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NON-EXISTENCE RESULTS AND GROWTH PROPERTIES FOR

HARMONIC MAPS AND FORMS

Hermann Karcher and John C. Wood (¥}

1. Introduction and results

(1.1) 1In [Ll] Lemaire showed that any harmonic map from a 2-disc with
constant Dirichlet data must be constant. Non-existence results for harmonic
maps from higher dimensional discs and other domains were first obtained in
a preliminary report by the second author [WJ . Improved non-existence re-
sults for the special case of rotationally symmetric harmonic maps from
Euclidean space to a sphere have been given by Jiger and Kaul [J-K2] . Also

related are Lz

vanishing theorems given by Sealey [32] . The regularity re-
sults of Schoen and Uhlenbeck [S-U] depend on growth properties for harmonic
maps which they derived for energy minimizing maps; such growth properties
(which imply Liouville theorems) are also dealt with by Price and Simon
[P-S] . The present paper developed from [W] which, in turn, built on

[c-r-s-B] ana [s1].

We obtain non-existence results which include those of [W] under geometrical
assumptions on the domain which are weaker than those used by the above
authors. Our proof depends on an identity (2.5) for vector bundle-valued
harmonic p-forms which in the case of a rotationally symmetric harmonic map

specializes to a first integral of the radial differential equation. This

00 Work in part supported by Sonderforschungsbereich Theoretische Mathematik

at the University in Bonn.
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identity also implies growth properties (4.1) which give:

{(a) Liouville theorems (4.1.1) for domains with narrow negative curvature

bounds,

(b) an explicit estimate (4.1.2) of the energy ID Im!z of a harmonic
e
p-form ® over a small ball De in terms of the enerqgy over a fixed larger

ball. Such inequalities restrict the singularities of @ see [H-W,S-UJ .

In § 5 we show that for "equivariant” harmonic maps between discs with
certain rotationally symmetric metrics, the image of the map must lie in a
disc of a certain radius; this gives non-existence results for equivariant
harmonic maps with certain non-constant boundary values. In the case of ro-
tationally symmetric maps from a Euclidean disc to a Euclidean sphere such
results have been given by Jager and Kaul [J—KZ] . Our proof generalizes to
some other cases of equivariant harmonic maps between manifolds but the
results are somewhat technical and are therefore omitted. For some contrast-

ing existence results see [H-K-W,J-—Kl] .

'l'txfouglbut the paper let M = M® denote asmooth m-dimensional Riemannian
manifold (mostly m > 2 ); all data will be assumed smooth unless otherwise

indicated.

(1.2) To describe our non-existence results more precisely we consider the

following geometric situation

Let M, C M® be a compact submanifold of M® of codimension at least 3 -

Let '1‘r denote the tube of points of M® at a distance r from M1 .

Finally, let R be a positive number such that for all r € (O,R)

the following condition holds:



(ﬂa) min(sum of the principal curvatures of ’1‘r )

T
x

> (largest principal curvature of Tr ) .

(The sign convention is such that small spheres have positive principal curva-

tures.)

(1.3) Examples: (i) For any given M C M (#) will hold for any suf-

ficiently small R since codim M -1 principal curvatures behave as 1/r

1
as r *+ O (the other principal curvatures being bounded as r + O ).

(ii) Let M, be a point so that the Tr are the distance spheres around it.

1
Then:

If M® is the standard sphere S" , (%) holds for any R < nw/2 ;

If M° is complex (resp. quaternionic) projective space with maximum sectional
curvature =4 then the principal curvatures are 2 cot 2r with multiplicity
1 (resp. 3) and cot r with multiplicity m-2 (resp. m-4 ) [h—KJ. Hence

(¥

1) holds if (m-2)cot R > tg R (resp. > 3 tg R ) ;

If M isa simply connected non-compact symmetric space of rank 1 then
‘*i) holds for any R since the principal curvatures are constant and > O

over each distance sphere.

(i1i) Let M® be the unit sphere §® and let M, be a great sphere s™

1
of MP . The principal curvatures of the distance tubes Tr are -tan r with

multiplicity m, and cotan r with multiplicity m—l-m1 . Hence (*1) holds

for any R with (cot R)-(m-z-ml) > (tan R)m1 .

