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Abstract

In 1971, Zariski asked the following question: is the multiplicity of a reduced analytic hypersurface

singularity in C
n depends only on its embedded topological type? More precisely, if f,g: (Cn,0)→(C,0) are

reduced germs (at the origin) of holomorphic functions such that the corresponding germs of hypersurfaces

in C
n have the same embedded topological type, then is it true that f and g have the same multiplicity

at 0 ? Instead of dealing with a pair (f,g), one can also consider a similar question for a family (Ft)t . More

precisely, if f : (Cn,0)→(C,0) is a reduced germ of holomorphic function and (Ft)t a topologically V–constant

(holomorphic) deformation of it, then is it true that (Ft)t is equimultiple ? More than thirty years later,

these problems are, in general, still unsettled (even for hypersurfaces with isolated singularities). The answer

to the first question is, nevertheless, known to be positive in the special case of plane curve singularities

(i.e., when n = 2). Concerning families, equimultiplicity is known for topologically V–constant deformations of

isolated quasihomogeneous and semiquasihomogeneous singularities and topologically V–constant deformations

within a family of convenient Newton nondegnerate isolated singularities. Equimultiplicity is also known for

topologically V–constant deformations within some very special families of nonisolated singularities. Moreover,

it is known that the multiplicity is an embedded C1 invariant as well as an embedded topological right–left

bilipschitz invariant. Several other (more specific) results are also known and will be mentioned in this survey.

Our aim here is to provide in a short exposition a general overview of Zariski’s problem which is one of the

most fascinating (but also very difficult!) problem in equisingularity theory.

Introduction

Let f, g: (Cn, 0) → (C, 0) be reduced germs (at the origin) of holomorphic functions,

Vf := f−1(0), Vg := g−1(0) the corresponding germs of hypersurfaces in C
n, and νf , νg the

multiplicities at 0 of Vf and Vg respectively. Zariski’s multiplicity question is as follows (cf. [Z1]).

Question 0.1. If f and g are topologically V–equivalent, then is it true that νf = νg ?

One says that f and g are topologically V–equivalent if there is a germ of homeomorphism

ϕ: (Cn, 0) → (Cn, 0) such that ϕ(Vf ) = Vg.

The question is, in general, still unsettled. Nevertheless, the answer is known to be yes in

the following special cases:

(i) if n = 2 (Zariski [Z2]);

(ii) if νf = 1, that is, if 0 is not a critical point of f (A’Campo [A’Ca1], Lê [L1]);
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(iii) if n = 3 and νf = 2 (Navarro Aznar [Na1,2]);

(iv) if n = 3 and f and g are quasihomogeneous with an isolated critical point at the origin

(Xu–Yau [Y1] and [XY]);

(v) if n = 3, f and g have an isolated critical point at 0 and the arithmetic genus of Vf at 0

is ≤ 2 (Yau [Y2]);

(vi) if ϕ is a C1–diffeomorphism (Ephraim [Ep], Trotman [T1,2,4]);

(vii) if f and g are topologically right–left equivalent by bilipschitz homeomorphisms (Risler-

Trotman [RT]).

One says that f and g are topologically right–left equivalent by bilipschitz homeomorphisms

if there are germs of bilipschitz homeomorphisms ϕ: (Cn, 0) → (Cn, 0) and φ: (C, 0) → (C, 0) (i.e.,

ϕ, ϕ−1, φ and φ−1 are lipschitz maps) such that f = φ ◦ g ◦ ϕ.

Also, instead of dealing with a pair (f, g), one can consider a similar question for a family

(Ft)t. More precisely, let f : (Cn, 0) → (C, 0) be a reduced germ of holomorphic function, Vf the

corresponding germ of hypersurface in C
n, and νf the multiplicity of Vf at 0. Let

F : (Cn × C, {0} × C) → (C, 0)

(z, t) 7→ F (z, t) = Ft(z),

be a deformation of f , that is, F is a germ of holomorphic function such that F0 = f and, for

all t near 0, the germ Ft is reduced. Let νFt
be the multiplicity of VFt

:= F−1
t (0) at 0.

Question 0.2. If F = (Ft)t is topologically V–constant (i.e., if, for all t near 0, Ft is

topologically V–equivalent to F0 = f), then is it true that νFt
= νf for all t near 0 ?

By Lê–Ramanujam’s theorem [LR], any µ–constant deformation of an isolated hypersurface

singularity in C
n, with n 6= 3, is topologically V–constant (1). On the other hand, it is known that

if two germs of holomorphic functions are topologically V–equivalent, then they have necessarily

the same Milnor number at 0 (2). Hence, in the special case where f has an isolated singularity

at 0, and provided n 6= 3, Question 0.2 can be reformulated as follows.

Question 0.3. We suppose that n 6= 3 and that f has an isolated critical point at 0. If the

deformation F = (Ft)t is µ–constant, then is it true that νFt
= νf for all t near 0 ?

Of course Question 0.3 makes sense even in the case n = 3 and the answer (including this

case) is known to be yes if f is quasihomogeneous or semiquasihomogeneous (Greuel [Gr] and

O’Shea [O’Sh] — see also Trotman [T3,4]), or if f , together with the Ft, for any t close enough

to 0, are convenient and have a nondegenerate Newton principal part (Abderrahmane [Ab] and

Saia–Tomazella [ST]).

(1) A deformation (Ft)t of an isolated hypersurface singularity f is said to be µ–constant if, for all t near 0, the Milnor

number of Ft at 0 is equal to the Milnor number of F0 = f at 0. We recall that the Milnor number µg at 0 of a germ of

holomorphic function g: (Cn,0)→ (C,0) is given by µg =dimC(C{z1,...,zn}/( ∂g
∂z1

,..., ∂g
∂zn

)), where C{z1,...,zn} is the ring

of convergent power series centered at 0, which is identified with the ring On of germs of holomorphic functions at 0, and

where ( ∂g
∂z1

,..., ∂g
∂zn

) is the Jacobian ideal of g, generated by all the partial derivatives of g. Notice that µg <∞ if and only

if 0 is, at worst, an isolated critical point of g.
(2) Let f,g: (Cn,0)→(C,0) be two germs of holomorphic functions. If µf is finite, so is µg (cf. Theorem 10.3); now, if µf

and µg are finite, then they are equal (cf. [L2], [Te1]).
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There are several other partial positive answers to Zariski’s questions: for example, see the

papers by Comte–Milman–Trotman [CMT], Greuel–Pfister [GP1], A’Campo [A’Ca2], Mendris–

Néméthi [MN], Eyral [Ey], etc... We also point out the reduction theorem by Massey [M1,2]

connecting isolated and aligned singularities.

Note also that a positive answer to Question 0.1 would automatically imply a positive

answer to Question 0.2 (and 0.3), while the reverse is not true.

Also, although Zariski’s questions make sense only in the hypersurface case (cf. Section 12),

Gau–Lipman, in [GL1,2], generalized to high–codimensional (complex) closed analytic subsets

in C
n the differential type result of Ephraim and Trotman, and Comte, in [C], proved a bilipschitz

type result in such a high–codimensional situation.

In this survey article we review in detail all these results.

Throughout, we consider the complex space C
n with fixed coordinates z = (z1, . . . , zn),

unless the contrary is said explicitly. We suppose n ≥ 2. We recall that the ring On of germs

of holomorphic functions at 0 is naturally isomorphic to the ring C{z1, . . . , zn} of convergent

power series centered at 0, so that we may identify a germ f ∈ On with its power series

f =
∑

α aα zα, where α = (α1, . . . , αn) ∈ N
n, zα = zα1

1 . . . zαn
n , and aα ∈ C. We consider only

germs f at the origin and such that f(0) = 0. We note f : (Cn, 0) → (C, 0). The notation

F : (Cn × C, {0} × C) → (C, 0) implies F ({0} × C) = {0}. We assume that our germs are not

identically zero. By abuse of language, we may also call germ any arbitrarily small representative

of it.

Content

1. Multiplicity and order

2. Multiplicity and first homology

3. Multiplicity and  Lojasiewicz exponent

4. Topological type of isolated singularities

5. C1 invariance of the multiplicity

6. Topological right–left bilipschitz invariance of the multiplicity

7. Plane curve singularities

8. Semiquasihomogeneous and quasihomogeneous isolated singularities

9. Convenient Newton nondegenerate (isolated) singularities

10. Aligned singularities

11. Further results

12. Multiplicity on high–codimensional analytic sets

1. Multiplicity and order

Let f : (Cn, 0) → (C, 0) be a germ of holomorphic function and let Vf be the corresponding

germ of hypersurface in C
n. The decomposition of f into its homogeneous components is written
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as f(z) =
∑+∞

j=1 f j(z), with

(1.1) f j(z) =
∑

α1+...+αn=j

aα zα

where α = (α1, . . . , αn) ∈ N
n, zα = zα1

1 . . . zαn
n , and aα ∈ C (f j is either zero or a homogeneous

polynomial of degree j). The order of f at 0 is the smallest integer j such that f j 6≡ 0. The

multiplicity of Vf at 0 is the number of points of intersection, near 0, of Vf with a generic

(complex) line in C
n passing arbitrarily close to 0 but not through 0. If the germ f is reduced,

then the order of f at 0 is equal to the multiplicity of Vf at 0. In this case, we say equally

‘order of f at 0’ or ‘multiplicity of Vf at 0’ (or even ‘multiplicity of f at 0’) and we denote this

common number by νf . Notice that, since n ≥ 2, if f is regular or has an isolated critical point

at 0, then it is automatically reduced.

