A NOVEL CHARACTERIZATION OF THE IWASAWA DECOMPOSITION OF A SIMPLE LIE GROUP

BERNHARD KRÖTZ

This appendix is about (essential) uniqueness of the Iwasawa (or horospherical) decomposition G = KAN of a semisimple Lie group G. This means:

Theorem 0.1. Assume that G is a connected Lie group with simple Lie algebra \mathfrak{g} . Assume that G = KL for some closed subgroups K, L < G with $K \cap L$ discrete. Then up to order, the Lie algebra \mathfrak{k} of K is maximally compact, and the Lie algebra \mathfrak{l} of L is isomorphic to $\mathfrak{a} + \mathfrak{n}$, the Lie algebra of AN.

1. GENERAL FACTS ON DECOMPOSITIONS OF LIE GROUPS

For a group G, a subgroup H < G and an element $g \in G$ we define $H^g = gHg^{-1}$.

Lemma 1.1. Let G be a group and H, L < G subgroups. Then the following statements are equivalent: (i) G = HL and $H \cap L = \{1\}$.

(ii) $G = HL^g$ and $H \cap L^g = \{1\}$ for all $g \in G$.

Proof. Clearly, we only have to show that $(ii) \Rightarrow (i)$. Suppose that G = HL with $H \cap L = \{1\}$. Then we can write $g \in G$ as g = hl for some $h \in H$ and $l \in L$. Observe that $L^g = L^h$ and so

$$H \cap L^g = H \cap L^h = H^h \cap L^h = (H \cap L)^h = \{1\}.$$

Moreover we record

$$HL^g = HL^h = HLh = Gh = G.$$

In the sequel, capital Latin letters will denote real Lie groups and the corresponding lower case fractur letters will denote the associated Lie algebra, i.e. G is a Lie group with Lie algebra \mathfrak{g} .

Lemma 1.2. Let G be a Lie group and H, L < G closed subgroups. Then the following statements are equivalent:

- (i) G = HL with $H \cap L = \{\mathbf{1}\}.$
- (ii) The multiplication map

 $H \times L \to G, \qquad (h,l) \mapsto hl$

is an analytic diffeomorphism.

Proof. Standard structure theory.

If G is a Lie group with closed subgroups H, L < G such that G = HL with $H \cap L = \{1\}$, then we refer to (G, H, L) as a *decomposition triple*.

Lemma 1.3. Let (G, H, L) be a decomposition triple. Then:

(1.1) $(\forall g \in G) \quad \mathfrak{g} = \mathfrak{h} + \mathrm{Ad}(g)\mathfrak{l} \quad and \quad \mathfrak{h} \cap \mathrm{Ad}(g)\mathfrak{l} = \{0\}.$

1991 Mathematics Subject Classification. 22E46.

 \Box

Key words and phrases. Semisimple Lie groups, Iwasawa decomposition.

MPI, DFG.

Proof. In view of Lemma 1.2, the map $H \times L \to G$, $(h, l) \mapsto hl$ is a diffeomorphism. In particular, the differential at $(\mathbf{1}, \mathbf{1})$ is a diffeomorphism which means that $\mathfrak{g} = \mathfrak{h} + \mathfrak{l}, \mathfrak{h} \cap \mathfrak{l} = \{0\}$. As we may replace L by L^g , e.g. Lemma 1.1, the assertion follows.

Question 1. Assume that G is connected. Is it then true that (G, H, L) is a decomposition triple if and only if the algebraic condition (1.1). is satisfied.

Remark 1.4. If the Lie algebra \mathfrak{g} splits into a direct sum of subalgebras $\mathfrak{g} = \mathfrak{h} + \mathfrak{l}$, then we cannot conclude in general that G = HL holds. For example, let $\mathfrak{h} = \mathfrak{m} + \mathfrak{a} + \mathfrak{n}$ is a minimal parabolic subalgebra and $\mathfrak{l} = \overline{\mathfrak{n}}$ is the opposite of \mathfrak{n} . Then $HL = MAN\overline{N}$ is the open Bruhat cell in G. A similar example is when $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{R})$ with \mathfrak{h} the upper triangular matrices and $l = \mathfrak{so}(p, n - p)$ for $0 . In this case <math>HL \subset G$ is a proper open subset. Notice that in both examples condition (1.1) is violated as $\mathfrak{h} \cap \mathrm{Ad}(g)\mathfrak{l} \neq \{0\}$ for appropriate $g \in G$.

