
Analytic Continuation of
Fundamental Solutions to Elliptic

Equations

Boris Sternin and
Victor Shatalov

Max-PIanck-Gesellschaft zur

Förderung der Wissenschaften e.V.

AG "Partielle Differentialgleichungen und

Komplexe Analysis"

Universität Potsdam

Postfach 60 15 53

14415 Potsdam

GERMANY

Festivalnaya 30, apt. 54

125414 Moscow

RUSSIA

MPI/95-77

Max-PIanck-Institut

für Mathematik

Gottfried-Claren-Str. 26

53225 Bonn

GERMANY





Analytic Continuation of FundalTIental
Solutions to Elliptic Equations

Boris Sternin and Victor Shatalov
Moscow State University

e-mail: boris@sternin.msk.su

&
MPAG "Analysis", Potsdam University

e-mail: sternin@mpg-ana.uni-potsdam.de*

August 3, 1995

Abstract

The theorem on existence of endlessly continuable (that is, analytic everywhere in
C n except for an analytic set of codimension 1) fundamental solution for a differential
equation with polynomial coefficients is proved.

Introduction

The problem of analytic eontinuation of solutions to differential equations to eomplex do

mains arises in a lot of problems of asymptotic theory of differential equations and mathe

matical physies. Among "them we mention the problem of continuation of wave fields outside

their initial domain of definition (and, consequently, the investigation of stability of eompu

tational algorythms and minimizing of antenna size) in the electrodynamics, the so-called
"mother body" problem in gravity theory and geophysics, the problem of eonstructing exact
semi-classical asymptotics in quantum mechanics and others.

It seems that the most natural way of investigation of such problems is to eonstruet an
analytie continuation for a fundamental solutions to the eorresponding differential equations.
Such an investigation is exactly the main goal of the present paper.

·Until September 30, 1995.
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As a tool of investigating fundamental solutions we have chosen a notion of an elementary
solution for differential operators in complex domains introduced by the authors (see [1], [2]).
We shall show tbat a fundamental solution for differential operators can be expressed in terms
of tbe corresponding elementary solution and, hence, to investigate tbe analytic continuation
of a fundamental solution, one can use the information about the analytic properties of the
corresponding elementary solution.

Thus, the outline of the paper is as folIows:

1. In Section 1, we construct an analytic continuation of an elementary solution for

partial differential operators witb polynomial coefficients. The main result of this section
is the theorem on endless continuabilit]/ 0/ the elementary solutions for such operators,
provided that tbe velocity of propagation of singularities of solutions to tbe corresponding
differential equation is finite (see Condition 1 below). Here we describe also the singularity
set of tbe constructed elementary solution.

2. In Section 2, we investigate analytic continuations 0/ fundamental solutions to partial
differential equations. Tbe case of differential equations with constant coefI;icients is consid
ered separately, since the formulas for a fundamental solution, in this case, are more explicit.
We present here also an example of computation of a fundamental solution for thc Laplace
operator in R 3 with thc help of our formulas. The last subsection of this section contains
tbe investigation of the general case fo equations with polynomial coefficients.

1 Construction of elementary solution

In this section, we shall prove the existence of an endlessly continuable elementary solution for
a differential operator witb polynomial coefficients in the complex space C~. This resuIt will
be used in tbe next section for constructing analytic continuations of fundamental solutions

to elliptic differential equations in tbe real space.

1.1 Statement of the problem

Consider a differential operator

(1)

IThe definition of this notion the reader ean find below.
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with polynomia.l coefficients Per (x) in variables x = (Xl, ... ,xn ) E C~. Denote by

m

H (X,p) = L. Hk (x,p)
k=O

the (fulI) sym~ol of operator (1), where Hk (x,p) are homogeneous components of this sym
bol:

Hk (x, p) = L. Per (x) per •
lerl=k

The function H m (x, p) is called, a.s usual, the principal symbol of operator (1).
First of all we recall the definition of the notion of elementary solution (see [1], [2]).