The following lemma reduces Zariski’s Questions 0.1 and 0.2 to irreducible germs.

Lemma 1.2 (Ephraim [Ep]). If the answer to Question 0.1 (respectively Question 0.2) is

positive for irreducible germs, then it is positive in general.

If f = f1 . . . fs is the factorization of a reduced germ f of holomorphic function into its

irreducible factors, then νf =
∑s

i=1 νfi
. Lemma 1.2 thus follows from the following result.

Lemma 1.3 (Ephraim [Ep]). Let f, g: (Cn, 0) → (C, 0) be reduced germs of holomorphic

functions and let Vf , Vg be the corresponding germs of hypersurfaces in C
n. If there is a germ

of homeomorphism ϕ: (Cn, 0) → (Cn, 0) such that ϕ(Vf ) = Vg, then necessarily ϕ maps each

irreducible component of Vf onto an irreducible component of Vg.

By [W, Chapter 3, Theorem 2B], the irreducible components of Vf are the Vf –closures

of the connected components of the regular part of Vf . The lemma is thus a consequence of

Theorem 10.3 below which asserts that if a reduced germ of holomorphic function is topologically

V–equivalent to a regular (reduced) germ then it is itself regular.

2. Multiplicity and first homology

In [Ep], Ephraim gave two interpretations of the multiplicity in terms of the first homology.

This section is about these characterizations.

Let f : (Cn, 0) → (C, 0) be a reduced germ of holomorphic function, Vf the corresponding

germ of hypersurface in C
n, and νf the multiplicity of Vf at 0. Then, with notation (1.1),

fνf 6≡ 0 and the decomposition of f into its homogeneous components is written as

f(z) = fνf (z) +
+∞
∑

j=νf+1

f j(z)

(fνf is called the initial polynomial of f at 0). Let C(Vf ) be the tangent cone of Vf at 0 (cf. [W,

Chapter 7, Definition 1G]). By [W, Chapter 7, Theorem 4A], C(Vf ) is nothing but the zero

set (fνf )−1(0) of the initial polynomial fνf of f . Thus a (complex) line L ⊂ C
n through 0,
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determined by a vector z0 ∈ C
n − {0}, is contained in C(Vf ) if and only if fνf (z0) = 0. So,

if L is not contained in the tangent cone C(Vf ) (equivalently, if L ∩ C(Vf ) = {0}), then the

multiplicity νf of f at 0 is equal to the order of f|L at 0.

First interpretation. Let L ⊂ C
n be a line through 0 such that L ∩ C(Vf ) = {0}. Then 0

is an isolated point of L ∩ Vf and νf = order of f|L at 0. Hence if D ⊂ L is a closed 2–disc at 0

so small that D ∩ Vf = {0}, and if γ is a generator of the first homology group (3) H1(D − {0}),

then, choosing an isomorphism H1(C−{0}) ' Z, (f|L)∗(γ) ∈ H1(C−{0}) is, up to sign, nothing

but the order of f|L at 0, that is, according to the discussion above, ±νf (the homomorphism

(f|L)∗: H1(D − {0}) → H1(C − {0}) is induced by f between the mentioned homology groups).

Let S
2n−1
ε be the boundary of the closed ball B

2n

ε := {z ∈ C
n ; |z| ≤ ε}. The Local Conic

Structure Lemma of Burghelea–Verona [BV] (see also Ephraim [Ep]) says that for any ε small

enough

(2.1) (B
2n−1

ε , B
2n−1

ε ∩ Vf )
homeo
' (S2n−1

ε , S2n−1
ε ∩ Vf ) × [0, ε]

/

(S2n−1
ε , S2n−1

ε ∩ Vf ) × {0}.

Second interpretation. Here we suppose that f is irreducible. Let B be an open ball in C
n

at 0 such that its closure is contained in the open ball B
2n
ε for an ε so small that (2.1) holds.

Then the homomorphism f∗: H1(B − Vf ) → H1(C − {0}) is an isomorphism. Indeed, it is

not difficult to see that it is onto. On the other hand, since f is irreducible, by Lefschetz

duality, H1(B − Vf ) ' Z. It follows that we have an isomorphism. Let L and D as in the

first interpretation. By shrinking D (if necessary) we can assume that D − {0} ⊂ B − Vf .

Factor f : D − {0} → C − {0} as the composite of i: D − {0} → B − Vf and f : B − Vf →

C−{0}, where i is the inclusion. By the first interpretation, if γ is a generator of H1(D−{0}),

then (f|L)∗(γ) = f∗(i∗(γ)) ∈ H1(C − {0}) represents, up to sign, the multiplicity νf . Since

f∗: H1(B − Vf ) ' Z → H1(C−{0}) ' Z is an isomorphism, i∗(γ) ∈ H1(B − Vf ) ' Z is also, up

to sign, the multiplicity νf .

These two interpretations of the multiplicity are used by Ephraim in [Ep] to show that the

multiplicity is an embedded C1 invariant (cf. Section 5).

3. Multiplicity and  Lojasiewicz exponent

In [RT], Risler–Trotman gave an interpretation of the multiplicity in terms of a certain

 Lojasiewicz exponent. This section is about this characterization.

Let f : (Cn, 0) → (C, 0) be a reduced germ of holomorphic function, Vf the corresponding

germ of hypersurface in C
n, and νf the multiplicity of Vf at 0. The  Lojasiewicz exponent λf of

f at 0 is defined by

λf := inf{λ > 0 ; ∃K > 0, dist(z, Vf )λ ≤ K |f(z)|, ∀z near 0},

where dist(z, Vf ) is the usual distance between z and Vf .

(3) Throughout, homology group means singular homology group with integer coefficients.
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Theorem 3.1 (Risler-Trotman [RT]). The following equality holds: λf = νf .

The idea of the proof is as follows. Without loss of generality, one can assume that the zn–

axis Ozn is not contained in the tangent cone C(Vf ) of Vf at 0, so that f(0, . . . , 0, zn) 6= 0 for

any zn 6= 0 close enough to 0 and the multiplicity of f at 0 coincide with the order of f|Ozn
at 0.

Hence, by the Weierstrass Preparation Theorem, for z near 0, the germ f(z) can be represented

as a product f(z) = g(z) h(z), where g(z) is a germ of holomorphic function which does not

vanish around 0 and where h(z) is of the form

h(z) = z
νf
n + z

νf−1
n f1(z1, . . . , zn−1) + . . . + fνf

(z1, . . . , zn−1),

with, for 1 ≤ i ≤ νf , fi ∈ C{z1, . . . , zn−1}, fi(0) = 0 and the order of fi at 0 is ≥ i. Since

λf = λh and νf = νh, we can assume that f = h. By considering elements z in the zn–axis,

it is easy to see that νf ≤ λf . To show the other inequality, λf ≤ νf , write f(z) = (zn −

a1) . . . (zn−aνf
), where ai := ai(z1, . . . zn−1), 1 ≤ i ≤ νf , are the roots (not necessarily distinct)

of the polynomial zn 7→ f(z1, . . . , zn−1, zn). Then, since the point (z1, . . . , zn−1, ai) ∈ Vf , we

have dist((z1, . . . , zn), Vf ) ≤ |zn − ai|, and by taking the product over all i one gets λf ≤ νf as

desired.

This interpretation of the multiplicity is used by Risler–Trotman in [RT] to show that the

multiplicity is an embedded topological right–left bilipschitz invariant (cf. Section 6).

4. Topological types of isolated singularities

Let f, g: (Cn, 0) → (C, 0) be reduced germs of holomorphic functions and let Vf , Vg be the

corresponding germs of hypersurfaces in C
n.

Definitions 4.1.

(i) One says that f and g are topologically V–equivalent (4) if there is a germ of homeomorphism

ϕ: (Cn, 0) → (Cn, 0) such that ϕ(Vf ) = Vg.

(ii) One says that f and g are topologically right–left equivalent if there are germs of homeo-

morphisms ϕ: (Cn, 0) → (Cn, 0) and φ: (C, 0) → (C, 0) such that f = φ ◦ g ◦ ϕ.

(iii) One says that f and g are topologically right equivalent if there is a germ of homeomorphism

ϕ: (Cn, 0) → (Cn, 0) such that f = g ◦ ϕ.

The topological right equivalence implies the topological right–left equivalence which in

turn implies the topological V–equivalence.

The proof of the Local Conic Structure Lemma of Burghelea–Verona [BV] (cf. (2.1)) shows

that the pairs (S2n−1
ε , S2n−1

ε ∩ Vf ) for any ε small enough are homeomorphic. The topological

type of these pairs is called the link of Vf at 0.

