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This appendix is about (essential) uniqueness of the Iwasawa (or horospherical) decomposition G =
KANof a semisimple Lie group G. This means:

Theorem 0.1. Assume that G is a connected Lie group with simple Lie algebra g. Assume that G = KL
for some closed subgroups K, L < G with K ∩ L discrete. Then up to order, the Lie algebra k of K is
maximally compact, and the Lie algebra l of L is isomorphic to a + n, the Lie algebra of AN .

1. General facts on decompositions of Lie groups

For a group G, a subgroup H < G and an element g ∈ G we define Hg = gHg−1.

Lemma 1.1. Let G be a group and H, L < G subgroups. Then the following statements are equivalent:

(i) G = HL and H ∩ L = {1}.
(ii) G = HLg and H ∩ Lg = {1} for all g ∈ G.

Proof. Clearly, we only have to show that (ii) ⇒ (i). Suppose that G = HL with H ∩ L = {1}. Then
we can write g ∈ G as g = hl for some h ∈ H and l ∈ L. Observe that Lg = Lh and so

H ∩ Lg = H ∩ Lh = Hh ∩ Lh = (H ∩ L)h = {1} .

Moreover we record
HLg = HLh = HLh = Gh = G .

�

In the sequel, capital Latin letters will denote real Lie groups and the corresponding lower case fractur
letters will denote the associated Lie algebra, i.e. G is a Lie group with Lie algebra g.

Lemma 1.2. Let G be a Lie group and H, L < G closed subgroups. Then the following statements are
equivalent:

(i) G = HL with H ∩ L = {1}.
(ii) The multiplication map

H × L → G, (h, l) 7→ hl

is an analytic diffeomorphism.

Proof. Standard structure theory. �

If G is a Lie group with closed subgroups H, L < G such that G = HL with H ∩ L = {1}, then we
refer to (G, H, L) as a decomposition triple.

Lemma 1.3. Let (G, H, L) be a decomposition triple. Then:

(1.1) (∀g ∈ G) g = h + Ad(g)l and h ∩ Ad(g)l = {0} .
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Proof. In view of Lemma 1.2, the map H × L → G, (h, l) 7→ hl is a diffeomorphism. In particular, the
differential at (1,1) is a diffeomorphism which means that g = h + l, h ∩ l = {0}. As we may replace L
by Lg, e.g. Lemma 1.1, the assertion follows. �

Question 1. Assume that G is connected. Is it then true that (G, H, L) is a decomposition triple if and
only if the algebraic condition (1.1). is satisfied.

Remark 1.4. If the Lie algebra g splits into a direct sum of subalgebras g = h + l, then we cannot
conclude in general that G = HL holds. For example, let h = m+a+n is a minimal parabolic subalgebra
and l = n is the opposite of n. Then HL = MANN is the open Bruhat cell in G. A similar example
is when g = sl(n, R) with h the upper triangular matrices and l = so(p, n − p) for 0 < p < n. In
this case HL ⊂ G is a proper open subset. Notice that in both examples condition (1.1) is violated as
h ∩ Ad(g)l 6= {0} for appropriate g ∈ G.

2. The case of one factor being maximal compact

Throughout this section G denotes a semi-simple connected Lie group with associated Cartan decom-
position g = k + p. Set K = exp k and note that Ad(K) is maximal compact subgroup in Ad(G).

For what follows we have to recall some results of Mostow on maximal solvable subalgebras in g. Let
c ⊂ g be a Cartan subalgebra. Replacing c by an appropriate Ad(G)-conjugate we may assume that
c = t0 + a0 with t0 ⊂ k and a0 ⊂ p. Write Σ = Σ(a, g) ⊂ a∗\{0} for the non-zero ada0-spectrum on g. For
α ∈ Σ write gα for the associated eigenspcae. Call X ∈ a0 regular if α(X) 6= 0 for all α ∈ Σ. Associated
to a regular element X ∈ a we associate a nilpotent subalgebra

nX =
⊕

α∈Σ
α(X)>0

gα .

If a ⊂ p happens to be maximal abelian, then we will write n instead of nX .
With this notation we have:

Theorem 2.1. Let g be a semi-simple Lie algebra. Then the following assertions hold:

(i) Every maximal solvable subalgebra r of g contains a Cartan subalgebra c of g.
(ii) Up to conjugation with an element of Ad(G) every maximal solvable subalgebra of g is of the

form

r = c + nX

for some regular element X ∈ a0.