Our non-existence theorem for harmonic maps can now be stated:
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(1.4) THEOREM: In the geometric situation (1.2) let D be a domain with

smooth boundary such that (1) M, ¢ D ¢ v T, and (ii) at all points
<R

x € 3D the outer normals V of the tube T_ through x point outward

from D, i.e. <\7,n> > O where n denotes the outer normal to dD at x.

Then any smooth harmonic map ¢ : D+ N to an arbitrary smooth Riemannian

manifold N with constant Dirichlet data ¢(3D) =y ¢ N is constant. In

particular no non~-trivial homotopy class of maps (D,9D) + (N,y) has a har-

monic representative.

(1.5) Remarks: (i) Contrast the theorem with the existence results of

Hamilton and Lemaire which assert for compact smooth Riemannian manifolds
M,N with 3N = ¢ if either N has non-positive sectional curvatures [H]
or TI’2 (N) =0 and dim M = 2 [LZ] then every relative homotopy class of

mappings (M,3M) + N has a harmonic representative.

(ii) There is an analagous theorem for harmonic p-forms with values in a
Riemannian-connected vector bundle. This is formulated and proved in § 3 un-
der the stronger geometric assumption:

() min(sum of the principal curvatures of T, )

T
r

> (2p-1) (largest principal curvature of Tr ) .

This curvature assumption is similar to Sealey's [52] who has 2p instead

of 2p-1 in his Lz-vanishing theorem.

(iii) It will also be clear from the proof (§ 2) that D , instead of being

required to contain M, , may also have an "inner boundary" where the outer

1
normals of the distance tubes Tr point into D ; then zero tangential Di-
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richlet data on the outer and zero normal data on the inner boundary force

the harmonic form to be trivial.

We are grateful to A, Baldes, P. Baird, S. Hildebrandt, W. J&ger, J. Jost,
L. Lemaire, Min Oo and B. Sealey for conversations on this work. We are

especially grateful to J. Eells for much valued help and inspiration over the

years.



2. The basic identity

There will be no geometric assumptions in this section; these will only be

needed (in § 3) to draw conclusions from the basic identity.

(2.1) Let D be a domain in a smooth Riemannian manifold. We shall assume
that D has smooth boundary 3D ; however the basic identity (2.5) immedi-
ately generalizes to a domain D with non-smooth boundary provided D can
be approximated by domains with smooth boundary in such a way that the
boundary integrals converge. For example D may have piecewise smooth bounda

ry. We denote the outer unit normal along 3D by n .

For details on the following concepts see [E-LI,E—LQ] . Let E be a Rieman-
nian-connected vectorbundle over M , i.e. a real vector bundle equipped with
metric < , > and metric connection V . These have natural extensions to

E-valued forms (and other tensors):

m
~ 1 ~
<m'“)> = ——— Z <m(e seee,8 ),(I!(e reses@ )>
p! (i ').1 il ip j'1 ip

with fel,...,em} an orthonormal basis of TxM ; and for vectorfields xll---'

(Yw) (yoeeasX) = V(m(xl,...,xp)) - § m(xl,..VxJ.,..xp) )

Let D and § denote the corresponding exterior differential and codiffer-

ential operators:

- -3 X
(X0 - - - X)) E (=17 (Ty @) (X Kok

j=0 3
nf
sm(x ,-..,X) = - (V N)(e 'x ,...,X) -
2 P i=1 e, i"72 P

An E-valued p~form w is called harmonic iff it is closed (dw=0) and co-

closed (Sw=0) .



(2.2) Examples: (i) The differential d® of a smoothmap ¢ : D+ N is a
1-form with values in the pull-back bundle Q-ITN . Pull back the
metric and Levi-Civita connection from TN . Then: ¢ is a harmonic map iff

dd is a harmonic 1-form.

(ii) The shape operator S = -Un of a hypersurface H in M (unit normal
field n ) is a TH-valued 1-form. @S = O are the constant curvature Codazzi

equations and 8S = 0 if H has constant mean curvature.

(1ii) The curvature tensor R of an Einstein manifold is a 2-form with
values in the bundle of skew-symmetric endomorphisms of T ; AR = O is the

second Bianchi-identity and 6R = 0 since V Ric =0 .