Definition 4.2. One says that f and g are link equivalent if (S2n−1
ε , S2n−1

ε ∩ Vf ) is home-

omorphic to (S2n−1
ε′ , S2n−1

ε′ ∩ Vg) for all ε, ε′ small enough.

(4) One also says topologically equisingular (cf. [Z1]).
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By (2.1), the link equivalence implies the topological V–equivalence.

On the other hand, if f and g are link equivalent, we can always find a germ of homeomor-

phism ϕ: (Cn, 0) → (Cn, 0) such that ϕ(Vf ) = Vg and |ϕ(z)| = |z| for all z near 0 (use the proof

of the Local Conic Structure Lemma of [BV]).

If f and g have an isolated critical point at 0 and if they are topologically right–left equiv-

alent, then g is topologically right equivalent either to f or to f̄ , the conjugate of f , which has

the same multiplicity as f (King [Ki1]) (5), so that, under these hypotheses, there always exists

a germ of homeomorphism ϕ: (Cn, 0) → (Cn, 0) such that ϕ(Vf ) = Vg and |g ◦ϕ(z)| = |f(z)| for

all z near 0. See the discussion in [CMT].

We also have the following result.

Theorem 4.3 (King [Ki1], Perron [P], Saeki [Sae]). Suppose that f and g have an isolated

critical point at 0. Then the following conditions are equivalent:

(i) f and g are topologically right–left equivalent;

(ii) f and g are topologically V–equivalent;

(iii) f and g are link equivalent.

(i) ⇒ (ii) is obvious; (ii) ⇒ (iii) is due to Saeki [Sae]; (iii) ⇔ (i) is due to King [Ki1] for

n 6= 3 and to Perron [P] for n = 3.

Concerning families, King (6) also proved the following theorem.

Theorem 4.4 (King [Ki2]). Let f : (Cn, 0) → (C, 0) be a germ of holomorphic function, with

n 6= 3, and let F : (Cn ×C, {0}×C) → (C, 0), (z, t) 7→ F (z, t) = Ft(z), be a germ of holomorphic

function such that F0 = f . We suppose that f has an isolated critical point at the origin (in

particular f is reduced). If F = (Ft)t is topologically V–constant or µ–constant (in particular

this implies that, for all t near 0, Ft has an isolated critical point at 0 and, consequently, Ft is

reduced), then it is topologically right constant.

We recall that (Ft)t is said to be topologically V–constant (respectively topologically right

constant) if, for all t near 0, Ft is topologically V–equivalent (respectively topologically right

equivalent) to F0 = f ; (Ft)t is said to be µ–constant if, for all t near 0, the Milnor number of Ft

at 0 is equal to the Milnor number of F0 = f at 0.

Remark. Definitions 4.1 and 4.2 make sense only for reduced germs (consider z2
1z2

2 and z1z2).

5. C1 invariance of the multiplicity

In [Ep] and [T1,2,4], Ephraim and Trotman proved (independently) that if two reduced

hypersurface singularities are C1–diffeomorphic (as embedded germs), then they necessarily

have the same multiplicity. This gives a positive answer to Question 0.1 in the special case

(5) If, moreover, n =2 or f has a nondegenerate Newton principal part (cf. Section 10), then f is topologically right equivalent

to f̄ (Nishimura [Ni]; see also [Sae]).
(6) In fact, King proved a more general result (for details, see [Ki2, Corollary 3]).
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where ϕ is a C1–diffeomorphism. This section is about this result.

Let f, g: (Cn, 0) → (C, 0) be reduced germs of holomorphic functions, Vf , Vg the correspond-

ing germs of hypersurfaces in C
n, and νf , νg the multiplicities at 0 of Vf , Vg respectively.

Theorem 5.1 (Ephraim [Ep] and Trotman [T1,2,4]). Suppose there is a germ of C1–diffeo-

morphism ϕ: (Cn, 0) → (Cn, 0) such that ϕ(Vf ) = Vg. Then νf = νg.

The idea of Ephraim’s proof is as follows. By Lemma 1.2, one can suppose that f and g

are irreducible. Choose L, D and B for the germ f as in Section 2, and consider a generator γ

of H1(D − {0}). Thus i∗(γ) ∈ H1(B − Vf ) represents (up to sign) the multiplicity νf , where

i: D − {0} → B − Vf is the inclusion. Assume that ε is small enough so that (2.1) is also true

with g instead of f and choose another open ball B ′ ⊂ C
n, centered at 0, the closure of which

is contained in B
2n
ε and such that ϕ∗: H1(B − Vf ) → H1(B′ − Vg) is an isomorphism (shrink B

if necessary). As above (cf. Section 2), one shows that the homomorphism g∗: H1(B′ − Vg) →

H1(C − {0}) is an isomorphism. Thus g∗(ϕ∗(i∗(γ))) ∈ H1(C − {0}) ' Z represents νf too.

Now, since ϕ is a C1–diffeomorphism, we can write ϕ(z) = A(z) + o(|z|), where A: C
n → C

n

is a real linear isomorphism. One checks easily that A(L) ∩ C(Vg) = {0}. Using this fact, one

can prove that, if D is chosen small enough, then the maps g ◦ ϕ ◦ i and gνg ◦ A|L ◦ j, where

j: D − {0} → L − {0} is the inclusion, are homotopic in C − {0}, so that g
νg

∗ ((A|L)∗(j∗(γ))) =

g∗(ϕ∗(i∗(γ))) ∈ H1(C − {0}) also represents νf (we recall that gνg is the initial polynomial

of g). Since (A|L)∗: H1(L − {0}) → H1(A(L) − {0}) and j∗: H1(D − {0}) → H1(L − {0})

are isomorphisms, (A|L)∗(j∗(γ)) is a generator of H1(A(L) − {0}), and it thus follows from

Lemma 5.2 below (applied to g
νg

∗ : H1(A(L) − {0}) → H1(C − {0})) that νf ≤ νg. Since ϕ−1 is

also a C1–diffeomorphism, by symmetry, νg ≤ νf .

Lemma 5.2 (Ephraim [Ep]). Let P 3 0 be a real linear subspace in C
n with real dimen-

sion 2, and let h be a (complex) homogeneous polynomial of degree k. Suppose that h|P vanishes

only at 0. Then h∗: H1(P−{0}) ' Z → H1(C−{0}) ' Z is the multiplication by k′ with |k′| ≤ k.

Remark (Ephraim [Ep]). The proof of Theorem 5.1 in fact shows that it is enough for ϕ

and ϕ−1 to be homeomorphisms which are differentiable at 0.

In [T1,2,4], Trotman gave another proof of Theorem 5.1. In particular, he uses a different

interpretation of the multiplicity: briefly, if L is a line in C
n such that L ∩ C(Vf ) = {0} (as in

Section 2) then, by [W, Chapter 7, Theorem 7P], the multiplicity νf is equal to the intersection

number at 0 of Vf with L as it is defined by Lefschetz in [Lef, Chapter IV].

6. Topological right–left bilipschitz invariance of the multiplicity

In [RT], Risler–Trotman gave a positive answer to Question 0.1 in the special case where f

and g are topologically right–left equivalent by bilipschitz homeomorphisms. This section con-

cerns this result. The main tool in the proof is Theorem 3.1 connecting multiplicity and

 Lojasiewicz exponent. A generalization due to Comte–Milman–Trotman (cf. [CMT]) of the

Risler–Trotman’s result is also discussed.
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Let f, g: (Cn, 0) → (C, 0) be reduced germs of holomorphic functions, Vf , Vg the correspond-

ing germs of hypersurfaces in C
n, νf , νg the multiplicities at 0 of Vf , Vg respectively, and λf , λg

the  Lojasiewicz exponents at 0 of f, g respectively.

Theorem 6.1 (Risler–Trotman [RT]). Suppose that f and g are topologically right–left

equivalent by bilipschitz homeomorphisms, that is, suppose there are germs of bilipschitz home-

omorphisms ϕ: (Cn, 0) → (Cn, 0) and φ: (C, 0) → (C, 0) such that f = φ ◦ g ◦ ϕ. Then νf = νg.

We recall that a germ of continuous map Φ: (Ck, 0) → (Ck, 0) is said to be lipschitz if

there is a constant K > 0 such that |Φ(z) − Φ(z′)| ≤ K |z − z′| for any z, z′ near 0. A germ of

homeomorphism Φ: (Ck, 0) → (Ck, 0) is said to be bilipschitz if Φ and Φ−1 are lipschitz.

Theorem 6.1 is an immediate corollary of Theorem 3.1 and the following result.

