A NOVEL CHARACTERIZATION OF THE IWASAWA DECOMPOSITION OF A
SIMPLE LIE GROUP

BERNHARD KROTZ

This appendix is about (essential) uniqueness of the Twasawa (or horospherical) decomposition G =
K ANof a semisimple Lie group GG. This means:

Theorem 0.1. Assume that G is a connected Lie group with simple Lie algebra g. Assume that G = KL
for some closed subgroups K, L < G with K N L discrete. Then up to order, the Lie algebra ¢ of K is
mazimally compact, and the Lie algebra | of L is isomorphic to a + n, the Lie algebra of AN.

1. GENERAL FACTS ON DECOMPOSITIONS OF LIE GROUPS
For a group G, a subgroup H < G and an element g € G we define H9 = gHg~*.

Lemma 1.1. Let G be a group and H,L < G subgroups. Then the following statements are equivalent:

(i) G=HL and HNL = {1}.

(i) G=HLY and HN LY = {1} for all g € G.
Proof. Clearly, we only have to show that (i7) = (¢). Suppose that G = HL with H N L = {1}. Then
we can write g € G as g = hl for some h € H and [ € L. Observe that L9 = L" and so

HNLY=HnL'"=H"nL"=HNL)"={1}.
Moreover we record
HLY =HL"=HLh=Gh=G.
O

In the sequel, capital Latin letters will denote real Lie groups and the corresponding lower case fractur
letters will denote the associated Lie algebra, i.e. G is a Lie group with Lie algebra g.

Lemma 1.2. Let G be a Lie group and H,L < G closed subgroups. Then the following statements are
equivalent:

(i) G=HL with HNL = {1}.
(ii) The multiplication map
HxL— G, (h,1) — hl

is an analytic diffeomorphism.
Proof. Standard structure theory. O

If G is a Lie group with closed subgroups H,L < G such that G = HL with H N L = {1}, then we
refer to (G, H, L) as a decomposition triple.

Lemma 1.3. Let (G, H, L) be a decomposition triple. Then:
(1.1) (Vg € G) g="bh+Ad(g)! and hNAd(g)l={0}.
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Proof. In view of Lemma 1.2, the map H x L — G, (h,l) — hl is a diffeomorphism. In particular, the
differential at (1,1) is a diffeomorphism which means that g = h + [, h N[ = {0}. As we may replace L
by L9, e.g. Lemma 1.1, the assertion follows. O

Question 1. Assume that G is connected. Is it then true that (G, H, L) is a decomposition triple if and
only if the algebraic condition (1.1). is satisfied.

Remark 1.4. If the Lie algebra g splits into a direct sum of subalgebras g = h + [, then we cannot
conclude in general that G = HL holds. For example, let h = m+a+n is a minimal parabolic subalgebra
and [ = @ is the opposite of n. Then HL = MANN is the open Bruhat cell in G. A similar example
is when g = sl(n,R) with b the upper triangular matrices and | = so(p,n —p) for 0 < p < n. In
this case HL C G is a proper open subset. Notice that in both examples condition (1.1) is violated as
h N Ad(g)l # {0} for appropriate g € G.

2. THE CASE OF ONE FACTOR BEING MAXIMAL COMPACT

Throughout this section G denotes a semi-simple connected Lie group with associated Cartan decom-
position g = €+ p. Set K = exp € and note that Ad(K) is maximal compact subgroup in Ad(G).

For what follows we have to recall some results of Mostow on maximal solvable subalgebras in g. Let
¢ C g be a Cartan subalgebra. Replacing ¢ by an appropriate Ad(G)-conjugate we may assume that
¢ =to+ag with tg C ¢ and ag C p. Write ¥ = X(a,g) C a*\{0} for the non-zero adag-spectrum on g. For
a € ¥ write g* for the associated eigenspcae. Call X € ag regular if a(X) # 0 for all @ € ¥. Associated
to a regular element X € a we associate a nilpotent subalgebra

nx = @ g%

aex
a(X)>0

If a C p happens to be maximal abelian, then we will write n instead of nx.
With this notation we have:

Theorem 2.1. Let g be a semi-simple Lie algebra. Then the following assertions hold:

(i) Every mazimal solvable subalgebra v of g contains a Cartan subalgebra ¢ of g.
(ii) Up to conjugation with an element of Ad(G) every mazimal solvable subalgebra of g is of the
form
t=c+ny

for some reqular element X € ag.
Proof. [3], Theorem 4.1. O

We choose a maximal abelian subspace a C p and write ¥ = X(g, a) for the associated root system.
For a choice of positive roots we obtain a unipotent subalgebra n. Write m = 3¢(a) and fix a Cartan
subalgebra t C m. Write A, N, T for the analytic subgroups of G corresponding to a, n, t. Notice that
t+ a + n is a maximal solvable subalgebra by Theorem 2.1.

Lemma 2.2. Let L < G be a closed subgroup such that G = KL with K N L = {1}. Then there is an
ITwasawa decomposition G = NAK such that

(2.1) NCLCTAN and L~LT/T~ AN.
Conversely, if L is a closed subgroup of G satisfying (2.1), then G = KL with K N L = {1}.

Proof. Our first claim is that L contains no non-trivial compact subgroups. In fact, let Lx C L be a
compact subgroup. As all maximal compact subgroups of G are conjugate, we find a g € G such that
LY C K. But L) N K C LY N K = {1} by Lemma 1.1. This establishes our claim.
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Next we show that L is solvable. For that let L = S; x Ry be a Levi decomposition, where S is
semi-simple and R is reductive. If S # 1, then there is a non-trivial maximal compact subgroup Si C S.
Hence S = 1 by our previous claim and L = Ry, is solvable.

Next we turn to the specific structure of [, the Lie algebra of [. Let t = ¢ + nx be a maximal solvable
subalgebra of g which contains [. As before we write ¢ = ty 4+ agp for the Cartan subalgebra of t. . We
claim that agp = a is maximal abelian in p. In fact, notice that [Nty = {0} and so [ — t/tg ~ ag + nx
injects as vector spaces. Hence

diml=dima+dimn <dimag +dimny.

But dimap < dima and dimnx < dimn and therefore a = ag. Hence t =t+ a+n. As [~ t/t as vector
spaces we thus get hat L ~ LT/T ~ R/T ~ AN as homogeneous spaces. We now show that N C L
which will follow from n C [[,[]. For that choose a regular element X € a. By what we know already, we
then find an element Y € t such that X +Y € [. Notice that ad(X + Y) is invertible on n and hence
n C [X + Y, n]. Finally, observe that

X+ Y= [X+Vd=[X+Y,(+=[X+Y.]

which concludes the proof of the first assertion of the lemma.
Finally, the second assertion of the lemma is immediate from the Iwasawa decomposition of G. O

3. MANIFOLD DECOMPOSITIONS FOR DECOMPOSITION TRIPLES

Throughout this section G denotes a connected Lie group.

Let (G, H, L) be a decomposition triple and let us fix maximal compact subgroups Ky and K, of H
and L respectively. We choose a maximal compact subgroup K of G such that Ky C K. As we are free
to replace L by any conjugate LY, we may assume in addition that K; C K.

We then have the following fact, see also [4], Lemma 1.2.

Lemma 3.1. Let (G, H, L) be a decomposition triple. Then (K, Ky, K1) is a decomposition triple, i.e.
the map
Kpx Ky — K, (h1)— hl

is a diffeomorphism.

Before we proof the Lemma we recall a fundamental result of Mostow concernig the topology of a
connected Lie group G, cf. [2] If K < G is a maximal compact subgroup of G, then there exists a a
vector space V and a homeomorphism G ~ K x V. In particular G is a deformation retract of K and
thus He(G,R) = He(K,R).