(2.3) We use the following notation: Given an E-valued p-form @ , a vector

field X and an endomorphism field L , define E-valued forms QX R mL by
(2.3.1) mx(vl,...,vp_l) = m(x,vl,...,vp_l)
wL(V V) = w(LV,,V V) + + w(V s V) .
1’.-o'p 1' 2,...;p v e 1'. . p

In particular, along 3D we have the tangential and normal projections
PR : TM+ TM
PX = X -<X,n , QX) = (1-P)X ,

which are used to define

mtan(X‘

Then, for E-valu
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The "integration by parts” formula now reads as follows

(2.4) LEMMA: For any harmonic p-form ® and Cl-vector field V defined

on a domain D with smooth boundary we have

v
J' <V w,0> + <w ,w>} = ]' S>>
A {<% 3o <y .0,

Proof: ILet 2Z be the vector field representing the i-form X -+ <mv,mx> '

i.e.

<Z,X> = <mv,mx> for arbitrary X .

To compute div 2 = 2 <Ve z,ei> at x & D we may assume Ve e, = O at x
i i
to drop terms which cancel anyway. Then

div z = Ve,<mV’we >
i i

e~ e

{<(‘7e m)v,we > + <m‘7 v > + <Mv,(Ve m)e >} .
i i ei i i i

Now use <(dm)v,&> = <va,5> - Ei <(Ve m)v,&e > (note the normalization by
i ,

1

Tp-1)1 1n the case of (p-1)-forms) to obtain

R v
div 2 = <va,m> + < ,w> - <(dm)V > - <a\,,6m> ’
hence the lemma.

(2.5) PROPOSITION (The basic identity): Let @ be a harmonic p-form with

values in a Riemannian-connected vector bundle defined on a domain D in
1

M with smooth boundary. Let V be an arbitrary C° vector field on D i

let V™" denote its tangential component on 3D . Then

[ <vn> |0 2= [ v, n> |02 22 [ <
aD 3D 3D

2 Vv
o _>+[|o]‘aiv v-2[<a’" 0> =0 .
vtan' n o b !
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(2.6) COROLLARY: With hypotheses as for the above Proposition, suppose

that V can be chosen such that

2.6.1) Jo]latvv-2<w V0> > o0
X . = norm
_ with equality if and only if @ = O . Further suppose that = 0 on
the "inner boundary" i.e. the part of 9D with <V,n> < O and mtan =0

where <V,n> >0.

{1}
(o]

Then w

The growth property will follow from the basic identity by estimating the

volume integral over balls D, see §4.

(2.7) Proof of Proposition (2.5): Let D' be a domain with D' ¢ D . Let

wt : D'+ M be the flow of V , i.e. the solution to the initial value
problem g%-wt(x) = V(wt(x)), wo(x) = x . For sufficiently small ¢t ,
wtur) ¢ D . We define forms ®_ on D' by transporting @ by the flow,
viz.

(2.7.1) mt(xl,...,xp) = (wowt)(dwt(xl),...,dwt(xp)) .

The proof consists of computing é% f in two different ways,

| 2
o ! ‘tao
(a) directly using integration by parts, (b) after the change of variable
Yy = wt(x) . The difference of the two formulae thus obtained is the basic

identity.

(a) First calculation

For any point x € M and any xl,...,xp € T M set ij = d¢t(xj) . Note that
> v -
vaj 3t dmt(xj) =0 Vx V because of the symmetry of the Levi-Civita

3

connection.
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From the definition of (ut

vV ¢ t ~
3 {mt(xl,...,xp)}]t; (Tya) “(Xp,.eniX ) + WOR Xy X)) + L
hence

Vv
at “’tltao = W taw

d w
a = 2¢ .
It <mt,mt>lt 2<V,0,0> + 2<0 0>

Finally with Lemma (2.4):

d 2
(2.7.2) [ o = 2 [ <u,0>
e ot a)pr v P

x'normtz"_2 I <@ o> .

2 <V,n>
) lJ)" ro>la ap* ytan n

(b) Second calculation

2 2
g' lo |© = DJ" w00 @b, ... ap) | 2ax

1 2 -1
= Im(y)(dwt,...,dwt) o, 10 det(@b) ) dy

wt(D') wt (y) Y {y)