2. The case of one factor being maximal compact

Throughout this section G denotes a semi-simple connected Lie group with associated Cartan decomposition $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$. Set $K = \exp \mathfrak{k}$ and note that $\operatorname{Ad}(K)$ is maximal compact subgroup in $\operatorname{Ad}(G)$.

For what follows we have to recall some results of Mostow on maximal solvable subalgebras in \mathfrak{g} . Let $\mathfrak{c} \subset \mathfrak{g}$ be a Cartan subalgebra. Replacing \mathfrak{c} by an appropriate $\operatorname{Ad}(G)$ -conjugate we may assume that $\mathfrak{c} = \mathfrak{t}_0 + \mathfrak{a}_0$ with $\mathfrak{t}_0 \subset \mathfrak{k}$ and $\mathfrak{a}_0 \subset \mathfrak{p}$. Write $\Sigma = \Sigma(\mathfrak{a}, \mathfrak{g}) \subset \mathfrak{a}^* \setminus \{0\}$ for the non-zero ad \mathfrak{a}_0 -spectrum on \mathfrak{g} . For $\alpha \in \Sigma$ write \mathfrak{g}^{α} for the associated eigenspecae. Call $X \in \mathfrak{a}_0$ regular if $\alpha(X) \neq 0$ for all $\alpha \in \Sigma$. Associated to a regular element $X \in \mathfrak{a}$ we associate a nilpotent subalgebra

$$\mathfrak{n}_X = \bigoplus_{\substack{\alpha \in \Sigma \\ \alpha(X) > 0}} \mathfrak{g}^\alpha \,.$$

If $\mathfrak{a} \subset \mathfrak{p}$ happens to be maximal abelian, then we will write \mathfrak{n} instead of \mathfrak{n}_X . With this notation we have:

Theorem 2.1. Let \mathfrak{g} be a semi-simple Lie algebra. Then the following assertions hold:

- (i) Every maximal solvable subalgebra \mathfrak{r} of \mathfrak{g} contains a Cartan subalgebra \mathfrak{c} of \mathfrak{g} .
- (ii) Up to conjugation with an element of Ad(G) every maximal solvable subalgebra of \mathfrak{g} is of the form

$$\mathfrak{r} = \mathfrak{c} + \mathfrak{n}_X$$

for some regular element $X \in \mathfrak{a}_0$.

Proof. [3], Theorem 4.1.

We choose a maximal abelian subspace $\mathfrak{a} \subset \mathfrak{p}$ and write $\Sigma = \Sigma(\mathfrak{g}, \mathfrak{a})$ for the associated root system. For a choice of positive roots we obtain a unipotent subalgebra \mathfrak{n} . Write $\mathfrak{m} = \mathfrak{z}_{\mathfrak{k}}(\mathfrak{a})$ and fix a Cartan subalgebra $\mathfrak{t} \subset \mathfrak{m}$. Write A, N, T for the analytic subgroups of G corresponding to $\mathfrak{a}, \mathfrak{n}, \mathfrak{t}$. Notice that $\mathfrak{t} + \mathfrak{a} + \mathfrak{n}$ is a maximal solvable subalgebra by Theorem 2.1.

Lemma 2.2. Let L < G be a closed subgroup such that G = KL with $K \cap L = \{1\}$. Then there is an Iwasawa decomposition G = NAK such that

(2.1)
$$N \subset L \subset TAN$$
 and $L \simeq LT/T \simeq AN$.

Conversely, if L is a closed subgroup of G satisfying (2.1), then G = KL with $K \cap L = \{1\}$.

Proof. Our first claim is that L contains no non-trivial compact subgroups. In fact, let $L_K \subset L$ be a compact subgroup. As all maximal compact subgroups of G are conjugate, we find a $g \in G$ such that $L_K^g \subset K$. But $L_K^g \cap K \subset L^g \cap K = \{1\}$ by Lemma 1.1. This establishes our claim.

Next we show that L is solvable. For that let $L = S_L \times R_L$ be a Levi decomposition, where S is semi-simple and R is reductive. If $S \neq \mathbf{1}$, then there is a non-trivial maximal compact subgroup $S_K \subset S$. Hence $S = \mathbf{1}$ by our previous claim and $L = R_L$ is solvable.