Theorem 6.2 (Risler–Trotman [RT]). Suppose there is a germ of homeomorphism

ϕ: (Cn, 0) → (Cn, 0) sending Vf onto Vg and satisfying the following four conditions:

(i) ∃A > 0 such that |ϕ(z) − ϕ(z′)| ≤ A |z − z′|, ∀z /∈ Vf , ∀z′ ∈ Vf near 0;

(ii) ∃B > 0 such that |ϕ−1(z) − ϕ−1(z′)| ≤ B |z − z′|, ∀z /∈ Vg, ∀z′ ∈ Vg near 0;

(iii) ∃C > 0 such that |g ◦ ϕ(z)/f(z)| ≤ C, ∀z /∈ Vf near 0;

(iv) ∃D > 0 such that |f ◦ ϕ−1(z)/g(z)| ≤ D, ∀z /∈ Vg near 0.

Then λf = λg.

The idea of the proof of Theorem 6.2 is as follows. By (ii), dist(z, Vf ) ≤ B dist(ϕ(z), Vg)

for any z near 0. On the other hand, there exists a constant K > 0 such that dist(ϕ(z), Vg)λg ≤

K |g◦ϕ(z)| for any z near 0. Combined with (iii), these two observations show that dist(z, Vf )λg ≤

BλgKC |f(z)| for any z near 0. The inequality λf ≤ λg follows. By symmetry, Conditions (i)

and (iv) imply λg ≤ λf .

In [CMT], Comte–Milman–Trotman generalized Theorem 6.1 as follows.

Theorem 6.3 (Comte–Milman–Trotman [CMT]). Suppose there is a germ of homeomor-

phism ϕ: (Cn, 0) → (Cn, 0) sending Vf onto Vg and satisfying the following two conditions:

(i) ∃A, B > 0 such that A|z| ≤ |ϕ(z)| ≤ B|z| for all z near 0;

(ii) ∃C, D > 0 such that C|f(z)| ≤ |g ◦ ϕ(z)| ≤ D|f(z)| for all z near 0.

Then νf = νg.

By [W, Chapter 1, Lemma 4E], νf (respectively νg) is the largest number ν such that

|f(z)|/|z|ν (respectively |g(z)|/|z|ν) is bounded near 0. So, by Conditions (i) and (ii),

|f(z)|

|z|νg
≤

1

C

|g(ϕ(z))|

|ϕ(z)|νg
Bνg

is bounded near 0, so that νg ≤ νf . By symmetry, νg = νf .

Remark 1. Conditions (iii) and (iv) of Theorem 6.2 imply Condition (ii) of Theorem 6.3.

Conditions (i) and (ii) of Theorem 6.2 imply: ∃A, B > 0 such that A|z| ≤ |ϕ(z)| ≤ B|z| for all

z near 0, z /∈ Vf , which is almost Condition (i) of Theorem 6.3.
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Remark 2 (Comte–Milman–Trotman [CMT]). If f and g have an isolated critical point at

the origin and if they are topologically V–equivalent, then there always exists a germ of homeo-

morphism ϕ1: (Cn, 0) → (Cn, 0) sending Vf onto Vg and satisfying Condition (i) of Theorem 6.3.

Indeed, under these hypotheses, the germs f and g are link equivalent (cf. Theorem 4.3). There-

fore there exists a germ of homeomorphism ϕ1: (Cn, 0) → (Cn, 0) such that ϕ1(Vf ) = Vg and

|ϕ1(z)| = |z| for all z near 0 (cf. Section 4). This implies Condition (i) of Theorem 6.3.

Also, under these hypotheses, we can always find a germ of homeomorphism ϕ2: (Cn, 0) →

(Cn, 0) sending Vf onto Vg and satisfying Condition (ii) of Theorem 6.3. Indeed, if f and g have

an isolated critical point at 0 and if they are topologically V–equivalent, then g is topologically

right equivalent either to f or to f̄ (cf. Section 4). Hence there exists a germ of homeomorphism

ϕ2 with ϕ2(Vf ) = Vg and |g ◦ ϕ2(z)| = |f(z)| for all z near 0. This implies Condition (ii) of

Theorem 6.3.

But, given two topologically V–equivalent germs f and g with an isolated critical point at 0,

it is still unknown whether there exists a germ of homeomorphism ϕ: (Cn, 0) → (Cn, 0) sending

Vf onto Vg and satisfying both Conditions (i) and (ii) of Theorem 6.3.

7. Plane curve singularities

Let f, g: (C2, 0) → (C, 0) be reduced germs of holomorphic functions, Vf , Vg the correspond-

ing germs of curves in C
2, and νf , νg the multiplicities at 0 of Vf , Vg respectively.

Theorem 7.1 (Zariski [Z2]). If f and g are topologically V–equivalent, then νf = νg.

Since the germs are reduced, they have, at worst, an isolated critical point at 0. So, by

[D1, Proposition (6.39)] (see also Samuel [Sam]), we can assume that f and g are germs of

polynomials. Moreover, by Lemma 1.2, we can assume that these germs of polynomials are

(analytically) irreducible. Now, it is well known (cf. [L3]) that the topological V–type (7) of such

germs is completely characterized by the multiplicity and the Puiseux exponents (equivalently,

by the sequence of Puiseux pairs).

Compare with Teissier [Te2].

Remark. In [A’Ca2], A’Campo gave another proof of Theorem 7.1 by different methods.

See also Karras [Ka]. Precisely, Theorem 7.1 is deduced from Theorem 10.1 below as follows.

By Lemma 1.2, we can assume that f and g are irreducible. Since the projectivized tangent cone

of an irreducible plane curve singularity is a one–point space, the Euler–Poincaré charasteristic

of its complement in CP
1 is equal to 1.

8. Semiquasihomogeneous and quasihomogeneous isolated singularities

We start with some basic definitions.

Definition 8.1. Let w = (w1, . . . , wn) be a weight on the coordinates (z1, . . . , zn) by

(7) One says that two germs of holomorphic functions have the same topological V–type if they are topologically V–equivalent.
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strictly positive integers wi, 1 ≤ i ≤ n. One says that a monomial aα zα = aα zα1

1 . . . zαn
n ,

aα ∈ C, has w–degree d if
∑

i wiαi = d. Let f : (Cn, 0) → (C, 0) be a polynomial. One says

that f is quasihomogeneous (or weighted homogeneous), with respect to the weight w, and has

w–degree d, if it can be written as a C–linear combination of monomials of w–degree d. In other

words, f is quasihomogeneous with weight w and w–degree d if and only if for any λ ∈ C and

any (z1, . . . , zn) ∈ C
n one has:

f(λw1z1, . . . , λ
wnzn) = λdf(z1, . . . , zn).

One says that f is semiquasihomogeneous, with respect to the weight w, and has w–degree d,

if f is of the form f = f ′ + f ′′, where f ′ is a quasihomogeneous polynomial with weight w and

w–degree d having an isolated critical point at the origin, and where f ′′ is a polynomial of w–

order strictly greater than d (one says that a polynomial f ′′ has w–order d′′ if all its monomials

have w–degree greater than or equal to d′′ and at least one of them has (exactly) w–degree d′′).

Of course, one says that f is quasihomogeneous (respectively semiquasihomogeneous) if there

exists a weight w = (w1, . . . , wn) such that f is quasihomogeneous (respectively semiquasiho-

mogeneous) with respect to w. One says that f is homogeneous if it is quasihomogeneous with

respect to the weight w = (1, . . . , 1).

Concerning germs of holomorphic functions with an isolated singularity at 0, we have the

following definition.

Definition 8.2. Let f : (Cn, 0) → (C, 0) be a germ of holomorphic function. We suppose

that f has an isolated critical point at 0. One says that f is quasihomogeneous if it is in the Jaco-

bian ideal of f , that is, f ∈ (∂f/∂z1, . . . , ∂f/∂zn) ⊂ C{z1, . . . , zn}. By a theorem of Saito [Sai]

(see also [D1, Theorem (7.42)]), this is equivalent to say that, after a biholomorphic change of

coordinates, f becomes the germ of a quasihomogeneous polynomial; in other words, f is an-

alytically right equivalent to the germ of a quasihomogeneous polynomial (‘analytically’ means

that the homeomorphism ϕ occuring in Definition 4.1 (iii) is here an analytic isomorphism).

One says that f is semiquasihomogeneous if it is analytically right equivalent to the germ of a

semiquasihomogeneous polynomial.

Remark (Lê–Ramanujam [LR] — see also Greuel–Pfister [GP2]). If f is semiquasihomoge-

neous, then it has an isolated critical point at 0.

The next result due (independently) to Greuel [G] and O’Shea [O’Sh] (see also Trotman

[T3,4]) gives equimultiplicity for any µ–constant deformations of a quasihomogeneous isolated

hypersurface singularity.

Theorem 8.3 (Greuel [G] and O’Shea [O’Sh] — see also Trotman [T3,4]). Let f : (Cn, 0) →

(C, 0) be a (reduced) germ of holomorphic function with an isolated critical point at the origin. (8)

We suppose that f is quasihomogeneous. If F : (Cn × C, {0} × C) → (C, 0), (z, t) 7→ F (z, t) =

Ft(z), is a µ–constant deformation of f , then it is equimultiple, that is, νFt
= νF0

= νf for all

t near 0.

