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ON THE CHARACTERISTIC FUNCTION OF A STRICTLY

CONVEX DOMAIN AND THE FUBINI-PICK INVARIANT

Takeshi SASAKI

Introduction.

This paper is a continuation of the author's note [6] on

the characteristic function and the associated differential equa-

tion defined on a strictly convex bounded domain in the euclidean

space Rn. We denote. such a domain by n and assume that the

boundary an is smooth. Let n* be the dual domain of n
defined as the set int{~ ERn; 1 +<x,~> ~ 0, xEr2}, <,> being

the inner product. It is also a strictly convex domain and pro­

jecitvely equivalent to a bounded domain. Then the- characteristic

function Xn 1s defined by

(0.1) X\l(x) = L*nl (1+<x,;»-n-1 d;
n

It tends to infinity at the boundary. By the associated,differen­

tial equation we mean an equation of Monge-Ampere type defined by

(0.2)

(-u) n + 2 det (u .. ) = 1
~J

u Ian = 0

on

The unique existence of a convex solution u, i.e. u < 0 and

(u .. ) > 0, is known by S. Y. Cheng and S. T. Yau [2].lJ

The purpose of this paper is to give a relation between

these functions \, and u. The resul t is

Theorem. There e:::ists a smooth funation F on ~ such that

-n-1 5 2
JQ:::: cu (1 + 24 (n-1) Fu + (higher order of u))
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where c is a constant depending on n. The bowzdary vaZue of F is the

Fubini-Pick cubic invariant of the boundary.

From this theorem follows

Corollary 2 [1]. Asswne "the projective automorphi.sm group is noncompact.

Then.it is an.eZZipsoid.

We will define·in §1 an approximate solution of (0.2). The

process is very similar to that shown in [3]. r'n.;§2 we will give

an expansion of X with respeet to u, where eoefficients are

computable by use ·of loeal geometrie data of the boundary. In §3

we will explieitly compute the first non-trivial coefficient and

prove Theorem.

Let us remark that the theorem 1s areal analogoue of the

deep result due to C. Fefferman [4] on the Bergman kernel fune­

tion on a strongly pseudoeonvex domain. As was shown in [6], the

equation (0.2) for the domain Q is a restrietion in simple way

~f a complex Mange-Ampere equatian defined on the tube damain

V + iRn+ 1, where V is the non-degenerate convex cone over the

domain Q • Note that a tube domain is not generally strongly

pseudoconvex. It is easy to see that the expansion (2.4) given

in §2 implies the expansion of the Bergman kernal function of
v

this tube domain outside its Silov boundary V + i{ O} with

respect to the solution of this complex equation. However to
give a geometrie interpretation of this expansion is an open

problem.

This paper. is written while the author is staying in the

Max-Planck-Institut für Mathematik, to which he is very grate­

ful for the hospitality given to hirn.
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§1. Approximate solutions.

We first modify the equation (0.2) introducing an operator

./

(1 • 1 )

v .. v.
J.J l.

I" (-1-2v) =K(v) =
v. 2

J v

for a negative function v. Then the equation (0.2) is equi­

valent to the equation

(# )

= 1

= 0

on n,

We next fix a smooth defining function rp of the domain

n : n = {rp < O} and (~ij) > 0, d~ ~ 0 on the boundary.

By (1.1) we have

K(<P) = (L<pijep.<P.) det(<p .. ) + 0(1))
1. J J.J

where (<P ij.) is the inverse matrix of (1)ij) This shows

K(ep) is positive at the boundary. Since <p satisfies the

Dirichlet condition of (#) , the solution v may be supposed

to be a slight modification of ep. We put

( 1 • 2 ) w = fq,
1

for an undeterrnined function f. Then

( 1 • 3 ) -lf<p .. +f,q,. +f.ep. +f. ,41
1J 1. J ] 1 1J

f tfJ·+ f .1>
] ]

fep. +f.<p
1 1

2ftP



=

-4

f<p .. +f .. 4>
J.] ~J

f<p. -f.q,
~ ~

f<p. - f.<p 2f<p
J J

= fn + 1K (cf» + O( 4» •

If we define f by

(1.4) f = K(4)) -1/n+1 ,

then w, satisfies

ready obtained w
5

K(w,) = 1+0(4)) •

with the property

Assume here we have al-

(' • 5 ) = f cf>s and

f s being srnooth and positive near th~ boundary. Let us put

( ) s+ 1w = w + g ws+1 s 5

and compute K(w s + 1 ) . Denote Ws by w . Then

s
]~w. . + ( 5 +1 ) w (g. w . +g .w. )

~J 1. J J 1.

s+1 5-1
+ g. .w + 5 ( s +1 ) gw . w .W

1.J ~ J

5+1Lw. + g.w
J. J.

S+'2 (w+gw )

where L = 1 + (s+1)gwS , which is invertible near the boundary.

