value problem

11 t (x, t) = ~u(x, t) + s(t)gu u (u(x,t)), (x,t) E Ox\R+
0' 1

(2.21)

where '8 = -s and gu u (11) = g(uO+u1-u) . In addition, we observe that 8' and
0' 1

g satisfy exactly the same hypotheses as 8 and g in Proposition 2.1, and that
uO,u1
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inf (u(x,t)-uO) = inf (u1-u(x,t))

(x,t}EOXIRÖ (x,t) EO><IRÖ
(2.22)

Thus relation (2.19) implies relation (2.18). In order to prove inequality (2.19), we first

note that the estimate

&= in f (u1-u(x,O)} > 0
xEO

(2.23)

holds. Indeed, inequality (2.23) is an immediate consequence of the range condition in (1.1)

and of the continuity of x ------ u(x,O} on the compact set n. In order to derive relation

(2.19) from relation (2.23), we now invoke the parabolic maximum principle along with the

argument given in the proof of statement (B) of Proposition 2.1. To this end, define

v : n x IRt IR by

[ {

u ~x,t} t }]
v(x,t) = exp a { il-h-Ides(!)

fJ

(2.24)

where AE (uo,u1) and a E IR+ n (max g , ({},(J)) . A direct calculation gives
{E [UO,U1]

and

Uv(x t) = :(:f~:th Vu(x,t) (2.25)
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&v(x,t) =

~ L\u(x t) + a Vu(x t). Vv(x t) _ ~(X, t)g I (u(x,t)) IVu(x t) 12
~ , g(u(x,t)) , , g2(U(x,t)) ,

= vt(x,t) + ~(a-g/(U(X,t)))V(X,t)
g (u(x,t))

(2.26)

upon using (2.24) and (2.25). From relations (2.24), (2.26), the above choice of a and the

first hypothesis concerning u, we conclude that

v E ~2,1(n)(lR+ ,IR) n 't(n)(lR! ,IR) n ~l,O(n)(lR+ ,IR) and satisfies the parabolic boundary

value problem

{

~(x,t) ~ Av(x,t), (x,t) EOxlR+ }

~ (x,t) = 0, (x,t) E 8OxlR+

We then infer from relations (2.24) and (2.23) that

[
U(X,O)] [U1-d]

v(x,O) = exp a I il-h ~ exp a I il-h :; Cl

Jl jJ

(2.27)

(2.28)

uniformly in x En,and consequently that v(x,t) ~ cl uniformly in (x,t) En)( IRÖ by

the parabolic maximum principle applied to problem (2.27). From relation (2.24) it now

follows that
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t

G(u(x,t» = f d{s(!) + 11-lLn(v(x,t)) + G(~)
o

(2.29)

t

where G is as in Proposition 2.1. From the boundedness of t ---If des(e) and the

o
above uniform bound for v(x,t) , we conclude from relation (2.29) that there exists

c2 E IR+ such that

G(u(x,t)) ~ c2 (2.30)

for every (x,t) E n x lRt .Assume now that relation (2.19) does not hold; then there exists

a sequence (xn,tn ) m Cnx IRt such that lim u(xn,tn) = u1 . UJX>n using relation
n=l n-~m

(2.4) we then conclude that G(u(xn,tn)) --. m as n --i m , in contradiction to (2.30).

In order to prove relation (2.20), we may now argue exactly as in the proof of statement

(C) of Proposition 2.1. •

Remark. I t is clear that all four conditions (C1)-(C4) were not used in the proof of

Proposition 2.2.

Dur second step toward proving Theorem 2.1 amounts to constructing a

AE {A} A such that u(t) - A(t) --i 0 strongly in LP(IR). To this end, some
lIE(uO'ut )

preparatory remarks are in order. Let VoE IR+ ; in complete formal analogy with relation

(2.24), it is possible to define A by

(2.31)
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A
where Cl and jJ are as in relation (2.24). It follows immediately from relation (2.31) that

t

GoA(t) = Jd{sW + a-lLn(vo) + G(A)
o

(2.32)

and hence that äE {A} A with t = G-1(a-1Ln(vo) + G(A)) . Now for every
IIE(uO'u1)

t E lRÖ define v(t): n~ IR by v(t)(x) = v(x,t) where v(x,t) is given by relation

(2.24). Dur strategy to construct the appropriate ä is then the following: we first invoke

the existence of exponential dichotomies for the diffusion semigroup generated by Laplace's

operator in (1.1) to construct a VoE IR+ in such a way that v(t) ---+ vo in measure on