(8) As it is already mentioned in Section 1, notice again that, since n ≥ 2, the hypothesis of having an isolated critical point

at 0 already implies that the germ f is reduced.
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Note that, since f has an isolated singularity at 0, the µ–constancy implies that, for any t

sufficiently close to 0, the germ Ft has also an isolated singularity at 0, and, consequently, it is

automatically reduced.

We recall that a germ F is said to be a deformation of f if F is holomorphic, F0 = f

and, for all t near 0, the germ Ft is reduced. A deformation F is said to be µ–constant if, for

all t near 0, the Milnor number of Ft at 0 is equal to the Milnor number of F0 = f at 0. A

deformation F is called equimultiple if νFt
= νf for all t near 0. As usual νf (respectively νFt

)

is the multiplicity at 0 of Vf = f−1(0) (respectively VFt
= F−1

t (0)).

Since the Milnor number is an invariant of the topological V–type (see Introduction, foot-

note (2)), Theorem 8.3 has the following immediate corollary.

Corollary 8.4. Let f : (Cn, 0) → (C, 0) be a (reduced) germ of holomorphic function with

an isolated critical point at the origin. We suppose that f is quasihomogeneous. If F : (Cn ×

C, {0} × C) → (C, 0), (z, t) 7→ F (z, t) = Ft(z), is a topologically V–constant deformation of f ,

then it is equimultiple.

Note that, since f has an isolated singularity at 0, the topological V–constancy implies that,

for any t sufficiently close to 0, the germ Ft has an isolated singularity at 0 too.

We recall that a deformation F is said to be topologically V–constant if, for each t near 0,

the germ Ft is topologically V–equivalent to the germ F0 = f .

Remark. By Lê–Ramanujam’s theorem [LR], a µ–constant deformation of an isolated hy-

persurface singularity in C
n is topologically V–constant, provided n 6= 3. Hence, if n 6= 3,

Corollary 8.4 is equivalent to Theorem 8.3.

The idea of O’Shea’s proof of Theorem 8.3 is as follows. By the theorem of Saito [Sai]

mentioned in Definition 8.2, we can assume that the germ f is the germ of a polynomial. By

hypothesis, there is a weight w = (w1, . . . , wn) such that f is quasihomogeneous with respect

to w. Let d be the w–degree of f . By the theory of semiuniversal unfoldings and by a theorem

of Varchenko [V], we can assume that the deformation F is of the form

F (z, t) = f(z) +
l

∑

j=1

θj(t) gj(z),

where θj : (C, 0) → (C, 0) and gj : (Cn, 0) → (C, 0) are germs of holomorphic functions such that,

for each j, θj 6≡ 0 and all the monomials of gj have w–degree greater than or equal to d.

For each 1 ≤ i ≤ n, let ki be the least integer such that (up to coefficient) the monomial

zαi

i zki
appears in the expansion f =

∑

α aα zα (ki = i is allowed). Such an integer ki exists since

otherwise every point in the zi–axis would be a critical point (cf. [Ar]). By renumbering, we can

assume α1 ≤ . . . ≤ αn. Let zβ1

1 . . . zβn
n be a monomial of Ft(z) and let d + d′ be its w–degree,

d′ ≥ 0. To prove the theorem, it suffices to show that
∑

i βi ≥ α1 + 1. Indeed, if this inequality

holds, then νf = νFt
= α1 + 1 for all t near 0.

Write αi = α1 + γi, γi ≥ 0 (1 ≤ i ≤ n). Since zαi

i zki
has w–degree d, wiαi + wki

= d, that

is, wi(α1 + γi) + wki
= d, and thus (multiplying by βi) βiwi(α1 + γi) + βiwki

= βid. By taking
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the sum over all i, one gets:

d(α1 −
∑

i

βi) + α1d
′ +

∑

i

βiwiγi +
∑

i

βiwki
= 0.

Since the term
∑

i βiwki
is > 0 while both the terms

∑

i βiwiγi and α1d
′ are ≥ 0, the above

equation can hold only if
∑

i βi > α1.

Greuel also uses the theory of semiuniversal unfoldings and Varchenko’s theorem, but oth-

erwise his argument is different. In particular, a key point of his proof is the following result

which is interesting itself.

Theorem 8.5 (Greuel [G] and Trotman [T3,4]). Let f : (Cn, 0) → (C, 0) be a (reduced) germ

of holomorphic function with an isolated critical point at the origin and let F : (Cn×C, {0}×C) →

(C, 0), (z, t) 7→ F (z, t) = Ft(z), be a µ–constant deformation of f . If F is of the form

F (z, t) = f(z) + θ(t) g(z),

where θ: (C, 0) → (C, 0) and g: (Cn, 0) → (C, 0) are germs of holomorphic functions such that

θ 6≡ 0, then νg ≥ νf ; in particular, (Ft)t is equimultiple.

More generally, for any µ–constant deformation (Ft)t of an isolated singularity f , the family

(F νF

t )t is equimultiple, where F νF

t (z) := F νF (z, t) = the initial polynomial in z and t of F (z, t)

(cf. [G], [T3,4]). One must not confuse F νF (z, t) with the initial polynomial in z of F (z, t). The

proof is based on the valuation test for µ–constant deformations of Lê–Saito [LS] and Teissier

[Te1]. Notice that there exist µ–constant families which are not of the form f(z) + θ(t) g(z)

(consider the following example by Arnol’d: z3
1 +z3

2 +z3
3 +z3

4 +(az1+bz2+cz3+dz4)3+ez1z2z3z4).

Remark (Greuel [G] — see also Trotman [T3,4]). In Theorem 8.3 (or Corollary 8.4), we can

replace the word ‘quasihomogeneous’ by ‘semiquasihomogeneous’.

In [La], Laufer explained Theorem 8.3 from a different viewpoint in the special case of

surface singularities in C
3.

Concerning surface singularities, Xu–Yau proved in [Y1] and [XY], the following result for

pairs (f, g).

Theorem 8.6 (Xu–Yau [Y1] and [XY]). Let f, g: (C3, 0) → (C, 0) be (reduced) germs of

holomorphic functions, Vf , Vg the corresponding germs of surfaces in C
3, and νf , νg the multi-

plicities at 0 of Vf , Vg respectively. We assume that f and g have an isolated critical point at 0

and that they are quasihomogeneous. If f and g are topologically V–equivalent, then νf = νg.

The fact here is that the topolocical V–types of isolated quasihomogeneous surface singu-

larities in C
3 are well known.

We conclude this section with the following result by Greuel–Pfister [GP1].

Theorem 8.7 (Greuel–Pfister [GP1]). Consider the germ of holomorphic function F : (Cn×

C, {0} × C) → (C, 0), (z1, . . . , zn, t) 7→ F (z1, . . . , zn, t) = Ft(z1, . . . , zn), given by

Ft(z1, . . . , zn) = Gt(z1, . . . , zn−1) + z2
n Ht(z1, . . . , zn),
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where G: (Cn−1×C, {0}×C) → (C, 0), (z1, . . . , zn−1, t) 7→ G(z1, . . . , zn−1, t) = Gt(z1, . . . , zn−1),

and H : (Cn×C, {0}×C) → (C, 0), (z1, . . . , zn, t) 7→ H(z1, . . . , zn, t) = Ht(z1, . . . , zn), are germs

of holomorphic functions, with n ≥ 3. Suppose that, for all t near 0, the germ Gt is reduced

and the germ Ft has an isolated critical point at 0 (in particular Ft is reduced and Gt has an

isolated critical point at 0). Also, assume that G0 is semiquasihomogeneous or that n = 3.

Finally, suppose that F = (Ft)t is topologically V–constant. Then G = (Gt)t is equimultiple. In

particular, if, moreover, for all t near 0, the multiplicity at 0 of the germ Gt is less than or equal

to the order at 0 of the (nonreduced) germ (z1, . . . , zn) 7→ z2
n Ht(z1, . . . , zn), then F = (Ft)t is

equimultiple.

Theorem 8.7 is a corollary of Theorems 8.3 and 7.1 combined with Lemma 8.8 below.

Indeed, by applying Lemma 8.8 to the family (Ft)t, with L = {(z1, . . . , zn) ∈ C
n ; zn = 0},

one gets that (Gt)t is µ–constant. Now apply Theorem 8.3 or 7.1 according to the case under

consideration.

Lemma 8.8 (Greuel–Pfister [GP1]). Let F : (Cn × C, {0} × C) → (C, 0), (z1, . . . , zn, t) 7→

F (z1, . . . , zn, t) = Ft(z1, . . . , zn) be a germ of holomorphic function such that, for all t near 0,

the germ Ft has an isolated critical point at 0. Let L ' C
n−1 be a hyperplane in C

n passing

through the origin such that, for all t near 0, the germ Ft|L has an isolated critical point at 0

and such that the polar curve of (Ft|L)t is equal to the intersection of L×C with the polar curve

of (Ft)t. Then, if (Ft)t is µ–constant, so is (Ft|L)t.

We recall that the polar curve of a familly F = (Ft)t of isolated hypersurface singularities

is the curve singularity in C
n ×C defined by the ideal (∂F/∂z1, . . . , ∂F/∂zn) ⊂ C{z1, . . . , zn, t}.