Next we turn to the specific structure of \mathfrak{l} , the Lie algebra of \mathfrak{l} . Let $\mathfrak{r} = \mathfrak{c} + \mathfrak{n}_X$ be a maximal solvable subalgebra of \mathfrak{g} which contains \mathfrak{l} . As before we write $\mathfrak{c} = \mathfrak{t}_0 + \mathfrak{a}_0$ for the Cartan subalgebra of \mathfrak{r} . We claim that $\mathfrak{a}_0 = \mathfrak{a}$ is maximal abelian in \mathfrak{p} . In fact, notice that $\mathfrak{l} \cap \mathfrak{t}_0 = \{0\}$ and so $\mathfrak{l} \hookrightarrow \mathfrak{r}/\mathfrak{t}_0 \simeq \mathfrak{a}_0 + \mathfrak{n}_X$ injects as vector spaces. Hence

$$\dim \mathfrak{l} = \dim \mathfrak{a} + \dim \mathfrak{n} \leq \dim \mathfrak{a}_0 + \dim \mathfrak{n}_X$$

But dim $\mathfrak{a}_0 \leq \dim \mathfrak{a}$ and dim $\mathfrak{n}_X \leq \dim \mathfrak{n}$ and therefore $\mathfrak{a} = \mathfrak{a}_0$. Hence $\mathfrak{r} = \mathfrak{t} + \mathfrak{a} + \mathfrak{n}$. As $\mathfrak{l} \simeq \mathfrak{r}/\mathfrak{t}$ as vector spaces we thus get hat $L \simeq LT/T \simeq R/T \simeq AN$ as homogeneous spaces. We now show that $N \subset L$ which will follow from $\mathfrak{n} \subset [\mathfrak{l}, \mathfrak{l}]$. For that choose a regular element $X \in \mathfrak{a}$. By what we know already, we then find an element $Y \in \mathfrak{t}$ such that $X + Y \in \mathfrak{l}$. Notice that $\mathrm{ad}(X + Y)$ is invertible on \mathfrak{n} and hence $\mathfrak{n} \subset [X + Y, \mathfrak{n}]$. Finally, observe that

$$[X+Y,\mathfrak{n}] = [X+Y,\mathfrak{r}] = [X+Y,\mathfrak{l}+\mathfrak{t}] = [X+Y,\mathfrak{l}]$$

which concludes the proof of the first assertion of the lemma.

Finally, the second assertion of the lemma is immediate from the Iwasawa decomposition of G.

3. MANIFOLD DECOMPOSITIONS FOR DECOMPOSITION TRIPLES

Throughout this section G denotes a connected Lie group.

Let (G, H, L) be a decomposition triple and let us fix maximal compact subgroups K_H and K_L of Hand L respectively. We choose a maximal compact subgroup K of G such that $K_H \subset K$. As we are free to replace L by any conjugate L^g , we may assume in addition that $K_L \subset K$.

We then have the following fact, see also [4], Lemma 1.2.

Lemma 3.1. Let (G, H, L) be a decomposition triple. Then (K, K_H, K_L) is a decomposition triple, i.e. the map

$$K_H \times K_L \to K, \ (h,l) \mapsto hl$$

is a diffeomorphism.

Before we proof the Lemma we recall a fundamental result of Mostow concernig the topology of a connected Lie group G, cf. [2] If K < G is a maximal compact subgroup of G, then there exists a a vector space V and a homeomorphism $G \simeq K \times V$. In particular G is a deformation retract of K and thus $H_{\bullet}(G, \mathbb{R}) = H_{\bullet}(K, \mathbb{R})$.