Proof. As HN L = {1}, it follows that Ky N K, = {1}. Thus compactness of K, and Ky implies that
the map

Ky x K;, — K, (h1)— hl

has closed image. It remains to show that the image is open. This will follow from dim K g + dim K, =
dim K. In fact G ~ H x L implies that G is homeomorphic to Ky x K x Vg x Vi, for vector spaces Vi
and V. Thus

Ho(K,R) = Hy(G,R) = He(Ky x K1, R)

and Kiinneth implies for any n € Ny that

H,(K,R) ~ > H;(Ky,R) ® H,_;(KL,R).

n
j=0
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Now, for an orientable connected compact manifold M we recall that Hgim as (M, R) = R and H,,(M,R) =
{0} for n > dim M. Next Lie groups are orientable and we deduce from the Kiinneth identity from above
that dim Ky + dim K, = dim K. This concludes the proof of the lemma. O

Let us write £, and & for the Lie algebras of Ky and K respectively. Then, as (K, Ky, K1) is a
decomposition triple, it follows from Lemma 1.3 that

E=t +Ad(k)t, and  hNAd(k)={0}.

Let now t; C &, be a maximal toral subalgebra and extend it to a maximal torus t, i.e. ty C t. Now pick
a maximal toral subalgebra t;. Replacing [ by an appropriate Ad(K)-conjugate, we may assume that
t; C t (all maximal toral subalgebras in £ are conjugate). Finally write T, Ty, Ty, for the corresponding
tori in T'.

Lemma 3.2. If (K, Ky, K}) is a decomposition triple for a compact Lie group K, then (T, Ty, Ty) is a
decomposition triple for the mazimal torus T. In particular

(3.1) rank K = rank Ky + rank K7, .

Proof. We already know that ty, +t; C t with t, N ¢, = {0}. It remain s to verify that t, +t; = t. We
argue by contradiction. Let X € t, X & ty +bi. As € = & + €, we can write X = Xy + X for some
Xh S Eh and X € &.

For a compact Lie algebra £ with maximal toral subalgebra t C ¥ we recall the direct vector space
decomposition ¢ =t @ [t, €]. As ty + t; C t we hence may assume that Xy € [ty, €] and X € [t;, &]. But
then we get

X=Xy+ X € [th,éh] + [f[,?[] C [f, E]
and therefore X € tN [t, € = {0}, a contradiction. O

4. DECOMPOSITIONS OF COMPACT LIE GROUPS

Decompositions of compact Lie groups is an algebraic feature as the following Lemma, essentially due

to Oniscik, shows.
Lemma 4.1. Let £ be a compact Lie algebra and 1,8 < € be two subalgebras. Then the following
statements are equivalent:

(1) tE= El + EQ with El n EQ = {0}

(i1) Let K, K1, Ky be simply connected Lie groups with Lie algebras €% and a. Write ¢; : K; — K,

1 =1,2 for the natural homomorphisms sitting over the inclusions €; — €. Then the map
m: Kl X K2 — K, (kl,kg) — Ll(kl)bg(kg)

18 a homeomorphism.

Proof. The implication (i7) = (i) is clear. We establish (¢) = (ii). We need that m is onto and deduce
this from [4], Th. 3.1. Then K becomes a homogeneous space for the left-right action of Ky x K. The
stabilizer of 1 is given by the discrete subgroup F = {(k1, k2) : t1(k1) = ta(k2)™ 1, ie. K ~ K; x K3/F.
As K; and K3 are simply connected, we conclude that m1(K) = F and thus F' = {1} as K is simply
connected. 0

We now show the main result of this section.

Lemma 4.2. Let (K, K1, K5) be a decomposition triple of a connected compact simple Lie group. Then
Kl =1 or K2 =1.

Before we prove this, a few remarks are in order.
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Remark 4.3. (a) If K is of exceptional type, then the result can be easily deduced from dim K =
dim K7 + dim K5 and the rank equality rank K = rank K + rank Ko, cf. Lemma 3.2. For example if K
is of type G2. Then a non-trivial decomposition K = K7 K> must have rank K; = 1, i.e. ¢ = su(2). But

14 =dim K # dim K; +dim Ky = 6.

(b) The assertion of the lemma is not true if we only require K = K; Ko and drop K1 N Ky = {1}. For
example if K is of type Ga. then K = K1 K> with K; locally SU(3) and K1 N Ky =T a maximal torus.

Proof. The proof is short, but uses a powerful tool, namely the structure of the cohomology ring of the
compact group K. See for instance [5] or [1]. O

Putting matters together this concludes the proof of Theorem 0.1.
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