Definition 1 A function G = G (x, qo, q, t), qo E C, q = (q., ... , qn) is called an elementary

solution for operator (1) if this function is a solution to the following Cauchy problem:

{ [Bt(~r-l +H(X,-/x)] G(X,qo,q,t) =0,

G(x,qo,q,O) = In (qO + qx),

qx = ql Xl + ... + qnxn, having the form

~ (qo +S (x, q, t))k
G (x, qo, q, t) = In [qO +S (x, q, t)] L.J k! ak (x, q, t)

k=O

(2)

(3)

with some regular coefficients ak(x, q, t), for small values of t. Here the function S (x, q, t) is
defined a.s a solution to the following Cauchy problem for the Hamilton-Jacobi equation:

{
as (aS) _7J[ + Hm x'ox - 0,

S(x,q,O) = qx.
(4)

Remark 1 Problem (2) has, in general, nonunique solution. However, if we require that
the solution to this problem is searched in the form (3), then the unique solution is selected.
To understand what information needed for the selection of a unique solution is contained

in representaion (3), one can rewrite (2) in the form of a Cauchy problem

{
[Bt + (~)'-m H(x, -i/x) ] G (x, qo, q, t) = 0,

G(x,qo,q,O) = ln(qo+qx),

where the function G is supposed to belong to the space Aer (~G), -1 < a < 0,

~G = {qo + S (x, q, t) = O} .

3
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(We recall [2] that the space A o (Ec) consists of functions 1 (x, qo, q, t) such that

1I (x, qo, q, t)1 $ C Iqo +S (x, q, t)I O
.)

Problem (5) has a unique solution, unlike problem (2). One shall easily verify that the
operator (a/ aqo) -1 is well-defined in the space Aa (Ec ) wi th Q' > -1 as an. operator

(
a )-1

aqo : Ar (Ea ) ~ Aa+l (EG).

Clearly, set (6) is a singularity set of the function G.

We require the following condition on the trajectories of the Hamiltonian system correspond
ing to Hamilton-Jacobi equation (4):

Condition 1 For any positive number c. and any compact set !( c C~ there exist a compact
set K' C C; such that any trajectory of the Hamiltonian system

{

. _ aHm (x,p)
x - ap ,
. __ aHm (x,p)
P- 8x'

{

xle::;;;o = Xo,

plt::;;;o = q
(7)

with the origin in the complement of K' does not intersect !( for Irl < e (here T is a
parameter along the trajectory).

Remark 2 This condition makes sense since the solution

{

X = x (xo, q, t),
p=p(xo,q,t)

determines homogeneous functions x (xo, q, t) and p (xo, q, t) fo orders 0 and 1, correspond
ingly, with respect to the following action of the group C ... :

In Subsection 1.2 below, we prove the existence of an endlessly continuable elementary
solution, and, in Subsection 1.3, we investigate singularities of the constructed solution.

1.2 Existence of an elementary solution

First of all, we recall the definition of an endlessly continuable function.
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Definition 2 The function F(x) defined in some domain of the complex plane C~ is called
to be an endlessly continuable function if for any given positive number L there exists an

analytic set Y such that F(x) can be analytically continued along any path of the length
less than L avoiding the set Y.

Roughly speeking, this definition means that the function F(x) in question can be ana
lytically continued up to a (ramifying) analytic function with analytic set of singularities on
its Riemannian surface.

The proof of the existence of an endlessly continuable elementary solution will be divided
into the two following steps:

1. First, we shall prove that there exists a positive number € such that the solution to

(2) of the form (~) exists for Itl < c, and arbitrary x and q.

2. Second, we shall globalize the obtained solution in the variable t using the so-called

step·by-step method.

Let us proceed with the first of tbe above steps. We denote by T o the degree of the
polynomial Po (x) in (1). Enlarging, if required, the numbers To, one can assume that there
exists a number k such that

for any multiindex Ci with ICiI :::; m. These enlarged numbers T o will be, as above, referred
as the degrees of the polynomials Po (x); certainly, for such a treatment to be possible, oue
should consider polynomials of degree T o with possibly vanishing principal.part.

Denote

Po (XO,x) = (Xo)r
Q

Po (:0) .
Undcr the above assumptions, thc functions Po (XO,x) are homogeneous polynomials in
(XO 1 x) of degree To. Let 9 (XO, x, qo, q, t) be tbe solution to the following Cauchy problem:

(8)

having the form

( 0 ) [ (0 )]~(qo+S(xO,X,q,t))k (0 )9 x ,x,qo,q,t = In qo +S x ,x,q,t LJ k! ak x ,x,q,t
k::;;;o

with an appropriate choice of the function S (XO, x, q, t). Tbe following affirmation is valid:
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Proposition 1 The solution 9 (XO, x, qo, q, t) to system (8) exists in a conical neighborhood

0/ any point (XO , x) /or Itl < € and arbitrary (qo, q). This solution is a homogeneous /unet ion

0/ order 0 with respect to the /ollowing action 0/ the group C.2:

..\ (qo, q, xO, x) = (..\-m~i qo, ..\-r6q, ..\xo,..\x) (9)

for any}ixed value 0/ t.