Proof. As $H \cap L = \{1\}$, it follows that $K_H \cap K_L = \{1\}$. Thus compactness of K_L and K_H implies that the map

$$K_H \times K_L \to K, \ (h,l) \mapsto hl$$

has closed image. It remains to show that the image is open. This will follow from dim K_H + dim K_L = dim K. In fact $G \simeq H \times L$ implies that G is homeomorphic to $K_H \times K_L \times V_H \times V_L$ for vector spaces V_H and V_L . Thus

$$H_{\bullet}(K,\mathbb{R}) = H_{\bullet}(G,\mathbb{R}) = H_{\bullet}(K_H \times K_L,\mathbb{R})$$

and Künneth implies for any $n \in \mathbb{N}_0$ that

$$H_n(K,\mathbb{R}) \simeq \sum_{j=0}^n H_j(K_H,\mathbb{R}) \otimes H_{n-j}(K_L,\mathbb{R}).$$

Now, for an orientable connected compact manifold M we recall that $H_{\dim M}(M, \mathbb{R}) = \mathbb{R}$ and $H_n(M, \mathbb{R}) = \{0\}$ for $n > \dim M$. Next Lie groups are orientable and we deduce from the Künneth identity from above that $\dim K_H + \dim K_L = \dim K$. This concludes the proof of the lemma. \Box

Let us write $\mathfrak{k}_{\mathfrak{h}}$ and $\mathfrak{k}_{\mathfrak{l}}$ for the Lie algebras of K_H and K_L respectively. Then, as (K, K_H, K_L) is a decomposition triple, it follows from Lemma 1.3 that

$$\mathfrak{k} = \mathfrak{k}_{\mathfrak{h}} + \mathrm{Ad}(k)\mathfrak{k}_{\mathfrak{l}} \qquad \text{and} \qquad \mathfrak{h} \cap \mathrm{Ad}(k)\mathfrak{l} = \{0\}.$$

Let now $\mathfrak{t}_h \subset \mathfrak{k}_{\mathfrak{h}}$ be a maximal toral subalgebra and extend it to a maximal torus \mathfrak{t} , i.e. $\mathfrak{t}_{\mathfrak{h}} \subset \mathfrak{t}$. Now pick a maximal toral subalgebra $\mathfrak{t}_{\mathfrak{l}}$. Replacing \mathfrak{l} by an appropriate $\mathrm{Ad}(K)$ -conjugate, we may assume that $\mathfrak{t}_{\mathfrak{l}} \subset \mathfrak{t}$ (all maximal toral subalgebras in \mathfrak{k} are conjugate). Finally write T, T_H, T_L for the corresponding tori in T.

Lemma 3.2. If (K, K_H, K_L) is a decomposition triple for a compact Lie group K, then (T, T_H, T_L) is a decomposition triple for the maximal torus T. In particular

(3.1)
$$\operatorname{rank} K = \operatorname{rank} K_H + \operatorname{rank} K_L.$$

Proof. We already know that $\mathfrak{t}_{\mathfrak{h}} + \mathfrak{t}_{\mathfrak{l}} \subset \mathfrak{t}$ with $\mathfrak{t}_{\mathfrak{h}} \cap \mathfrak{t}_{\mathfrak{l}} = \{0\}$. It remains to verify that $\mathfrak{t}_{\mathfrak{h}} + \mathfrak{t}_{\mathfrak{l}} = \mathfrak{t}$. We argue by contradiction. Let $X \in \mathfrak{t}, X \notin \mathfrak{t}_{\mathfrak{h}} + \mathfrak{h}_{\mathfrak{l}}$. As $\mathfrak{k} = \mathfrak{k}_{\mathfrak{h}} + \mathfrak{k}_{\mathfrak{l}}$, we can write $X = X_{\mathfrak{h}} + X_{\mathfrak{l}}$ for some $X_{\mathfrak{h}} \in \mathfrak{k}_{\mathfrak{h}}$ and $X_{\mathfrak{l}} \in \mathfrak{k}_{\mathfrak{l}}$.

For a compact Lie algebra \mathfrak{k} with maximal toral subalgebra $\mathfrak{t} \subset \mathfrak{k}$ we recall the direct vector space decomposition $\mathfrak{k} = \mathfrak{t} \oplus [\mathfrak{t}, \mathfrak{k}]$. As $\mathfrak{t}_{\mathfrak{h}} + \mathfrak{t}_{\mathfrak{l}} \subset \mathfrak{t}$ we hence may assume that $X_{\mathfrak{h}} \in [\mathfrak{t}_{\mathfrak{h}}, \mathfrak{t}_{\mathfrak{h}}]$ and $X_{\mathfrak{l}} \in [\mathfrak{t}_{\mathfrak{l}}, \mathfrak{t}_{\mathfrak{l}}]$. But then we get

$$X = X_{\mathfrak{h}} + X_{\mathfrak{l}} \in [\mathfrak{t}_{\mathfrak{h}}, \mathfrak{k}_{\mathfrak{h}}] + [\mathfrak{t}_{\mathfrak{l}}, \mathfrak{k}_{\mathfrak{l}}] \subset [\mathfrak{t}, \mathfrak{k}]$$

and therefore $X \in \mathfrak{t} \cap [\mathfrak{t}, \mathfrak{k}] = \{0\}$, a contradiction.

