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D-AFFINITY AND RATIONAL VARIETIES

DMITRIY RUMYNIN

Abstract. We investigate geometry of D-affine varieties. Our
main result is that a D-affine uniformly rational projective variety
over an algebraically closed field of zero characteristic is a gener-
alised flag variety of a reductive group. This is a partially converse
statement for Beilinson-Bernstein Localisation Theorem.

Let us consider a connected smooth projective algebraic variety X
over an algebraically closed field K of characteristic zero. By G/P we
denote the generalised flag variety of a reductive algebraic group G.

Beilinson-Bernstein Localisation Theorem ([2] for G/B, [11,
Th. 3.7] for G/P ): If X ∼= G/P , then X is D-affine.

It is a long-standing problem whether the converse statement holds
or there are other smooth projective D-affine varieties (weighted pro-
jective spaces are D-affine but singular [22]). The converse statement is
known for toric varieties [21] and homogeneous varieties [8]. Our main
result is the converse statement for the uniformly rational varieties:
essentially classifying D-affine projective varieties:

Main Theorem: If X is D-affine and uniformly rational, then X ∼=
G/P .

In fact, we aim to cover the most general D-affine varieties with
various intermediate statements. In particular, many results work in
the positive characteristic as well. The reader should be aware that it
is not known which of the partial flag varieties are D-affine in positive
characteristic. Some of them are known to be D-affine: projective
spaces [7], G/B in types A2 [7] and B2 [1, 19], quadrics [17]. On the
other hand, the grassmannian Gr(2, 5) is not D-affine [16].

There are further notions of D-affinity in positive characteristic when
instead of Grothendieck differential operators, either small differential
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D-AFFINITY AND RATIONAL VARIETIES 2

operators [10, 13, 14, 20] or crystalline differential operators [3, 4] are
studied. These are not covered by the present paper, although some of
our methods may prove useful for these unusual differential operators.

Let us explain the context of the paper section-by-section. In Sec-
tion 1 we define D-affine varieties and make general observations about
them and quasicoherent sheaves on varieties.

In Section 2 we study divisors on D-affine varieties. The main result
is Theorem 6, a positivity statement about effective Cartier divisors.
We use it to study D-affine surfaces in this section. We also prove
Theorem 8, a key technical result about complete intersections on a
D-affine variety.

Section 3 is the heart of the paper, devoted to rational varieties. Here
we prove Theorem 10, the key statement about the tangent sheaf of a
D-affine uniformly rational variety. It would be interesting to prove it
without rationality assumption. This would give the full converse of
Beilinson-Bernstein Localisation Theorem.

The final section (Section 4) finishes the proof of the main theorem
(Theorem 12) by extending Corollary 11 from complex numbers to
an algebraically closed field of zero characteristic. Such extensions of
results are known as Lefschetz Principle, but we need to fill the details.

1. Preliminaries

Pushing for greater generality of some of our results, we will work
over three algebraically closed field: the complex numbers C, a field K
of characteristic zero and a field F of arbitrary characteristic.

Let X be an algebraic variety over F, OX– Qcoh its category of quasi-
coherent sheaves. We say a quasicoherent sheaf F on X is affine if F is
generated by global sections (i.e., the natural map OX �Γ(X,F)→ F
is surjective) and all the higher cohomology vanish (i.e., Hn(X,F) = 0
for all n > 0).

Let DX be the sheaf of Grothendieck differential operators, D(X) =
Γ(DX) its global sections. We consider the category of quasicoherent
DX-modules DX– Qcoh (i.e., sheaves of DX-modules, quasicoherent as
OX-modules). The variety X is called D-affine if

• Γ : DX– Qcoh→ D(X)– Mod is exact,
• if F ∈ DX– Qcoh and Γ(F) ∼= 0, then F ∼= 0.