Proo/. First of all we notice, that the existence of the solution to (8) in a (non conical)
neighborhood of any point (XO, x) is proved in the book [2] (see Subsection 5.2.3 there). The
homogeneity properties with respect to the action (9) of C· of the solution to problem (8) can
be verified by the straightforward computations, and we leave the corresponding verification
to the reader. Therefore, this solution can be continued, due to the bomogeneity, into a
conical neighborhood of the point (XO, x). The proof is complete.

The globalization of the obtained solution in variables (XO, x) is quite simple. It follows
from the Heine-Borellemma if one takes into account the uniqueness of solution to problem

(8). The latter follows from the fact that this problem can be rewritten as a Cauchy problem

similar to problem (5) (see Remark 1 above).

Later on, it is quite evident that the solution to (2) can be obtained from the solution to

(8) by putting X
O = 1. Thus, we arrive at the following resu1t:

Proposition 2 Under the above assumptions there exisls a positive number e such that the

solution G (x, qo, q, t) to (2) 0/ the form (3) exists for It I < e globally in the variables (x, qo, q).

(10){ [&(~r-l +H(x,-9x)] U(x,qO,t) =0,

U (x, qo, t)lt=1" = Uo(x, qo) ,

This affirmation completes the first step of the construction of the elementary solution.
To perform the second step one should first construct a formula which gives a solution

to the problem

similar to (2) but with arbitrary Cauchy data Uo (x, qo) given at arbitrary value r of the

variable t (at leaSt for sufficiently small values of It - rl). This can be done with the help of

the above constructed elementary solution. Namely, consider the integral

( .)n ( a )n+l J
U (x, qo, t) = - 2~ öqo G (x, q~, q, t - T)lq~=.._"_"

h

x Uo(y, qo) dy 1\ aqo 1\ dq (11)

;ZOne should take into account that the solution to problem (8) must be considered modulo holomor
phic functions (this means that 9 is a hyperfunction). Under this treatment, for example, the function
In [qO +S (%0, %, qI t)] is a homogeneous function of order zero.
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over a ramifying _homology dass
h == h (x, qo, q, t) (12)

which will be defined below (here by qy we denote the sum q1yl + ... + q7ly7l). Then the
following affirmation is valid:

Proposition 3 For some concrete choice 0/ rami/ying dass (12), /onnula (11) gives a so

lution to (10) for It - 'TI < e.

Proof The fact that the function given by (11) satisfies the equation involved into prob
lem (10) is a direct consequence of the equation involved into problem (2) for G (x, qo, q, t)j
this affirmation is valid for any choice of the ramifying dass h (x, qo, q, t). Let us substitute
function (11) into the left-hand part of the initia.l condition of problem (10). We obtain

( ')7l ( a )7l+1 JU (x, qo, t)lt=T - - 2'1r 8qo G (x, qo - qo - qy, q, 0)
h

x U ( ...... ) d 1\ d.... 1\ d == n! (_i-)7l JUo(y, (jo) dy 1\ aqo 1\ dq .
o y, qo Y qo q 2 (-" ( ))7l+1

7r qo - qo +q x - Y
h

Suppose that h = ah 1 where a is the Leray coboundary homomorphism and h1 IS a
standard homology dass involved iota the integral representation

rr ( ) _ ,(_i-)7lJR Uo (y, (jo) dy 1\ aqo 1\ dq
v 0 x, qo - n. es -.. n+ 1

27r (qo - qo + q (x - y))
h

(13)

(see [2], Subsection 3.1.2). Then the initial conditions in (10) are fulfilled.
Unfortunatcly, the dass h = 6h1 cannot be lifted onto thc Riemannian surface of the

function G since any representative of this dass must encirde the singulari'ties

qo - (jo +q (x - y) = 0

of the integrand in (13) whereas the function G has the singularity of logarithmic type on
this latter set. So, we must cut a representative of oh1 along a contour which is a shift of
some representative of h1 onto 6h 1 and then glue to this cut two chains with boundaries in
the set Euo of singularities of the function Uo (y, (ja) (more detailed description of dasses of
this kind the reader can find in the above cited book [2], pp 385 • 388). Thus, we obtain the
dass

h (x, qa, q, t) E H'ln+l (c'ln+l, Euo ) ,

for which the initial conditions for Cauchy problem (10) are fulfilled.
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Up to the moment, our considerations were of the formal character, that is, we have
not paid attention to the domain of definition of integral (11) determining the required
solution to Cauchy problem (10). To complete the proof, Olle should show, that this integral
determines an analytic function in variables (x, qo, t) having only analytic singularities for
Itl < c. This follows from Condi tion 1 above.