Cl as t~ fD • We then prove that

Gou(t) - GoA(t) = a-1(Ln(v(t))-Ln(vO)) (2.33)

converges in meaaure on n as t~ fD which, together with the uniform estimates of

Proposition 2.2 and the properties of G , implies that lIu(t)-A(t)lIp~ 0 . To carry out

this program, we denote by t:a v the LP(()-realization of Laplace's operator on thep, ..n

domain Dom(t:a .JY) = H~P(() , where H~P(() is given by (2.17) with H2,P(()P,
replacing H2,P(IR). It follows from the standard methods of [20] that t:a .JY is thep,

infinitesimal generator of a compact holomorphic contraction semigroup on LP(G::); in

addition, t:a fhas a discrete point spectrum, namely u(t:ap f) = {~k} _~ U{O}
p, , kEl'1 .

where {~k} .~ ( IR- ,the ~k's have finite multiplicities and ~k~ -«l as
kEl'1 .

k~ fD • This follows from the fact that n has a t4'3+ [N/2] -boundary, which implies

that the above spectral properties of t:a f are directly inherited from those of thep,
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corresponding L2-theory. We write {W (tl} for the restriction of the
L\p, ."y tEIR"6

colrcsIX>nding semigroup to LP(lRl. Since L\ ..,r satisfics Neumann boundary conditions

and since exp [u(&p, .,r)t] Cu [w&p, )t)] p~or every t ER! ' it is clear that

{wL\ (tl} + does not enjoy exponential decay properties on the whole of LP(lRl .
p, f tElR o

We next identify a codimension-one subspace of LP(lRl on which {WL\ (tl} +
p,..,r tEIR 0

decays exponentially rapidly with a rate determined by the largest negative eigenvalue of

& ."y' Let I denote the identity operator on LP(lRl j on this space define the operatorsp, p

P and Q by

P = I -Q
P

(Qz)(x) = In 1-1 ~ dxz(x) (2.34)

where InI stands for Lebesgue's measure of n. It is easily verified that P and Q are

projection operators on LP(lRl. Dur next result states in particular that

{w& (tl} + decays exponentially on Ran P .
p, ",.r tE[R 0

Proposition 2.3. The diffusion semigroup {W& (tl} + leaves Ran P globally
p,,At" tEIR O

invariantj moreover, if ~1 denotes the largest negative eigenvalue of & ,At", there existp,
positive constants c3 4 depending on N, p, ~1 and the geometry of n , such that the,
estimates
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IlwA (t)Pzllp Sc3 exp [~1t] Ilzllpp,.A""
(2.35)

(2.36)

hold for every t E IR+ and every z E LP(IR) . Finally, {w4 (t)} + leaves Ran Q
p, f tEIR O

pointwise invariantj that is

WA (t)z = z
P, f

for every t E IR+ and every z E Ran Q .

(2.37)

Proof. By Gauss' divergence theorem and relations (2.34), we see that

A ~ = QAp r 0, and hence that A fP = P4 fon Dom(A f)' which provesp, I p, p, P,

the global invariance of Ran P and Ra.n Q under {w4 (t)} + . Since n satisfies
p,f tEIR O

the interior ball condition for every x E 80 we now observe that Ran Q= E(O) , the

one-dimensional eigenspace of 4p, fo correspon]ding to the zero eigenvalue; relation (2.37)

then follows !rom the fact that exp u(4 f)t C. U (wA (t)] for every t E IR! . It
P, p,JV

remains to prove estimates (2.35) and (2.36). Let 42, f be the L2(()-realization of,

Laplace's operator on Dom(42 JY) = H ~2(() and let {w4 (t)} + be the
, 2, f tEIR O

restriction of the corresponding semigroup on L2(1R) . Standard Hilbert space methods then

lead to the estimate
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(2.38)

for every t E IR+ and every z E L2(lR) . In order to prove estimate (2.35) from (2.38), we

now use a smoothing argument of [4]; that is, for each t E~+ , there exists

ct(N,p,O) E IR+ such that WA (t) maps L2(1R) into LP(R) in such a way that
2,vY

IIw A (t)zll ~ ct(N,p,O)ll zIl2u2 .At' p,

for every z E L2(lR) . We also note that there exists the continuOU8 embedding

LP(IR) ----i L2(1R) , and consequently that {w!! (t)} + ia the restrietion of
p, .At' t EIR 0

{wA (t)} + to LP(iR). We may consequently write
2,% tEIR O

IIWtJ. (t)Pzllp = IIWtJ. (1)WA (t-1)Pz llp =
p, .A' p, .A" p, .A"