Now, for y ¢ \bt (D') let ei(t) be orthonormal parallel vector fields along

the curve c(t) = ‘#;1 (y) and abbreviate xi(t) = dlbt(ei(t)) € T M . Then

Y
m -1,
J lwtlz = pl—, ) loty) (x; ,...x, )lzde:(xl,....xm) -
' ¥, (D) (1) =1 1 P
]
As before we have dEE xi(t) = Ve V and therefore

i

d
a-é-dot(xl,...,xm) = det(xl,...,xm) * trace Vv

d 1 2 A4
RFZ'“‘Y”"LI"“"‘LP’I lemo = 250w iw) .
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This gives

a 2 2 2
(2.7.3) a';_g. |mt| |t,o = alf)‘ wrrlol®+2 [ «w e - [ |o|divy,

and the difference between 2.7.2 and 2.7.3 is the basic identity for D

Pinally approximate D by D'C D .
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3. Geometric conditions for non-existence results

(3.1) We proceed in two steps: In (3.2) we give conditions on the principal
curvatures of tubes around submanifolds (announced in (1.2)) which ensure th
a certain normal vector field V satisfies the positivity condition 2.6.1;
then we give in (3.5) curvature assumptions for M which imply the conditio
(3.2) for the principal curvatures of distance tubes. The resulting non-

existence theorem (3.3,3.6) repeats corollary 2.6 but is a better result he-

cause of the much more explicit assumptions.

Step 1 (compare 1.2). Let M, ¢ M be a compact submanifold of codimension

1

> 2p+i . Let Tr: denote the distance tube around M congisting of the

1

points in M at distance r from M, . lLet V= -59; be the outer unit normal

1
vector field along T . - Our method gives the best result if we choose the

vector field

VaisV with A : M+ R constant on each 'rr and satisfying

L}
%\- (r) = K(r) := largest principal curvature of T, .

(3.2) First geometric condition. lLet the principal curvatures of the tubes

T, satisfy:

H;) min(sum of principal curvatures)
T
r

> (2p-1)*(largest principal curvature of T, )
for all r , O<r <R.

3.2.1 Example: Since at least 2p principal curvatures of 'rr behave as
1
7 a8 r=*o while the remaining ones stay bounded from below (*p) is

always satisfied for R small enough.
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(3.3) Non—-existence theorem: Let lﬂ_c M be a submanifold and let R > O

be such that (3.2) is satisfied. Let D be a domain with smooth boundary

such that (i) M, c De U T and (ii) at all point x & 3D the outer nor-

1 r<R r
mal € of the tube '1‘r through x points outward from D . Then an

tan

smooth harmonic p-form @ on D for which vanishes on 4D must vanish

on D .

Proof: In view of (2.6) it suffices to show, that (3.2) implies (2.6.1).

Since V¥ ¢ = S, = shape openmator of T_ (for the inner normal - ¥ ) and
r

since WV = A+V¥ + A\*V we can compute <mvv,w> by using an orthonormal

basis of eigenvectors of VV ! Denoting the principal curvatures by ki we

have
radial eigenvalue of Vv : X + A'/A = X+ K(r) |,
tangential eigenvalues of Vv : A - ki < A K(xr) ,
div VW : X + (trace S, + AN,
and <mvv,m> < p*AcK(p) - <w,w> .

With this (2.6.1) follows trivially from (*b) .

(3.4) Curvature assumptions which imply (3.2).

(3.4.1) We start from the following basic fact: The shape operators Sr of
a family of metrically parallel hypersurfaces Tr are controlled by the curva-

ture tensor R of M via the differential equation:

v m, 3 3 .
— Er—Sr = R(.,s-;)-&:-l'sr Sr.

(Equivalently Sr can be calculated in terms of matrix solutions of the

Jacobi equation, S, = J'e J-l(r) , See e.g. {K].)
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(3.4.2) General case. For O < dim Hl < dim M one doas not have a geometri-
cally satisfactory comparison theory in terms of upper and lower curvature
bounds of . M and in terms of the shape operators of Ml . Known are explicit
estimates for Jacobi fields with linearly dependent initial conditions (i.e.
eigendirections of Sr ) which control these Jacobi fields, their derivatives
and their rotation against parallel fields [&]. These estimates cannot be
stated as comparison results with constant curvature situations and are there-
fore somewhat messy. They show however, that explicit lower bounds for a

radius R can be given such that (3.2) is satisfied.