Actually, let K be a compact set in the space C;. Then, due to the Condition 1, there
exists a ball BR of some positive radius R in the space C~ such that any trajectory originated
at any point outside B R do not intersect K for Itl < c. Now let us consider the function
Uo (y, (jo) involved into the integrand of (11) as a function defined in the set BR \ Euo (or,
more exactly, on the Riemannian surface over this set. Then, the considerations similar to
those used in the proof of Proposition 5.14 of the book [2] (see pp. 391 - 392 there) show
that for the point (x, qo, t) to be a singulari ty of integral (11) it is nesessary that there exists
some solution to the Hamiltonian system (7) coming to the point (x, qo) from some point
of any strata of aBR u Euo with the value of the parameter along the trajectory equal to t.
From the other hand, the choice of the ball BR guarantees that the trajectories of system
(7) emanated from points of the boundary strata of the set aBR u Euo (that is, of the strata
which are contained in aBR ) do not reach the compact K. Hence, the intersection of the set
of singularity of integral (11) with the set K equals the set of endpoints of the trajectories
emanated from analytic strata of tbc set E lying inside the ball BR (that is, of the points
of these trajectories corresponding to the value of the parameter equal to t), and, therefore,
this intersection is an analytic set. Since our considerations are valid for any compact set
[( C C~, it is clear that the set of singularities of integral (11) is an analytic set for It I < c
and for all values of (x, qo). This completes the proof of the Proposition.

Now we can state and prove the main assertion of this section.

Theorem 1 Under the above formulated conditions, the elementary solution for operator

(1) is an endlessly continuable analytic fu nction 0 f the variables (x, qo, q, t).

Proof. We must check that for any given positive number L there exists an analytic
set Y such that for any path of length less than L in the space with variables (x, qo, q, t)
avoiding the set Y and originated from some point of regularity of the fundamental solution
G (x, qo, q, t) with t = 0, this fundamental solution can be analytically continued along
this path. However, it is evident that, when constructing the analytic continuation of the
fundamental solution along such a path, one requires to provide the finite number of steps
in the variable t of the length €, and, therefore, the set of singularities of this continuation,
being a union of the finite number of analytic sets, is, in turn, an analytic set. This proves
the theorem.

8
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1.3 Singularities of the elementary solution

Here we give the more detailed investigation of the set of singularities of the above con
structed endlessly continuable elementary solution. To do this, we introduce the following
geometrie object connected with Hamilton-Jacobi equation (4).

Consider the space c 2(n+l ) as a contact space with the contact structure defined by
9ooZ,P,II,9

the following differential form:
dqo +p dx +y dq.

Let Lo be a Legendre manifold in this space given by the equations

{

p = q,

x = y,

qo = -qx.

This Legendre manifold can be lifted to the contact space

C 2n+3
(90 oZ ,p,~,q,t,E)

(with the structtire form dqo + pdx +y dq + E dt) by the relations

{
E = -Hm (x,p),
t = O.

(14)

This lifting will be denoted by the same letter Lo; clearly, it lyes on the zero level of the
Hamilton function

1{ (x,p, t, E) = E + Hm (x,p). (15)

Hence, the Hamiltonian flow [, of the manifold La with Hamilton function (15) is a Leg
endre manifold in contact space (14). The solution S (x, q, t) to system (4) is, evidently, a
generating function for the manifold L for small values of t. Expansion (3) for the elemen
tary solution G (x, qo, q, t) show that, at least for small values of t, the singularities of the
elementary solution coincide with the projection of the manifold L to the space c 2

(n+2 t)'r,IlO,9,

The following statement shows that this fact is aglobai one.

Theorem 2 The set EG 0/ singularities of the above constructed elementary solution lye in

the projection 0/ the manifold.c to the space C2
(n+2 t)'
r,/lO,9,

Proo! Since this fact takes place in a neighborhood of t = 0, we must prove the assertion
for iterations of the step-by-step procedure used for the construction of the elementary
solution in the previous subsection. To be short, we shall consider here only the second
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iteration; all other iterations can be considered in the same way, though the computations

are more complicated.