= IIwA (1)WA (t-1)Pz llp ~ ct=1(N,p,O)IIW& (t-1)pz I1 2 ~
2,JiV 2,JV 2,%

(2.39)

(2.40)

which proves estimate (2.35) for every t E (1,m) . As for the case t E (0,1] , pick any
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c E [exp [-~1] ,00) . Since {w~ (t)} + is a contraction semigroup on LP(IR) , we
p,.A"" tEIR O

then abtain the inequalities

(2.41)

valid for every t E (0,1] and every z E LP(IR) . From relations (2.34) and (2.41) we then

infer that

~ 2 c exp [Al t] Ilzllp (2.42)

The desired estimate (2.35) then follows from inequalities (2.40) and (2.42) for a suitably

chosen c3 E IR+ . We can prove estimate (2.36) in a similar way. _

Remark. The above proof of estimate (2.35) offers an alternative to the method of [2],

from which inequalities of the same kind can also be deduced. The strategy of [2] is,

however, entirely different from ours: the author first proves the basic estimates within an

appropriate L1-theory, !rom which the eorresponding LP-inequalities can be obtained

through the Riesz-Thorin interpolation method. Proposition 2.3 will also play an

important role in the seeond part of tbis work [28].

The next geometrie result is an easy consequence of Proposition 2.3 and of the parabolic

maximum principle; it plays a crucial role in the construetion of the appropriate attractor
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Proposition 2.4. Let s and g satisfy the same hypotheses as in Proposition 2.1 and let

v(t) : n --+ R be defined by v(t)(x) = v(x,t) where v(x,t) is given by relation (2.24).

Fix to E IR+ and define v(t) = W& (t-tO)v(tO) for every t E [to,m) , where
P,A'

{w& }t)} + is the diffusion semigroup of Proposition 2.3. Then the inequality
p, tEIR 0

v(t) ~ ;(t) holds for every t E [to,m) , pointwise everywhere on n. Moreover,

~(t) - Qv(tO) --+ 0 strongly in LP(IR) as t ----t m , where Q is the projection operator

defined in relation (2.34).

Proof. Since v(tO) E H ]..P(IR) , it follows from the fact that {w& (t)} + is the
p,.A' tEIR 0

restrietion of a holomorphic semigroup and from elliptic regularity theory that ;(t).E

H ].P(IR) for every t E (to,m) j in addition,

~ E ?( [to,m),H :;.P(IR)) n ,&(l)((to,m),H ~P(IR)) and satisfies the Neumann initial value

problem

(2.43)

Now, define ';: n)( [to,m) by ~(x,t) = ';(t)(x) ; it follows from the above remarks,

embedding (2.16) and relations (2.15) that vE ~(l)(n)( (to,m),!R) and that

x ---; v(x,t) E ~(2)(n,lR) for every t E [to,m) ; this along with relations (2.43) leads to
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(2.44)

We furthermore notice that ; E 'e2,1(O)((t
o

,m),IR) n ~(n)( [to,m),IR) n ~l,O(n)((to,m),IR) ,

as a consequence of the corresponding property for v. The first statement of the lemma

then follows hom relations (2.27), (2.44) and the parabolic minimum principle applied to

the function ;(t) - v(t) . As for the second statement, we note that Q~(t) = Qv(tO) for

every t E [to,m) , horn the definition of ~(t) and relation (2.37). Hence

as t ---+ m , by relation (2.35) of Proposition 2.3.

We now combine the above results to prove the following

•

Proposition 2.5. Let s and g s8.tisfy the same hypotheses a.s in Proposition 2.1j for

t E IR! ,let v(t) be a.s in Proposition 2.4. Then there exists Vo E IR+ such that

v(t) ---+ Vo in measure on n as t ---+ Q) •

Proof. In fa.ct we prove the stronger reault that there exists Vo E IR+ such that

v( t) ---+ v0 strongly in L1(1R) . To this end, consider the function

t ---+ Qv(t) : IR! --+ IR! ; it is c1early differentiable on IR+ with a non positive
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derivative, for the inequality

(2.4S)

holels as a consequence of (2.27), and for (x,t) ----+ vt(xJt) E ~(n)(lR+ ,IR) holds aB a

consequence of the first part of (C3) . Hence

lim Qv(t) = inf Qv(t) ~ a
t-HD tEIR+a

(2.46)

Define va = inf Qv(t) j we first observe that va E IR+ . In order to see this we rewrite
tEIR+a

expression (2.24) as

where

v(x,t) = cp(t)exp [0 G(u(x,t))] (2.47)