4. Decompositions of compact Lie groups

Decompositions of compact Lie groups is an algebraic feature as the following Lemma, essentially due to Oniščik, shows.

Lemma 4.1. Let \mathfrak{k} be a compact Lie algebra and $\mathfrak{k}_1, \mathfrak{k}_2 < \mathfrak{k}$ be two subalgebras. Then the following statements are equivalent:

- (i) $\mathfrak{k} = \mathfrak{k}_1 + \mathfrak{k}_2$ with $\mathfrak{k}_1 \cap \mathfrak{k}_2 = \{0\}$
- (ii) Let K, K_1, K_2 be simply connected Lie groups with Lie algebras $\mathfrak{k}, \mathfrak{k}_1$ and \mathfrak{k}_2 . Write $\iota_i : K_i \to K$, i = 1, 2 for the natural homomorphisms sitting over the inclusions $\mathfrak{k}_i \hookrightarrow \mathfrak{k}$. Then the map

$$n: K_1 \times K_2 \to K, \quad (k_1, k_2) \mapsto \iota_1(k_1)\iota_2(k_2)$$

is a homeomorphism.

Proof. The implication $(ii) \Rightarrow (i)$ is clear. We establish $(i) \Rightarrow (ii)$. We need that m is onto and deduce this from [4], Th. 3.1. Then K becomes a homogeneous space for the left-right action of $K_1 \times K_2$. The stabilizer of **1** is given by the discrete subgroup $F = \{(k_1, k_2) : \iota_1(k_1) = \iota_2(k_2)^{-1}, \text{ i.e. } K \simeq K_1 \times K_2/F$. As K_1 and K_2 are simply connected, we conclude that $\pi_1(K) = F$ and thus $F = \{\mathbf{1}\}$ as K is simply connected.

We now show the main result of this section.

γ

Lemma 4.2. Let (K, K_1, K_2) be a decomposition triple of a connected compact simple Lie group. Then $K_1 = \mathbf{1}$ or $K_2 = \mathbf{1}$.

Before we prove this, a few remarks are in order.

Remark 4.3. (a) If K is of exceptional type, then the result can be easily deduced from dim $K = \dim K_1 + \dim K_2$ and the rank equality rank $K = \operatorname{rank} K_1 + \operatorname{rank} K_2$, cf. Lemma 3.2. For example if K is of type G_2 . Then a non-trivial decomposition $K = K_1 K_2$ must have rank $K_i = 1$, i.e. $\mathfrak{k}_i = \mathfrak{su}(2)$. But

$$14 = \dim K \neq \dim K_1 + \dim K_2 = 6$$

(b) The assertion of the lemma is not true if we only require $K = K_1K_2$ and drop $K_1 \cap K_2 = \{1\}$. For example if K is of type G_2 . then $K = K_1K_2$ with K_i locally SU(3) and $K_1 \cap K_2 = T$ a maximal torus.

Proof. The proof is short, but uses a powerful tool, namely the structure of the cohomology ring of the compact group K. See for instance [5] or [1].

Putting matters together this concludes the proof of Theorem 0.1.

References

- [1] J. L. Koszul, Variante d'un théoreme de H. Ozeki, Osaka J. Math. 15 (1978), 547-551.
- [2] G.D. Mostow: On the L^2 -space of a Lie group. Amer. J. Math. 74, (1952). 920–928
- [3] _____: On maximal subgroups of real Lie groups. Ann. Math. 74 (3) (1961), 503–517
- [4] A.L. Oniščik: Decompositions of reductive Lie groups. Mat. Sb. (N.S.) bf 80 (122) (1969), 553–599
- [5] H. Ozeki, On a transitive transformation group of a compact group manifold, Osaka J. Math, 14 (1977), 519-531.

TU DARMSTADT, MPI