So, let us consider the expression for the elementary solution arising on the second step

of the step-by-step procedure. This expression reads

( .)n ( a )n+lJ
G (x,qo, q, t) = - 2'''' 8qo G (x, qo - qo - qy, q, t - T)

h

x G (y, qo, q, r) dy /\ aqo /\ aq.

The singularities of the factors under the integral sign are given by

qo - (jo - qy +S (x, q, t - T) = 0,

and

qO + S (y, q, r) = 0,

(16)

(17)

(18)

respectively. As it was shown above, the singularities of integral (16) are originated by

the analytic strata of the singularity set of the integrand. Since equations (17) and (18)
determine regular analytic manifolds, the singularities of (16) can occur only at those values

of variables (x, qo, q, t) for which manifolds (17) and (18) are tangent to each other. The

conditions of tangency between these two manifolds are

qo = qo - qy + S (x, q, t - r) l

qo = -S (y, q, T),

as ("""" )y = oq x, q, t - T ,

- as ( )q=oy y,q,T.

(19)

Since the equations of the Legendre manifold r. can be written in terms of the function S in

the form
qo = - S (x, q, t) ,

Y=*(x, q, t) , (20)

p= ~(x,q,t),

one can see that system (19) is solvable only for the values of (x, qo, q, t) lying in the projection

of the Legendre manifold r. on the space C 2
(n+2 t). This proves the theorem.
r,llO,q,

10



(21)

2 Fundamental solutions for elliptic operators

In this Section, we shall show, that for any elliptic differential operator (1) with polynomial
coefficients in the real space R~, there exists a fundamental solution which can be analytically
continued to the complex space C~ up to an endlessly continuable function. In spite of the
fact that this affirmation can be proved for general operators with polynomial coefficients,:we
present first the construction of an analytic continuation of the required type for the operators
with constant coefficients since the proof for this case gives more explicit expressions for
the continuation of a fundamental solution than that in the general case of operators with
polynomial coefficients. For the similar reason, we divide the investigation of the case of
operators with constant coefficients into two parts, investigating first the case of homogeneous
operators with constant coefficients, that is, the operators which contain 0I?-ly derivatives of
higher order.

2.1 Homogeneous operators with constant coefficients

Let

H (- ß
x

) = L a o (_!-)O
a lol=m ßx

be an elliptic homogeneous (in order of derivatives) operator with constant coefficients Po in
the real space R:. Due to the definition, this operator can be considered also as the operator
in the complex spa.ce C~, and we shall consider below this complexification. We denote by

H(p) = L aopo
lol=m

the symbol of this operator (which in this case is a homogeneous function in the variables p
of degree m and, hence, coincides with its principal symbol Hm ). To construct the analytic
continuation of a fundamental solution for this operator we need to introduce the following
auxiliary objects:

1. The submanifold

Er = {p Ipx = O}

in the complex projective space CPn-l,p'
2. The characteristic set

char H = {p IH (p) = O} C CPn-1,p'

Here p = (PI, ... , Pn) are considered as homogeneous coordinates in the space CPn-l,p'

To be short, we require that char H is a regular submanifold in CPn-l,p' This requirement
is not nesessary (see Remark 3 below).

The following statement is valid:
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Proposition 4 The mani/old E:r; is tangent to char H i/ and only i/ the point x lyes on the
characteristic cone 0/ the origin x = O. This means that

for some po E char Hand some A E C •.

Proof Let us prove first the "if" part of the proposition. Ir x - AHp (pO) for some
po E char Hand some A E C., then

where we have used the Euler equality for the homogeneous function H (p) of order m.
Hcnce, the point pO belongs to the set E:r;. Latcr on, the conormal vectors to the manifolds
E:r; and char H are given by the equalities

and

correspondi ngly. Since these two vectors are, clearly, linearly dependent, the point po is a

point of tangency between E:r; and char H.
Thc proof of the "only if" part of this proposition goes in a similar way and is left to the

reader. The proof is complete.

Now we suppose that there exists a regular point pO E char H such that the tangency
hetween E:r; and char H is quadratic (this follows from the ellipticity condi~ion, at least, for
equatio~s with real coefficients). Let us fix this valueof po and denote by xo the corresponding
value of x (so that Xo = AHp (pO) for some A i:- 0). Then, for any x elose to Xo hut lying
outside the characteristic cone }Co of tbe origin, tbe intersection

E:r; n char H

is biholomorphic to a complex quadrics in some neighborhood of the point Po. Let h(x) be

the vanishing cy~le of this quadrics:

Denote

h. (x) = 6h (x) E Hn - 2 (E:r; \ char H),

12



(22)

where c is the Leray coboundary (see [3], [4], [2]). Below we shall use also the Leray form
w (p) on the projective space CPn-t,p given by the relation

n
~ Ie-I A

W (p) = LJ (-1) Pie dpt 1\ ... 1\ dPk 1\ ... 1\ dpn,
1:=1

where the hat over tbe differential dPk means that this differential must be omitted in the
outer product.