The proof of the lemma is based again on the valuation test for µ–constant deformations

of Lê–Saito [LS] and Teissier [Te1].

9. Convenient Newton nondegenerate (isolated) singularities

Let f : (Cn, 0) → (C, 0) be a germ of holomorphic function defined by a convergent power

series
∑

α aα zα, where α = (α1, . . . , αn) ∈ N
n, aα ∈ C, and zα = zα1

1 . . . zαn
n . The Newton

polyhedron Γ+(f ; z) of f at 0 with respect to the coordinates z = (z1, . . . , zn) is the convex hull

in R
n
+ of the set

⋃

aα 6=0

(α + R
n
+),

where R
n
+ = {(x1, . . . , xn) ∈ R

n ; xi ≥ 0 for 1 ≤ i ≤ n}. The Newton boundary Γ(f ; z) of f

at 0 (with respect to z) is the union of the compact faces of the boundary of Γ+(f ; z). The

polynomial
∑

α∈Γ(f ;z) aα zα is called the Newton principal part of f at 0 (with respect to z).

For a face ∆ of Γ(f ; z), one defines the face function f∆ by f∆(z) :=
∑

α∈∆ aα zα. One says

that f is nondegenerate on ∆ if the equations

∂f∆

∂z1
(z) = . . . =

∂f∆

∂zn
(z) = 0

have no common solution on z1 . . . zn 6= 0. When f is nondegenerate on every face ∆ of Γ(f ; z),

one says that f has a nondegenerate Newton principal part (with respect to z). One says that
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f is convenient (with respect to z) if the intersection of Γ(f ; z) with each coordinate axis is

nonempty, that is, if, for 1 ≤ i ≤ n, the monomial zαi

i , αi ≥ 1, appears in the expression
∑

α aα zα with a non–zero coefficient.

For more details about this theory, we refer to Kouchnirenko [Ko] and Oka [O1,2].

Remark (Oka [O2] and Greuel–Pfister [GP2]). If f is convenient and has a nondegenerate

Newton principal part, then f has at most an isolated singularity at 0.

The following result by Abderrahmane [Ab] and Saia–Tomazella [ST] gives equimultiplicity

for any µ–constant deformation within a family of convenient Newton nondegenerate isolated

singularities.

Theorem 9.1 (Abderrahmane [Ab] and Saia–Tomazella [ST]). Suppose that f has an iso-

lated critical point at 0 (in particular f is reduced) and that it is convenient (with respect to

the coordinates z). If F : (Cn × C, {0} × C) → (C, 0), (z, t) 7→ F (z, t) = Ft(z), is a µ–constant

deformation of f such that, for all t near 0, the germ Ft has a nondegenerate Newton principal

part (with respect to z), then F = (Ft)t is equimultiple.

Remark. As above, since the Milnor number is an invariant of the topological V–type, one

can replace ‘µ–constant’ by ‘topologically V–constant’.

The idea of Abderrahmane’s proof is as follows. By the theory of semiuniversal unfoldings,

we can assume that the deformation F is of the form

F (z, t) = f(z) +

l
∑

j=1

θj(t) gj(z),

where θj : (C, 0) → (C, 0) and gj : (Cn, 0) → (C, 0) are germs of holomorphic functions, θj 6≡ 0.

For all t 6= 0 close enough to 0, the germs Ft have the same Newton boundary Γ(Ft; z). On the

other hand, since f is convenient, so is Ft. Let αi = (αi
1, . . . , α

i
n) ∈ Z

n, 1 ≤ i ≤ k, be the vertices

of Γ(Ft; z), t 6= 0. Consider the germ of holomorphic function G: (Cn ×C×C
k, {0}×C×C

k) →

(C, 0) defined by

G(z, t, s) = Gt,s(z) = F (z, t) +

k
∑

i=1

si z
αi

1

1 . . . z
αi

n
n .

Fix t0 sufficiently close to 0. We are going to see that the family (Gt0,s)s is µ–constant.

First, note that it follows from the upper semicontinuity of the Milnor number that µf ≥ µGt,s

for all t, s near 0, where µf and µGt,s
are the Milnor numbers at 0 of f and Gt,s respectively. In

particular, Gt,s has an isolated singularity at 0. On the other hand, since Ft0 is convenient and

has an isolated singularity at 0, by a theorem of Kouchnirenko [Ko], µFt0
≥ ηFt0

, where µFt0
is

the Milnor number of Ft0 at 0 and ηFt0
is the Newton number of Ft0 at 0 (9). In fact, since Ft0 has

(9) The Newton number ηFt0
of the convenient germ Ft0

at 0 is defined by ηFt0
=
∑

n

i=0
(−1)n−i i!Vi, where V0=1, Vn

is the n–dimensional volume of the compact polyhedron Γ−(Ft0
;z) which is the cone over Γ(Ft0

;z) with the origin as vertex,

and where, for 1≤ i≤n−1, Vi is the sum of the i–dimensional volumes of the intersections of Γ−(Ft0
;z) with the coordinates

planes of dimension i.
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a nondegenerate Newton principal part, one has µFt0
= ηFt0

(cf. [Ko]). Since (Ft)t is µ–constant,

one deduces ηFt0
= µf . Since, for all s close enough to 0, the germ Gt0,s is convenient and has an

isolated singularity at 0, the theorem of Kouchnirenko also implies µGt0,s
≥ ηGt0,s

. On the other

hand, if t0 6= 0, then Γ+(Gt0,s; z) = Γ+(Ft0 ; z) for all s near 0. Therefore, by a theorem of Furuya

(cf. [F]), ηGt0,s
= ηFt0

= µf for all s near 0. In other words, if t0 6= 0, then (Gt0,s)s is µ–constant.

Concerning (G0,s)s, since both Gt0,s and G0,s are convenient and Γ+(G0,s; z) ⊂ Γ+(Gt0,s; z) for

all s sufficiently close to 0, the theorem of Furuya says ηG0,s
≥ ηGt0,s

. All together we have

µf ≥ ηG0,s
≥ ηGt0,s

= µf , that is, (G0,s)s is µ–constant too.

Now, from the µ–constancy of (G0,s)s and the Massey’s multiparameter version of the

Lê–Saito–Teissier’s valuation test for µ–constancy (cf. [M2, Theorem 6.8]), one gets:

k
∑

i=1

|zαi

| <<
n

∑

j=1

∣

∣

∣

∂f

∂zj
(z) +

k
∑

i=1

siα
i
jz

αi
j−1

j z
αi

1

1 . . . z
αi

j−1

j−1 z
αi

j+1

j+1 . . . z
αi

n
n

∣

∣

∣

as (z, s) → (0, 0). Putting s = 0 in this relation gives, in particular,

|zαi

| <<

n
∑

j=1

∣

∣

∣

∂f

∂zj
(z)

∣

∣

∣

for each vertex αi (1 ≤ i ≤ k). Therefore the multiplicity at 0 of z 7→ zαi

is greater than or

equal to νf . One deduces νFt
= νf for any t sufficiently close to 0.

10. Aligned singularities

The notion of aligned singularities was introduced by Massey in [M2]. Aligned singularities

generalize isolated singularities and smooth one–dimensional singularities (in particular, line

singularities). Let us recall the definition.

Let f : (Cn, 0) → (C, 0) be a germ of holomorphic function. A good stratification for f at 0

is an analytic stratification of the germ Vf such that the smooth part of Vf is a stratum and

so that the stratification satisfies Thom’s af condition with respect to the complement of Vf ,

that is, if (pk)k is a sequence of points in the complement of Vf such that pk → p ∈ S, where

S is a stratum, and the tangent space Tpk
Vf−f(pk) → T , then TpS ⊂ T . Notice that good

stratifications always exist (cf. Hamm-Lê [HL]). An aligned good stratification for f at 0 is a

good stratification for f at 0 in which the closure of each stratum of the singular set of f is

smooth. If such an aligned good stratification exists, and if the dimension (at 0) of the singular

locus of f is s, one says that f has an s–dimensional aligned singularity at 0. If S is an aligned

good stratification for f at 0, one says that a linear choice of coordinates z = (z1, . . . , zn) is an

aligning set of coordinates for S if, for each 1 ≤ i ≤ n − 1, the (n − i)-plane in C
n defined by

z1 = . . . = zi = 0 intersects transversely the closure of each stratum of S of dimension ≥ i at the

origin. One says that a set of coordinates z = (z1, . . . , zn) is aligning for f at 0 if there exists

an aligned good stratification for f at 0 with respect to which z is aligning. Notice that, given

an aligned singularity, aligning sets of coordinates are generic (in the inductive pseudo–Zariski

topology).
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Regarding this class of singularities, Massey proved the following reduction theorem.