Proof. [3], Theorem 4.1. �

We choose a maximal abelian subspace a ⊂ p and write Σ = Σ(g, a) for the associated root system.
For a choice of positive roots we obtain a unipotent subalgebra n. Write m = zk(a) and fix a Cartan
subalgebra t ⊂ m. Write A, N, T for the analytic subgroups of G corresponding to a, n, t. Notice that
t + a + n is a maximal solvable subalgebra by Theorem 2.1.

Lemma 2.2. Let L < G be a closed subgroup such that G = KL with K ∩ L = {1}. Then there is an
Iwasawa decomposition G = NAK such that

(2.1) N ⊂ L ⊂ TAN and L ' LT/T ' AN .

Conversely, if L is a closed subgroup of G satisfying (2.1), then G = KL with K ∩ L = {1}.

Proof. Our first claim is that L contains no non-trivial compact subgroups. In fact, let LK ⊂ L be a
compact subgroup. As all maximal compact subgroups of G are conjugate, we find a g ∈ G such that
Lg

K ⊂ K. But Lg
K ∩ K ⊂ Lg ∩ K = {1} by Lemma 1.1. This establishes our claim.
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Next we show that L is solvable. For that let L = SL × RL be a Levi decomposition, where S is
semi-simple and R is reductive. If S 6= 1, then there is a non-trivial maximal compact subgroup SK ⊂ S.
Hence S = 1 by our previous claim and L = RL is solvable.

Next we turn to the specific structure of l, the Lie algebra of l. Let r = c + nX be a maximal solvable
subalgebra of g which contains l. As before we write c = t0 + a0 for the Cartan subalgebra of r. . We
claim that a0 = a is maximal abelian in p. In fact, notice that l ∩ t0 = {0} and so l ↪→ r/t0 ' a0 + nX

injects as vector spaces. Hence

dim l = dim a + dim n ≤ dim a0 + dim nX .

But dim a0 ≤ dim a and dim nX ≤ dim n and therefore a = a0. Hence r = t + a + n. As l ' r/t as vector
spaces we thus get hat L ' LT/T ' R/T ' AN as homogeneous spaces. We now show that N ⊂ L
which will follow from n ⊂ [l, l]. For that choose a regular element X ∈ a. By what we know already, we
then find an element Y ∈ t such that X + Y ∈ l. Notice that ad(X + Y ) is invertible on n and hence
n ⊂ [X + Y, n]. Finally, observe that

[X + Y, n] = [X + Y, r] = [X + Y, l + t] = [X + Y, l]

which concludes the proof of the first assertion of the lemma.
Finally, the second assertion of the lemma is immediate from the Iwasawa decomposition of G. �

3. Manifold decompositions for decomposition triples

Throughout this section G denotes a connected Lie group.
Let (G, H, L) be a decomposition triple and let us fix maximal compact subgroups KH and KL of H

and L respectively. We choose a maximal compact subgroup K of G such that KH ⊂ K. As we are free
to replace L by any conjugate Lg, we may assume in addition that KL ⊂ K.

We then have the following fact, see also [4], Lemma 1.2.

Lemma 3.1. Let (G, H, L) be a decomposition triple. Then (K, KH , KL) is a decomposition triple, i.e.
the map

KH × KL → K, (h, l) 7→ hl

is a diffeomorphism.

Before we proof the Lemma we recall a fundamental result of Mostow concernig the topology of a
connected Lie group G, cf. [2] If K < G is a maximal compact subgroup of G, then there exists a a
vector space V and a homeomorphism G ' K × V . In particular G is a deformation retract of K and
thus H•(G, R) = H•(K, R).