(2.48)

t

with G aB in Proposition 2.1. It then follows !rom the boundedness of t --+ f dea( e)
o

that <PO = in f <p(t) > 0 . It also follows from estimate (2.18) that there exists Cs E IR+

tElRö

such that exp [a G(u(x,t))] ~ Cs for every (x,t) En )( IR! ,since G is monotone

increasing on (uOJu1). Combining these facts with relation (2.47) then gives
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(2.49)

In order to show that v(t) --+ vo strongly in L1(1R) , let

(v(t) - Qv(t))+ = max(v(t) - Qv(t),O), (v(t) - Qv(t))- = min(v(t) - Qv(t),O) be the

positive and negative part of v(t) - Qv(t) , respectively. Let 11-11 1 be the usua!

L1_norm. i as a consequence of relation (2.46) and of the definition of v0 ' we first notice

that for every E > 0 , there exists t E > 0 such that the sequence of inequalities

IIv(t)-voll l ~ II v(t)--Qv(t)1I 1 + Inl f =

= 2 Adx(v(t )(x) - Qv(t )(x))+ + Inie:

holds for every t ~ t f ' since

(2.50)

Adx(v(t)--Qv(t))(x) =Adx(v(t)--Qv(t))+(x) + Adx(v(t)--Qv(t)nx) = 0

by definition of the operator Q. Now define

nt = {x En:v(t)(x) - QV(t)(x) > O} (2.51)

Upon using the definition of vo and the resu1ts of Proposition 2.4 with to= t f ' we then

see that there exists t >t such that the sequence of estimates
f - E
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rdx(v(t)(x) - Qv(t)(x))+ = Jdx(v(t)(x) - Qv(t)(x)) ~

fi n+
t

~J dx(~(t)(x) - Qv(t E)(X)) + J dx(Qv(t E)(X) - QV(t)(X)) ~

n+ n+
t t

(2.52)

holds for every t ~ i € • The combination of estimates (2.50) and (2.52) then shows that

v(t) ---t Vo strongly in L1(1R) a8 t ---t []) , and hence in measure on n. •

We conelude our second step toward proving theorem 2.1 by the following result.

Proposition 2.6. Let s and g satisfy the same hypotheses as in Proposition 2.1. Let u

A A
be any classical solution to problem (1.1). Then there exists auE {u} A such

IIE(uO'u1)

that u(t) - ~(t) ---t 0 strongly in LP(IR) as t ---t (ll •

Proof. We define ~ by relation (2.31), where Vo is the positive number constructed in

Proposition 2.5. We first conclude from relation (2.47) and the proof of Prop'osition 2.5

that

v(x,t) ~ eS CPo > 0 (2.S3)
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uniformly in (x,t) En x IR! ' so that the estimates

(2.54)

hold for every (x,t) En x IRÖ . Letting ca = max((cS cpO)-1 jVÖ1) , it then follows from

relation (2.33) that

(2.55)

Rence Gou(t) - GoA(t) ----+ 0 in measure on n a.s t ----+ m by the reault of Proposition

2.5. In order to conclude that Gou(t) - GoA(t) ----+ 0 strongly in LP(IR) , it is then

sufficient to prove that there exista c7 E IR+ Buch that

II Gou(t)-GoA(t)llmn= max IG(u(x,t))-G( A(t)) I ~ c7 (2.56),
xEn

But estimate (2.56) follows immediately from the uniform estimates (2.7), (2.19) and from

the fact that G is monotone increasing on (uO,u1). It remaina to prove that

u(t)-A(t) ----+ 0 in LP(IR). To tbis end, write

w(t) = Gou(t)
A Aw(t) = Gou(t)

(2.57)

(2.58)

for every t E IR+ . Since Ran G = IR , it follows that there exists y(X,t,d) E (uO,u1) such

that G(y(x,t, d)) = ~(t) + d(W(X,t) - ~(t)) for every (x,t) En )( IRÖ and every
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odE (0,1) . Upon using the mean-value theorem and the inverse function theorem, we then

obtain

u(x,t) - ~(t) = G-1(w(x,t)) - G-l(~(t)) =
1

= Jdd(G-1)' (-~(t) + d(W(X,t) - ~(t)))(w(t,x) - ~(t)) =

o
1

= Jds g(y(X,t,d))(W(X,t) - ~(t))
o

(2.59)

We conelnde from this and from the smoothness of g on the compact interval [uO'u1]

that there existB Cs E IR+ Buch that

A AIu(x,t)-u(t) I ~ csl w(x,t) - w(t) I (2.60)

for every (x,t) En)( 1R6 . But inequality (2.60), relations (2.57) and (2.5S) and the first

part of the proof then imply that

strongly in LP(lR) as t ---+ m . •

We can now complete the proof of Theorem 2.1. It is here that conditions (C1)-{C4)

preceding the statement of Theorem 2.1 all play their crucial role.