Lemma 1. [12, 15] The following statements (where statement (4)
requires X to be quasiprojective with an ample line bundle L) about an
algebraic variety X over F are equivalent:

(1) X is D-affine.
(2) Γ : DX– Qcoh→ D(X)– Mod is an equivalence.



D-AFFINITY AND RATIONAL VARIETIES 3

(3) Each sheaf F ∈ DX– Qcoh is affine.
(4) There exists N > 0 such that the following two statements hold

for all n > N :
(a) DX(−n) = DX ⊗OX

L−n⊗ is generated by global sections,
(b) the map Γ(DX(−n))⊗K Γ(Ln⊗)→ Γ(DX) is surjective.

The following lemma is straightforward, so we skip a proof:

Lemma 2. Let F ,F ′ ∈ OX– Qcoh be generated by global sections.

(1) If G ∈ OX– Qcoh is a quotient of F , then G is generated by
global sections.

(2) If Y ⊆ X is a closed subscheme, then F|Y is generated by global
sections.

(3) If 0 → F ′ → G → F → 0 is an exact sequence in OX– Qcoh,
then G is generated by global sections.

The third lemma is easy but contains not so well-known terminology,
hence, we give a proof.

Lemma 3. Let F ∈ OX– Qcoh be normal in the sense of Barth. If for
each p ∈ X there exists an open neighbourhood p ∈ U ⊆ X such that
X \ U is of codimension at least two and F|U is generated by global
sections, then F is generated by global sections.

Proof. Let F = FX(X). Consider an open U ⊆ X with X \ U is of
codimension at least two. Normality means that the restriction map
F = F(X)→ F(U) is an isomorphism [9, p. 126].

Let Y be the support of the cokernel of the natural map γ : OX�F →
F . Generation of F|U by global sections means that U ∩ Y = ∅. Our
condition means that no point p belongs to Y . Hence, Y = ∅ and γ is
surjective. �

The following well-known observation is sufficient for our ends. We
believe that it is true for singular varieties as well: it should follow
from the description of DX as the dual OX |F-algebra of the algebroid
of functions on the formal neighbourhood of the diagonal X → X ×X
[18, 2.4].

Lemma 4. If X and Y are smooth varieties over F, then the natural
map ϕX,Y : DX � DY → DX×Y is an isomorphism of sheaves of F-
algebras on X × Y .

It is interesting whether the quasiprojectivty assumption is necessary
in the next lemma.
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Lemma 5. If X and Y are D-affine quasiprojective varieties over F
such the map ϕX,Y from Lemma 4 is an isomorphism, then any open
subset U ⊆ X × Y is a D-affine variety.

Proof. Decompose the global sections as a composition of functors

Γ : DX×Y – Qcoh
(X×Y→X)∗−−−−−−−→ (D(X) �DY )– Qcoh

Γ−→ D(X × Y )– Mod.

The assumed tensor product decomposition together with D-affinity of
X and Y imply that both functors are equivalences. Hence, X × Y is
a D-affine variety

Finally, U is D-affine by criterion (4) in Lemma 1. �

2. Divisors

We go straight to the main result of this section.

Theorem 6. Let X be an irreducible D-affine algebraic variety over F.
The following statements hold for an effective Cartier divisor Y ⊂ X:

(1) there exists a rational function f ∈ K(X) such that Y = divzer(f),
(2) the normal sheaf NY is generated by global sections.

Proof. Let U := X \ Y be the open complement and j : U ↪→ X its
embedding. Observe that j∗(OU) = OY (∗X) is a DX-submodule of the
sheafMX of rational functions. On an open subset V ⊆ X (from some
cover of X) the divisor Y is defined by a single function h. Hence,

j∗(OU)(V ) = OY (∗X)(V ) = { f
hn
| f ∈ OX(V )} .

Let us verify that d(OY (∗X)(V )) ⊆ OY (∗X)(V ) by induction on the
order m of a differential operator d ∈ DX(V ).