Proof. As H ∩ L = {1}, it follows that KH ∩ KL = {1}. Thus compactness of KL and KH implies that
the map

KH × KL → K, (h, l) 7→ hl

has closed image. It remains to show that the image is open. This will follow from dim KH + dim KL =
dim K. In fact G ' H ×L implies that G is homeomorphic to KH ×KL × VH × VL for vector spaces VH

and VL. Thus

H•(K, R) = H•(G, R) = H•(KH × KL, R)

and Künneth implies for any n ∈ N0 that

Hn(K, R) '

n∑

j=0

Hj(KH , R) ⊗ Hn−j(KL, R).
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Now, for an orientable connected compact manifold M we recall that HdimM (M, R) = R and Hn(M, R) =
{0} for n > dim M . Next Lie groups are orientable and we deduce from the Künneth identity from above
that dim KH + dim KL = dim K. This concludes the proof of the lemma. �

Let us write kh and kl for the Lie algebras of KH and KL respectively. Then, as (K, KH , KL) is a
decomposition triple, it follows from Lemma 1.3 that

k = kh + Ad(k)kl and h ∩ Ad(k)l = {0} .

Let now th ⊂ kh be a maximal toral subalgebra and extend it to a maximal torus t, i.e. th ⊂ t. Now pick
a maximal toral subalgebra tl. Replacing l by an appropriate Ad(K)-conjugate, we may assume that
tl ⊂ t (all maximal toral subalgebras in k are conjugate). Finally write T, TH , TL for the corresponding
tori in T .

Lemma 3.2. If (K, KH , KL) is a decomposition triple for a compact Lie group K, then (T, TH , TL) is a
decomposition triple for the maximal torus T . In particular

(3.1) rankK = rankKH + rankKL .

Proof. We already know that th + tl ⊂ t with th ∩ tl = {0}. It remain s to verify that th + tl = t. We
argue by contradiction. Let X ∈ t, X 6∈ th + hl. As k = kh + kl, we can write X = Xh + Xl for some
Xh ∈ kh and Xl ∈ kl.

For a compact Lie algebra k with maximal toral subalgebra t ⊂ k we recall the direct vector space
decomposition k = t ⊕ [t, k]. As th + tl ⊂ t we hence may assume that Xh ∈ [th, kh] and Xl ∈ [tl, kl]. But
then we get

X = Xh + Xl ∈ [th, kh] + [tl, kl] ⊂ [t, k]

and therefore X ∈ t ∩ [t, k] = {0}, a contradiction. �

4. Decompositions of compact Lie groups

Decompositions of compact Lie groups is an algebraic feature as the following Lemma, essentially due
to Onǐsčik, shows.

Lemma 4.1. Let k be a compact Lie algebra and k1, k2 < k be two subalgebras. Then the following
statements are equivalent:

(i) k = k1 + k2 with k1 ∩ k2 = {0}
(ii) Let K, K1, K2 be simply connected Lie groups with Lie algebras k, k1 and k2. Write ιi : Ki → K,

i = 1, 2 for the natural homomorphisms sitting over the inclusions ki ↪→ k. Then the map

m : K1 × K2 → K, (k1, k2) 7→ ι1(k1)ι2(k2)

is a homeomorphism.

Proof. The implication (ii) ⇒ (i) is clear. We establish (i) ⇒ (ii). We need that m is onto and deduce
this from [4], Th. 3.1. Then K becomes a homogeneous space for the left-right action of K1 × K2. The
stabilizer of 1 is given by the discrete subgroup F = {(k1, k2) : ι1(k1) = ι2(k2)

−1, i.e. K ' K1 × K2/F .
As K1 and K2 are simply connected, we conclude that π1(K) = F and thus F = {1} as K is simply
connected. �

We now show the main result of this section.

Lemma 4.2. Let (K, K1, K2) be a decomposition triple of a connected compact simple Lie group. Then
K1 = 1 or K2 = 1.

Before we prove this, a few remarks are in order.
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Remark 4.3. (a) If K is of exceptional type, then the result can be easily deduced from dim K =
dim K1 + dim K2 and the rank equality rankK = rankK1 + rankK2, cf. Lemma 3.2. For example if K
is of type G2. Then a non-trivial decomposition K = K1K2 must have rankKi = 1, i.e. ki = su(2). But

14 = dim K 6= dim K1 + dim K2 = 6 .

(b) The assertion of the lemma is not true if we only require K = K1K2 and drop K1 ∩K2 = {1}. For
example if K is of type G2. then K = K1K2 with Ki locally SU(3) and K1 ∩ K2 = T a maximal torus.

Proof. The proof is short, but uses a powerful tool, namely the structure of the cohomology ring of the
compact group K. See for instance [5] or [1]. �

Putting matters together this concludes the proof of Theorem 0.1.
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