Proof cf Theorem 2.1. It remains to prove that u(t) - A(t) --+ 0 strongly in H ~P(IR) .

Let p(!J. vY) be the resolvent set of Laplace's operator!J. fand fixp, p,

AOE p(f,. Jf) n IR . We first renorm. H ~P(IR) byp,
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(2.61)

It follows from the closed graph theorem and from standard elliptic theory that the norm

(2.61) is equivalent to that defined by (2.14). Since we already know that

u(t) - A(t) ---i 0 strongly in LP(IR) as t ---i m , it remains to prove that

f! ~(t) ---i 0 strongly in LP(IR) as t --t (J) • We first notice that if u is a classical
P,

solution to problem (1.1), then it follows from conditions (C1HC4) that

t --t u(t) E '6 (IRt,LP(IR)) n '6(1)(IR+ ,LP(IR)) , and that this function satisfies the

ordinary differential equation

{

u' (t) = f!p, fu(t) + s(t)gou(t) , t E IR+}

Ran(u( t)) h (uO,u1) , t E IR!
(2.62)

on LP(IR) . Now define y E ~(IRt,LP(IR)) n ~(l)(IR+,LP(IR)) by y(t) = u(t) - A(t) ; it

follows from this definition and from relations (2.62) and (1.2) that y satisfies the

differential equation

y' (t) = 4 .#'y(t) + s(t){gou(t)-goA(t)}p, (2.63)

on LP(IR) , and that 4 .,.,ry(t) = f! vrn(t) for every t E IRÖ . Thus it remains to prove
P, P,

that

A
f(t) = s(t)(gou(t) - gou(t)) --t 0

y' (t) ---i 0

(2.64)

(2.65)
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strongly in LP(IR). Since s is bounded, the former statement is an immediate consequence

of Proposition 2.6 and of the smoothness of g since

1
A J ,A A Ag(u(x,t))-g(u(t)) = d6g (U(t)+6(U(X,t)-u(t)))(u(x,t)-u(t))

o

for every (x,t) Enx IR! ;tbis implies the inequality

A AIg(u(x,t))-g( u(t)) I ~ cgl u(x,t)-u(t) I (2.66)

for some cg E lR+ since A(t)+6(U(X,t)-A(t)) E (uO'u1) . This leads to the desired

conclusion

(2.67)

as t ----+ (D • We conclude the proof in showing that statement (2.65) holels. In order to

a.ccomplish this we first project equation (2.63) onto the subspaces Ran P and Ran Q ,

where P and Q are the projection operators defined by relations (2.34). We obtain

Py I (t) =!J. /y(t) + Pf(t)
P,

Qy I (t) = Qf(t )

(2.68)

(2.69)

since fJ. p ~ = Q!J. r 0 on HJ-P(IR) , and it follows immediately from relations, P,
(2.69) and (2.64) that Qy' (t) ----+ 0 strongly in LP(lR). It remains to show that

Py I (t) ----+ 0 strongly in LP(IR). In order to accomplish this we first pick t
o

E IR+ and
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we invoke the variation of constants formula to rewrite relation (2.68) as

t ,

Py(t) = WtJ. (t-tO)Py(tO) +f d,WtJ. (t-,)PfW (2.70)
p, JY t P, JY

o

for every t E (tO'CD) . We next notice that f is Bölder continuous on IR+ as an

LP(IR)-valued function. In fact, tbis is an immediate consequence of the Bälder continuity

of 8 and that of the functions t -----i gou(t) and t -----i goA(t) , since the latter functions

have LP-norms uniformly bounded in t from the basic estimates (2.7), (2.8), (2.18) and

(2.19) (The Bälder continuity of t -----i gou(t) follows immediately from relation (2.67)

and condition (Cl)' while that of t -----i goA(t) follows from the fact that A(t) has a

uniformly bounded derivative according to equation (1.2)). It then follows from relation

(2.70) and the standard arguments of [20] and [17] that

t

Py , (t) = tJ.p ,A'WtJ. (t-tO)Py(tO) +f d'tJ.p fWtJ. (t-')P{fW-f(t )}
, P, JY t' P, .AI

o

+ W/!,. (t-tO)Pf(t)
p,JY

for every t E (tO'CD) . Since {w!J. (t)} + is the restriction of a holomorphic
p, JY tElR 0

semigroup to LP(IR) , we now can estimate the first term of relation (2.71) as

(2.71)

so that A JYWA {t-tO}Py{tO} -----i 0 strongly in LP(IR) as t ----+ m . We conclude
P, P,A'



-30-

in a similar way that W!1 (t-to)Pf(t) --t 0 strongly in LP(iR) as t --t m , as a
p,..#"

consequence of relations (2.35) and (2.64). Finally, a similar statement holds for the second

term of (2.71) when to is sufficiently large, upon using estimate (2.36), the Hölder

continuity of f along with variations on the theme of the proof of Theorem 5.8.2 of [20].