Hence

-1 f 5w·,. +L - (s+1)w (g.w.+g.w,)
lJ L l J J l

s-1 }+ s(s+1)gw w.w.
l J

w,
J

. s+ 1
() (\'1 )
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Hence, b~ the assumption (1.5) for w =

s s+1K(ws + 1 ) = K(w) + (5+1) (n+1-2s)gw + O(w ).

Now define

( 1 • 6 )

9

9 =

by

1 - K(w)

(5+1) (n+1-2s)wS

unless n+1-2s ~ O. Then (1.5) also holds for ws + 1 . This

argument shows

Proposition 1.

a) Assl,une n is even. Then t for any 5 ~ 1 t there e:::ists a funation w

with the property (1.5).

b) Assume n is odd. Then there exists a funation w with the property

(1.5) for s~, (n+1)/2.

We call this w an appro:::imate so Lution of (#). Let

v be a unique convex solution of (#) By the convexity

( 1 • 7) v = gep near

for some pos i tive function g.

w satisfies

Assurne an approximate solution

for some k ~ 1 and K(w) =

Then the similar computation as above shows

{
-1 k-l} kK (w) = 1 + k (n + 3- 2k) hg l4J K (v) + 0 (~ )
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'Since this 1s equal to 1 +0 (eps) , h =0 ($s+1-k) when

k - 1 < 5 and n+3-2k'" o. Therefore

Proposition 2.

a) Asswne n is even". Then, for any S

80 lution w satisgying w = v + 0 (rt> s)

b) Assume n is odd. Then there exists an approximate solution w satis­
fying w = v + O(ep (n+3) /2) •

The process defining w is dependent on the choice of ~.

But this proposition implies that it i5 determined uniquely up to

the ambiguity of order 0($5) er O($(n+3)/2)

Problem 1. Is the": so lution

is even (resp. odd) ?

u smooth of class Coo(resp. cn+1/ 2) if n

§2. The characteristic function of a strictly

cenvex domain.

The characteristic function XQ is defined in Introduc­

tion. We introduce another function which we call the kernel

function by

(2 • 1 ) f (2n+1)! {1+<x,~»-2n-2 X *(E;)-1 d~
Q* ~

The important property of these functions

variant under a projective transformation

in the sense that

(Ax) =(Jac -1
Xo A) Xr2 (x)

(2.2)
·'2 1

= (Jac
-?

k n (Ax) A) ... k
r2

(x)
"'2 1

is that they are in­

A : Q1--> n 2 = An 1

where Jac A is the jacobian deterrninant. The solution v of

(#) is also invariant:
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(2.3)

see [6]. In [6] it 1s shown that X and k have the following

expansions.

k(x)
(2.4)

x(X) =C
1
K($) 1/2 (-ep) -(n+1)/2 + 1 " ö. (1)j-{n+1)/2 + O{A(ep))

1~.J ;;. [n/2 ] J

= C_K($) {_$)-n-1 + L . s. (_$)j-n-1 + O{logl$l)
"L""" 1;;;;J~ J

where A(ep) = '1 er leglepl according as n is even.or odd re­

spectively and c. are constants depending on the dimension;
(n-1)/2 1.

c 1 = (~1T) r( (n+1) /2), c 2 = (n+1) ! /2. The boundary value

of coefficients can be cornputed using derivatives of cf> at the

boundary. Since we rnay take an approxirnate solution w in §1

as a def ining function, (2.4) holds for $ = w. Then referring

to Proposition 2, we have

(2 • 5)

x(x)

k(x)

= c
1

(_v)-(n+1)/2 + I. p. (_v)j-(n+1)/2 + O(B(v))
J J

= c (_v)-n-1 + L' Q.(_v)j-n-1 + O(C(v)) ,
2 ] J

where B (v) = 1 or log Ivi and C (v) = log Ivi or v- (n+l) /2

accerding as n is even er odd respeetively. The boundary

values of Pj and ':dj are expressible by use of the derivatives

of a defining function, i.e. by use of Ioeal geometrie data of

the boundary.

Problem 2. In view of the proJ'ective invariance of X, k and v the

above coefficients are certain poZynomiaZs of the projective invariants of

the boundary. Give a precis8 statement of this feet.

In the next section we will compute P1 explicitly and

show that this is a fundamental projective invariant of the

boundary.
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§3. Explicit calculation of a coefficient.

Let us recall first a result in [6]. Fix a point p in the

boundary and choose local coordinates (x 1
, ••• , x n ) at p so

that (xn = O} is the tangent plane at p. We use the notation
n 1 n-1y = x and x = (x , ... , x ). Suppose the boundary is writ-

ten as

y = - h (x)
( 3 • 1 )

h(x)

Here 1 ~ i,j, ... ~n-1 and the summation convention is used. Per­

forming a projective change of coordinates at p, we may assume

(3 • 2) 1:. a i , j = L' , a.. , ,= 0 •
~ ~ 1,J 11JJ

We define a scalar invariant F at p by

(3.3) F = L' , k a. 'ka , 'k'1, J , 1J 1J

This is called the Fubini-Pick cubic invariant of the hypersur­

face an. It is covariant under a proj~ change of of coordina­

tes in the following sense. Take another coordinates satisfying

the above conditions. It corresponds to a matrix of the form

(3.4)

where \,11 ER, a EO(n-1) and b, c ERn
- 1 satisfying the rela-

t ' t ,-1 b d = 1, t Th t f t' . ,10ns C = A a ,~n ,~ ~AC ~ e r
1
ans orrna.1on lS glven