(3.4.3) The case of distance spheres, i.e. Ml a point. For M a symmetric

space, the Jacobi equation can be solved explicitly in terms of the curvature

tensor leading to explicit values for R as in examples 1.3(ii). For
arbitrary M with curvature bounds § < M < A one has comparison estimates
for the principal curvatures of distance spheres. Denote the solution of the
initial value problem: f" +Ke*f =0 , £(0) =0 , £'(0) =1 by f = S -
Then [lc] » as long as s, (x) >0,

s& sé
(3.4.4) ;;%r) < (principal curv. of spheres of radius r in M) < ;S%r)
Now it is easy to state a curvature assumption which, in view of (3.4.4)

trivially implies (3.2) in case Ml is a point:

(3.5) Second geometric condition. Assume curvature bounds § < " <A for
M and choose R > 0 so that for 0 < r < R we have

(3.5) (m=-1) - -é{r) > (2p~1) . —éir) , (in particular s!(r) > 0O)
P S\ S5 A

(3.6) Non-existence theorem: Assume that M satisfies (3.5). Let D be

4 domain which is contained in a ball of radius R and geodesically star-
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shaped relative to the midpoint. Then any harmonic p-form w on D for

which mtan vanishes on 3D must vanish.

This is a special case of (3.3) since (3.5) implies (3.2).
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4. Growth Properties

(4.1) THEOREM: Assume (3.5) for M . Let ® be a harmonic p-form defined

on a ball D, . If § > 0 then

R
s‘s(t)zl’-1 2
— [ lol° is non-decreasing for 0 < r < R ;
sy () D,

if &8 1is arbitrary then

s5 () P71 )

— / s§ o] is non-decreasing for 0 < r <R .
D
r

s

m—
A(r)

(4.1.1) COROLLARY (Liouville type result): Let M be simply connected and
1/2

of negative curvature such that (m—l)'IAIU2 - 2p°i6| > 0 . (In particula

2

(3.5) then holds for all R .) If o is a harmonic p-form for which ID lw{
r
II/Z - 29|5I1/2)

grows slower than exp(((m-l)lA r) then ® vanishes.

Example: Consider on the dual of complex projective space (curvaturec.ﬂ4,'ﬂ
the complex structure as a (parallel) vector valued l-form. The Dirichlet int”
gral grows as exp(m°r) . The corollary forces harmonic 1-forms to vanish if

the Dirichlet integral grows slower than exp((m-5)r) .

(4.1.2) COROLLARY (Energy growth on small balls): Let & <K' <A be

curvature bounds for M . (Then there is R = R(§,A, injectivity radius) such

that (3.5) holds.) Let @ be a harmonic p-form defined on a ball Dr (r < R):

Let De (e < r) be concentric balls. Then

2 €. m-2p °1‘(r2'52) 2
[ lo|* < ) ‘e S Y ,

De Dr

1

where c, = c1(A,6,m,p,R) is an explicit constant.
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Remark: Such growth properties have, for p = 1 , been used by Hildebrandt-
Widman [H-WJ and Schoen-Uhlenbeck [S-U] to prove regularity results for
minimizing harmonic maps. Note that in (4.1.2) no minimizing property of

is assumed.

(4.2) Proof of (4.1): Pick in the basic identity (2.5) V = s (r) - :—r i

Pirst, (2.5) gives a differential inecuality

d 2 . 2
@21y vl - Zf lel? > jvl - [ {la®? - WO

Dr 3Dr

= f {lm|2div v - 2<mvv,m>}- .
D

r

Next (3.4.4) and (3.5) imply (A(x) = SG(r)))

v s S§

(4.2.2) lmlz- div V - 2< ,> > sglr) {(m=1) =(x)=(2p-1) —(r)}]mlz
- A )
s, 8
' ) ) 2
= [ss(r)' {m-1) - ;Z";g%r)-(zp'l)}]' lol© .

We insert this in (4.2.1). Note that for § > O the cxpression in [ ]—brackets
is the product of two positive non-increasing functions. Therefore we decrease
the right side of (4.2.1) further by taking these functions out of the integral

and replacing them by their value at the boundary. This gives for § >0
. s\ -

@.2.3 2 [ jol? > {@D 2@ - @p-1) 2o} [ |ol? .,

ar 5 A . s D

r r

which is the first part of (4.1).

For § arbitrary we leave the factor sé(r) under the integral and this time

get from (4.2.1/2)
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2
(4.2.4) ai‘r—g' 5&"“’|2 = si@e [ lof® >
r

81)r
) s, S.
> {@-1 ;i—(r) - (2p-1) ;i—(r)}-Df s lw|?

r
which is the second part of (4.1) (sé(r) > s&(r) > 0 is a consequence of

(3.9)).