We conelude that Py' (t) --t 0 strongly in LP(IR) as t --t m , and hence that relation

(2.65) holds. Finally, the very last statement of Theorem 2.1 follows immediately from

relation (2.6). •

Remarks. (1) Upon exploiting the Banach algebra properties of H~P(IR) along with the

basic estimates (2.7), (2.8), (2.18), (2.19) and statement (C) of Proposition 2.1, it is

possible to show that u(t) - G(t) --t 0 strongIy in H ~P(IR) H, and only if,

v(t) - Vo --+ 0 atrongly in H ~P(IR) aB t --t m . Thus, the stabilization property of the.

function (2.24) toward va ia in fact not merely limited to the convergence in measure on

n as in Proposition 2.5.

(2) As an immediate consequence of Proposition 2.2 and of Theorem 2.1, we note that

the two equilibria Uo and u1 can never be attractors under the hypotheses of Theorem

2.1. This is intuitively understandable since, with s E f!(IRB,IR), the hypothesis

t t

t ----lf d~sW = O(1) as It I ----l lD means that t ----lf d~s(~) is almost-periodic,

o 0

and hence that J.'B(s) =0 (take relation (2.2) with k = 0 ). Therefore, every classical

solution u to (1.1) stabilizes around a spatially homogeneous solutions A which oscillates

almost-periodically between the equilibria Uo and u1 . But A depends on u in general.

(3) Because of relation (2.6), every Fourier exponent of the attractors

~ E {A} A ia a finite linear combination with integer coefficients of the Fourier
vE(uO'u1)

A
exponents of s . The oscillation properties of the u's are thereby completeIy controlled by

those of the selection function s.
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(4) In the second part of this work [28], we shall in fact prove that

u(t) - A(t) ---+ 0 in H:;'P(IR) with a polynomial rate of decay. The proof of such a

result lies beyond the scope of the method used in this artic1e, and requires a more subtle
..

construction of loeal invariant manifolds around each u following the methods of [24],

[29], [30], [31] and [32].

While Theorem 2.1 establishes the aaymptotic almost-periodicity of every classical solution

to problem (1.1), it also implies that the spatially homogeneous solutions

,1 E {A} A are the only time almost-periodic c1assical solutions to problem (1.1)
vE(uO'u1)

within the admissible class. The precise result is the following

Corollary 2.1. Let s and g satisfy the same hypotheses as in Theorem 2.1 and let u be

a classical solution to problem (1.1). Then t ---+ u(x,t) is the restriction to IRt of a

Bohr almost-periodic function for each x En if, and only if, u(x,t) = ,1(t) for every

(x,t) Enx IRt ,for some A E {A} A

lIE(uO'u1)

Proof. The statement follows immediately from relation (2.10) and from elementary

properties of almost-periodic functions. •

In the next section, we investigate the stabilization properties of the classical solutions to

problem (1.1) when J'B(s) f 0 .

3. The Two Equilibria Uo and u1 as Global Attractors.

If the selection function s has a non zero time average Jl}J(s) , the classical solutions to

problem (1.1) are no longer uniformly bounded away from the two equilibria uo and u1 .

In fact, if J'B(s) < 0 (resp. JlB(s) > 0 ), and if g satisfies the same hypotheseB as in the
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preceding sections, we can show that Uo (resp. u1 ) becomes a global attractor. The

notion of classical solution used in this section is exactly the same &S that of Section 2, and

the precise result is the following

Theorem 3.1. Let s E ~(IRB,IR) be such that J'B(s) f 0 and &Ssume that g satisfies the

same hypotheses &S in Proposition 2.1. Assume in addition that s is Hölder continuous on

IR+ and let u be a classical solution to problem (1.1). Then either JlB(s) < 0 and we

have

lim sup Iu(x,t)-uOI = 0
t---iOO xEn

or JlB(s) > 0 and we have

lim sup Iu(x,t) - u11 = 0
t-+oo xEn

Moreover, relations (2.12) and (2.13) still hold for every ßE (O,I-p-IN] .