The statement is clear of m = 0. Suppose it is known for differential
operators of order less than m. Since [d, h] is of order less than m,

[d, h](
f

hn
) =

g

hk

for some g ∈ OY (V ) and an integer k. Opening the left side, we get a
formula that permits an internal induction loop on n:

d(
f

hn
) =

1

h
d(

f

hn−1
)− g

hk+1
.

The sheaf of algebras A = j∗(OU) is D-module, so generated by
global sections. It is filtered byAn = OX(nY ) = {f | div(f)+nY ≥ 0}.
The global sections An = Γ(X,An) define a filtration of the algebra
A = Γ(X, j∗(OU)).

Pick the smallest n such that An 6= A0 and some h ∈ An \ A0.
If e ∈ OX(Y )(V ) a non-constant local section, then ordY (e) = −1.
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Since A is generated by global sections, e = g0 · 1 + g1h1 + . . . where
gi ∈ OX(V ), hi ∈ Aki with ki ≥ n. Since ordY (g0 ·1+g1h1 + . . .) ≤ −n,
it follows that n = 1.

(1) Let f = h−1. Clearly, Y = divpol(h) = divzer(f).
(2) As we have seen, f ∈ A1. Moreover, the two functions f , f + 1

generate the invertible sheaf A1 = OX(Y ) because at each point of U
one of them is non-zero. Observe that we have the standard sequence
of OX-modules

0→ OX → OX(Y )→ NY |X → 0

without any further restrictions on Y (such as smoothness). Indeed,
pick an affine open U with R = OX(U). Defining Y as zeroes of g ∈ R,

(OX(Y )/OX)|U = Rg−1/R, N ∗Y |X |U = Rg/Rg2.

The multiplication gives a perfect R/Rg-module pairing

Rg−1/R×Rg/Rg2 → R/Rg, (ag−1 +R, bg +Rg2) 7→ ab+Rg

that yields the isomorphism

(OX(Y )/OX)|U = Rg−1/R
∼=−→ homR(Rg/Rg2, R/Rg) = NY |X |U .

By Lemma 2, NY |X is generated by global sections. Hence, so is its
restriction NY = (NY |X)|X . �

We can derive some geometric consequences of D-affinity as soon
as we can exhibit some interesting DX-modules. For example, OX is a
DX-module, thus, if X is complete, we know some of its Hodge numbers

h0,0(X) = 1, h0,m(X) = 0 for m > 0.

For a smooth projective surface X this means that pa = pg = 0. The-
orem 6 implies that the surface is minimal in a strong sense: Y 2 ≥ 0
for any curve Y ⊆ X. Moreover,

c2(X) = 2 + h2,2(X), c2
1(X) = 10− h2,2(X), 1 ≤ h2,2(X) ≤ 10.

It would be interesting to classify minimal models with such numerical
invariants that do not have any negative curves. Any example not
covered by Corollary 7 is potentially D-affine, disproving the converse
statement for Beilinson-Bernstein Theorem.

Notice that the next corollary does not follow from Theorem 12 be-
cause it covers any characteristic:

Corollary 7. A rational smooth connected projective D-affine surface
over F is isomorphic to either P 2 or P 1 × P 1.
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Proof. A minimal smooth rational surface is either P 2 or the Hirzebruch
surface Hn, n ≥ 0. Since Hn contains an irreducible curve C with
C2 = −n, we conclude that n = 0. Finally, H0

∼= P 1 × P 1. �

Given an arbitrary closed subvariety Z ⊆ X, we can produce some
DX-modules supported on Z, for instance, functions on the formal
neighbourhood of Z or local cohomology sheaves Hn

Y (F) where F is
an DX-module, e.g., F = OX or F = DX(m). It would be interesting
to analyse how affinity of these sheaves affects geometry of X. The
following observation is an example of such analysis:

Theorem 8. If a smooth subvariety Z ⊂ X is a scheme-theoretic
complete intersection of effective Cartier divisors in an irreducible D-
affine variety X over F, then the normal sheaf NZ is generated by global
sections.