J J.. J J.. - J..by (x, y) --> (a i x + c y / ,\ + b i x + lJY , A. Y/ >.. + b i x + llY) • The

jacobian determinant at the origin is >..-n-1 . And we know that

the Fubini-Pick invariant F in new coordinates is given by

(3.5)
- 2F = ,\ F .
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See [7] for these facts. Now the result we need is

(3 • 6) xl - C 1 (_y)-(n+1/2(1 + 12(~-1)Y) + O(D(y» ,
x=O

where D(y) = y-(n-3)/2 for

for n = 2 (Theorem 6 in [6])

n ~ 4 , log Iy I
Note that

for n = 3 and 1

F = 0 when n = 2

We next cornpute an approximate solution w at p.

a defining function 4> near p by

4> = y + h + ~ (y + h) 2 •

Define

Then K($) = (1+y+h)n-1 deth . • By the ciefinitions (1 . 2 ) and (1 . 4 )
iJ

(3.7) w1 = fep , f = (1 +y+h) -n+1 (deth .. ) -1 /n+1
~J

To find we cornpute the O(ep)-terrn of K(w 1 ) • Put

1 - K (w ) = Q<P + 0 (ep 2) •
1

Then by (1.3) we see that

Q = _2fn +2 det<Paß + \ Q + QL.1:;iy;;iin y n+1'

where is the deterrninant of the matrix fep )o CL whose

y-th

Qn+1
(- f 1 '

Q at

row 15 replaced by the vector (f l' ... , f , -f) and
y yn y

is that of the same matrix whose last row is replaced by

..• , -f , 2f) . Here 1 ~ Ci., ß, "'( ~ n. We will now evaluate
n

p. Recalling def ini tions we see

h = h. = 0
l

h .. =6 .. ,f=1,
lJ lJ ft =

l

n-1
= n+1·

f.. :: E} - 11 8. . __1_
1
b. ., f. 0

lJ n+ lJ n+ lJ ln =

<p.
l = ~l.n :: 0, $n :: tP nn = 1, tP 4. = o. .

lJ lJ

at the origin, where b.. denotes a coefficient of deth .. :
1 i j 1J 3 1)

deth .. = 1 + -2b .. x x + O(!x! ). In viet.oJ of (3.2) it is given by
lJ 1.J
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(3.8)

From these identities we see

det ~aß(p) = 1, Qi (p) = -fii , an(p)

Hence, by use of (3.8) and (3.2),

n-1
= - n+l' ~+1 (p)

n-1
= 2 - n+1

Q(p) = (n-1) (n-3) __2_F
n+1 n+1

Now by definition (1.6) we can easily see

1 2 3
w2 [ x=O = Y - ---z-:-FY + 0 (y )

n -1

This leads to, by Proposition 2,

(3.9) I ----21Fy2 + O(y3) .v x=O = y -
n -1

Then, combining this with (3.6), we have

(3.10) x = C
1

(-V)-(n+1)/2(1 - 12~~-1)V) + O(D(v))

fOl' n ~ 4 ,

on the line x = 0 Here note that the projective invariance

(2.2) and (2.3) of X and v implies that they change by mul­

tiplication of An +1 and A- 2 respectively under the coordinate

change by (3.4). Tagether with the property (3.5) this shows that

(3.10) is independent of the.choice of coordinates and that, re­

ferring to the transformation (1.1), we have completed the proof

of

Theorem. Let r2 be a strictly convex bounded domain 1.Jith smooth boundary.

Then the characteristic funation XQ o[ the domain r2 is expanded by use oi

the convex solution U oi the equation (0.2) end the Fubini-Pick invariant

F oi the bouneary as follows.

-n-1 SF 2
X~l::: c(-u) (1 + 24(n-1) u) + O(E(u)) ,

where c = 2n iT (n - 1 ) / 2 r ( (n + 1 ) / 2 ) end E (u) ::: u - n + 3

log Iu I f 0 r n ::: 3 end 1 /0 P n ::: 2
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Since the vanishing of the Fubini-Pick invariant character­

izes locally an ellipsoid (L. Berwald, see [5]) for n '= 3 , we

have

Corollary 1. In addition to the asswnptions of Theorem, assume that
xun+1 becomes constant near some open set U in the bounriarnJ and that

n,= 3. Then each conneoted cOl7TJ?onent of U is apart of an e'l'lipsoid.

Especially we have

Corollary 2 ([ 1 ] ). In addition to the asswrrption of Theorem, assume

that the projective automorphism group is noncol7TJ?act and that n;;;: 3 . Then its

boundary is an ellipsoid.

Proof.
n+l

XU

By the projective invariance (2.2) and (2.3) the function

roust be constant everywhere.
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