(3.1)

(3.2)

Proof. Let u(t), t E IRt ' be as in the preceding aectionj it ia then sufficient to prove that

u(t) - Uo--t 0 atrongly in H]'P({R) &S t --t Q) in the first case, ~d that

u(t) - u1 --t 0 atrongly in H ]'P(IR) in the second case. Let v(t) : n--t IR be as in

Proposition 2.4, that is

v(t) = rp( t )exp [aGou(t)]

according to relation (2.47), where

(3.3)
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We first notice that eatimates (2.23), (2.27) and (2.28) of Proposition 2.2 remain

unchanged in this case, for they are independent of the hypothesis concerning

t
t --+Jdes( e} . Therefore, if cl is as in relation (2.28), we still have the estimate

o

IIv(t)11 = max Iv(x,t) I ~ cl
CD,n xEn

(3.4)

(3.5)

uniformly in t E IRt . We then conclude from relations (3.3) and (3.5) that the inequality

CllIexp [oGou(t)] 11 5v;rtJ
CD,n

(3.6)

holds for every t E IRÖ . Now if Pß(s) < 0 , it then follows from relation (3.4) that

cp(t) --+ CD as t --+ CD , so that exp [oGou(t)] --+ 0 uniformlyon n as t --+ CD as a

consequence of relation (3.6). Hence Gou(t) --+ --1J) uniformlyon n which, together

with relation (2.3), implies statement (3.1). In order to get· relation (3.2), we first perform

a transformation identical to that described at the beginning of the proof of Proposition

2.2. It is then clear that relation (3.2) is a consequence of (3.1). It remains to prove that

tJ. ~(t) --+ 0 strongly in LP{IR) as t --+ CD • But this can be done in exactly the
PJ

same way a8 in the proof of Theorem 2.1, upon replacing y{t) = u(t)-A(t) by

y{ t) = u{t)-uO1 .
J •

Remark. In the second part of this work [28] J we shall in fact prove that

u{t) - Uo1 --+ 0 in H ]P{IR) exponentially rapidly. Again, the proof of this will require,
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a more elaborate construction of local stable manifolds around Uo and U1 .

In the next section, we discuss several examples which illustrate the use of Theorems 2.1

and 3.1.

4. Application to Fisher's Type Eguations of Population Genetics.

We are primarily concerned with the applications of the preceding results to problems of

the form. (1.1) which occur in population genetics) such as Fiaher's equations and its

variations. We begin with the following

Example 4.1. Consider the problem

(4.1)

u t (x, t)=ä u (x, t)+(cos( "'1t)+cos("'2t))u(xlt)(1-u(x,t))( au(x) t )+(1-0) ( l-u (x,t))

, (x, t) E OxIR+

Ran(u) ~ (0,1)

~ (x,t) = 0 ,(x,t) E lKlxlR+

where 0 E (0,1) , and where {"'1''''2} (R/{O} is rationally independent. Here we have

g(u) = u(l-u)(ou+(l-o)(l-u)) with Uo= 0, u1 = 1 and s(t) = cos("'lt) + COs(w2t).

We can easily verify that all of the hypotheses of Theorem 2.1 are satisfied. We conclude

that every classical solution to problem (4.1) remains uniformly bounded away from

Uo= 0 and u1 = 1 , and that it stabilizes around a apatially homogeneous, time

quasiperiodie attractor AE {A} A • In addition, we note that every Fourier
vE(O,l)

exponent A of A ia of the form A = k1"'1 + k2"'2 where k1 2 E "D. • The set {wl''''2} ia,
therebya possible integer basis for the set of a1l Fourier exponents of A.
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Remark. Equation (4.1) often occurs in certain problems of population genetics, such as

the description of the space time evolution of the fraction of one of two alleles in the

population of a migrating diploid species when the selection function stakes quasiperiodic

seasonal variations into account ([9], [19], [26]). In this context, the result of Example

4.1 means that both alleles will persist in the population for all times, and that the

fractions of the two alleles will eventually evolve nearly quasiperiodically in time with

oscillation properties entirely controlled by those of the seasonal variations.

In contrast to Example 4.1, we now consider the following

Example 4.2. Consider the problem

(4.2)

u t (x, tJ=tJ. u (x, t)+(cos( ""1t)+cos( ""2t)-1)u(x,t)(1-u(x, t) )exp [-u (x,t)]

, (x, t) E n)(lR+

Ran(u) ( (0,1)

~ (x,t) = 0 , (x, t) E iJOxlR+

where {""1'''''2} is as in Example 4.1. Here g(u) = u(l-u)exp [-u] 80 that Uo= 0 and

u1 = 1 . Moreover, s(t) = cos(""lt) + cos(""2t) -1 with JlB(s) = -1 , and it is easily

checked that all of the hypotheses of Theorem 3.1 hold. We conelude that every elassical

solution to problem (4.2) converges to Uo=0 , irrespective of the actual values of ""1 and

""2 .