Theorem 10.1 (Massey [M2]). The following are equivalent:

(i) for all n ≥ 4, the answer to Question 0.2 is positive for every family (Ft)t of (reduced)

analytic hypersurfaces with isolated singularities (i.e., for all t near 0, Ft has an isolated

singularity at 0);

(ii) for all n ≥ 4, there exists an integer s such that the answer to Question 0.2 is positive for

every family (Ft)t of reduced analytic hypersurfaces with s–dimensional aligned singularities

(i.e., for all t near 0, Ft has an s–dimensional aligned singularity at 0);

(iii) for all n ≥ 4, for all integer s, the answer to Question 0.2 is positive for every family (Ft)t

of reduced analytic hypersurfaces with s–dimensional aligned singularities.

In the special case of smooth one–dimensional singularities (in particular line singularities),

the result already appears in [M1].

The idea of the proof is as follows.

(iii) ⇒ (ii) is obvious.

(ii) ⇒ (i) is not difficult. Suppose (ii) is true for some integer s ≥ 1 and consider a topologi-

cally V–constant family (Ft)t such that each Ft: (Cn, 0) → (C, 0) has an isolated singularity at 0.

Then the family (F̃t)t, defined by F̃t(z1, . . . , zn, zn+1, . . . , zn+s) = Ft(z1, . . . , zn), is topologically

V–constant and such that each F̃t has an s–dimensional aligned singularity at 0. By hypothesis,

it is thus equimultiple. But of course νFt
= νF̃t

.

To see (i) ⇒ (iii), proceed as follows. Suppose (i) is true and consider a topologically

V–constant family (Ft)t such that each Ft: (Cn, 0) → (C, 0) has an s–dimensional aligned sin-

gularity at 0, for some integer s. Let (tk)k ∈N be an infinite sequence of points in C tending

to 0. Let z = (z1, . . . , zn) be an aligning set of coordinates, at 0, for F0 and for Ftk
, for all

k ∈ N (such a coordinates system always exists by the Baire Category Theorem). Then, since

(Ft)t is a topologically V–constant family of aligned singularities, the Lê numbers (cf. [M2, Def-

inition 1.11]) λi
F0,z (0 ≤ i ≤ n − 1) of F0 at 0 with respect to z are equal to the Lê numbers

λi
Ftk

,z of Ftk
at 0 with respect to z, for all k large enough (cf. [M2, Corollary 7.8]). Hence, by

an inductive application of the Massey’s generalized Iomdine–Lê formula (cf. [M2, Theorem 4.5

and Corollary 4.6]), for all integers j1, . . . , js such that 0 << j1 << j2 << . . . << js, the germs

F0 +zj1
1 + . . .+zjs

s and Ftk
+zj1

1 + . . .+zjs
s have an isolated singularity at 0 and the same Milnor

number at 0, provided k is large enough(10). In particular, by the upper semicontinuity of the

Milnor number, this implies that, for all t sufficiently close to 0, the germ Ft + zj1
1 + . . . + zjs

s

has an isolated singularity at 0 and the same Milnor number at 0 as F0 + zj1
1 + . . . + zjs

s . By

Lê–Ramanujam’s theorem [LR], since n 6= 3, this implies that the family (Ft + zj1
1 + . . . + zjs

s )t

is topologically V–constant. By hypothesis it is thus equimultiple. As the ji’s are arbitrarily

large, (Ft)t is equimultiple too.

The next result by the author [Ey] extends Greuel–Pfister’s Theorem 8.7 (concerning isolated

singularities) to aligned singularities. In addition, the result also answers Zariski’s Question 0.2

(10) According to [M2], if we are using the coordinates (z1,...,zn) for the germ Ft, we use the rotated coordinates

z̃=(zs+1,zs+2,...,zn,z1,...,zs) for the germ Ft+z
j1
1

+...+zjs
s .
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for two other cases.

Theorem 10.2 (Eyral [Ey]). Consider the germ of holomorphic function F : (Cn ×C, {0}×

C) → (C, 0), (z1, . . . , zn, t) 7→ F (z1, . . . , zn, t) = Ft(z1, . . . , zn), given by

Ft(z1, . . . , zn) = Gt(z1, . . . , zn−1) + z2
n Ht(z1, . . . , zn),

where G: (Cn−1×C, {0}×C) → (C, 0), (z1, . . . , zn−1, t) 7→ G(z1, . . . , zn−1, t) = Gt(z1, . . . , zn−1),

and H : (Cn×C, {0}×C) → (C, 0), (z1, . . . , zn, t) 7→ H(z1, . . . , zn, t) = Ht(z1, . . . , zn), are germs

of holomorphic functions, with n ≥ 3. Assume that, for all t near 0, the germs Ft and Gt

are reduced and Ft has an s–dimensional aligned singularity at 0. Also suppose that (Ft)t is

topologically V–constant. Let (tk)k be an infinite sequence of points in C tending to 0. Assume

that the coordinates z = (z1, . . . , zn), or some circular permutation of them, form an aligning

set of coordinates at 0 for F0 and for Ftk
, for all k ∈ N. Finally suppose that at least one of the

following four conditions is satisfied:

(i) for all t near 0, the germ Gt is convenient and has a nondegenerate Newton principal part

with respect to the coordinates z′ = (z1, . . . , zn−1);

(ii) for all t near 0, the germ Gt is of the form Gt(z
′) = α(z′)+θ(t) β(z′), where α, β: (Cn−1, 0) →

(C, 0) and θ: (C, 0) → (C, 0), θ 6≡ 0, are germs of holomorphic functions;

(iii) G0 is the germ of a semiquasihomogeneous polynomial with respect to z′;

(iv) n = 3.

Then (Gt)t is equimultiple. In particular, if, moreover, for all t near 0, the multiplicity at 0

of the germ Gt is less than or equal to the order at 0 of the (nonreduced) germ (z1, . . . , zn) 7→

z2
n Ht(z1, . . . , zn), then (Ft)t is equimultiple.

The proof of Theorem 10.2 is a combination of Massey’s proof of Theorem 10.1 and Greuel–

Pfister’s proof of Theorem 8.7, together combined with the results of Abderrahmane and Saia–

Tomazella (Theorem 9.1) in case (i), Greuel and Trotman (Theorem 8.5) in case (ii), Greuel

and O’Shea (Theorem 8.3) in case (iii), and Zariski (Theorem 7.1) in case (iv). Indeed, let ζ =

(ζ1, . . . , ζn) be a circular permutation of the coordinates z = (z1, . . . , zn). We use the notation

ζp := zn for the ‘special’ coordinate zn. Suppose that ζ is aligning for F0 and for Ftk
at 0, all k.

Then, as in the proof of Theorem 10.1, since (Ft)t is a topologically V–constant family of aligned

singularities, one shows that, for all integers j1, . . . , js such that 0 << j1 << j2 << . . . << js, the

family (Ft + ζj1
1 + . . . + ζjs

s )t is a µ–constant family of isolated singularities(11). This implies,

in particular, that Gt + ζj1
1 + . . . + ζjs

s , where, if 1 ≤ p ≤ s, the term ζ
jp
p is omitted, has an

isolated singularity at 0(12) for all small t. Hence, as in the proof of Theorem 8.7, by applying

Lemma 8.8 to the family (Ft + ζj1
1 + . . . + ζjs

s )t, with the hyperplane L in C
n defined by ζp = 0,

one gets that (Gt + ζj1
1 + . . . + ζjs

s )t, where, again, if 1 ≤ p ≤ s, the term ζ
jp
p is omitted, is also

a µ–constant family of isolated singularities. Since the ji’s can be chosen arbitrarily large, we

conclude with Theorems 9.1, 8.5, 8.3 and 7.1 according to the case under consideration.

(11) Since we are using the coordinates ζ=(ζ1,...,ζn) for the germ Ft, we use the coordinates ζ̃=(ζs+1,ζs+2,...,ζn,ζ1,...,ζs)

for the germ Ft+ζ
j1
1

+...+ζjs
s .

(12) For Gt, we use the coordinates ζ′=(ζ1,...,ζn), where ζp is omitted; for Gt+ζ
j1
1

+...+ζjs
s , where, if 1≤p≤s, the term

ζ
jp
p is omitted, we use the coordinates ζ̃′=(ζs+1,ζs+2,...,ζn,ζ1,...,ζs), where ζp is omitted.
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In the special case where s = 0 (i.e., for isolated singularities), Parts (iii) and (iv) of

Theorem 10.2 reduce to Greuel–Pfister’s Theorem 8.7 (at least when G0 is a polynomial and

modulo the hypothesis for the coordinates z, or some circular permutation of them, of being

aligning).

Theorem 10.2 answers positively Zariski’s Question 0.2 for special classes of high–dimen-

sional singularities without any assumption on the topological constancy, that is, without any

hypothesis of the type ‘embedded C1 differentiability’ (as in Theorem 5.1) or ‘embedded right–

left bilipschitz property’ (as in Theorem 6.1) for example.