To prove corollary (4.1.1) observe that by assumption (4.1.1) the non-

decreasing non-negative function

2p-1
ss(r) 2
__-IT-I_ f séolml has limit O for r + o
sA(r) Dr

and therefore vanishes.

To prove corollary (4.1.2) we apply Taylor's theorem to the trigonometric
and/or hyperbolic functions Sg ¢ Sy to simplify (4.2.2) before inserting
into (4.2.1) to get
a 2 m-2p o2y o 2
(4.2.5) = g' lo|* > -—;Ja (1-e,*x®) g lo]©
r r

which says that

ecle
E:m-Zp

. f lez is a non-decreasing function of ¢ ,
D
€

which is equivalent to (4.1.2).
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5. Non-existence of certain equivariant harmonic maps

{(5.1) Let M be a smooth Riemannian manifold and let r be a d” function
on M with values in an interval I . Following Baird [E], call r a gener-

alized isoparametric function if, on M¥* = M\ zero set of grad r ,

(1) the integral curves of the unit normal vector field V = grad r/lgrad r}

are geodesics,
(2) the principal curvatures are constant over each level set Ma = r-l(a) ’

(3) the differential of the projection M, - Mb along integral curves of Vv
maps the principal spaces of Ma , L.e. the eigenspaces of the shape operator
of Ma . into principal spaces of Mb . It follows [B} that |grad rl and

Ar are functions of r alone; it is sometimes convenient to reparametrize

) S

so that |grad rl

(5.2) Let r :M+I and R : N+ I be generalized isoparametric functions
on smooth Riemannian manifolds M , N . Let ¢ : M+ N be a smooth map. We

say that ¢ is equivariant with respect to r and R .i£/7;3 ¢ maps level
sets of r to level sets of R , i.e. there exists a smooth function a : I+1I
such that ae r=R° ¢ .

(2) d¢ maps normals to normals.’Then we have a reduction theorem (cf. [B,é]).

(5.3) LEMMA: Let ¢ : M+ N be a smooth map which is equivariant with
respect to gener&lized isoparametric functions r , R as above. Then ¢ |is

harmonic if and only if

(1) each map ¢_= ¢|M : M+ between level sets is harmonic,

. r Nm(r:)

{ii) a satisfies
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(5.3.1) a"(r) + (trace Sr)a'(r) = trace <su(r) ° d¢r,d¢r>

where Sr and §R are the shape operators of Ht and NR respectively.

In particular, trace <§a )o d¢r'd¢r> depends only on r .

(r
Remark: In the case that each level surface NR is a Euclidean sphere

trace <%1 y°d¢ _,d¢ > is a multiple of the energy density of d¢ _ . Thus

(x

in this case, if ¢ is harmonic, the energy density of d¢r is constant

over each level surface Mr .

Proof: Let el,...,e , V be an orthonormal frame for TM . Then

m~1

m-1 m-1
= D - D - v
T () 121 Dd¢(ei)d¢(ei) 121 d¢(Deiei) + Bag )3 (V) - AV

where D and D are the Levi-Civita covariant differentiations on M and
N respectively. But
m~1 m-1 m-1 M

r .
= J tan( e) + iZL <D_ e , WV = iZ D, e, - (trace S

1=1 e i 1 %

mil
D e
g=1 9 %

where DMr denotes the Levi-Civita connection on Mr induced from that on '

Similarly, denoting the induced inner product on TM:'D TN¢(r) by <, ?
mil - m-Z-l NR
D dp(e,) = B dd(e,) - <Soap _,ap >V
im1 d¢(ei) i i=1 d¢(ei) i T r

where DNR denotes the Levi-Civita connection on N induced from that on

R
N and V 4is the unit normal to N, . Thus, noting that DV =0,
T®) = T(P,) + (trace S)AP(V) - <s od¢r,d¢r>v + Dde)de)

The first term is tangential to Ma , the other terms are normal. Thus

(r)
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T() = 0 <=> r(¢r) = 0 and Bd¢(v)

Writing the last equation in terms of derivatives of a yields (5.3.1).

d¢ (V) + (trace S)dd (V) = <§ed¢r,d¢r>\7 .

(5.4) Now let f£f(r) be a smooth positive function on [O,b] with
é‘? f(r) = (trace Sr)f(r) . Change the variable r to a new variable
t=¢t(r) =~ f: -f—(l;__-)-dr . As r increases from O to b , t increases from

-® to O and the differential equation (5.3.1) reads, for &(t) = a(r(t)) .