Now we are able to write down the expression for the fundamental solution K(x):

which allows to continue it to complex values of x. Namely, let us consider tbe function
given by

K (x) = (_I)n-m-t (n - rn-I)! (i-)n-I JRes W (p) n-m
27f E~ H (p) (px)

hI(r)

"( )n-m-l ( )' ( i )n-t JR R w(p)= 27ft -1 n - m - 1. -2 es es () ( )n-m7f E~ charH H p px
h(r)

(23)

for n> m and

K(x) =
1 (i.-)n-I J (px)m-nw(p)

(m - n)! 211" H (p)
h3(r)

_ 27fi 1 (i.-) n-I J Res (px) rn-n W (p)
(m - n)! 211" charH H (p)

h2 (r)

for n ~ m. Here .the classes h2 (x) and h3 (x) are defined as follows:
Consider the exact triangle3

H. (char H)

(24)

a
H. (char H, Er) -------.,.

3 All homology is considered in a neigbborhood of the point Po"

13
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Since H. (char H) = 0, there exists a unique homology class

h2 (x) E Hn - 2 (char H, Ex)

such that 8h2 (x) = h (x). Finally, we put

h3 (x) = 6h2 (x) E H"'-1 (CPn- 1,p \ char H, Ex).

We shall prove that the function K (x) given by (23), (24) is a fundamental solution for
operator (21). First of all, the following affirmation is valid:

Proposition 5 The above defined function K (x) is a solution to the homogeneous equation

(25)

outside the characteristic cone }Co 0/ the origin. The laUer characteristic cone is exactly the

singularity set 0/ the /unction K (x).

Proo! The fact that !( (x) is a solution to (25) can be proved by straightforward compu
tations. The description of singularities of tbe function K (x) follows directIy from the Thom
theorem (see, for example, [2], [4]) if one takes into account the result of Proposition 4. The
proof is complete.

Remark 3 Ir the set char H is not a regular submanifold of the space CPn-l,,, but only a
stratified set, then, as it is shown in thc book [2], Section 5.1.8, each strata of the set char H
originates its own notion of characteristic leaves. The result of Proposition 5 remains valid
in this situation as weIl if one takes into account that the notion of tbe characteristic cone,
in this case, must be modified as described in the above cited book.

Later OD, the asymptotic behavior of the function K (x) near points of the characteristic
cone }Co can be investigated quite similar to the investigation of the asymptotic behavior of
the R-transform performed in [2], Section 3.3.2. The result is

K (x) :::: !m-i-1 (k (x)), (26)

where k (x) = 0 is the equation of K.o, and the functions fj (z) are given by the relations

{

(-I )i-1 (-j - I)! zj, j < 0,

/i (z) = zi
]f In z, j 2: 0,

for integer values of j, and by
zi

fj (z) = r (j + 1) ,

for noninteger values of j.
Summarizing .all the above considerations, we arrive at the following statement:
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Theorem 3 The function K (x - y) is a fundamental solution for the operator (21) for real

values 0/ (x, y):

H (-:x) K (x - y) = c(x - y).

This solution can be analytically continued up to the function in the space C~ x C: as an

endlessly continu'able ramifying function with singularities on the characteristic cone 1C1I of

the point y for each fixed value of the latter variable. The asymptotics 0/ this continuation

is given by formula (26).

2.2 Example: the Laplace operator in R 3

For the Laplaee operator in the spaee R 3 one has

H (p) =pi + p~ + p~

and, henee, the function K (x) is given by the integral of the form (23):

( .)n-l J ()K (x) = 27l"i ...:.. Res Res w p
21r P~ +P~+P~ ==0 E.. H (p) (px)

h(;r}

(27)

with the integrand
Res Res PI dP2 A dP3 - P2dpl 1\ dP3 + 1'3dPl A dP2

P~+P~+P~==o E.., (pi + p~ + p~) (PIX I + P2x2 + 1'3X3)

We shall eompute integral (27) in terms of the ehart PI = 1 of the projeetive spaee CP2,p. Thus, we must
eompute the expression