Remark. If one replaces the word semiquasihomogeneous by quasihomogeneous in Theo-

rem 10.2 Part (iii), the argument above does not work. Indeed, in this case, G0 + ζj1
1 + . . . + ζjs

s

(ζ
jp
p is omitted) is neither quasihomogeneous with an isolated singularity nor semiquasihomoge-

neous, so that we cannot apply Theorem 8.3 of Greuel and O’Shea (we recall that a quasihomo-

geneous polynomial is not semiquasihomogeneous if it has a nonisolated critical point at 0). By

contrast, one can replace semiquasihomogeneous by quasihomogeneous in Theorem 8.7. Indeed,

as it is mentioned in this theorem, the hypothesis for the Ft’s of having an isolated critical point

at 0 automatically implies a similar property for the Gt’s and, consequently, if G0 is quasiho-

mogeneous, then it is necessarily semiquasihomogeneous too. This shows that Theorem 10.2 is

not an immediate consequence of Theorems 10.1 and 8.7. Note that we can replace semiquasi-

homogeneous by quasihomogeneous with an isolated singularity in Theorem 10.2 Part (iii).

Example (cf. [Ey]). One checks easily that Theorem 10.2 applies to the case Gt(z1, z2) =

z2
1+z2

2+(1−t) z3
1 and Ht(z1, z2, z3) = t z2

2 , so that Ft(z1, z2, z3) = z2
1+z2

2+(1−t) z3
1+z2

3 t z2
2 . Note

this example also shows that the special classes of high–dimensional singularities we consider in

Theorem 10.2 are not empty.

11. Further results

The following result is a corollary of A’Campo’s work [A’Ca2].

Theorem 11.1 (A’Campo [A’Ca2], Lê–Teissier [LT], Karras [Ka]). Let f, g: (Cn, 0) →

(C, 0) be (reduced) germs of holomorphic functions with an isolated critical point at 0, let Vf , Vg

be the corresponding germs of hypersurfaces in C
n and let C(Vf ), C(Vg) be the tangent cones at

0 of Vf and Vg respectively. Let PC(Vf ), PC(Vg) ⊂ CP
n−1 be the projectivized tangent cones

at 0 of Vf and Vg respectively ( PC(Vf ) (respectively PC(Vg)) is the hypersurface in the complex

projective space CP
n−1 over which C(Vf ) (respectively C(Vg)) is a cone). Finally, let νf and νg

be the multiplicities at 0 of f and g respectively. If f and g are topologically V–equivalent and

if the Euler–Poincaré characteristics of CP
n−1 − PC(Vf ) and CP

n−1 − PC(Vg) are non–zero,

then νf = νg.

It follows from the work by A’Campo [A’Ca2] that if the Euler–Poincaré characteristic of

CP
n−1 − PC(Vf ) is non–zero then

νf = inf{m ∈ N ; Λ(hm) 6= 0},

where hm is the m-th power of the local monodromy h of Vf at 0 and Λ(hm) is the Lefschetz
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number of hm. Since the Lefschetz numbers Λ(hm) are invariants of the topological V–type of

the singularity, one gets Theorem 11.1.

Remark (cf. [Ka]). In general, it is even not known whether the Euler–Poincaré characteristic

of CP
n−1 − PC(Vf ) is an invariant of the topological V–type.

Another corollary of A’Campo’s work [A’Ca2] is the following result by Navarro Aznard [Na1,2]

concerning multiplicity two surface singularities in C
3.

Theorem 11.2 (Navarro Aznar [Na1,2]). Let f, g: (C3, 0) → (C, 0) be reduced germs of

holomorphic functions and let νf and νg be the multiplicities at the origin of f and g respectively.

We suppose that f and g are topologically V–equivalent. If νf = 2, so is νg.

Combining [A’Ca1, Théorème 3] with [L1, Proposition], one also gets the following result

about nonsingular germs (cf. [Ep] and [GL1,2]).

Theorem 11.3 (A’Campo [A’Ca1] and Lê [L1]). Let f, g: (Cn, 0) → (C, 0) be reduced

germs of holomorphic functions and let νf and νg be the multiplicities at the origin of f and g

respectively. We suppose that f and g are topologically V–equivalent. If νf = 1, so is νg.

In other words, if a reduced germ of holomorphic function is topologically V–equivalent to

a regular (reduced) germ, then it is itself regular.

In [MN], Mendris–Némethi studied isolated surface singularities in C
3 of type f̃(z1, z2, z3) =

f(z1, z2) + zk
3 , where f is an irreducible plane curve singularity. In particular, they answer

positively Zariski’s question for such germs. Here is the precise statement of their result.

Theorem 11.4 (Mendris–Némethi [MN]). Let f : (C2, 0) → (C, 0) be an irreducible germ of

holomorphic function and let f̃ : (C3, 0) → (C, 0) be a suspension of f in C
3, that is, f̃(z1, z2, z3) =

f(z1, z2) + zk
3 for some integer k ≥ 2 (this implies that f̃ has, at most, an isolated singularity

at 0 and, consequently, it is reduced). If g: (C3, 0) → (C, 0) is a reduced germ of holomorphic

function topologically V–equivalent to f̃ , then νg = νf̃ .

Concerning isolated surface singularities in C
3, Yau [Y2] proved the following result.

Theorem 11.5 (Yau [Y2]). Let f, g: (C3, 0) → (C, 0) be (reduced) germs of holomorphic

functions with an isolated critical point at the origin, Vf , Vg the corresponding germs of surfaces

in C
3, and νf , νg the multiplicities at 0 of Vf , Vg respectively. We suppose that f and g are

topologically V–equivalent. If the arithmetic genus of Vf at 0 (cf. [Wa] or [Y2]) is less than or

equal to 2, then νf = νg.

Notice that the arithmetic genus of a two–dimensional isolated hypersurface singularity is

an invariant of the topological V–type (cf. [Y2]).

12. Multiplicity on high–codimensional analytic sets

Let X be a germ (at the origin) of (pure) d–dimensional closed (complex) analytic subset
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in C
n. The multiplicity of X at 0, denoted by νX , is the number of points of intersection, near 0,

of X with a generic (n− d)–dimensional affine subspace in C
n passing arbitrarily close to 0 but

not through 0.

Already in [Z1] Zariski observed that if X and Y are germs of closed analytic subsets in C
n

of codimension > 1 and ϕ: (Cn, 0) → (Cn, 0) is a germ of homeomorphism sending X onto Y ,

then the multiplicities νX and νY are not necessarily the same. Indeed, one can show easily that,

given two germs of irreducible curves C, C ′ in C
3, there always exists a germ of homeomorphism

ϕ: (C3, 0) → (C3, 0) sending C onto C ′ (cf. [Z1], [Te3], [GL1,2]). Nevertheless, in [GL1,2], Gau–

Lipman proved the following differential type result which generalizes the theorem by Ephraim

and Trotman (cf. Theorem 5.1).

Theorem 12.1 (Gau–Lipman [GL1,2]). Let X and Y be germs of closed analytic subsets

in C
n. Suppose there is a germ of homeomorphism ϕ: (Cn, 0) → (Cn, 0), sending X onto Y ,

such that both ϕ and ϕ−1 are differentiable at 0. Then νX = νY .

We also have the following non–differential type result due to Comte concerning bilipschitz

homeomorphisms.

Theorem 12.2 (Comte [C]). Let X and Y be germs of d–dimensional closed analytic subsets

in C
n. Suppose there is a germ of homeomorphism ϕ: (Cn, 0) → (Cn, 0), sending X onto Y ,

such that both ϕ and ϕ−1 are lipschitz maps with lipschitz constants A and B, respectively,

satisfying

(1 ≤) AB ≤
(

1 +
1

sup(νX , νY )

)1/2d

.

Then νX = νY .

We recall that the lipschitz constant K of a lipschitz germ Φ: (Ck, 0) → (Ck, 0) is given by

K = sup{|Φ(z) − Φ(z′)|/|z − z′| ; z 6= z′ near 0}.

In fact, Comte proved a more general result. He does not assume that ϕ is defined on a

neighbourhood of 0 in the ambient space C
n but only in a neighbourhood of 0 in X. Comte also

proved a related result about ‘small bilipschitz isotopies’ (for details see [C]).

We conclude with the following result by Hironaka [H].

Theorem 12.3 (Hironaka [H]). Let X be a germ of closed analytic subset in C
n and let S

be a Whitney stratification of X. Then X is equimultiple along every stratum of S. In particular

(cf. [RT]), if F : (Cn × C, {0} × C) → (C, 0), (z, t) 7→ F (z, t) = Ft(z), is a deformation of a

reduced holomorphic germ f : (Cn, 0) → (C, 0) such that F−1(0) can be endowed with a Whitney

stratification having {0} × C as a stratum, then (Ft)t is equimultiple.

Notice that there exist µ–constant families F = (Ft)t of isolated hypersurface singularities

for which F−1(0) cannot be endowed with a Whitney stratification having {0}×C as a stratum

(cf. Briançon–Speder [BS]).

Acknowledgements. I would like to express my gratitude to D. Chéniot and D. Trotman for

reading the manuscript and making valuable comments.
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[HL] H.A. Hamm and Lê D.T., “Un théorème de Zariski du type de Lefschetz”, Ann. Sci. École
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(1956) 1–6.
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