Remark. In the context of population genetics, the result oI Example 4.2 means that only

one 01 the alleles will eventually survive in the population.
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Example 4.3. Con.clusions entirely siInilar to those of Example 4.1 hold for the boundary

value problem

{

u t (x I t)=& u (x I t)+sin( wt)sin( ru(x,t)) I (x,t) E n>elR+ }

Ran( u) ( (0,1)

~ (x,t) = 0 , (x,t) E 8fIxIR

(4.3)

where g(u) = sin(ru), Uo= 0 and u1 = 1 ; here s(t) = sin(wt) with w E IR/{O} 1 and

all of the attractors {A} A are of course time periodie with period T = 211" Iw,-1 .
lIE(O,I)

Example 4.4. Conclusions similar to those of Example 4.2 hold for the boundary value

problem

(4.4)

U t (x, t)=!J. u (x, t)+(sin( wt)+1)u(x,t)(1-u(x,t))( ou(x, t )+(1-0) ( 1-u(x,t)))

, (x, t) E n>eR+
Ran(u) C (0,1)

~ (x,t) = 0 , (x, t) E 8fIxlR+

where Q E (0,1) , with the exception of the fact that the global attractor is now u1 = 1

instead of Uo= 0 .

We conclude this article with same remarks and with the discussion of some open

problems.

5. Some Remarks and Same Open Problems.

It is first natural to ask whether the results of the preceding sections remain valid in the
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case of Neumann boundary value problems of the form

{

Ut (x, t)=Au(x,t)+s(x,t)g(u(x,t)), (x,t) E O)(IR+ }

Ran( u) ~ (uO,u1 )

~ (x,t) = 0 , (x,t) E 1J(l1l!R+

(5.1)

where the selection function depends explicitely on x En in such a way that t -----+ s(x,t)

is Bohr almost-periodic for each x En, and where g satisfies the same hypotheses as

above. If s is sufficiently smooth on n)( IR! ,let s(t) = max s(x,t) i then i E ~(IRB,IR)

xEn
and, upon using essentially the same arguments aB above and the condition

t

t ----+Jd{ä({) = 0(1) as Itl ----+ m , we can prove that every classicalsolution u to

o
(5.1) stabilizes around a spatially homogeneous, time almost-periodic solution

A A
u E {u} A of the initial value problem

vE [uO'u1)

(5.2)

in the sense of relations (2.10), (2.11), (2.12) and (2.13) of Theorem 2.1.

On the other hand, let ~(t) = mi n s(x,t) ; we can then also prove that conclusion (3.1)

xEn
(resp. conclusion (3.2)) of Theorem 3.1 remains valid in the case of a classical solution to

problem (5.1), provided that the condition ~B(s) < 0 be replaced by JlB(i) < 0 (resp.

that JlB(s) > 0 be replaced by JlB(~) > 0 ).

U ia, however, also worth mentioning that there exists in relation with problem (5.1) the



-38-

additional possibility of having JlB(~.) < 0 < JlB(i) . This, of course, does not ocenr for

problem (1.1) where s(x,t) = s(t) for every x En. In this caBe, it is tempting to

conjecture that there exists a unigue time almost-periodic solution to problem (1.1) which

is neither identically equal to Uo non identically equal to u1 ' and which is a global

attractor for all classical80lutions to (1.1). This was in fact recently proved in [16] when

t ---+ s(x,t) is periodic, but remains an open problem in the general almost-periodic case.

The SQurce of this difficulty lies primarily in the fact that there is no natural substitute for

the notion of Poincare time-map in the almost-periodic case.

Finally, if s(x,t) = s(t) for every x E n and if s is Bohr almost-periodic but not

periodic, there exists the additional possibility of having JlB(S) = 0 without having

t

t ----+ Jd~s(~) = 0(1) as Itl ----+ lD • This is for instance the case for the function
o

lJ)

s(t) = l k-2exp [ik-2t] I because of the notorious difficulty of small divisors (in the

k=l
lJ)

preceding exemple, the sequence (hk = k-2)k=1 of all Fourier exponents of s converges

to zero as k --+ lJ) J which precludes the primitive of s from being almost-periodic). We

did not investigate this case any further.
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