Proof. Let Z be the scheme-theoretic intersection of effective Cartier
divisors Y1, . . . Yn. Define partial scheme-theoretic intersections Zm :=
∩m

k=1Yk. Restrict all the sheaves of interest to Z:

Fk := NYk⊂X |Z , Gk := NZk⊂X |Z , Hk := NZk⊂Zk−1
|Z .

The sheaves Fk are generated by global sections by a combination of
Theorem 6 and Lemma 2.

The key observation is that Hk
∼= Fk under our assumptions. Both

sheaves are subsheaves of (N ∗Yk⊂X |Z)∗. It is a local question to compare
them. Let A = OX,(p) be the local ring for some p ∈ Z. The subschemes
Yk ⊇ Z are locally defined by ideal I ⊆ K � A so that OYk,(p) = A/I
and B := OZ,(p) = A/K and

N ∗Yk⊂X,(p) =
I

I2
, N ∗Yk⊂X |Z,(p) =

I

I2
⊗A B ∼=

I/I2

(I/I2)K
=

I/I2

IK/I2
∼=

I

IK

where the former is an A/I-module and the latter is a B-module. Now

(N ∗Yk⊂X |Z)∗(p)
∼= homB(

I

IK
,B) = homA(

I

IK
,B) ⊆ homA(

I

I2
, B),

but the last inclusion is actually equality: f ∈ homA(I/I2, B) defines

a map f̃ : I → B such that f̃(IK) ⊆ f̃(I)K = 0. On the other hand,

Fk,(p) = (
I

I2
)∗ ⊗A B ∼= homA(

I

I2
, A)⊗A homA(A,B).

In these presentations the natural map γ : Fk,(p) → (N ∗Yk⊂X |Z)∗(p) be-
comes the composition

γ : homA(
I

I2
, A)⊗A homA(A,B) −→ homA(

I

I2
, B).
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Observe that the point p is smooth not only in Z but also in Yk. Indeed,
if it were not smooth, then dimTpYk = dimX > dimYk. Intersecting
with one of Yj, j 6= k can bring down dimension by at most 1. This
would mean that dimTpZ > dimZ, contradicting smoothness of Z.

Smoothness of p in Yk implies that I/I2 is a projective A-module.
This ensures that the map γ is an isomorphism.

Let J �A be the ideal that defines Zk−1 near p. Then I + J defines
Zk so that OZk−1,(p) = A/J and OZk,(p) = A/(I + J). Moreover,

N ∗Zk⊂Zk−1,(p) =
(I + J)/J

((I + J)/J)2
=

(I + J)/J

(I2 + J)/J
∼=

I + J

I2 + J
∼=

I

I2 + I ∩ J
.

The scheme-theoretic complete intersection property implies that the
intersection of Zk−1 and Yk is pure so that I ∩ J = IJ . Thus,

N ∗Zk⊂Zk−1,(p)
∼=

I

I2 + IJ
=

I

I(I + J)
.

Using this,

NZk⊂Zk−1,(p)
∼= homA(

I

I(I + J)
,

A

I + J
) ⊆ homA(

I

I2
,

A

I + J
)

and the inclusion is an equality by the same argument as earlier in this
proof. Hence,

Hk,(p)
∼= homA(

I

I2
,

A

I + J
)⊗AB ∼= homA(

I

I2
,

A

I + J
)⊗AhomA(

A

I + J
,B).

The natural map δ : Hk,(p) → (N ∗Yk⊂X |Z)∗(p) becomes the composition

δ : homA(
I

I2
,

A

I + J
)⊗A homA(

A

I + J
,B) −→ homA(

I

I2
, B)

as earlier in the proof. The argument as before allows as to conclude
that p is smooth in Zk and δ is an isomorphism.