Res R dP2 AdP3
I+p;+p~==o Ee; (1 + P~ + P5) (xl + P2Z2 + PJx3)'

Later on, it is evident that the funetion K (x) is a homogeneous fundion of order -1 with respect to tbe
variables x. Henee, it is suffident to eompute this function, say, for x 2 = 1. Now we have

R dP2 1\ dP3 dP3 (28)
r.e: (1 + p~ + p~) (xl + 1'1 + P3x3) = p~ (1 + (x3)2) +2x1X3IJ3 + (1 + (xl )2) ,

where P3 is used as a eoordinate on the manifold E;r. Computing the residue on the manifold ehar H, we
arrive at the expression

where

X I %3 ± iJl + (x l )2 + (x3 )2

P3 =p;(x) = ( )
1 + (x3)2

are zeroes of the denominator on the right in (28). Sinee h (x) = pj"(x) - pt(x), we have

15



Finally, taking into account the homogeneity property of the function K (x), we arrive at the expression

K (x) = 1
2'KV(x1)2 + (x2)2 + (X3)2

which is in accordance with the usual expression of the fundamental solution for the Laplace operator in the

8pace R 3 .

2.3 Inhomogeneous operators with constant coefficients

Here we consider operators of the form

H (-~) = L an (_~)n
8x I I 8xn'5m

(29)

(30)

(31)

which are not homogeneous with respect of the order of differentiation but still have constant
coefficients an< In this case, the fundamental solution for the operator (29) can be written

down in terms of the Green function for the dual (with respect to the R-transform [2])

operator H (p d~)' We recall (see [2], p.292) that the function G (Po, p) is called a Green

/unction for the operator H (pd~) if it is a solution to the following Cauchy problem:

H (pik) G(Po,p) = 0,

d!"-'2G IGIPo=O = ... = d = 0,
Po po=O

r-IGI 1
dPo po=O = Hm (p)'

where Hm (p) is, as above, the homogeneous component of the symbol H (p) of operator (29)
of maximal degree m.

Now, we shall prove that a fundamental solution for thc operator (29) is given by the
formula

( .)"-1 J an-IC
[( (x) = 2~ ap~-l (px, p) w (p),

h3(r)

where h3 (p) is the above defined homology dass and w(p) is the Leray form (see (22)). First,
the following affirmation is valid:

Proposition 6 The function K (x) is a solution to the homogeneous equation

H (- :x) [( (x) = 0 (32)

outside the characteristic cone }Co 0/ the origin. The latter characteristic cone is exactly the
singularity set 0/ the /unction [( (x).

16



Proof The fact that the function K (x) is a solution to equation (32) ean be proved with
the help of the straightforward computations. Namely, we have

due to the equation involved into Cauehy problem (30). Later on, one can investigate the
singularities of the funetion G (Po, p) using the representation of this function of the form

1 Je
APo

d>"
G (Po, p) = 27i"i H (>..p) ,

C(p)

(33)

(34)

where the eontour C (p) eneircles all the zeroes of the denominator of the integrand. In par

ticular, from this formula it follows that the funetion G (Po, p) has singulari ties of univalued
eharaeter only. These singularities lye exaetly on the set char H, so the ~efinition (31) is
eorrect.

Aetually, singular points of the integrand in (33) ean be found from the following algebraie
equation of the rn-th order:

m

L >.. k 11k (p) = o.
k=o

(Here Hk(p) are homogeneous components of order k of the symbol H(p).) Tbe singularities
of (33) ean oeeur only for those values of p for which one of the roots of equation (34) tends
to infinity. This happens for Hm (p) = 0 only, so that the singularities of G (Po, p) exactly

eoincide with ehar H = {Hm (p) = O}. Later on, when p enci reIes char H, all roots of (34)
are contained uniformly in some eompaet set in C and, henee, the eODtour C(p) remains
unehanged. Therefore, all singularities of G (Po, p) are of the univalued type.

Further, the deseription of the singularity set of the funetion !( (x) given in Proposition 6
follows now from the Thom theorem. This complete the proof of the proposition.

Now we shall try to show that the funetion !( (x - y) is a fundamental solution for
the operator H (-8 j 8x). This fact ean be verified, as above, by means of computation of
asimptotie expansion of the funetion K (x) at points of the eharacteristie eone /Co. Below we
present one more method of proving this assertion.