2

¢

[

= £(r(t))2 <3, . oas

(5.4.1) 3 (t)

) ey -

N

at r(t

Now, if in additdion,

(iii) for each r , d¢r maps each principal space of T(Mr) to a principal

space of T(ch (r)) ., then it is possible to evaluate the right-hand side in

terms of principal curvatures of Mr and Na (r) and in certain circumstances,

by finding a first integral of (5.4.1), we can estimate the maximum distance
from O reached by the solution G(t) . As general results are too technical

to state we illustrate this in the simplest situation:

(5.5) Let M be a disc D™(b) = {x € R™: |x| < b} c¢quipped with polar

coordinates (r,8) € [o,b) X Sm—l and a smooth rotationally symmetric metric

2

dsz = dr” + h(r:)zcle2 . Then r : M+ [o,b) is a generalized isoparametric

function.

Similarly, let N be a disc Dn(B) equipped with polar coordinates

(r,0) € [0,B) x s*! and a smooth rotationally symmetric metric as? =

2 + H(R) zdez . Then R : N+ [O,B) is a generalized isoparametric function.

dr
A smooth map ¢ : Dm(b) > Dn(B) is equivariant iff it is of the form
¢(r,8) = (R(r),6(8)) , where R : [O,b) + [0,B) satisfies R(O) = O and

9 : s™1 + ™! | In the special case m=n , B(8) = 8 , such a map is rotation-



ally, symmetinic.,, ji.e. equivariant with respect t@ the action of ©(m) on

D) and DUE) . By Lempa (5.3) and the ubsecuent remark a non-congtant

smontin equivertant map B : DUG) ~ DB . Hie,d) = (R(z),0(8)) is harmoni

(@) &= S0Pl e a harmenic polyromial map, i.e. the restriction of

amep B ~ IR each compement of waich i3 a hagmonic homogeneous poly-

nomiiall of degree 4 > 1 , ard

(L) R = [@»b» - [@.,B» satisfies the ordinary differential equation

a |, et dR, _ d@m-2) @a~3 4 2
(3.6.3) ¢ xie) &) T3 hin & " m“'n(z)

We: shall zall 4 the homogeneity degree of 9 .

For paxt (i) we use the fact [B-G-M], that since its components are eigen-
fumctions on the dowain sphere, a harmonic map of conatant energy density
hetween EDuclidean spheres is a harmonic polynomial map.

(5.6) We now assume that D"(b) and D"(B) are qualitatively like a

Boclidean disc and sphere respectively: specifically we assume:

(5.6.1) the principal curvatures of the distance spheres

s, = {x ¢ ™M) : |x} = 2} of the domain are positive, i.e. the pringipal
curvature vectors of S, peint towards the origin for all r ¢ (9,b)

(5.6.2) (a) the principal curvatures of the distance spheres

~

Sp = {x € 0%B) : |x] = R} aze non-negative en (O, R.] and nen-pesitive 9
[“e"’ for some R € (0,8) ;

(b)

B
4R
{ H(R) '

[ ]
We take R to be the least number satisfying the condition (5.6.2) (@),
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Note that the principal curvatures of Sr and §R are given by

+ gr- ln h(r) and + ?1% 1n H(R) respectively so that condition (5.6.1) is

equivalent to demanding that h'(r) > 0 , and similarly for condition (5.6.2).

The condition (5.6.2) (b) may be interpreted as follows: There is a rotation-

ally symmetric conformal map ¢ of Dn(B)\{O} to the cylinder RX Sn-1

R dR
Re H(R)
L(R) + == as R+ O . The condition (5.6.2)(b) is equivalent to L(R) -+ +» as

given by (R,0) + (L(R),0) defined by setting L(R) = Note that

R+ B, i.e. the conformal map ¢ : p"(B)\ {0} + mx sn—l covers the whole

cylinder. Note also that the "radial" sectional curvatures are - . resp.
Hn

—
- .

The non-existence theorem may now be stated

(5.7) THEOREM: Let (D™(b),ds’) , (D™(B),d3%) be discs with rotationally
symmetric metrics satisfying (5.6.1) and (5.6.2).