Finally, let us proceed by induction on k to prove that all Gk are
generated by global sections. We would be done at the end of induction
since NX = Gn.

If k = 1, then Z1 = Y1 and G1 = F1 is generated by global sections.
Now suppose that k > 1 and we have proved that Gk−1 is generated

by global sections. The embedding Zk ⊆ Zk−1 ⊂ X leads to an exact
sequence of OZ-modules:

0→ Hk → Gk → Gk−1 → 0.

Since Hk
∼= Fk is generated by global sections, Lemma 2 leads to the

conclusion that Gk is generated by global sections. �
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3. Rationality

Let X be an irreducible algebraic variety over F, p ∈ X a factorial
point, which means that the local ring OX,(p) is a unique factorisation
domain. Let Ip be its maximal ideal. Since F(X) is the quotient field
of OX,(p), we can represent each non-zero rational function h uniquely
(up to scalars) as h = f/g, with coprime f, g ∈ OX,(p). This controls
the interaction of p and h:

• p ∈ divzer(h)⇐⇒ f ∈ Ip,
• h(p) = 0⇐⇒ g = 1, f ∈ Ip,
• p ∈ divpol(h)⇐⇒ g ∈ Ip,
• h has a pole at p⇐⇒ f = 1, g ∈ Ip,
• h is not determined at p⇐⇒ f, g ∈ Ip.

Associated to h, we have two open loci in X:

Xsm
h = {p ∈ Xdet

h |h is smooth at p} ⊆ Xdet
h = {p ∈ X|¬(f, g ∈ Ip)}.

The determinacy locus Xdet
h contains all the points where h(p) can be

assigned a value in F∪ {∞}. Its complement, the indeterminacy locus
X ind

h := X \Xdet
h is a closed set of codimension at least 2. The singular

locus Xsing
h := X \Xsm

h is a closed set of codimension at least 1.
Recall that a uniformly rational variety is a connected variety where

every point admits an open neighbourhood, isomorphic to an open sub-
set of an affine space [5]. Note that this condition implies smoothness.
It is a problem stated by Gromov [6] whether any smooth rational va-
riety is uniformly rational. To the best of our knowledge, the problem
is still open.

Proposition 9. Let X be a uniformly rational quasiprojective variety,
p ∈ X its point, δ : X → X2 the diagonal embedding. There exist non-
empty open set U ⊆ X such that p ∈ U , the complement X \ U has a
codimension at least 2 and δ : U → U2 is a scheme-theoretic complete
intersection.

Proof. Uniform rationality implies that OX,(p) = F[f1, . . . fn](f1,...,fn),
the localisation of the polynomials at the maximal ideal. Then F(X) =
F(f1, . . . fn). Define U := ∩kXdet

fk
.

We claim that all functions fi are smooth at any q ∈ U . Indeed,
let Iq be be the maximal ideal of OX,(q). If fi(q) ∈ F, let hi = fi −
fi(q). If fi(q) = ∞, let hi = 1/fi. Clearly, p ∈ U , U = ∩kXdet

hk
, and

h1, . . . hn ∈ Iq. It follows that OX,(q) ⊇ F[h1, . . . hn](h1,...,hn). Moreover,
these two local rings are isomorphic and have the same quotient field
F(X). Hence,

OX,(q) = F[h1, . . . hn](h1,...,hn),
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which is clear because a further localisation will change the isomor-
phism class of this ring, e.g., it will change the dimensions of Jm/Jm+1

where J is the maximal ideal. It follows that the differentials dqh1, . . . , dqhn
form a basis of the cotangent space TqX = Iq/I

2
q . Hence, so are the

differentials dqf1, . . . , dqfn The claim is proved.
Observe that F(U2) = F(X2) is the quotient field of F(X)⊗F F(X).