To do this, we write down the forrnula which gives the solution to the Cauehy problem
for the operator H (-8j8x) with zero Cauehy data on some (arbitrary) manifold X whieh
is not everywhere charaeteristic in terms of the fundamental solution K (x - y):

u (x) = J1«x - y) f (y) dy,

H(x)

17
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where B (x) is a relative homology dass of the complement of the characteristic cone K,r

modulo X. Substituting the function K (x - y) in the form (31) ioto the formula (35), we

corne to the expression for u (x) in tbe form

(
. )n-1 J an-la

u (x) = 2~ Op~-l (p (x - y) ,p) f (y) dy 11 w (p).
H 1(r)

(36)

This formula coincides with formula (5.50) of the book [2) since in a neighborhood of any
nonsingular point of the initial manifold X the homology group

has oue generator, and, hence, the dass BI (x) is uniquely defined. From the other hand,
forrnula (36) gives a solution to the above mentioned Cauchy problem for any right-hand

part f (x). Therefore, for any f (x) the function given by (36) satisfies the equation

and, hence, K (x - y) is a fundamental solution for operator (29). This proves the following
,statement:

Theorem 4 The function K (x - y) is a fundamental solution for the operato~ (29) for real

values of (x, y):

H (- ;x) J( (x - y) = S(x - y).

This solution can be analytically continued up to the funetion in the space C: x C~ as an

endlessly continuable ramifying function with singularities on the characteristic cone KJI of

the point y for each fixed value of the laller variable.

2.4 Operators with polynomial coefficients

In this subsection, we shall give the proof of the existence of an endlessly continuable fun
damental solution for the general case of operators with polynomial coefficients of the form

(1). The formula for a fundamental solution in this case reads

where

( . ) n-1 J (a ) n-m
K (x, y) = 21l"i 2~ oqo G (x, qo, q, t)lqo+q.=o w(q, t),

h(r,JI)

w(q, t) = (1 - m) t dq1 1\ .•. 1\ dqn - dt 1\ w (q)

18
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is a modified Leray form (the form w (q) is given by relation (22) above) and the function
G (x, qo, q, t) is the elementary solution constructed in Section 1 above. To complete the

definition of the function K (x, y) one should give the description of the homology dass

h (x, y) involved in the definition (37) of this function. We shall first define this class for

values of x lying elose to the vertex of the characteristic cone ~JI' . We recall that the

singualrity set EG of the element~ry solution for operator (1), at least for small values of t,
is given by

Ea = {qo +S (x, q, t) = O} .

(see formula (6) above). The straightforward computations using equatlons (20) of the
Hamilton flow L show that, if x lyes on the characteristic cone K.JI , then the manifold EG is
tangent to char H at some point. Moreover, in this case, the point x lyes on the trajectory

of the Hamiltonian vector field emenated from the point y with natural parameter along this

trajectory equal to t. The set char H n Ea n {t = O} is in this case biholomorphic to the
complex quadrics, and we denote by

h(x, y) E Hn-3 (char H n Ea n {t = O} )

the vanishing dass of this quadrics. Later on, moving the variable t from zero to a value

such that char H is tangent to EG n {t = const}, we shall construct a relative homology dass

h1 (x, y) E Hn-2 (char H n EG , {t = O})

such that 8lt} (x, y) = h(x, y). Now, two successive applications of the Leray coboundary

homomorphism 0 lead us to the homology dass

h (x, y) E Hn (n \ (char H U Ea ), {t = O}) ,

where n is the quotient space of the space C~~t) modulo the action of the group C ... given by

This is exactly the homology elass used in definition (37) of the function K (x, y).
The proof of the fact that the function K (x,y) is a fundamental solution for the operator

H (x, -8/8x) goes quite similar to the corresponding proof of the previous subsection. The
only thing rest is' to prove the endless continuability of the obtained fundamental solution.

To da this, we introduce one more condition to the differential operator in question.

Condition 2 The projection of the set EG of singularities of the function G (x, qo, q, t) on

the space n is a proper mapping.
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Remark 4 This is, in essence, the exact formulation of the condition that all trajectories of
Hamiltonian system (7) are coming to infinity as t ~ 00. This follows from the description

of the singularity set EG of the elementary solution G given in Subsection 1.3.

Under this condition the proof of endless continuability of the function K (x, y) goes quite
similar to the proof of the endless continuability of the elementary solution. Thus, we arrive
at the following result:

Theorem 5 Let H (x, - f) / fJx) be a differential operator saUs/ying CondiUons 1 and 2 above.

Then there exists a fundamental solution /or this operator which can be analytically continued

up to an endlessly continuable /unction in the complex space CC:'lI)'
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