Let ¢ : (Dm(b),dsz) + (D%(B) ,d§2) be an equivariant harmonic map of homoge~
neity degree 4 > 1 . Then there is a number Rc '3 (Re,B) depending only on
n, d and the metrics dsz ' d§2 such that the image of ¢ is contained in
the disc {y e 0" (B) : |y| < Rc}. In fact we may take R, € (R ,B) to be

the unique solution to the equation

fo ar_ _ /A@wD
r H® m-2
e

Y(h) .

b
Y(h) = sup h(r)m-z I _ﬁ.—

do .

(0,b) r hip)™!
{(5.8) Remarks: (i) It can easily be seen that, for any smooth rotationally
symmetric metric, y(h) is finite; the condition (5.6.2(b)) then ensures that

Rc exists.
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(ii) We see that Rc depends only on the metrics dsz and d§2 as

claimed.

(L1ii) If (Dm(b),dsz) is the Euclidean disc and (Dn(B),dEZ) the Buclide:

sphere (minus one point) then Y(h) =1 so that R, < 1_2r_+ sin”'tanh d(ii!;.

In fact, in the case of a rotationally symmetric map, m=n , d=1 , Jager and
Kaul lJ—KZ! show that we can take Rc = %— if m > 7 and give explicit

computer estimates for R, for other values of m . See also [Ba,E-LB] .

(5.9) Proof of the Theorem: Writing ¢(r,8) = (R(r),0(8)) , by harmonici’

R(r) satisfies (5.6.3) . As in (5.4) we change the variable r + t where

b
ta-f——m_:g_.dp

r h)®?
so that as r varies over (0,b) , t varies over (-=,0) and setting
R(t) = R(r(t)) , (5.6.3) is transformed into

2 2

a“R c 2m-4 4 2
dt2 2 h(r(t)) ﬁa (R)Iﬁ(t)

-~

where c = Yd(d+m-2)/m-2) . Note that as t + —» , :—I: = h(r(t)) - g%"‘ o -

No confusion will arise if we now write R for R . Multiplying by 2(dRr/dt

and integrating we have for any t, r t, the energy equation
(5.9.1) IR (¢ 132 - (R (e )}2 - &2 fZ h(r(e)) 204 a’ dR ..
U at ‘-2 dt "1 drR dt = °

&
If the solution R(t) does not reach R = Re there is nothing to prove,
otherwise let t €& (-2,t,) be the least value of t with R(t) =R, and
let t, € [te,O) be the least value of t at which dR/dt changes sign ~

if there is no such value, set t, = O . Using the facts that h(r(t)) 1is
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an increasing function of t and that by (5.6.2) (a) (dHZ/dR)R(t) is non-

negative for t € (-“’,te] and non-positive for t ¢ [te,tm] , we have that

for all t € (-ﬂ',tm] :

t 2
dR, 2 2 2m-4 ol
@ < reEe ™ [

|G
[o}]
(2

- czh(t(te))zm-452(n(t)) )

Dividing by HZ (R(t)) , taking the square root and integrating from te to

tm we obtain

Rt )
dR m-2
‘E—(—R—)— < ¢ h(r(te)) '(tm"te) _<_ c Y(h) .
R(t )
e
To finish the proof we have to show that R(t) < R(tm) for all t , i.e. any
subsequent maximum of R(t) is of the same or lesser magnitude. But for a

subsequent maximum tl; , we have from the energy equation (5.9.1),

cl
m 2
2m~4 38" dR
jt h(r(t)) - 5e ot 0.
m

Since h(r(t)) is increasing, it can be shown that R(tl;‘) < R(tm) . Thus

R(t) < R(t) for all t € (-,0) and the proof is complete.

(5.10) Remarks: (1) The theorem applies under the same conditions to equi-
variant harmonic maps from an annulus (Dm(b)\Dlll (b*) ,dsz) (0<Db'<Db) under
the additional hypothesis that ¢ has zero normal derivative on the inner

boundary 3D"(b') (cf. Remarks {1.5)).

(2) (Suggested by L. Lemaire) Let N be a rotation symmetric “dumbbell"

made of two equal spheres of the same dimension with holes removed joined
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together smoothly by a tube. Choose the holes to have radius

< '—2"-— s:l.n.1 tanh (/m-1) . Then there exists no rotationally symmetric har-

monic map from the Buclidean m—-sphere to the dumbbell. For the restriction

of such a map to one of the hemispheres would have image coverinq a disc of

radius > g"" sin-l tanh vm-1 contradicting the Theorem.
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