Let gk = fk ⊗ 1− 1⊗ fk ∈ F(X2). Since X is quasiprojective, any two
points q 6= s ∈ X lie on the same open affine subset, thus, OX,(q) 6=
OX,(s). It follows that the functions fk separate points of U and U
is a set-theoretic complete intersection of Yk = divzer(gk) ⊆ U2, k =
1, . . . , n.

Moreover, U is a scheme-theoretic complete intersection of Yk as fol-
lows from smoothness of U (X is assumed to be smooth) and smooth-
ness of each Yk at any diagonal point (s, s) ∈ U2 (that follows from the
differentials d(s,s)gk being surjective). �

We are ready for the main result of the section.

Theorem 10. If X is a D-affine uniformly rational quasiprojective
variety over F, then the tangent sheaf TX is generated by global sections.

Proof. Let U ⊆ V be as in Proposition 9, in particular, U is a smooth
scheme-theoretic complete intersection. By Lemma 5, V is D-affine. By
Theorem 8, NU⊆V is generated by global sections. Clearly, NU⊆V =
NX⊆X2|U . Moreover, it is a locally free coherent sheaf, consequently,
reflexive and normal in the sense of Barth. Thus, Lemma 3 implies
that TX ∼= NX⊆X2 is generated by global sections. �

The final corollary immediately follows, thanks to [8, Th. 2]:

Corollary 11. If X is a D-affine uniformly rational projective variety
over C, then X is a generalised flag variety.

4. Lefschetz Principle

Lefschetz Principle is a metatheorem that if a statement about al-
gebraic varieties over C should also hold for algebraic varieties over
K. It is true on the nose for first-order statements. It is not clear to
us whether Corollary 11 is a first order statement, yet we can push it
through to K:

Theorem 12. Suppose X is a uniformly rational projective D-affine
variety over an algebraically closed field K of characteristic zero. Then
X is isomorphic to a generalised flag variety.
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Proof. We will construct fields A ≤ B ≤ E ≤ K, E ≤ C and a form
XA of X over A throughout the proof that will let us to push all the
statements through. We can do it because the statements depend on
finitely many field elements.

Embed X into a projective space. Let A be the field obtained by
adding to Q all coefficients of the equations defining X and all coeffi-
cients of the rational functions f1, . . . fn such that K(X) = K(f1, . . . fn)
as well as all coefficients that appear in isomorphisms between affine
subsets of some finite affine cover ofX and open subsets in affine spaces.
This yields a form XA, which is a uniformly rational projective variety.

Choose a basis ei of Γ(TX) and a finite affine cover XA = ∪jUj.
Express each ei|(Uj)K as a K-linear combination of some sections from
TXA(Uj). Let B be the field obtained by adding all coefficients of these
linear combinations to A. Notice that TX is generated by global sections
by Theorem 10. Then XB := (XA)B is a uniformly rational form of X
such that TXB is generated by global sections.

Consider the Lie algebra of global sections gB := Γ(TXB). Choose a
finite extension E ≥ B such that the semisimple part gB/rad(gB) splits
over E. Then XE := (XB)E is a form of X with all desired properties.

Since E is a finite extension of Q, it admits an embedding E ↪→ C.
Fix such an embedding and consider the complex algebraic variety
XC := (XE)C. It has the same Hodge number as X, in particular,
h0,m(XC) = 0 for m > 0. Its tangent sheaf is generated by global
sections. Hence, the proof of [8, Th. 2] carries through. We conclude
that XC is a generalised flag variety G/P with G acting faithfully.
Then the Lie gC := Γ(TXC) is isomorphic to Lie(G) and, in particular,
semisimple.

Since gC ∼= gE⊗EC, the Lie algebra gE is also semisimple. Since gE is
split, it is spanned by nilpotent elements. Exponentiation of nilpotent
elements of gE gives a family of automorphisms of XE. This family
defines an action of the split semisimple group GE because all relations
(defining for GE) can be verified in the action on XC. It follows that
XE is a generalised flag variety, and so is X. �
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